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Introduction

• The design and application of optimum filters
involves

– Determination of the optimum set of coefficients,

– Evaluation of the cost function to determine
whether the obtained parameters satisfy the
design requirements, and

– The implementation of the optimum filter.
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• There are several important reasons to study the
normal equations in greater detail in order to develop
efficient, special-purpose algorithms for their solution.
– The throughput of several real-time applications can only be served with

algorithms that are obtained by exploiting the special structure of the
correlation matrix.

– We can develop order-recursive algorithms that help us to choose the
correct filter order or to stop before numerical problems.

– Some algorithms lead to intermediate sets of parameters that have
physical meaning, provide easy tests, or are useful in special applications.

– Sometimes there is a link between the algorithm for the solution of the
normal equations and the structure for implementation.
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Order-recursive algorithms

• Fixed-order algorithms

– To solve the normal equations the order of the estimator
should be known.

• When the order of the estimator becomes a design
variable, fixed-order algorithms are not effective.

– If order changes, the optimum coefficients have to be
calculated again from scratch.
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• We would like to arrange the computations so
that the results for order m, that is, 𝑐𝑚(𝑛) or
ො𝑦𝑚(𝑛), can be used to compute the estimates
for order m + 1, that is, 𝑐𝑚 + 1(

𝑛) or ො𝑦𝑚+1(𝑛).
– The resulting procedures are called order-recursive

algorithms or order-updating relations.

• Similarly, procedures that compute cm(n + 1)
from cm(n) or ො𝑦𝑚(𝑛 + 1) from ො𝑦𝑚(𝑛) are called
time-recursive algorithms or time-updating
relations.
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Matrix Partitioning and Optimum 
Nesting

• If the order of the estimator increases from m
to m+1, then the input data vector is
augmented with one additional observation
xm+1.

First m components of xm+1 Last m components of xm+1

The first mxm sub matrix of Rm+1 The last mxm sub matrix of Rm+1
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• Since

• This is known as the optimum nesting property
and is instrumental in the development of order
recursive algorithms.
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• The inverse of the m+1 autocorrelation
matrix is given as the following.

Where:

Alternatively:
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• Note that:

– The inverse Rm+1of the m+1 autocorrelation
matrix is obtained directly from the inverse Rm.

– The vector bm is the MMSE estimator of
observation xm+1 from data vector xm.

– The inverse matrix does not have the optimum
nesting property.
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• The inverse of the lower right corner
partitioned matrix

where
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Levinson Recursion for the Optimum 
Estimator

• Solving the m+1 normal equation

Where 
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• Note that

– Even though the equation is order-recursive, the
parameter cm+1 does not have the optimum
nesting property.

– If bm is known, cm+1 can be calculated.

– However, the calculation of bm requires the
inversion of Rm.

• Minimal computational savings.
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Order-recursive computation of LDLH

Decomposition

• The m+1 autocorrelation matrix R can be written as

Where

• Note that both matrices have optimum nesting
property
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• From LDLH decomposition of linear MMSE

• Since Lm is lower triangular, km has the optimum
nesting property

• However, since Lm
H is not lower triangular, cm does

not satisfy the optimum nesting property.

• The MMSE also has the optimum nesting property
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Order-Recursive Computation of the 
Optimum Estimate

• The computation of the optimum linear
estimate using a linear combiner requires m
multiplications and m-1 additions.

– To compute the estimate for 1 ≤ m ≤ M, we need 
M(M + 1)/2 operations.

• From LDLH decomposition,

• Define a new vector wm called innovation as
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• Then the estimate is given as

• Since both km
H and wm satisfy the optimum

nesting property, the estimate also has
optimum nesting property.

• Therefore,
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• Note that:

– The correlation of wm is

– Therefore the components of wm are
uncorrelated.

– The transformation from xm to wm removes all the
redundant correlation among components of x.

– Therefore each wi adds new information or
innovation.
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– The estimation equation shows that the
improvement in the estimate when an additional
observation is included is proportional to the
innovation wm+1 contained in xm+1.

– Therefore, Lm-1 acts as a decorrelator.

– km
H acts a linear combiner.

– LDLH decomposition can be seen as the matrix
equivalent of spectral factorization.
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ORDER-RECURSIVE ALGORITHMS 
FOR OPTIMUM FIR FILTERS

• The key difference between a linear combiner and
an FIR filter is the nature of the input data vector.

• The input data vector for FIR filters consists of
consecutive samples from the same discrete-time
stochastic process.

• Taking the shift invariance of the input data
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• The correlation matrix Rm+1(n) can be shown to be

• Note that  
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• If the optimum m FIR filter coefficients are known at
time n, the m+1 time coefficients can be calculated
as
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• By substitution, 

• This is called the Levinson order recursion. 
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• For this order recursion to be useful, we
need an order recursion for the backward
linear prediction (BLP) bm(n).

• This is possible if bm(n) has optimum nesting.

• The right side vectors are not nested if we
use upper partitioning.
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• If we use lower-upper partitioning

• By using lower-upper partitioning of Rm+1

Forward linear prediction
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• By substitution

• Similarly am(n) does not have optimum 
nesting.
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• Order recursion for FLP

• Clearly, am does not have the optimum
nesting property.
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Simplification for Stationary 
Stochastic Processes

• When x(n) and y(n) are jointly wide-sense stationary
(WSS), the optimum estimators are time-invariant and
we have the following simplifications:

– All quantities are independent of

• no time recursion necessary.

– bm=Jam
*, J simply reverses the order of the vector elements

• This is due to the Toeplitz structure of the
autocorrelation matrix.
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• Therefore, Rm+1 can be partitioned as

• It can be shown that
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• Where

• The optimum coefficients are
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Levinson-Durbin Algorithm

• For stationary RP, the Toeplitz structure of
the autocorrelation matrix can be used to
come up with efficient order recursive
algorithms.

• Suppose that cm is known

and we wish to determine
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• Since Rm+1 and dm+1 can be partitioned as follows
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• By utilizing the Toeplitz structure of Rm,

• To avoid the use of lower right corner partitioning,
FLP recursion can be used to obtain am
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• This leads to the Levinson recursion
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• Levinson recursion consists of two parts:

– A set of recursion to compute the FLP or BLP am

or bm,

– A set of recursion to compute the optimum filter
from am or bm.
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• If required to obtain the coefficients c.
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LATTICE STRUCTURES FOR 
OPTIMUM FIR FILTERS

• To compute the FLP error and BLP error

• Using direct-form filter structure
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• Since am and bm do not have the optimum
nesting property, we cannot obtain order-
recursive direct-form structures for the
computation of the prediction errors.

• By partitioning x,
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• FLP errors are

• BLP errors are

am+1
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• These equations can be computed for m=0,1,…,M-1
given initial conditions

• Implementation
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• Given that

• The optimum filtering error can be
computed from the BLP error.
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