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Overview

I
e Signal parameter estimation

e Likelihood function
e Carrier recovery & symbol synchronization

e Carrier phase estimation
e Symbol timing estimation
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Signhal Parameter Estimation

I
e Propagation delay from the transmitter is generally

unknown at the receiver

e How to synchronously sample the output of the
demodulator?

e Symbol timing must be derived or extracted from the received
signal

e Moreover, frequency offset must be estimated at the receiver
for phase-coherent detection, which results from
e Propagation delay
e Frequency drift at the local oscillator

e \What are methods for carrier and symbol synchronization?
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Signal Parameter Estimation ...

I
e Assume the channel delays the transmitted signal and also

adds noise to it
e Thus the received signal will be

() =s(t-9+n@®| where |s(t)=Rels(H)e'* ")

e Where 1 Is propagation delay and s|(t) is the equivalent low pass
signal

e \We can also express r(t) as

r(t) = Re KSI (t— T)ej¢+ Z(t)JejznfCt

o Where ¢=-27f_ris the phase shift due to delay t
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Signal Parameter Estimation ...

I
o Note that ¢ is a function of f, and t

e |.e., we need to estimate both f, and t to know ¢

e The carrier signal generated at the receiver may in general
not be in synchronous with the transmitter
e Over time the two oscillators may be drifting slowly in opposite
directions
e Furthermore, the precision with which one may
synchronize in time depends on signal interval T

e Estimation error in T must be a small fraction of T
e Usually 1% of T
e But this level of precision may not be adequate Iin the

estimation of ¢ since f_is generally large and small
estimation error results in significant phase error
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Signal Parameter Estimation ...

I
e \We have to estimate both ¢ and t to demodulate and detect

the signal
e EXxpress the received signal as

r(t) = s(t; ¢, 1) + n(t)
e And denote the parameter vector {¢,t} by y such that
s(t; ¢ ) = s(t; v)

e Two criteria widely used in signal parameter estimation

1. Maximum Likelihood (ML) criterion: v is treated as deterministic
but unknown

2. Maximum a posteriori probability (MAP) criterion: v is modeled as
random & characterized by a priori probability density function

P(y)
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Signal Parameter Estimation ...

I
e Orthonormal expansion of r(t): Using N orthogonal

functions {f,(t)} we may represent r(t) by vector of
coefficients r={ry, r,, I5,..... ™
e In ML, the estimate of vy is the value that maximizes p(r | W)

e In MAP the value of y that maximizes the a posteriori probability
density function is sought

p(rly )p(y)
p(r)

¢ In the absence of any prior knowledge of the properties of
v, we can assume p(vy) is uniform over a range of values
of the parameter

e In such a case, the value of y that maximizes p(r | v) also
maximizes p(y | r), i.e., MAP and ML are identical

p(w/r) =
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Likelihood Function

I
e In what follows, we view the parameters ¢ and t unknown

but deterministic
e Hence, adopt the ML criterion in estimating them

e Also the observation interval T, =2 T, also called one-shot
observation, is used as a basis for continuously updating
the estimate (tracking)

e Since the additive noise n(t) is WG with zero mean

o) o ST

e \Where

— Ir(t) f (Ddt and s ()= js(t; w) f_(0)dt

To To

Prran Pyt

Fut S

R = Ny
"’" T g o
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Likelihood Function ...

N

lim 12 Z[rn_sn(t;'ﬂ)]z - Nl

N —oo 20-

j [r(t) — s(t; )] *dt

n=1 0T,

( Show this?)

e The maximization of p(r | y) with respect to the signal
parameter y Is equivalent to the maximization of the
likelihood function

( 3

- L 1) s v ot

0T,

Ay )=exp -

.

J
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Carrier Recovery & Symbol Synchronization

e Consider the binary PSK (or binary PAM) signal

demodulator and detector block diagram shown below

Received signal

Carrier
recovery

g(1) cos Qaft+ @)

Sampler

Signal
pulse
generator

Symbol
synchronizer

|

A

Detector

Output
data

\/Carrier phase )

estimate for
reference signal
generation for

correlator

/

———

L

Controls the sampler
and the digital pulse

generator
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Carrier and Symbol Synchronization ...

Carrier phase estimate is used in generating the phase

reference signal g(t) cos(24f .t + @) for the correlator

Symbol synchronizer controls the sampler and the output
of the signal pulse generator

If g(t) Is rectangular the signal generator can be omitted

The block diagram of an M-ary PSK demodulator is shown
In the next slide

Two correlators (or matched filters) are used to correlate
the received signal with the two quadrature carrier signals

Phase detector is used (compares the received signal
phases with the possible transmitted signal phases)
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Carrier and Symbol Synchronization ...

Ig( )dt »  Sampler X
A
cos 27f.t + )
| Symbol T M
synchronizer
Y
Signal Y Output
Ref:eived ,| Carmer pulse Phase data >
signal recovery generator detector
\ ]
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Carrier and Symbol Synchronization ...

I
e The same arrangement can be used for M-ary PAM by

Introducing an automatic gain control at the front end and
making the detector an “amplitude detector”

’——\

“ ~
. S
. Automatic \
Receivgd ) -
signall gan | > [,Odt F—>{ Sampler
contro /
' ~ ’ d A -
S~ = g(1) cos (2nfot + ) /// l S
y ;| Amplitude \\
Carrier g(® Signal ( detector l
recovery pulse . ¢ ,
generator . p
\ \Output _ /
synchronizer

Block diagram of an M-ary PAM receiver
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Carrier and Symbol Synchronization ...

e The block diagram of a QAM demodulator is shown below

Ig( )dt »|  Sampler X
A
cos (27fit + )
5| Symbol M M
synchronizer
\i
v
. . Compute
Received »| AGC | Carner ?)151221 Euclidean | Output
signal recovery generator distance decision
4 metrics
90°
phase
shift
—sin 27/t + @)
Y
> j()T( )dt »  Sampler Y

Block diagram of a QAM receiver
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Effect of Additive noise on phase estimate
e Decision-directed loops
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Carrier Phase Estimation

e Two methods for carrier phase estimation are:

1. Use of pilot signal that allows the receiver to extract the
carrier frequency and phase of the received signal

e Pilot signal is unmodulated carrier component that is tracked by a
Phase Locked Loop (PLL) which is designed to be narrowband

2. Derive the carrier phase estimate directly from the
modulated signal

e Total transmitter power is used to transmit the information bearing
signal only

e This is widely used in practice and in our analysis we assume the
signal is transmitted via suppressed carrier
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Carrier Phase Estimation ...

I
e As an illustration of the effect of phase error, consider the

demodulation of DSB/SC AM signal
s(t) = A(t)cos(2zf t+ @)

e Demodulate the signal using a carrier reference signal

c(t) = cos(2zf.t+4) suchthat

c(t) s(t) = % A(t)cos( b — ¢ )+ % A(t)cos(4 zf-t+ ¢+ p)

e The double frequency term is removed by the low pass filter
(integrator) such that the output is

y(t) = % A(t)cos(¢— @)
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Carrier Phase Estimation ...
|

e Note that the effect of the error (¢—;) IS to reduce the

amplitude by the factor cos( ¢—%) and power by the square
of this factor

e Note 10°error — 0.13dB and 30° — 1.25 dB

e The effect of phase error is much more severe in QAM and
multiphase PSK which are usually represented by

s(t) = A(t)cos(2nf t+ ¢ )— B(t)sIn(2zf t+ ¢)

e This is demodulated using two quadrature carriers

cc(t)zcos(27zfct+&3)

c.(t)=—sin(24f.t + &)
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Carrier Phase Estimation ...

I
o Multiplying s(t) by c(t) followed by low-pass filtering yields
the phase component

y.(t)%A(t)cos(qb—%)%B(t)sin(qﬁ—&)

e And multiplying s(t) by c.(t) and low pass filtering yields the
quadrature component

yQ<t)=§B(t)cos(¢—$>)+§A(t)sin<¢—¢3)

e Results: -
e Power reduction by a factor of cos® (¢ — @)

e Cross-talk interference from the in-phase and quadrature
components causing a higher degradation in performance
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Maximum Likelihood Carrier Phase Estimation

I
e Assume the delay t is constant

e The likelihood function will be a function of ¢ and not of vy

Ag)=exp | - [(()-s(t 4)F |t
N

0T,

=Cexp [—Nijrz(t)dHNi 'r(t)S(t,¢)dt—Nij52(t'¢)]

0T, 0T, 0T,

e 1stterm is independent of ¢ and 3" term is a constant and
equal to the energy over the observation time T,

0T,

e Hence, |A(¢)=Cexp [Ni J- r(t) S(’[,¢)dt]
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Maximum Likelihood Carrier Phase Estimation ...

I
e C is a constant independent of ¢

e Equivalently, we can seek the value of ¢ that maximizes
log A(¢) such that

INA(4) =4 (¢)——jr(t)s(t¢)dt+|nc

O Ty

e The ML estimate ¢ML Is the value of ¢ that maximizes A, (¢)

A (¢)_—jr(t)s(t¢)dt+|n

O Ty

= j r(t)s(t,¢ ) dt

O To
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Maximum Likelihood Carrier Phase Estimation ...

I
e Example: Consider the transmission of unmodulated signal

Acos2zf t. The received signal is r(t)= Acos(2xf t+¢)+n(t)
e Then, the log likelihood function will be

AL(¢):%jr(t)cos(27z f 14 g)clt

0T,

e Differentiating A, (¢) and equating to zero we can find the
value of ¢ that maximizes the likelihood function

MJ(;) = J'r(t)sin(anCt+gAbML )dt =0; vyields
TO
( [r(t)sin2zf.tdt )
5. ——tan Y T
P r(t)cos 2 zf_ t dt
o )
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Carrier and Symbol Synchronization ...

e Observe %ML = —tan{jr(t)sin 2 f .tdt /_[r(t)cosZEfCt dt}

To

X
_’@_> ITO( ) dt
cos 2mf.t
Y
r R
r(t) Oscillator ¢ = tan ()zf)
Y
1 A
27
—sin 2.t
Ip. O at ¥

A (one-shot) ML estimate of the phase of an unmodulated carrier
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Maximum Likelihood Carrier Phase Estimation ...

o Note that: |[r(®sin@aft+g,, )dt=0

To

Implies the use of a

loop to extract the estimate as illustrated below

e The loop filter is an integrator whose bandwidth is
proportional to the reciprocal of the integration interval T

r(?)

X >

J7. O at

VCO [«

sin (27f.t + Garr )

A PLL for obtaining the ML estimate of the phase of an unmodulated carrier
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Phase-locked Loop

I
e Phase-locked loop (PLL) consists of a multiplier, a loop filter,

and a voltage-controlled oscillator (VCO)

e Assume that the input to the, PLL is a cos(2rf.t+¢) and the
output of the VCO sin(2zf t+¢)

e(t) = cos(2 2/ t+ ¢ ) Sin(2af t+ 9)

e Then 1 1 X
=Esin(¢—¢)+§sin(4nfct+¢+¢)

I

IPPUt | | Loop |
signal | filter l
. l

I I
Output! !
signal ™ VeO =
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Phase-locked Loop ...

I
e The loop filter is a low-pass filter with transfer function

G(s)= 1+ 17,8
1+17,S

e 1, and 1, are design parameters (t, >> 1, ) that control the
bandwidth of the loop

e Qutput of the loop filter gives control voltage v(t) for VCO

e The VCO is basically a sinusoidal signal generator with an
Instantaneous phase given by

2f 1+ ¢A(t )=2xf t+k j_toov(r)dr

e Where K is a gain constant in rad/V
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Phase-locked Loop ...

e Neglecting the double-frequency term, the PLL may be

Implemented as shown below

e Itis a non-linear system unless|sin(j—¢)~ g—¢

e The linearized PLL is characterized by the closed-loop
transfer function (see pages 342-343 of the text)

H(s)= 1+ 17,8 :
1+(7,+1/K)s+(z,/K)S

e Where K is the gain parameter - ~ _

—>(¢ +) G0k, Lsin (6 ¢)—>

\5——_’

¢

Loop
filter G(s)

v(t)

[

VCO .




Phase-locked Loop ...

I
e Frequency response of the closed-loop transfer function

+8 1
o ;ﬁ)s\
+4 — £ 5=03
. 3 0.7|07\// \\
) AN ~N. I
3 4 \\\ \\\;=|20 h
= NANANEANG
= g \\\\\ §=1.0 \\
Y, NENR AN
> \\ 0707
05\ N
_14 N, N
£ =03\ \\ N
-16 NCTN
18 \\ N
20 N
0.1 02 03 0405 06 10 2 3 4 5 7 10

wlw,
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‘ Effect of Additive Noise on Phase Estimate

I
e Assume narrowband noise at the input of the PLL and that

the PLL is tracking a sinusoidal signal of the form
S(t) = A.cos(2 zf .t+ (1))
e That is corrupted by additive narrowband noise
n(t) = x(t)cos 2 zf .t— y(t)sin 2 zf t

e \Where x(t) and y(t) are assumed to be statistically
Independent, stationary and Gaussian with power spectral
density Ny/2 W/Hz

e Using trigonometric identities n(t) can be expressed as

n(t) = n (t)cos(2 zf t+ ¢(t)) — n,(t) Sin(2 zf t+ ¢(1))
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Effect of Additive Noise on Phase Estimate

|
e \Where

N (t) = x(t)cos ¢(t) + y(t) sin ¢(1)
N, (t) = — x(t) sin ¢(t) + y(t) cos ¢(t)
e Note that

n.(t)+ jny(t) = (x(t)+ jY(t))e 4O

e Such that n (t) and n(t) have the same statistical
properties as x(t) and y(t)
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‘ Effect of Additive Noise on Phase Estimate ...

I
o If s(t)+n(t) is multiplied by the output of VCO and the

double frequency terms are ignored, the input to the loop
filter Is a noise corrupted signal

e(t) = A.sind ¢ +n_(t) sind ¢ —n (t)cosAa ¢
= A.sind ¢ + n,(t)
e Where A¢g=¢ —% IS the phase error

n(?)

() — Ag ()

A, sin Ag(2) —>éf~>—> G(s)

slle

Equivalent PLL model with additive noise VCO



Effect of Additive Noise on Phase Estimate ...

e If the power of the incoming signal P.= %2 A2 is larger than
the noise power, the PLL may be linearized by making

sind ¢g(t) = A4 ¢(t)

ny(2)
00 Sy 20O ], ”
o (1)
K |«
S
VCO

Linearized PLL model with additive noise
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Decision-directed Loops ...

e How to maximize A(¢) or A (@) when the signal s(t; ¢)
carries the information sequence {l.}?

e Carrier recovery when the signal is modulated uses
decision-directed loops

e In such cases, one can use one of two approaches
1. Assume {l_} is known or
2. Treat{l } as a random sequence and average it over its statistics

e |n decision-directed parameter estimation, we assume the
Information sequence {l .} over the observation interval has
been estimated

e In the absence of demodulation error I, = I
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Decision-directed Loops ...

I
e In this case s(t; ¢) is completely known except for the

carrier phase

e Consider decision-directed phase estimate for linear
modulation technique for which the received equivalent low

pass may be expressed as

) =e?> 1, gt—nT)+z(t) = s, () e’ + z(t)

e Where s|(t) is a known signal if the sequence {l.} is
assumed known
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Decision-directed Loops ...

I
e The likelihood and log-likelihood functions for the equivalent

low pass signal are

A(P) = Cexp{Re[l\tf[r,(t) s (t)e'?dt ﬂ

1 * ;
AL(¢) = Rel:[l\lof[rl(t)SI (t)dt ]e ﬂ

e Substituting for s,(t) and observation interval of T,=KT

(n +1)T

A (P)= Re(e”‘ Z | jr,(t)g*(t— nT)dt

= Re e”’iml*
2 s
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Decision-directed Loops ...

Where |y, =

(n+1}T

[rye t-nmat| is the output of a matched

nT

filter in the

nth interval

Then, AL(¢):Re[ ZI yn]cos¢—lm[ ZI ynjsm¢

onO onO

Differentiating A, (¢) with respect to ¢ and equating to zero,
we obtain the phase estimate as

b, =—tan" {ImCZ;I:ynJ/ReCZ;llﬁynﬂ

This is called decision-directed (or decision feedback) carrier
phase estimate

L% <0 sem. 1, 2012/13
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Decision-directed Loops ...

! A
e Here E{¢,,.} = ¢ and the estimate is unbiased

e Block diagram of DSB PAM signal receiver with decision-
directed carrier phase estimation

/ —~ N , -, A \\
Received T Cy . . i
: X > Io ()dt [——» Sampler ) Amplitude " >
signal bR e detector ~F
—— A
Time S . [ Phase
Syhe *\ estimator
\
\
I
Signal ) .
1 N
pulse re—0 e ( A7
generator _- - . .;g)ML /l
. Carrier
cos 2af,t+ ¢yy) generator
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Decision-directed Loops ...

I
e For a DSB PAM signal of A(t)cos(2xf t+¢), where A(t)=A.g(t)

and g(t) is assumed rectangular pulse of duration T
e Carrier recovery with a decision-feedback PLL is shown

below
T Output
Io ()dt > Sampler F—— Decision .
/‘ cos (2fit + @) T
90° Time
Receivdd phase shift SY1C.
signAl A A
sin (2mf,t + ¢)
t
Voo  je—d] LooP g e X
filter
Quadrature
carriers 4,6 De%ay
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Decision-directed Loops ...

Output of the first multiplier and input to the integrator is
given by

r(t)cos2f.t+d) = p. () = %[A(t) n,(®)]cosdg

—%ns(t)sinA¢+double frequency terms

p<(t) Is used to recover information carried by A(t)=A,g(t)

Detector makes decision on received symbols every T sec.

e In the absence of error it reconstructs A(t) free of any noise
Reconstructed signal multiplied by 2"d quadrature carrier

e(t) = % A A®)+n,(t)]sind ¢ —n,(t)cosd ¢} + Double frequency terms

Then: 1 1
=5 A*(t)sind ¢ + > A@®)[n, (t)sind g —n (t)cosd 4]+ ...
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Decision-directed Loops ...

I
e The desired component

» Sampler

\

A?(t)sin Ag, which
contains the phase

A
error, drives the loop 4{?

filter %0°

phase shift

[5()at

e Carrier recovery system |
for M-ary PSK using el |
decision feedback PLL
(DFPLL) is shown in the
next figure !

v 6 = tan~!(y/x) T

y Phase |_ X

Y

estimator
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Decision-directed Loops ...

I
e For the case of M-ary PSK using DFPLL, the received

signal is demodulated to yield the phase estimate

. 2T
M

e \Which, in the absence of decision error, is phase of the
transmitted signal 6,

e The two outputs of quadrature multipliers are delayed by
symbol duration T & multiplied by cosé,, and sing,, to yield

(m—1) m=12,...M

r(t) cos(2f.t+ 4 ) sing, = %[Acosé’m +n,(t)]sing_cos( ¢ — $)

—%[Asin0m+ n,(t)]sing_sin(¢— ;3 )+ double freg. terms
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Decision-directed Loops ...
I

r(t)sin(2 zf,t+ $) cosf, = % [Acos6_+n_(t)]cosb, sin(¢— $)

- % [Asing_+n.(t)]cosé, cos(¢ - %3 )+ double freq. terms

e The error signal is the sum of these two which reduces to

e(t)= ——Asm(¢ ¢)+ n(t)sm(¢ ¢—0)

+%ns(t)cos(¢—¢—0m) + Double frequency terms

e The error signal drives the loop filter that provides the control
signal to the VCO

e Note that the two quadrature noise components are additive
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Decision-directed Loops ...

I
e There are no product of the noise terms and thus no

additional power loss associated with decision-feedback PLL

e The ML estimate of ¢ given by the earlier equation is also
appropriate for QAM
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e Signal parameter estimation

e Carrier phase estimation

e Symbol timing estimation
e ML timing estimation
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Symbol Timing Estimation

Modulator output must be sampled periodically at the
symbol rate, i.e., at precise sampling time instants
t,=ml+r

e Where T is the symbol interval and t is the nominal delay
Periodic sampling requires clock signal at the receiver

Extraction of clock signal called symbol synchronization or
timing recovery
e |s critical for a synchronous digital communication system

The receiver must know
e The frequency 1/ T and
e Where to take the samples within each symbol interval

The choice of sampling instant within the symbol interval of
duration T is called the timing phase
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Symbol Timing Estimation ...

I
e Symbol synchronization can be accomplished in one of the

following ways

1. Tx and Rx clocks are synchronized to a master clock
which provides precise timing signal (VLF < 30 KHz)

2. Tx transmits the clock frequency (1/T) or (n/T) along with
the information symbol

e Rx employs narrowband filter to extract the clock signal for
sampling (simple but power inefficient)

3. Clock signal is extracted from the received data symbol (our
focus is on this)

e Will cover a decision-directed method next
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Symbol Timing Estimation - ML Timing Estimation

I
e Consider the problem of estimating the time delay t for a

baseband PAM waveform
r(t; ) = s(t; ) + n(t)

s(t;z) = Z | g(t—nT—1)

¢ Assume the information symbols from the output of the de-
modulator are known transmitted sequences

e Then the log-likelihood function has the form

e Where

A(7)=C_ [ r()s(t; pdt

=C, > 1, [r)g(t-nT—»dt=C, > 1,y,(7)

n TO
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Symbol Timing Estimation - ML Timing Estimation ...

I
e Where y, (1) is defined as

Yo(7)= [ r(®) g(t-nT—7)dt

N\

e A necessary and sufficient condition for z to be the ML
estimate of t is that

dA(T) =31, —jr(t)g(t nT-17) dt

:Zlnd_z_[yn(f)]zo

e The above result suggests the implementation of the
tracking loop shown in next slide
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Symbol Timing Estimation - ML Timing Estimation ...

The summation in the loop serves as the loop filter whose
bandwidth is controlled by the length of the sliding window
In the summation

Output of the loop filter drives the voltage controlled clock
(VCC) or VCO which in turn controls the sampling times for

the input to the loop ;

n

Sampler | Dn(®)

0 Matched i
—» filter +— =() oglle

g (-1)

THT—I_%N[L

Ve >

b

Decision-directed ML estimation of timing for baseband PAM
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Symbol Timing Estimation - ML Timing Estimation ...

I
e Note that since the information sequence {l_} is assumed

known and used in the estimation of t, the estimate Is

decision-directed
e This method can be extended to signal formats such as

QAM and PSK by using the equivalent low pass form of
these signals
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