Parallel Computing

ECEG-6518

Introduce myself

Fitsum Assamnew

Email: fitsum.assamnew@aait.edu.et

► Office: 1st floor 120B

Planned office hour

► To be decided

Feel free to send me an email with anything regarding the course.

Objective

- This module is aimed at providing students with the knowledge of parallel computing including
 - > parallel architectures,
 - ► algorithms,
 - ► systems,
 - > programming languages,
 - implementation issues

Outline

- Introduction and overview
- Models of Parallel Computers and Computation
- Technique for Designing Parallel Algorithms:
 - PCAM technique (Partitioning, Communication, Agglomeration and Mapping)
 - Synchronization and load balancing
 - Message Passing Computing and MPI
 - Distributed Shared Memory Systems and Cache coherence protocols
 - Shared Memory

OutLine ...

- Introduction to Multithreading:
 - Prefetching
 - Simultaneous multithreading (SMT)
 - chip multiprocessing (CMP)
- Interconnection Networks:
 - ► Hypercube
 - omega networks
 - butterfly
- Performance and Scalability of Parallel algorithms
- Current developments in parallel computers
 - FFT (image processing application)
 - butterfly network
 - DNA sequencing using dynamic programming

5

Expected Outcome

The student is expected to be able to:

- Understand existing parallel computing mechanisms
- Use different tools for design and simulation

6

Read and understand research papers for professional development on parallel computing.

Mode of Delivery

- Lectures
- Student project presentations
- Laboratory exercises
- Self study

30 hours 20 hours 10 hours 120 hours

7

Evaluation

- What is on the curriculum
 - written (mid-semester, final) examination
 - continuous assessment (assignments and project)

60%

30%

8

- What is proposed
 - continuous assessment
 - Assignments (50%)
 - Summarizing 10 papers 10%
 - ► 5 or more assignments 30%
 - Paper presentation 10%
 - ▶ *Project* (50%)
 - ► Proposal 15%
 - ► Write up (report) 25%
 - ► Presentation 10%

References

- 1. High Performance Computing, 2nd edition; by Kevin Dowd & Charles Severance; O'Reilly, 1998.
- 2. MPI The Complete Reference, Second Edition (two volumes); by Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra; MIT Press, 1997.
- 3. Parallel Computer Architecture a Hardware/Software Approach; by David E. Culler and Jaswinder Pal Singh, with Anoop Gupta; Morgan Kaufmann, 1999.
- 4. Designing and Building Parallel Programs; by Ian Foster; Addison Wesley, 1994.
- 5. Concurrent Scientific Computing; by Eric F. Van de Velde; Springer-Verlag, 1994.
- 6. Introduction to Grid Computing with Globus; by Luis Ferreira et al; IBM RedBook, Dec 2002.
- 7. The Sourcebook of Parallel Computing, Edited by Jack Dongarra, Ian Foster, Geoffrey Fox, William Gropp, Ken Kennedy, Linda Torczon, Andy White, October 2002.

Q

8. Programming Massively Parallel Processors with (CUDA or OpenCL)

Let's Talk

- One more interesting book for beginners
 - An introduction to Parallel Programing by Peter S. Pacheco
 - (Thank Mr. Salessawi for suggesting it)
- Deadlines don't change
- Course webpage: www.aait.edu.et/moodle
- Tell us about your experiences and what you plan to do for your research