
Design	of	Parallel	
Algorithms

1

What	is	expected?
• Concurrency
• Scalability
• Locality
• Modularity
• Efficiency
• Flexibility

2

Design	Methods
• The approach should consider
• machine-independent issues earlier such as concurrency
• Machine-specific issues at the later stages of the design process

• Such commonly used method has four stages:
partitioning, communication, agglomeration and
mapping (PCAM)
• The first two stages focus on concurrency and scalability
• Third and fourth stages focus on locality and

performance related issues 3

Design	Stages
• Partitioning. The computation that is to be

performed and the data operated on by this
computation are decomposed into small tasks.
• Communication. The communication required to

coordinate task execution is determined, and
appropriate communication structures and
algorithms are defined.

4

Design	Stages
• Agglomeration. The task and communication

structures defined in the first two stages are
combined in to larger tasks to improve
performance or to reduce development costs.
• Mapping. Each task is assigned to a processor in

a manner that attempts to satisfy the competing
goals of maximizing processor utilization and
minimizing communication costs. 5

Design	Stages

6

Partitioning
• Seek to develop as many tasks as possible: fine

grained granularity
• base partitioning both on computation

associated with a problem and data this
computation operates on

7

Partitioning
• Two ways:
• Domain decomposition: first divide the data and then

find the associated computation
• Functional decomposition: divide based on

computation and associate the data to be operated on

• These methods help in identifying multiple
parallel algorithms

8

Partioning
• Examples: Climate Model
• Domain Decomposition

• Functional Decomposition

9

Partitioning	
• Checklist

1. Does your partition define at least an order of magnitude more
tasks than there are processors in your target computer?
*flexibility

2. Does your partition avoid redundant computation and storage
requirements? *Scalability

3. Are tasks of comparable size? *load balancing
4. Does the number of tasks scale with problem size? *scalabilty
5. Have you identified several alternative partitions? *flexibilty

• If these conditions are not satisfied, it is better to start from
beginning and repeat the process even to the extent of revisiting the
problem definition.

10

Communication
• Parallel tasks in general can not execute independently.
• If a task requires data from an other task, then a channel must be

defined between the tasks in order for data to be exchanged
• Four Types of communication
• Local/Global :

• In local communication each task communicates with its
neighbors

• In global communication each task communicates with many
tasks

• Structured/Unstructured
• In structured communication, a task and its neighbors form a

regular structure, whereas unstructured communication
networks may be arbitrary graphs.

11

Communication
• Static/Dynamic
• In static communication, the identity of communication

partners does not change over time; in contrast, in dynamic
communication structures may be determined by data
computed at runtime

• Synchronous/Asynchronous
• In synchronous communication, producers and consumers

execute in a coordinated fashion,
whereas asynchronous communication may require that a
consumer obtain data without the cooperation of the
producer. 12

Communication
• Examples:
• Local Communication: Jacobi finite difference

• Global Communication: centralized summation
Divide
and
Conquer

13

Communication	
• Checklist

1. Do all tasks perform about the same number of
communication operations? *scalabilty

2. Does each task communicate only with a small number of
neighbors? *scalabilty

3. Are communication operations able to proceed
concurrently? *scalabilty and *efficiency (use divide and
conquer approach)

4. Is the computation associated with different tasks able to
proceed concurrently? *scalabilty and *efficiency (may
need to revisit problem specification) 14

Agglomeration
• In this stage we consider collecting multiple tasks into groups

so that they can be executed in available processors
• The goal being obtaining an algorithm that will execute

efficiently on some class of parallel computer

15

Agglomeration
• Main considerations when agglomerating
• reduce communication costs by increasing

computation and communication granularity
• retain flexibility with respect to scalability and

mapping decisions
• reduce software engineering costs

16

Agglomeration
• Increasing Granularity
• Fine-grained -> coarse-grained

• Example
a. a computation on an 8x8=64 grid (single points)

• 64x4=256, communications are required, 4 per task

17

Agglomeration
b. same computation is partitioned into 2x2=4 tasks (16 points)

• only 4X4=16 communications are required.
• outgoing messages (dark shading) and incoming messages (light

shading).

18

Agglomeration
• Preserving Flexibility
• Creating tasks greater than the number of available

processors
• Allows overlapping computation and communication
• A general rule of thumb: there be at least an order of

magnitude more tasks than processors
• Optimal number of tasks is typically best determined

by a combination of analytic modeling and empirical
studies 19

Agglomeration
• Reducing Software Engineering Costs
• avoid extensive code changes
• Keep data structures similar in the data flow
• e.g. the best algorithm for some program component may

require that an input array data structure be decomposed in
three dimensions, while a preceding phase of the
computation generates a two-dimensional decomposition

20

Agglomeration
• Checklist

1. Has agglomeration reduced communication costs by increasing
locality?

2. If agglomeration has replicated computation, have you verified
that the benefits of this replication outweigh its costs, for a
range of problem sizes and processor counts?

3. If agglomeration replicates data, have you verified that this
does not compromise the scalability of your algorithm by
restricting the range of problem sizes or processor counts that
it can address?

4. Has agglomeration yielded tasks with similar computation and
communication costs? 21

Agglomeration
• Check list continued

5. Does the number of tasks still scale with problem size?
6. If agglomeration eliminated opportunities for concurrent

execution, have you verified that there is sufficient
concurrency for current and future target computers?

7. Can the number of tasks be reduced still further, without
introducing load imbalances, increasing software
engineering costs, or reducing scalability?

8. If you are parallelizing an existing sequential program,
have you considered the cost of the modifications
required to the sequential code? 22

Mapping
• Here we specify where each task is to execute
• mapping problem does not arise on

uniprocessors or on shared-memory computers
that provide automatic task scheduling
• Our goal in developing mapping algorithms is

normally to minimize total execution time

23

Mapping
• Two strategies:

1. We place tasks that are able to execute concurrently
on different processors, so as to enhance
concurrency.

2. We place tasks that communicate frequently on
the same processor, so as to increase locality.

24

Mapping	
• Example: grid computation
• Mapping in a grid problem in which each task performs

the same amount of computation and communicates
only with its four neighbors.
• The grid and associated computation is partitioned to

give each processor the same amount of computation
and to minimize off-processor communication

25

Mapping
Load balancing in a grid problem.
• Variable numbers of grid points are placed on each

processor so as to compensate for load imbalances.
• This sort of load distribution may arise if a local load-

balancing scheme is used in which tasks exchange load
information with neighbors and transfer grid points when
load imbalances are detected.

26

Mapping
• Checklist

1. If considering an SPMD design for a complex problem,
have you also considered an algorithm based on dynamic
task creation and deletion?

2. If considering a design based on dynamic task creation
and deletion, have you also considered an SPMD
algorithm?

3. If using a centralized load-balancing scheme, have you
verified that the manager will not become a bottleneck? 27

Mapping
• Check list continued

4. If using a dynamic load-balancing scheme, have you
evaluated the relative costs of different strategies?

5. If using probabilistic or cyclic methods, do you have a
large enough number of tasks to ensure reasonable
load balance?

28

QUESTIONS?
Assignment II will be posted soon. Check the website!

29

