CHAPTER 9

Heat Conduction Solution by FEM

Poisson's equation

$$k \frac{\partial^2 T}{\partial x^2} + k \frac{\partial^2 T}{\partial y^2} + q''' = 0$$
 on Ω

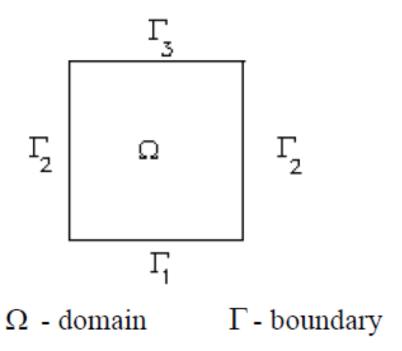
Boundary condition

- a) Dirchlet BC (Natural BC) $T=T_s$ on Γ_1
- Neuman BC (Essential BC)
 Convection heat transfer at the surface

$$-k\frac{\partial T}{\partial n} = h(T - T_{\infty}) \text{ on } \Gamma_2$$

Specfied heat flux at the surface

$$-k\frac{\partial T}{\partial n} = q \qquad \text{on } \Gamma_3$$



In Glarkin's method, the weighting function is the same as the shape or interpolation function. Hence, the weighted residual of poisson's equation is

$$\int_{\Omega} N_i \left(k \frac{\partial^2 T}{\partial x^2} + k \frac{\partial^2 T}{\partial y^2} + q_v \right) d\Omega = 0$$

T – must be twice differentiable and it should satisfy all the boundary conditions on Γ_e and Γ_n

Integration by Parts

$$\int_{\Omega} N \frac{\partial^{2} T}{\partial x^{2}} dx dy = -\int_{A} \frac{\partial N}{\partial x} \frac{\partial T}{\partial x} dx dy + \oint N \frac{\partial T}{\partial x} l ds$$

$$\int_{\Omega} N \frac{\partial^{2} T}{\partial y^{2}} dx dy = -\int_{A} \frac{\partial N}{\partial y} \frac{\partial T}{\partial y} dx dy + \oint N \frac{\partial T}{\partial y} m ds$$

$$\int_{\Omega} \left(Nk \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} \right) dx dy \right) = -\oint_{A} \left(k \left(\frac{\partial N}{\partial x} \frac{\partial T}{\partial x} + \frac{\partial N}{\partial y} \frac{\partial T}{\partial y} \right) dx dy \right) + \oint_{\Gamma} \left(k N \left(\frac{\partial T}{\partial x} \right) \right) ds$$

Convective boundary at the surface

$$-k\left(\frac{\partial T}{\partial n}\right) = h(T - T_{\infty})$$

Inseting the baove equation

$$-\oint_{A} \left(k \left(\frac{\partial N}{\partial x} \frac{\partial T}{\partial x} + \frac{\partial N}{\partial y} \frac{\partial T}{\partial y} \right) - N_{i} q_{v} \right) dx dy + \oint_{\Gamma} \left(N \left(h \left(T_{\infty} - T \right) \right) ds = 0 \right)$$

Introducing interpolation of temperature and its spatial derivatives

Introducing interpolation of temperature and its spatial derivatives

Expressing in matrix form

$$\left(\int_{\Omega} k \left\{ \left\{ \frac{\partial N}{\partial x} \right\} \left\{ \frac{\partial N}{\partial x} \right\}^{T} + \left\{ \frac{\partial N}{\partial y} \right\} \left\{ \frac{\partial N}{\partial y} \right\}^{T} \right) d\Omega + \int_{\Gamma} (h\{N\}\{N\})^{T} ds) \{T\} = \int_{\Gamma} (\{N\}q_{\nu}) d\Omega + \int_{\Gamma} (\{N\}hT_{\infty}) ds$$

$$\left[K^{e} \left\{T\right\} = \left\{F^{e}\right\}\right]$$

$$K^{e}_{i,j} = \int_{\Omega} k \left(\frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} + \frac{\partial N_{i}}{\partial y} \frac{\partial N_{j}}{\partial y} \right) d\Omega + \int_{\Gamma} h N_{i} N_{j} ds = 0 \qquad i = 1...nno \ j = 1...nno$$

$$F_{i} = \int_{\Omega} N_{i} q_{v} d\Omega + \int_{\Gamma} h T_{\infty} ds = 0 \qquad i = 1...nno$$

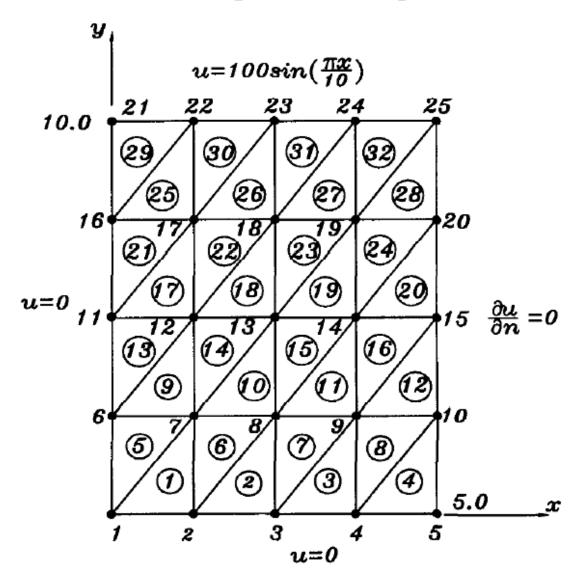
Where:

[K] is thermal stiffness Matrix $\{F\}$ is thermal load vector

$$[K] = [K]_{cond} + [K]_{conv}$$

 $[K]_{cond}$ - thermal stiffness matrix only due to conduction

 $[K]_{conv}$ -Contribution of thermal stiffness matrix due to convection. Only for boundary with convective boundary condition.



Mesh with triangular element

Chapter 10.

Finite Element Discretization of Transient Heat Conduction Equation by Galerkin's Method

The PDE of transient heat conduction in two dimensions is given as

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + q''' \quad \underline{on} \quad \Omega$$

$$\int_{\Omega} N_{i} \rho c \frac{\partial T}{\partial t} dx dy - \int_{\Omega} \left(N_{i} k \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} \right) dx dy \right) = 0$$

Integration by Parts

$$l = \cos\theta$$

$$m = \sin \theta$$

$$\int_{\Omega} N \frac{\partial^{2} T}{\partial x^{2}} dx dy = -\int_{A} \frac{\partial N}{\partial x} \frac{\partial T}{\partial x} dx dy + \oint N \frac{\partial T}{\partial x} l ds$$

$$\int_{\Omega} N \frac{\partial^{2} T}{\partial y^{2}} dx dy = -\int_{A} \frac{\partial N}{\partial y} \frac{\partial T}{\partial y} dx dy + \oint N \frac{\partial T}{\partial y} m ds$$

$$\int_{\Omega} \left(Nk \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} \right) dx dy \right) = -\oint_{A} \left(k \left(\frac{\partial N_{i}}{\partial x} \frac{\partial T}{\partial x} + \frac{\partial N_{i}}{\partial y} \frac{\partial T}{\partial y} \right) dx dy \right) + \oint_{\Gamma} \left(k N \left(\frac{\partial T}{\partial x} \right) dx dy \right) dx dy$$

Convective boundary at the surface

$$-k\left(\frac{\partial T}{\partial n}\right) = h(T - T_{\infty})$$

Inserting the above equation

$$-\oint_{A} \left(k \left(\frac{\partial N_{i}}{\partial x} \frac{\partial T}{\partial x} + \frac{\partial N_{i}}{\partial y} \frac{\partial T}{\partial y} \right) - N_{i} q_{v} \right) dx dy + \oint_{\Gamma} \left(N_{i} \left(h(T_{\infty} - T) \right) ds \right) dx dy$$

Introducing interpolation of temperature and its spatial derivatives

$$\int\limits_{\Omega} N_{i}\rho c\,\frac{\partial T}{\partial t}\,dxdy - \oint\limits_{A} \left(k\left(\frac{\partial N_{i}}{\partial x}\,\frac{\partial T}{\partial x} + \frac{\partial N_{i}}{\partial y}\,\frac{\partial T}{\partial y}\right)dxdy\right) + \oint\limits_{\Gamma} \left(k\,N_{i}\!\left(\frac{\partial T}{\partial n}\right)\right)\!ds = 0$$

$$\int_{\Omega} N_{i} \rho c \frac{\partial T}{\partial t} dx dy = \int_{\Omega} \rho c \{N\} \{N\}^{T} \left\{ \frac{\partial T}{\partial t} \right\} \{dx dy\} = \left(\int_{\Omega} \{N\} \{N\}^{T} dx dy \right) \left\{ \frac{\partial T}{\partial t} \right\} = \left[C \right] \left\{ \frac{\partial T}{\partial t} \right\}$$

$$\begin{split} & \left[C\right] \left\{ \frac{\partial T}{\partial t} \right\} + \left[K(T)\right] \left\{T\right\} = \left\{F\right\} \\ & C_{i,j} = \int\limits_{\Omega} \rho c N_i N_j d\Omega \qquad i = 1...nno \ j = 1...nno \\ & K_{i,j} = \int\limits_{\Omega} k \left(\frac{\partial N_i}{\partial x} \frac{\partial N_j}{\partial x} + \frac{\partial N_i}{\partial y} \frac{\partial N_j}{\partial y}\right) d\Omega + \int\limits_{\Gamma} h N_i N_j ds = 0, i = 1...nno \ j = 1...nno \\ & F_i = \int\limits_{\Omega} N_i q_v d\Omega + \int\limits_{\Gamma} h T_{\infty} ds = 0 \qquad i = 1...nno \end{split}$$

Where:

[C] is thermal Capacitance Matrix [K] is thermal stiffness Matrix $\{F\}$ is thermal load vector

$$[K] = [K]_{cond} + [K]_{conv}$$

 $[K]_{cond}$ - Thermal stiffness matrix only due to conduction

 $[K]_{com}$ - Contribution of thermal stiffness matrix due to convection, Only for elements at boundary with convective boundary condition

Where T_s represents the surrounding temperature and

The above equation can finally be written in the following form

$$[C]\left\{\frac{\partial T}{\partial t}\right\} + ([K'] + [K''])\{T\} = \{F\} - - - -(4)$$

Using generalized θ method

$$c\{\frac{\partial T}{\partial t}\} + [K']\{T\} = \{F\} - - - - (4)$$

$$\{T\} = (1 - \theta)\{T(t)\} + \theta \{T(t + \Delta t)\} -----(5)$$

Substituting equation 5 into equation 6 and rearranging, The following equation will be obtained

$$\underbrace{([C] + \Delta t \theta[K])}_{[A]} \{T\}^{t + \Delta t} = \underbrace{\Delta t \{F\}^t + \left([C] - \Delta t[K](1 - \theta)\right)}_{(V)} \{T\}^t$$
$$\{T\}^{t + \Delta t} = [A]^{-1}(V)$$

$$([C] + \theta \Delta t[K]) \{T(t+\Delta t)\} = \Delta t \{F\} - ((1-\theta) \Delta t [K] - [C]) \{T(t)\} - (6)$$

Let,
$$[A] = ([C] + \theta \Delta t[K])$$
 and

$$\{V\} = \Delta t \{F\} - ((1 - \theta) \Delta t [K] - [C]) \{T (t)\}$$

Then Substituting the above two equations into equation (6)

$$[A] \{T(t+\Delta t)\} = \{v\}$$

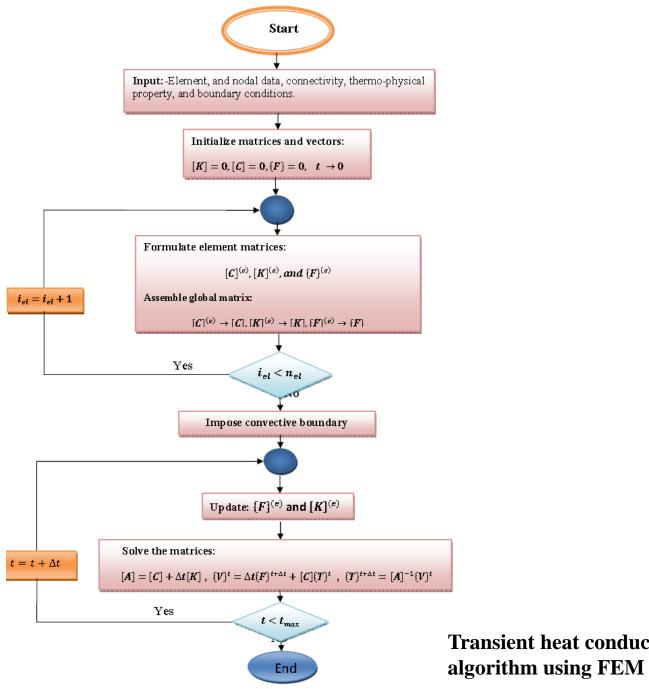
$$\{T(t+\Delta t)\} = [A]^{-1}\{v\}$$

Teta = 0 Forward difference - Conditionally stable

Teta = 1 Backward difference- Unconditionally Stable

Teta = 0.5 Crank Nicolson – Unconditionally stable with oscillation

Teta= 0.66 Galerkin- Unconditionally stable



Transient heat conduction solution 17