Computer system modeling and simulation

5. Queueing models

Addis Ababa institute of technology (AAiT)

Queueing systems

\square Queueing systems are models of systems providing service
\square Wide range of potential application areas

- Vehicular traffic
- Traffic signal, bottlenecks
- Banking
\circ Customer service
- Communication
- Transmission delay, medium access control, protocol evaluation
- Computer systems
- Parallel processing, client-server interaction, peer-to-peer
- and so on

Queueing systems

\square A single queue system

\square A system of interconnected queues
\square A multiple queue system

Examples

Queueing models

Queueing models are employed for designing and evaluating the performance of queueing systems
\circ Server utilization, waiting line length, waiting time, etc.
\square Simple systems

- Performance measures can be computed mathematically
\square Complex systems
\circ Simulation is usually required

Characteristics of queueing models

\square Key elements

- Customer - anything that arrives at a facility and requires service
- Server - any resource that provides the requested service
\square The calling population
- The population of potential customers
- Can be finite or infinite
- In an infinite population model
- The arrival rate is not affected by the number of customers being served and waiting
- In finite population mode
- The arrival rate to the queueing system depends on the number of customers being served and waiting

Characteristics of queueing models

\square System capacity

\circ The number of customers that may be in the waiting line or system

\square The arrival process

- Infinite-population models
- The arrival process usually characterized in terms of inter-arrival times of successive customers
- Arrivals can be deterministic or random
- Random arrivals
\checkmark Interarrival times are usually characterized by a probability distribution
\checkmark Customers may arrive one at a time or in batches
\checkmark The batch may be of constant size or of random size
\checkmark The most common model- Poisson model or exponential inter-arrival time

Characteristics of queueing models

\square The arrival process (cont'd)

- Infinite-population models
- Scheduled (deterministic) arrivals
\checkmark Interarrival times could be either constant or constant plus or minus a small random amount
- Finite population models
- The arrival process is characterized in a completely different fashion
- Pending customers- customers outside the queuing system
- Runtime - the length of time from departure from the queueing system until that customer's next arrival to the queue
- E.g., machine repair problem
- Runtime - exponential, Gamma, Weibull

Queue behavior and queue discipline

\square Queue discipline refers to the logical ordering of customers in a queue

- First come first out (FIFO)
- Last in first out (LIFO)
- Service in random order (SIRO)
- Shortest processing time first (SPT)
- Service according to priority (PR)
\square Service times and the service mechanism
- The service time may be constant or of random duration
- Service times of successive arrivals $\{\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \ldots\}$ are usually characterized as a sequence of IID random variables
- Distribution used - Exponential, Weibull, gamma, lognormal and truncated normal

Queue behavior and queue discipline

\square Example 1 - a discount warehouse
\bigcirc Customers may either serve themselves or wait for one of the three clerks

- Finally leave after paying a single cashier

Queue behavior and queue discipline

\square Example 2- a candy manufacturer

- a production line that consists of three machines
- The first machine makes and wraps, the second packs 50 pieces in box, the third machines seals and wraps the box

Queueing notation

\square Different types of queueing systems

- A/B/c/N/K
- A represents the interarrival time distribution
- B represents the service time distribution
- c represents the number of parallel servers
- N represents the system capacity
- K represents the size of calling population
- The common symbols for A and B
- M (exponential or markov), D (constant or deterministic), Ek (Erlang of order k), G(arbitrary or general)
\circ Example $\mathrm{M} / \mathrm{M} / 1 / \infty / \infty$ (in short M/M/1)

Performance of Queueing systems

\square Long run measures of performance of queueing systems

- Long-run time average number of customers in the system (L) and in the queue (LQ)
- The long run average time spent in system (w) and in the queue (wQ) per customer
\circ Server utilization (portion of time that a server is busy) (ρ)

Time-average number in system L

\square Consider a queueing system over a period of time T

- Let $L(t)$ denotes the number of customers in the system at time t
\circ The time-weighted average number in a system

$$
\bar{L}=\frac{1}{T} \sum_{i=0}^{\infty} i T_{i}=\frac{1}{T} \int_{0}^{T} L(t) d t
$$

$\square \mathrm{L}$ - which is called the long run time average number in the system

$$
\bar{L}=\frac{1}{T} \int_{0}^{T} L(t) d t \rightarrow \mathrm{~L} \text { as } \mathrm{T} \rightarrow \infty
$$

Time-average number in system L

\square If simulation run length T is sufficiently long, the estimator \bar{L} becomes arbitrarily close to L
\square The number of customers waiting in line

$$
\overline{L_{Q}}=\frac{1}{T} \sum_{i=0}^{\infty} i T_{i}^{Q}=\frac{1}{T} \int_{0}^{T} L_{Q}(t) d t
$$

Average time spent in system per customer w

\square If the queueing system is simulated for period of time T

- Record the time each customers spends in the system (W1, W2, ..,WN)
$\circ \mathrm{N}=$ the number of arrivals during [0. T]

$$
\begin{aligned}
& \bar{W}=\frac{1}{N} \sum_{i=0}^{\infty} W_{i} \\
& \quad \overline{W_{Q}}=\frac{1}{N} \sum_{i=0}^{\infty} W_{i}^{Q}
\end{aligned}
$$

The conservation equation

\square Conservation equation

$\circ \lambda=$ arrival rate

- $\bar{W}=$ average waiting time
- Then, $\bar{L}=\lambda \bar{W}$
\square Proof
- $\sum_{i=1}^{N} W_{i}=\int_{0}^{T} L(t) d t$
- $\bar{L}=\frac{1}{T} \int_{0}^{T} L(t) d t=\frac{N}{T} \frac{1}{N} \sum_{i=1}^{N} W_{i}=\lambda \bar{W}$

Server utilization

\square Server utilization - the portion of time that a server is busy
\square Server utilization in $G / G / 1 / \infty / \infty$ queues

$$
\begin{aligned}
& \overline{L_{s}}=\frac{1}{T} \int_{0}^{T}\left[L(t)-L_{Q}(t)\right] d t \\
& \overline{L_{s}}=\frac{T-T_{0}}{T} \text { as } T \rightarrow \infty, \overline{L_{s}} \rightarrow \rho \\
& \quad \rho=E(s) \lambda=\frac{\lambda}{\mu}
\end{aligned}
$$

\square Server utilization in $G / G / c / \infty / \infty$ queues

$$
\rho=E(s) \lambda=\frac{\lambda}{c \mu}
$$

Multiserver queues with Poisson arrivals

-M/M/c/N/ ∞

\square If an arrival occurs when the system is full, that arrival is turned away and doesn't enter the system
\square The effective arrival rate $\left(\lambda_{e}\right)$ - the mean number of arrivals pertime unit who enter and remain in the system
$\circ \lambda_{e}<\lambda$
$\circ \lambda_{e}=\lambda\left(1-P_{N}\right) \quad\left(1-P_{N}\right)=$ the probability that a customer upon arrival will find space and be able to enter the system

Network of queues

\square Many systems are naturally modeled as networks of single queues

- Customers departing from one queue may be routed to another
- Provided that no customers are created or destroyed in the queue, the departure rate out of a queue is the same as the arrival rate into the queue, over long run
- If customers arrive to queue i at rate λ_{i}, and a fraction $0 \leq P_{i j} \leq 1$ of them routed to queue j upon departure, then the arrival rate from queue I to queue j is $\lambda_{i} \boldsymbol{P}_{i j}$
\circ The overall arrival rate into queue j, λ_{j}, is the sum of the arrival rate from all sources
- $\lambda_{j}=\mathbf{a}_{\mathrm{j}}+\sum_{\text {all }} \lambda_{i} \mathbf{P}_{\mathrm{ij}}$
- If queue j has cj parallel servers, each working at rate μ_{j}, the long run utilization of each server is $\rho_{j}=\frac{\lambda_{j}}{c_{j} \mu_{j}}$

Project-2

\square Consider a communication system with the following settings:

- There are two types of packets, high and low priority packets. For each packet type, there is a separate queue and a FIFO queue discipline is applied. Packets in the low-priority queue are served only if there is no packets in the high-priority queue.
- The packets are transmitted over a communication link with a capacity of $100 \mathrm{Mb} / \mathrm{s}$ and the packet length distribution follows an exponential distribution with a mean 25Mb.
- The packets arrive to the system according to a Poisson process at an average rate $\lambda=2 \mathrm{packet} / \mathrm{s}$. The probability that an arriving packet belongs to a high priority class is 0.3.
- Tasks
\checkmark Show a diagrammatic representation of the queueing system
\checkmark Develop a simulation model and analyze the different properties of the system - the average waiting time for each packet type, the average queue length, link utilization
\checkmark Plot the CDF of inter-arrival time statistics
- You can do the project in a group of 2 or 3

