Programming
Models

Types of parallelism

* Data Parallelism

Each processor performs the same task on
different data (remember SIMD, MIMD)

* Task Parallelism

Each processor performs a different task on the
same data (remember MISD, MIMD)

* Many applications incorporate both

Implementation: Single
Program Multiple Data

* Dominant programming model for shared and
distributed memory machines

* One source code is written

* Code can have conditional execution based on
which processor is executing the copy

* All copies of code start simultaneously and
communicate and synchronize with each other
periodically (3]

SPMD Model

program program program program

process O process 1 process 2 process 3

processor 0 processor 1 processor 2 processor 3

Communication layer

Data Parallel Programming

* Example

One code will run on 2 CPUs

Program has array of data to be operated on by 2 CPUs so array is split into two

parts.

program:

if CPU=a then
low limit=1
upper 1imit=50
elseif CPU=b then
low 1imit=51
upper 1imit=100
end if
do I = low 1limit,
upper limit
work on A (I)
end do

end program

CPU A

CPU B

program:

low l1imit=1
upper 1imit=50
do I= low 1imit,
upper limit

work on A (L)
end do

end program

program:

low 1imit=51
upper 1imit=100
do I= low limit,
upper limit

work on A (I)
end do

end program

Task Parallel Programming

* Example
One code will run on 2 CPUs
Program has 2 tasks (a and b) to be done by 2 CPUs

program. f: CPU A CPU B
initialize program. f£: program. f£:
if CPU=a then initialize initialize

do task a

elseif CPU=b then o o
do task a do task b
do task b

end if

end program end program

end program

Shared Memory Programming: pthreads

* Shared memory systems (SMPs, ccNUMASs) have
a single address space

* Applications can be developed in which loop
iterations (with no dependencies) are executed
by different processors

* Threads are ‘lightweight processes’ (same PID)

* Allows ‘MIMD’ codes to execute in shared
address space

Shared Memory Programming: OpenMP

* Built on top of pthreads

* Shared memory codes are mostly data parallel,
‘SIMD’ kinds of codes

* OpenMP is a standard for shared memory
programming (compiler directives)

* Vendors offer native compiler directives

Accessing Shared Variables

* |If multiple processors want to write to a shared
variable at the same time, there could be conflicts :

PFOCGSS 1 and 2 Shared variable X
read X in memory
compute X+1

erte X X+1 in procl X+1 in proc2

* Programmer, language, and/or architecture must
provide ways of resolving conflicts (mutexes and
semaphores)

OpenMP Example #1: Parallel Loop

void simple(int n, float *a, float *b)
ISOMP PARALLEL DO

do i=1,128 { -
b(i) = a(i) + c(i) Inti;
end do #pragma omp parallel for
ISOMP END PARALLEL DO for (i=1; i<n; i++) /* i is private by default */
b[i] = (a[i] + a[i-1]) / 2.0;
}

The first directive specifies that the loop immediately following should be
executed in parallel.

The second directive specifies the end of the parallel section (optional).

For codes that spend the majority of their time executing the content of simple
loops, the PARALLEL DO directive can result in significant parallel performance.

OpenMP Example #2: Private Variables

ISOMP PARALLEL DO SHARED(A,B,C,N) PRIVATE(l,TEMP)
do I=1,N
TEMP = A(1)/B(1)
C(1) = TEMP + SQRT(TEMP)
end do
ISOMP END PARALLEL DO

* In this loop, each processor needs its own private copy of the
variable TEMP.

* If TEMP were shared, the result would be unpredictable since
multiple processors would be writing to the same memory location.

Distributed Memory Programming: MPI

Distributed memory systems have separate address
spaces for each processor

* Local memory access is faster than remote memory
* Data must be manually decomposed

MPI is the de facto standard for distributed memory
programming (library of subprogram calls)

* Vendors typically have native libraries such as
SHMEM (T3E) and LAPI (IBM)

Data Decomposition

* For distributed memory systems, the ‘whole’ grid is
decomposed to the individual nodes

Each node works on its section of the problem
Grid of Problem to be solved

F 3
Node #1 works on this area Node #2 works on this area
of the problem T of the problem
exchange
_ exchange T 1‘
* * exchange
Node #3 works on this area | Node #4 works on this area
of the problem exchange of the problem
v

A

Y

Typical Data Decomposition

* Example: integrate 2-D propagation problem:

Starting partial

differential equation:

Finite Difference
Approximation:

ok o D.G‘o +B.8"?
or ox~ oy~
f;’;+1_ﬁ;; =D.=fl‘+lj 2f;’IJ+ 11]+B.-ﬁ]+1 2.f;j+-ﬁj 1
At Ax? Ay’
| |
PE #0 AL:> PE #1 J|:> PE #2 AJ';’) PE #3 |
\ \ =
- = = T = =
== == = = ==
PE #4 A|,:> PE #5 Aj PE #6 ,4_| PE #7 |
" v

P

A
A

\/

MPI Example #1

* Every MPI program needs these:
#include “mpi.h”
int main(int argc, char *argv([])
{
int nPEs, iam;
/* Initialize MPI */
ierr = MPI_Init(&argc, &argv);
/* How many total PEs are there */
ierr = MPI_Comm_size(MPI_COMM_WORLD, &nPEs);
/* What node am | (what is my rank?) */
ierr = MPI_Comm_rank(MPI_COMM_WORLD, &iam);

ierr = MPI_Finalize();

}

MPI Example #2

#include “mpi.h”

int main(int argc, char *argv(])

{

int numprocs, myid;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

/* print out my rank and this run's PE size */
printf("Hello from %d of %d\n", myid, numprocs);
MPI_Finalize();

}

MPI: Sends and Receives

* MPI programs must send and receive data between
the processors (communication)

* The most basic calls in MPI (besides the three
initialization and one finalization calls) are:
MPI_Send
MPI_Recv

* These calls are blocking: the source processor issuing
the send/receive cannot move to the next statement
until the target processor issues the matching
receive/send. [17)

Message Passing Communication

* Processes in message passing programs
communicate by passing messages

- -

* Basic message passing primitives: MPI_CHAR,
MPI_SHORT, ...

* Send (parameters list)

* Receive (parameter list)

* Parameters depend on the library used
* Barriers

MPI Example #3: Send /Receive

#include “mpi.h”

int main(int argc,char *argv[])
{

int numprocs,myid, tag, source,destination,count,buffer;
MPTI Status status;

MPT Init(&argc, &argv) ;

MPI Comm size (MPI_COMM WORLD, &numprocs) ;
MPI Comm . rank (MPTI COMM WORLD , &myid) ;
tag=12347

source=0;

destination=1;

count=1;

if (myid == source) {
buffer=5678;
MPT Send(&buffer count , MPI INT,destination tag,MPI COMM WORLD) ;
prlntf("processor $d sent %d\n",myld buffer)

if(myid == destination) {
MPT Recv (&buffer,count , MPI INT,6 source, tag, MPI COMM WORLD, &status) ;
prlntf("processor d got %d\n",myld buffer),

}

MPT Finalize() ;

QUESTIONS?

