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Coding for Discrete Sources  

• We have seen that 

• Entropy H(X) of a source represents the average amount of 
information emitted by the source 

• Coding is the processes of representing the source output by a 
sequence of binary digits 
 

• Knowledge of H(X) does not directly help us in the design 

of a coding algorithm 

• However, it provides a measure of efficiency of a source-
encoding method by comparing the average number of binary 
digits per source letter to the entropy of the source 
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Coding for Discrete Sources …  

• Encoding is simplified when the source is assumed to be 
discrete memoryless source (DMS) 

• I.e., symbols from the source are statistically independent and each 
symbol is encoded separately 

 

• Few sources closely fit this idealized model 

• We will see:  

1. Fixed-length vs. variable length encoding  

2. Blocks of symbols vs. symbol-by-symbol encoding  
 

• It will be shown that, it is always efficient to encode blocks 

of symbols instead of each symbol separately 
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Coding for DMS 

• A DMS produces an output letter or symbol every τs sec.  

• Each letter is selected from an alphabet of symbols xi, 

i=1,2,…..L, occurring with probabilities p(xi) 

• Entropy of the DMS  

 

 

• Where equality holds when the symbols are equally 

probable 

• The average number of source letters is H(X) and the 
source rate is defined as  
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Coding for DMS - Fixed-Length Codewords 

• Consider an encoding scheme where a unique set of R 

binary digits (codeword) is assigned to each symbol (letter) 

• R defines the code rate in bits/symbol 

• If there are L symbols, the number of binary digits per 

source symbol required for unique encoding is given by 

 

 

 

 
 

• Since H(X) ≤ log2 L, it follows that the code rate R 

bits/symbol is greater than average entropy H(X) 

• Thus H(X) is the lower bound of the rate R 
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Coding for DMS - Fixed-Length Codewords …  

• The efficiency of encoding is the ratio H(x)/R 

• Note that 

1. If L is a power of 2 and the source letters are equally probable    
R = H(X) and the code is 100% efficient 

2. However, if L is not a power of 2 but the source letters are still 
equi-probable, R differs from H(X) by at most 1 bit per symbol 

 

• When L is large, the efficiency can be high 
 

• On the other hand, when L is small the encoding efficiency 

of fixed-length code can be increased by encoding a 
sequence of J letters at a time 
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Coding for DMS - Fixed-Length Codewords …  

• Using a sequence of N binary digits, we can encode 2N 

possible source symbols uniquely 

• N must be selected such that: 

• N ≥ J log2L or  

• N = J log2L  +1 depending on whether L is a power of 2 or not 
 

• The average number of bits per source symbol is N/J = R 

• Hence, the inefficiency is reduced by approximately a 

factor of 1/J relative to the symbol-by-symbol encoding 
 

• By making J sufficiently large the encoding efficiency 

measured by JH(X)/N can be made as close to unity as 

desired 
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Coding for DMS - Fixed-Length Codewords …  

• Such encoding does not introduce any distortion since the 

encoding of source symbols or blocks of symbols into 

codewords is unique 

• Such encoding is referred to as noiseless 
 

• Suppose we reduce the code rate R by relaxing the 

condition that the encoding process be unique 

• This results in decoding failure  
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Source Coding Theorem I (Shannon, 1948) 

• Let X be ensemble of letters from a DMS with entropy H(x)  

• Consider blocks of symbols are encoded into codewords 

of length N from a binary alphabets 

• For ε > 0 the probability of error pe of a block decoding 

failure can be made arbitrarily small if   

 

 
 

• Conversely if 

 
 

• Then pe  becomes arbitrarily close to one as J  is made 

sufficiently large 
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Variable Length Codewords 

• When source symbols are not equally probable, a more 

efficient coding method is to use variable length 

codewords 

• Motivation for variable-length codes is the ability to 
achieve data compression by representing more probable 

symbols by shorter bit sequences (see Morse Code) 
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Variable Length Codewords … 

• Variable-length source code C maps each source letter or 
symbol to a binary sequence C(x) with codeword length l(x) 
 

• Codewords are transmitted as a continuous sequence of 

bits with no demarcation of codeword boundaries 
 

• The decoder, once given the starting point, must determine  

the codeword boundaries 
 

• The system requires buffers at the input and output sides of 

the synchronous channel and there  are possibilities of 

buffer overflow 
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Variable Length Codewords … 

• Thus unique decodability requires 

1. Initial synchronization and  
 

2. The condition that                       for each x different from x’ 
 

• For any source symbols x1, x2, …..xn, the concatenation of 

codewords C(x1) C(x2)……C(xn) differs from the 

concatenation of the codewords C(x1’) C(x2’)…….C(xn’) for 

any other string x1’, x2’…..xn’ 

• (Note that there are no commas in between the encoded bit 
sequences!) 
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Variable Length Codewords … 

• Consider the alphabet           

X = {a,b,c} that may coded as 

C(a) = 0, C(b) = 1, and      

C(c) = 01 

• This code is not uniquely  

decodable since the string 01 

may be decoded as (a,b) or 

(c) 

• Note that in the above code, 

the code for (a) is a prefix of 

the code for (c) and the code 

is said to be NOT prefix free 

• Now consider the variable-

length codes shown next for a 

four-symbol source 
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letter 

 

P(xk) 

 

Code 

I 

Code 
II 

Code 

III 

a1 0.500 1 0 0 

a2 0.250 00 

 

10 01 

 

a3 0.125 01 110 

 

011 

 

a4 0.125 10 111 

 

111 
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Variable Length Codewords …  

• Code I is a variable length code that has a basic defect 
 

• Consider the sequence 001001 

• This can be decoded as a2a4a3 or a2a1a2a1 

• It is not  uniquely decodable 
 

• This might be decoded uniquely if we have more bits 

which will involve delay and render the code not 

instantaneously decodable 
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Variable Length Codewords …  

• Code II is uniquely and instantaneously decodable 

• 0 indicates end of a codeword for the first three 

codewords and no code is longer than three bits 
 

• Not also that it satisfies the prefix-free condition; that is for 

a code Ck = (x1, x2, ….xk) there is no other codeword  

Cl(x) = (x1,x2,…..Xl) for 1 ≤ l ≤ k-1 
 

• Code III is neither uniquely decodable nor instantaneously 

decodable 
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 a → 0          a → 0 

 b → 11                     b → 11 

 c → 101       c → 10 

• Prefix-free condition ensures that each codeword 

corresponds to a leaf node, since any intermediate node 

represent a prefix of any leaf stemming from it 

• Note the first code tree is not full since the string 100 does 

not represent a codeword 

• This can be shortened without destroying the prefix-free 

property as in the second tree diagram, which is full 
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Variable Length Codewords …  

• A prefix-free code can be decoded by simply reading a 

string or a sequence from left to right and following the 

corresponding path in the code tree until it reaches a leaf, 

which represents a codeword by the prefix free property 

• Proceed after stripping off the first codeword 
 

• Consider decoding the string or sequence 1010011 using 

the second code above: 10 → c;10 → c; 0 → a; 11 → b 

• Thus the sequence  is decoded into ccab and there cannot 

be any other set of letters into which the sequence can be 

decoded 

• Further, note that the code can be decoded essentially 

without delay 
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Variable Length Codewords …  

• Devise a systematic procedure for constructing uniquely 

decodable variable length codes that are efficient in the 

sense that the average number of bits per source symbol 

or letter, given as  

 

 
 

• is minimized 

• Note that nk is length of the codeword k 
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Kraft Inequality 

• A necessary and sufficient condition for the existence of  a 

binary code with codewords having lengths n1 ≤ n2 ≤ 

n3…….≤ nL that satisfy the prefix (free) condition is 

 

 
 

• Alternatively, every prefix-free code with codeword lengths 

n1 ≤ n2 ≤ n3…….≤ nL satisfies the above inequality 
 

• And conversely, if the above inequality is satisfied, then a 

prefix-free code with code lengths nk exists 
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Kraft Inequality …  

• In addition, every full prefix-free code satisfies the above 

condition with equality whereas every non-full prefix-free 

code satisfies it with strict inequality (see proof in the text) 
 

• Note that the Kraft inequality tells us whether it is possible 

to construct a prefix-free code for a given source alphabet 

with a set of codeword length, nk 
 

• Example: A full prefix-free code for an alphabet size 3 with 

codeword lengths {1, 2, 2} exists, but there is no prefix-

free code with codeword lengths {1, 1, 2} since this does 

not satisfy the Kraft inequality 
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Source Coding Theorem 

• Let X be ensemble of letters from a DMS with entropy H(x)  

• It is possible to construct a code that satisfies the prefix  

condition and has an average length that satisfies the 

inequalities 

 

 

• For lower bound consider codewords of length nk, 1 ≤ k ≤ L 
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Huffman Coding Algorithm 

• The Huffman algorithm is a variable-length coding scheme 

based on the source letter probabilities pk, k = 1, 2, ….., L 
 

• The coding algorithm is optimum in the sense that the 

average number of binary digits required to represent the 

source letters is minimum 
 

• This is subject to the constraint that they satisfy the prefix 

condition and the sequence of codewords are uniquely 

and instantaneously decodable 
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Huffman Coding Algorithm …  

1. Order the symbols in decreasing order of probabilities 

2. Add two lowest probabilities 

3. Reorder probabilities 

4. Break ties in any way you want    

5. Assign 0 to top branch and 1 to bottom branch (or vice 

versa) 

6. Continue until we have only one probability equal to 1 
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Huffman Coding Algorithm …  

• Example 1: Given a DMS with seven source letters         

x1, x2, …..x7 with probabilities 0.35, 0.30, 0.20, 

0.10,0.04,0.005, 0.005, respectively 

• Order the symbols in decreasing order of probabilities    
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Huffman Coding Algorithm …  
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Letter Prob. I(x) Code 

x1 0.35 1.5146 00 

x2 0.30 1.7370 01 

x3 0.20 2.3219 10 

x4 0.10 3.3219 110 

x5 0.04 4.6439 1110 

x6 0.005 7.6439 11110 

x7 0.005 7.6439 11111 

H(X) = ∑p(xi)I(xi) = 2.11bits/sym    R = ∑ p(xk) nk = 2.21bits/sym 

%95%100
21.2

11.2)(
_

=×==

R

XH
ηEfficiency  
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Huffman Coding Algorithm …  

• The above code is not 

necessarily unique 

•  We can devise an alternative 

code as shown in the following 

for the same source as above 

 X1_____0 

 X2_____10 

 X3_____110 

 X4_____1110 

 X5_____11110 

 X6_____111110 

 X7_____111111 

• The average codeword length is 

the same as above (show?) 
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Huffman Coding Algorithm …  

• Note that the assignment of 0 to the upper branch and 1 to 

the lower branch is arbitrary and by reversing this we 

obtain an equally efficient code that satisfies the prefix 

condition  

• The above procedure always results in a prefix free 

variable length code that satisfy the bounds on the 

average length codeword R 

• However, as discussed earlier, an efficient procedure is to 

encode J letters or symbols at a time 
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Huffman Coding Algorithm …  

• As an illustration consider the following example  
 

• Example: Let the output of a DMS consist of x1, x2 and x3 

with probabilities 0.45, 0.35, 0.2, respectively 

• Entropy of the source 

 

 

• If these are encoded individually 

• Using Huffman encoding procedure: x1--1, x2--00,and x3--01 with 
an average codeword length of 1.55 and an efficiency of 97.7% 
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Huffman Coding Algorithm …  

• If pairs of symbols are 

encoded using the 

Huffman algorithm, one 

possible variable length 

code can be as given next 
 

• 2H(x) = 3.036; R2 = 3.0675 

and the efficiency              

η =(3.036/3.0675) 100%  

       = 99% 
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Letter 

pairs 

Prob. I(X) Code 

x1 x1 0.2025 2.312 10 

x1 x2 0.1575 2.676 001 

x2 x1 0.1575 2.676 010 

x2 x2 0.1225 3.039 011 

x1 x3 0.090 3.486 111 

x3 x1 0.090 3.486 0000 

x2 x3 0.07 3.850 0001 

x3 x2 0.07 3.850 1100 

x3 x3 0.04 4.660 1101 
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Huffman Coding Algorithm …  

• Example: Consider a discrete memoryless source X which 

has six symbols x1, x2, x3, x4, x5 and x6 with probabilities 

0.45, 0.20, 0.12, 0.10, 0.09 and 0.04, respectively.  

1. Construct the Huffman code for X. 

2. Calculate the efficiency of the code.  
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Huffman Coding Algorithm …  

• Example: A discrete memoryless source X has four 

symbols x1, x2, x3 and x4 with probabilities 0.4, 0.25, 0.19 

and 0.16, respectively.  

1. Construct the Huffman code. 

2. Calculate the efficiency of the code.      

3. If pair of symbols are encoded using the Huffman algorithm, what 
is the efficiency of the new code? Compare the result with the 
one in part (2).  

Digital Communications – Chapter 2: Source Coding   31 



 

Sem. I, 2014 

Lempel-Ziv Algorithm 

• Huffman coding gives minimum average code length and 

satisfy the prefix condition 
 

• To design Huffman coding, we need to know the 

probabilities of occurrence of all the source letter 

• In practice, the statistic of a source output are often unknown 

• Huffman coding methods in generally impractical for many sources 
 

• Lempel-Ziv source coding algorithm is designed to be 

independent of the source statistics 
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Lempel-Ziv Algorithm – Operation  

1. The sequence at the output of the discrete source is 
parsed into variable-length blocks, called phrases 

2. A new phrase is introduced every time a block of letters 

from the source differs from some previous phrase in the 
last letter 

• I.e., new phrase will be one of the minimum length that has 
not appeared before  

• Example 1: Consider the binary sequence  

          10101101001001110101000011001110101100011011  

• Parsing the sequence results in the following phrases  

          1,0,10,11,01,00,100,111,010,1000,011,001,110,101,   

 10001,1011  
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Lempel-Ziv Algorithm – Operation  

3. The phrases are listed in a dictionary, which stores the 
location of the existing phrases 

• Dictionary locations are numbered consecutively beginning with 1 

4. In encoding a new phrase 

• Specify the location  

      of the existing phrase  

       in the dictionary & 

• Append the new letter 

• Location 0000 is used to 

      encode a phrase that has 

      not appeared previously 

• In the previous example 1,0,10, 

       11,01,00,100, 111,010,1000, 

       011, 001,110, 101,10001, 1011  
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Lempel-Ziv Algorithm - Operation …  

• Example 1: Consider the binary sequence  

 

          10101101001001110101000011001110101100011011  

 

• Parsing the sequence results in the following phrases  

           

      1,0,10,11,01,00,100,111,010,1000,011,001,110,101, 10001,1011  
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Lempel-Ziv Algorithm - Operation …  

5. Codewords are determined by listing the dictionary 

location (in binary form) of the previous phrase that 

matches the new phrase in all but the last location 

6. The new output letter is appended to the dictionary 

location of the previous phrase 

7. The location 0000 is used to encode a phrase that has 
not appeared previously 

8. The source decoder constructs an identical copy of the 
dictionary and decodes the received sequence in step 

with the transmitted data sequence 
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Lempel-Ziv Algorithm - Operation …  

• Example 1: Consider the 

binary sequence 
 101011010010011101
 010000110011101011
 00011011  

• Parsing the sequence results 

in the following phrases 
 1,0,10,11,01,00,100,11
 1,010,1000,011,001,11
 0,101, 10001,1011  

• Dictionary locations are 

numbered consecutively 

• Beginning with 1 and 
counting up, in this case to 
16, which is the number of 
phrases in the sequence 
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Lempel-Ziv Algorithm …  

• Lempel-Ziv Algorithm does not work well for short string  

• In the example, 44 source bits  are encoded into 16 code words of 
5 bits each, resulting in 80 coded bits 

• Hence, the algorithm provided no data compression at all 

• However, the inefficiency is due to the fact that the sequence we 
have considered is very short 

• No matter how large the table is, it will eventually overflow 

• To solve the overflow problem, the source encoder and decoder 
must use an identical procedure to remove phrases from the 
dictionaries that are not useful and substitute new phrases in their 
place 

• Often used in practice compress and uncompress utility 

• ZIP 

• "compress" and "uncompress" utilities in UNIX@ OS 
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Lempel-Ziv Algorithm …  

• Example 2: Consider the binary sequence: 
 

 001101100011010101001001001101000001010010110010110 
 

• Parsing the sequence as the following phrases: 
 

0,01,1,011,00,0110,10,101,001,0010,01101,000,00101,001011,0010110 
 

• Since we have 16 strings, we will need 4 bits 
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Lempel-Ziv Algorithm …  
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