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Chapter 2 

Formulation of FEM for One-Dimensional Problems 
 

2.1 One-Dimensional Model DE and a Typical Piecewise Continuous FE Solution 

 

To demonstrate the basic principles of FEM let's use the following 1D, steady advection-diffusion 
equation 

 
  

  
  

   

   
                                                                                 

where   and   are the known, constant velocity and diffusivity, respectively.      is the known 

source function and      is the scalar unknown. This     order ODE should be supported by two 
boundary conditions (BCs) provided at the two ends of the 1D domain. At a boundary either the 
value of the unknown or the value of its first derivative or an equation involving both the unknown 
and the first derivative is specified. 

In a FE solution we divide the problem domain into a finite number of elements and try to obtain 
polynomial type approximate solutions over each element. The simplest polynomial we can use to 
approximate the variation of the solution over an element is a linear polynomial, as shown in Figure 
2.1. The FE solution shown in this figure makes use of a mesh with    many first order (2 node) 
elements. The mesh also has         nodes. This approximate solution is said to be                

   continuous, i.e. only the     order derivative (the solution itself) is continuous across element 
interfaces, but not higher order derivatives.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Typical    continuous approximate solution over a 1D domain with    linear elements  
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In a FE solution the task is to find the linear approximate solutions,   ’s over each element, which 
requires the calculation of unknown   values at the nodes of the mesh, shown with red circles in 
Figure 2.1. In total we need to determine    many   values and for this we need to derive    linear 
algebraic equations. 

2.2 Method of Weighted Residuals (MWR) and the Weak Form of a DE 

 

The DE given in equation (2.1), together with proper BCs, is known as the strong form of the 
problem. FEM is a weighted residual type numerical method and it makes use of the weak form of 
the problem. There are a number of different ways that one can use to derive the weak form of a DE. 
For solid mechanics problems the preferred technique makes use of variational principles such as the 
minimization of total potential energy. However, for the DEs that govern thermofluidic transport 
problems we prefer to use the Method of Weighted Residuals (MWR) to obtain the weak form, as 
explained below. 

Residual of a DE is obtained by collecting all the terms on one side of the equation. Residual of the DE 
given in equation (2.1) is 

      
  

  
  

   

   
                                                                    

By definition exact solution of a DE will make its residual zero at all points of the problem domain. 
However, the residual will not in general vanish when an approximate solution is substituted in it. 
The basic principle in weighted residual methods is to minimize the residual in a weighted integral 
sense as follows 

∫    

 

 

                                                                             

Substituting equation (2.2) into (2.3) one gets 

∫(  
  

  
   

   

   
   )    

 

 

                                                          

which is known as the weighted residual statement of the DE.      are user selected weight (or test) 
functions. The idea is to select as many different weight functions as necessary to obtain the required 
   linear algebraic equations. In theory as    goes to infinity, the integral of equation (2.4) will be 
zero for infinitely many different weight function selections, which can only be true if the residual 
itself vanishes over the problem domain, i.e. as    goes to infinity, approximate solution approaches 
to the exact solution. 

AS mentioned previously the approximate solution shown in Figure 2.1 is only    continuous. In 
theory it is possible to use higher order continuous approximations such as   , but they are not 
preferred because of the complicated mathematics they require, especially for 2D and 3D problems. 
However, if we use a    continuous solution in the above weighted residual statement, the second 
order derivatives that appear in the diffusion term can not be evaluated properly. In order to be able 
to work with a    continuous approximate solution, we need to lower the differentiation 
requirements of the unknown in the weighted residual statement. This is done by applying 
integration by parts to the second term (diffusion term) of equation (2.4), as shown below 
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∫   
   

   
   

 

 

 ∫ 
  

  

  

  
  

 

 

 ∫  
  

  
     

 

 

                                         

As a by-product of integration by parts, the last term of equation (2.5), called boundary integral is 
obtained. This term is evaluated at the boundaries ( ) of the problem domain ( ), where    is the   
component of the unit outward normal of the boundary. For the problem sketched in Figure 2.1    is 
equal to -1 and 1 at the left and right boundaries of the problem domain, respectively. As seen from 
the above equation, integration by parts lowers the differentiation order of the unknown   from 2 to 
1, and increases the differentiation order of the weight function   from 0 to 1. Note that integration 
by parts is not applied to the advection term, which only contains first order derivative of  . 

If we substitute equation (2.5 )into equation (2.4) we get 

∫(  
  

  
  

  

  

  

  
)    

 

 

 ∫     

 

 

 ∫  
  

  
     

 

 

                                    

At this point it is worth to emphasize once again that the terms on the left hand side of the above 
equation now includes only first order derivatives of the unknown. This is called the weak form of the 
problem due to this lower differentiability requirements compared to the original weighted residual 
statement. To summarize, weak form allows us to work with    continuous approximate solutions. 

2.3 Primary and Secondary Variables and Boundary Conditions 

 

The boundary term on the right hand side of equation (2.6) is an important part of the FE 
formulation. It can be used to identify the primary and secondary variables of a problem. To do this 
we separate the boundary term into two parts; the first part contains the weight function and 
possibly its derivatives and the second part contains the dependent variable (unknown) and possibly 
its derivatives. In our case part 1 includes only  . The dependent variable of the problem  , 
expressed in the same form as this first part of the boundary term is called the primary variable (PV). 

For this problem PV is  . Part 2 includes  
  

  
  , which is the secondary variable (SV) of the problem. 

Secondary variables always have important physical meanings such as the amount of heat flux that 
passes through the boundary in a heat transfer problem.  

After identifying the PV and SV of the problem, now we can discuss about possible BCs of our DE. If 
the PV is provided at a boundary of the problem it is called an Essential (Dirichlet) BC (EBC). Providing 
the SV at a boundary is known as Natural (Neumann) BC (NBC). Finally mixed (or Robin) BC specifies a 
combination of PV and SV at a boundary. For the problem we are working on possible EBCs and NBCs 
are 

 ss                                                                                                

                          
  

  
                                                               

                        
  

  
                                                         

Transferring a given DE into a weak form not only enables us to use    continuous solutions, but also 
automatically includes NBCs and MBCs into the formulation. This is a unique property of FEM, which 
is not shared with other numerical methods such as Finite Difference or Finite Volume Method. For a 
given EBC, the nodal unknown at that boundary is not actually an unknown. Therefore the number of 
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discrete nodal unknowns that needs to be calculated reduces by 1. For a given NBC or MBC SV inside 
the boundary integral is simply replaced by the specified    value as shown below 

                                  ∫  
  

  
     

 

 

  ∫      

 

 

 

                                ∫  
  

  
     

 

 

  ∫          

 

 

 

For a 1D problem boundary of the problem domain consists of only two discrete points, i.e. the right 
end and the left nodes of the FE mesh. Therefore for a 1D problem, we actually do not need to 
evaluate integrals as shown above; instead we simply need to evaluate the integrand at the 
boundary node. As we'll see later for 2D problems boundaries will be line segments and the above 
boundary integrals become line integrals, and for 3D they become area integrals. 

2.4 Constructing an Approximate Solution using Shape Functions 

 

Now that we have the weak form available we can substitute the desired approximate solution into 
it.    continuous approximate solution that is shown in Figure 2.1 can be expressed as  

        ∑        

  

   

                                                                    

where      is the aproximate solution that we are after.    is the number of nodes in the FE mesh. 

  ’s      h  nodal unknown values that we are going to calculate at the end of the FE solution 

and   ’s      h  shape (basis) functions that are used to construct the approximate solution.      

Figure 2.2 shows these details for a 1D mesh. 

As seen from Figure 2.2 it is possible to associate each shape function with one node of the FE mesh. 
Shape functions are said to have compact support, i.e. they are nonzero only over the elements 
which touch the node with which they are associated, everywhere else they are equal to zero. They 
also possess the following important Kronecker-delta property 

                {
              
            

                                                            

which tells that the     shape function has a value of 1 at the     node of the mesh and it is equal to 
zero at all other nodes. 
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Figure 2.2 Shape (basis) functions for a 1D FE mesh of linear elements. 
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Now we can substitute the approximate solution      given in equation (2.8) into the weak form 

given in equation (2.6) to get 

∫[  (∑  
   

  

  

   

)   
  

  
(∑  

   

  

  

   

)]    

 

 

 ∫     

 

 

 ∫       

 

 

                      

where    is used as a shortcut for the secondary variable of the problem. After selecting a weight 
function, evaluating the above integrals and using the given BCs, the above equation provides just 
one linear, algebraic equation for    unknowns of the problem. In order to obtain all the necessary 
   equations we need to select    many different weight functions, and there is no unique way of 
selecting them. 

2.5 Galerkin FEM (GFEM) and the Global System 

 

In the most commonly used variation of FEM known as Galerkin FEM (GFEM) weight functions of 
equation (2.10) are selected to be the same as the shape functions shown in figure 2.2. That is to get 

the     equation we use 

                                                                                         

 

With this selection equation (2.10) can be expressed as the following     equation of a set of    
equations 

∫[     (∑  
   

  

  

   

)   
   

  
(∑  

   

  

  

   

)]    

 

 

  

∫        

 

 

 ∫         

 

 

                                              

 

It is possible to take the summation sign outside the integral and get 

∑[∫(      
   

  
   

   

  
 
   

  
)    

 

 

]   

  

   

  

∫        

 

 

 ∫         

 

 

                                              

 

To further simplify the equation we can use the following compact matrix notation 

[ ]{ }  { }  { }                                                                      

which is known as the global equation system. { } is the vector of nodal unknowns with    entries. 
[ ] is the global square stiffness matrix of size   x   with entries given below 
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    ∫(      
   

  
   

   

  
 
   

  
)    

 

 

                                                      

{ } and { } are the global force vector and boundary integral vector of size   x1 with entries given 
as follows 

   ∫        

 

 

                                     ∫         

 

 

                                     

[ ] and { } integrals are evaluated over the whole problem domain, whereas the boundary integral 
is evaluated only at the problem boundaries. 

2.6 Elemental  Systems 

 

Based on the fact that shape functions that appear in [ ] and { } integrals have non-zero values only 
over a small portion of the problem domain, most FEM computer codes evaluate these integrals as a 
sum of separate integrals over individual elements. 

[ ]  ∑  [  ]

  

   

                                            { }  ∑  {  }

  

   

                                  

where [  ]  and {  }  are elemental stiffness matrices and elemental force vectors. A similar 
elemental integral summation procedure can also be applied for the calculation of { }, however for a 
1D problem that is discussed here, problem boundaries are simply two nodes, and therefore no 
integral evaluation is actually necessary at the boundaries. 

L  ’s    s  co c        o   h  c  c     o  o     m      stiffness matrices, given below 

   
  ∫(      

    

  
   

   

  
 
   

  
)    

 

  

                                                      

The first thing to notice is that [  ] for all elements are   x   square matrices, i.e. both   and   
indices go from 1 to   . However, as seen in Figure 2.2, only two shape functions have non-zero 
values over each element, and there will be contribution to [  ]  only from these two shape 
functions. In other words many of the entries of the   x   matrix will be zero. To give an example 
consider Figure 2.3 that shows the non-zero shape functions over an arbitrary element e located 
between nodes M and N. 

 

 

 

 

 

 

Figure 2.3 Non-zero shape functions over a linear element 
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The stiffness matrix [  ] for this element will look like the following 

 

 

 

 

 

 

 

As seen above two non-zero shape functions over element e will create only 4 non-zero entries in 
[  ]. Of course in a computer code we are not going to spend time and memory to calculate and 
store obviously zero entries of [  ]. Instead we will calculate each [  ] to be a small 2x2 matrix. But 
these small 2x2 elemental matrices cannot simply be added to obtain the global stiffness matrix of 
size   x  . Instead small matrices should be assembled into the appropriate locations of the global 
stiffness matrix. This assembly process, which will be discussed in detail later, is an important part of 
a FE solution. 

Similar to the stiffness matrix calculation explained above, force vector calculation is also done for 
each element separately. Global force vector { } of size   x1 is then obtained by the assembly of 
elemental force vectors. 

At this point it is logical to start working with a local node numbering scheme as shown below 

 

 

 

 

 

 

 

 

Figure 2.4 Local node numbering of a 1D, linear element 

2.7 Gauss Quadrature Integration – Concepts of Master Element and Jacobian 

 

In order to have a general purpose FE solver that can be used for the solution of different DEs 
without changing the source code, [  ] integrals are almost always evaluated numerically. Although 
MATLAB, the programming tool that we'll use in this course, can perform symbolic integration, 
numerical integration is more flexible and it is much faster. Gauss Quadrature (GQ) is the most 
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preferred numerical integration technique, in which integrals are evaluated between special limits of 
-1 and 1. 

∫       
 

  

     ∑        

   

   

                                                           

where    are special GQ points in the interval [-1, 1] and    are the corresponding GQ weights. NGP 
is the number of GQ points that we want to use. GQ points and weights for different NGP values are 
tabulated in several numerical methods and FEM books. Values up to NGP=3 are given in Table 2.1. 

 

Table 2.1 One dimensional Gauss Quadrature points and weights 

NGP       

1 0 2 

2 
 √    1 

√    1 

3 

 √    5/9 

0 8/9 

√    5/9 

 

Limits of [  ] integral are     
  and     

 , which are simply the coordinates of the two end 
points of the element, as seen in Figure 2.4. In order to be able to evaluate [  ] integral using GQ, 
limits of the integral should be from changed to be -1 and 1, which requires a change of variable. This 
brings the concept of using a master element in evaluating elemental integrals. 

Figure 2.5 shows the 1D master element with two nonzero shape functions on it. Master element 
uses a special new variable,  , which changes between -1 and 1 over an element. 

 

 

 

 

 

 

Figure 2.5 One-dimensional, linear master element and the   coordinate system 
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In order to be able to evaluate [  ] integrals we need a relation between the global   coordinate 

and the newly introduced   coordinate. For the element e of Figure 2.6, located between points  

    
  and     

 , with a length of    the linear relation between   and   is 

  
  

 
  

  
    

 

 
                                                                     

where    is the length of element e given by 

     
    

                                                                         

 

 

 

 

 

 

 

 

 

Figure 2.6 Mapping between the global   coordinate and the master element coordinate  . 

 

Now we can write the elemental [  ] integral given in equation (2.18) using the   coordinate and 

new limits suitable for GQ integration 

   
  ∫ (      

   

  

  

  
    

   

  

  

  
   

   

  

  

  
) 

  

  
  

  

  

                                      

Defining an important variable in FE formulation, the Jacobian, as  

    
  

  
 

  

 
                                                                           

elemental stiffness matrix calculation becomes 

   
  ∫ (      

   

  
 
 

  
   

   

  
 
 

  
 
   

  
 
 

  
)       

  

  

                                           

This is the final form that is ready to be calculated using GQ integration in a computer code. 
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Calculation of elemental force vectors can be follows a similar approach and results in the following 

equation 

  
  ∫            

  

  

                                                                      

Note that if the functions  ,  and   of the DE are functions of  , they should first be written as a 

function of   using equation (2.21). 

2.8 Assembly Process 

 

As               ,    ’s   sc ss  h   ss mb y p oc ss  h    s already mentioned previously. After 

calculating small 2x2 elemental stiffness matrices and small 2x1 elemental force vectors, they should 

b   ss mb       o  h  p op    oc   o s o   h  g ob   sys  m o   q    o s. To  o  h s w ’      s  

generate a local to global node mapping. For the following mesh of 4 linear elements with shown 

global node numbers  

 

 

 

local to global node mapping matrix that will be used in the assembly process is 

 

 

 

There are    many rows in LtoG matrix.     row contains the global node numbers of the      

element. For example the second row tells that first and second local nodes of the second element 

correspond to the 2nd and 3rd global nodes. Note that for the above mesh we assumed that for all 

elements left and right nodes are the first and second local nodes, respectively. 

Having the      matrix, now we can perform the assembly process using the following assembly rule 

- Assemble    
  entry of an elemental stiffness matrix into     entry of the global stiffness matrix, 

- Assemble   
  entry of an elemental force vector into    entry of the global force vector, 

- Assemble   
  entry of an elemental boundary integral vector into    entry of the global boundary 

integral vector, 

 where 
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This assembly process will provide the following global stiffness matrix, force vector and the 

boundary integral vector for the 5 node mesh given above. Different colors used below correspond 

to the contribution of different elements. 

[ ]  
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For the 5 node mesh, global equation system given in equation (2.14) is 
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2.9 Boundary Conditions 

 

First let's consider the boundary integral vector { } of equation (2.28). Boundary integral term of the 

weak formulation should be evaluated only at the boundary nodes of the problem domain, not at the 

inner nodes. Therefore for our sample 5 node mesh, inner node entries of { } should be zero, i.e. 

    3       and the global system becomes   

 
 
 
 
 
   

   

 3 
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Remaining entries of { } are evaluated using equation (2.16) as follows 

   [      ]|           |      

 
   [      ]|           |      

                                                      

   and    are the global shape functions similar to the ones given in Figure 2.2 and they are equal to 

1 at nodes 1 and 5, respectively. Therefore nonzero   values of the global system are nothing but the 

SV's at the boundary nodes. 

For the 5 node sample mesh we are working on nodes 1 and 5 are boundary nodes. Either an 

Essential, Natural or mixed BC should be provided at these nodes. If an EBC is given at a boundary 
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node then the PV (  value) given there is known and the corresponding SV (  value) is not known. If 

a NBC is given then the   value at that boundary node is known but the corresponding   value is not 

known. For a mixed BC neither   nor   is known, but instead a relation between them is known. 

To demonstrate how an EBC is implemented let's assume that at node 1 the unknown   is given to 

be a value of      .    of equation (2.29) is no longer an unknown and we can get rid of the first 

equation of the global system. When we delete the first equation we should also delete the first 

column of [K] and we should modify the force vector on the right accordingly. This process is known 

as reduction, and for the case we are studying it results in the following reduced 4x4 global system. 

[

   

 3 

   

   

      

  3

 33

  3

  3

      

   

 3 

   

   

      

   

 3 

   

   

]{

  

 3

  

  

}  

{
 
 

 
            

 3   3      

           

           }
 
 

 
 

 {

 
 
 
  

}                               

To demonstrate how a NBC is implemented let's assume that at node 5 NBC is specified. This means 

that the value of    is given and we simply use this known value in equation (2.31). Implementation 

of NBC is very simple. 

If a mixed type BC is given at node 5 instead of NBC, the implementation becomes a little bit more 

involved.  As given in equation (2.7c) a mixed type BC at node 5 can be generalized as follows 

                                                                                   

where   and   are known values. We substitute this relation in equation (2.31) to get 

[
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}  
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}                         

    term on the right hand side of the equation should be transferred to the left hand side, which 

will modify the diagonal entry of [ ] for the last equation as follows 

[

   

 3 
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 3 
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]{

  

 3

  

  

}  
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}                         

Now this is a solvable set with 4 equations and 4 unknowns. 

2.10 First 1D Solution 

 

W ’     y  o ob         pp o  m    so    o  o   h   o  ow  g p ob  m 
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with            . The DE is supported by the following two essential boundary conditions 

(EBCs) 

                                  

 using Galerkin FEM (GFEM) on a mesh of 5 equi-sized elements as shown below 

 

 

 

 

Elemental stiffness matrices can be evaluated using the following equation as derived previously 

   
  ∫ (      

   

  
 
 

  
   

   

  
 
 

  
 
   

  
 
 

  
)       

  

  

 

Each element has the length of        and the same Jacobian of    
  

 
    .   and   are given 

as constants. Therefore [  ] will be the same for all elements. Using previously derived shape 

functions of  

   
 

 
                               

 

 
       

four entries of the 2x2 [  ] matrix can be calculated as (no need to use GQ integration for this 

exercise) 

   
  ∫ (
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Therefore for all elements 

   [
       

         
] 

Remember that the general form of the elemental force vector is 

e=1 

x 

e=2 e=3 e=4 e=5 

1              2               3              4             5             6 
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  ∫           

  

  

 

Since function   is constant and the same for each element, elemental force vectors will also be the 

same for all elements. Their components can be evaluated as 

  
  ∫
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Combining these two entries we get 

   {
    
    

} 

Local to global mapping of the mesh is given by 

     

 
 
 
 
 
  
  
  
  
   

 
 
 
 

 

Using the assembly rule global stiffness matrix and global force vector is obtained as follows 
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And the global system of equations becomes 
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Due to the provided EBCs at      and     ,     and    are actually known and we can perform 

reduction as explained in the previous section to remove the first and last equation resulting in the 

following 4 equations for 4 unknowns 
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Solving this system we get the necessary nodal unknowns as 
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The following figure compares the GFEM solution with the exact one, which can be found using 

MATLAB's dsolve command. 
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2.11 Second 1D Solution 

 

Solve the same problem but change the BC at     as follows 

  

  
|
   

    

This BC change will not bring any changes to the elemental system calculation or to the assembly 

process. Therefore the same global system, given below, will be obtained. 
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At    , there is the same EBC with a value of zero. Reduction can be applied to the above system 

to get rid of the first equation. Resulting system will be  
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NBC given at     should now be used.    of the last equation is the SV at    , which is equal to 
  

  
|
   

 and this is specified as -1. Therefore we can simply replace    with the given value of -1. 
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Now this is a solvable system with 5 equations and 5 unknowns. The solution gives the following 

nodal values 
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Comparison of exact and approximate solutions is given below 
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This solution is also as good as the previous one. Note that at the left boundary, where EBC is 

specified, the nodal value is exact, however at the right boundary where NBC is specified this is not 

the case. 

2.12 Third 1D Solution 

 

Solve the same problem but change the BC at     as follows 

(   
  

  
)|

   
    

Again the 6x6 global system will not change. After applying reduction for the known    we get  
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To implement the given mixed BC we first put it into the form given in equation (2.32) 

(
  

  
)|

   
       |       

where   and   of equation (2.32) becomes      and   , respectively. With these values last 

equation of the global system can modified as explained in Section 2.9, resulting in 
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Following nodal values are obtained by solving this system 
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Comparison of exact and approximate solutions is given below 
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2.13 Higher Order Elements in 1D 

 

Up to now only linear (2 node) elements are mentioned, but it is possible to use higher order 

elements that are constructed using more than 2 nodes. Figure 2.7 shows a FE mesh of quadratic     

(3 node) elements and a couple of the shape functions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Shape functions for a 1D FE mesh of quadratic (3 node) elements 
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In Figure 2.7 node 2 is an internal node of the first element and the 2nd shape function related to this 

node is non-zero only on the first element. It has no contribution to any other element. Node 3 is 

shared by first and second elements and 3rd shape function is non-zero on these two elements.  

On each element there are three non-zero shape functions and Figure 2.8 shows them on a master 

element 

 

 

 

 

 

 

 
Figure 2.8 One-dimensional, quadratic (3 node) master element 

 
Blue numbers show the local node numbering. Second node is located at the center of the element. 
This is true not only for the master element, but also for the real elements. Kronecker-delta property 
of the shape functions can be used to derive them as follows 
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As demonstrated in the following sample solution, for quadratic elements elemental stiffness 

matrices are 3x3 matrices and elemental force vectors are 3x1 vectors. 

 

2.14 Fourth 1D Solution 

 

We want to solve the same AD problem that we solved in Section 2.11 (the one with an EBC and a 

NBC) using the following mesh of 2 equi-sized quadratic elements. 

 

 

 

 

Elemental stiffness matrices can be evaluated using the same equation that we used previously for 

linear elements 
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Both elements has a length of        and a Jacobian of            . Similar to the previous 

solution [  ] will be the same for both elements. Using the shape functions of quadratic elements, 

entries of the 3x3 [  ] can be calculated as 
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Therefore for both elements 

   [

            
              
            

] 

Remembering the following general form of the elemental force vector 
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and noticing that the source function   is constant and the same for each element, elemental force 

vectors will also be the same for all elements. Its entries can be evaluated as 
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Combining these three entries we get 
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Local to global mapping of the mesh is 

      
   
   

  

Using the assembly rule global system can be obtained as 
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     is given as an EBC. Applying reduction for the first equation and using       we are left 

with the following 4x4 system 
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Solving this system we obtain the necessary nodal unknowns as 
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The following figure compares the GFEM solution with the approximate solution. The solution 

obtained at Section 2.11 with 5 linear elements is also given. As seen linear and quadratic solutions 

provide a comparable performance. 

 

 

2.15 Fifth 1D Solution 

 

For the last 1D solution consider the following steady, heat transfer problem in a 1D fin with variable 
circular cross-section. 
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(   

  

  
)        

 
where             ,       is the cross-sectional area and      is the perimeter of the fin. 
 
We want to obtain the temperature distribution       on the fin using GFEM using a mesh of 4 linear 
elements of the same length. 
 
Compared to the previous examples we have three main differences 

- DE is not AD equation. We need to obtain its weak form. 
- [  ] integrals will be different for each element since    and   are functions of  . 

 
Residual of the DE is 
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Weighted residual statement is 
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Apply integration by parts to the first term 
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Use this in the weighted residual statement to get the following weak form 
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By looking at the boundary term PV of the problem is   (temperature) and SV is    
  

  
   (heat 

passing through the boundaries). 

It is possible to directly write the elemental stiffness matrix and force vector from this equation. We 

do not need to go through the details that we went for previous solutions. We first need to consider 

the above weak form to be written for a single element. To get    
  formula we use the integral on 

the left hand side and replace   with    and   with   . The result is 

   
  ∫(   

   

  

   

  
       )   

 

  

 

Since the DE has no terms without the unknown   elemental force vector is zero for this problem. 

In order to be able to use the master element and shape functions defined in terms of the master 

element coordinate   the above    
  integral should be converted into the following by introducing 

the elemental Jacobian    



 

2-27 
 

   
  ∫ (   (    )

   

  
  
 

 
  
   

  
 
 

 
   (    )    )       

  

  

 

where the Jacobian          Here it is important to note that    and   are originally given in terms 

of  , but in the above integral they need to be written as functions of  . To do this we can use the 

relation between   and   coordinates, given by equation (2.21). Since this relation is different for 

each element, [  ]’s will be different for each element. Further details of the calculation of [  ]’s 

and their assembly will not be provided here. 

L  ’s   so   sc ss  h      mp  m      o .  o    m sh o  4           m   s  h    w    b     o    o  

NN=5 nodes. After the assembly process we will obtain a 5x5 system in the following form 
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      is known due to the given EBC at    . Therefore we can reduce the system to a 4x4 

system by removing the first equation and first column of the stiffness matrix.  But when we do this 

we need to make changes to the right hand side vector as follows 
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} 

The second BC is of mixed type given at node 5 as follows 

         

  

  
 

This can be put into the general format of          as follows 

   

  

  
         

or with a different notation 

         

where          |            and    . We can use these   and   values to modify the 

global system as follows 
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} 

Now we can solve the system to obtain 4 unknown temperatures as follows 
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}  {

     
     
     
     

}    

FE solution is plotted below. 

 

As a post processing calculation the amount of heat that goes through the fin base, which is 

 mpo          v       g  h     ’s p   o m  c , can be evaluated. The value we want is 

      (   

  

  
  )

   
 

where       at the left boundary of the domain.       can be calculated in two different ways. 

First one is to use the first equation of the original 5x5 system that we had before performing 

reduction for the EBC. Substituting the already calculated temperature values we can obtain    

which is equal to      . 

In an alternative way we can use the calculated nodal temperatures to determine the slope of 

temperature at the fin base and use it to calculate the required heat value. Over the first element the 

temperature varies linearly as seen above and the slope of this linear variation at     is 
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Multiplying this slope with            will give the required heat value as follows 
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which is a positive value, showing that heat is coming into the problem domain at the wall. With the 

use of    as a part of the SV, in a heat transfer problem, a positive SV value always corresponds to 

"heat coming in", both at the left boundary and at the right boundary. 

Note that the two alternative post processing calculation methods discussed above will give slightly 

different results (calculate       using the first method and see), especially on coarse meshes. 

Although the first one is usually more accurate, due to practical reasons we usually prefer the second 

one. 

2.16 Exercises 

 

E-2.1. For the solution of 1D problems that we studied in this chapter Finite Difference Method 

(FDM) is also a powerful and easy to use numerical technique [1]. Solve the problem given at Section 

2.11 using FDM with 6 nodes. Discretize the DE by approximating the first and second order 

derivatives at a node   using second order accurate central differencing as follows 

   

  
 

          

   
              

    

   
 

              

     
 

where    is the distance between equi-spaced nodes, which is equal to   . Implement the EBC at the 

left boundary in the same way as we did for FEM. For the NBC at the right boundary use second 

order accurate backward difference versions of the above equations (You can find them in a 

numerical methods book such as [1]). 

Obtain the nodal temperature values and compare the FDM solution with the exact solution and the 

FEM solution. 

E-2.2. Solve the problem of Section 2.11 with 10 linear elements and compare the solution with the 

original 5 element one and with the exact solution. Do NOT repeat unnecessary calculations that are 

already given in Section 2.11. 

E-2.3. At Section 2.14 we performed a FE solution using 2 quadratic elements and the solution is 

plotted using squares without any lines between them. Actually over each element the solution is a 

second order polynomial. Without the curves joining the points it is NOT possible to see the    

continuous nature of the solution and one common misunderstanding about using quadratic 

elements is that they provide    continuous solutions. To show that this is NOT the case obtain the 

approximate solution over each element as second order polynomials using the elemental version of 

equation (2.8) given below 

   ∑    
 

3

   

     
      

   3 3
  

where   's are shape functions given in equation (2.28) and   
 's are the calculated nodal unknown 

values. The above equation will provide the necessary second order polynomials, but in terms of  . 

To convert them into polynomials in terms of   use equation (2.21) which is not only valid for linear 

but also for quadratic elements.  
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Find the polynomial approximate solutions over the two elements. Calculate their slopes at the 

interface of the elements and show that the slopes are not equal. 

E-2.4. Integration by parts (IBP) brings two important features to the FE formulation. First the 

differentiation order of the unknown reduces allowing for the use of    continuous approximations. 

Second the SV of the problem is introduced into the formulation in the boundary integral term, 

which can be used to implement Natural and mixed BCs. 

But what happens if we do not use IBP? Obtain the elemental stiffness matrix integral    
  equation 

(similar to equation (2.18)) when IBP is not applied. 

Repeat the solution given in Section 2.10 with this new formulation. What problems did you face 

with, if there are any. 

Repeat the solution given in Section 2.14 with this new formulation. What problems did you face 

with, if there are any. 

E-2.5. A plane wall is a composite of two materials, A and B. The wall of material A has a uniform heat 

generation  ̇              ,              and thickness         . The wall material B 

has no generation with               and thickness         . The inner surface of material 

A is well insulated, while the outer surface of material B is cooled by a water stream with         

and               . 

a) Perform a FE solution using 5 linear elements in material A and 2 linear elements in material B, i.e. 

all elements will have the same length of 10 mm. Provide the calculated nodal unknowns and plot 

the FE solution. To check your solution, temperature at     is given as 140   in the reference [2]. 

b) Compare the generated heat with the one removed by convection. 

 

 

 

 

 

 

 

 

 

 

E-2.6. The solution given at Section 2.15 is incomplete. Perform the missing calculations and obtain 

the final result. 
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E-2.7. A mild steel steam pipe has an outside diameter of 15 cm and a wall thickness of 0.7 cm. It is 

insulated with a 5.3 cm-thick layer of 85 % magnesia insulation. Superheated steam at          

flows through the pipe with an inside heat transfer coefficient of              . Heat is lost by 

convection to surroundings at          with an outside heat transfer coefficient of                   

            . Conductivities at an average temperature of 400 K are                   and 

                      . 

a) Compute the 1D temperature distribution between                  . Use 1 element over 

the steel pipe and 3 equi-length elements over the insulation. 

b) Calculate the amount of heat loss for a 20 m length pipe. To check your solution, this value is given 

as 2880 W in the reference [3]. 
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