
High speed computer networks

TCP traffic control

Sosina M.
Addis Ababa institute of technology (AAiT)

2012 E.C.

High speed computer networks 2

Transport layer

End-to-end data transfer service

Protocols
oConnection oriented (TCP)

 Connection establishment and release

 Reliable

 Flow and error control

oConnectionless (UDP)
 No need for connection establishment and connection release

 No Flow and error control

 For applications that do not need reliability

 Fast service

High speed computer networks 3

Connection-oriented transport protocol

Logical connection establishment, maintenance and termination

Functions
oAddressing

 (Host, port)

oMultiplexing
 Multiple processes employ the same transport protocol

 Distinguished by port numbers

oFlow control

High speed computer networks 4

TCP flow control

Sliding window mechanism

Decouples acknowledgement from flow control

Applies a credit scheme
oA segment may be acknowledged without granting new credit

o Individual octet (byte) of data have a unique sequence number

oHeader of each transmitted segment includes
 Sequence number (SN) – the sequence number of the first octet

 Acknowledgment number (AN)

 Window (W)

High speed computer networks 5

TCP credit allocation mechanism

E.g., 200 byte of data are sent in each segment, initial credit=1400 byte

 Initial credit=j

 To increase credit to k (K>J)

when no new data

► B issues AN=i, W=k

 To acknowledge segment

containing m octets (m<j)

► B issues AN=i+m, W=j-m

High speed computer networks 6

Send and receive windows

High speed computer networks 7

Credit policy

How much credit a receiver shall give to a sender?

Conservative approach
oUp to the limit of available buffer space

oLimit the throughput of the transport connection in long delay situations

Optimistic approach
oGrant credit for space it doesn’t have

 Based on the anticipated space release within a round-trip propagation

o If the receiver can keep up with the sender – this scheme may increase
throughput

High speed computer networks 8

Effect of window size

Throughput depends on
oWindow size (W)

oPropagation delay (D)

oData rate (R)

Suppose that a source TCP entity begins to transmit
oD second for the first octet to arrive at destination + D for

acknowledgement to return

oWithin 2D time the source could transmit 2DR bits (DR/4 byte)

oThe source is limited to window size of W octets until ACK is received

High speed computer networks 9

Effect of window size

Normalized throughput (s)

𝑆 =
1 𝑊 > 𝑅𝐷/4
4𝑊

𝑅𝐷
𝑊 < 𝑅𝐷/4

Normalized throughput VS. rate delay production (The

maximum window size=216 − 1)

High speed computer networks 10

Remarks

A number of TCP connections are multiplexed over the same
network interface
oEach connection gets the fraction of the available capacity

oReduces R => reduces inefficiency

D= delay across each network + delay at each router

If R > the data rate encountered on one the hops from Source to
Dest.
oCreates a bottleneck en route => increasing D

Lost segments are retransmitted
oThroughput is reduced

High speed computer networks 11

Retransmission strategy

TCP relies on positive acknowledgement
oRetransmission when an ACK does not arrive within a given time out

period

Retransmission
oA damaged segment received by a destination

oSegment fails to arrive

 At what value should the retransmission time be set?

High speed computer networks 12

Retransmission timer

Retransmission timer- a key design issue in TCP
oToo small value →unnecessary retransmission

oToo large value →delay to respond to lost segments

Retransmission timer ≈ round time delay

Approaches
oA fixed timer value

 Unable to respond to changing network conditions

oAn adaptive scheme

High speed computer networks 13

Adaptive transmission timer

Based on the pattern of delay for recent segments
oSet the timer to a value somewhat greater than the estimated round trip

delay

A simple averaging method

𝐴𝑅𝑇𝑇 𝐾 + 1 =
1

𝑘+1
 𝑖=1
𝑘+1𝑅𝑇𝑇(𝑖)

𝐴𝑅𝑇𝑇 𝐾 + 1 =
𝑘

𝑘+1
𝐴𝑅𝑇𝑇 𝐾 +

1

𝑘+1
𝑅𝑇𝑇(𝑘 + 1)

High speed computer networks 14

Weighted averaging

Gives greater weight to more recent instances
oMore likely to reflect future behavior

SRTT(k+1)=α*SRTT(k)+(1- α)*RTT(k+1)
 SRTT(k+1)=smoothed round-trip time estimate

oExponential smoothing coefficient

SRTT(k+1)=(1- α)*RTT(k+1)+ α(1- α)*RTT(k)+

α2(1- α)*RTT(k-1)+…+α𝑘(1- α)*RTT(1)

High speed computer networks 15

Exponential smoothing

 A small value of α – can reflect a
rapid change
 Results in jerky changes

α = 0.5

α = 0.875

High speed computer networks 16

Simple averaging VS. exponential averaging

High speed computer networks 17

Retransmission timeout

RFC 793 specifies the use of a timer whose value is proportional
to SRTT
oRTO(k+1)=MIN(UBOUND, MAX(LBOUND, β*SRTT(k+1)))

High speed computer networks 18

TCP implementation policy options

The design areas for which possible implementation options are
specified
oSend policy

 TCP may construct a segment for each batch of data or may wait until a certain
amount of data accumulates

oDeliver policy
 Deliver data as each in-order segment is received or may buffer data from number of

segments before delivery

oAccept policy
 Accept only segments that arrive in order or accept all segments that are within the

receive window

High speed computer networks 19

TCP implementation policy options

Retransmission policy
oFirst only – retransmit the segment at the front of the queue

oBatch – retransmit all segments in the queue

o Individual
 One timer for each segment

 Retransmit the corresponding segment individually

Acknowledge policy
o Immediate

oCumulative

High speed computer networks 20

TCP congestion control

Congestion => delay and packet drops

Solutions for unbalanced load
oPacket switched networks – dynamic routing

oRouting algorithm – spread load among routers and networks

Congestion control – limiting the total amount of data entering the
network to the amount that the network can carry

The tool in TCP that control congestion – sliding window flow
and error control
oDesigned for management of end-to-end traffic

oEmploying this mechanism for congestion control

High speed computer networks 21

TCP self clocking behavior

The rate at which a TCP entity can transmit is determined by the
rate of incoming ACKs

Rate of ACK arrival is determined by round trip path between
source and destination
oThe sender’s segment rate will match the arrival rate of the ACK

oThe sender rate=the slowest link on the path

Thus, TCP automatically senses the network bottleneck and
regulates its flow accordingly – TCP’s self clocking behavior

High speed computer networks 22

TCP self clocking behavior

The source has no way of knowing whether

ACK rate reflects

 the status of the network (congestion

control)

 or the destination (flow control)

Using TCP sliding window for congestion control

High speed computer networks 23

Retransmission timer management

The value of retransmission timer (RTO) have a critical effect on
TCP’s reaction to congestion

Techniques to compute RTO
oRTT variance estimation

oExponential RTO Backoff

oKarn’s algorithm

High speed computer networks 24

RTT variance estimation

Previously discussed method
oEnables TCP to adapt to changes in round trip time

oDoesn’t cope well with a situation in which the round trip time exhibits a
relatively high variance

Source of variance in RTT
oData rate and variance in IP datagram size =>SRTT is heavily influenced

by the property of the data not the network

oLoad may change abruptly due to traffic from other sources

oThe peer TCP may not acknowledge each segment immediately due to
processing delays or cumulative ACK

High speed computer networks 25

RTT variance estimation

Original TCP specification tries to account for this variability

RTO(k+1)=β*SRTT(k+1) (often β=2 is used)
o In stable condition (low variance of RTT)

 Results in an unnecessarily high value of RTO

oUnstable condition
 A value of 2 may be inadequate to protect against unnecessary retransmission

A more effective approach is to estimate the variability in RTT
values and use that as input for RTO computation

High speed computer networks 26

Jacobson’s algorithm

Exponential smoothing, g=1-α

o SRTT(k+1)=(1-g)*SRTT(k) + g*RTT(k+1)

Error (deviation from mean)

o SERR(k+1)=RTT(k+1)-SRTT(k)

Estimated deviation

o SDEV(k+1)=(1-h)*SDEV(K) + h*|SERR(k+1)|

Then

o RTO(k+1)=SRTT(k+1)+f*SDEV(K+1)

o recommended values for the coefficients

 g=0.125, h=0.25, f=2 0r 4

High speed computer networks 27

Jacobson’s algorithm

High speed computer networks 28

Two other factors

Jacobson’s algorithm can significantly improve TCP performance,
but

oWhat RTO to use for retransmitted segments?
 exponential RTO backoff algorithm

oWhich round-trip samples to use as input to Jacobson’s algorithm?
 Karn’s algorithm

High speed computer networks 29

Exponential RTO backoff

Consider the following scenario
oThere are a number of active TCP connections

oA region of congestion develops => segments are lost or delayed past the
RTO time

oAt roughly the same time many segments will be retransmitted =>
maintaining or even increasing the congestion

oAll source then wait a local RTO time and retransmit again

oThis pattern of behavior could cause a sustained condition of
congestion

High speed computer networks 30

Exponential RTO backoff

Retransmission policy
oSending TCP entity increases its RTO each time a segment is

retransmitted (backoff process)
oThis may give the congested area time to clear the current congestion

A simple technique
oMultiply the RTO by a constant value for each retransmission

𝑅𝑇𝑂(𝑖 + 1) = 𝑞 ∗ 𝑅𝑇𝑂(𝑖)

 RTO grows exponentially with each retransmission

 q=2

High speed computer networks 31

karn’s algorithm

If an ACK is received for retransmitted segment, there are 2
possibilities:
oThe ACK is for the first transmission of the segment

 RRT is longer than expected

oThe ACK is for the second transmission of the segment

The sending TCP entity cannot distinguish between these two

How to estimate RTT?
oFrom the second transmission?

 If the first case is true => the measured RTT will be too small

oFrom the first transmission?
 If the second case is true => the measured RTT=actual RTT + RTO

High speed computer networks 32

karn’s algorithm

Do not use measured RTT to update SRTT and SDEV

Calculate backoff RTO when a retransmission occurs

Use backoff RTO for segments until an ACK arrives for a segment
that has not been retransmitted

When an acknowledgment is received to an unretransmitted segment,
Jacobson’s algorithm is again activated to compute future RTO values

High speed computer networks 33

Windom management

Slow start

Dynamic window sizing on congestion

Fast retransmit

Fast recovery

Limited transmit

High speed computer networks 34

Slow start

Larger send window – the more segments are sent before an
acknowledgement received

Solution
oTCP sender begins from relatively large but not maximum window

 The sender might flood the network before it realized from the time out the flow was
excessive

oGradually expanding the window until ACKs are received (slow start)

Awnd=MIN[credit, cwnd]

 awnd = allowed window in segments

 cwnd = congestion window in segments (a window used by TCP during startup and
to reduce flow during period of congestion)

 credit = amount of unused credit granted in most recent ACK

High speed computer networks 35

Slow start

New connection starts with a
cwnd=1

Each time an ACK to new segment
is received, the value is increased by
1, up to some maximum value

High speed computer networks 36

Dynamic window sizing on congestion

If a segment is lost at some point
oSignals congestion

oNot clear how serious the congestion is

oA wise approach would be to reset cwnd=1 and begin the slow start
process all over

Exponential growth of cwnd under slow start may be to aggressive

Instead, Jacobson proposed the use slow start to begin with,
followed by a linear growth

High speed computer networks 37

Dynamic window sizing on congestion

Set ssthresh=cwnd/2

Set cwnd=1 and preform the slow start process until
cwnd=ssthresh

For cwnd≥ ssthresh, increase cwnd by one for each round trip time

High speed computer networks 38

Dynamic window sizing on congestion

High speed computer networks 39

Fast retransmit

RTO is generally noticeably longer than actual RTT

If a segment is lost, TCP may be slow to retransmit

 Suppose that A transmit a sequence of segments
oB receives all these segment except the first

oB must buffer all of these incoming segments until the missing one is
retransmitted

o If retransmission is delayed, B will have to begin discarding incoming
segments

High speed computer networks 40

Fast retransmit

TCP rule
o If a TCP entity receives a segment out of order, it must immediately issue

an ACK for the last in-order segment that was received

oTCP repeat this ACK with each incoming segment until the missing
segment arrives

When the source TCP receives a duplicate ACK
oThe segment following the ACKed segment was delayed

oThe segment was lost

To make sure the duplicate ACK is due to case 2
oThe sender waits until it receives three duplicate ACKs to the same

segment

oThen retransmits the lost segment

High speed computer networks 41

Fast retransmit

High speed computer networks 42

Fast recovery

Fast retransmit assumes that a segment was lost
oThus, the TCP entity should take congestion avoidance measures

oApply slow-start/congestion avoidance that is used when timeout occurs ?
 Unnecessarily conservative

 The very fact that multiple ACKs have returned indicates that data segments are
getting through fairly regularly to the other side => fast recovery

Fast recovery
oRetransmit the lost segment

oCut cwnd in half and then proceed with the linear increase of cwnd (avoids
initial exponential slow start process)

High speed computer networks 43

Fast recovery

When the third duplicate ACK arrives
oSet ssthresh=cwnd/2
oRetransmit the missing segment

oSet cwnd=ssthresh +3
oEach time an additional duplicate ACK arrives, increment cwnd by 1

oWhen the next ACK arrives that acknowledge new data, set
cwnd=ssthresh

High speed computer networks 44

Fast recovery

High speed computer networks 45

Limited transmit

TCP implementation
oAdaptive retransmission time and fast retransmit

If the cwnd at the TCP sender is small, the fast retransmit
mechanism may not be triggered
oExample cwnd=3

High speed computer networks 46

Limited transmit

Several questions arise
1. Under what circumstances does sender have small congestion window?

 Limited amount of data to send

 The receiver impose small limit on the credit it grants

 Small rate-delay product

2. Is the problem common?
 56% retransmission due to RTO, with only 44% handled by fast retransmit

3. If the problem is common, why not reduce number of duplicate ACKs
needed to trigger retransmit?
 Duplicate ACKs may result from segment reordering

High speed computer networks 47

Limited transmit

Sender can transmit new segment when 3 conditions are met:
oTwo consecutive duplicate ACKs are received=> a total of three ACKs

oDestination advertised window allows transmission of segment

oAmount of outstanding data after sending is less than or equal to cwnd + 2

High speed computer networks 48

TCP variants

High speed computer networks 49

Different versions of TCP

Implementation of TCP congestion control measures

High speed computer networks 50

TCP Tahoe

Algorithms
oRTT estimator

oSlow start

oDynamic window sizing (congestion avoidance)
 Retransmit, set ssthresh, enter slow start phase

oFast retransmit
 Based on duplicate ACKs threshold – generally set to three

High speed computer networks 51

Tahoe algorithm

Initially:
cwnd = 1;
ssthresh = infinite;

New ack received:
if (cwnd < ssthresh)
→ Slow Start

cwnd = cwnd + 1;
else

→ Congestion Avoidance
cwnd = cwnd + 1/cwnd;

Timeout:
→ Multiplicative decrease

ssthresh = cwnd/2;
cwnd = 1;

Time

Timeout

Slow

Start

Timeout

ssthresh

Slow

Start
Slow

Start

High speed computer networks 52

TCP Reno

Retained the enhancements incorporated into TAHOE

The fast retransmit operation is modified to include fast
recovery
oApplies intelligent estimates of the amount of outstanding data
oFast recovery is entered after receiving threshold of dup ACKs
oThe sender

 Sets 𝑠𝑠𝑡ℎ𝑟𝑒𝑠ℎ = 𝑐𝑤𝑛𝑑/2

 retransmits one packet

 cwnd=ssthresh + 3

 “inflates” its window by the number of dup ACKs it has received

 effectively waits until half a window of dup ACKs have been received, and then
sends a new packet for each additional dup ACK that is received

 Exists fast recovery upon receipt of an ACK for new data

High speed computer networks 53

TCP Reno

Algorithm
o If three duplicate ACKs are received

 Set ssthresh=current cwnd/2, cwnd=cwnd/2 +3

 Retransmit

 If a new duplicat ACK

 cwnd=cwnd +1

 If cwnd > the amount of data – transmit new segment

 Else wait

 If fresh ACK

 Exit fast recovery

 If timeout

 cwnd=1

cwnd

Slow Start

AI/MD

Fast retransmit

High speed computer networks 54

TCP Reno

Reno's Fast Recovery algorithm is optimized for the case when a
single packet is dropped from a window of data
oSignificantly improves the behavior of Tahoe TCP when a single packet is

dropped from a window of data,

obut can suffer from performance problems when multiple packets are
dropped from a window of data

High speed computer networks 55

New-Reno TCP

Reno doesn’t improve much upon Tahoe if there are multiple
packet losses in the same window
oWhen multiple packet losses occur

 Reno enters fast recovery multiple times which decreases the congestion window by
half every time

New Reno
oTCP stores the sequence number of the highest data packet which is sent

when the third duplicate ACK arrives

oExists fast recovery when it receives an ACK which is higher than the
sequence number of the highest data packet

High speed computer networks 56

Example: TCP performance analysis

Links – bandwidth capacity and delay

Number of TCP connection from S1 to k1
oThe number of segment sent by each connection

High speed computer networks 57

Project – part 1

Form a group of 3

Analyzing the performance of TCP using NS3

o Try to understand how RTT, CWND, fast retransmit and recovery are implemented

o Compare the different versions of TCPs integrated in NS3

o Create a simple scenario (adapt one of NS3 TCP test setup) and analyze the performance of TCP

 Configure the parameter (bandwidth, latency, etc.)

 Perform tests on RTT and throughput by changing the parameters

