Interconnection

 Networks
Interconnection Networks

- When more than one processor needs to access a memory structure, interconnection networks are needed to route data
- from processors to memories (concurrent access to a shared memory structure), or
- from one PE (processor + memory) to another (to provide a message-passing facility).
- Inevitably, a large bandwidth is required to match the combined bandwidth of the processing elements.

Ideal Network

- For concurrent access to shared memory, the ideal structure is a crossbar switch, which can simultaneously connect any set of processors to any set of distinct memory modules.
- All N processors can access all M memory units with an $N \times M$ crossbar switch.
- Since there are usually about as many processors as memories, as processors are added, the complexity of a crossbar switch grows as N^{2}.

- For reasonably large values of N, the crossbar switch may be more expensive than the processors and memories.

Measures of interconnection

performance

- Several metrics are commonly used to describe the performance of interconnection networks:
- Connectivity, or degree, the number of nodes that are immediate neighbors of a node (i.e., the number of nodes that can be reached from it in one hop).
- Diameter, the maximum number of nodes through which a message must pass on its way from source to destination. Diameter measures the maximum delay in transmitting a message from one processor to another.

Measures of interconnection

performance

- Average distance, where the distance between two nodes is defined by the number of hops in the shortest path between those nodes. Average distance is given by

$$
d_{a v g}=\frac{\sum_{d=1}^{r}\left(d \cdot N_{d}\right)}{N-1}
$$

where N is the number of nodes, N_{d} is the number of nodes at distance d apart, and r is the diameter.

- Bisection width, the smallest number of wires you have to cut to disconnect the network into two equal halves (± 1).

Interconnection topologies

- An idealized interconnection structure
- takes a set of n input ports labeled $0, \ldots, n-1$ and
- sets up connections between them and a set of m output ports $0, \ldots$, $m-1$,
- with the connections determined by control signals.

- Usually we will assume that $m=n$.

Ring

- Processor i directly connected to processors $i+1$ and $i-1$. Data can be moved from any processor to any other by a sequence of cyclic shifts.
- Motivation: Many parallel algorithms include calculations of the form

$$
X[1]:=\frac{X[i-1]+X[i]}{2}
$$

- Usually every item of an array except the first and last is updated in this way.

Mesh interconnection network

- A mesh is similar to having "row \& column" cyclic shifts.
- One motivation: Four-point iteration is common in the solution of partial differential equations. Calculations of the $\left.\mathrm{f}_{\mathrm{i}} X[i, j]:=(X[i+1, j]+X[i-1, j]+X[i, j-1]+X[i, j+1]) \div 4\right)$
- are performed frequently. Here is an example of a 16 -node mesh.

- Note that the last element in one row is connected to the first element in the next.
- If the last element in each row were connected to the first element in the same row, we would have a torus instead.

Hypercube

A hypercube is a generalized cube. In a hypercube, there are 2^{n} nodes, for some n. Each node is connected to all other nodes whose numbers differ from it in only one bit position.

For a multistage cube network, we can diagram the paths from one cell to another like this:

A multistage cube network is often called an indirect binary n-cube.

Perfect-shuffle interconnection

It describes what
happens when we divide a card deck of, e.g., 8 cards into two halves and shuffle them "perfectly."

We can draw the processor
interconnections required to obtain this transformation (at near right):

If the links are bidirectional, the inverse perfect shuffle is obtained (above, right).

Omega Network

By itself, a shuffle network is not a complete interconnection network. This can be seen by looking at what happens as data is recirculated through the network:

- An exchange permutation can be added to a shuffle network to make it into a complete interconnection structure
- A shuffle-exchange network is isomorphic to a cube network, with a suitable renumbering of boxes.
- An omega network is a log2N-stage shuffle-exchange interconnection, with individual cells that can perform four different operations

Pass-through

Exchange

Broadcast low

Broadcast high

Omega Network

Here is a diagram of a multistage omega network for $N=8$.

Butterfly Network

Closely related to shuffle-exchange networks.
The butterfly permutation is defined as-

$$
B\left(a_{n-1} a_{n-2} \ldots a_{1} a_{0}\right) \equiv a_{0} a_{n-2} \ldots a_{1} a_{n-1}
$$

i.e., the permutation formed by interchanging the most- and least-significant bits in the binary representation of the node number.

This permutation can be diagrammed as shown at the right:

Benes network

- As we have seen, a crossbar switch is capable of connecting a set of inputs to any set of distinct outputs simultaneously.
- A shuffle-exchange, or multistage cube, network is not capable of doing this.
- Is it possible to achieve an arbitrary permutation of inputoutput combinations with less than a full crossbar switch?

Benes network 2

- Yes. The Benes network substitutes two $N / 2 \times N / 2$ crossbar switches, plus an N-input exchange switch for a full crossbar switch, as shown below

Benes network

The resulting $N / 2 \times N / 2$ crossbar switches can be similarly reduced.
Through this process, a full connection network can be produced from 2×2 switches at significantly lower cost than a full crossbar:

The stages of a Beneš network are connected by shuffle and inverse-shuffle permutations.

The network is called rearrangeable, since the switch settings can always be rearranged to accommodate any input-output mapping.

In some Benes̆ networks, the switches are capable of performing broadcasts, as well as pass-through or interchange.

Such Beneš networks can achieve all N^{N} possible input/output mappings.

Questions??

