Computer system modeling and simulation

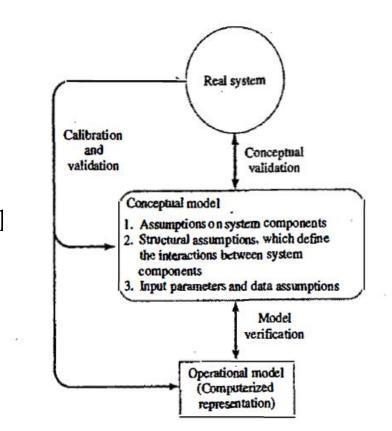
7. Model verification and validation

Sosina M. Addis Ababa institute of technology (AAiT) 2012 E.C. Observing the real system structure and behavior
 Collecting data

Conceptual model

• Assumptions about the components and structure of tl models, hypotheses about the model input parameters

Implementation of an operational modelOusually by using simulation software



Goal:

• Check the correct implementation of the model

Method

• Comparison of the conceptual or mathematical model to computer representation

Check

Is the conceptual model implemented correctly in the simulation software?
Are the input parameters and logical structure of the model represented correctly?

■ Make a flow diagram that includes each logically possible action a system can take when an event occurs, and follow the model logic for each action for each event type

- Closely examine the model output under a variety of settings of the input parameters
 - E.g., does an average number in a queue increase with increasing average arrival rate ?

□long-run measures of performance

• Compare measure of performance that can be computed analytically and its simulated counterpart

Goal:

check the accuracy of the modelIncrease the credibility of the model

Method

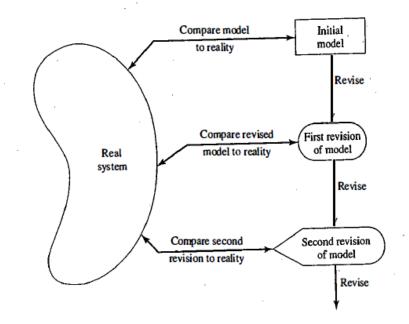
Comparison of the model with the real behavior
Model calibration

Check

• Is the model an accurate representation of the real system ?

An iterative process

- Compare the model to the actual system behavior
- Using the discrepancies between the two, improve the model (parameters)
- Repeat the process until the model accuracy reaches to an acceptable level



Use different data sets for validation and calibration

- after the model has been calibrated by using the original system data set, a "final" validation is conducted, using another system data set.
- If unacceptable discrepancies between the model and the real system are discovered in the "final" validation effort
 - return to the calibration phase and modify the model until it becomes acceptable.

A three-step approach

- \checkmark Build a model that has high face validity
- ✓ Validate model assumptions
- ✓ Compare the model input-output transformations to corresponding input-output transformations for the real system

Given State Frace validity

• Construct a model that appears reasonable on its face to model users and who are knowledgeable about the real system being simulated

□ Validation of model assumptions

Structural assumptions

- involve questions of how the system operates and usually involve simplifications and abstractions of reality
- E.g., consider a customer queueing and service facility in a bank
 - ✓ Customers can form one line or there can be an individual line for each tellers
 - ✓ If there are many lines, customers could be served strictly on FIFO basis or customers could change lines

□ Validation of model assumptions

\circ Data assumptions

- Should be based on the collection of reliable data and correct statistical analysis of the data
- E.g., in the bank study
 - ✓ Interarrival times of customers during several 2-hour periods of peak loading
 - ✓ Interarrival times during a slack period
 - ✓ Service times for commercial accounts and personal accounts
- Input data analysis
 - ✓ Identify an appropriate probability distribution
 - ✓ Estimate the parameters of the hypothesized distribution
 - \checkmark Validate the assumed statistical model by a goodness of fit test

Uvalidating input-output transformations

- The ultimate test of a model is the model's ability to predict the future behavior of the real system
- In this phase of the validation process
 - The model is viewed as an input-output transformation, i.e., the model accepts values of the input parameters and transforms these inputs into output measures of performance
- A historical data is used to test the model
- Compare the response of the real system and the model under similar input conditions

Validating input-output transformations

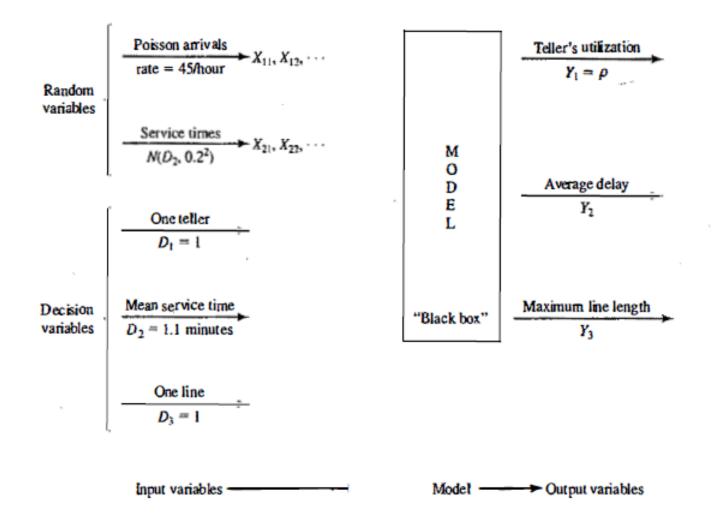
Example: a bank system with one drive-in window serviced by one teller.

- Service times {S;, i = 1, 2, ..., 90} and interarrival times {A;; i = I, 2, ..., 90}were collected for the 90 customers who arrived between 1 1 :00 A.M. and 1 :00 P.M. (assumed to be representative of a typical rush hour)
- Arrivals are modeled as a Poisson process at a rate of 45 customer/hour and the service times were approximated normally distributed with mean 1.1 minutes and SD 0.2 minutes

• Input variables

- Interarravial time exponential with mean 1/45 hr
- Services times $-N(1.1, (0.2)^2)$

Model input output transformation



Model input output transformation

□For validation of the input-output transformations

• The system responses should be collected during the same time period in which the input data were collected

Input Variables	Model Output Variables, Y
D = decision variables	Variables of primary interest
X = other variables	to management (Y_{b}, Y_{2}, Y_{3})
	$Y_1 =$ teller's utilization
Poisson arrivals at rate = 45/hour	$Y_2 = average delay$
X_{11}, X_{12}, \dots	$Y_3 = $ maximum line length
Service times, $N(D_2, 0.2^2)$	Other output variables of
X_{21}, X_{22}, \ldots	secondary interest
	$Y_4 = observed arrival rate$
$D_1 = 1$ (one teller)	$Y_5 = average service time$
$D_2 = 1.1$ minutes (mean service time)	$Y_5 =$ sample standard deviation of service
$D_3 = 1$ (one line)	times
1	Y_7 = average length of waiting line

Simulation of computer system

Consider a CSMA (Carrier Sense Multiple Access) system

Stations communicate over a shared channel

A simple CSMA

- Sense the channel before transmitting
- If the channel is idle
 - Transmit the packet
- If the channel is busy
 - Defer the transmission for a random amount of time

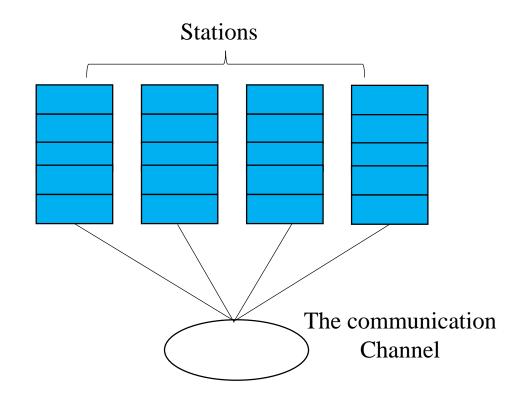
Model of a CSMA system

Entities

Transmitting stationsThe channel

□What are we interested in?

System throughput
Collision probability
Average queue length
Access delay, etc.



State variables

- The state of the channel
- The number of packets queued in each station

Events

- Packet arrival
- End of transmission
- Collision