Course Name: Statistical Digital Signal Processing

Course Objective

- To equip the student with advanced methods of deterministic as well as stochastic signal modeling techniques;
- Understand how speech and image signals are modeled in practical applications like GSM speech codec and other image coding applications;
- To understand and design advanced FIR and IIR filters;
- To understand apply advanced digital signal processing algorithms to real time applications.

Course Description

- Module 1 : Signal Modeling
 - The Pade approximation method
 - The Prony approximation method
 - o Shank's approximation method
 - All-pole modeling using Prony's method
 - Relationship between all-pole and linear prediction
 - \circ $\;$ The autocorrelation and covariance methods for all-pole modeling
 - Random process modeling
- Module 2 : The Levinson Recursion
 - o The Levinson-Durbin Recursion
 - The lattice filter structure
 - The Shur-Cohn stability test for digital filters
 - The Cholesky decomposition of a Toeplitz matrix
 - Computing the inverse of a Toeplitz matrix
- Module 3 : Lattice Filters
 - Derivation of the FIR lattice filter structure
 - The problems of forward and backward linear prediction
 - The split lattice filter
 - All-pole lattice filter, all-pass lattice filters and pole-zero lattice filters
 - The use of lattice filters for all-pole signal modeling
 - The forward covariance method, the backward covariance method and Burg's method for sequential estimation of reflection coefficients
 - Modeling stochastic signals with the lattice method
- Module 4 : Optimum Filters
 - Design of FIR Wiener filters
 - Design of IIR Wiener filters
 - Recursion approaches to signal estimation the discrete Kalman filter
- Module 5 : Spectrum Estimation

- Classical or nonparametric spectrum estimation techniques the Periodogram, the modified periodogram, Bartlett's method, Welch's method and Blackman-Tukey method
- The minimum variance method
- The maximum entropy method (MEM)
- Parametric model based power spectrum estimation
- o Frequency estimation algorithms for harmonic processes
- o Principal components frequency estimation
- Module 6 : Adaptive Filtering
 - FIR adaptive filters
 - Adaptive IIR filters
 - The Recursive Least Squares (RLS) algorithm
 - Application of adaptive filters
 - Linear prediction
 - Echo cancellation
 - Channel equalization
 - Interference cancellation
 - Adaptive notch filtering
 - Adaptive control
 - o System identification
 - Array processing