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Development of a Finite Element Radiation Model Applied to
Two-Dimensional Participating Media

Hong Qi, Liming Ruan, and Jianyu Tan
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, 

People’s Republic of China

A finite element method (FEM) for radiative heat transfer has been developed
and it is applied to 2D problems with unstructured meshes. The present work provides
a solution for temperature distribution in a rectangular enclosure with black or gray
walls containing an absorbing, emitting, isotropically scattering medium. Compared
with the results available from Monte Carlo simulation and finite volume method
(FVM), the present FEM can predict the radiative heat transfer accurately. © 2005
Wiley Periodicals, Inc. Heat Trans Asian Res, 34(6): 386–395, 2005; Published online
in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20076
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1. Introduction

Radiative heat transfer is a major heat transfer model and it is usually strongly coupled with
fluid dynamics in many high-temperature systems such as boilers, furnaces, rocket engines, etc. An
accurate modeling of these systems requires a simultaneous solution of the radiative transfer equation
(RTE) and the fluid dynamics equations. In the last several decades, many methods have been
developed for solving the RTE. They include the zone method, Monte Carlo method, flux method,
discrete transfer method, P-N method, discrete ordinates method (DOM), finite volume method
(FVM), etc. Each of these methods has its own relative advantages and disadvantages and none of
them is superior to the others in all aspects. However, many numerical complications may arise from
incompatibilities between the radiative transport model and the discrete formulation employed for
fluid dynamics and other heat transfer modes. The finite element formulation for RTE avoids many
of these complications and has the advantage of greater compatibility with existing finite element
based heat transfer software. Besides, the FEM could simplify the problems of complex geometries
using unstructured meshes.

© 2005 Wiley Periodicals, Inc.
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Since the first applications of the FEM to radiative transport in the early 1980s, however, the
speed and memory capacity of computer hardware has increased dramatically and promises to
continue to do so in the future. With these points in mind, the continued development of the FEM for
radiative transport applications is warranted. Reddy and Murty (1978) [1] provide one of the earliest
applications of the FEM to radiative transport. This work considers the solution of integral equations
peculiar to two one-dimensional radiative transport problems using the FEM and do not include other
heat transport modes. A series of articles in the early 1980s consider the solution of one-dimensional
conduction and radiation problems. The work of Wu et al. [2] (1980) and Fernandes et al. [3] (1980)
considered 1D plane conduction and radiation problem. Fernandes et al. [4] (1982) extended the one-
dimensional plane formulation of the earlier work to cylindrical coordinates. This later work also
includes isotropic scattering. The most significant work involving combined convection, conduction,
and radiation heat transfer is provided by Chung et al. [5] (1984) and Utreja et al. [6] (1989). The
work of Brandon and Derby [7, 8] (1991, 1992) employs the approximation in a finite element
formulation of a two-dimensional axisymmetric, nonscattering combined mode problem. They also
suggest various techniques to reduce computational overhead in the evaluation of radiation integrals.
More recently, Piotr et al. [9] (2004) proposes a FEM to calculate temperature, conductive and
radiative heat flux distributions in a participating medium.

The objective of this study is to develop an accurate and efficient radiation model applicable
for 2D planar geometry using an unstructured meshes finite element method. Compared with the
results available of Monte Carlo simulation (M-C) and finite volume method (FVM), the present FEM
can accurately predict the radiation transfer.

Nomenclature

A: area

H1: Hilbert space of functions with continuous first derivatives

H1(N): N dimensional finite subspace spanned by the set of finite element basis functions

I: mean incident intensity

n: outward directed unit surface normal vector at the domain boundary

n: number of nodes in the finite element mesh

N: finite element basis function

q: heat flux

q*: dimensionless heat flux q∗ = q / σTg
4

qr: radiative flux vector

r: three-dimensional relative position vector

r*: position of point *

r̂: unit vector of position vector r̂ = r / |r|

ri∗: relative position between points i and *, ri∗ = ri − r∗
Sn(x): two-dimensional exponential integral function

T: temperature

V: volume

x, y: principal Cartesian coordinate directions
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Greek Symbols

∂Ω: domain boundary
ε: surface emissivity
κ: extinction coefficient κ = κa + κs

κa: absorption coefficient
κs: scattering coefficient
σ: Stefan–Boltzmann constant, 5.670 × 10–8 W ⋅ m–2 ⋅ K–4

Φ: scattering phase function
Ω: computational domain Ω ⊂ Rn

ω: single-scattering albedo

Subscripts and Superscript

*: dummy integration variables
i, j, k nodal indices

2. Numerical Model

Usually the transient term in radiative energy conservation equation is neglected. The
governing heat transport equation takes the form:

∇ ⋅ qr(r) = 0 (1)

∇ ⋅ qr(r) = 4πκa 




σT4(r)
π

 − I(r)




(2)

where ∇ ⋅ qr(r) is the divergence of the radiative heat flux, which represents the difference between
the energy emitted from a point through thermal radiation and the incident energy form all other points
in the domain. I(r) is the mean incident intensity at location r and represents the average incident
intensity at a given point in the region of interest as well as reflection and emission from the boundary
of the region. For a gray, isotropically scattering medium, the mean intensity at location is given by
Lin [10] (1988):

I(ri) = 
1

4π










− 

1
π

 ∫ 
∂Ω

(1 − ε)(qr(r∗) ⋅ n) 
[n ⋅ri

∗]

|ri
∗|2

 exp(− κ|ri
∗|) dA∗

− 
1
π

 ∫ 
∂Ω

εσT4(r∗) 
[n ⋅ ri

∗]

|ri
∗|2

 exp(−κ|ri∗|)dA∗ +











1
π

  ∫ 
Ω

κaσT4(r∗) 
exp(−κ|ri

∗|)
|ri

∗|2
 dV∗ + ∫ 

Ω

κsI(r∗) 
exp(−κ|ri∗|)

|ri
∗|2

 dV∗











(3)

The first two integrals in Eq. (3) represent diffuse reflection and emission from the boundaries
of the region. The third and fourth integrals in Eq. (3) represent the influence of volumetric emission
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and isotropic scattering at all other points in the domain on the incident intensity at point ri. Here, we
assume the physical parameters of the medium are uniform. The exponential terms in each of the
integrals represents the attenuation of radiation between location r* and the interest point ri, where κ
is the extinction coefficient, κ = κa + κs, and ri

∗ is the relative position vector given by ri
∗ = ri − r∗.

qr(r∗) is the radiative heat flux vector at point ri which is given by an expression similar to Eq. (3):

qr(ri) = 
1
π

 ∫ 
∂Ω

(1 − ε)(qr(r∗) ⋅ n)[n ⋅ ri
∗] ⋅ 

r̂i∗

|ri∗|
2  exp(− κ|ri

∗|)dA∗       

− 
1
π

 ∫ 
∂Ω

εσT4(r∗)[n ⋅ ri
∗] ⋅ 

r̂i
∗

|ri
∗|2

  exp(−κ|ri
∗|)dA∗ +

1
π

 ∫ 
Ω

κaσT4(r∗) 
r̂i

∗

|ri∗|
2  exp(−κ|ri

∗|)dV∗ + ∫ 
Ω

κsI(r∗) 
r̂i

∗

|ri
∗|2

  exp(−κ|ri
∗|) dV∗ (4)

n is the outward directed unit surface normal vector at the domain boundary r*. T(r*) is the temperature
of the differential volume dV* at r*.

3. Solution and Discussion

The principal approximation of the finite element formulation is the Galerkin approximation
which restricts the solution to a finite subspace of the Hilbert space, H1(N), which is spanned by a set
of basis vectors or functions N(x). In the simulation procedure by FEM, each of the unknowns in Eqs.
(3) and (4) may be expressed in terms of a linear combination of the finite element basis functions.
Here the finite element formulation is simplified considerably by employing the Swartz–Wendroff
approximation [7, 8]:

T(r) = ∑Tj

j=1

n

Nj(r)  I(r) = ∑Ij

j=1

n

Nj(r)  T4(r) = ∑Tj
4

j=1

n

Nj(r)
(5)

By substituting the basis expansions for the mean incident intensity and the fourth power of the
temperature into Eq. (3) and Eq. (4), the following compact form of discrete equations for the nodal
mean incident intensity may be obtained:

Ii = 
1

4π
 



− (1 − ε)qr,j ⋅ Riij − Tj

4

σεEiij − 





κaσ
π




Siij




 + κsIjSiij





(6)

where Eiij, Riij, and Siij are the compact integral factors. By examining the equations, it becomes
evident that, as long as the assumption of constant medium properties holds, the integral factors do
not depend on the solution itself and may be evaluated once and stored in memory. The factors are
defined as follows:
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Eiij = ∫Nj

∂Ω

 
[n ⋅ ri

∗]
|ri∗|

 S2(−κ|ri
∗|)dA∗ (7)

Riij = ∫ 
∂Ω

Nj
[n ⋅ ri

∗]
|ri∗|

 S2(− κ|ri
∗|) ⋅ ndA∗ (8)

Siij = π ∫ 
Ω

Nj 
S1(−κ|ri

∗|)
|ri

∗|
dV∗ (9)

Sn(x) is given as follows:

Sn(x) = 2
π

 ∫  
0

π / 2

exp(x sec θ)cosn−1 θdθ (10)

A similar expression for the radiative heat flux vector may also be obtained:

qr,i = − (1 − ε)qr,j ⋅ Rqij − Tj
4

σεEqij − 





κaσ
π




Sqij




 + κsIjSqij (11)

where Eqij, Rqij, and Sqij are the compact integral factors:

Eqij = ∫ 
∂Ω

Nj 
r̂i

∗

|ri
∗|

 S3(−κ|ri
∗|) ⋅ [n ⋅ ri

∗]dA∗ (12)

Rqij = ∫ 
∂Ω

Nj 
r̂i

∗

|ri
∗|

 S3(−κ|ri
∗|) ⋅ [n ⋅ ri

∗]dA∗ (13)

Sqij = π ∫ 
Ω

Nj 
r̂i

∗

|ri
∗|
 S2(−κ|ri

∗|)dV∗ (14)

In this study, by the Galerkin translation, the weak form of the energy Eq. (1) is derived by
setting the inner product of the residual vector with each of the basis functions Ni equal to zero.
Meanwhile, the fourth power of the temperature in the control Eq. (2) is expanded by the Taylor series
Tj

4 = 4Tj
∗3Tj − 3Tj

∗4, where Tj
∗ is assumed to be the temperature value of previous iteration (the initial

value is guessed). This results in N simultaneous equations that are similar to those in Eq. (2) with
the weight function Ni:

(4Tj
∗3Tj − 3Tj

∗4) ∫ 
Ω

NiNjdΩ − Ij ∫ 
Ω

NiNjdΩ = 0 (15)
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Note that the energy conservation equation and the radiative transport equation should be
simulated by FEM simultaneously. In order to get the accurate results with less time consumption,
the following key aspects should be focused on

1) Discrete procedure of the radiative transfer equation. By assuming the nodal temperature,
the nodal mean incident intensity I(r) is evaluated from RTE, then I(r) is substituted directly into the
energy equation as the initial value to evaluate the temperature distribution through the iterative
solution.

2) Selection of a suitable method to solve the linear equations. Since the coefficient matrix of
the equations may occur non-positive, the Gauss–Jordan elimination method is selected. Meanwhile,
since the coefficient matrix is a big sparse symmetric matrix, a new one-dimensional array storage
technique is used to save memory.

3) Selection of the integral method. In this study, the low-order Gauss–Legendre integration
provides sufficient accuracy for all the other elements not in the near field of node i. For |ri

∗| → 0, the
ten point integration rule is used without being excessively expensive.

4) Treatment of the boundary condition. For the pure radiative heat transfer model, there is a
temperature discontinuity between the boundary and the media. The temperature value is not identical
at the same node point. For the first type of boundary conditions, the boundary nodal temperature
values of the wall are given. However, considering the temperature discontinuity, the boundary nodal
temperature value of media is not fixed in every iterative procedure.

3.1 The radiative transfer in a rectangular medium

The present case provides a solution for the temperature distribution in a rectangular enclosure
(1 m × 1 m) with black or gray walls containing an absorbing, emitting, isotropically scattering
medium. The three points of triangle element and four points of quadrilateral element are used
respectively. 

Case 1

The physical model is as follows: ε = 1.0, κe = 2.0 m–1, ω = 0.5. The temperature of the left
side and right surface are 1000 K and 500 K, respectively. The temperature distribution of the top and
bottom surface is T = 1000 – 500x (K) along the x axis. The temperature of the medium is shown in
Fig. 1.

Table 1 shows the comparison of temperature distribution along the x axis at y = 0.7727 m by
FEM with unstructured element and MC [11] simulation with meshes 31 × 31. Three cases with
different element numbers (1404, 1864, and 2482) are selected to analyze the performance of FEM.
As noted in Table 1, the maximum relative errors are about 2.54%, 2.34%, and 0.48%. It indicates
that our FEM simulation could accurately predict the radiation transfer.
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Case 2

The boundary surface is assumed to be gray with ε = 0.2, ε = 0.5, and ε = 0.8, respectively.
The other parameters are the same and the temperature distribution is shown in Fig. 2.

As noted in Figs. 1 and 2, with the decrease of the boundary emissivity (the increase of the
boundary reflectivity), the temperature distribution trends to be more uniform. The reason is that the
emission power is proportional to the emissivity of the boundary wall for the first kind of the boundary
condition. For the gray boundary, the radiative energy is reflected partially to the medium, which

Fig. 1. The temperature distribution with black boundary (1404 elements).

Table 1. Comparison of Results by FEM and M-C Simulation (along y = 0.7727 m)
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make the temperature distribution of the media become more uniform. Given an increase of the
boundary reflectivity, the temperature distribution of the media becomes more and more uniform and
the temperature gradient decreases gradually.

3.2 The radiative transfer in irregular 2D media

Reference 12 calculated the dimensionless heat flux q* of an irregular quadrilateral enclosure
without scattering by the FVM. In the present study, the FEM is used to solve the same problem with
meshes 10 × 10 (as shown in Fig. 3). The temperature of the media is Tg and the boundary is a black
wall with 0 K. The absorption coefficient is given as 0.1 m–1, 1.0 m–1, and 10 m–1, respectively. The
results are shown in Fig. 4. It validates that the present FEM simulation could accurately predict the
radiation transfer in irregular 2D enclosure.

Fig. 2. The temperature distribution of gray boundary with different emissivity (1404 elements).

     (a) ε = 0.2          (b) ε = 0.5           (c) ε = 0.8

Fig. 3. Computation grid of the irregular quadrilateral enclosure.
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4. Conclusions

In the present study, an unstructured finite element method (FEM) for radiative heat transfer
has been developed and it is applied for 2D problems. The present work provides a solution for
temperature distribution in a rectangular enclosure with black or gray walls containing an absorbing,
emitting, isotropically scattering medium. Compared with the available results of Monte Carlo
simulation and FVM, the present FEM could not only predict the radiation transfer accurately and
efficiently but is also flexible in treating problems with complicated geometries. As the finite element
formulation for RTE has the advantage of greater compatibility with the discrete formulation
employed for fluid dynamics and other heat transfer modes, the continued development of the FEM
for radiative transport applications in 3D problems will be studied in the future.
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