Statistical Digital Signal Processing

Algorithms and Structures for Optimum Linear Filters

Introduction

- The design and application of optimum filters involves
- Determination of the optimum set of coefficients,
- Evaluation of the cost function to determine whether the obtained parameters satisfy the design requirements, and
- The implementation of the optimum filter.
- There are several important reasons to study the normal equations in greater detail in order to develop efficient, special-purpose algorithms for their solution.
- The throughput of several real-time applications can only be served with algorithms that are obtained by exploiting the special structure of the correlation matrix.
- We can develop order-recursive algorithms that help us to choose the correct filter order or to stop before numerical problems.
- Some algorithms lead to intermediate sets of parameters that have physical meaning, provide easy tests, or are useful in special applications.
- Sometimes there is a link between the algorithm for the solution of the normal equations and the structure for implementation.

Order-recursive algorithms

- Fixed-order algorithms
- To solve the normal equations the order of the estimator should be known.
- When the order of the estimator becomes a design variable, fixed-order algorithms are not effective.
- If order changes, the optimum coefficients have to be calculated again from scratch.

$$
\begin{aligned}
& e_{m}(n) \triangleq y(n)-\hat{y}_{m}(n) \\
& \hat{y}_{m}(n) \triangleq \mathbf{c}_{m}^{H}(n) \mathbf{x}_{m}(n) \\
& \mathbf{c}_{m}(n) \triangleq\left[c_{1}^{(m)}(n) c_{2}^{(m)}(n) \cdots c_{m}^{(m)}(n)\right]^{T}
\end{aligned}
$$

- We would like to arrange the computations so that the results for order m , that is, $c_{m}(n)$ or $\hat{y}_{m}(n)$, can be used to compute the estimates for order $m+1$, that is, $\left.c_{m+1} n\right)$ or $\hat{y}_{m+1}(n)$.
- The resulting procedures are called order-recursive algorithms or order-updating relations.
- Similarly, procedures that compute $c_{m}(\mathrm{n}+1)$ from $c_{m}(\mathrm{n})$ or $\hat{y}_{m}(n+1)$ from $\hat{y}_{m}(n)$ are called time-recursive algorithms or time-updating relations.

Matrix Partitioning and Optimum Nesting

- If the order of the estimator increases from m to $m+1$, then the input data vector is augmented with one additional observation
$\mathbf{X}_{m+1^{\bullet}}^{\lceil m\rceil^{\bullet}}$
$\mathbf{X}_{m+1} \quad$ First m components of $\mathrm{x}_{\mathrm{m}+1}$ $\mathbf{X}_{m+1}^{\lfloor m\rfloor}$ Last m components of $\mathrm{x}_{\mathrm{m}+1}$
$\mathbf{R}_{m+1}^{\lceil m\rceil}$, The first mxm sub matrix of $\mathrm{R}_{\mathrm{m}+1} \quad \mathbf{R}_{m+1}^{\lfloor m\rfloor}$ The last mxm sub matrix of $\mathrm{R}_{\mathrm{m}+1}$
- Since $\mathbf{x}_{m+1}^{\lceil m\rceil}=\mathbf{x}_{m}$

$$
\begin{gathered}
\mathbf{R}_{m+1}=E\left\{\left[\begin{array}{l}
\mathbf{x}_{m} \\
x_{m+1}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{x}_{m}^{H} & x_{m+1}^{*}
\end{array}\right]\right\}=\left[\begin{array}{ll}
\mathbf{R}_{m} & \mathbf{r}_{m}^{\mathrm{b}} \\
\mathbf{r}_{m}^{\mathrm{b} H} & \rho_{m}^{\mathrm{b}}
\end{array}\right] \\
\mathbf{r}_{m}^{\mathrm{b}} \triangleq E\left\{\mathbf{x}_{m} x_{m+1}^{*}\right\} \\
\rho_{m}^{\mathrm{b}} \triangleq E\left\{\left|x_{m+1}\right|^{2}\right\} \\
\mathbf{x}_{m+1}^{\lceil m\rceil}=\mathbf{x}_{m} \Rightarrow \mathbf{R}_{m}=\mathbf{R}_{m+1}^{\lceil m\rceil} \quad \mathbf{d}_{m}=\mathbf{d}_{m+1}^{\lceil m\rceil}
\end{gathered}
$$

- This is known as the optimum nesting property and is instrumental in the development of order recursive algorithms.
- The inverse of the $m+1$ autocorrelation matrix is given as the following.

$$
\mathbf{R}_{m+1}^{-1}=\left[\begin{array}{ll}
\mathbf{R}_{m} & \mathbf{r}_{m}^{\mathrm{b}} \\
\mathbf{r}_{m}^{\mathrm{b}} H & \rho_{m}^{\mathrm{b}}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\mathbf{R}_{m}^{-1} & \mathbf{0}_{m} \\
\mathbf{0}_{m}^{H} & 0
\end{array}\right]+\frac{1}{\alpha_{m}^{\mathrm{b}}}\left[\begin{array}{l}
\mathbf{b}_{m} \\
1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{b}_{m}^{H} & 1
\end{array}\right]
$$

Where:

$$
\begin{gathered}
\mathbf{b}_{m} \triangleq\left[b_{0}^{(m)} b_{1}^{(m)} \cdots b_{m-1}^{(m)}\right]^{T} \triangleq-\mathbf{R}_{m}^{-1} \mathbf{r}_{m}^{\mathbf{b}} \\
\alpha_{m}^{\mathrm{b}} \triangleq \rho_{m}^{\mathrm{b}}-\mathbf{r}_{m}^{\mathrm{b} H} \mathbf{R}_{m}^{-1} \mathbf{r}_{m}^{\mathrm{b}}=\rho_{m}^{\mathrm{b}}+\mathbf{r}_{m}^{\mathbf{H} \mathbf{b}_{m}}
\end{gathered}
$$

Alternatively:

$$
\alpha_{m}^{\mathrm{b}}=\frac{\operatorname{det} \mathbf{R}_{m+1}}{\operatorname{det} \mathbf{R}_{m}}
$$

- Note that:
- The inverse R_{m+1} of the $m+1$ autocorrelation matrix is obtained directly from the inverse R_{m}.
- The vector b_{m} is the MMSE estimator of observation x_{m+1} from data vector x_{m}.
- The inverse matrix does not have the optimum nesting property.
- The inverse of the lower right corner partitioned matrix

$$
\mathbf{R}_{m+1}^{-1} \triangleq\left[\begin{array}{ll}
\rho_{m}^{\mathrm{f}} & \mathbf{r}_{m}^{\mathrm{f} H} \\
\mathbf{r}_{m}^{\mathrm{f}} & \mathbf{R}_{m}^{\mathrm{f}}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
0 & \mathbf{0}_{m}^{H} \\
\mathbf{0}_{m} & \left(\mathbf{R}_{m}^{\mathrm{f}}\right)^{-1}
\end{array}\right]+\frac{1}{\alpha_{m}^{\mathrm{f}}}\left[\begin{array}{l}
1 \\
\mathbf{a}_{m}
\end{array}\right]\left[\begin{array}{ll}
1 & \mathbf{a}_{m}^{H}
\end{array}\right]
$$

where

$$
\begin{gathered}
\mathbf{a}_{m} \triangleq\left[a_{1}^{(m)} a_{2}^{(m)} \cdots a_{m}^{(m)}\right]^{T} \triangleq-\left(\mathbf{R}_{m}^{\mathrm{f}}\right)^{-1} \mathbf{r}_{m}^{\mathrm{f}} \\
\alpha_{m}^{\mathrm{f}} \triangleq \rho_{m}^{\mathrm{f}}-\mathbf{r}_{m}^{\mathrm{f} H}\left(\mathbf{R}_{m}^{\mathrm{f}}\right)^{-1} \mathbf{r}_{m}^{\mathrm{f}}=\rho_{m}^{\mathrm{f}}+\mathbf{r}_{m}^{\mathrm{f} H} \mathbf{a}_{m}=\frac{\operatorname{det} \mathbf{R}_{m+1}}{\operatorname{det} \mathbf{R}_{m}^{\mathrm{f}}}
\end{gathered}
$$

Levinson Recursion for the Optimum Estimator

- Solving the $m+1$ normal equation

$$
\begin{aligned}
\mathbf{c}_{m+1} & =\mathbf{R}_{m+1}^{-1} \mathbf{d}_{m+1} \\
& =\left[\begin{array}{ll}
\mathbf{R}_{m}^{-1} & \mathbf{0}_{m} \\
\mathbf{0}_{m}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{d}_{m} \\
d_{m+1}
\end{array}\right]+\frac{1}{\alpha_{m}^{\mathrm{b}}}\left[\begin{array}{l}
\mathbf{b}_{m} \\
1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{b}_{m}^{H} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{d}_{m} \\
d_{m+1}
\end{array}\right] \\
& =\left[\begin{array}{l}
\mathbf{R}_{m}^{-1} \mathbf{d}_{m} \\
0
\end{array}\right]+\left[\begin{array}{l}
\mathbf{b}_{m} \\
1
\end{array}\right] \frac{\mathbf{b}_{m}^{H} \mathbf{d}_{m}+d_{m+1}}{\alpha_{m}^{\mathrm{b}}}
\end{aligned}
$$

Where

$$
\begin{gathered}
\mathbf{c}_{m+1}=\left[\begin{array}{l}
\mathbf{c}_{m} \\
0
\end{array}\right]+\left[\begin{array}{l}
\mathbf{b}_{m} \\
1
\end{array}\right] k_{m}^{c} \\
k_{m}^{c} \triangleq \frac{\beta_{m}^{c}}{\alpha_{m}^{\mathrm{b}}} \\
\beta_{m \text { Bisrat }}^{c} \triangleq \mathbf{b}_{\text {Eberebssa, }}^{H} \mathbf{d}_{m \in c}+d_{m}+\text {,AAit, AAU }
\end{gathered}
$$

- Note that

$$
\mathbf{c}_{m+1}=\left[\begin{array}{c}
\mathbf{c}_{m} \\
0
\end{array}\right]+\left[\begin{array}{l}
\mathbf{b}_{m} \\
1
\end{array}\right] k_{m}^{c}
$$

- Even though the equation is order-recursive, the parameter c_{m+1} does not have the optimum nesting property.

$$
\mathbf{c}_{m+1}^{\lceil m\rceil} \neq \mathbf{c}_{m}
$$

- If b_{m} is known, c_{m+1} can be calculated.
- However, the calculation of b_{m} requires the inversion of R_{m}.
- Minimal computational savings.

$$
\mathbf{b}_{m} \triangleq\left[b_{B i s f l}^{(m)} b_{\text {Deredssa, SEEE, AAim, }}^{(m)} \ldots b_{\text {A太I }}^{(m)}\right]^{T} \triangleq-\mathbf{R}_{m}^{-1} \mathbf{r}_{m}^{\mathrm{b}}
$$

Order-recursive computation of LDL ${ }^{\text {H }}$ Decomposition

- The $m+1$ autocorrelation matrix R can be written as

$$
\mathbf{R}_{m+1}=\mathbf{L}_{m+1} \mathbf{D}_{m+1} \mathbf{L}_{m+1}^{H}
$$

Where

$$
\mathbf{L}_{m+1}=\left[\begin{array}{ll}
\mathbf{L}_{m} & \mathbf{0} \\
\mathbf{1}_{m}^{H} & 1
\end{array}\right] \quad \mathbf{D}_{m+1}=\left[\begin{array}{ll}
\mathbf{D}_{m} & \mathbf{0} \\
\mathbf{0}^{H} & \xi_{m+1}
\end{array}\right] \quad \mathbf{R}_{m}=\mathbf{L}_{m} \mathbf{D}_{m} \mathbf{L}_{m}^{H}
$$

- Note that both matrices have optimum nesting property

$$
\mathbf{L}_{m}=\mathbf{L}^{\lceil m\rceil}, \mathbf{D}_{m}=\mathbf{D}^{\lceil m\rceil}
$$

- From LDL ${ }^{\text {H }}$ decomposition of linear MMSE

$$
\begin{gathered}
\mathbf{L}_{m} \mathbf{D}_{m} \mathbf{k}_{m} \triangleq \mathbf{d}_{m} \\
\mathbf{L}_{m}^{H} \mathbf{c}_{m}=\mathbf{k}_{m}
\end{gathered}
$$

- Since L_{m} is lower triangular, k_{m} has the optimum nesting property

$$
\mathbf{k}_{m}=\mathbf{k}^{\lceil m\rceil}
$$

- However, since $L_{m}{ }^{H}$ is not lower triangular, c_{m} does not satisfy the optimum nesting property.
- The MMSE also has the optimum nesting property

$$
P_{m}=P_{y}-\mathbf{c}_{m}^{H} \mathbf{d}_{m}=P_{y}-\mathbf{k}_{m}^{H} \mathbf{D}_{m} \mathbf{k}_{m}
$$

Order-Recursive Computation of the Optimum Estimate

- The computation of the optimum linear estimate using a linear combiner requires m multiplications and m-1 additions.
- To compute the estimate for $1 \leq m \leq M$, we need $M(M+1) / 2$ operations.
- From LDL ${ }^{\mathrm{H}}$ decomposition,

$$
\hat{y}_{m}=\mathbf{c}_{m}^{H} \mathbf{x}_{m}=\left(\mathbf{k}_{m}^{H} \mathbf{L}_{m}^{-1}\right) \mathbf{x}_{m}=\mathbf{k}_{m}^{H}\left(\mathbf{L}_{m}^{-1} \mathbf{x}_{m}\right)
$$

- Define a new vector w_{m} called innovation as

$$
\mathbf{L}_{m} \mathbf{w}_{m} \triangleq \mathbf{x}_{m}
$$

- Then the estimate is given as

$$
\hat{y}_{m}=\mathbf{k}_{m}^{H} \mathbf{w}_{m}=\sum_{i=1}^{m} k_{i}^{*} w_{i}
$$

- Since both $\mathrm{k}_{\mathrm{m}}{ }^{\mathrm{H}}$ and w_{m} satisfy the optimum nesting property, the estimate also has optimum nesting property.
- Therefore,

$$
\begin{aligned}
& \hat{y}_{m}=\hat{y}_{m-1}+k_{m}^{*} w_{m} \\
& e_{m}=e_{m-1}-k_{m}^{*} w_{m} \\
& w_{m}=x_{m}-\sum_{\text {Bisrat Derebssan. } \wp E C E, \text { AAIT, AAU }}^{m-1} l_{i-1}^{(m-1)} w_{i}
\end{aligned}
$$

- Note that:
- The correlation of w_{m} is

$$
E\left\{\mathbf{w}_{m} \mathbf{w}_{m}^{H}\right\}=\mathbf{L}_{m}^{-1} E\left\{\mathbf{x}_{m} \mathbf{x}_{m}^{H}\right\} \mathbf{L}_{m}^{-H}=\mathbf{D}_{m}
$$

- Therefore the components of w_{m} are uncorrelated.
- The transformation from x_{m} to w_{m} removes all the redundant correlation among components of \mathbf{x}.
- Therefore each w_{i} adds new information or innovation.
- The estimation equation shows that the improvement in the estimate when an additional observation is included is proportional to the innovation $\mathrm{w}_{\mathrm{m}+1}$ contained in $\mathrm{x}_{\mathrm{m}+1}$.
- Therefore, L_{m-1} acts as a decorrelator.
$-k_{m}{ }^{H}$ acts a linear combiner.
- LDL ${ }^{H}$ decomposition can be seen as the matrix equivalent of spectral factorization.

ORDER-RECURSIVE ALGORITHMS FOR OPTIMUM FIR FILTERS

- The key difference between a linear combiner and an FIR filter is the nature of the input data vector.
- The input data vector for FIR filters consists of consecutive samples from the same discrete-time stochastic process.
- Taking the shift invariance of the input data

$$
\mathbf{x}_{m+1}(n)=\left[\begin{array}{l}
x(n) \\
x(n-1) \\
\vdots \\
x(n-m+1) \\
x(n-m)
\end{array}\right]=\left[\begin{array}{l}
\mathbf{x}_{m}(n) \\
x(n-m)
\end{array}\right]=\left[\begin{array}{l}
x(n) \\
\mathbf{x}_{m}(n-1)
\end{array}\right]
$$

- The correlation matrix $R_{m+1}(n)$ can be shown to be

$$
\begin{gathered}
\mathbf{R}_{m+1}(n)=E\left\{\mathbf{x}_{m+1}(n) \mathbf{x}_{m+1}^{H}(n)\right\} \\
\mathbf{R}_{m+1}(n)=\left[\begin{array}{ll}
\mathbf{R}_{m}(n) & \mathbf{r}_{m}^{\mathrm{b}}(n) \\
\mathbf{r}_{m}^{\mathrm{b}}(n) & P_{x}(n-m)
\end{array}\right] \quad \mathbf{R}_{m+1}(n)=\left[\begin{array}{ll}
P_{x}(n) & \mathbf{r}_{m}^{\mathrm{f}}(n) \\
\mathbf{r}_{m}^{\mathrm{f}}(n) & \mathbf{R}_{m}(n-1)
\end{array}\right] \\
\mathbf{r}_{m}^{\mathbf{b}}(n)=E\left\{\mathbf{x}_{m}(n) x^{*}(n-m)\right\} \\
\mathbf{r}_{m}^{\mathrm{f}}(n)=E\left\{\mathbf{x}_{m}(n-1) x^{*}(n)\right\} \\
P_{x}(n)=E\left\{|x(n)|^{2}\right\}
\end{gathered}
$$

- Note that

$$
\mathbf{R}_{m+1}^{\lfloor m\rfloor}(n)=\mathbf{R}_{m}(n-1)
$$

- If the optimum m FIR filter coefficients are known at time n , the $\mathrm{m}+1$ time coefficients can be calculated as

$$
\begin{gathered}
\mathbf{c}_{m+1}(n)=\mathbf{R}_{m+1}^{-1}(n) \mathbf{d}_{m+1}(n) \\
\mathbf{R}_{m+1}^{-1}(n)=\left[\begin{array}{ll}
\begin{array}{l}
\mathbf{R}_{m}^{-1}(n) \\
\mathbf{0}^{T}
\end{array} & 0
\end{array}\right]+\frac{1}{P_{m}^{\mathrm{b}}(n)}\left[\begin{array}{l}
\mathbf{b}_{m}(n) \\
1
\end{array}\right]\left[\begin{array}{ll}
\mathbf{b}_{m}^{H}(n) & 1
\end{array}\right] \\
\mathbf{b}_{m}(n)=-\mathbf{R}_{m}^{-1}(n) \mathbf{r}_{m}^{\mathrm{b}}(n) \\
\mathbf{d}_{m+1}(n)=E\left\{\left[\begin{array}{l}
\mathbf{x}_{m}(n) \\
x(n-m)
\end{array}\right] y^{*}(n)\right\}=\left[\begin{array}{l}
\mathbf{d}_{m}(n) \\
d_{m+1}(n)
\end{array}\right]
\end{gathered}
$$

- By substitution,

$$
\begin{gathered}
\mathbf{c}_{m+1}(n)=\left[\begin{array}{l}
\mathbf{c}_{m}(n) \\
0
\end{array}\right]+\left[\begin{array}{l}
\mathbf{b}_{m}(n) \\
1
\end{array}\right] k_{m}^{c}(n) \\
k_{m}^{c}(n) \triangleq \frac{\beta_{m}^{c}(n)}{P_{m}^{\mathrm{b}}(n)} \\
\beta_{m}^{c}(n) \triangleq \mathbf{b}_{m}^{H}(n) \mathbf{d}_{m}(n)+d_{m+1}(n)
\end{gathered}
$$

- This is called the Levinson order recursion.
- For this order recursion to be useful, we need an order recursion for the backward linear prediction (BLP) $b_{m}(n)$.
- This is possible if $b_{m}(n)$ has optimum nesting.

$$
\begin{aligned}
\mathbf{R}_{m}(n) \mathbf{b}_{m}(n) & =-\mathbf{r}_{m}^{\mathrm{b}}(n) \\
\mathbf{R}_{m+1}(n) \mathbf{b}_{m+1}(n) & =-\mathbf{r}_{m+1}^{\mathrm{b}}(n)
\end{aligned}
$$

- The right side vectors are not nested if we use upper partitioning.
- If we use lower-upper partitioning

$$
\mathbf{r}_{m+1}^{\mathrm{b}}(n)=E\left\{\left[\begin{array}{l}
x(n) \\
\mathbf{x}_{m}(n-1)
\end{array}\right] x^{*}(n-m-1)\right\} \triangleq\left[\begin{array}{l}
r_{m+1}^{\mathrm{b}}(n) \\
\mathbf{r}_{m}^{\mathrm{b}}(n-1)
\end{array}\right]
$$

- By using lower-upper partitioning of $\mathrm{R}_{\mathrm{m}+1}$

$$
\begin{aligned}
\mathbf{R}_{m+1}^{-1}(n)= & {\left[\begin{array}{ll}
0 & \mathbf{0}^{H} \\
\mathbf{0} & \mathbf{R}_{m}^{-1}(n-1)
\end{array}\right]+\frac{1}{P^{\mathrm{f}}(n)}\left[\begin{array}{l}
1 \\
\mathbf{a}_{m}(n)
\end{array}\right]\left[\begin{array}{ll}
1 & \mathbf{a}_{m}^{H}(n)
\end{array}\right] } \\
& \mathbf{a}_{m}(n) \triangleq-\mathbf{R}_{m}^{-1}(n-1) \mathbf{r}_{m}^{\mathrm{f}}(n) \quad \quad \text { Forward linear prediction } \\
P_{m}^{\mathrm{f}}(n)= & \frac{\operatorname{det} \mathbf{R}_{m+1}(n)}{\operatorname{det} \mathbf{R}_{m}\left(n_{\text {Bisrat Derebssa, SECE, AAiT, AAU }}\right.}=P_{x}(n)+\mathbf{r}_{m}^{\mathrm{f} H}(n) \mathbf{a}_{m}(n)
\end{aligned}
$$

- By substitution

$$
\begin{gathered}
\mathbf{b}_{m+1}(n)=-\mathbf{R}_{m+1}^{-1}(n) \mathbf{r}_{m+1}^{\mathrm{b}}(n) \\
\mathbf{b}_{m+1}(n)=\left[\begin{array}{l}
0 \\
\mathbf{b}_{m}(n-1)
\end{array}\right]+\left[\begin{array}{l}
1 \\
\mathbf{a}_{m}(n)
\end{array}\right] k_{m}^{\mathrm{b}}(n) \\
k_{m}^{\mathrm{b}}(n) \triangleq-\frac{\beta_{m}^{\mathrm{b}}(n)}{P_{m}^{\mathrm{f}}(n)} \\
\text { - Similarly } \beta_{m}^{\mathrm{b}}(n) \triangleq \mathrm{a}_{\mathrm{m}}(\mathrm{n})^{\mathrm{b}}\left(\operatorname{does}(n)+\mathbf{a}_{m}^{H}(n) \mathbf{r}_{m}^{\mathrm{b}}(n-1)\right. \\
\text { not have optimum }
\end{gathered}
$$ nesting.

- Order recursion for FLP

$$
\begin{aligned}
& \mathbf{a}_{m+1}(n)=\left[\begin{array}{l}
\mathbf{a}_{m}(n) \\
0
\end{array}\right]+\left[\begin{array}{l}
\mathbf{b}_{m}(n-1) \\
1
\end{array}\right] k_{m}^{\mathrm{f}}(n) \\
& k_{m}^{\mathrm{f}}(n) \triangleq-\frac{\beta_{m}^{\mathrm{f}}(n)}{P_{m}^{\mathrm{b}}(n-1)} \\
& \beta_{m}^{\mathrm{f}}(n) \triangleq \mathbf{b}_{m}^{H}(n-1) \mathbf{r}_{m}^{\mathrm{f}}(n)+r_{m+1}^{\mathrm{f}}(n)
\end{aligned}
$$

- Clearly, a_{m} does not have the optimum nesting property.

Simplification for Stationary Stochastic Processes

- When $x(n)$ and $y(n)$ are jointly wide-sense stationary (WSS), the optimum estimators are time-invariant and we have the following simplifications:
- All quantities are independent of
- no time recursion necessary.
$-b_{m}=J a_{m}{ }^{*}$, J simply reverses the order of the vector elements

$$
\mathbf{J}=\left[\begin{array}{cccc}
0 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 1 & \cdots & 0 \\
1 & 0 & \cdots & 0
\end{array}\right], \quad \mathbf{J}^{H} \mathbf{J}=\mathbf{J J}^{H}=\mathbf{I}
$$

- This is due to the Toeplitz structure of the autocorrelation matrix.
- Therefore, $\mathrm{R}_{\mathrm{m}+1}$ can be partitioned as

$$
\begin{aligned}
\mathbf{R}_{m+1}(n) & =\left[\begin{array}{ll}
\mathbf{R}_{m} & \mathbf{J r}_{m} \\
\mathbf{r}_{m}^{H} \mathbf{J} & r(0)
\end{array}\right]=\left[\begin{array}{ll}
r(0) & \mathbf{r}_{m}^{T} \\
\mathbf{r}_{m}^{*} & \mathbf{R}_{m}
\end{array}\right] \\
\mathbf{r}_{m} & \triangleq\left[\begin{array}{lll}
r(1) r(2) \cdots r(m)
\end{array}\right]^{T}
\end{aligned}
$$

- It can be shown that

$$
\begin{gathered}
\mathbf{a}_{m+1}=\left[\begin{array}{l}
\mathbf{a}_{m} \\
0
\end{array}\right]+\left[\begin{array}{l}
\mathbf{b}_{m} \\
1
\end{array}\right] k_{m} \\
\mathbf{b}_{m}=\mathbf{J a}_{m}^{*}
\end{gathered}
$$

- Where

$$
\begin{gathered}
k_{m} \triangleq k_{m}^{\mathrm{f}}=k_{m}^{\mathrm{b} *}=-\frac{\beta_{m}}{P_{m}} \\
\beta_{m} \triangleq \beta_{m}^{\mathrm{f}}=\beta_{m}^{\mathrm{b} *}=\mathbf{b}_{m}^{H} \mathbf{r}_{m}^{*}+r^{*}(m+1)
\end{gathered}
$$

$$
P_{m} \triangleq P_{m}^{\mathrm{b}}=P_{m}^{\mathrm{f}}=P_{m-1}+\beta_{m-1}^{*} k_{m-1}=P_{m-1}+\beta_{m-1} k_{m-1}^{*}
$$

- The optimum coefficients are

$$
\begin{aligned}
& \mathbf{c}_{m+1}= {\left[\begin{array}{l}
\mathbf{c}_{m} \\
0
\end{array}\right]+\left[\begin{array}{l}
\mathbf{J} \mathbf{a}_{m} \\
1
\end{array}\right] k_{m}^{c} } \\
& k_{m}^{c} \triangleq \frac{\beta_{m}^{c}}{P_{m}} \\
& \text { Bis }_{m}^{c}=\mathbf{b}_{m}^{H} \mathbf{d}_{m}+d_{m}+, \text { A } 1
\end{aligned}
$$

Levinson-Durbin Algorithm

- For stationary RP, the Toeplitz structure of the autocorrelation matrix can be used to come up with efficient order recursive algorithms.
- Suppose that c_{m} is known

$$
\mathbf{c}_{m}=\mathbf{R}_{m}^{-1} \mathbf{d}_{m}
$$

and we wish to determine

$$
\mathbf{c}_{m+1}=\mathbf{R}_{m+1}^{-1} \mathbf{d}_{m+1}
$$

- Since $\mathrm{R}_{\mathrm{m}+1}$ and $\mathrm{d}_{\mathrm{m}+1}$ can be partitioned as follows

$$
\begin{aligned}
& \mathbf{R}_{m+1}=\left[\begin{array}{lll|l}
r(0) & \cdots & r(m-1) & r(m) \\
\vdots & \ddots & \vdots & \vdots \\
r^{*}(m-1) & \cdots & r(0) & r(1) \\
\hline r^{*}(m) & \cdots & r^{*}(1) & r(0)
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R}_{m} & \mathbf{J r}_{m} \\
\mathbf{r}_{m}^{H} \mathbf{J} & r(0)
\end{array}\right] \\
& \mathbf{d}_{m+1}=\left[\begin{array}{l}
\mathbf{d}_{m} \\
d_{m+1}
\end{array}\right] \\
& \mathbf{b}_{m}=-\mathbf{R}_{m}^{-1} \mathbf{J} \mathbf{r}_{m} \\
& P_{m}^{\mathrm{b}}=r(0)+\mathbf{r}_{m}^{H} \mathbf{J} \mathbf{b}_{m} \\
& \mathbf{c}_{m+1}=\left[\begin{array}{l}
\mathbf{c}_{m} \\
0
\end{array}\right]+\left[\begin{array}{l}
\mathbf{b}_{m} \\
1
\end{array}\right] k_{m}^{c} \\
& k_{m}^{c} \triangleq \frac{\beta_{m}^{c}}{P_{m}^{\mathrm{b}}}
\end{aligned}
$$

- By utilizing the Toeplitz structure of R_{m},

$$
\begin{gathered}
\mathbf{b}_{m}=\mathbf{J a}_{m}^{*} \\
P_{m} \triangleq P_{m}^{\mathrm{b}}=P_{m}^{\mathrm{f}}
\end{gathered}
$$

- To avoid the use of lower right corner partitioning, FLP recursion can be used to obtain a_{m}

$$
\mathbf{a}_{m+1}=-\mathbf{R}_{m+1}^{-1} \mathbf{r}_{m+1}^{*}
$$

- This leads to the Levinson recursion

$$
\begin{gathered}
\mathbf{a}_{m+1}=\left[\begin{array}{l}
\mathbf{a}_{m} \\
0
\end{array}\right]+\left[\begin{array}{l}
\mathbf{b}_{m} \\
1
\end{array}\right] k_{m} \\
k_{m} \triangleq-\frac{\beta_{m}}{P_{m}}
\end{gathered}
$$

$$
\begin{gathered}
\beta_{m} \triangleq \mathbf{b}_{m}^{H} \mathbf{r}_{m}^{*}+r^{*}(m+1)=\mathbf{a}_{m}^{T} \mathbf{J} \mathbf{r}_{m}^{*}+r^{*}(m+1) \\
P_{m}=r(0)+\mathbf{r}_{m}^{H} \mathbf{a}_{m}^{*}=r(0)+\mathbf{a}_{m}^{T} \mathbf{r}_{m}
\end{gathered}
$$

- Levinson recursion consists of two parts:
- A set of recursion to compute the FLP or BLP a_{m} or b_{m},
- A set of recursion to compute the optimum filter from a_{m} or b_{m}.

TABLE 7.2
Summary of the LevinsonDurbin algorithm.

1. Input: $r(0), r(1), r(2), \ldots, r(M)$
2. Initialization
(a) $P_{0}=r(0), \beta_{0}=r^{*}(1)$
(b) $k_{0}=-r^{*}(1) / r(0), a_{1}^{(1)}=k_{0}$
3. For $m=1,2, \ldots, M-1$
(a) $P_{m}=P_{m-1}+\beta_{m-1} k_{m-1}^{*}$
(b) $\mathbf{r}_{m}=[r(1) r(2) \cdots r(m)]^{T}$
(c) $\beta_{m}=\mathbf{a}_{m}^{T} \mathbf{J} \mathbf{r}_{m}^{*}+r^{*}(m+1)$
(d) $k_{m}=-\frac{\beta_{m}}{P_{m}}$
(e) $\quad \mathbf{a}_{m+1}=\left[\begin{array}{l}\mathbf{a}_{m} \\ 0\end{array}\right]+\left[\begin{array}{l}\mathbf{J a}_{m}^{*} \\ 1\end{array}\right] k_{m}$
4. $\quad P_{M}=P_{M-1}+\beta_{M} k_{M}^{*}$
5. Output: $\mathbf{a}_{M},\left\{k_{m}\right\}_{0}^{M-1},\left\{P_{m}\right\}_{1}^{M}$

- If required to obtain the coefficients c.

$$
\begin{aligned}
& \text { (f) } \beta_{m}^{c}=-\mathbf{c}_{m}^{H} \mathbf{J r}_{m}+d_{m+1} \\
& \text { (g) } k_{m}^{c}=\frac{\beta_{m}^{c}}{P_{m}}
\end{aligned}
$$

(h) $\mathbf{c}_{m+1}=\left[\begin{array}{l}\mathbf{c}_{m} \\ 0\end{array}\right]+\left[\begin{array}{l}\mathbf{J a}_{m}^{*} \\ 1\end{array}\right] k_{m}^{c}$
(i) $P_{m+1}^{c}=P_{m}^{c}+\beta_{m}^{c}{ }_{m}^{c *}$
4. Output: $\mathbf{a}_{M}, \mathbf{c}_{M},\left\{k_{m}, k_{m}^{c}\right\}_{0}^{M-1},\left\{P_{m}, P_{m}^{c}\right\}_{0}^{M}$

LATTICE STRUCTURES FOR OPTIMUM FIR FILTERS

- To compute the FLP error and BLP error

$$
\begin{aligned}
& e_{m}^{\mathrm{f}}(n)=x(n)+\mathbf{a}_{m}^{H} \mathbf{x}_{m}(n-1)=x(n)+\sum_{k=1}^{m} a_{k}^{(m) *} x(n-k) \\
& e_{m}^{\mathrm{b}}(n)=x(n-m)+\mathbf{b}_{m}^{H} \mathbf{x}_{m}(n)=x(n-m)+\sum_{k=0}^{m-1} b_{k}^{(m) *} x(n-k)
\end{aligned}
$$

- Using direct-form filter structure

- Since a_{m} and b_{m} do not have the optimum nesting property, we cannot obtain orderrecursive direct-form structures for the computation of the prediction errors.
- By partitioning x ,

$$
\begin{aligned}
\mathbf{x}_{m+1}(n) & =[x(n) x(n-1) \cdots x(n-m+1) x(n-m)]^{T} \\
& =\left[\mathbf{x}_{m}^{T}(n) x(n-m)\right]^{T} \\
& =\left[x(n) \mathbf{x}_{m}^{T}(n-1)\right]^{T}
\end{aligned}
$$

- FID arrors are a_{m+1}
$\left.\left.\qquad \begin{array}{rl}e_{m+1}^{\mathrm{f}}(n) & =x(n)+\left\{\left[\begin{array}{l}\mathbf{a}_{m} \\ 0\end{array}\right]+\left[\begin{array}{l}\mathbf{b}_{m} \\ 1\end{array}\right]\right.\end{array} k_{m}\right)\right\}^{H}\left[\begin{array}{l}\mathbf{x}_{m}(n-1) \\ x(n-m-1)\end{array}\right]$
$=$
$x(n)+\mathbf{a}_{m}^{H} \mathbf{x}_{m}(n-1)+k_{m}^{*}\left[\mathbf{b}_{m}^{H} \mathbf{x}_{m}(n-1)+x(n-1-m)\right]$
$e_{m+1}^{\mathrm{f}}(n)=e_{m}^{\mathrm{f}}(n)+k_{m}^{*} e_{m}^{\mathrm{b}}(n-1)$
- BLP errors are

$$
\begin{aligned}
e_{m+1}^{\mathrm{b}}(n)= & x(n-m-1)+\left\{\left[\begin{array}{l}
0 \\
\mathbf{b}_{m}
\end{array}\right]+\left[\begin{array}{l}
1 \\
\mathbf{a}_{m}
\end{array}\right] k_{m}^{*}\right\}^{H}\left[\begin{array}{l}
x(n) \\
\mathbf{x}_{m}(n-1)
\end{array}\right] \\
= & x(n-m-1)+\mathbf{b}_{m}^{H} \mathbf{x}_{m}(n-1)+k_{m}\left[x(n)+\mathbf{a}_{m}^{H} \mathbf{x}_{m}(n-1)\right] \\
& e_{m t_{\text {Btsrat }}(n)}^{\mathrm{b}}=e_{m}^{\mathrm{b}}(n-1)+k_{m} e_{m}^{\mathrm{f}}(n)
\end{aligned}
$$

- These equations can be computed for $\mathrm{m}=0,1, \ldots, \mathrm{M}-1$ given initial conditions

$$
\begin{array}{rlrl}
e_{0}^{\mathrm{f}}(n) & =e_{0}^{\mathrm{b}}(n)=x(n) & \\
e_{m}^{\mathrm{f}}(n) & =e_{m-1}^{\mathrm{f}}(n)+k_{m-1}^{*} e_{m-1}^{\mathrm{b}}(n-1) & m=1,2, \ldots, M \\
e_{m}^{\mathrm{b}}(n) & =k_{m-1} e_{m-1}^{\mathrm{f}}(n)+e_{m-1}^{\mathrm{b}}(n-1) & m=1,2, \ldots, M \\
e(n) & =e_{M}^{\mathrm{f}}(n) & &
\end{array}
$$

- Implementation

- Given that

$$
e_{m+1}(n)=e_{m}(n)-k_{m}^{c *}(n) e_{m}^{\mathrm{b}}(n)
$$

- The optimum filtering error can be computed from the BLP error.

