igh seed computer networks | |

TCP traffic control

Sosina M.
Addis Ababa institute of technology (AAiT)
2012 E.C.

Transport layer

JEnd-to-end data transfer service

JProtocols

o Connection oriented (TCP)

v" Connection establishment and release
v" Reliable
v" Flow and error control
o Connectionless (UDP)
v" No need for connection establishment and connection release
v" No Flow and error control

v For applications that do not need reliability
v Fast service

High speed computer networks

Connection-oriented transport protocol

Logical connection establishment, maintenance and termination

JFunctions
o Addressing

v (Host, port)
o Multiplexing

v Multiple processes employ the same transport protocol
v" Distinguished by port numbers

o Flow control

TCP flow control

1Sliding window mechanism
Decouples acknowledgement from flow control

JApplies a credit scheme
o A segment may be acknowledged without granting new credit
o Individual octet (byte) of data have a unique sequence number

o Header of each transmitted segment includes
v' Sequence number (SN) — the sequence number of the first octet

v Acknowledgment number (AN)
v" Window (W)

TCP credit allocation mechanism

E.qg., 200 byte of data are sent in each segment, initial credit=1400 byte

Transport Entity A Transport Entity B - .
! ‘ ' : 4 Initial credit=
A may send 1400 octets : B is prepared to receive 1400 octets,
heginning with 1001 When r?O new data‘
~1000[1001 {1601 » B issues AN=i, W=k
; ;)
A shrinks its transmit window with each \\'3'.'1"'“ 'I';lm"] 1601 3' -'51]'1.;'] } v To aCknOWIGdge Segment
transmissic z acknowledges 3 segments (600 octets) but is H. ;
HImiRsion only prepared to receive 200 additional octets Contalnlng m OCtet_S (m<j) _
beyond the original budget (i.e., B will accept » B Issues AN:|+m’ W:J-m

...1000]1001 2001 |2401...

octets 1601 through 2600)

.. 160011601 (2001 2601...

A adjusts its window with each credit

. 1600{1601 2001 2601...

.. 1600|1601 2600 2601...

A exhausts its credit 60012601 100013001
B acknowledges 5 segments (1000 octets) and
...2600[2601 4000 [4001... restores the original amount of credit

A receives new credit

High speed computer networks 5

Send and receive windows

Octets not vet

) Data octets so far acknowledged i ﬂcknm\'ledgmrl Window of octets

Data octets already transmitted that may be transmitted
L A Ful
Initial sequence Last octet Last octet Window shrinks from Window expands
number (ISN) acknowledged transmitted trailing edge as from leading edge
(AN = 1) segments are sent as credits are received

{a) Send sequence space

Octets not yet

Data octets so far acknowledged acknowledged Window of octets

Data octets already received that may be accepted
LA bk z
\
N\ — —_—
Initial sequence Last octet Last octet Window shrinks from Window expands
number (ISN) acknowledged received trailing edge as from leading edge
(AN - 1) segments are received as credits are sent

(b) Receive sequence space

High speed computer networks

Credit policy

JHow much credit a receiver shall give to a sender?

JConservative approach
o Up to the limit of available buffer space
o Limit the throughput of the transport connection in long delay situations

JOptimistic approach
o Grant credit for space it doesn’t have
v Based on the anticipated space release within a round-trip propagation

o If the receiver can keep up with the sender — this scheme may increase
throughput

Effect of window size

JThroughput depends on
o Window size (W)
o Propagation delay (D)
o Data rate (R)

JSuppose that a source TCP entity begins to transmit

o D second for the first octet to arrive at destination + D for
acknowledgement to return

o Within 2D time the source could transmit 2DR bits (DR/4 byte)
o The source is limited to window size of W octets until ACK is received

Effect of window size

Normalized throughput (s)

1 W >RD/4
=~ W <RD/4
RD

High speed computer networks

0.8 =~

(=3
o
1

Nommalized Thoughp
E=J
1
s

1 |
00 —r T T
-]
w* 1w
|

w0’ I
Rate-Delay Product (bits) :

1 '
1-Gbps Ethetnet Satellite SOH-STM-1
(100 m) link (T-1) (NY - Tokyo)

Normalized throughput VS. rate delay production (The
maximum window size=21¢ — 1)

Remarks

JA number of TCP connections are multiplexed over the same
network interface

o Each connection gets the fraction of the available capacity
o Reduces R => reduces inefficiency

D= delay across each network + delay at each router

If R > the data rate encountered on one the hops from Source to
Dest.

o Creates a bottleneck en route => increasing D

Lost segments are retransmitted
o Throughput is reduced

Retransmission strategy

ITCP relies on positive acknowledgement

o Retransmission when an ACK does not arrive within a given time out
period

JRetransmission
o A damaged segment received by a destination
o Segment fails to arrive

d At what value should the retransmission time be set?

High speed computer networks

11

Retransmission timer

JRetransmission timer- a key design issue in TCP
o Too small value —unnecessary retransmission
o Too large value —delay to respond to lost segments

JRetransmission timer = round time delay

JApproaches

o A fixed timer value
v Unable to respond to changing network conditions

o An adaptive scheme

Adaptive transmission timer

1Based on the pattern of delay for recent segments

o Set the timer to a value somewhat greater than the estimated round trip
delay

JA simple averaging method
ARTT(K + 1) = — S RTT (i)

ARTT(K + 1) = ﬁARTT(K) +——RTT(k + 1)

Welighted averaging

Gives greater weight to more recent instances
o More likely to reflect future behavior

SRTT(k+1)=a*SRTT(K)+(1- a)*RTT(k+1)
v" SRTT(k+1)=smoothed round-trip time estimate
o Exponential smoothing coefficient

SRTT(k+1)=(1- a)*RTT(k+1)+ a(1- a)*RTT(K)+
o2(1- a)*RTT(k-1)+...+ak(1- a)*RTT(1)

Exponential smoothing

0s

04| . A small value of ot — can reflect a

rapid change
v' Results in jerky changes

03 |—

Coefficient Value

02 | —

0.1

a = 0.875

0.0

1 2 3 4 L1 6 7 8 9 10
Age of Observation

High speed computer networks 15

Simple averaging VS. exponential averaging

Observed or average value

10

(]

e — gy = (1.5
¢ = (.875
—— Simple average

e (bserved value

8 9 10 11 12 13 14 15 16 17 18 19 20

Time

(a) Increasing function

High speed computer networks

20

Observed or average value
= o

Ln
|

g ¢ = (.5
e ¢ = (.875
—— Simple average
e (Jbserved value

0

8 9 10 11 12 13 14 15 16 17 18

Time

(b} Decreasing function

19 20

16

Retransmission timeout

JRFC 793 specifies the use of a timer whose value Is proportional
to SRTT

o RTO(k+1)=MIN(UBOUND, MAX(LBOUND, B*SRTT(k+1)))

High speed computer networks 17

TCP implementation policy options

1The design areas for which possible implementation options are
specified
o Send policy

v" TCP may construct a segment for each batch of data or may wait until a certain
amount of data accumulates

o Deliver policy

v Deliver data as each in-order segment is received or may buffer data from number of
segments before delivery

o Accept policy

v Accept only segments that arrive in order or accept all segments that are within the
receive window

TCP implementation policy options

Retransmission policy
o First only — retransmit the segment at the front of the queue
o Batch — retransmit all segments in the queue

o Individual
v One timer for each segment
v Retransmit the corresponding segment individually

JAcknowledge policy
o Immediate
o Cumulative

TCP congestion control

JCongestion => delay and packet drops

JSolutions for unbalanced load
o Packet switched networks — dynamic routing
o Routing algorithm — spread load among routers and networks

JCongestion control — limiting the total amount of data entering the
network to the amount that the network can carry

JThe tool in TCP that control congestion — sliding window flow
and error control
o Designed for management of end-to-end traffic
o Employing this mechanism for congestion control

TCP self clocking behavior

JThe rate at which a TCP entity can transmit is determined by the
rate of incoming ACKs

JRate of ACK arrival is determined by round trip path between
source and destination
o The sender’s segment rate will match the arrival rate of the ACK
o The sender rate=the slowest link on the path

JThus, TCP automatically senses the network bottleneck and
regulates its flow accordingly — TCP’s self clocking behavior

TCP self clocking behavior

Destination

ACK Segment
t—Ab—

—As— F=ae=t

(a) Flow determined by Network Congestion

Source Destination

(b) Flow determined by Destination System

High speed computer networks

The source has no way of knowing whether

ACK rate reflects

v' the status of the network (congestion
control)

v' or the destination (flow control)

Using TCP sliding window for congestion control

22

Retransmission timer management

JThe value of retransmission timer (RTO) have a critical effect on
TCP’s reaction to congestion

JTechniques to compute RTO
o RTT variance estimation
o Exponential RTO Backoff
o Karn'’s algorithm

RTT variance estimation

JPreviously discussed method
o Enables TCP to adapt to changes in round trip time

o Doesn’t cope well with a situation in which the round trip time exhibits a
relatively high variance

JSource of variance In RTT

o Data rate and variance in IP datagram size =>SRTT is heavily influenced
by the property of the data not the network

o Load may change abruptly due to traffic from other sources

o The peer TCP may not acknowledge each segment immediately due to
processing delays or cumulative ACK

RTT variance estimation

Original TCP specification tries to account for this variability

RTO(k+1)=R*SRTT(k+1) (often =2 is used)
o In stable condition (low variance of RTT)
v Results in an unnecessarily high value of RTO

o Unstable condition
v" Avalue of 2 may be inadequate to protect against unnecessary retransmission

A more effective approach is to estimate the variability iIn RTT
values and use that as input for RTO computation

Jacobson’s algorithm

JExponential smoothing, g=1-a
o SRTT(k+1)=(1-g)*SRTT(k) + g*RTT(k+1)

Error (deviation from mean)
o SERR(k+1)=RTT(k+1)-SRTT(K)

JEstimated deviation
o SDEV(k+1)=(1-nh)*SDEV(K) + h*|SERR(k+1)|

JThen
o RTO(k+1)=SRTT(k+1)+f*SDEV(K+1)
o recommended values for the coefficients
v' g=0.125, h=0.25,f=2 0r 4

High speed computer networks

26

Jacobson’s algorithm

.
Ve mreransng s
50
25
e RTO, f= 2
| ——, == RTO,f=4
20 40 .
—f— Observed
15 30 \ value

Observed or average value

=

Observed or average value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0
Time

| |
1 2 3 4 5 o6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ia) Increasing function lime
ib) Decreasing function

High speed computer networks 27

Two other factors

JJacobson’s algorithm can significantly improve TCP performance,
but

o What RTO to use for retransmitted segments?
v exponential RTO backoff algorithm

o Which round-trip samples to use as input to Jacobson’s algorithm?
v" Karn’s algorithm

Exponential RTO backoff

Consider the following scenario
o There are a number of active TCP connections

o A region of congestion develops => segments are lost or delayed past the
RTO time

o At roughly the same time many segments will be retransmitted =>
maintaining or even increasing the congestion

o All source then wait a local RTO time and retransmit again

o This pattern of behavior could cause a sustained condition of
congestion

Exponential RTO backoff

JRetransmission policy

o Sending TCP entity increases its RTO each time a segment is
retransmitted (backoff process)

o This may give the congested area time to clear the current congestion

A simple technique
o Multiply the RTO by a constant value for each retransmission

RTO(i + 1) = q * RTO(i)

v" RTO grows exponentially with each retransmission
v q:2

karn's algorithm

If an ACK Is received for retransmitted segment, there are 2
possibilities:
o The ACK is for the first transmission of the segment
v" RRT is longer than expected
o The ACK is for the second transmission of the segment

dThe sending TCP entity cannot distinguish between these two

JHow to estimate RTT?

o From the second transmission?
v" If the first case is true => the measured RTT will be too small

o From the first transmission?
v" If the second case is true => the measured RTT=actual RTT + RTO

karn’s algorithm

Do not use measured RTT to update SRTT and SDEV
JCalculate backoff RTO when a retransmission occurs

JUse backoff RTO for segments until an ACK arrives for a segment
that has not been retransmitted

dWhen an acknowledgment is received to an unretransmitted segment,
Jacobson’s algorithm is again activated to compute future RTO values

Windom management

JSlow start

Dynamic window sizing on congestion
~ast retransmit

—ast recovery

_Imited transmit

U O O

High speed computer networks

Slow start

JLarger send window — the more segments are sent before an
acknowledgement received

JSolution

o TCP sender begins from relatively large but not maximum window

v" The sender might flood the network before it realized from the time out the flow was
excessive

o Gradually expanding the window until ACKs are received (slow start)

Awnd=MIN/credit, cwnd]

v" awnd = allowed window in segments

v" cwnd = congestion window in segments (a window used by TCP during startup and
to reduce flow during period of congestion)

v credit = amount of unused credit granted in most recent ACK

Slow start

INew connection starts with a
cwnd=1

JEach time an ACK to new segment
IS received, the value is increased by
1, up to some maximum value

High speed computer networks

35

Dynamic window sizing on congestion

If a segment is lost at some point
o Signals congestion
o Not clear how serious the congestion is

o A wise approach would be to reset cwnd=1 and begin the slow start
process all over

JExponential growth of cwnd under slow start may be to aggressive

dinstead, Jacobson proposed the use slow start to begin with,
followed by a linear growth

Dynamic window sizing on congestion

dSet ssthresh=cwnd/2

dSet cwnd=1 and preform the slow start process until
cwnd=ssthresh

JFor cwnd> ssthresh, increase cwnd by one for each round trip time

High speed computer networks

37

Dynamic window sizing on congestion

-
=]
-
=]

CWND = 1 P cwno=1

CWND =3 CWND =3
D=4 D=

\ T AVAY]
\.VAVAV,

CWND =35 CWND =5
CWND =6 CWND =6
el ¥ oot
g
CWND =9 "g
CWND = 10 E
etiet £ omos
CWND = 13 éo
Y e ki 3
0o 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 CWND = 16 CWRD = 10

RDUI]d-rI'i[J times (a) Slow statt, ending witha timeont (b) Slow start o by sti

High speed computer networks 38

Fast retransmit

JRTO Is generally noticeably longer than actual RTT
If a segment is lost, TCP may be slow to retransmit

] Suppose that A transmit a sequence of segments
o B receives all these segment except the first

o B must buffer all of these incoming segments until the missing one is
retransmitted

o If retransmission is delayed, B will have to begin discarding incoming
segments

Fast retransmit

JTCP rule

o If a TCP entity receives a segment out of order, it must immediately issue
an ACK for the last in-order segment that was received

o TCP repeat this ACK with each incoming segment until the missing
segment arrives
JWhen the source TCP receives a duplicate ACK

o The segment following the ACKed segment was delayed
o The segment was lost

1To make sure the duplicate ACK Is due to case 2

o The sender walits until it receives three duplicate ACKs to the same
segment

o Then retransmits the lost segment

Fast retransmit

Elapsed titoe less
then cuttent RTO

High speed computer networks

41

Fast recovery

JFast retransmit assumes that a segment was lost
o Thus, the TCP entity should take congestion avoidance measures

o Apply slow-start/congestion avoidance that is used when timeout occurs ?
v Unnecessarily conservative

v The very fact that multiple ACKs have returned indicates that data segments are
getting through fairly regularly to the other side => fast recovery

JFast recovery
o Retransmit the lost segment

o Cut cwnd In half and then proceed with the linear increase of cwnd (avoids
Initial exponential slow start process)

Fast recovery

JWhen the third duplicate ACK arrives
o Set ssthresh=cwnd/2
o Retransmit the missing segment
o Set cwnd=ssthresh +3
o Each time an additional duplicate ACK arrives, increment cwnd by 1

o When the next ACK arrives that acknowledge new data, set
cwnd=ssthresh

High speed computer networks

43

Fast recovery

ssthresh 1
ssthresh 2

ssthresh 3

A A

3 duplicate ACKs
B

Timeout

Exponential window increase

Linear window increase

High speed computer networks

Limited transmit

JTCP implementation
o Adaptive retransmission time and fast retransmit

JIf the cwnd at the TCP sender i1s small, the fast retransmit
mechanism may not be triggered

o Example cwnd=3

High speed computer networks

45

Limited transmit

JSeveral questions arise

1. Under what circumstances does sender have small congestion window?
v" Limited amount of data to send
v" The receiver impose small limit on the credit it grants
v" Small rate-delay product

2. |Is the problem common?
v' 56% retransmission due to RTO, with only 44% handled by fast retransmit

3. If the problem is common, why not reduce number of duplicate ACKs
needed to trigger retransmit?
v" Duplicate ACKs may result from segment reordering

Limited transmit

JSender can transmit new segment when 3 conditions are met:
o Two consecutive duplicate ACKs are received=> a total of three ACKs
o Destination advertised window allows transmission of segment
o Amount of outstanding data after sending is less than or equal to cwnd + 2

TCP variants

High speed computer networks

48

Different versions of TCP

dImplementation of TCP congestion control measures

Measure RFC 1122 TCP Tahoe TCP Reno NewReno

RTT Variance Estimation J
Exponential RTO Backoff y
Karn’s Algorithm y

Slow Start J

Dynamic Window Sizing
on Congestion y

Fast Retransmit

L)

L)

Fast Recovery J \
¥

Modified Fast Recovery

High speed computer networks

TCP Tahoe

JAlgorithms
o RTT estimator
o Slow start

o Dynamic window sizing (congestion avoidance)
v" Retransmit, set ssthresh, enter slow start phase

o Fast retransmit
v Based on duplicate ACKs threshold — generally set to three

High speed computer networks

50

Tahoe algorithm

Initially: A
cwnd = 1;
ssthresh = infinite;

New ack received: Timeout
if (cwnd < ssthresh)
— Slow Start Timeout

cwnd =cwnd + 1;

else /
— Congestion Avoidance ssthresh —,
cwnd = cwnd + 1/cwnd; /
Timeout:

— Multiplicative decrease Slow Slow Slow Time
ssthresh = cwnd/2; Start Start Start
cwnd = 1;

High speed computer networks 51

TCP Reno

Retained the enhancements incorporated into TAHOE

dThe fast retransmit operation is modified to include fast
recovery

o Applies intelligent estimates of the amount of outstanding data
o Fast recovery is entered after receiving threshold of dup ACKs

o The sender

Sets ssthresh = cwnd/2

retransmits one packet

cwnd=ssthresh + 3

“inflates” its window by the number of dup ACKs it has received

effectively waits until half a window of dup ACKs have been received, and then
sends a new packet for each additional dup ACK that is received

Exists fast recovery upon receipt of an ACK for new data

AN N NN

TCP Reno

JAlgorithm

o If three duplicate ACKs are received
v" Set ssthresh=current cwnd/2, cwnd=cwnd/2 +3

v Retransmit

v If a new duplicat ACK
= cwnd=cwnd +1

= |f cwnd > the amount of data — transmit new segment

= Else walit 0
cwnd
v If fresh ACK
= Exit fast recovery

v" If timeout
= cwnhd=1

Slow Star

Fast retransmit

Al/MD

High speed computer networks

53

TCP Reno

1Reno's Fast Recovery algorithm is optimized for the case when a
single packet is dropped from a window of data

o Significantly improves the behavior of Tahoe TCP when a single packet is
dropped from a window of data,

o but can suffer from performance problems when multiple packets are
dropped from a window of data

New-Reno TCP

JReno doesn’t improve much upon Tahoe if there are multiple
packet losses in the same window

o When multiple packet losses occur

v" Reno enters fast recovery multiple times which decreases the congestion window by
half every time

INew Reno

o TCP stores the sequence number of the highest data packet which is sent
when the third duplicate ACK arrives

o Exists fast recovery when it receives an ACK which is higher than the
sequence number of the highest data packet

Example: TCP performance analysis

Links — bandwidth capacity and delay

JNumber of TCP connection from S1 to k1
o The number of segment sent by each connection

S1 R1 = K1
8Mbps 0.8Mbps

0.lms 100ms

High speed computer networks

Project — part 1

Form a group of 3

JAnalyzing the performance of TCP using NS3
o Try to understand how RTT, CWND, fast retransmit and recovery are implemented
o Compare the different versions of TCPs integrated in NS3
o Create a simple scenario (adapt one of NS3 TCP test setup) and analyze the performance of TCP
v" Configure the parameter (bandwidth, latency, etc.)
v" Perform tests on RTT and throughput by changing the parameters

High speed computer networks 57

