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6.1. Introduction

• The theory of optimum filters was developed
under the assumption that the filter designer
has complete knowledge of the statistical
properties of the SOE.
– Not applicable in real-world applications.

• Adaptive filters can improve their performance,
during normal operation, by learning the
statistical characteristics through processing
current signal observations.
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6.2. Applications of Adaptive Filters

• Echo Cancelation

– Some energy on the incoming
branch leaks into the outgoing
branch and returns to the source
as an echo.
• Due to impedance mismatch.

– Echo path is unknown and may
be time changing.

– The main task of the canceller is
to estimate the echo signal with
sufficient accuracy.
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• Noise Cancelation

– The signal of interest s(n) is corrupted by uncorrelated
additive noise v1(n).

– A second sensor, located at a different point, acquires a
noise v2(n) (reference input) that is uncorrelated with the
signal s(n) but correlated with the noise v1(n).
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• Equalization of Data Communication Channels

– Every pulse propagating through a channel suffers a certain
amount of time dispersion because the frequency response
of the channel deviates from the ideal one of constant
magnitude and linear phase.

– As a result, the tails of adjacent pulses interfere with the
measurement of the current pulse (intersymbol
interference).

– The channel is unknown and possibly time-varying.

– The goal of the equalizer is to restore the received pulse, as
closely as possible, to its original shape.
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6.3 Principles of Adaptive Filters

• Every adaptive filter consists of three modules
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• Filtering Structure
– Forms the output of the filter using

measurements of the input signal or signals.

– The filtering structure is linear if the output is
obtained as a linear combination of the input
measurements; otherwise it is said to be
nonlinear.

– The structure is fixed by the designer, and its
parameters are adjusted by the adaptive
algorithm.
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• Criterion of performance (COP).

– Assess the quality of the output of the adaptive
filter and the desired response (when available)
with respect to the requirements of the particular
application.

– The choice of COP is a compromise between what
is acceptable to the user and what is
mathematically tractable.

– The square error is the most used COP.
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• Adaptation algorithm.

– Uses the value of the criterion of performance, or
some function of it, and the measurements of the
input and desired response (when available) to
decide how to modify the parameters of the filter
to improve its performance.

– The complexity and the characteristics of the
adaptive algorithm are functions of the filtering
structure and the criterion of performance.
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• A priori information about the signal operating
environment (SOP) is used to choose

– Criterion of performance

– Filtering structure

• The design of an adaptive algorithm from the
criterion performance is the most difficult step
in the design and application of adaptive filters.
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Modes of Operation

• Acquisition or convergence mode

– Initial period until it gets reasonably close to its
best performance.

• Tracking mode

– When the SOE change with time, the filter has to
follow the change in SOE.
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Acquisition and tracking

• Learning curves of adaptive filters are represented by
plots of MSD, MSE or misadjustment as a function of n.
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Optimum vs. Adaptive Filters

• Optimum filters are a theoretical tool and
cannot be used in practical applications
because we do not know the statistical
quantities (e.g., second-order moments) that
are required for their design.
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• During normal operations, the filter works with
specific realizations of SOE

• However, the filter is optimized with respect to its
average performance across all possible realizations.

• The MMSE shows how well the filter performs on
average.
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• For nonstationary environments, the optimum
filter design is repeated every time instant n.

• If the second order moments are unknown,
Adaptive filters are the best choice.
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6.4 Block Adaptive Filtering

• If the SOE is ergodic, the second order moments can
be calculated as

• With sufficient data

• Then for data in interval 0≤ n ≤ N
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• The procedure is repeated every time the
properties of SOE change significantly.

• However, block adaptive filters cannot track
statistical variations with in the operating
block.
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6.5 Priori type adaptive algorithms

• From input data vector x(n), the desired response
y(n) and the most recent coefficient vector c(n-1),
the adaptive filter follows the following procedure.

– Filtering

– Error formation

– Adaptive algorithm
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• The increment is selected to bring C close to
Co with the passage of time.

• An important requirement is that the
increment should vanish if the error vanishes.

• Note that the equation does not need the
calculation of R and d.
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Stability

• Since the FIR filtering structure is always stable, the
output or the error of the adaptive filter will be bounded
if its coefficients are always kept close to the coefficients
of the associated optimum filter.

• The presence of a feedback loop though the adaptive
algorithm raises the issue of stability.

• For stationary SOE, where co is a constant, stability is
guaranteed if

• Stability can also be defined in the mean square sense
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Performance measure

• The mean square deviation (MSD) measures the
average distance between the coefficient vectors of
the adaptive with the optimum.

• The excess MSE due to the deviation from co is

• The misadjustment is given as
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• Reading assignment

– Numerical stability,

– Numerical accuracy
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6.5 Steepest Descent Algorithm

• The error performance surface of an optimum
filter in stationary SOE is given by

• Since R is positive definite, the error surface is
bowl-shaped.

• Iterative methods can be used to obtain the
lowest point of this error surface.
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• In iterative methods,

– Starting point is chosen, usually the null vector 0.

– A search is started for the “bottom of the bowl” so
that each step takes us to a lower point.

• Different iterative methods use different
steps.
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• If the error surface has a continuous derivative, by
using Taylor expansion

• For quadratic function

• The higher derivatives are zero.

Gradient vector Hessian matrix
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• Note that

• Therefore,

• Since 

• The reduction is maximum when

Only if
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• Therefore, the iterative minimization algorithm
becomes

• Where

– μ is the step-size parameter

• Inserting the value of the gradient
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• This iterative optimization can be combined
with filtering
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Stability of SDA

• An algorithm is said to be stable if it converges to the
minimum regardless of the starting point.

• Rewriting the SDA algorithm by using principal-
component transformation, the necessary and
sufficient condition for the convergence of SDA is
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Rate of convergence of SDA

• The rate (or speed) of convergence depends upon the
algorithm and the nature of the performance surface.

• The most influential effect is inflicted by the condition
number of the Hessian matrix that determines the
shape of the contours of P (c).

• For quadratic surface
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• The rate of convergence can be characterized by
the time constant.

• If the time constant of ck,I

• Therefore, the time constant of the SDA is

• Hence, the larger the eigenvalue spread of the
input correlation matrix R, the longer it takes for
the SDA to converge.
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6.6 Newton’s Type of Algorithms

• The basic idea of Newton’s method is to achieve
convergence in one step when P(c) is quadratic.

• Thus, if ck is to be the minimum of P(c), the gradient
∇P(ck) of P(c) evaluated at ck should be zero.
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• For the quadratic case, since

• Note that this requires the inversion of R.
– Numerically intensive and can lead to numerically

unstable solution.

• Modified Newton-type methods replace the
Hessian matrix with another matrix which is
guaranteed to be stable.

• Generally, the Newton-type methods provide
faster convergence.
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6.7 Least-Mean-Square Adaptive Filters

• In practice, only the input and the desired response
are known.

– Only estimate of the true or exact gradient can be
calculated.

• Replacing the SDA iteration subscript k by time index
n and replacing R and d by their instantaneous
estimates
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• The coefficient adaptation algorithm becomes

• Note that:

– SDA contains deterministic components while LMS
operates on random quantities.

– SDA is not adaptive algorithm (it only depends on
R and d). While LMS depends on the SOE.
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• The LMS algorithm can be summarized as
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Adaptation in a Stationary SOE

• In theory, the goal of the LMS adaptive filter is to
identify the optimum filter coefficients co.

• By subtracting co from both sides of the update
equation in LMS

• By substituting the error formulation
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• The irreducible error eo(n) accounts for measurement
noise, modeling errors, unmodelled dynamics,
quantization effects, and other disturbances.

• The presence of eo(n) prevents convergence because it
forces c˜(n) to fluctuate around zero.

• |c ˜(n)| is bounded in mean square if E{c ˜(n)} → 0 as
n → ∞ and var{˜ck(n)} is bounded for all n.

• It can be shown that c˜(n) converges if the eigenvalues
of the system matrix (I − 2µR) are less than 1.
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• Reading Assignment

– Stability

– Rate of convergence

– Steady-state excess MSE
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6.8 Least Square Adaptive Filters

• LS adaptive filters are designed so that the updating
of their coefficients always attains the minimization
of the total squared error from the time the filter
initiated operation up to the current time.

• Therefore, the filter coefficients at time index n are
chosen to minimize the cost function

• λ is the forgetting factor.

– 0 < λ < 1
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• The filter coefficients that minimize the above 
error are given by 

• The error is then

This step is repeated 
every index n+1, 
n=2, . . .
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• The autocorrelation can be obtained recursively

• The “new” correlation matrix can be updated
by weighting the “old” correlation matrix with
the forgetting factor λ and then incorporating
the “new information”.
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A priori adaptive LS algorithm

• Substituting the recursive autocorrelation
values into the normal equation

• If R(n) is invertible

Bisrat Derebssa, SECE, AAiT, AAU



• If we define an adaptation gain vector g(n) as

• Then the new coefficients are given as

• Defining a conversion factor
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• Reading Assignments

– Posteriori Adaptive LS algorithms
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Recursive LS adaptive filters

• The major computational load in LS adaptive
filters, that is, the computation of the gain
vectors can be reduced if we can find a
recursive formula to update the inverse
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• By using the rank 1 updating and matrix inversion
lemma,

• The prior and posterior adaptation gains and the
inverse are obtained as
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• Similarly a recursive updating formula for the
minimum error is given as
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Applications of adaptive filters

• Manolakis

– pp. 590 – 607

• Hayes

– pp. 509-521

– pp. 530-534
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Kalman Filter

• Suppose we want to obtain a linear MMSE 
estimate of RV y from {x1, x2, …, xm}

• The following approach can be followed

– Estimate one-step prediction of xm
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– Determine optimal prediction error of xm,

– Estimate y by using this new information

– Finally estimate ym
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• Limitations

– Solution to E{y|wm} requires inversion.

– The one step prediction requires infinite memory.

• If we assume linear data relation model 

• then

Bisrat Derebssa, SECE, AAiT, AAU



• If we also assume the following linear signal model

– We will have recursive relation for obtaining the 
one-step prediction step.

• Model

State vector model

Observation model

A(n-1) – state-transition matrix

H(n)– output matrix

η(n)– modeling error

v(n)– observation errorBisrat Derebssa, SECE, AAiT, AAU



• The following are assumed
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