

High speed computer networks

Frame relay

Sosina M. Addis Ababa institute of technology (AAiT) 2012 E.C.

Introduction

Switching

- ✓ Circuit switching
- ✓ Packet switching
 - Virtual circuit
 - Datagram

X.25

□Frame relay networks

✓ Architecture

Switched communication network

Transmitting data through a network of intermediate switching nodes

Circuit-Switching

Designed to handle voice traffic

Process

- ✓ End-to-end circuit establishmen
- ✓ Data transfer
- ✓ Circuit disconnect

Advantage

 \checkmark No variation of delay

Shortcomings

- ✓Inefficient
 - high idle time
- ✓ Constant data rate
 - devices must transmit and receive at the same data rate

Packet switching

Used extensively for computer communications

Data transmitted in short blocks, or packets

- ✓ Packet length < 1000 octets
- Each packet contains user data plus control info (routing)
- ✓ Store and forward

Packet switching

□Path selection- considering the state of the network

Advantages

- ✓ Link can be shared dynamically by many packets
- ✓ Different data rate can be used
 - A packet-switching network can perform data-rate conversion
- ✓ When congestion occurs, packets can be still accepted
 - But, delay time increases
- ✓ Priority can be used

Disadvantages

- ✓ Packets incur additional delay with every node they pass through
- ✓ Jitter: variation in packet delay
- ✓ Data overhead in every packet for routing information
- ✓ Processing overhead for every packet at every node traversed

Packet switching : switching Technique

How the network will handle this stream of packets ?

Datagram approach (connectionless)

- ✓ Each packet is treated independently
- ✓ The packets do not all follow the same route
- ✓ The exit node or the destination node restores the packets to their original order
- Each packet must contain a destination address and possibly a source address
 ✓ Efficient for fairly long packets

Virtual circuit approach

Connection-oriented

- ✓ Pre-defined route is established
- Exchange of control packets prior to the transfer of traffic
- ✓ All packets follow the same route
- Each packet contains data plus a virtual circuit identifier
- \checkmark No routing decision

Any difference with circuit switching?

□ If two stations wish to exchange **data over an extended period of time**, there are certain advantages to virtual circuits

The network may provide services such as sequencing and error control
Fast packet transfer

But, datagram is preferred for exchanging only a few packets
No call set up phase
Also flexible and reliable

Packet size and transmission time

- Relation between packet size and transmission time
- E.g., assume a virtual circuit from station X to Y
 - ✓ Message to be sent 40 byte and 3 bytes control information
 - ✓ Break the message into two packet blocks

✓ Continue decreasing the block size ?

X.25

A standard (ITU-T) used for traditional packet switching networks

Specifies an interface between a host system and a packet switching network
✓ Set of protocols corresponding to the first three layers of OSI

Physical layer

✓ Interface between stations and packet-switching network

✓ Use Physical layer specifications in X.25

Link layer

✓ Reliable transmission of data between packet switches (link access protocol-balanced LAP-B)

□Packet layer

✓ Packet formats, control procedures to setup a call and exchange information

 \checkmark logical connection between two stations through the network

X.25

□X.25 protocol control information

Frame relay networks: high speed networking

Designed to provide a more efficient transmission scheme than X.25

□Key features of X.25

- ✓ Call control packets are carried on the same channel and virtual circuit as data packet
- ✓ Multiplexing of virtual circuits takes place at layer 3
- ✓ Both layer 2 and layer 3 include flow control and error control mechanisms
 - Large overhead and slow down transmission

Great improvement on the reliability of physical circuits (e.g. bit error rate of a typical optical link is 10^{-8})

Remove unnecessary overhead

Frame relay

Removes overhead that X.25 imposes and takes advantage of the improvement in transmission link

□Key differences

- ✓ Call control signaling on separate logical connection from user data
- ✓ Multiplexing/switching of logical connections at layer 2 (not layer 3)
- \checkmark No hop-by-hop flow control and error control
 - Flow and error control are the responsibility of higher layers
- ✓ Throughput an order of magnitude higher than X.25

Protocol architecture

□ Frame Relay has 2 layers: physical and data link (or LAPF)

Protocol architecture

Control plane

- ✓ Signaling over D channel
- ✓ Separate channel for control information
- ✓ At the data link layer LAPD (link access control –D channel) is used –for reliable data link control

User plane

- ✓ For actual transfer of information
- ✓LAPF(link access procedure for frame mode bearer service)
 - Detection of transmission errors
 - Virtual circuit multiplexing/demultiplexing
 - Frame delimiting, alignment and transparency
 - Congestion control function

Also functions of LAPD

User data transfer

LAPF core protocol																
	Flag			Address		Information							FCS		Flag	
Similar to LAPD	« Varia					ble	e≥≪2≥≪1≥					>				
	octet (a) Frame format															
	8	7	6	5	4	3	2	1	8	7	6	5	4	3	2	1
		Upper DLCI C/R EA					EA 0			Upper	r DLCI			C/R	EA 0	
		Lowe	r DLCI		FECN	BECN	DE	EA 1		D	LCI		FECN	BECN	DE	EA 0
	(b) Address field—2 octets (default)					DLCI EA 0										
									Low	Lower DLCI or DL-CORE control D/C EA						EA 1
											(d) A	ddress f	field—4	4 octets		
	8	7	6	5	4	3	2	1								
	Upper DLCI C/R EA 0			EA 0												
	DLCI				FECN	BECN	DE	EA 0	EA Address fie			eld extension bit				
	Lower DLCI or DL-CORE control D/C EA 1				C/R FECN	ZR Command/response bit ECN Forward explicit congestion										
	(c) Address field—3 octets					notification BECN Backward explicit congestion										
							notification									
									DLCI D/C	Dat DL	ta link c CI or D	onnecti L-COR	on iden E contr	tifier ol indica	tor	

DE Discard eligibility

User data transfer

□No control field, which is normally used for

- ✓ Identify frame type (data or control)
- ✓ Sequence numbers

□Implication:

✓ Connection setup/teardown carried on separate channel

✓ Cannot do flow and error control

□Flags – mark the beginning and end of frame

 \Box Address – 2 bytes (can be extended to 3 or 4 bytes)

✓DLCI – same as the virtual circuit number

✓ Forward explicit congestion notification (FECN) and backward explicit congestion notification (BECN) – used as part of frame relay congestion control process

Congestion control

Discard control (DE)

 \checkmark When set, indicates that a frame should be discarded in preference to other

- ✓ Part of traffic management procedures
 - Committed burst size the maximum amount of data that a network agrees to transfer under normal circumstance
 - Based on Committed information rate (CIR) in the event of CIR being exceeded
 - Take no action, set the DE field, discard the frame immediately

BECN

 \checkmark Informs the sender that congestion has occurred

 \checkmark The source - slow down to prevent the loss of packets

FECN

- \checkmark Congestion control in the direction of the data transmission
- ✓ The forward explicit congestion notification (FECN) bit can be set by any switch to indicate that traffic is congested

 \checkmark The destination knows that it should expect delay or a loss of packets

DLCI

Inp	ut	Output						
Port	DLCI	Port	DLCI					
1	16	3	xyz					
3	abc	1	16					

Legend: n switch port n

Data transfer involves:

✓ Establish logical connection and DLCI

- ✓ Exchange data frames
- ✓ Release logical connection

□4 message types needed
✓ SETUP
✓ CONNECT
✓ RELEASE
✓ RELEASE COMPLETE

Virtual circuit

Permanent virtual circuit

✓ Permanently established connection

 \checkmark No call setup and termination

✓ For frequent and consistent data transfers

Switched virtual circuit

✓ Creates temporary short connection

Establishing by sending signaling messages to the network