Synchronization and
Load Balancing

Why?

* Synchronization
Data Dependency
Task Dependency
* Load Balancing
Reduce communication
Improve performance

Data Dependencies

* Definition:

A dependence exists between program statements
when the order of statement execution affects the
results of the program.

A data dependence results from multiple use of the
same location(s) in storage by different tasks.

Dependencies are important to parallel programming
because they are one of the primary inhibitors to
parallelism.

Loop Carried Dependency

DO 500 J = MYSTART, MYEND
A(J) = A(J-1) * 2.0
500 CONTINUE

* The value of A(J-1) must be computed before the value of A(J), therefore
A(J) exhibits a data dependency on A(J-1). Parallelism is inhibited.

* |f Task 2 has A(J) and task 1 has A(J-1), computing the correct value of
A(J) necessitates:

Distributed memory architecture - task 2 must obtain the value of A(J-1)
from task 1 after task 1 finishes its computation

Shared memory architecture - task 2 must read A(J-1) after task 1 updates it

Loop Independent Data Dependence

task 1 task 2

Y=X*2 Y=X"3
As with the previous example, parallelism is inhibited. The value of Y
is dependent on:

Distributed memory architecture - if or when the value of X is
communicated between the tasks.

Shared memory architecture - which task last stores the value of X.

Although all data dependencies are important to identify when
designing parallel programs,

loop carried dependencies are particularly important since loops are [5]
possibly the most common target of parallelization efforts.

How to Handle Data Dependencies

* Distributed memory architectures

communicate required data at synchronization
points.

* Shared memory architectures

synchronize read/write operations between tasks.

Types of Synchronization: Barrier

Usually implies that all tasks are involved

Each task performs its work until it reaches the barrier. It
then stops, or "blocks".
When the last task reaches the barrier, all tasks are
synchronized.
What happens from here varies.

Often, a serial section of work must be done.

In other cases, the tasks are automatically released to
continue their work.

Types of Synchronization: Lock

* Can involve any number of tasks

* Typically used to serialize (protect) access to global data
or a section of code.

Only one task at a time may use (own) the lock /
semaphore / flag.

The first task to acquire the lock "sets" it.

Other tasks must wait until the task that owns the lock
releases it.

Can be blocking or non-blocking

Synchronous communication

* Involves only those tasks executing a communication
operation

* When a task performs a communication operation,
some form of coordination is required with the other
task(s) participating in the communication.

* For example, before a task can perform a send
operation, it must first receive an acknowledgment
from the receiving task that it is OK to send.

Load Balancing

J——

time

* Load balancing refers to the practice of distributing work
among tasks so that all tasks are kept busy all of the time.

* |t can be considered a minimization of task idle time.
* Load balancing is important to parallel programs for

performance reasons.

For example, if all tasks are subject to a barrier synchronization point,
the slowest task will determine the overall performance.

How to Achieve Load Balance

* Equally partition the work each task receives
(statically)

* Use dynamic work assignment

Load balance: Equal Partition

* For array/matrix operations where each task
performs similar work, evenly distribute the data
set among the tasks.

* For loop iterations where the work done in each
iteration is similar, evenly distribute the
iterations across the tasks.

Load balance: Equal Partition ...

* If a heterogeneous mix of machines with varying
performance characteristics are being used, be sure to
use some type of performance analysis tool to detect any
load imbalances.

* Adjust work accordingly.

Load balance: Dynamic Work Partitioning

* Certain classes of problems result in load imbalances
even if data is evenly distributed among tasks:

Sparse arrays - some tasks will have actual data to work on while
others have mostly "zeros".

Adaptive grid methods - some tasks may need to refine their
mesh while others don't.

N-body simulations - where some particles may migrate to/from
their original task domain to another task's; where the particles
owned by some tasks require more work than those owned by
other tasks.

Load balance: Dynamic Work Partitioning

* When the amount of work each task will perform is
intentionally variable, or is unable to be predicted, it may
be helpful to use a scheduler - task pool approach. As
each task finishes its work, it queues to get a new piece
of work.

* It may become necessary to design an algorithm which

detects and handles load imbalances as they occur
dynamically within the code.

QUESTIONS??

