

High speed computer networks

Interior routing protocols

Sosina M. Addis Ababa institute of technology (AAiT) 2012 E.C.

Introduction

Routers

 responsible for receiving and forwarding packets through the interconnected set of networks

Route decision

- o based on knowledge of the topology
- Prevailing traffic/delay conditions of the internet

□ How routers learn about the network topology and the traffic condition?

Routing table

□ Forwarding process

Routing table

Mask	Network Address	Next Hop	Interface
/26	180.70.65.192		m2
/25	180.70.65.128		m0
/24	201.4.22.0		m3
/22	201.4.16.0		m1
Any	Any	180.70.65.200	m2

Routing

□ Fixed/static routing scheme

- The routing information entered manually for each source-destination pair
 - But, the route may change when topology changes
- No route advertisement minimal overhead
 - ✓ Better security
 - requires less bandwidth than dynamic routing
- Primary uses
 - ✓ For simple networks
 - ✓ Single default route

In more complex internets, a degree of dynamic cooperation is needed among the routers

The routes change when the network condition changes

- Network failure
- Network congestion
- □To make dynamic routing decision
 - Routers exchange routing information
 - Routing algorithms are used to make a routing decision based on the routing information

Advantages

- Improves network performance
- Can aid congestion control

Disadvantages

- Complex
- Security
- Consume bandwidth route information exchange
- Additional load

Dynamic routing

Route decision algorithms

- Distance vector
- Link state
- Path vector

Routing information scope

- o Intra domain
- Inter-domain

Scheme

- Reactive
- Proactive

An autonomous system (AS)

o a set of routers and networks managed by a single organization

o consists of a group of routers exchanging information via a common routing protocol

o there is a path between any pair of nodes in AS

Interior Routing Protocol (IRP)

- o passes routing information between routers within an AS
- IRPs can be custom tailored to specific applications and requirements
 - i.e., routing algorithms and information in routing tables used by routers in different ASs may differ

Exterior Routing Protocol (ERP)

- Used to pass routing information between routers in different ASs
- The routers in one AS need at least a minimal level of information concerning networks outside the system

Application of IRP and ERP

Each node exchanges information with its neighboring nodes

- Neighbor nodes directly connected to the same network
- Information distance vector information to all known nodes (entire routing table)

Each node maintains

- A vector of link costs for each directly attached network
- o distance and next-hop vectors for each destination

Information exchange

- Periodic update
- Triggered update

- A router first determines the link cost on each of its network interface (neighbors)
- advertises this set of link costs to all other routers in the internet topology
- Each router constructs the topology of the entire configuration
- Then, computes the shortest path to each destination
 - o Usually Dijkstra algorithm is used

LS and DV approaches can be used for interior Routing protocols
 Neither approach is effective for inter-AS routing

- DV protocol
 - assumes that all routers share a common distance metric with which to judge route preferences
 - Distance metric may be used by different ASs
 - Doesn't identify Ass

LS protocol

- o the metrics used may vary from one AS to another
- o flooding of link state information to all routers across multiple ASs may be unmanageable

Provide information about which networks can be reached by a given router and the ASs that must be crossed to get there

- Does not include a distance or cost estimate
- Each block of routing information lists all of the ASs visited in order to reach the destination network
- o path information enables a router to perform policy routing

Applies the principle of distance vector routing

- □uses the Bellman-Ford Algorithm to calculate its routes
- Distance=hop count
- □Infinity=16
- Each router periodically shares its routing table to the neighboring nodes

□RIP packets use UDP

Initially each router knows only its neighbors

□After one update – neighbors at two hop distance and so on

Upon receiving an update

- o If the destination has no match in the routing table
 - ✓ Add the information to the table
- o Else
 - ✓ If the source is the same or the source is different and the cost is smaller
 - Replace the existing information

A mechanism to detect a link failure

Route update every 30 s

□ If no updates received from a router within 180 seconds, mark route invalid

- Assumes router crash or network connection is unstable
- Set distance value to 16

When a router hears from any neighbor that has a valid route to the router marked unreachable, the valid route replace the invalid one Slow convergence to a change in topologyExample:

Split horizon

- Each node sends only part of its table through each interface
- If the optimum path to x is through A, the node doesn't advertise this piece of information to A

Split horizon and poison reverse

- o if there is no news about a route within a giver time, the node deletes the route
- Node B can still advertise the value for X, but if the source of information is A, it can replace the distance with infinity

RIP packet format

Command – request/response
 Version – RIP 1/RIP 2
 Address family identifier

 2 for IP

□Up to 25 route entries

8 31 0 16 Version Command 0 Address Family Identifier 0 IP Address 1 Address 1 Distance 0 0 Metric for Address 1 Address Family Identifier 0 IP Address 2 Address 2 Distance 0 0 Metric for Address 2 Address Family Identifier 0 IP Address N Up to 25 Addresses 0 0 Metric for Address N

□Unsuitable for large configuration

- Maximum cost =15
- o Increase the cost?
 - Convergence upon initialization or topology change can be long

Simplistic metric leads to suboptimal routing tables

□ RIP-enable devices accept RIP update from any devices

Based on link state routing

In RIP each node must send it full routing table – it may take a considerable amount of time for the information to propagate through the network

General description

- When initialized, router determines link cost on each interface
- Router advertises these costs to all other routers in topology
- Router monitors its costs
 - ✓ When changes occurs, costs are re-advertised
- Each router constructs topology and calculates shortest path to each destination network

A packet is sent by source router to every neighbor

At each router, incoming packet is retransmitted on all outgoing links except for the link on which it arrived

□When duplicate copies of the packet arrive they are discarded

Advantage

- Highly robust- all possible routes are tried
- Flooding information reaches all routers quickly

Disadvantage

• High traffic load- proportional to the connectivity of the network

The costs associated with each hop, in each direction – routing metrics

□Flexible routing metric based on the type of service (TOS)

- Normal e.g., hop
- Minimize monetary cost
- Maximize reliability preconfigured or based on the recent outage or measured packet error
- Maximize throughput based on data rate of the interface
- Minimum delay transmit time (propagation + queueing)

OSPF divides the autonomous system into areas to handle routing efficiently and in timely manner

- The routing information is flooded in the area
- At the border of an area, special routers summarize the information and sent it to other areas

OSPF packet format

□Hello – for neighbor discovery

Send out periodically

Database description – database exchange process

• To synchronize network topology

Link-state request

• To request specific portions of neighboring routers link state database

Link-state update

Link state advertisement to neighboring nodes

Link state acknowledgement

Acknowledges a link state update