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Introduction

« Radiative heat transfer or thermal radiation is the
science of transferring energy iIn the form of
electromagnetic waves.

« Unlike heat conduction, electromagnetic waves do
not require a medium for their propagation.
Therefore, because of their ability to travel across
vacuum, thermal radiation becomes the dominant
mode of heat transfer in low pressure (vacuum) and
outer-space applications.



« Another distinguishing characteristic between conduction
(and convection, if aided by flow) and thermal radiation is
their temperature dependence. While conductive and
convective fluxes are more or less linearly dependent on
temperature differences, radiative heat fluxes tend to be
proportional to differences in the fourth power of
temperature (or even higher).

« For this reason, radiation tends to become the dominant
mode of heat transfer in high-temperature applications, such
as combustion (fires, furnaces, rocket nozzles), nuclear
reactions (solar emission, nuclear weapons), and others.
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 All materials continuously emit and absorb electromagnetic waves,
or photons, by changing their internal energy on a molecular level.
Strength of emission and absorption of radiative energy depend on
the temperature of the material, as well as on the wavelength A,
frequency v, or wave number r, that characterizes the

electromagnetic waves,
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Thermal radiation is that electromagnetic radiation
emitted by a body as a result of its temperature.
Unlike conduction and convection, it requires no
matter for the transfer. All electromagnetic
radiations are propagated at the speed of light, given
as the product of wavelength and frequency.

C=A\v
1A (angstrom) = 108 cm.

A portion of the electromagnetic spectrum Is shown In
figchp11\figll.1.pptx

Thermal radiation lies in the range about 0.1 to
100um. The visible light is between 0.35 to 0.75
um.



figchp11/fig11.1.pptx
figchp11/fig11.1.pptx
figchp11/fig11.1.pptx
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Fig.11.1 Spectrum of electromagnetic radiation
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The modern theory views thermal radiation as the
propagation of a collection of particles called
photons or quanta with guantum of energy given by

E=hv  h=6.625x103*]J.s (Planck’s constant)

Using E = mc? = hv one can find the momentum of a
photon as

Momentum = mc = hv/c

Quantum — statistical thermodynamics gives the

energy density of radiation per unit volume and per

unit wave length as
8zhcA™

SRETAT k = Boltzmann constant

—1:38066x10 > J / moleculeK



When the above Is integrated over all wavelengths it
gives

E, =oT"

The above is called the Stefan-Boltzmann law, E; is
the energy(W) radiated per unit time and per unit
area by the ideal radiator, and o Is the Stefan-
Boltzmann constant given by

o = 5.669x10-8 W/m?.K*



Radiation Properties

When radiant energy is incident on a surface (called
irradiation), part of the radiation is reflected, part Is
absorbed, and part Is transmitted as shown In

figchpl1\figll.2.pptx .
For irradiation given by G
G=u0G+pG+1tG ora+p+t=1
o = Absorptivity p = Reflectivity t =
For solid bodies that do not transmit
a+p =1
Two types of reflections:

ransmissivity

Specular- incidence and.reflection angles are


figchp11/fig11.2.pptx
figchp11/fig11.2.pptx
figchp11/fig11.2.pptx

Incident radiation Reflection

\ 3 Absorbed

; Transmitted

Fig.11.2 Sketch showing effects of radiation
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equal.

Diffuse — incident beam is distributed uniformly in all
directions after reflection figchp11\figll.3.pptx

he emissive power of a body E Is defined as the
energy emitted by the body per unit area per unit
time. Shown in figchp11\figll.4.pptx the black
enclosure will absorb all the incident radiation
falling upon it. It will also emit radiation according
to the T# law. Let the radiant flux arriving at some
area in the enclosure be g, W/m2. If a body is placed
Inside the enclosure and allowed to come to
equilibrium, the energy absorbed and emitted by the
body are equal.



figchp11/fig11.3.pptx
figchp11/fig11.3.pptx
figchp11/fig11.3.pptx
figchp11/fig11.4.pptx
figchp11/fig11.4.pptx
figchp11/fig11.4.pptx

Fi9.11.3 (a) Specular ( ¢, =¢, ) and (b) diffuse
reflection
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Black
enclosure

Fig.11.4 Model used to derive Kirchoff’s law
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At equilibrium
EA = g,Aa
If the body had been a black body, then
EpA = giA(L)
The above will give the ratio of the emissive power of
a body to the emissive power of a blackbody at the

same temperature as the absorptivity. This ratio Is
also defined as the emissivity ¢ of the body, given as



The equality of o and ¢ Is called Kirchoff’s identity.
The Gray Body

A gray body has its monochromatic emissivity ¢,
Independent of the wavelength. Monochromatic
emissivity Is defined as the ratio of the
monochromatic emissive power of the body to the
monochromatic emissive power of a black body at
the same wavelength and temperature.



The total emissivity of the body and that of a
blackbody can be determined as

E=| 5,E,,d2 and E,=| E,d2=oT"

From the above

E Io &, Ep,d4
- E, -~ oT*

E

If the gray body condition is imposed, &, = constant,
the above equation reduces to

£=¢,



It has to be noted that the emissivities of various
substances vary widely with wavelength,
temperature, and surface condition.

For a blackbody, according to Planck, E,, (spectral
emissive power) Is given by

A=wavelength, um
T=temperature, K

C, =3.743 x 108 W.um*#/m?
C,=1.4387 x 10* um...K



* This emissive power IS plotted I
figchpl11\figll.5.pptx . Close observation of the

curves shows a shift of the peak points to the shorter
wavelengths for higher temperatures. This shift Is
defined by Wien’s displacement law given by

Ao T = 2897.6 um.K

'he sun at 5800 K is considered as a black body.
"he maximum emission is In the visible range and

t

nis appears as white. For a black body at 1000K,

peak emission occurs at 2.90 um (not visible), with
some of the emitted radiation appearing visible as
red light.


figchp11/fig11.5.pptx
figchp11/fig11.5.pptx
figchp11/fig11.5.pptx
figchp11/fig11.5.pptx
figchp11/fig11.5.pptx
figchp11/fig11.5.pptx
figchp11/fig11.5.pptx
figchp11/fig11.5.pptx
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Fig.11.5 Spectral blackbody emissive power
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figchpl11\fig1l.6.pptx shows the spectral energy
density of a black body at 1922 K, a corresponding
gray body with € = 0.6 and approximate behavior of
a real surface.

Band Emissions

Frequently it will be of interest to get the amount of
energy radiated from a black body in a certain
specified wavelength range, figchp11\figll./.pptx.

his Is expressed as a fraction given by

)
E, dA

by, __J0

E,. [ E ,dA

J0



figchp11/fig11.6.pptx
figchp11/fig11.6.pptx
figchp11/fig11.6.pptx
figchp11/fig11.7.pptx
figchp11/fig11.7.pptx
figchp11/fig11.7.pptx
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Fig.11.6 Comparison of emissive power of ideal
blackbodies, and gray bodies with that of a real
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Fig.11.7 Blackbody radiation emission in the spectral
band O to A
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Rearranging the spectral emission equation as
By _ Cy
-I-5 (ET)S(ECZMT _1)
The results of the above have been tabulated (Table 1)
and graphically in figchp11\fig11.8.pptx .

For radiant energy emitted between wavelengths 2,
and A,

E, E
E, = Ebw( > Ebwlj E, =oT
Do, Do_c

From practical observations, ordinary glass IS
transparent to solar radiation while not transmitting

— f(AT)



figchp11/fig11.8.pptx
figchp11/fig11.8.pptx
figchp11/fig11.8.pptx
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Fig. 11.8 Fraction of blackbody radiation in
wavelength interval
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earthly radiations. This is what Is called the
greenhouse effect.

Solar radiation approximates that of a black body at
5800K. Ordinary window glass transmits radiation
up to about 2.5 um. This gives AT= 2.5 x 5800 =
14500 um.K. Referring to the table, about 97 % of
the radiation emitted is transmitted through the
glass. Glass Is transparent for solar radiation.
Whereas earthly radiations at about 300 K A T=2.5 x
300 = 750 um.K. The table shows only a minute
fraction (less than 0.001 percent) of this radiation Is
transmitted. Glass Is opaque for earthly radiations.
There comes the greenhouse effect!



Example 11.1

A glass plate 30 cm square is used to view radiation
from a furnace. The transmissivity of the glass is
0.5 from 0.2 to 3.5 um. The emissivity may be
assumed to be 0.3 up to 3.5 um and 0.9 above that.
The transmissivity of the glass Is zero, except in the
range from 0.2 to 3.5 um. Assuming that the
furnace is a blackbody at 2000°C, calculate the
energy absorbed in the glass and the energy
transmitted.

Solution
T =2000°C = 2273 K




AT = (0.2)(2273) = 454.6 um.K
AT = (3.5)(2273) = 7955.5 um.K
A = (0.3)2 = 0.09 m?

From table
Eb Eb
1 = ) 2 = (0.85443
ol ol

oT4 = (5.669 x 10-8)(2273)* = 1.5133 x10° W/m?
otal incident radiation is
0.2 um < A <3.5um
= (1513.3)(0.85443 - 0)0.09= 116.4 kW
Total radiation transmitted = (0.5) (116.4) = 58.2 KW




Radiation absorbed
=(0.3)(116.4)=34.92kW for 0< A <3.5um

=0.9(1-0.85443(15133)(0.09) =17.84kW
for 3.5< A <ooum

Total radiation absorbed = 34.92 +17.84 = 52.76 kW



Radiation Shape Factor

Given two black surfaces which see each other, as
shown In figchp11\fig11.9.pptx, a general
expression for energy exchange between such
surfaces at different temperatures will be required.
This will require the concept of radiation shape
factors or view factors. These are defined as
follows.

F,., = fraction of energy leaving surface 1 which
reaches surface 2

F,., = fraction of energy leaving surface 2 which
reaches surface 1

F ., = fraction of energy leaving surface m which
reaches surface n



figchp11/fig11.9.pptx
figchp11/fig11.9.pptx
figchp11/fig11.9.pptx
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The energy leaving surface 1 and arriving at surface 2
IS EpAFg,

and the energy leaving surface 2 and arriving at
surface 11s  E,AF,,

All radiations falling on black surfaces will be
completely absorbed.

The net energy exchange is given by

Q12 = EnAsFiz- EppAgkyy

ForT,=T,, Q.,=0

This will give A,F,, = AF,,

This reciprocity relation will hold true for all
situations.




The net heat exchange will therefore be

Ql—2 = AlFlz(Ebl o EbZ) = A2F21(Ebl o EbZ)
The general reciprocity relation for any two surfaces |
and J will be

AFi = AFj;

The dlrectlon of emission from dA, Is given with
reference to the zenith and azimuthal angles as
shown in figchpl1\fig11.10.pptx . This radiation
passes through a differential area dA, which is
normal to the path of the radiation. This area
subtends a solid angle dw when viewed from a point
on dA,. The similarity of the angle subtended by an

arc and



figchp11/fig11.10.pptx
figchp11/fig11.10.pptx
figchp11/fig11.10.pptx

Emitted
radiation

Fig.11.10 Emission of radiation from a differential
area dA, into a solid angle dw subtended by dA, at a
point dA,



the solid angle subtended by an area Is shown in
figchpl1\figll.11.pptx . The plane angle do has a
unit of radians while that of dw Is the steradian (sr).

To determine a general relation for shape factors,
consider the angles 6, and 0,, the angles with
reference to the normals of the surfaces. The
projection of dA, on the line between centers Is

dA, cos 0,

The radiation intensity is that emitted per unit area and
per unit of solid angle in a certain specified
direction. This is given by |, considering a black
surface.



figchp11/fig11.11.pptx
figchp11/fig11.11.pptx
figchp11/fig11.11.pptx
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Fig.11.11 Definition of (a) plane and (b) solid angles
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The differential solid angle can easily be determined as
shown In figchpli\figll.12.pptXx . This is given by

dr—A;‘ =sinadd¢=dw

Thus the energy leaving dA, in the direction of 9, Is
|, dA, cos 6,

The radiation arriving at some areal element dA, at a
distance r from A, would be
|, dA, cos 6, (dw)

The intensity from the differential area can be determined
In terms of the emissive power by


figchp11/fig11.12.pptx
figchp11/fig11.12.pptx
figchp11/fig11.12.pptx

Fig.11.12 The solid angle subtended by dA, at a point
on dA, In the spherical coordinate system
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Integrating over a hemisphere enclosing the elemental
area dA, as shown in figchp11\fig11.13.pptx .

2w prml2
EbdA:IbdAjo _[O singcosadad ¢

:ﬂlbd'&l
Eb :”lb

With respect to the line, r, connecting the two
differential areas dA, and dA,, the area dA,, Is given

by
dA, = cos 0, dA,
This will give the energy leaving dA,; and arriving



figchp11/fig11.13.pptx
figchp11/fig11.13.pptx
figchp11/fig11.13.pptx

Fig.11.13 Emission from a differential element of area
dA, Into a hypothetical hemisphere centered at a
point on dA1 AAU/AAT/SMIERYilma 39



at dA, as

dg,_, =1,dA cosédw = E,, cosé, cosb, dA‘dZAZ

il
dAd
6)2 f;rzAZ — EblAlFlz

And the energy leaving dA, and arriving at dA, will be
dAdA,
2

7’

0., =E, L\l N COSO, COS

dg, , = E,, cosé, cosb,

dAd
0,4, = EszAl A, Cosel COS@Z Al ZAZ — Eb2A2F21

7’

As the integrals are exactly the same, the above
equations give the reciprocity relation




The view factor for an enclosure with N surfaces with
temperatures T,, T, ...., Ty IS given by

i F, =1
j=1

The term F;; is non zero if it sees itself.

For radiation exchange in an enclosure of N surfaces,
a total of N2 view factors is needed as arranged in
the matrix form F, F, ..Fy




Out of this N2 view factors, which require N?
equations, there are N equations formed by the
summation rule and N(N-1)/2 equations formed by
the reciprocity relations. This will then require only
(N2-N(N-1)/2)=N(N-1)/2 view factors to be
determined. For a three surface enclosure we need
to determine three view factors only to completely
determine the view factors.

As an example consider a two surface enclosure
Involving two spheres as shown in
figchp11\fig11.15.pptx . For this we will need to
determine four view factors (F,y, Fi,, Foq, Fyy).



figchp11/fig11.15.pptx
figchp11/fig11.15.pptx
figchp11/fig11.15.pptx

Fig.11.15 View factors for the enclosure formed by
two spheres
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Only N(N-1)/2 view factors need to be determined to
completely get the values of the view factors. One
view factor Is to be determined directly. By
Inspection F; =0 . For the rest use the equations
formed by summation given by

11t Fpp =1 F15=1
1t Fp =1
And the reciprocity relation
AFp = Ak,
(three equations and three unknowns)
F,.=A, /A, F, =1-F,, =1-A,/A,




Fig.11.14 Areas used to illustrate view factor relations
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For other complicated geometries, the double integral
equations have been solved and the results given in
tables and graphs.(tables 2&3, and graphs 1, 2, and
3)

For view factors to a subdivided surface shown In
figchpl1\figll.14.pptx, consider the radiation from
surface 1 to surface j, which is divided into n
components, the view factor Is given as a summation

Fay =2 F«  [(i)equivalentto(L2....,k,...n)]
k=1


figchp11/fig11.14.pptx
figchp11/fig11.14.pptx
figchp11/fig11.14.pptx

The view factor when radiation originates from a
subdivided surface can be determined as follows:

Multiplying the above equation by A; and applying the
reciprocity relation gives

ARG = ApFg = ;Ak':ki
zAkai
F k=1

()i = n

kZAk




Example 11.2

Consider a diffuse circular disk of diameter D and area
A, and a plane diffuse surface of area A; <<A,. The
surfaces are parallel, and A; is located at a distance L
from the centre of A;. Obtain an expression for the
view factor F;;.

dr




Solution
We will use

dAdA.
Fij:ij J' cos6, coso. A >
A A A R

0;, 0;, and R are approximately independent of position
on A, the above reduces to

3 :I cosil:::oseJ dA _I i cos

P4 (6,=0)

2 J

Using R =r= +L?, cos 6 = (L/R) and dA; = 2zrdr , the
Integration will give




Example 11.3

Determine all the view factors for the following
geometries.

1. Sphere of diameter D inside a cubical box of length
L=D.

2. Diagonal partition within a long square duct.

3. End and side of a circular tube of equal length and
diameter.




Solution

1) (2) (3)

1. Sphere within a cube:

F,=1 = (A /A,)F,, = (nD?%/(6L°)x1 = /6
From summatlon relation

Fu+Fp=1 — F;=0

FoutFpp=1  — Fy =(1-7/6)
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2. Partition within a square duct

By inspection F;, = F,, =F;;, =0
Summation equations

F1p + Fi3=1 (symmetry F,, = F;3=0.5)

A,=A,; = A, =(2)L

ArF13=AgFs  Fa = (AA)F = (\/2)1:13:0-71
AR, = AR Fo = (AJAY) :12:(\/2)1:12 =0.71
AFo3 = AgFsy  Fap = (AgfAg)F 5= Fyq

F,; =1-F,,=1-0.71=0.29

Fs, = F,5=0.29




3. Circular tube:
Using Graph 2 with ro/L =0.5and L/r; =2 will give F;,=0.17
F1;=0 F33=0

A, =A,=(@D4) A,=naD?

Summation equations

Fpt R =1
1+ Fa "' Fos =1 (symmetry Fj; = Fy)
1t Ry =1 (Fs, = 1-F;, =0.83)
Reciprocity
AF, s =AF;, Fo= (A o/ A,)F4,= (1/4)F4,=0.208 F,,=0.208
AqF13 = Agks = (AglAyF3= F3=0.17

AF, =AF,  Fip=(AJ/A)F,=(4)F,,=0.83



Radiation Exchange Between Surfaces

When radiation falls on an opague surface there will
be a possibility of absorption and reflection. In an
enclosure there will be multiple reflections with
partial absorptions.

Blackbody Radiation Exchange

he simplest radiation exchange will be between black
surfaces where there will be no possibility of
reflection.

The following terms will need to be defined.

G = Irradiation
= total radiation incident upon a surface per unit
time per unit area




J = radiosity
= total radiation which leaves a surface per unit time
per unit area

For a black surface radiosity Is the same as the
emission.

For the analysis of radiative heat transfer between
black surfaces, we will use figchpl11\figl11.16.pptx.

Define g;_,; as the rate at which radiation leaves

surface 1 and is intercepted by surface J. This can be
expressed as



figchp11/fig11.16.pptx
figchp11/fig11.16.pptx
figchp11/fig11.16.pptx

XN
nl I,= Eb"
s b e
A, T,

Fig.11.16 Radiation transfer between two surfaces
that may be approximated as black bodies
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Ui :(Aﬁ‘Ji)Fij:AiFiij
Similarly
;i =AF;E,

o
Net radlatlveexchangewill be

Ui = Ui — 9.
Substituton gives
qu:AiFij — A F;iEy _AiFij(‘Ji_Jj):AiFijG(Ti4_Tj4)

Jodi
This will allow the construction of a thermal network
that satisfies
J.—-J 1
l | _
= R_AF_

J




For surface 1 being in an enclosure and interacting
with N surfaces at different temperatures, the above
eguation can extended to

g = Z A FijG(Ti4 ~ j4)

Example 11.4

A furnace cavity, which is in the form of a cylinder of
75 mm diameter and 150 mm length, is open at one
end to large surroundings that are at 27°C. The sides
and bottom, which may be approximated as black
bodies, are heated electrically, well insulated,




and maintained at temperatures of 1350 and 1650°C,
respectively. How much power is required to
maintain the furnace conditions.

457 o[ “—— Heater wire

§® i didan sy o1 ,
=4 e i | o s— Insulation
' Bottom, 7,




Solution

q T,, = 300 K

e A Ta T,

Y oo ’—'

| [ — 41 Ta=1350°C

207 o 142, T2 = 1650cc

Since the surrounding is large it may be treated as a
black body. Here the heat transfer by convection will
be assumed to be negligible compared to the
radiative heat transfer.



With T, = T, the heat loss can be expressed as

0=0i3 %702
Using appropriate equations for radiation between
black surfaces

J= AlF13(7(r14 _T34) T A2F23(7(|-24 _T34)
For the two opposing surfaces (top and bottom), using
(r;/L) = (0.0375/0.15) = 0.25 and

(L/r;)) = (0.15/0.375) = =

F,. =0.06 (From view factor graphs)
Use summation rule

F,, +F=1 F,, =1-0.006 = 0.94



Use reciprocity relation
AR, =AF,, to get
A, 7(0.075)° / 4
F,=—=F; =
A 7(0.075)(0.15)
From symmetry F;3 = F4,

Substitution in g gives
g = (72x0.75x0.15)(0.118x5.67x10°°

X0.94=0.118

[(1623)* — (300)*] +(%j(0.075)2 x0.06

x5.67x107°[(1923)* —(300)*]



q = 1639 +205 = 1844 W

Radiative exchange between nonblackbodies

Here for an opaque body, the radiosity will also
Involve the reflected part from the irradiation as
shown in figchp11\fig1l.17.pptx . More
complication is when the reflection is back and forth
between the heat transfer surfaces several times.

The radiosity Is given by
J=¢E, +pG
Using p=1-a=1-¢



figchp11/fig11.17.pptx
figchp11/fig11.17.pptx
figchp11/fig11.17.pptx
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Fig.11.17 (a) Surface energy balance for opaque
materials; (b) element representing “surface
resistance” 1n the radiation-network method



the radiosity expression becomes
J=eE,+(1-¢)G G=(J-¢E,)/(1-¢)

The difference between the radiosity and the
Irradiation gives net energy leaving the surface as

(/A)=]-G=J-(J-eE,)/(1-¢)

After substitution of G and simplification gives

EA E —J
=— (E.—-J) or q=—22
| 1—5( =) | (1-&)/ A

The above allows the construction of a network with
the surface resistance as indicated.



If we consider the radiant energy exchange between
two surfaces, A, and A,, the net heat transfer from
surface 1 to surface 2 can easily be determined as

O12 = J1AF1 = Ak
Using the reciprocity relation  A;F,,=A.F,,
O1-2 = U1= ) AcF1, = (= J5) ARy
For network construction the above can be written as
‘]1 - 'Jz
1/ AF,
where the resistance Is indicated as space resistance.

O, =



The radiation exchange between two surfaces which
exchange heat with each other and nothing else can be
represented as a network given by
figchpl11\fig11.18.pptx . From this network the net
heat transfer from surface 1 to surface 2 can easily be
determined as

Ebl - Eb2

et = 77 6 1 1-g
&y A1F12 &,
U(T14 _Tz )
T 1- & 1 1 &,
&y A1F12 &,

For other two surface enclosures, Table 4 gives the
necessary information.



figchp11/fig11.18.pptx
figchp11/fig11.18.pptx
figchp11/fig11.18.pptx

£/, q12 J2= Ep

N= T )4, 27 e, Ve,
(b)

Fig.11.18 The two surface enclosure with network
representation
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For a three body problem, the network is given In
figchpl11\figl11.19.pptx .
J, -1, J, -1,

_ Y1 _
YTUAR,  MTUAR,

Kirchoff’s current law can be used to determine the
radiosities. Sum of heat transfers to a node Is zero.

This can be extended for a radiative interaction of a
surface with other surfaces that form an enclosure as

E. —J. N =T,
0 =— Z

Q-e)eA  “F( )_1

For any number N of surfaces forming the enclosure
there will be N equations with J,, unknowns.


figchp11/fig11.19.pptx
figchp11/fig11.19.pptx
figchp11/fig11.19.pptx

E, I A E,
3 L ,;: !
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| —&; | Fj: g
E |4 A ] li\ l | §
\ I‘ 13 \ 3493

’/
4?\
15J
~r
4
»)

O—AW\W
|
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Fig.11.19 Radiation network for three surfaces which
see each other and nothing else
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Radiation Shields

Radiation shields use low emissivity materials (high
reflectivity) placed between radiating surfaces as
shown In figchpl11\fig11.20.pptx (a).

If such a surface Is placed additional surface and space
resistances will be created, thus reducing the heat
transfer. The network is shown in (b). The heat
transfer rate can easily be determined from the series
resistance network as

Ao (T14 — T24)

1 1 1-¢ l-¢
. 31 3,2
&1 & &31 €39

Oip =



figchp11/fig11.20.pptx
figchp11/fig11.20.pptx
figchp11/fig11.20.pptx

Radiation

~ shield
e — e ((1)
q 413 432 12
€3 1
b3 2
5 (
A], 7'1, E] | s 1 f £
Az, T3
Epy /1 J3,1 Eps J3,2 S E,»
—» o AN—0— AN AN AN AN AN
q1 1-g, 1 1-g5 , 1-83, 1 1-¢,
£ ."\1 f‘l[:‘] 2 83' 1143 83' 2A3 ‘AJF«/ EQAE

F1g.11.20 Radiation exchange between large parallel
planes with a radiation shield and its network
representation



Insulated surfaces and Surfaces with large areas.

For a perfectly insulated surface or that reradiates all
the energy incident upon Iit, the heat flow from such
a surface Is zero. This makes the potential
difference across the surface resistance to be zero,

resulting in J=E,. The insulated surface does not
have zero resistance.



Large surface area (A—o0) has a surface resistance
approaching zero. This behaves as a black body as
It tends to absorb all the radiant energy falling on it.
For this the surface resistance iIs zero (¢=1) and this
gives J = E,. Thus the two cases — Insulated surface
and surface with a large area — both have J = E, .

If two flat or convex surfaces are connected by or
enclosed in a reradiating surface as shown in the
combustion furnace (figchp11\fig11.21.pptx for the
schematic figchp11\fig11.22.pptX ), as no net heat is
exchanged with this body, J; = E,.

Fir=1-Fyp Fiu =Fy»=0
For=1-Fy



figchp11/fig11.21.pptx
figchp11/fig11.21.pptx
figchp11/fig11.21.pptx
figchp11/fig11.22.pptx
figchp11/fig11.22.pptx
figchp11/fig11.22.pptx

7, . heat ]
' zsink ; : {Qv Reradl'atll’g

walls

bttt

ik \ _ _
/7, ,heat source

Fig.13.21 Enclosure with reradiating surface
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Fig.11.22 A three surface enclosure with one surface
reradiating and the network representation
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The network Is a simple series parallel arrangement
which can be shown to give

— Ebl B Eb2
W= =T & 1 -6
& A1|:12 +[(L/ AFR)+ @/ AF)] 17 &M
After determining J, and J,, then J, can be determined

from
‘Jl_‘JR ‘JR_‘JZ

(L/AF.) U/ AF.)

Since J, =oT. the temperature of the reradating surface
can be determined




Example 11.5

A paint baking oven consists of a long, triangular duct
In which a heated surface Is maintained at 1200 K
and another surface is insulated. Painted panels,
which are maintained at 500 K, occupy the third
surface. The triangle is of width W =1 m on a side,
and the heated Insulated surfaces have an emissivity
of 0.8. The emissivity of the panels 1s 0.4. During
the steady-state operation, at what rate must energy
be supplied to the heated side per unit length of the
duct to maintain its temperature at 1200 K? What is
the temperature of the insulation surface?




Solution

The system will be modeled as a three surface
enclosure as shown in the figure below

Equilateral
triangle




1. The heat transfer rate to be supplied is determined
from

Ebl B Ebz

= 151 1 152

e A1|:12 +[(1/ AFR)+ 1/ AR, R)]_l P a
Symmetry: F,, = Fr = Fog

A=A, =WL L is length of duct
. g,  5.67x10°(1200 -500")
w100 5 _ 1 1-04

0.8x1 1xO 5+[2+2] O.4x1
or ¢, =37kW/m=—q,



2. For the temperature of the insulated surface use
will be made of the equality of J; and E. . To get Jg
use

J = Jp _ Je—J, —0
1/ ARg) A/ AF)

1-¢ 1-0.8

J =E. -~ g =567x10°(1200)* - X (37000
T ol (1200 08l ( )
=108323W / m*
1-¢, . 1-0.4
J=E. -—""2q,=5.67x10"°%(500)* — X (—-37000
2 b2 W d, (500) 0.4x1 ( )

=59043W / m?



Substitution gives

108323-J, J,—59043

1 1 0
W xLx05 WxLx0.5
This gives

], =83683W /m*=E,, =oT.

1

T - 83683_8 ' Z1102K
5.67x10




