Chapter 3: Characterization of Communication Signals and Systems

Graduate Program Department of Electrical and Computer Engineering

Spectral Characteristics of Digitally Modulated Signals

- Generally, the available channel bandwidth is *limited*
- In the selection of the modulation methods, we
 - Need to determine the spectral content of digitally modulated signals
 - Helps to take the effect of the BW constraint into account
- A digitally modulated signal is a stochastic process since the information sequences are random
- Need to determined power spectral density (PSD) of these processes
- From PSD one can find the channel bandwidth required to transmit the information-bearing signals

2

• Considering linearly modulated band-pass signal given by

$$s(t) = Re\left[v(t) e^{j 2\pi f_c t}\right]$$

- Where v(t) is the equivalent low-pass signal
- Autocorrelation function of s(t) is

$$\phi_{\rm ss}(\tau) = Re\left[\phi_{\rm vv}(\tau)e^{j2\pi f_{\rm c}\tau}\right]$$

• And its Fourier transform yields the desired expression for the power density spectrum $\Phi_{ss}(f)$ as

$$\Phi_{ss}(f) = \frac{1}{2} \left[\Phi_{vv}(f - f_c) + \Phi_{vv}(-f - f_c) \right]$$

• Where $\Phi_{vv}(f)$ is the power density spectrum of v(t)

- To obtain the spectral characteristics of the bandpass signal s(t), it suffices to determine the autocorrelation function and power spectral density of the equivalent lowpass signal v(t)
- Consider a *linear digital modulation* method for which v(t) is represented in the general form

$$v(t) = \sum_{n=-\infty}^{n=\infty} I_n g(t - nT)$$

- Where:
 - {I_n} represents the sequence of symbols resulting from mapping kbit blocks into corresponding points
 - 1/T = R/k symbols/s is the transmission rate

4

• The autocorrelation function of v(t) is

$$\phi_{vv}(t+\tau,t) = \frac{1}{2} E \Big[v^*(t) v(t+\tau) \Big]$$

= $\frac{1}{2} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} E \Big[I_n^* I_m \Big] g^*(t-nT) g(t+\tau-mT)$

- Assuming the sequence of information symbols $\{I_n\}$ is wide-sense stationary with mean μ_i and autocorrelation function

$$\phi_{ii}(m) = \frac{1}{2} E \Big[I_n^* I_{n+m} \Big]$$

• Then the autocorrelation of v(t) will be

$$\phi_{vv}(t+\tau,t) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \phi_{ii}(m-n)g^*(t-nT)g(t+\tau-mT)$$
$$= \sum_{m=-\infty}^{\infty} \phi_{ii}(m)\sum_{n=-\infty}^{\infty} g^*(t-nT)g(t+\tau-nT-mT)$$

- The 2nd summation is periodic with T
- Thus the autocorrelation function is also periodic, i.e.,

$$\phi_{vv}(t+\tau+T,t+T) = \phi_{vv}(t+\tau;t);$$

• Further the mean of v(t)

$$E[v(t)] = \mu_i \sum g(t - nT)$$
 is also periodic with period T

- v(t) is a stochastic process having a periodic mean and autocorrelation function
 - Called a cyclostationary or a periodically stationary process
- To compute the power spectral density of $\phi_{vv}(t+\tau,t)$, we must eliminate the dependence on the t variable by averaging over a single period

$$\begin{split} \bar{\phi}_{vv}(\tau) &= \frac{1}{T} \int_{-T/2}^{T/2} \phi_{vv}(t+\tau;t) dt \\ &= \sum_{m=-\infty}^{\infty} \phi_{ii}(m) \sum_{n=-\infty}^{\infty} \frac{1}{T} \int_{-T/2}^{T/2} g^*(t-nT) g(t+\tau-nT-mT) dt \\ &= \sum_{m=-\infty}^{\infty} \phi_{ii}(m) \sum_{n=-\infty}^{\infty} \frac{1}{T} \int_{-T/2-nT}^{T/2+nT} g^*(t-nT) g(t+\tau-mT) dt \end{split}$$

 In the above expression, the integral can be interpreted as the time autocorrelation of the function g(t)

$$\phi_{gg}(\tau) = \int_{-\infty}^{\infty} g^*(t) g(t + \tau) dt$$

So that

$$\bar{\phi}_{vv}(\tau) = \frac{1}{T} \sum_{m=-\infty}^{\infty} \phi_{ii}(m) \phi_{gg}(\tau - mT)$$

 The average power spectral density of v(t) is the Fourier transform of the average of its autocorrelation which may be expressed as

$$\Phi_{vv}(f) = \frac{1}{T} \left| G(f) \right|^2 \Phi_{ii}(f)$$

• Where G(f) is the Fourier transform of g(t) and

$$\Phi_{ii}(f) = \sum_{m=-\infty}^{\infty} \phi_{ii}(m) e^{-j 2\pi f m T}$$

 Note that the power spectral density depends on the spectral characteristic of the pulse g(t) and the information sequence {I_n}

- Or, the spectral characteristics of v(t) can be controlled by the choice of g(t) and the correlation characteristics of the information sequence
- Note also that Φ_{ii}(f) is related to the autocorrelation φ_{ii}(m) in the form of an *exponential Fourier series* with φ_{ii}(m) as the Fourier coefficient such that

$$\phi_{ii}(m) = T \int_{-1/2T}^{1/2T} \Phi_{ii}(f) e^{j2\pi fmT} df$$

• Consider the information symbols in the sequence are real and mutually uncorrelated such that

$$\phi_{ii}(m) = \begin{cases} \sigma_i^2 + \mu_i^2 & (m = 0) \\ \mu_i^2 & (m \neq 0) \end{cases}$$

9

• Where σ_i^2 is the variance of the information sequence; then

$$\Phi_{ii}(f) = \sigma_i^2 + \mu_i^2 \sum_{m=-\infty}^{\infty} e^{-j 2\pi fmT}$$

- Which is periodic with period 1/T
- The above can be viewed as the exponential Fourier series of a periodic train of impulses each with an area of 1/T; i.e,

$$\Phi_{ii}(f) = \sigma_i^2 + \frac{\mu_i^2}{T} \sum_{m=-\infty}^{\infty} \delta(f - \frac{m}{T})$$

• And substituting this in the expression for $\Phi_{\nu\nu}(f)$

$$\Phi_{vv}(f) = \frac{\sigma_i^2}{T} \left| G(f) \right|^2 + \frac{\mu_i^2}{T} \sum \left| G\left(\frac{m}{T}\right) \right|^2 \delta\left(f - \frac{m}{T}\right)$$

- The first term is a continuous spectrum and its shape depends on the spectral characteristics of signal pulse *g(t)*
- The second expression contains discrete frequency components spaced 1/T apart in frequency
 - Each spectral line has power proportional to |G(f)|² evaluated at f=m/T
- If the information sequences have zero mean the discrete frequency components will vanish, i.e., μ_i =0
- This property is most desirable for digital modulation and can be achieved when the information sequences are *equally likely* & *symmetrically positioned* in a complex plane

• Example 1: Consider g(t) to be a rectangular pulse as shown in the figure below with Fourier transform |G(f)|

• Rectangular pulse and its energy density spectrum

$$G(f) = AT \frac{\sin \pi fT}{\pi fT} \quad \text{and} \quad \left| G(f) \right|^2 = (AT)^2 \left(\frac{\sin \pi fT}{\pi fT} \right)^2$$

- It contains zeros at multiples of 1/T in frequency and it also decays inversely as the square of the frequency variable
- As a result, all but one of the discrete spectral components in Φ_{νν}(f) vanishes
- Thus, upon substitution for |G(f) from above, we get

$$\Phi_{vv}(f) = \sigma_i^2 A^2 T \left(\frac{\sin \pi fT}{\pi fT}\right)^2 + A^2 \mu_i^2 \delta(f)$$

Example 2: Consider the case where g(t) is a raised cosine pulse

Raised cosine pulse and its energy density spectrum

• Its Fourier transform is given as

$$G(f) = \frac{AT}{2} \frac{\sin \pi fT}{\pi fT(1-f^2T^2)} e^{-j\pi\pi f}$$

- Note the spectrum has zeros at f = n/T; $n = \pm 2, \pm 3, \pm 4...$
- Hence, all the spectral components, except those at zero and $f = \pm 1/T$ vanish
- Compared to that of the rectangular pulse, the spectrum has a broader main lobe but the tails decay inversely as *f*⁶

- Spectrum can also be shaped by operations performed on the input information sequence
- Example 3: Consider a binary sequence {b_n} from which we form the symbol

$$I_n = b_n + b_{n-1}$$

- Where the {*b_n*} are assumed to be uncorrelated random variables, each having zero mean and unit variance
- The autocorrelation of the sequence $\{I_n\}$ is

$$\phi_{ii}(m) = E(I_n I_{n-m})$$

$$= \begin{cases} 2 & (m=0) \\ 1 & (m=\pm 1) \\ 0 & (Otherwise) \end{cases}$$

• The power spectral density of the input sequence is

$$\Phi_{ii}(f) = 2(1 + \cos 2\pi fT) = 4\cos^2\pi fT$$

• Then, the corresponding power spectral density of the (lowpass equivalent) modulated signal becomes

$$\Phi_{vv}(f) = \frac{4}{T} |G(f)|^2 \cos^2 \pi fT$$

