Statistical Digital Signal
Processing

Algorithms and Structures
for Optimum Linear Filters

Bisrat Derebssa, SECE, AAIT, AAU



Introduction

* The design and application of optimum filters
involves
— Determination of the optimum set of coefficients,

— Evaluation of the cost function to determine
whether the obtained parameters satisfy the
design requirements, and

— The implementation of the optimum filter.
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There are several important reasons to study the
normal equations in greater detail in order to develop
efficient, special-purpose algorithms for their solution.

— The throughput of several real-time applications can only be served with
algorithms that are obtained by exploiting the special structure of the
correlation matrix.

— We can develop order-recursive algorithms that help us to choose the
correct filter order or to stop before numerical problems.

— Some algorithms lead to intermediate sets of parameters that have
physical meaning, provide easy tests, or are useful in special applications.

— Sometimes there is a link between the algorithm for the solution of the
normal equations and the structure for implementation.
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Order-recursive algorithms

* Fixed-order algorithms

— To solve the normal equations the order of the estimator
should be known.

* When the order of the estimator becomes a design
variable, fixed-order algorithms are not effective.

— If order changes, the optimum coefficients have to be
calculated again from scratch.
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* We would like to arrange the computations so
that the results for order m, that is, c¢,,(n) or
Ym(n), can be used to compute the estimates
for orderm + 1, that is, ¢, N 1(n) or V.,+1(n).

— The resulting procedures are called order-recursive
algorithms or order-updating relations.

 Similarly, procedures that compute c_(n + 1)
from c_(n) or ¥,,(n + 1) from ¥,,,(n) are called
time-recursive algorithms or time-updating
relations.
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Matrix Partitioning and Optimum
Nesting

e |f the order of the estimator increases from m

to m+1, then the

input data vector is

augmented with one additional observation
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Since x[mjl = X,

X R,, r?
{|:Xm+1:| [ m m+l] I'E»IH pE,,

Pm 2 E{lxms1l*)
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* This is known as the optimum nesting property
and is instrumental in the development of order
recursive algorithms.
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 The inverse of the m+1 autocorrelation

matrix is given as the following.

—1
R, rP R-! o, 1 |b
_1 . nt . 1Ll m H
Rm+1 - {l‘bh’ pljnj| — {OH O :| + aPH [l [bm 1]

m m

Where: | 2 [ B L. pm T & _R=lph

m m

m
b &4 b bHp—-1,b _ b bH
@ _pm_rm Rm rm_pm_l_rm bm

m

Alternatively:

(04

" detR,,

Bisrat Derebssa, SECE, AAIT, AAU



e Note that:
— The inverse R__.of the m+1 autocorrelation

m+1

matrix is obtained directly from the inverse R,...

—T
(@)
—T

ne vector b, is the MMSE estimator of
bservation x..,, from data vector x_..

ne inverse matrix does not have the optimum

nesting property.
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* The inverse of the lower right corner
partitioned matrix
fH
Rl

f -1 H
Pm Tm 0 0 1
m—+1 = = + f [1 :|[1 ag]
rr R! 0, (RIy1| a[3m

m m

where
f _
a, = [a(m) é m) a’g?m)]Té _(Rm) lrfn
detR +1
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Levinson Recursion for the Optimum
Estimator

* Solving the m+1 normal equation

Cn+1 = Rm_|_1dm+1

R-! 0,]|[d, 1 | by, d,,
= " — b 1
0; onmH]*aa H[’" ][dw]
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Note that /= H ’ m -

— Even though the equation is order-recursive, the
parameter ¢, does not have the optimum
nesting property

m—I—l # Cm

— If b, is known, c_,,, can be calculated.

m+1
— However, the calculation of b, requires the
inversion of R__..

* Minimal computational savings.

b,, oy Lb(m) b(m) b(m) ]T 2 _R 1

b
r
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Order-recursive computation of LDL"
Decomposition

e The m+1 autocorrelation matrix R can be written as
Rm+l — Lm+le+ng+1
Where
L, 0 D,
L1 = |: Dp+1 = |: 0 ] Ry,= LmDng

17

Note that both matrices have optimum nesting
property

L, = L™ D, = D"
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From LDL" decomposition of linear MMSE
LDk, = dy,
Lgcm = Kk,,
Since L, is lower triangular, k., has the optimum

nesting property
k, = k™l

However, since L _"is not lower triangular, c_, does

not satisfy the optimum nesting property.

The MMSE also has the optimum nesting property
P, = P, — cld,, = Py — kD, k,
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Order-Recursive Computation of the
Optimum Estimate

* The computation of the optimum linear
estimate using a linear combiner requires m
multiplications and m-1 additions.

— To compute the estimate for 1 < m < M, we need
M(M + 1)/2 operations.

* From LDL" decomposition,

I = clx, = k7L hHx, =k (L 'x,)

* Define a new vector w_, called innovation as

A
L, W,= X,
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* Then the estimate is given as

i=1

* Since both k_" and w_ satisfy the optimum
nesting property, the estimate also has
optimum nesting property.

* Therefore,
j}m — 9m—1 + kjgwm

*k
m—1
(m—1)
Wy = Xm — [, wj
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Note that:
— The correlation of w_ is
E{w,wi}y = L 1E{(x,xZ}JL_7 =D,
— Therefore the components of w_ are
uncorrelated.

— The transformation from x_, to w,_, removes all the
redundant correlation among components of x.

— Therefore each w,; adds new information or
iInnovation.
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—The estimation equation shows that the
improvement in the estimate when an additional
observation is included is proportional to the

innovation w,,,,, contained in x_,,.
— Therefore, L, acts as a decorrelator.
— k" acts alinear combiner.

— LDL" decomposition can be seen as the matrix
equivalent of spectral factorization.
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ORDER-RECURSIVE ALGORITHMS
FOR OPTIMUM FIR FILTERS

* The key difference between a linear combiner and
an FIR filter is the nature of the input data vector.

* The input data vector for FIR filters consists of
consecutive samples from the same discrete-time
stochastic process.

* Taking the shift invariance of the input data

[ x(n)

x(n—1)

s REOEIRED
Xi1(1) = | ; Cxn—m)|  |x,(n—1)

x(n—m+1)

x(n —m)
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* The correlation matrix R ,,(n) can be shown to be

Rys1(n) = E{Xpi1 (W)X, (n))

& = [Rr® b, (n) " le(n)_[f”x(fz) r,, (n) }
m n)— 1 -
* H () Po(n — m) rh,(n) Ry (n—1)

rb, (n) = E{X, (n)x*(n — m))
rh,(n) = E{Xpu(n — Dx*(n)}
Py(n) = E{|x(n)|*}
 Note that
R (1) = Ryu(n — 1)
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* If the optimum m FIR filter coefficients are known at
time n, the m+1 time coefficients can be calculated

as Cna1(n) = R;}H(n) dy+1(n)
) R, '(n) 0 I [bu(®)
R, ()= [OT 0} P00 [1 } [bf ) 1]

b, (n) = —R(m)rd (n)

B X (1) * B d,,(n)
e[ Tl [
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* By substitution,

Cmt1(n) = [g’” (")} + ['1’”" (”)} ki (1)

ﬁ; (n) = bg (n)dy, (n) + dpy1(n)
 This is called the Levinson order recursion.
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 For this order recursion to be useful, we
need an order recursion for the backward

linear prediction (BLP) b_(n).
* This is possible if b_(n) has optimum nesting.
R, ()b, (n) = —1p, ()

R, 11(Wbyy1(n) = —r2  (n)

* The right side vectors are not nested if we
use upper partitioning.
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* If we use lower-upper partitioning

rb . . (n)
el [ oo [0,

* By using lower-upper partitioning of R_ ..

0 07 1 |1
R—l — H
a1 () [0 R (n 1)} + () [am(n)} [1 al(n)]

a,,(n) = —R%l(n — l)rfn (n) Forward linear prediction

detRy1(n) H
R o1y = P 5 man )
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* By substitution

bui1(n) = —R-L (mrb | (n)
0 I )
b = | [
b A _ﬁg;(n)
k, (n) = Pf(n)

BL,(n) £ (H) +all ()rh (n — 1)
* Similarly a_ n7 oes not have optimum

nesting.
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e Order recursion for FLP

m b,,(n — 1
am+1<n)=[g (”)]+[1 " )] k£ (n)

B (n)
Ph(n—1)

ALy 2 b2 — Dl () + L, ()

k() £ —

* Clearly, a, does not have the optimum
nesting property.
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Simplification for Stationary
Stochastic Processes

* When x(n) and y(n) are jointly wide-sense stationary
(WSS), the optimum estimators are time-invariant and
we have the following simplifications:

— All quantities are independent of

* no time recursion necessary.

— b.,=Ja_", Jsimply reverses the order of the vector elements

0 0 --- 17

o0l

o1 -
(1 0 --- 0

Jiy =337 =1

 This is due to the Toeplitz structure of the

autocorrelation matrix.
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* Therefore, R, ,, can be partitioned as

R, Jrn r(0) rl
Ryt1(n) = H —
r,J r(0) r, Ry,

rn = [r(1) rQ2) - r(m)]’
e |t can be shown that

a, b,
An+1 = 0 + 1 K
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e Where A

B = Br =B =bHrr +r*(m + 1)

P, £ Pnl?: — Pnfq = F;—1+ /B;kn_lkm—l = Pp—1+ ﬁm—lk:;—l

* The optimum coefficients are

_ | L Jam |
AR IO B BT
ke, & Pm
m = P,

H
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Levinson-Durbin Algorithm

* For stationary RP, the Toeplitz structure of
the autocorrelation matrix can be used to
come up with efficient order recursive
algorithms.

* Suppose that c_ is known

¢ =R 1d,
and we wish to determine
Cm+1 = R,;Jlrldmﬂ
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* SinceR ., andd_ ., can be partitioned as follows
_r(O) ceeor(m—1) | r(m)_
R IR E e, : _|Rm Jrm
" m—1) - 1 (0) | (1) I R0 IR (0)
_r*(m) - (D) |r(0)_
d, ., = |9
m+1 — dm+1
b, = —R;Jr,

i, 2 b

P
Bin = by 5 PALE BTl P AV 41



* By utilizing the Toeplitz structure of R,
P, 2P =p!
* To avoid the use of lower right corner partitioning,
FLP recursion can be used to obtain a;

L —1 %
am+1 = —R, 114
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 This leads to the j_e\_/insgn _recursion

Ap+1 =

o

A
0

_|_

B

P

b
1

Km

B, 2bir* ¥+ 1) =al Jr¥ +r*(m +1)

P, =r0) +rZa* =r0)+alr,
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Levinson recursion consists of two parts:

— A set of recursion to compute the FLP or BLP a_,
orb,,

— A set of recursion to compute the optimum filter
froma_orb,..

Bisrat Derebssa, SECE, AAIT, AAU



TABLE 7.2

Summary of the Levinson-
Durbin algorithm.

I. Imput: r(0),r(1),r(2),..., r(M)

2. Initialization
(@) Pyp=r(0),Byg=r"()

(b) ko= —r*(1)/r(0),a\"” = ko
3. Form=1,2,..., M -1

(@ Pm=Pp_1+Bnrk’ ,

®) tm =[r()r@) - rm)”?

© Bm=alrh +r*(m+1)

(d) km = — 5

anm Jaj
oo

4. Py = Py—_1+Buky

5. Output: apy, {km}) ", (Pm}¥
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* If required to obtain the coefficients c.

) B = —clIrm +dmsi

¢ _ Pm
(&) km—Pm

Cm Ja’
(h) Cpt1 = [0 }‘l' [1 i|kgz

(i) PS. =P+ Boks:

4. Output: aM,cM,{km,k,%}g’I_l,{Pm,P;%}é"
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LATTICE STRUCTURES FOR
OPTIMUM FIR FILTERS

* To compute the FLP error and BLP error

el mm) =x(n)+a, xm(n —1)=x) + Za(m)*x(n — k)

k_
m—1

egi(n) =x(n—m) + ngm(n) =x(n—m)+ Z bém)*x(n — k)
k=0

* Using direct-form filter structure

my* #* a

Al ¥ a(l ) A a(2 ) a(zm) y a(fsﬁ A (m)*
x(n) —e—» 77— 77 I—4—> — o I —¢
(m)* (m) (m)*
Y by Y by Y b

y o \a
b
DD SORTL
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* Since a_,

and b_ do not have the optimum

nesting property, we cannot obtain order-
recursive direct-form structures for the
computation of the prediction errors.

* By partitioning x,

Xm+1 (n) =

xn)x(n—1) - xn—m+1)x(n —m)]’
X, (n) x(n —m)]"

x(n) x,,(n — 1]"
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=x(n) +al’x,(m — 1)+ b x,(n — 1)+ x(n — 1 —m)]
el 1 (n) = ey, (n) +khed (n — 1)

e BLP errors are

H
0
egf;+1(”) =x(n—m-—1)+ [|:b ] + [;m:| k;;} |:3;(’2£ ) 1):|

=x(n—m—1)+bixu(n — 1) + kn[x(n) + a) Xy (n — 1)]

b b f
e n=-e.(n—1)+ ke, (n
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* These equations can be computed for m=0,1,...,M-1
given initial conditions
eb(n) = ed(n) = x(n)
e (n)—e () + Kk lem ((n—1) m=1,2,.... M
em(n) = m_lem_l(n) —I—em_l(n — 1) m=1,2,.... M
e(n) = e}, (n)

* Implementation

; Stage 1 Stage M
eo(n) e1(n) ey ()
kO kM—l
R G k-
b—» Z_l " o —’ Z_l
eo(n) eb(n) e;} (n)
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e Given that
emi1(n) = em(n) — kS (n)ed (n)

* The optimum filtering error can be
computed from the BLP error.
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