Introduction and
Overview

ECEG-6518 Parallel Computing

Introduction and
Overview

ECEG-6518 Parallel Computing

What is Parallel Computing?
Parallel computing: use of multiple processors or
computers working together on a common task.

Grid of Problem to be solved

CPU #1 works on this area CPU #2 works on this area
of the problem e:xchang:_' of the problem
_ exchange T 1
* v exchange

CPU #3 works on this area P CPU #4 works on this area
of the problem exchange of the problem

f
14
\J

Why Do Parallel Computing?

* Limits of single CPU computing
performance
available memory
* Parallel computing allows one to:
solve problems that don’t fit on a single CPU
solve problems that can’t be solved in a reasonable time
* We can solve...
larger problems
the same problem faster
more cases
* All computers are parallel these days, even an iphone 4S has two cores...
e.g. a Qualcomm APQ 8064 (Snapdragon S4 Pro) has 4 cores @1.5GHz

Speedup & Parallel Efficiency

* Speedup: S — 7.

V24

o

— p = # of processors

— Ts = execution time of the
sequential algorithm

— Tp = execution time of the parallel
algorithm with p processors

— Sp=P (linear speedup: ideal)

e Parallel efficiency

pr pI,

Sp

super-linear speedup (wonderful)

linear speedup

sub-linear speedup (common)

of processors

Limits of Parallel Computing

* Theoretical Upper Limits
Amdahl’s Law
Gustafson’s Law
* Practical Limits
Load balancing
Non-computational sections
* Other Considerations
time to re-write code

Amdahl’s Law

* All parallel programs contain:

parallel sections (we hope!)

serial sections (we despair!)
* Serial sections limit the parallel effectiveness
* Amdahl’s Law states this formally

. 1
Effect of multiple processors on speed up Sy, = 7o
where - - Example:

fs= serial fractlor‘1 of code f,=0.5,f,=0.5, P=2

fo= parallel fraction of code S =1/(0.5+0.25)=1.333

P, max

P = number of processors

Amdahl’s Law

Speedup

20.

18.

16.

14.

Amdahl’s Law

MNMumber of Processors

0o 3
//
0o - .
/ Parallel Portion
0o va 50%
/ —_— 75%
oo 90%
— 95%
.00
.00 ——
/’_’-
(o]0
0o
‘A
00 7
00 — |
0o R
— T o :5 oo ﬁ 2 F’\: g 22 g o w r%
— o [Ty [=] [=] [— [t I~ u
— ™~ =t o w P u
— (o} w

Practical Limits: Amdahl’s Law vs. Reality

* In reality, the situation is even worse than predicted by
Amdahl’s Law due to:

Load balancing (waiting)
Scheduling (shared processors or memory)
Cost of Communications

80

°e /
S 50
P 0 / = Amdahl's Law
— Reality
o _7/
o - v v " v .
1] 50 100 150 200 250

Number of processors

Gustafson’s Law

* Effect of multiple processors on run time of a problem with a
fixed amount of parallel work per processor.

Sp=P—a.(P—-1)

a is the fraction of non-parallelized code where the parallel work
per processor is fixed (not the same as fp from Amdahl’s)

P is the number of processors

Comparison of Amdahl and Gustafson

Gustafson : fixed work per

Amdahl : fixed work processor
* a=0.5 I
“ f, =0.5
1
Sp 5, Sp=P—a.(P—-1)

Scaling: Strong vs. Weak

* We want to know how quickly we can complete analysis on a
particular data set by increasing the PE(processing element)
count

Amdahl’s Law
Known as “strong scaling”

* We want to know if we can analyze more data in
approximately the same amount of time by increasing the PE
count

Gustafson’s Law
Known as “weak scaling”

Hardware classification

Single Instruction

Multiple Instruction
Single Data SISD MISD
Multiple Data SIMD MIMD

SISD No parallelism in either instruction or data streams (mainframes)
SIMID Exploit data parallelism (stream processors, GPUs)

MISD Multiple instructions operating on the same data stream. Unusual,
mostly for fault-tolerance purposes (space shuttle flight computer)

MIIVID Multiple instructions operating independently on multiple data
streams (most modern general purpose computers, head nodes)

NOTE: GPU references frequently refer to

[13)

SIMT, or single instruction multiple thread

Hardware in parallel computing

Memory access Processor type

* Shared memory * Single core CPU
— Intel Xeon (Prestonia, Wallatin)

— SGI Altix — AND Opteron (Sledgehammer, Venus)
— IBM Power series nodes — IBM POWER (3, 4)

Multi-core CPU (since 2005)

. i i — Intel Xeon (Paxville, Woodcrest,
Distributed memo ry Harpertown, Westmere, Sandy Bridge...)
—_ Uniprocessor clusters — AMD Opteron (Barcelona, Shanghai,
Istanbul,...)

— IBM POWER (5, 6...)
— Fujitsu SPARC6E4 VIlIfx (8 cores)

e Hybrid/Multi-processor
clusters (Ranger, Lonestar) e Accelerators

— GPGPU
— MIC

* Flash based (e.g. Gordon)
(Flexible Architecture for Shared Memory)

Shared and distributed

memory

Memory

e All processors have access to a
pool of shared memory

e Access times vary from CPU to
CPU in NUMA systems

 Example: SGI Altix, IBM P5
nodes

Network

Memory is local to each
processor

Data exchange by message
passing over a network

Example: Clusters with single-
socket blades

Hybrid systems

Network

e Alimited number, N, of processors have access to a common pool
of shared memory

* To use more than N processors requires data exchange over a
network

e Example: Cluster with multi-socket blades

Multi-core systems

Network

e Extension of hybrid model

e Communication details increasingly complex
— Cache access
— Main memory access
— Quick Path / Hyper Transport socket connections
— Node to node connection via network

Accelerated (GPGPU and MIC)
Systems

e Calculations made in both CPU and accelerator
* Provide abundance of low-cost flops
e Typically commun icate over PCl-e bus

e Load balancing critical for performance

Rendering a frame: Canonical example
of a GPU task

* Single instruction: “Given a model and set of scene
parameters...”

° Multiple data: Evenly spaced pixel locations (x;y;)

* Output: “What are my red/green/blue/alpha values at
(i, yi)?”
* The first uses of GPUs as accelerators were performed by

posing physics problems as if they were rendering
problems!

A GPGPU example:

\

Calculation of a free volume index

over an evenly spaced set of points
in a simulated sample of

polydimethylsiloxane (PDMS)

= Relates directly to chemical
potential via Widom insertion

formalism of statistical

. mechanics

" Defined for all space

\

Readily computable on GPU
because of parallel nature of
domain decomposition
Generates voxel data which
1

lends itself to spatial/shape
analysis

QUESTIONS?

