Distributed Systems
ECEG-6504

Processes

Surafel Lemma Abebe (Ph. D.)

Topics

e Introduction

e Threads

e Code migration

e Agents in distributed systems

. . - Surafel Lemma Abebe (Ph. D.) 2

Introduction

e Definition of a process
— A program in execution
— An asynchronous activity
— The 'animated sprit' of a procedure in execution
— The entity to which processors are assigned

— The 'dispatchable’ unit

= No universally agreed upon definition
= “A program in execution” is mostly used

* Are processes and programs the same?
- No
e What is the difference between process and program?

— Process is an “active” entity, while a program is a “passive” entity
— Program is only part of a process

. . Surafel Lemma Abebe (Ph. D.) 3

Introduction...

e Difference between process and program... max
— Process includes

Program code, also called text section
Current value of program counter
Contents of processor registers
Stack containing temporary data
— Function parameters, return addresses, local variables
Data section containing global variables
Heap containing memory dynamically allocated during run time

— One program can be several processes
e Consider multiple users executing the same program

* Process has different states

admitted interrupt terminated

scheduler dispatch

I/0O or event completion I/0O or event wait

stack

heap

data

text

_

Introduction...

e Process Control Block (PCB)

— Information associated with each process process state
— Also called task control block process number
* Process state program counter

— Running, waiting, etc
Program counter

— Location of instruction to next execute registers
e CPU registers
— Contents of all process-centric registers memory limits
e CPU scheduling information list of open files
— Priorities, scheduling queue pointers
e Memory-management information T

— Memory allocated to the process
Accounting information
— CPU used, clock time elapsed since start, time limits

|/O status information
— 1/0 devices allocated to process, list of open files

. - Surafel Lemma Abebe (Ph. D.) 5

Introduction...

e Context Switch
— Happens when CPU switches

process P, operating system process P,
from one process to another interrupt o system call
executing
process ﬂ’/| save state into PCB, |
— Context of a process is e
represented in the PCB e TR
— iti - idle interrupt or system call executin
Initiated by a scheduler ptor sy g
M
— Scheduler determines v —Y
| save state into PCB, |
e When a running process is to : idle
be interrupted |re|0ad state from PCBO|

e Which process from the ready #xcuting U¥

queue will run next

. . Surafel Lemma Abebe (Ph. D.) 6

Threads

e What are threads?
e Thread is a single sequence of stream within a
process
e Basic unit of CPU utilization

 Has some properties of processes

e Allow multiple executions of streamsin a
process

e Comprises a threadlD, a program counter, a
register set, and a stack

e Are threads independent of one another like
processes?

e No. Threads share their code section, data
section, OS resources (e.g., opened files)

. . Surafel Lemma Abebe (Ph. D.)

code

data

files

registers

registers

registers

stack

stack

stack

:

:

E_

— thread

multithreaded process

_

Threads...

e Threads vs Processes
e Similarities
e Like processes threads share CPU and only one thread is active (running) at a time
(for one processor)
e Like processes, threads within a process execute sequentially
e Like processes, thread can create children
 And like process, if one thread is blocked, another thread can run

— Differences
e Unlike processes, threads are not independent of one another
e Unlike processes, all threads can access every address in the task
e Unlike processes, thread are design to assist one another

— Note that processes might or might not assist one another because processes may originate from
different users

e Unlike processes, threads do not try to achieve higher degree of concurrency
transparency

. - Surafel Lemma Abebe (Ph. D.) 8

Threads...

e Context switching

— Threads share the same address space

e Thread context switching can be done entirely independent of the
operating system

— Process switching is generally more expensive as it involves
getting the OS in the loop, i.e., trapping to the kernel

— Creating and destroying threads is much cheaper than doing so
for processes

e Processes are building blocks of DS

e DS requires to have more fine grained control at the level of
threads

— Helps to achieve higher performance

. - Surafel Lemma Abebe (Ph. D.) 9

Threads...

e Mainissue in thread implementation - OS

— Should an OS kernel provide threads, or should they be
implemented as user-level packages?

e User-level solution

— All operations can be completely handled within a single
process

= implementations can be extremely efficient

— All services provided by the kernel are done on behalf of
the process in which a thread resides

= if the kernel decides to block a thread, the entire
process will be blocked

= if the kernel can’t distinguish threads, how can it
support signaling events to them?

. - Surafel Lemma Abebe (Ph. D.) 10

Threads...

e Kernel solution

— The whole idea is to have the kernel contain the
implementation of a thread package

=> This means that all operations return as system calls

e Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process

e Handling external events is simple: the kernel (which catches all events)
schedules the thread associated with the event

* Problem

— Loss of efficiency due to the fact that each thread operation requires a trap to
the kernel

e Solution

— Try to mix user-level and kernel-level threads into a single
concept: Light weight processes

. - Surafel Lemma Abebe (Ph. D.) 11

Threads...

e Lightweight processes (LWP)
— Introduce a two-level threading approach: lightweight
processes that can execute user-level threads
e LWP runs in the context of a single (heavy-weight) process
e Thread package is implemented in user space
e Thread package can be shared by multiple LWP

Thread state

User space

&« Thread

<€—— Lightweight process

I.___I i.___I
Kernel space /

LWP executing a thread

. . Surafel Lemma Abebe (Ph. D.) 12

Threads...

e Lightweight processes (LWP)
— Principal operation
e User-level thread does system call

= The LWP that is executing that thread, blocks

The thread remains bound to the LWP

— The kernel can schedule another LWP having a runnable thread bound to
it

e Athread calls a blocking user-level operation

= Do context switch to a runnable thread, (then bound to
the same LWP)

— When there are no threads to schedule, an LWP may remain idle, and
may even be removed (destroyed) by the kernel

— Note

e This concept has been virtually abandoned —it’s just either user-
level or kernel-level threads.

. . Surafel Lemma Abebe (Ph. D.) 13

Threads...

e Threadsin DS

— Property of threads (not blocking the entire process) makes
them attractive for DS

— Multithreaded Web client
e Hiding network latencies

— Web browser scans an incoming HTML page, and finds that more files need to
be fetched

— Each file is fetched by a separate thread, each doing a (blocking) HTTP request
— As files come in, the browser displays them

— Multiple request-response calls to other machines (RPC)

* Aclient does several calls at the same time, each one by a different
thread

¢ |t then waits until all results have been returned
e Note

— If calls are to different servers, we may have a linear speed-up

. . Surafel Lemma Abebe (Ph. D.)

14

_

Threads...

e Threadsin DS...

— Improve performance
e Starting a thread is much cheaper than starting a new process

e Having a single-threaded server prohibits simple scale-up to a
multiprocessor system

¢ As with clients

— Hide network latency by reacting to next request while previous one is being
replied

* Atservers
— Help attain high performance by exploiting parallelism
— Better structure
e Most servers have high I/0 demands
— Using simple, well-understood blocking calls simplifies the overall structure

e Multithreaded programs tend to be smaller and easier to understand
due to simplified flow of control

. . Surafel Lemma Abebe (Ph. D.) 15

Code migration

e Communication is not limited to only passing data
— In some situations, code could also be migrated
— Example: Implementation of a service in the context of code migration

Before execution After execution
Client Server Client Server
| code code
Client server state state’
resource resource
code code
Remote evaluation - state - state*
resource resource
code code
Code on demand state “ state* ||«
resource resource
code code
Mobile agents — . N —
resource resource resource resource 16

Code migration...

e Reasons for code migration

— Performance

* Move processes from a heavily-loaded to lightly-loaded
machines

— Load is expressed in terms of
» CPU queue length
» CPU utilization

e Based on qualitative reasoning

— Assumption

» |t generally makes sense to process data close to where the
data resides

— Supports parallelism

. . Surafel Lemma Abebe (Ph. D.) 17

Code migration... _ -ommee

Server

!

e Reasons for code migration... = \ 1
— FIElelIlty slf"fegmogf : . 1. Client fetches code
e Traditional approach s Tegoehiiy

— Partition the application into different parts and, decide in
advance where each part should be executed

* Provide implementation no sooner than is strictly necessary
— E.g., when the client binds to the server
— Advantage

» Client-server protocol could be changed as often as one
wants

e Uses a standard interface
» Clients need not have all the software preinstalled
— Disadvantage
» Security

. . Surafel Lemma Abebe (Ph. D.) 18

Code migration...

e Models for code migration

— Process consists of three segments

e Code segment

— Consists set of instructions that make up the program being
executed

* Resource segment

— Contains references to external resources needed by the
process

— E.g., files, printers, devices,...

e Execution segment
— Stores the current execution state of a process
— Contains private data, stack and program counter

. . Surafel Lemma Abebe (Ph. D.) 19

Code migration...

e Models for code migration...
— Weak mobility

 Move only code and data segment (containing initialization data)s
— Starts execution form one of several predefined starting positions
» E.g., Java applets
— Relatively simple, especially if code is portable

e Could be executed by the target process or a separate process
— Strong mobility

e Move component, including execution segment
— Migration: move entire object from one machine to the other
— Cloning: start a clone, and set it in the same execution state

— Could further be classified as
e Code shipping (push/sender-initiated)
e Code fetching (pull/receiver-initiated)

. . Surafel Lemma Abebe (Ph. D.) 20

Code migration...

e Models for code migration...

Execute at
Sender-initiated -~ 'arget process
mobility ~~~__ Execute in
rate S5
Weak mobility :!pa :‘uca
\ Receiver-initiated _— target process
mobility ~_ .
separate process

Mobility mechanism

Migrate process
Sender-initiated .~ .
mobility
/ \\Clom process

Strong mobility

. . - Surafel Lemma Abebe (Ph. D.) 21

Code migration...

e Migration and local resources

— Resource segment cannot always be simply transferred along
with other segments

e E.g., reference to a specific TCP port vs reference to a file using an
absolute URL

— Types of process-to-resource bindings
e By identifier
— Process requires a specific instance of a resource
— E.g., local communication end points
e By value

— Process requires the value of a resource
— E.g., the set of cache entries, libraries

* By type
— Process requires that only a type of resource is available
— E.g., a color monitor

. . Surafel Lemma Abebe (Ph. D.) 22

Code migration...

e Migration and local resources...

— We could change the reference to resources, but could not
affect the kind of process-to-resource binding

— Resource-to-machine binding

e Fixed
— Resource cannot be migrated
— E.g., local hardware, local communication end point
e Fastened
— Resource can, in principle, be migrated but only at high cost
— E.g., local databases, websites
e Unattached
— Resource can easily be moved along with the object
— E.g., a cache, data files associated with only the program

. . Surafel Lemma Abebe (Ph. D.) 23

Code migration...

e Migration and local resources...

Resource-to-machine binding

Unattached Fastened Fixed
ID MV (or GR) GR (or MV) GR
Value | CP (or MV, GR) GR (or CP) GR
Type | RB (or MV, GR) RB (or GR, CP) RB (or GR)

GR = Establish global systemwide reference
MV = Move the resource

CP = Copy the value of the resource

RB = Re-bind to a locally available resource

Surafel Lemma Abebe (Ph. D.)

24

Code migration...

e Migration in heterogeneous system
— Problem

e Target machine may not be suitable to execute the migrated
code

e Definition of process/thread/processor context is highly

dependent on local hardware, operating system and runtime
system

— Solution

 Make use of an abstract machine that is implemented on
different platforms

— Interpreted languages, effectively having their own VM
- Virtual VM

. . Surafel Lemma Abebe (Ph. D.) 25

Agents

e Some definitions

— “An agent is anything that can be viewed as perceiving its
environment through sensors and acting on that environment
through effectors” (Russell and Norvig 1995)

— “[An agent is] a piece of software that performs a given task
using information gleaned from its environment to act in a
suitable manner so as to complete the task successfully. The
software should be able to adapt itself based on changes
occurring in its environment, so that a change in circumstances
will still yield the intended result” (Hermans 1996)

— “A software entity that performs tasks on behalf of another
entity, be it a software, a hardware, or a human entity” (Shehory
2014)

. . Surafel Lemma Abebe (Ph.D.) 26

Agents...

e Dimensions of agenthood

— Core set that we find central to the definition and
development of software agents

e Autonomy

— Refers to the ability of an agent to perform unsupervised computation
and action, and to pursue its goals without being explicitly instructed for
doing so

* Intelligence
— Originates from the agent having to act on behalf of another
— Agents that reason about serving others and act accordingly
— May required capabilities
» Learning, reasoning, planning, and decision making

* Allow agent to make educated decisions and to behave
rationally

e Allow agent to be goal-oriented

. . Surafel Lemma Abebe (Ph.D.) 27

Agents...

 Dimensions of agenthood...
e Sociality

— Agent might need to interact with other agents and
coordinate, collaborate, or compete to meet its goals

e Mobility
— Agents may be able to change their logical or physical location
— When do we say an agent moved?

1. When agent moves from its current execution
environment to another

2. When agents reside on mobile devices and the device
moves

. . . Surafel Lemma Abebe (Ph.D.) 28

