
Programming	
Models

1



Types	of	parallelism	
• Data Parallelism 
• Each processor performs the same task on 

different data (remember SIMD, MIMD) 
• Task Parallelism 
• Each processor performs a different task on the 

same data (remember MISD, MIMD) 
• Many applications incorporate both 2



Implementation:	Single	
Program	Multiple	Data	
• Dominant programming model for shared and 

distributed memory machines 
• One source code is written 
• Code can have conditional execution based on 

which processor is executing the copy 
• All copies of code start simultaneously and 

communicate and synchronize with each other 
periodically 3



SPMD	Model	

4



Data	Parallel	Programming	
• Example
• One code will run on 2 CPUs 
• Program has array of data to be operated on by 2 CPUs so array is split into two 

parts. 

5



Task	Parallel	Programming
• Example
• One code will run on 2 CPUs 
• Program has 2 tasks (a and b) to be done by 2 CPUs 

6



Shared	Memory	Programming:	pthreads
• Shared memory systems (SMPs, ccNUMAs) have 

a single address space 
• Applications can be developed in which loop 

iterations (with no dependencies) are executed 
by different processors 
• Threads are ‘lightweight processes’ (same PID) 
• Allows ‘MIMD’ codes to execute in shared 

address space 7



Shared	Memory	Programming:	OpenMP

• Built on top of pthreads
• Shared memory codes are mostly data parallel, 

‘SIMD’ kinds of codes 
• OpenMP is a standard for shared memory 

programming (compiler directives) 
• Vendors offer native compiler directives 

8



Accessing	Shared	Variables	
• If multiple processors want to write to a shared 

variable at the same time, there could be conflicts : 
• Process 1 and 2 
• read X 
• compute X+1 
• write X 

• Programmer, language, and/or architecture must 
provide ways of resolving conflicts (mutexes and 
semaphores) 9



OpenMPExample	#1:	Parallel	Loop	
!$OMP PARALLEL DO 
do i=1,128 

b(i) = a(i) + c(i) 
end do 
!$OMP END PARALLEL DO

• The first directive specifies that the loop immediately following should be 
executed in parallel. 

• The second directive specifies the end of the parallel section (optional). 
• For codes that spend the majority of their time executing the content of simple 

loops, the PARALLEL DO directive can result in significant parallel performance. 

void simple(int n, float *a, float *b)
{

int i;
#pragma omp parallel for

for (i=1; i<n; i++) /* i is private by default */
b[i] = (a[i] + a[i-1]) / 2.0;

}

10



OpenMPExample	#2:	Private	Variables
!$OMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(I,TEMP) 
do I=1,N 

TEMP = A(I)/B(I) 
C(I) = TEMP + SQRT(TEMP) 

end do 
!$OMP END PARALLEL DO 

• In this loop, each processor needs its own private copy of the 
variable TEMP. 

• If TEMP were shared, the result would be unpredictable since 
multiple processors would be writing to the same memory location. 11



Distributed	Memory	Programming:	MPI	
• Distributed memory systems have separate address 

spaces for each processor 
• Local memory access is faster than remote memory 
• Data must be manually decomposed 
• MPI is the de facto standard for distributed memory 

programming (library of subprogram calls)
• Vendors typically have native libraries such as 

SHMEM (T3E) and LAPI (IBM) 12



Data	Decomposition	
• For distributed memory systems, the ‘whole’ grid is 

decomposed to the individual nodes 
• Each node works on its section of the problem 
• Nodes can exchange information 

13



Typical	Data	Decomposition	
• Example: integrate 2-D propagation problem: 

14



MPI	Example	#1	
• Every MPI program needs these:

#include “mpi.h”
int main(int argc, char *argv[]) 
{ 
int nPEs, iam; 
/* Initialize MPI */ 
ierr = MPI_Init(&argc, &argv); 
/* How many total PEs are there */ 
ierr = MPI_Comm_size(MPI_COMM_WORLD, &nPEs); 
/* What node am I (what is my rank?) */ 
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &iam); 
... 
ierr = MPI_Finalize(); 
} 

15



MPI	Example	#2	
#include “mpi.h”
int main(int argc, char *argv[]) 
{ 
int numprocs, myid; 
MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
/* print out my rank and this run's PE size */ 
printf("Hello from %d of %d\n", myid, numprocs); 
MPI_Finalize(); 
} 16



MPI:	Sends	and	Receives	
• MPI programs must send and receive data between 

the processors (communication) 
• The most basic calls in MPI (besides the three 

initialization and one finalization calls) are: 
• MPI_Send
• MPI_Recv

• These calls are blocking: the source processor issuing 
the send/receive cannot move to the next statement 
until the target processor issues the matching 
receive/send. 17



Message	Passing	Communication	
• Processes in message passing programs 

communicate by passing messages 

• Basic message passing primitives: MPI_CHAR, 
MPI_SHORT, … 
• Send (parameters list) 
• Receive (parameter list) 
• Parameters depend on the library used 
• Barriers 18



MPI	Example	#3:	Send/Receive	

19



QUESTIONS? 20


