Chapter 8: Communication Through Fading Multipath Channels (Revision)

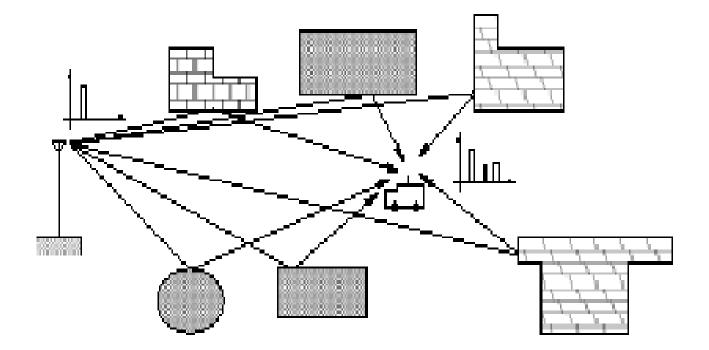
Graduate Program Department of Electrical and Computer Engineering

Communication Through Fading Multipath Channels

- Earlier we studied design and performance of digital communication systems for transmission over
 - Either an AWGN channel
 - Or a linear filter channel with AWGN
- Now consider signal design, receiver structure and performance for channels having *randomly time variant impulse responses*
- Such channels arise in transmissions over many radio communication channels such as the following
 - Shortwave ionospheric radio communication (3 30 MHz)
 - VHF ionospheric forward scatter (30 300MHz)
 - Tropsopheric scatter in the 300 3000MHz frequency band (UHF) and the 3000 30,000MHz band (SHF)

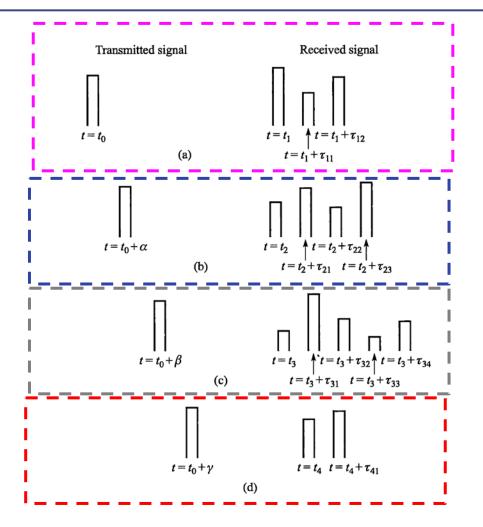
Communication Through Fading Multipath ...

• The time-variant impulse responses of these channels are due to the constantly changing physical characteristics of the medium in which the signal propagates



A Multipath Fading Environment

Characterization of Fading Multipath



- Observations
 - Time spreading
 - Time variation

E.g., response of a time-variant multipath channel to a very narrow pulse

Characterization of Fading Multipath Channels

- Time Spread: A short pulse transmitted over a time-varying multiple channel is received as a *train of pulses* of varying magnitude
- The time variations appear to be *unpredictable* to the user of the channel
- Reasonable to characterize the time variant multipath channel *statistically*
- Consider the transmission of the signal *s*(*t*) over the radio channel

$$s(t) = \operatorname{Re}\{s_l(t)e^{j2\pi f_c t}\}\$$

Characterization of Fading Multipath Channels ...

• The received signal can be written as

$$r(t) = \sum_{i} \alpha_{i}(t) s[t - \tau_{i}(t)] + n(t)$$
$$= Re\left\{ \left(\sum_{i} \alpha_{i}(t) e^{-j2\pi f_{c}\tau_{i}(t)} s_{l}[t - \tau_{i}(t)] \right) e^{j2\pi f_{c}t} \right\} + n(t)$$

• The equivalent lowpass of the received signal can be expressed as

$$r_l(t) = \sum_i \alpha_i(t) e^{-j\theta_i(t)} s_l [t - \tau_i(t)] + z(t)$$

- $\alpha_i(t)$ is the weight coefficient of path *i*
- $\tau_i(t)$ is the time delay of path *i*
- z(t) is lowpass equivalent complex additive channel noise

Characterization of Fading Multipath Channels ...

• The received signal can also be written as

$$r_l(t) = \int_{-\infty}^{\infty} h(\tau; t) s_l(t-\tau) d\tau + z(t)$$

• $h(\tau; t)$ is the channel impulse response

$$h(\tau; \mathbf{t}) = \sum_{i=-\infty}^{\infty} \alpha_i(t) e^{-j\theta_i(t)} \delta(\tau - \tau_i(t))$$

• The channel transfer function can be written as

$$H(f;t) = \int_{-\infty}^{\infty} h(\tau;t) e^{-j2\pi f\tau} d\tau$$
$$= \sum_{-\infty}^{\infty} \alpha_i(t) e^{-j\theta_i(t)} e^{-j2\pi f\tau_i(t)}$$

7

Characterization of Fading Multipath Channels ...

- The signal transmitted over such a communication channel will experience
 - A time dependent amplitude distortion
 - A time dependent envelope delay distortion
- The *time-varying* channel is often referred to as *doubly spread* channel
 - The time variation of the channel spreads the signal in frequency
 - The frequency variation of the channel spreads the signal in time
- We will explore these characteristics further in what follows through characterizing the communication channel using correlation properties of the of the fading channel

Correlation Properties of Fading Multipath Channel

- The channel impulse response is modeled as *wide-sense stationary* process with uncorrelated scattering
- The autocorrelation function of the process H(f;t) is

$$\begin{split} \phi_H(f, f + \Delta f; t, t + \Delta t) &= E \Big\{ H^*(f, t) H(f + \Delta f; t + \Delta t) \\ &= \phi_H(\Delta f; \Delta t) \end{split}$$

- The function $\phi_{H}(\Delta f; \Delta t)$ is called the *spaced-frequency*, *spaced-time* correlation function of the channel
- With $\Delta t = 0$, we obtain the *frequency correlation* function of the channel

$$\phi_{H}(\Delta f) \equiv \phi_{H}(\Delta f;0)$$

• With $\Delta f = 0$, we obtain the *time correlation* function

$$\phi_{H}(\Delta t) \equiv \phi_{H}(0;\Delta t)$$

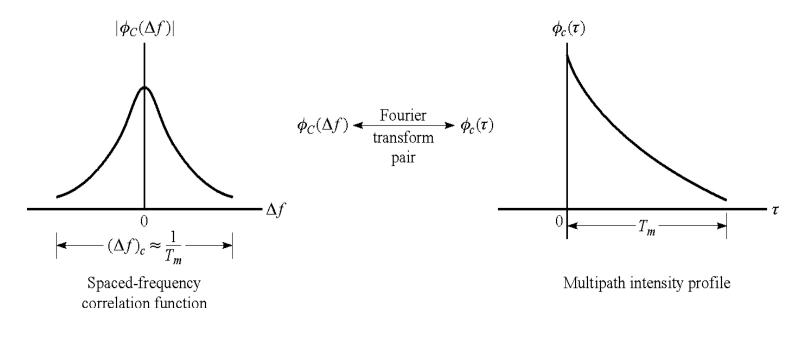
Frequency Correlation of Fading Multipath Channels

• The *intensity profile* of the channel is defined as the inverse transform of $\phi_{\rm H}(\Delta f)$

$$\phi_h(\tau) = F^{-1} \left\{ \phi_H(\Delta f) \right\} = \int_{-\infty}^{\infty} \phi_H(\Delta f) e^{j2\pi\Delta f\tau} d\Delta f$$

- The width of the region where $\phi_h(\tau)$ is non-zero is called the *maximum delay spread* of the channel, denoted by T_m
- The width of the region where $\phi_H(\Delta f)$ is non-zero is called the *coherence bandwidth* of the channel, denoted by B_m $(B_m \approx 1/T_m)$
- Two signals separated in frequency by more than B_m are affected differently by the channel

Frequency Correlation of Fading Multipath ...



 $(\Delta f)_{\rm c} = B_{\rm m}$

Relationship between $\phi_c(\Delta f)$ and $\phi_c(\tau)$

Sem. I, 2012/13 Digital Comm. – Ch. 8: Communication Through Bandlimited Channels 11

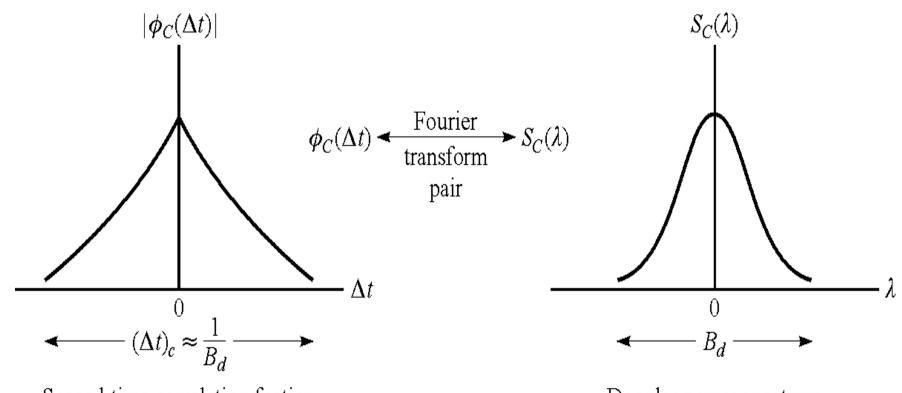
Time Correlation of Fading Multipath Channel

• The Doppler power spectrum of the channel is defined as

$$S_{H}(\psi) = \int_{-\infty}^{\infty} \phi_{H}(\Delta t) e^{j2\pi\psi\Delta t} d\Delta t$$

- The width of the region where $S_H(\psi)$ is non-zero is called the *maximum Doppler spread* of channel, denoted by B_d
- The width of the region where $S_H(\Delta t)$ is non-zero is called the *coherence time* of the channel, denoted by T_d with $T_d \approx 1/B_d$
- Two signals separated in time by more than T_d are affected differently by the channel

Time Correlation of Fading Multipath Channel ...



Spaced-time correlation fnction

Doppler power spectrum

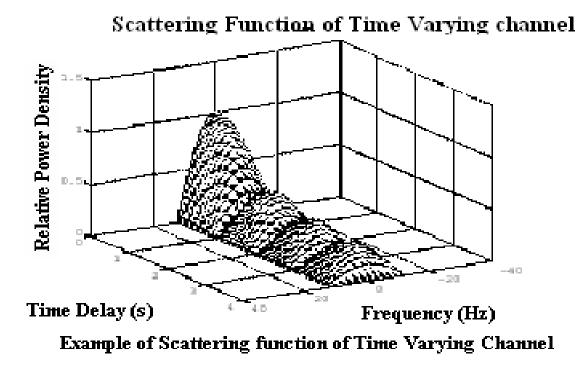
 $(\Delta t)_{\rm c} = T_{\rm d}$

Relationship between $\phi_c(\Delta t)$ and $S_c(\lambda)$

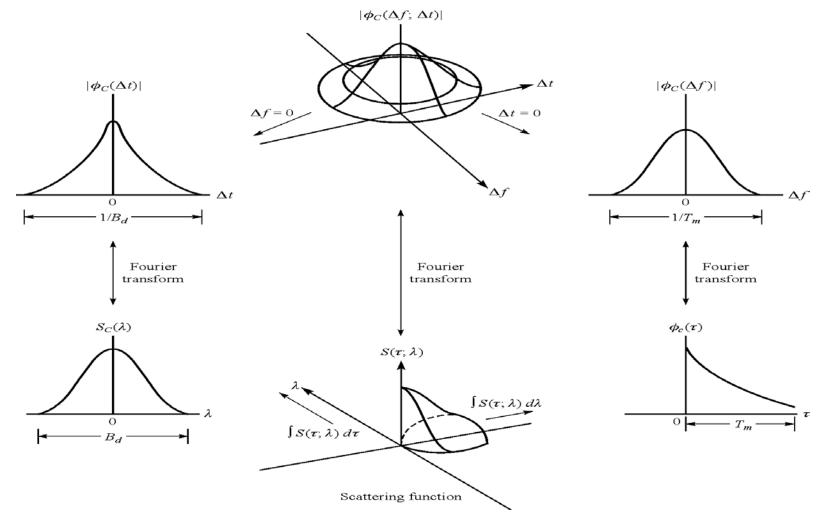
The Scattering Function of the Channel

• The scattering function of the Channel is defined as

$$S_{h}(\tau,\psi)\int_{-\infty-\infty}^{\infty}\int_{-\infty-\infty}^{\infty}\phi_{H}(\Delta f,\Delta t)e^{j2\pi\psi\Delta t}e^{j2\pi\tau\Delta f}d\Delta td\Delta f$$



The Scattering Function of the Channel ...



Relationships among the channel correlation functions and power spectra

Frequency-Nonselective (Flat) Fading Channels

• The baseband equivalent of the received signal is given by

$$r_l(t) = \sum_{i} \alpha_i(t) e^{-j\theta_i(t)} s_l[t - \tau_i(t)] + z(t)$$

• When $W_s << B_m$, the signal $r_l(t)$ can be written as

$$r_{l}(t) = \left(\sum_{i} \alpha_{i}(t) e^{-j\theta_{i}(t)}\right) s_{l}(t - \tau_{0}) + z(t) = H(0; t) s_{l}(t - \tau_{0}) + z(t)$$

 For a medium with a lot of scatterers, the central limit theorem applies such the H(0;t) is a complex Gaussian process

$$H(0,t) = x_{\alpha}(t) + jy_{\alpha}(t) = \alpha(t)e^{-j\theta_{i}(t)}$$

and $x_{\alpha}(t)$ and $y_{\alpha}(t)$ are uncorrelated Gaussian processes

Frequency-Nonselective (Flat) Fading Channels ...

• The received signal then becomes

$$r_l(t) = \alpha(t)e^{-j\theta(t)}s_l(t-\tau_0) + z(t)$$

- The channel causes amplitude attenuation \rightarrow flat fading
- The channel does not cause any delay \rightarrow No ISI

Rayleigh Fading Channel

• For channels with only a diffused multipath signal, the multiplicative distortion

$$\alpha(t) e^{-j\theta(t)} = x_{\alpha}(t) + jy_{\alpha}(t)$$

- Is a zero-mean complex Gaussian process
- $x_{\alpha}(t)$ and $y_{\alpha}(t)$ are uncorrelated zero-mean Gaussian process
- The amplitude $\alpha(t)$ is *Rayleigh distributed* with pdf

$$p(\alpha) = \frac{\alpha}{\sigma^2} e^{-\alpha^2/2\sigma^2}$$
 $\alpha \ge 0$ with $2\sigma^2 = \sum_i \overline{|\alpha_i(t)|}^2$

• The phase $\theta(t)$ is *uniformly distributed* over the interval (0,2 π)

Rayleigh Fading Channel ...

• The channel is said to be *slowly varying* over the interval T iff $T << T_d$

$$\alpha(t) e^{-j\theta(t)} = \alpha e^{-j\theta} \quad 0 \le t \le T$$

• α and θ are now random variables

Rician Fading Channel

- In addition to the diffused fading multipath process, a dominant line-of-sight signal may also arrive at the receiver
- The received signal will thus be

$$r_l(t) = \alpha_i(t)e^{-j\theta(t)}s_l(t-\tau_0) + z(t)$$
$$= [\alpha_0 + x_\alpha(t) + jy_\alpha(t)]s_l(t-\tau_0) + z(t)$$

- α_0 is constant and is the line-of-sight component
- x(t) and y(t) are zero-mean Gaussian processes
- The fading amplitude $\alpha(t)$ is Rician distributed with pdf

$$p(\alpha) = \frac{\alpha}{\sigma^2} e^{-\frac{\alpha^2 + \alpha_0}{2\sigma^2}} I_0\left(\frac{\alpha\alpha_0}{\sigma^2}\right) \quad \alpha \ge 0$$

Rician Fading Channel ...

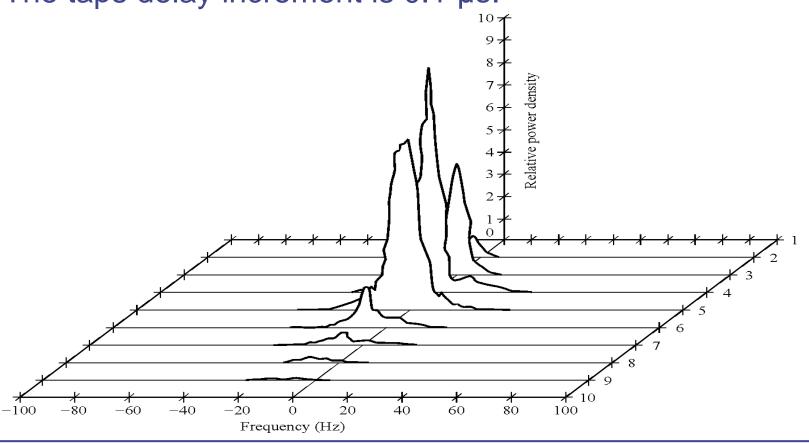
• The strength of the line-of-sight component is defined by the Ricean factor *K*

$$K = \frac{\alpha_0^2}{2\sigma^2}$$

- K = +∞ corresponds to the case of ideal channel (perfect line of sight)
- K = 0 corresponds to the case of Rayleigh fading channel

Rician Fading Channel ...

- Scattering function of a medium-range tropsopheric scatter channel
- The taps delay increment is 0.1 µs.



Sem. I, 2012/13 Digital Comm. – Ch. 8: Communication Through Bandlimited Channels 22

Mobile radio Channel – Doppler Frequency Shift

• When the mobile moves the delay of each path will vary with time

$$\tau_{i}(t) = \tau_{i}(t_{0}) \pm \frac{v}{c} \cos \varphi_{i} t \implies \theta_{i}(t) = \theta_{i}(t_{0}) \pm 2\pi (f_{m} \cos \varphi_{i}) t$$

- φ_i is the angle of arrival of the path *i*
- f_m is the maximum Doppler frequency shift given as $f_m = \frac{v}{c} f_0$
- The channel impulse response becomes

$$h(\tau;t) = \sum_{i=\infty}^{\infty} \alpha_i(t) e^{-j[2\pi f_i t + \theta_i(\tau_0)]} \delta[\tau - \tau_i(t)]$$

• $f_i = \pm f_m \cos \varphi_i$ is the Doppler frequency shift of path *i*

Mobile radio Channel – Doppler Frequency Shift ...

• The received signal corresponding to the signal s(t) will be

$$r(t) = \operatorname{Re}\left\{\sum_{i=\infty}^{\infty} \alpha_i(t) e^{-j\theta_i(t)} s_l \left[t - \tau_i(t)\right] e^{j2\pi(f_0 + f_i)}\right\} + n(t)$$

- Each path *i* shifts the signal carrier frequency by f_i
- The time correlation of the multiplicative distortion for the signal *s*(*t*) can be shown to be

 $\phi_H(\Delta t) = E \{ H^*(f;t) H(f,t+\Delta t) \} = 2\sigma^2 J_0 (2\pi f_D \Delta t)$

- Where $J_0()$ is the zero order Bessel function of the first kind
- The Doppler spectrum is then given by

$$S(\psi) = \mathcal{F} \{ \phi_H(\Delta t) \} = \begin{cases} \frac{k}{\sqrt{1 - (\psi/f_D)^2}}, & |\psi| < f_D \\ 0, & |\psi| > f_D \end{cases}$$

Frequency Selective Fading Channels

• Consider a digital signal with equivalent lowpass

$$s_l(t) = \sum_{n=-\infty}^{+\infty} I_n g_t(t - nT_s)$$

in a multipath environment with coherent bandwidth B_m

• The received sample can be expressed as

$$\begin{aligned} r_k &= r_l(t) * g_r(t) \mid_{t=kT_s} = \sum_{n=-\infty}^{+\infty} I_n \left[\sum_{i=-\infty}^{+\infty} \alpha_i(kT_s) e^{-\theta_i(kT_s)} g\left[(k-n)T_s - \tau_i \right] \right] + z_k \\ &= \sum_{n=-\infty}^{+\infty} c_{k-n}(kT_s) I_n + z_k \approx \sum_{n=0}^{L-1} c_n(kT_s) I_{k-n} + z_k \end{aligned}$$

 $g(t) = g_t(t) * g_r(t)$

Frequency Selective Fading Channels ...

• The received signal sample can then be written as (Truncated)

$$r_k = \sum_{n=0}^{L-1} c_n(t) I_{k-n} + z_k = c_0(t) I_k + \sum_{n=1}^{L-1} c_n(t) I_{k-n} + z_k$$

• The *c*(*t*)'s are uncorrelated complex Gaussian processes

Frequency Selective Fading Channels ...

• The channel can now be modeled as a tapped delay-line (See section 14.5.1 in text for details)

