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Goals of the Chapter

I
e Signals can be categorized in a number of ways

e Will cover characterization of signals and systems
encountered Iin digital communication systems

e Focus points
e Characterization of bandpass signals and systems
e \ector space representation of signals
e Representation of digitally modulated signals
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Overview

I
e Signals and systems

e Stationary stochastic process
e Signal space
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Communication Sighals & Systems Characterization

I
e Binary bits from the source encoder mapped into signal

waveforms, mostly after channel encoding

e In channel encoding redundancy is added in a controlled manner
for error correction at the receiver

e Example: Binary modulation: 0 — s,(t) and 1— s,(t)

e b bits at a time mapped using M= 2° waveforms
si(t),1=0,1,2,...M-1
e |.e., one waveform for each of the 2° possible bit sequences
e M-ary modulation for M > 2

e Question: What should be the characteristics of these
waveforms and how do we describe and use them?

e Various forms of digitally modulated signals will be introduced
along with their spectral and other characteristics
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Bandpass Signals and Systems

Channels have limited bandwidth centered about the
carrier (DSB) or adjacent to the carrier (SSB)

Narrowband Definition: BW<< f_, carrier frequency

Reduce all bandpass signals and channels to equivalent
lowpass signals and channels

Without any loss of generality, it makes the analysis
Independent of the carrier frequency

We consider that s(t) has frequency content around a
narrowband in the vicinity of the frequency, f.
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Bandpass Signals and Systems

I : . : L
e Construct an analytic signal that contains only the positive
frequencies

S ()=SM)+jS(t) OR S (f)=2U(f)S(f)

Where §(t)= 1 J':(T) dz, Hilbert transform of s(z)
7w =~ tL=7

e The analytic signal S,(t) is a bandpass signal

e Equivalent lowpass representation can be obtained by
frequency translation

S, () =S, (t)e 12t =[S(t)+j§(t)}e‘j2”f°t OR

S(t)+ j S(t) =S, (t)ei2 !
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Bandpass Signals and Systems ...

I
e Since S((t) is in general complex, it may be expressed as

S, ()=x(t)+ jy(t) then

S()+ j S(H)= (x(O)+ jy(©))cos 2 zf.t+ jsin2zf.t)
= (x(t)cos 2 zf. t—y(t) sin 2 zf.t )+

j(x(t)sin 2 zf.t+y(t)cos 2 zf.t)
e Equating the real and imaginary parts
S(t)=x(t)cos22xf_t—y(t)sin 2xf_t

S (t) = X(t) sin 2 t+y(t) cos 2f t (1)

e S(t) is the desired form of the bandpass signal

e X(1) and y(t) are amplitude modulations impressed on carriers
cos 2mif .t and sin2mif t, which are in phase quadrature
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 Bandpass Signals and Systems ...
|

e Alternatively,

1S(t)=Re {(x(®)+ jy(t)]e”*™ (=Re]S, (t)e’** || @)

e A third possible form of representation of S(t) can be

S,(t)=a(t)e® Where

a(t)=/(x*()+y(1)) and Q(t):tanl% 3)

S(t)= Re(SI (t) e 27! ): a(t)cos(2zf,t +0(1))

e a(t) and O(t) are the envelope and the phase angle of S(t),
respectively
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Bandpass Signals and Systems ...

I
e The signal can also be expressed in frequency domain

through its Fourier transform

S(f)= TS(t)ejZ”“dtz TRe(sl(t)eiMct)eiZﬂﬂdt

e And using Re(z):%(z +Z")

o We get S(f):% [[s, e +5; (e i bt

:%[s, (f—f)+S, (-f - fc)];

e Where S((f) is the transform of S(t)
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 Bandpass Signals and Systems ...

I
e The energy In the signal S(t) is given by

o0

&= TSZ(t)dt = [1Re[s, (e’ [fat

—00

:%];\s, (t)|” dt +%ES, (t)|* cos(4 xft + 2 6(2) ) dt

e Since in the second term | Sy(t)| varies very slowly its
contribution may be neglected and the energy of the signal
given by the first element of the sum only

T
ezaﬂamfm

—00
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Bandpass Signals and Systems ...

W\W*n—n"n’ﬂ/cos[ﬁrﬂrﬁfﬂL 260(0)]
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Linear Bandpass System

I : :
e Linear bandpass systems are characterized by the

Impulse response h(t) or by the frequency response H(f),
which is the Fourier transform of h(t)

e Note that for real h(t), H(-f)= H(f)
e Define:

Hl(f_fc)_{H(f) f >0

10 f <0

e Then:

HY (L f) = 0 f >0
A C)_{H(f) f <0

H(f):Hl(f B fc)+HI*(_f B fc)
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Linear Bandpass System

e Orin time domain using the inverse transform
h(t)=h, (t)e'*™" +h (H)e >
= 2Reln, (t)e/>"|

e Where h((t) and H,(f) are Fourier transform pairs and are in

general complex valued functions that characterize the
equivalent lowpass system
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Response of Bandpass System to Bandpass Signal

e Assume an input signal S(t) is a narrowband bandpass
(BP) signal and the system is also narrowband BP

S(t)

S, (1)

h(t) or h,(t)

r(t)

r (t)

r(t) = Re(r;(t)e'*7" )

0

o Where | r(t)= [S(r)h(t-7dt or R(H=S(HH(

—00

1

R(T) =2 [5(T -1 )= S (—F = )T [H,(f=f.)—H (-F -f.)]
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‘ Response of Bandpass System to Bandpass Signal

I
e [or narrowband signal and narrowband impulse response

S(f-f)~0 and H,(f-f)=0 for f<O0
Thus S,(f—f)H (=f—f)=S"(=f—f)H,(f - f)=0

R(f)z%[s,(f CE)H,(F— )+ S, (F = ) H; (- f — )]
—IR(f = ) +RI(-f = 1]
e Where

IR(f)=S,(f)H,(f) |
e |s output spectrum of the LPF system excited by LP signal
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Overview

I
e Signals and systems

e Stationary stochastic process
e Signal space
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Bandpass Stationary Stochastic Processes

I
e Suppose n(t) is a sample function of a wide sense

stationary (WSS) stochastic process with zero mean and
power spectral density &, (f)

o @ (f)is assumed zero outside an interval Af centered around = f,
e n(t) Is narrowband process If Af << f,
e n(t) may be represented by any of the following three forms
n(t) = a(t)cos(2 zft+6(1))

= X(t)cos 2 zf t— y(t)sin 2 zf t

= Re(z(t)e‘jz”fCt)

e \Where

z(t) = x(t) + Jy(t)
o(t) = tan™ ygt; and a(t) = /x2(t) + y2(t)
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Bandpass Stationary Stochastic Processes ...

I
e Since n(t) is zero-mean, x(t) and y(t) are also zero mean

e Furthermore, from the stationarity of n(t) follows

¢xx (T) — ¢yy (7)1 ¢xy (T) = _¢yx (T) and
¢nn (T) — ¢xx (T) COS 2721:02- - ¢yx (T) SIn 27chz-

e \Which is identical in form with the expression for n(t)
e The autocorrelation of the equivalent lowpass process

z(t) = x(t)+ jy(t) is
4.() =S B 02+ 0)}= 4, (0) + 14, ()

e \Which is the autocorrelation of the complex evelope
® FinaIIy, ‘ ¢nn (Z') — Re(¢zz (z_)ejzﬂ'fcl' )‘
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Bandpass Stationary Stochastic Processes ...

I
e Thus @, (7) of the bandpass stochastic process is
uniquely determined from the autocorrelation function
®_,(7) of the equivalent lowpass process z(t) and carrier
frequency f.

e Note that

o0

bn(F)= [[Relp, ()™ Jlo ™ dr

—00

1

=B (f = 1)+ 4, (- — )]

o Where @,,(f) is the power spectrum of the lowpass
process z(t)

e Since ®,,(7) = P,, (-7), it follows that @, (f) is real valued
function of frequency
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Bandpass Stationary Stochastic Processes ...

|
e ¢,(r)is an odd function of T and ¢,,(0) =0 and hence x(t)

and y(t) are uncorrelated for t =0

o If N(t) Is Gaussian x(t) and y(t) are jointly Gaussian and for
T = 0 are independent
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Representation of White Noise

¢ \White noise is wideband and cannot be represented in
terms of quadrature components

e If the noise is assumed to have passed through an ideal

bandpass filter, the output can be represented by
guadrature components

4

@, ()

1/2N,

A
A 4
A
A 4

White BP white
noise noise | |

\ 4

\ 4
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Representation of White Noise ...

I
e The equivalent lowpass noise z(t) has a power spectral

density: :
N, \f\sls
¢ ()= <
0 f|>=B
K 2
e And autocorrelation function is:
4, (r) =N, S'?ZB”BT which — N 8(z) as B —> oo
T

@, (r) =0forallzand ¢, () = () = 9,,(7)

e |.e the quadrature components x(t) and y(t) are
uncorrelated for all time shifts t and the autocorrelation of
z(1), x(t) and y(t) are all equal

Prran Pyt

Fut S
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Overview

I
e Signals and systems

e Stationary stochastic process
e Signal space
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Signal Space Concepts

I
¢ Analogous to space vectors, we represent a family of

signals such as |X ={x,(t), % (t),.......... xy_,j| Dy a signal
space over a given time interval

e A signal space is defined by its orthonormal basis

{fo(t)’ fL() e, fN_l}

e The inner product of two signals is defined as

(%0, %,0) = [ XX Od

e The norm of a signal is defined as

pecol = flecy® o
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Signal Space Concepts ...

A set of signhals are orthonormal iff they are orthogonal and

their norms are each unity

The set [{ fo ), f,(t)mrrrrrre fual

the signal X iff

IS an orthonormal basis of

VX;(t)eX,3a, e R x;(t)=

XRA0

Let s(t) be a deterministic, real valued signal with finite

energy

E. = Tsz(t)dt

And let the set [{f,0} 1=01 2.

+N-l} be an orthonormal

set of signals or waveforms
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Signal Space Concepts ...

I
e \We can approximate s(t) by

N N —1
S®)=>_s,f.(t), where
n=0

o0

s, = js(t) f (), nN=21,2,.......... N—1
e The set of waveforms [{f,(t)}, n=012......... N -1| is said to
be complete iff the error energy is zero, I.e.,
0 N 2 N-1
g, = j(s(t)—s(t)) dt=E, - > s’ =0
—» n=0
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' Signal Space Concepts ...

I
e Consider the signal x(t) given by

—0.5<t<0.5
X(t) =
0 elsewhere
e \We approximate x(t) by
K
X(t)= > x,cosnrt ~1<t<1
n=0
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Signal Space Concepts ...

1_ mme rmE tmm - - -
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Signal Space Concepts ...

I
e In general, assume that we have a set of waveforms

(signals)

from the original signal set

e This can be done either:

e Formally by using the Gram-Schmidt orthogonalization
procedure (READ Page 163 of the text); or

e In simple cases, by inspection
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Signal Space Concepts ...

e Example: Find an orthonormal basis for the following set
of waveforms and determine the coordinates of each
waveform in the signal space defined by the orthonormal

basis functions
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Signal Space Concepts ...

e By inspection the following orthonormal function can be
the basis for the representation of the three waveforms

f3

A

3

1.5

¥

shown above f 2
1 42
0 1 g 0

s,(t) = f,(6); s, (t) = f,(t) - f f, )+

S,(t) = f,(t) + —— f, (t) +

ﬁ ff(o

In vector form
11

S, =[100] S,= [1,—

If(t)

\E’\E} 53:[1’%’%}

LJ

A2
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