
Graduate Program

School of Electrical and Computer Engineering

Chapter 2: Coding for Discrete Sources

Sem. I, 2014

Coding for Discrete Sources

• We have seen that

• Entropy H(X) of a source represents the average amount of
information emitted by the source

• Coding is the processes of representing the source output by a
sequence of binary digits

• Knowledge of H(X) does not directly help us in the design

of a coding algorithm

• However, it provides a measure of efficiency of a source-
encoding method by comparing the average number of binary
digits per source letter to the entropy of the source

Digital Communications – Chapter 2: Source Coding 2

Sem. I, 2014

Coding for Discrete Sources …

• Encoding is simplified when the source is assumed to be
discrete memoryless source (DMS)

• I.e., symbols from the source are statistically independent and each
symbol is encoded separately

• Few sources closely fit this idealized model

• We will see:

1. Fixed-length vs. variable length encoding

2. Blocks of symbols vs. symbol-by-symbol encoding

• It will be shown that, it is always efficient to encode blocks

of symbols instead of each symbol separately

Digital Communications – Chapter 2: Source Coding 3

Sem. I, 2014

Coding for DMS

• A DMS produces an output letter or symbol every τs sec.

• Each letter is selected from an alphabet of symbols xi,

i=1,2,…..L, occurring with probabilities p(xi)

• Entropy of the DMS

• Where equality holds when the symbols are equally

probable

• The average number of source letters is H(X) and the
source rate is defined as

Digital Communications – Chapter 2: Source Coding 4

Llog)xp(log)p(xH(X) 2i

L

1i

2i ≤−= 
=

s

XH

τ

)(

Sem. I, 2014

Coding for DMS - Fixed-Length Codewords

• Consider an encoding scheme where a unique set of R

binary digits (codeword) is assigned to each symbol (letter)

• R defines the code rate in bits/symbol

• If there are L symbols, the number of binary digits per

source symbol required for unique encoding is given by

• Since H(X) ≤ log2 L, it follows that the code rate R

bits/symbol is greater than average entropy H(X)

• Thus H(X) is the lower bound of the rate R

Digital Communications – Chapter 2: Source Coding 5

   
X

XLLR

OR

LR

thanless

integerlargestthedenotesand2poweranotisWhen,1log

2ofpoweraisLWhen,log

2

2

+=

=

Sem. I, 2014

Coding for DMS - Fixed-Length Codewords …

• The efficiency of encoding is the ratio H(x)/R

• Note that

1. If L is a power of 2 and the source letters are equally probable
R = H(X) and the code is 100% efficient

2. However, if L is not a power of 2 but the source letters are still
equi-probable, R differs from H(X) by at most 1 bit per symbol

• When L is large, the efficiency can be high

• On the other hand, when L is small the encoding efficiency

of fixed-length code can be increased by encoding a
sequence of J letters at a time

Digital Communications – Chapter 2: Source Coding 6

Sem. I, 2014

Coding for DMS - Fixed-Length Codewords …

• Using a sequence of N binary digits, we can encode 2N

possible source symbols uniquely

• N must be selected such that:

• N ≥ J log2L or

• N = J log2L +1 depending on whether L is a power of 2 or not

• The average number of bits per source symbol is N/J = R

• Hence, the inefficiency is reduced by approximately a

factor of 1/J relative to the symbol-by-symbol encoding

• By making J sufficiently large the encoding efficiency

measured by JH(X)/N can be made as close to unity as

desired

Digital Communications – Chapter 2: Source Coding 7

Sem. I, 2014

Coding for DMS - Fixed-Length Codewords …

• Such encoding does not introduce any distortion since the

encoding of source symbols or blocks of symbols into

codewords is unique

• Such encoding is referred to as noiseless

• Suppose we reduce the code rate R by relaxing the

condition that the encoding process be unique

• This results in decoding failure

Digital Communications – Chapter 2: Source Coding 8

Sem. I, 2014

Source Coding Theorem I (Shannon, 1948)

• Let X be ensemble of letters from a DMS with entropy H(x)

• Consider blocks of symbols are encoded into codewords

of length N from a binary alphabets

• For ε > 0 the probability of error pe of a block decoding

failure can be made arbitrarily small if

• Conversely if

• Then pe becomes arbitrarily close to one as J is made

sufficiently large

Digital Communications – Chapter 2: Source Coding 9

largelysufficientisJandε+≥=)X(H
J

N
R

ε−≤)(XHR

Sem. I, 2014

Variable Length Codewords

• When source symbols are not equally probable, a more

efficient coding method is to use variable length

codewords

• Motivation for variable-length codes is the ability to
achieve data compression by representing more probable

symbols by shorter bit sequences (see Morse Code)

Digital Communications – Chapter 2: Source Coding 10

Sem. I, 2014

Variable Length Codewords …

• Variable-length source code C maps each source letter or
symbol to a binary sequence C(x) with codeword length l(x)

• Codewords are transmitted as a continuous sequence of

bits with no demarcation of codeword boundaries

• The decoder, once given the starting point, must determine

the codeword boundaries

• The system requires buffers at the input and output sides of

the synchronous channel and there are possibilities of

buffer overflow

Digital Communications – Chapter 2: Source Coding 11

Sem. I, 2014

Variable Length Codewords …

• Thus unique decodability requires

1. Initial synchronization and

2. The condition that for each x different from x’

• For any source symbols x1, x2, …..xn, the concatenation of

codewords C(x1) C(x2)……C(xn) differs from the

concatenation of the codewords C(x1’) C(x2’)…….C(xn’) for

any other string x1’, x2’…..xn’

• (Note that there are no commas in between the encoded bit
sequences!)

Digital Communications – Chapter 2: Source Coding 12

)'()(xCxC ≠

Sem. I, 2014

Variable Length Codewords …

• Consider the alphabet

X = {a,b,c} that may coded as

C(a) = 0, C(b) = 1, and

C(c) = 01

• This code is not uniquely

decodable since the string 01

may be decoded as (a,b) or

(c)

• Note that in the above code,

the code for (a) is a prefix of

the code for (c) and the code

is said to be NOT prefix free

• Now consider the variable-

length codes shown next for a

four-symbol source

Digital Communications – Chapter 2: Source Coding 13

letter

P(xk)

Code

I

Code
II

Code

III

a1 0.500 1 0 0

a2 0.250 00

10 01

a3 0.125 01 110

011

a4 0.125 10 111

111

Sem. I, 2014

Variable Length Codewords …

• Code I is a variable length code that has a basic defect

• Consider the sequence 001001

• This can be decoded as a2a4a3 or a2a1a2a1

• It is not uniquely decodable

• This might be decoded uniquely if we have more bits

which will involve delay and render the code not

instantaneously decodable

Digital Communications – Chapter 2: Source Coding 14

Sem. I, 2014

Variable Length Codewords …

• Code II is uniquely and instantaneously decodable

• 0 indicates end of a codeword for the first three

codewords and no code is longer than three bits

• Not also that it satisfies the prefix-free condition; that is for

a code Ck = (x1, x2, ….xk) there is no other codeword

Cl(x) = (x1,x2,…..Xl) for 1 ≤ l ≤ k-1

• Code III is neither uniquely decodable nor instantaneously

decodable

Digital Communications – Chapter 2: Source Coding 15

Sem. I, 2014

 a → 0 a → 0

 b → 11 b → 11

 c → 101 c → 10

• Prefix-free condition ensures that each codeword

corresponds to a leaf node, since any intermediate node

represent a prefix of any leaf stemming from it

• Note the first code tree is not full since the string 100 does

not represent a codeword

• This can be shortened without destroying the prefix-free

property as in the second tree diagram, which is full

 Digital Communications – Chapter 2: Source Coding 16

Sem. I, 2014

Variable Length Codewords …

• A prefix-free code can be decoded by simply reading a

string or a sequence from left to right and following the

corresponding path in the code tree until it reaches a leaf,

which represents a codeword by the prefix free property

• Proceed after stripping off the first codeword

• Consider decoding the string or sequence 1010011 using

the second code above: 10 → c;10 → c; 0 → a; 11 → b

• Thus the sequence is decoded into ccab and there cannot

be any other set of letters into which the sequence can be

decoded

• Further, note that the code can be decoded essentially

without delay

Digital Communications – Chapter 2: Source Coding 17

Sem. I, 2014

Variable Length Codewords …

• Devise a systematic procedure for constructing uniquely

decodable variable length codes that are efficient in the

sense that the average number of bits per source symbol

or letter, given as

• is minimized

• Note that nk is length of the codeword k

Digital Communications – Chapter 2: Source Coding 18

)(
1

k

L

k

k apn
=

−

=R

Sem. I, 2014

Kraft Inequality

• A necessary and sufficient condition for the existence of a

binary code with codewords having lengths n1 ≤ n2 ≤

n3…….≤ nL that satisfy the prefix (free) condition is

• Alternatively, every prefix-free code with codeword lengths

n1 ≤ n2 ≤ n3…….≤ nL satisfies the above inequality

• And conversely, if the above inequality is satisfied, then a

prefix-free code with code lengths nk exists

Digital Communications – Chapter 2: Source Coding 19

12
1

≤
=

−
L

k

n k

Sem. I, 2014

Kraft Inequality …

• In addition, every full prefix-free code satisfies the above

condition with equality whereas every non-full prefix-free

code satisfies it with strict inequality (see proof in the text)

• Note that the Kraft inequality tells us whether it is possible

to construct a prefix-free code for a given source alphabet

with a set of codeword length, nk

• Example: A full prefix-free code for an alphabet size 3 with

codeword lengths {1, 2, 2} exists, but there is no prefix-

free code with codeword lengths {1, 1, 2} since this does

not satisfy the Kraft inequality

Digital Communications – Chapter 2: Source Coding 20

Sem. I, 2014

Source Coding Theorem

• Let X be ensemble of letters from a DMS with entropy H(x)

• It is possible to construct a code that satisfies the prefix

condition and has an average length that satisfies the

inequalities

• For lower bound consider codewords of length nk, 1 ≤ k ≤ L

Digital Communications – Chapter 2: Source Coding 21

1)()(
_

+≤≤ XHRXH

0)12()log()1
2

()log()(

1ln usingand
2

log

1
log)(

22

_

2

_

≤−≤−≤−

−≤=

−=−







−

−

−

k

n

k k

n

k

k

n

k

k

k

kk

k k

k

k

k

k

e
p

peRXH

xx
p

p

pn
p

pRXH

Sem. I, 2014

Huffman Coding Algorithm

• The Huffman algorithm is a variable-length coding scheme

based on the source letter probabilities pk, k = 1, 2, ….., L

• The coding algorithm is optimum in the sense that the

average number of binary digits required to represent the

source letters is minimum

• This is subject to the constraint that they satisfy the prefix

condition and the sequence of codewords are uniquely

and instantaneously decodable

Digital Communications – Chapter 2: Source Coding 22

Sem. I, 2014

Huffman Coding Algorithm …

1. Order the symbols in decreasing order of probabilities

2. Add two lowest probabilities

3. Reorder probabilities

4. Break ties in any way you want

5. Assign 0 to top branch and 1 to bottom branch (or vice

versa)

6. Continue until we have only one probability equal to 1

Digital Communications – Chapter 2: Source Coding 23

Sem. I, 2014

Huffman Coding Algorithm …

• Example 1: Given a DMS with seven source letters

x1, x2, …..x7 with probabilities 0.35, 0.30, 0.20,

0.10,0.04,0.005, 0.005, respectively

• Order the symbols in decreasing order of probabilities

Digital Communications – Chapter 2: Source Coding 24

Sem. I, 2014

Huffman Coding Algorithm …

Digital Communications – Chapter 2: Source Coding 25

Letter Prob. I(x) Code

x1 0.35 1.5146 00

x2 0.30 1.7370 01

x3 0.20 2.3219 10

x4 0.10 3.3219 110

x5 0.04 4.6439 1110

x6 0.005 7.6439 11110

x7 0.005 7.6439 11111

H(X) = ∑p(xi)I(xi) = 2.11bits/sym R = ∑ p(xk) nk = 2.21bits/sym

%95%100
21.2

11.2)(
_

=×==

R

XH
ηEfficiency

Sem. I, 2014

Huffman Coding Algorithm …

• The above code is not

necessarily unique

• We can devise an alternative

code as shown in the following

for the same source as above

 X1_____0

 X2_____10

 X3_____110

 X4_____1110

 X5_____11110

 X6_____111110

 X7_____111111

• The average codeword length is

the same as above (show?)

 Digital Communications – Chapter 2: Source Coding 26

Sem. I, 2014

Huffman Coding Algorithm …

• Note that the assignment of 0 to the upper branch and 1 to

the lower branch is arbitrary and by reversing this we

obtain an equally efficient code that satisfies the prefix

condition

• The above procedure always results in a prefix free

variable length code that satisfy the bounds on the

average length codeword R

• However, as discussed earlier, an efficient procedure is to

encode J letters or symbols at a time

Digital Communications – Chapter 2: Source Coding 27

Sem. I, 2014

Huffman Coding Algorithm …

• As an illustration consider the following example

• Example: Let the output of a DMS consist of x1, x2 and x3

with probabilities 0.45, 0.35, 0.2, respectively

• Entropy of the source

• If these are encoded individually

• Using Huffman encoding procedure: x1--1, x2--00,and x3--01 with
an average codeword length of 1.55 and an efficiency of 97.7%

Digital Communications – Chapter 2: Source Coding 28

symbol/bits511
3

1

2 .)x(plog)x(p)X(H k

K

k =−= 
=

Sem. I, 2014

Huffman Coding Algorithm …

• If pairs of symbols are

encoded using the

Huffman algorithm, one

possible variable length

code can be as given next

• 2H(x) = 3.036; R2 = 3.0675

and the efficiency

η =(3.036/3.0675) 100%

 = 99%

Digital Communications – Chapter 2: Source Coding 29

Letter

pairs

Prob. I(X) Code

x1 x1 0.2025 2.312 10

x1 x2 0.1575 2.676 001

x2 x1 0.1575 2.676 010

x2 x2 0.1225 3.039 011

x1 x3 0.090 3.486 111

x3 x1 0.090 3.486 0000

x2 x3 0.07 3.850 0001

x3 x2 0.07 3.850 1100

x3 x3 0.04 4.660 1101

Sem. I, 2014

Huffman Coding Algorithm …

• Example: Consider a discrete memoryless source X which

has six symbols x1, x2, x3, x4, x5 and x6 with probabilities

0.45, 0.20, 0.12, 0.10, 0.09 and 0.04, respectively.

1. Construct the Huffman code for X.

2. Calculate the efficiency of the code.

Digital Communications – Chapter 2: Source Coding 30

Sem. I, 2014

Huffman Coding Algorithm …

• Example: A discrete memoryless source X has four

symbols x1, x2, x3 and x4 with probabilities 0.4, 0.25, 0.19

and 0.16, respectively.

1. Construct the Huffman code.

2. Calculate the efficiency of the code.

3. If pair of symbols are encoded using the Huffman algorithm, what
is the efficiency of the new code? Compare the result with the
one in part (2).

Digital Communications – Chapter 2: Source Coding 31

Sem. I, 2014

Lempel-Ziv Algorithm

• Huffman coding gives minimum average code length and

satisfy the prefix condition

• To design Huffman coding, we need to know the

probabilities of occurrence of all the source letter

• In practice, the statistic of a source output are often unknown

• Huffman coding methods in generally impractical for many sources

• Lempel-Ziv source coding algorithm is designed to be

independent of the source statistics

Digital Communications – Chapter 2: Source Coding 32

Sem. I, 2014

Lempel-Ziv Algorithm – Operation

1. The sequence at the output of the discrete source is
parsed into variable-length blocks, called phrases

2. A new phrase is introduced every time a block of letters

from the source differs from some previous phrase in the
last letter

• I.e., new phrase will be one of the minimum length that has
not appeared before

• Example 1: Consider the binary sequence

 10101101001001110101000011001110101100011011

• Parsing the sequence results in the following phrases

 1,0,10,11,01,00,100,111,010,1000,011,001,110,101,

 10001,1011

Digital Communications – Chapter 2: Source Coding 33

Sem. I, 2014

Lempel-Ziv Algorithm – Operation

3. The phrases are listed in a dictionary, which stores the
location of the existing phrases

• Dictionary locations are numbered consecutively beginning with 1

4. In encoding a new phrase

• Specify the location

 of the existing phrase

 in the dictionary &

• Append the new letter

• Location 0000 is used to

 encode a phrase that has

 not appeared previously

• In the previous example 1,0,10,

 11,01,00,100, 111,010,1000,

 011, 001,110, 101,10001, 1011

Digital Communications – Chapter 2: Source Coding 34

Sem. I, 2014

Lempel-Ziv Algorithm - Operation …

• Example 1: Consider the binary sequence

 10101101001001110101000011001110101100011011

• Parsing the sequence results in the following phrases

 1,0,10,11,01,00,100,111,010,1000,011,001,110,101, 10001,1011

Digital Communications – Chapter 2: Source Coding 35

Sem. I, 2014

Lempel-Ziv Algorithm - Operation …

5. Codewords are determined by listing the dictionary

location (in binary form) of the previous phrase that

matches the new phrase in all but the last location

6. The new output letter is appended to the dictionary

location of the previous phrase

7. The location 0000 is used to encode a phrase that has
not appeared previously

8. The source decoder constructs an identical copy of the
dictionary and decodes the received sequence in step

with the transmitted data sequence

Digital Communications – Chapter 2: Source Coding 36

Sem. I, 2014

Lempel-Ziv Algorithm - Operation …

• Example 1: Consider the

binary sequence
 101011010010011101
 010000110011101011
 00011011

• Parsing the sequence results

in the following phrases
 1,0,10,11,01,00,100,11
 1,010,1000,011,001,11
 0,101, 10001,1011

• Dictionary locations are

numbered consecutively

• Beginning with 1 and
counting up, in this case to
16, which is the number of
phrases in the sequence

 Digital Communications – Chapter 2: Source Coding 37

Sem. I, 2014

Lempel-Ziv Algorithm …

• Lempel-Ziv Algorithm does not work well for short string

• In the example, 44 source bits are encoded into 16 code words of
5 bits each, resulting in 80 coded bits

• Hence, the algorithm provided no data compression at all

• However, the inefficiency is due to the fact that the sequence we
have considered is very short

• No matter how large the table is, it will eventually overflow

• To solve the overflow problem, the source encoder and decoder
must use an identical procedure to remove phrases from the
dictionaries that are not useful and substitute new phrases in their
place

• Often used in practice compress and uncompress utility

• ZIP

• "compress" and "uncompress" utilities in UNIX@ OS

Digital Communications – Chapter 2: Source Coding 38

Sem. I, 2014

Lempel-Ziv Algorithm …

• Example 2: Consider the binary sequence:

 001101100011010101001001001101000001010010110010110

• Parsing the sequence as the following phrases:

0,01,1,011,00,0110,10,101,001,0010,01101,000,00101,001011,0010110

• Since we have 16 strings, we will need 4 bits

Digital Communications – Chapter 2: Source Coding 39

Sem. I, 2014

Lempel-Ziv Algorithm …

Digital Communications – Chapter 2: Source Coding 40

