
Synchronization	and	
Load	Balancing

1

Why?
• Synchronization
• Data Dependency
• Task Dependency

• Load Balancing
• Reduce communication
• Improve performance

2

Data	Dependencies
• Definition:
• A dependence exists between program statements

when the order of statement execution affects the
results of the program.
• A data dependence results from multiple use of the

same location(s) in storage by different tasks.
• Dependencies are important to parallel programming

because they are one of the primary inhibitors to
parallelism. 3

Loop	Carried	Dependency

• The value of A(J-1) must be computed before the value of A(J), therefore
A(J) exhibits a data dependency on A(J-1). Parallelism is inhibited.

• If Task 2 has A(J) and task 1 has A(J-1), computing the correct value of
A(J) necessitates:
• Distributed memory architecture - task 2 must obtain the value of A(J-1)

from task 1 after task 1 finishes its computation
• Shared memory architecture - task 2 must read A(J-1) after task 1 updates it

DO 500 J = MYSTART,MYEND
A(J) = A(J-1) * 2.0
500 CONTINUE

4

Loop	Independent	Data	Dependence

• As with the previous example, parallelism is inhibited. The value of Y
is dependent on:
• Distributed memory architecture - if or when the value of X is

communicated between the tasks.
• Shared memory architecture - which task last stores the value of X.

• Although all data dependencies are important to identify when
designing parallel programs,

• loop carried dependencies are particularly important since loops are
possibly the most common target of parallelization efforts.

task 1 task 2
------ ------
X = 2 X = 4
. .
. .

Y = X**2 Y = X**3

5

How	to	Handle	Data	Dependencies
• Distributed memory architectures
• communicate required data at synchronization

points.
• Shared memory architectures
• synchronize read/write operations between tasks.

6

Types	of	Synchronization:	Barrier
• Usually implies that all tasks are involved
• Each task performs its work until it reaches the barrier. It

then stops, or "blocks".
• When the last task reaches the barrier, all tasks are

synchronized.
• What happens from here varies.
• Often, a serial section of work must be done.
• In other cases, the tasks are automatically released to

continue their work. 7

Types	of	Synchronization:	Lock	
• Can involve any number of tasks
• Typically used to serialize (protect) access to global data

or a section of code.
• Only one task at a time may use (own) the lock /

semaphore / flag.
• The first task to acquire the lock "sets" it.
• Other tasks must wait until the task that owns the lock

releases it.
• Can be blocking or non-blocking 8

Synchronous	communication
• Involves only those tasks executing a communication

operation
• When a task performs a communication operation,

some form of coordination is required with the other
task(s) participating in the communication.
• For example, before a task can perform a send

operation, it must first receive an acknowledgment
from the receiving task that it is OK to send. 9

Load	Balancing

• Load balancing refers to the practice of distributing work
among tasks so that all tasks are kept busy all of the time.

• It can be considered a minimization of task idle time.
• Load balancing is important to parallel programs for

performance reasons.
• For example, if all tasks are subject to a barrier synchronization point,

the slowest task will determine the overall performance. 10

How	to	Achieve	Load	Balance
• Equally partition the work each task receives

(statically)
• Use dynamic work assignment

11

Load	balance:	Equal	Partition
• For array/matrix operations where each task

performs similar work, evenly distribute the data
set among the tasks.
• For loop iterations where the work done in each

iteration is similar, evenly distribute the
iterations across the tasks.

12

Load	balance:	Equal	Partition	…
• If a heterogeneous mix of machines with varying

performance characteristics are being used, be sure to
use some type of performance analysis tool to detect any
load imbalances.
• Adjust work accordingly.

13

Load	balance:	Dynamic	Work	Partitioning
• Certain classes of problems result in load imbalances

even if data is evenly distributed among tasks:
• Sparse arrays - some tasks will have actual data to work on while

others have mostly "zeros".
• Adaptive grid methods - some tasks may need to refine their

mesh while others don't.
• N-body simulations - where some particles may migrate to/from

their original task domain to another task's; where the particles
owned by some tasks require more work than those owned by
other tasks. 14

Load	balance:	Dynamic	Work	Partitioning
• When the amount of work each task will perform is

intentionally variable, or is unable to be predicted, it may
be helpful to use a scheduler - task pool approach. As
each task finishes its work, it queues to get a new piece
of work.
• It may become necessary to design an algorithm which

detects and handles load imbalances as they occur
dynamically within the code.

15

QUESTIONS?? 16

