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Random variables generation 

Modeling activities that are unpredictable 

o Example inter-arrival times and service times at queues 

o Such variables are modeled as random variables with some specified statistical distribution 

Activity of generating samples from a specified distribution 

IID U[0, 1] are the basic ingredient needed for any random variable generation 
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Random variables generation 

Methods 

o Inverse transform technique 

oAcceptance-rejection technique 

oComposition method 

oConvolution method 

All the methods assume that a source of uniform [0, 1] random numbers 
is readily available 
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Requirements 

Exactness 

oUse methods that result in random variates with exactly the desired distribution 

Efficiency 

oStorage space and execution time 

Simplicity 

oConceptual and implementational factors 

Mathematical validity
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Inverse-transform technique 

We want to generate instances of a random variable X with cumulative 
distribution F(x)

Algorithm 

oU=F(x)

oGenerate U~U(0, 1)

oReturn X=𝐹−1(U)

Can be utilized for any distribution – but most

useful when 𝐹−1 can be computed easily 

U

X
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Exponential distribution 

𝐹 𝑥 =  1 − 𝑒−λ𝑥 , 𝑥 ≥ 0
0, 𝑥 < 0

oΛ = the mean number of occurrences per time unit 

Example: exponential arrival times 

o Inter-arrival times 𝑋1, 𝑋2, 𝑋3
oΛ=mean arrivals per time unit (rate of arrival)

o𝐸 𝑋𝑖 = 1/λ
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Exponential distribution 

1. Compute the cdf→ 𝐹 𝑥 = 1 − 𝑒−λ𝑥, 𝑥 ≥ 0

2. Set F(x)=1 − 𝑒−λ𝑥=R 

R has a uniform distribution over the interval [0, 1]

3. 𝑋 = −
1

λ
ln(1 − 𝑅)

both R and 1-R are uniformly distributed in [0, 1] =>

𝑋 = −
1

λ
ln 𝑅

Algorithm 
o Generate u~U(0, 1)

o Calculate 𝑋 = −
1

𝜆
𝑙𝑛 𝑢

o Return X 
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Uniform distribution 

We want to generate instances of a uniform random variable on the 
interval [a, b]

o𝐹 𝑥 =
𝑥−𝑎

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

Algorithm 

oGenerate u~U(0, 1)

oCalculate 𝑋 = 𝑢(b-a)+a

oReturn X
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Discrete distribution 

All discrete distributions can be generated via the inverse-transform 
technique 

Empirical discrete distribution 

oExample 

 P(X=0)=0.5, P(X=1)=0.3, P(X=2)=0.2

 F(x)=

0 𝑥 < 0
0.5 0 ≤ 𝑥 < 1
0.80 1 ≤ 𝑥 < 2

1 𝑥 ≥ 2

X= 
0 𝑅 ≤ 0.5
1 0.5 < 𝑅 ≤ 0.8
2 0.8 < 𝑅 ≤ 1
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Discrete uniform distribution 

Generate an instance x of X with x in {1, 2, …,k) where  P(x)=1/k, 
x=1,2,…,k 

F(x)=

0 𝑥 < 1
1

𝑘
1 ≤ 𝑥 < 2

2

𝑘
2 ≤ 𝑥 < 3
… .

1 𝑥 ≥ 𝑘

X=


𝑥−1

𝑘
< 𝑢 ≤

𝑥

𝑘
⇒ 𝑥 − 1 < 𝑘𝑢 ≤ 𝑥 = 𝑘𝑢 ≤ 𝑥 < 𝑘𝑢 + 1
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Geometric 

Consider a geometric distribution with pmf

𝑝 𝑥 = 𝑝(1 − 𝑝)𝑥

𝐹 𝑥 =  𝑗=0
𝑥 𝑝(1 − 𝑝)𝑗= 1 − (1 − 𝑝)𝑥+1

X =
ln(1−𝑅)

ln(1−𝑝)
− 1 ⇒ 𝑋 =

ln(𝑅)

ln(1−𝑝)
− 1

Algorithm 

oGenerate R=U(0, 1)

oCompute X=ceil (
ln(𝑅)

ln(1−𝑝)
− 1)

oReturn X
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Remarks 

Intuitively easy to understand 

To apply inverse-transform technique F(x) must be invertible 

The computational cost depends on the computational complexity of the 
inverse function 
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Acceptance-rejection technique 

The acceptance rejection technique can be applied to random variables 
with pdf f(x) and limited support [a, b]

c=max(f(x)), apply the following procedure 

oGenerate xi=U(a, b)

oGenerate yi=U(0, c)

o If yi≤ 𝑓(𝑥𝑖) return xi, otherwise go back to step 1 
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Acceptance-rejection technique

The efficiency of an acceptance-rejection technique depends heavily on 
being able to minimize the number of rejections 
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Composition method 

This method is applied to random variables whose CDF can be expressed 
as weighted sum of other CDFs

𝐹 𝑥 =  𝑖=1
∞ 𝑝𝑖𝐹𝑖(𝑥) 𝑝𝑖=the probability of generating from 𝐹𝑖

Poisson distribution 

P(N=n)=
𝑒−𝜆𝜆𝑛

𝑛!
,  n=0, 1, 2,…

oN=the number of Poisson arrivals in a unit time interval => the interarrival times 
𝐴1, 𝐴2, … will be exponentially distributed with mean 1/ 𝜆

oN=n, iff
𝐴1 + 𝐴2 +⋯+ 𝐴𝑛 ≤ 1 < 𝐴1 + 𝐴2 +⋯+ 𝐴𝑛+1
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Poisson distribution 

 𝐴𝑖 = −
1

𝜆
ln 𝑅

 𝑖=1
𝑛 −

1

𝜆
ln 𝑅𝑖 ≤ 1 <  𝑖=1

𝑛+1−
1

𝜆
ln 𝑅𝑖

ln 𝑖=1
𝑛 𝑅𝑖 ≥ −𝜆 > ln 𝑖=1

𝑛+1𝑅𝑖

 𝑖=1
𝑛 𝑅𝑖 ≥ 𝑒−𝜆 >  𝑖=1

𝑛+1𝑅𝑖
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Poisson distribution 

The procedure for generating a Poisson random variate N

o Set n=0, p=1

oGenerate a random number 𝑅𝑛+1, and replace p=p. 𝑅𝑛+1
o If p<𝑒−𝜆, then accept N=n, otherwise reject the current n, increase n by one and 

return to step 2

To generate one Poisson variate N=n, on average n+1 random number 
will be required 
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Poisson distribution 

Example

oGenerate three Poisson variates with mean 𝜆=0.2, 𝑒−0.2 = 0.8187

R values = [0.4357, 0.4146, 0.8353, 0.9952, 0.8004]
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Convolution method 

Convolution method refers to adding together two or more random 
variable to obtain a new random variable with the desire distribution

Erlang-k – the sum of k random variable with exponential distribution 

oThe Erlang-k with mean 1/ 𝜆 is the sum of k exponential random variables with 
mean 1/k 𝜆

𝑋 =  𝑖=1
𝑘 𝑋𝑖
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Erlang-k distribution 

To generate X, generate 𝑋1, 𝑋2, … , 𝑋𝑘 and sum them 

X= 𝑖=1
𝑘 −

1

𝑘𝜆
ln(𝑅𝑖) = −

1

𝑘𝜆
ln 𝑖=1

𝑘 𝑅𝑖

K random numbers are required 

If k is large, it might be inefficient 


