
Chapter 3

Partial Differential Equations

A differential equation which involves partial derivatives is called a partial
differential equation (PDE). For example,

x
∂z

∂x
+ y

∂z

∂y
= z (3.1)

∂2z

∂x2
+
∂2z

∂y2
= 0 (3.2)(

∂2u

∂x∂y

)4

=

(
∂u

∂z

)3

(3.3)

are partial differential equations.

The order of a partial differential equation is the order of the highest partial
derivative in the equation. The degree of a partial differential equation is
the degree of the highest partial derivatives occurring in the equation. Thus,
(3.1) is of first order, (3.2) and (3.3) are of second order. (3.1) and (3.2) are
of degree one while (3.3) is of degree four.

Partial differential equations can be formed either by the elimination of arbi-
trary constants or by the elimination of arbitrary functions. If the number of
arbitrary constants to be eliminated is equal to the number of independent
variables, the partial differential equations that arise are of the first order. If
the number of arbitrary constants to be eliminated is more than the number
of variables, the partial differential equations obtained are of second order or
higher order. If the partial differential equation is obtained by elimination
of arbitrary functions, the order of the partial differential equation is, in
general, equal to the number of arbitrary functions eliminated.

Example 3.1 Form partial differential equations from the following equations
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3.1. LINEAR PDES OF THE FIRST ORDER

Class Notes on ECEG-6201

Analytical & Comp. Methods

1. z = ax+ by + ab

2.
x2

a2
+
y2

b2
+
z2

c2
= 1

3. z = y2 + 2f( 1
x + ln y)

Exercise 3.1 Form partial differential equations from the following equations (p ≡
∂z
∂x , q ≡

∂z
∂y )

1. z = ax+ by + a2 + b2

2. z = xy + y
√
x2 − a2 + b

3. z = f(x2 − y2)

4. z = f(x+ ay) + g(x− ay)

5. φ
( z
x3
,
y

x

)
= 0

Answer :
(1) z = px+ qy + p2 + q2, (2) px+ qy = pq, (3) py + qx = 0, (4) ∂2z

∂y2 = a2 ∂
2z
∂x2 , (5)

px+ qy = 3z

Exercise 3.2 Find the differential equation of all spheres whose centers lie on the
z -axis. (ans. py − qx = 0) J

Equations which contain only one partial derivative can be solved by direct
integration.

Example 3.2 Solve ∂2z
∂x∂y = sinx sin y, given that zy = −2 sin y when x = 0 and

z = 0 when y is odd multiple of 1
2π.

Exercise 3.3 Solve

1. ln

(
∂2z

∂x∂y

)
= x+ y

2.
∂3z

∂x2∂y
= cos(2x+ 2y)

Answers: (1) z = ex+y + g(y) + φ(x), (2) z = f(x) + g(y)− 1
12 sin(2x+ 3y). J

3.1 Linear PDEs of the First Order

A linear partial differential equation of the first order, involving a dependent
variable z and two independent variables x, y is of the form

Pp+Qq = R (3.4)
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3.2. SECOND-ORDER EQUATIONS

Class Notes on ECEG-6201

Analytical & Comp. Methods

where p = ∂z
∂x , q = ∂z

∂y and P,Q,R are functions of x, y, z.

The general solution of (3.4) is

φ(u, v) = 0, or u = f(v) (3.5)

where u ≡ u(x, y, z) = a and v ≡ v(x, y, z) = b are two independent solutions
of Lagrange’s auxiliary equations

dx

P
=
dy

Q
=
dz

R
(3.6)

Here, a and b are constants and at least one of u, v must contain z.

Example 3.3 Prove the above statement.

Example 3.4 Solve

1.
y2z

x
p+ xzq = y2

2. x
∂u

∂x
+ y

∂u

∂y
+ z

∂u

∂z
= xyz

Exercise 3.4 Solve

1. 2p+ 3q = 1

2. p
√
x+ q

√
y =
√
z

3. y2p− xyq = x(z − 2y)

4.
y − z
yz

p+
z − x
zx

q =
x− y
xy

Answers: (1) φ(3x−2y, y−3z) = 0, (2)
√
x−√y = f(

√
x−√y), (3) φ(x2+y2, yz−

y2) = 0, (4) φ(x+ y + z, xyz) = 0. J

3.2 Second-Order Equations

A general second-order partial differential equation in two independent vari-
ables x and y can be written as

A(x, y)
∂2u

∂x2
+B(x, y)

∂2u

∂x∂y
+ C(x, y)

∂2u

∂y2
= f

(
x, y, u,

∂u

∂x
,
∂u

∂y

)
(3.7)

The partial differential equations are classified into three groups:

• Elliptic: if B2 − 4AC < 0

• Parabolic: if B2 − 4AC = 0
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• Hyperbolic: if B2 − 4AC > 0

These three types of partial differential equations are associated with equi-
librium state, diffusion state, and oscillating systems, respectively. Moreover
the classification is of fundamental importance for the following reasons:

1. The classification of a partial differential equation is independent of
the choice of coordinate system used when formulating the equation.
Expressed differently, the classification is such that it does not depend
on the choice of independent variables. So, for example, if a partial
differential equation is of elliptic type when expressed in terms of the
cartesian coordinates x and y, it will still be of elliptic type when
expressed in terms of any other coordinate system like the cylindrical
polar coordinates r, θ, and z.

2. The nature of an appropriate domain D and the associated auxiliary
conditions (initial and/or boundary conditions) that must be imposed
on the partial differential equation in order to ensure a unique solution
throughout D differ according to the classification.

Physical problems whose solution is governed by the partial differential equa-
tion (3.7) are formulated in some region D of the xy-plane on a boundary
C of which suitable auxiliary conditions, called boundary conditions, are im-
posed that serve to identify a particular problem. The most important types
of boundary conditions are as follow:

1. Dirichlet conditions: u(x, y) is specified at each point of the bound-
ary C.

u(x, y) = Φ(x, y) for (x, y) on C

where Φ(x, y) is a given function.

2. Neumann conditions: The normal derivative of u, ∂u
∂n = ∇ · n̂, is

specified at each point of the boundary.

∂u(x, y)

∂n
= Ψ(x, y) for (x, y) on C

where Ψ(x, y) is a given function and ∂
∂n is the directional derivative

normal to the boundary C.

3. Mixed condition: Both u and ∂u
∂n are specified at each point of the

boundary.

u(x, y) = Φ(x, y) and
∂u(x, y)

∂n
= Ψ(x, y) for (x, y) on C

where Φ(x, y) and Ψ(x, y) are given functions and ∂
∂n is the directional

derivative normal to the boundary C. The conditions are also termed
Cauchy conditions.
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3.3. SEPARATION OF VARIABLES METHOD
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Some important linear partial differential equations of the second order:

Name Equation Type

1-dimensional wave equation
∂2u

∂t2
= c2

∂2u

∂x2
hyperbolic

1-dimensional heat equation
∂u

∂t
= κ2

∂2u

∂x2
parabolic

2-dimensional Laplace equation
∂2u

∂x2
+
∂2u

∂y2
= 0 elliptic

1-dimensional diffusion equation
∂u

∂t
= κ

∂2u

∂x2
parabolic

3.3 Separation of Variables Method

In this method we assume that the solution to be product of functions, each
of which involves only one of the independent variables.

The success of the method rests on the following results:

1. Superposition principle: If u1 and u2 are any solutions of a linear
homogeneous partial differential equation in some region, then

u = c1u1 + c2u2 (3.8)

where c1 and c2 are any constants, is also a solution of that equation
in the region.

The above assumption can be extended to that fact that if u1, u2, . . .,
is an infinite sequence of linearly independent solution of the partial
differential equation, then

u = c1u1 + c2u2 + . . . (3.9)

is also a solution of the partial differential equation.

2. Orthogonality: The orthogonality properties of the eigenfunctions
associated with the partial differential equation can be used to deter-
mine the coefficients u1, u2, . . . in the linear superposition u = c1u1 +
c2u2 + . . . to make it satisfy the boundary conditions imposed on the
partial differential equation, and so become the solution of the bound-
ary value problem.
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Example 3.5 Solve the equation
∂u

∂x
= 2

∂u

∂t
+ u, given u(x, 0) = 6e−3x

Exercise 3.5 Solve

1. 3
∂u

∂x
+ 2

∂u

∂y
= 0 where u(x, 0) = 4e−x [ans. u = e

1
2 (3y−2x)]

2.
∂2z

∂x2
− 2

∂z

∂x
+
∂z

∂y
= 0. [ans. z =

(
c1e

(1+
√
1+k)x + c2e

(1−
√
1+k)x

)
e−ky] J

The wave equation: Consider the transverse vibration of a string stretched
between two points x = 0 and x = L. The motion takes place in the xy-
plane in such a manner that each point of the string moves in a direction
perpendicular to the x-axis. If u(x, y) denotes the displacement of the string
measured from the x-axis for t > 0, then u satisfies the one-dimensional wave
equation

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L, t > 0. (3.10)

A typical boundary conditions are

u(0, t) = 0, u(L, t) = 0, t ≥ 0 (3.11)

u(x, 0) = f(x),
∂u

∂t

∣∣∣∣
t=0

= g(x), 0 < x < L (3.12)

Boundary condition (3.11) states that the string is secured at the end points
for all times while (3.12) gives us the initial configuration and initial velocity
of each point of the string.

The solution is given by

u =
∞∑
n=1

(
An cos

nπc

L
t+Bn sin

nπc

L
t
)

sin
nπ

L
x, n = 1, 2, . . . (3.13)

where

An =
2

L

∫ L

0
f(x) sin

nπ

L
x dx

Bn =
2

nπc

∫ L

0
g(x) sin

nπ

L
x dx

Example 3.6 Derive (3.13).

Exercise 3.6 Find the deflection u(x, t) of the vibrating string (L = 1, ends fixed,
and c2 = 1) corresponding to initial zero velocity and initial deflection with k =
0.01:
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1. k sin 2πx

2. kx(1− x)

Answer :

1. k cos 2πt sin 2πx

2. 8k
π3

(
cosπt sinπx+ 1

27 cos 3πt sin 3πx+ 1
125 cos 5πt sin 5πx+ · · ·

)

Exercise 3.7 Vibrating membrane: Show that the two-dimensional wave equa-
tion

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
satisfying:

u = 0 on the boundary of the membrane for t ≥ 0

u(x, y, 0) = f(x, y) - given initial displacement, and

∂u

∂t

∣∣∣∣
t=0

= g(x, y) - given initial velocity

has the solution

u(x, y, t) =

∞∑
m=1

∞∑
n=1

(Amn cosλmnt+Bmn sinλmnt) sin mπ
a x sin nπ

b y

where

λmn = cπ
√
m2 + n2, m, n = 1, 2, 3, . . .

Amn =
4

ab

∫ b

0

∫ a

0

f(x, y) sin
(
mπ
a x
)

sin
(
nπ
b y
)
dxdy

Bmn =
4

abλmn

∫ b

0

∫ a

0

g(x, y) sin
(
mπ
a x
)

sin
(
nπ
b y
)
dxdy

Exercise 3.8 Circular membrane: Solve the wave equation for a circular mem-
brane of radius R. Assume u(r, t) is radially symmetric and does not depend on θ.
The boundary conditions are

u(R, t) = 0 t ≥ 0

u(r,0) = f(r) - given initial deflection, and

∂u

∂t

∣∣∣∣
t=0

= g(r) - given initial velocity
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Note that the wave equation in cylindrical coordinate is

∂2u

∂t2
= c2∇2u = c2

(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)
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