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Introduction 

• Radiative heat transfer or thermal radiation is the 

science of transferring energy in the form of 

electromagnetic waves. 

•  Unlike heat conduction, electromagnetic waves do 

not require a medium for their propagation. 

Therefore, because of their ability to travel across 

vacuum, thermal radiation becomes the dominant 

mode of heat transfer in low pressure (vacuum) and 

outer-space applications.  

2 AAU/AAiT/SMiE#Yilma 



• Another distinguishing characteristic between conduction 

(and convection, if aided by flow) and thermal radiation is 

their temperature dependence. While conductive and 

convective fluxes are more or less linearly dependent on 

temperature differences, radiative heat fluxes tend to be 

proportional to differences in the fourth power of 

temperature (or even higher). 

 

• For this reason, radiation tends to become the dominant 

mode of heat transfer in high-temperature applications, such 

as combustion (fires, furnaces, rocket nozzles), nuclear    

reactions (solar emission, nuclear weapons), and others. 
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• All materials continuously emit and absorb electromagnetic waves, 

or photons, by changing their internal energy on a molecular level. 

Strength of emission and absorption of radiative energy depend on 

the temperature of the material, as well as on the wavelength λ, 

frequency ν, or wave number η, that characterizes the 

electromagnetic waves, 
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Thermal radiation is that electromagnetic radiation 

emitted by a body as a result of its temperature.  

Unlike conduction and convection, it requires no 

matter for the transfer.  All electromagnetic 

radiations are propagated at the speed of light, given 

as the product of wavelength and frequency. 

      c = λν  

1Å (angstrom) = 10-8 cm. 

A portion of the electromagnetic spectrum is shown in    

figchp11\fig11.1.pptx  

Thermal radiation lies in the range about 0.1 to 

100μm.  The visible light is between 0.35 to 0.75 

μm. 
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Fig.11.1  Spectrum of electromagnetic radiation 
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The modern theory views thermal radiation as the 

propagation of a collection of particles called 

photons or quanta with quantum of energy given by 

  E = hν       h=6.625x10-34 J.s  (Planck’s constant) 

Using  E = mc2 = hν  one can find the momentum of a 

photon as  

Momentum  = mc = hν/c  

Quantum – statistical thermodynamics gives the 

energy density of radiation per unit volume and per 

unit wave length as 
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When the above is integrated over all wavelengths it 

gives 

     

 

 

The above is called the Stefan-Boltzmann law, Eb is 

the energy(W) radiated per unit time and per unit 

area by the ideal radiator, and σ is the Stefan-

Boltzmann constant given by 

 σ = 5.669x10-8 W/m2.K4   
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Radiation Properties 

When radiant energy is incident on a surface (called 

irradiation), part of the radiation is reflected, part is 

absorbed, and part is transmitted as shown in 

figchp11\fig11.2.pptx .   

For irradiation given by G 

G = αG +ρG + τG   or α +ρ+τ =1 

α = Absorptivity  ρ = Reflectivity τ = Transmissivity 

For solid bodies that do not transmit 

  α +ρ =1 

Two types of reflections: 

Specular- incidence and reflection angles are  9 AAU/AAiT/SMiE#Yilma 
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Fig.11.2  Sketch showing effects of radiation 
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equal. 

Diffuse – incident beam is distributed uniformly in all 

directions after reflection figchp11\fig11.3.pptx 

The emissive power of a body E is defined as the 

energy emitted by the body per unit area per unit 

time. Shown in figchp11\fig11.4.pptx  the black 

enclosure will absorb all the incident radiation 

falling upon it.  It will also emit radiation according 

to the T4 law.  Let the radiant flux arriving at some 

area in the enclosure be qi W/m2.  If a body is placed 

inside the enclosure and allowed to come to 

equilibrium, the energy absorbed and emitted by the 

body are equal.  
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Fig.11.3  (a) Specular (           ) and (b) diffuse 
reflection 
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Fig.11.4  Model used to derive Kirchoff’s law 
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At equilibrium 

  EA = qiAα  

If the body had been a black body, then 

   EbA = qiA(1) 

The above will give the ratio of the emissive power of 

a body to the emissive power of a blackbody at the 

same temperature as the absorptivity.  This  ratio is 

also defined as the emissivity ε of the body, given as  
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The equality of α and ε is called Kirchoff’s identity. 

The Gray Body  

A gray body has its monochromatic emissivity ελ 

independent of the wavelength.  Monochromatic 

emissivity is defined as the ratio of the 

monochromatic emissive power of the body to the 

monochromatic emissive power of a black body at 

the same wavelength and temperature.  
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The total emissivity of the body and that of a 

blackbody can be determined as 

 

 

From the above 

 

 

 

If the gray body condition is imposed, ελ = constant, 

the above equation reduces to 

   ε = ελ  
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It has to be noted that the emissivities of various 

substances vary widely with wavelength, 

temperature, and surface condition. 

For a blackbody, according to Planck, Ebλ (spectral 

emissive power) is given by 

 

 

 

 λ=wavelength, μm 

 T=temperature, K 

 C1 = 3.743 x 108 W.μm4/m2 

 C2 = 1.4387 x 104 μm . K 
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• This emissive power is plotted in 

figchp11\fig11.5.pptx . Close observation of the 

curves shows a shift of the peak points to the shorter 

wavelengths for higher temperatures.  This shift is 

defined by Wien’s displacement law given by  

 λmax T = 2897.6 μm.K 

• The sun at 5800 K is considered as a black body. 

The maximum emission is in the visible range and 

this appears as white.  For a black body at 1000K, 

peak emission occurs at 2.90 μm (not visible),  with 

some of the emitted radiation appearing visible as 

red light. 
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Fig.11.5  Spectral blackbody emissive power  
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 figchp11\fig11.6.pptx   shows the spectral energy 

density of a black body at 1922 K, a corresponding 

gray body with ε = 0.6 and approximate behavior of 

a real surface.  

Band Emissions 

Frequently it will be of interest to get the amount of 

energy radiated from a black body in a certain 

specified wavelength range, figchp11\fig11.7.pptx.  

This is expressed as a fraction given by 
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Fig.11.6  Comparison of emissive power of ideal 
blackbodies, and gray bodies with that of a real 
surface AAU/AAiT/SMiE#Yilma 21 



 

 

 

 

 

 

 

 

 

 

Fig.11.7  Blackbody radiation emission in the spectral 
band 0 to λ 
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Rearranging the spectral emission equation as 

 

 

The results of the above have been tabulated (Table 1) 

and graphically in figchp11\fig11.8.pptx . 

For radiant energy emitted between wavelengths λ1 

and λ2 

 

 

From practical observations, ordinary glass  is 

transparent to solar radiation while not transmitting  
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Fig. 11.8  Fraction of blackbody radiation in 
wavelength interval 
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earthly radiations.  This is what is called the 

greenhouse effect. 

Solar radiation approximates that of a black body at 

5800K.  Ordinary window glass transmits radiation 

up to about 2.5 μm.  This gives λT= 2.5 x 5800 = 

14500 μm.K.  Referring to the table, about 97 % of 

the radiation emitted is transmitted through the 

glass. Glass is transparent for solar radiation. 

Whereas earthly radiations at about 300 K λT=2.5 x 

300 = 750 μm.K.  The table shows only a minute 

fraction (less than 0.001 percent) of this radiation is 

transmitted. Glass is opaque for earthly radiations.  

There comes the greenhouse effect! 
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Example 11.1 

A glass plate 30 cm square is used to view radiation 

from a furnace.  The transmissivity of the glass is 

0.5 from 0.2 to 3.5 μm.  The emissivity may be 

assumed to be 0.3 up to 3.5 μm and 0.9 above that.  

The transmissivity of the glass is zero, except in the 

range from 0.2 to 3.5 μm.  Assuming that the 

furnace is a blackbody at 2000oC, calculate the 

energy absorbed in the glass and the energy 

transmitted. 

Solution 

  T = 2000oC = 2273 K 

 

 

 

26 AAU/AAiT/SMiE#Yilma 



  λ1T = (0.2)(2273) = 454.6 μm.K 

  λ2T = (3.5)(2273) = 7955.5 μm.K 

  A = (0.3)2 = 0.09 m2 

From table 

 

 

 σT4 = (5.669 x 10-8)(2273)4 = 1.5133 x106 W/m2  

Total incident radiation is  

 0.2 μm <  λ <3.5 μm   

  = (1513.3)(0.85443 - 0)0.09= 116.4 kW 

Total radiation transmitted = (0.5) (116.4) = 58.2 kW 
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Total radiation absorbed = 34.92 +17.84 = 52.76 kW 
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Radiation Shape Factor 

Given two black surfaces which see each other, as 
shown in figchp11\fig11.9.pptx , a general 
expression for energy exchange between such 
surfaces at different temperatures will be required.  
This will require the concept of radiation shape 
factors or view factors.  These are defined as 
follows. 

 F1-2 = fraction of energy leaving surface 1 which 
       reaches surface 2   

  F2-1 = fraction of energy leaving surface 2 which 
       reaches surface 1 

  Fm-n = fraction of energy leaving surface m which 
       reaches surface n 
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Fig. 11.9  Area elements used in deriving shape factor 
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The energy leaving surface 1 and arriving at surface 2 

is       Eb1A1F12 

and the energy leaving surface 2 and arriving at 

surface 1 is       Eb2A2F21  

All radiations falling on black surfaces will be 

completely absorbed. 

The net energy exchange is given by 

Q1-2 = Eb1A1F12 - Eb2A2F21 

For T1 = T2,       Q1-2 =0        

This will give A1F12  =  A2F21    

This reciprocity relation will hold true for all 

situations.  
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The net heat exchange will therefore be 

 Q1-2 = A1F12(Eb1 – Eb2) = A2F21(Eb1 – Eb2) 

The general reciprocity relation for any two surfaces i 

and j will be 

 AiFij = AjFji 

The direction of emission from dA1 is given with 

reference to the zenith and azimuthal angles as 

shown in figchp11\fig11.10.pptx  .  This radiation 

passes through a differential area dAn which is 

normal to the path of the radiation.  This area 

subtends a solid angle dω when viewed from a point 

on dA1. The similarity of the angle subtended by an 

arc and  
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Fig.11.10  Emission of radiation from a differential 
area dA1 into a solid angle dω subtended by dAn at a 
point dA1 
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the solid angle subtended by an area is shown in 

figchp11\fig11.11.pptx .  The plane angle dα has a 

unit of radians while that  of dω  is the steradian (sr). 

To determine a general relation for shape factors, 

consider the angles θ1 and θ2, the angles with 

reference to the normals of the surfaces.  The 

projection of dA1 on the line between centers is 

  dA1 cos θ1 

The radiation intensity is that emitted per unit area and 

per unit of solid angle in a certain specified 

direction.  This is given by Ib considering a black 

surface.  
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Fig.11.11  Definition of (a) plane and (b) solid angles 
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The differential solid angle can easily be determined as 

shown in figchp11\fig11.12.pptx . This is given by 

 

 

Thus the energy leaving dA1 in the direction of θ1 is 

 Ib dA1 cos θ1 

The radiation arriving at some areal element dAn at a 

distance r from A1 would be 

  Ib dA1 cos θ1 (dω)      

The intensity from the differential area can be determined 

in terms of the emissive power by  
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Fig.11.12  The solid angle subtended by dAn at a point 
on dA1 in the spherical coordinate system   
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integrating over a hemisphere enclosing the elemental 

area dA1 as shown in figchp11\fig11.13.pptx . 

 

 

 

 

 With respect to the line, r,  connecting the two 

differential areas dA1 and dA2, the area dAn is given 

by 

 dAn = cos θ2 dA2 

This will give the energy leaving dA1 and arriving  
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Fig.11.13  Emission from a differential element of area 
dA1 into a hypothetical hemisphere centered at a 
point on dA1 

AAU/AAiT/SMiE#Yilma 39 



at dA2 as 

 

 

 

And the energy leaving dA2 and arriving at dA1 will be 

 

 

 

 

As the integrals are exactly the same, the above 
equations give the reciprocity relation 

  AiFij = AjFji 
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The view factor for an enclosure with N surfaces with 

temperatures T1, T2, …., TN is given by 

 

 

The term Fii is non zero if it sees itself. 

For radiation exchange in an enclosure of N surfaces, 

a total of N2 view factors is needed as arranged  in 

the matrix form 
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Out of this N2 view factors, which require N2 

equations, there are N equations formed by the 

summation rule and N(N-1)/2 equations formed by 

the reciprocity relations. This will then require only 

(N2-N(N-1)/2)=N(N-1)/2 view factors to be 

determined.  For a three surface enclosure we need 

to determine three view factors only to completely 

determine the view factors. 

As an example consider a two surface enclosure 

involving two spheres as shown in 

figchp11\fig11.15.pptx .  For this we will need to 

determine four view factors (F11, F12, F21, F22).   

 

 

 

42 AAU/AAiT/SMiE#Yilma 

figchp11/fig11.15.pptx
figchp11/fig11.15.pptx
figchp11/fig11.15.pptx


 

 

 

 

 

 

 

 

 

 

Fig.11.15  View factors for the enclosure formed by 
two spheres 
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Only N(N-1)/2 view factors need to be determined to 

completely get the values of the view factors. One 

view factor is to be determined directly.  By 

inspection F11 = 0 .  For the rest use the equations 

formed by summation given by 

  F11 + F12 =1   F12 =1 

  F21 + F22 =1 

And the reciprocity relation  

  A1F12 = A2F21   

(three equations and three unknowns)  

     F21= A2 /A1      F22  = 1 - F21  = 1 - A2 /A1     
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Fig.11.14  Areas used to illustrate view factor relations 
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For other complicated geometries, the double integral 

equations have been solved and the results given in 

tables and graphs.(tables 2&3, and graphs 1, 2, and 

3) 

For view factors to a subdivided surface shown in  

figchp11\fig11.14.pptx, consider the radiation from 

surface i to surface j, which is divided into n 

components, the view factor is given as a summation 
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The view factor when radiation originates from a 

subdivided surface can be determined as follows: 

Multiplying the above equation by Ai and applying the 

reciprocity relation gives  
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Example 11.2 

Consider a diffuse circular disk of diameter D and area 

Aj and a plane diffuse surface of area Ai <<Aj.  The 

surfaces are parallel, and Ai is located at a distance L 

from the centre of Aj.  Obtain an expression for the 

view factor Fij. 
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Solution 

We will use 

 

θi, θj, and R are approximately independent of position 

on Ai, the above reduces to 

 

 

Using R2 =r2 +L2, cos θ = (L/R) and dAj = 2πrdr , the 

integration will give 
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Example 11.3 

Determine all the view factors for the following 

geometries. 

1. Sphere of diameter D inside a cubical box of length 

L=D. 

2. Diagonal partition within a long square duct. 

3. End and side of a circular tube of equal length and 

diameter. 
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Solution 

 

 

 

 

 

1.  Sphere within a cube: 

 F12 =1        F21 = (A1/A2)F12 = (πD2/(6L2)x1 = π/6 

From summation relation 

 F11 + F12 = 1      →  F11 = 0 

 F21 + F22 = 1      →  F22 = (1- π/6) 
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2. Partition within a square duct 

By inspection F11 = F22 = F33 = 0 

Summation equations 

 F12 + F13 = 1  (symmetry F12 = F13 =0.5) 

 F21 + F23 = 1 

 F31 + F32 = 1 

A2 = A3 = L       A1 = (√2)L 

Reciprocity 

 A1F13 = A3F31    F31 = (A1/A3)F13= (√2)F13=0.71 

 A1F12 = A2F21    F21 = (A1/A2)F12=(√2)F12 =0.71 

 A2F23 = A3F32    F32 = (A2/A3)F23= F23 

 F23 = 1-F21=1-0.71=0.29 

 F32 = F23 = 0.29 
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3. Circular tube: 

 Using Graph 2  with r3/L = 0.5 and L/r1 = 2  will give F31≈0.17 

 F11 = 0  F33 = 0   

A1 = A3 = (πD2/4)       A2 = πD2 

Summation equations 

 F12 + F13 = 1   

 F21 + F22 + F23 = 1  (symmetry    F21 = F23) 

 F31 + F32 = 1            (F32 = 1-F31 = 0.83) 

Reciprocity 

A2F23 = A3F32    F23 = (A3/A2)F32= (1/4)F32=0.208        F21=0.208 

 A1F13 = A3F31    F13 = (A3/A1)F31= F31=0.17 

 F22 = 1 – (F21 + F23) = 0.58 

 A1F12 = A2F21    F12 = (A2/A1)F21=(4)F21=0.83   
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Radiation Exchange Between Surfaces 

When radiation falls on an opaque surface there will 
be a possibility of absorption and reflection.  In an 
enclosure there will be multiple reflections with 
partial absorptions.  

Blackbody Radiation Exchange  

The simplest radiation exchange will be between black 
surfaces where there will be no possibility of 
reflection. 

The following terms will need to be defined. 

G = irradiation  

 = total radiation incident upon a surface per unit  
time per unit area 

 

 

 

 

54 AAU/AAiT/SMiE#Yilma 



J = radiosity 

 = total radiation which leaves a surface per unit time 

per unit area 

For a black surface radiosity is the same as the 

emission. 

For the analysis of radiative heat transfer between 

black surfaces, we will use figchp11\fig11.16.pptx. 

Define qi→j as the rate at which radiation leaves 

surface i and is intercepted by surface j.  This can be 

expressed as 
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Fig.11.16  Radiation transfer between two surfaces 
that may be approximated as black bodies 
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This will allow the construction of a thermal network 

that satisfies 
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For surface i being in an enclosure and interacting 

with N surfaces at different temperatures, the above 

equation can extended to 

 

 

 

Example 11.4 

A furnace cavity, which is in the form of a cylinder of 

75 mm diameter and 150 mm length, is open at one 

end to large surroundings that are at 27oC.  The sides 

and bottom, which may be approximated as black 

bodies, are heated electrically, well insulated,  
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and maintained at temperatures of 1350 and 1650oC, 

respectively.  How much power is required to 

maintain the furnace conditions. 
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Solution 

 

 

 

 

 

 

Since the surrounding is large it may be treated as a 

black body. Here the heat transfer by convection will 

be assumed to be negligible compared to the 

radiative heat transfer. 
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With T3 = Tsur, the heat loss can be expressed as 

 q = q13 + q 23 

Using appropriate equations for radiation between 

black surfaces 

 

For the two opposing surfaces (top and bottom), using 

(rj/L) = (0.0375/0.15) = 0.25 and  

   (L/ri) = (0.15/0.375) = =4  

 F23 = 0.06   (From view factor graphs) 

Use summation rule  

   F21 + F23 =1        F21 = 1-0.006 = 0.94 
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Use reciprocity relation  

 A1F12 = A2F21        to get 

 

 

From symmetry F13 = F12  

Substitution in q gives 
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 q = 1639 +205 = 1844 W 

 

Radiative exchange between nonblackbodies 

Here for an opaque body, the radiosity will also 

involve the reflected part from the irradiation as 

shown in figchp11\fig11.17.pptx .  More 

complication is when the reflection is back and forth 

between the heat transfer surfaces several times. 

The radiosity is given by 

 J = εEb +ρG 

Using  ρ = 1 – α = 1- ε 
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Fig.11.17  (a)  Surface energy balance for opaque 
materials; (b)  element representing “surface 
resistance” in the radiation network method AAU/AAiT/SMiE#Yilma 64 



the radiosity expression becomes 

 J = εEb + (1 – ε)G    G = (J - εEb )/(1 – ε) 

The difference between the radiosity and the 

irradiation gives net energy leaving the surface as 

(q/A) = J – G =J - (J - εEb )/(1 – ε) 

After substitution of G and simplification gives 

 

 

The above allows the construction of a network with 

the surface resistance as indicated.   
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If we consider the radiant energy exchange between 

two surfaces, A1 and A2, the net heat transfer from 

surface 1 to surface 2 can easily be determined as 

  q1-2 = J1A1F12 – J2A2F21 

Using the reciprocity relation    A1F12=A2F21 

  q1-2 = (J1– J2)A1F12 = (J1– J2) A2F21 

For network construction the above can be written as 

 

 

where the resistance is indicated as space resistance. 
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The radiation exchange between two surfaces which 
exchange heat with each other and nothing else can be 
represented as a network given by 
figchp11\fig11.18.pptx .  From this network the net 
heat transfer from surface 1 to surface 2 can easily be 
determined as 

 

 

 

 

 

 

 For other two surface enclosures, Table 4  gives the 
necessary information. 
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Fig.11.18  The two surface enclosure with network 
representation 
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For a three body problem, the network is given in  

figchp11\fig11.19.pptx . 

 

 

Kirchoff’s current law can be used to determine the 

radiosities.  Sum of heat transfers to a node is zero. 

This can be extended for a radiative interaction of a 

surface with other surfaces that form an enclosure as 

 

 

For any number N of surfaces forming the enclosure 

there will be N equations with JN unknowns. 
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Fig.11.19  Radiation network for three surfaces which 
see each other and nothing else 

AAU/AAiT/SMiE#Yilma 70 



Radiation Shields 

Radiation shields use low emissivity materials (high 

reflectivity) placed between radiating surfaces as 

shown in figchp11\fig11.20.pptx  (a). 

If such a surface is placed additional surface and space 

resistances will be created, thus reducing the heat 

transfer.  The network is shown in (b).  The heat 

transfer rate can easily be determined from the series 

resistance network as 
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Fig.11.20  Radiation exchange between large parallel 
planes with a radiation shield and its network 
representation AAU/AAiT/SMiE#Yilma 72 



Insulated surfaces and Surfaces with large areas. 

For a perfectly insulated surface or that reradiates all 

the energy incident upon it, the heat flow from such 

a surface is zero.  This makes the potential 

difference across the surface resistance to be zero, 

resulting in J=Eb.  The insulated surface does not 

have zero resistance. 
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Large surface area (A→∞) has a surface resistance 

approaching zero.  This behaves as a black body as 

it tends to absorb all the radiant energy falling on it.  

For this the surface resistance is zero (ε=1) and this 

gives J = Eb.  Thus the two cases – insulated surface 

and surface with a large area – both have J = Eb . 

If two flat or convex surfaces are connected by or 

enclosed in a reradiating surface as shown in the 

combustion furnace (figchp11\fig11.21.pptx for the 

schematic figchp11\fig11.22.pptx ), as no net heat is 

exchanged with this body, JR = EbR. 

 F1R = 1 – F12           F11 = F22 = 0 

 F2R = 1 – F21 
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Fig.13.21  Enclosure with reradiating surface 
AAU/AAiT/SMiE#Yilma 75 



 

 

 

 

 

 

 

 

 

 

Fig.11.22  A three surface enclosure with one surface 
reradiating and the network representation 
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The network is a simple series parallel arrangement 

which can be shown to give 

 

 

 

After determining  J1 and J2, then JR can be determined 

from 

 

 

Since              the temperature of the reradating surface 

can be determined 
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Example 11.5 

A paint baking oven consists of a long, triangular duct 

in which a heated surface is maintained at 1200 K 

and another surface is insulated.  Painted panels, 

which are maintained at 500 K, occupy the third 

surface.  The triangle is of width W = 1 m on a side, 

and the heated insulated surfaces have an emissivity 

of 0.8.  The emissivity of the panels  is 0.4.  During 

the steady-state operation, at what rate must energy 

be supplied to the heated side per unit length of the 

duct to maintain its temperature at 1200 K?  What is 

the temperature of the insulation surface?   
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Solution 

The system will be modeled as a three surface 

enclosure as shown in the figure below 
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1.  The heat transfer rate to be supplied is determined 

from 

 

 

 

Symmetry:  F12 = F1R = F2R 

 A1 = A2 = WL           L is length of duct  
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2.  For the temperature of the insulated surface use 

will be made of the equality of JR and EbR.  To get JR 

use 

 

 

 

81 

2

48'

2

2

2
22

2

48'

1

1

1
11

22

2

11

1

/59043

)37000(
14.0

4.01
)500(1067.5

1

/108323

)37000(
18.0

8.01
)1200(1067.5

1

0
)/1()/1(

mW

x
x

xq
W

EJ

mW

x
x

xq
W

EJ

FA

JJ

FA

JJ

b

b

R

R

R

R





































AAU/AAiT/SMiE#Yilma 



Substitution gives 
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