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Goals of the Chapter   

• Signals can be categorized in a number of ways  
• Will cover characterization of signals and systems 

encountered in digital communication systems 
 

• Focus points 
• Characterization of bandpass signals and systems 
• Vector space representation of signals  
• Representation of digitally modulated signals  
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Overview  

• Signals and systems 
• Stationary stochastic process 
• Signal space  
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Communication Signals & Systems Characterization 

• Binary bits from the source encoder mapped into signal 
waveforms, mostly after channel encoding 
• In channel encoding redundancy is added in a controlled manner 

for error correction at the receiver 

• Example: Binary modulation: 0 → s1(t) and 1→ s2(t) 
• b bits at a time mapped using M= 2b waveforms           

si(t), i = 0,1,2,…M-1 
• I.e., one waveform for each of the 2b possible bit sequences 
• M-ary modulation for M > 2 

• Question: What should be the characteristics of these 
waveforms and how do we describe and use them?  
• Various forms of digitally modulated signals will be introduced 

along with their spectral and other characteristics 
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Bandpass Signals and Systems  

• Channels have limited bandwidth centered about the 
carrier (DSB) or adjacent to the carrier (SSB) 

• Narrowband Definition: BW<< fc, carrier frequency 
 

• Reduce all bandpass signals and channels to equivalent 
lowpass signals and channels  

• Without any loss of generality, it makes the analysis 
independent of the carrier frequency 
 

• We consider that s(t) has frequency content around a 
narrowband in the vicinity of the frequency, fc  
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Bandpass Signals and Systems  
• Construct an analytic signal that contains only the positive 

frequencies 
 

 
 
 

• The analytic signal S+(t) is a bandpass signal 
• Equivalent lowpass representation can be obtained by 

frequency translation 
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Bandpass Signals and Systems …  

• Since Sl(t) is in general complex, it may be expressed as 
 
 
 
 

• Equating the real and imaginary parts  
 
 
 

• S(t) is the desired form of the bandpass signal  
• x(t) and y(t) are amplitude modulations impressed on carriers 

cos 2πfct and sin2πfct, which are in phase quadrature 
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Bandpass Signals and Systems …  
• Alternatively, 

 
 

• A third possible form of representation of S(t) can be 
 
 
 
 
 
 

• a(t) and θ(t) are the envelope and the phase angle of S(t), 
respectively 
 

Digital Communications – Chapter 3: Communication Signals & Systems 8 
 

Sem. I, 2012/13 

( )[ ]{ } [ ]tπf2j
l

tπf2j cc e(t)SReejy(tx(t)ReS(t) =+=

( ) ( )θ(t)tπf2cosa(t)e(t)SReS(t)
x(t)
y(t)tanθ(t)and(t))y(t)(xa(t)

Whereea(t)(t)S

c
tπf2j

l

122

(t)jθ
l

c +==

=+=

=

−

(2) 

(3) 



Bandpass Signals and Systems …  

• The signal can also be expressed in frequency domain 
through its Fourier transform 
 
 
 

• And using  
 
 

• We get  
 
 
 

• Where Sl(f) is the transform of Sl(t) 
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Bandpass Signals and Systems …  

• The energy in the signal S(t) is given by 
 
 
 
 
 
 

• Since in the second term │Sl(t)│ varies very slowly its 
contribution may be neglected and the energy of the signal 
given by the first element of the sum only 
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Bandpass Signals and Systems …  
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Linear Bandpass System 
• Linear bandpass systems are characterized by the 

impulse response h(t) or by the frequency response H(f), 
which is the Fourier transform of h(t) 

• Note that for real h(t), H*(-f)= H(f) 
• Define:  

 
 
 

• Then:  
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Linear Bandpass System 
• Or in time domain using the inverse transform  

 
 
 
 

 

• Where hl(t) and Hl(f) are Fourier transform pairs and are in  
general complex valued functions that characterize the 
equivalent lowpass system 
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Response of Bandpass System to Bandpass Signal 

• Assume an input signal S(t) is a narrowband bandpass 
(BP) signal and the system is also narrowband BP 
 
 
 
 
 
 
 

• Where 
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Response of Bandpass System to Bandpass Signal 

• For narrowband signal and narrowband impulse response 
 
 
 
 
 
 
 
 

• Where                                       
 

• is output spectrum of the LPF system excited by LP signal 
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Overview  

• Signals and systems 
• Stationary stochastic process 
• Signal space  
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Bandpass Stationary Stochastic Processes  

• Suppose n(t) is a sample function of a wide sense 
stationary (WSS) stochastic process with zero mean and 
power spectral density Φnn(f) 
• Φnn(f) is assumed zero outside an interval Δf centered around ± fc 

• n(t) is narrowband process if Δf << fc  
• n(t) may be represented by any of the following three forms 

 
 
 

• Where  
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Bandpass Stationary Stochastic Processes …   

• Since n(t) is zero-mean, x(t) and y(t) are also zero mean 
• Furthermore, from the stationarity of n(t) follows 

 
 
 

• Which is identical in form with the expression for n(t) 
• The autocorrelation of the equivalent lowpass process 

 
 
 

• Which is the autocorrelation of the complex evelope 
• Finally,   
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Bandpass Stationary Stochastic Processes …  

• Thus Φnn(τ) of the bandpass stochastic process is 
uniquely determined from the autocorrelation function 
ΦZZ(τ) of the equivalent lowpass process z(t) and carrier 
frequency fc 

• Note that  
 
 
 
 
 
 

• Where ΦZZ(f) is the power spectrum of the lowpass 
process z(t) 

• Since ΦZZ(τ) = ΦZZ
*(-τ), it follows that ΦZZ(f) is real valued 

function of frequency 
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Bandpass Stationary Stochastic Processes …  

•           is an odd function of τ and                and hence x(t) 
and y(t) are uncorrelated for τ = 0  

• If n(t) is Gaussian x(t) and y(t) are jointly Gaussian and for 
τ = 0 are independent 
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Representation of White Noise 

• White noise is wideband and cannot be represented in 
terms of quadrature components 

• If the noise is assumed to have passed through an ideal 
bandpass filter, the output can be represented by 
quadrature components 
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Representation of White Noise …  

• The equivalent lowpass noise z(t) has a power spectral 
density:  
 
 
 

• And autocorrelation function is: 
 
 

 
• i.e the quadrature components x(t) and y(t) are 

uncorrelated for all time shifts τ and the autocorrelation of 
z(t), x(t) and y(t) are all equal 
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Overview  

• Signals and systems 
• Stationary stochastic process 
• Signal space  
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Signal Space Concepts 

• Analogous to space vectors, we represent a family of 
signals such as                                            by a signal  

   space over a given time interval 
 

• A signal space is defined by its orthonormal basis 
 
 

• The inner product of two signals is defined as  
  

 
• The norm of a signal is defined as  
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Signal Space Concepts …  

• A set of signals are orthonormal iff they are orthogonal and 
their norms are each unity 

• The set                                        is an orthonormal basis of 
    the signal X iff    

 
 

• Let s(t) be a deterministic, real valued signal with finite 
energy 
 
 

 

• And let the set                                     be an orthonormal 
set of signals or waveforms 
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Signal Space Concepts …  

•  We can approximate s(t) by 
 
 
 
 

• The set of waveforms                                          is said to 
be complete iff the error energy is zero, i.e.,     
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Signal Space Concepts …  

• Consider the signal x(t) given by 
 
 
 

• We approximate x(t) by   
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Signal Space Concepts …  
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Signal Space Concepts …  

• In general, assume that we have a set of waveforms 
(signals) 
 
 

• And we wish to construct a set of orthonormal waveforms 
 
 

 from the original signal set 
• This can be done either:  

• Formally by using the Gram-Schmidt orthogonalization 
procedure (READ Page 163 of the text); or 

• In simple cases, by inspection 
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Signal Space Concepts …  

• Example: Find an orthonormal basis for the following set 
of waveforms and determine the coordinates of each 
waveform in the signal space defined by the orthonormal 
basis functions 
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Signal Space Concepts …  

• By inspection the following orthonormal  function can be 
the basis for the representation of the three waveforms 
shown above 
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