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An improved meshless radial point interpolation method, for the analysis of nonlinear
transient heat conduction problems is proposed. This method is implemented for the heat
conduction analysis of functionally graded materials (FGMs) with non-homogenous and/or
temperature dependent heat sources. The conventional meshless RPIM is an appropriate
numerical technique for the analysis of engineering problems. One advantage of this
method is that it is based on the global weak formulation, and also the associated shape
functions possess the Kronecker delta function property. However, in the original form,
the evaluation of the global domain integrals requires the use of a background mesh.
The proposed method benefits from a meshless integration technique, which has the capa-
bility of evaluating domain integrals with a better accuracy and speed in comparison with
the conventional integration methods, and therefore a truly meshless technique is attained.
This integration technique is especially designed for the fast and accurate evaluation of
several domain integrals, with different integrands, over a single domain. Some 2D and
3D examples are provided to assess the efficiency of the proposed method.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Transient heat transfer is an important phenomenon that occurs in many engineering problems. Since temperature varies
with respect to time in many industrial parts, the precise knowledge of the temperature distribution and variation in such
parts is essential. It is well known that analytical solutions can be found for simple geometries and linear heat transfer prob-
lems only. However, in most practical situations, not only the geometry of the part under investigation is complicated, but
also the material has temperature dependent thermal properties. Moreover, the heat generation in the domain might be
dependent on the temperature. When dealing with such practical situations, the only possibility for obtaining reasonable
results is the use of appropriate numerical methods.

Functionally graded materials (FGMs) are composite materials where, in contrast to the laminated composites, the com-
position of the constituent materials gradually varies so that a certain variation of the material properties is achieved. These
materials have received considerable attention since their concept was proposed in the late 1980s in Japan. FGMs are made
. All rights reserved.
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to exploit the desirable properties of their individual constituents. Typically, FGMs are made of a mixture of two materials,
namely ceramics and metals. The former are capable of withstanding high temperature environments due to their low ther-
mal conductivity and provide corrosion resistance, while the latter, by their good mechanical properties, strengthen the
structure to support loadings or prevent material failure.

The finite element method (FEM) is a well established tool for analyzing non-homogenous and non-linear problems in
engineering. Nevertheless, there are some intrinsic shortcomings associated with the finite elements that limit the applica-
tion of the method to some particular situations. To mention some, large deformation processes, dynamic crack propagation,
moving boundary problems, phase transformations, 3D problems requiring remeshing, and nonlinear thermal analysis [1]
are areas in which the application of the FEM is somehow limited. To overcome the aforementioned difficulties, meshless
methods have been introduced and developed during the past two decades. In the case of meshless methods, only a discrete
set of nodes scattered through the problem domain and on the boundaries are used to approximate the fields associated with
the problem. There is no need for element connectivity, the removal and addition of nodes to the domain are easily per-
formed, and the obtained results are smooth. However, the computational cost of meshless methods is generally higher than
that corresponding to the FEM. Consequently, any contribution made to the reduction of the computational cost for meshless
methods can be regarded as an important progress.

According to the weak formulation used, there are two general classes of meshless methods. The first class is based on the
global weak formulation. The element free Galerkin (EFG) method is the most established technique in this class. In the sec-
ond class, a local weak formulation is used in which the meshless local Petrov–Galerkin (MLPG) method is the most widely
employed technique.

Different meshless methods have been used for the analysis of linear and nonlinear heat transfer problems by some
researchers [2–4]. Singh and coworkers were among the first ones who analyzed linear heat transfer problems by the ele-
ment free Galerkin method [5–8]. The EFG method has also been used for the analysis of heat transfer in composites
[9,10]. A. Singh and colleagues analyzed transient, nonlinear heat transfer problems in solids by the EFG method [1,11]. Divo
and Kassab made use of meshless methods in the analysis of conjugate heat transfer problems [12,13]. Liu et al. used the
MLPG for radiative heat transfer analysis [14–17]. Wang and coworkers proposed a meshless method for the analysis of tran-
sient heat conduction in FGMs [18]. Meshless methods have been also used for the inverse analysis of heat transfer problems
[19–22]. Wu and Tao used MLPG for the analysis of heat conduction problem in irregular complex domains [23]. Zhang and
Ouyang studied heat transfer due to viscous dissipation in molten polymer flow by employing the EFG method [24]. Zhang
et al. [25] proposed the use of mass lumping in the EFG method for the analysis of transient heat conduction problems.

As mentioned previously, the computational cost of meshless methods is generally higher than that corresponding to
other numerical methods. The accurate computation of domain integrals in meshless methods based on global weak form
is one major reason for the high computational cost of such methods [26]. As a result, the fast and efficient computation
of the domain integrals, especially in nonlinear transient problems, can significantly reduce the computational cost. Based
on this idea and a previously established integration method [26], the authors have proposed a meshless technique for
the analysis of nonlinear transient heat transfer problems in FGMs in the presence of non-homogenous and/or temperature
dependent heat sources. Mohammadi et al. [27] presented a somewhat similar method for the boundary element (BE) anal-
ysis of transient nonlinear heat conduction problems. Although their method is a robust technique for the accurate analysis
of complex heat conduction problems, its application is confined to homogeneous media only. Actually, since the fundamen-
tal solutions for non-homogenous materials are in general not available, the boundary element method (BEM) cannot be eas-
ily used for the analysis of physical phenomena in such materials.

Most of the presented meshless studies related to heat conduction are performed by the EFG and MLPG methods and
there is no use of the meshless radial point interpolation method (RPIM) for the heat conduction problems. In this paper,
the RPIM along with the mentioned integration method have been employed for the analysis of nonlinear transient heat con-
duction problems. Since the shape functions used in the RPIM possess the Kronecker delta function property, the imposition
of the essential boundary conditions is efficiently performed as in the FEM. In the original RPIM, the domain integrals in the
weak formulation of the problem are evaluated by the use of a so-called background mesh and the Gaussian quadrature
method. The accurate computation of the domain integrals by this method, especially in domains with complex geometry,
is a time consuming task. As a result, the efficient computation of such domain integrals can significantly reduce the com-
putational effort, especially when the domain integrals are to be evaluated repeatedly, as in the nonlinear transient prob-
lems. It should also be mentioned that the use of the background mesh for the evaluation of domain integrals diminishes
the main advantage of meshless methods. Based on the mentioned facts, the method to be proposed here not only benefits
from high accuracy and efficiency, but also is truly meshless.

Some problems involving various types of heat sources are analyzed in order to show the efficiency of the proposed meth-
od. The convergence of the proposed method with respect to the time step size and number of nodes and integration point is
also studied.
2. An improved meshless radial point interpolation formulation of general nonlinear heat conduction problem

Since the early proposal of the meshless RPIM [28], various versions of the method for the analysis of various types of
engineering problems have been introduced by several researchers. The RPIM has been used with global as well as local
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weak formulations [29]. The method, in conjunction with the boundary integral equation technique, has proven to be effi-
cient in the analysis of engineering problems [30,31]. In the meshless RPIM, radial and polynomial basis functions are
used for the construction of the shape functions. It is not necessary to use polynomial basis functions in the formulation
of RPIM shape functions. However, studies show that when only the radial basis functions (RBF) are used for the con-
struction of shape functions, the standard patch tests cannot be passed [32]. Adding the polynomial basis functions of
any order, ensures completeness of the shape functions to that order. For instance, addition of polynomial basis functions
up to linear order ensures C1 consistency. The RPIM shape functions usually possess high order of continuity, because the
RBFs can be easily selected to have the desired order of continuity. The shape functions in the RPIM possess the Kroneck-
er delta function property; therefore, in the methods that use the RPIM shape functions for the approximation of the field
function, the essential boundary conditions are imposed directly. Partition of unity is another feature of the RPIM shape
functions.

When a local weak form is used with the RPIM shape functions, the resulting method is truly meshless, i.e. the local RPIM
[32], the main reason for this being represented by the fact that integrations are performed over small sub-domains; con-
sequently, a global background mesh is not necessary. Nonetheless, when the global weak form is used, the integrals are per-
formed over the entire problem domain and if a background mesh is used to perform these integrations then the resulting
method is not truly meshless. Here, we present an improved global meshless RPIM which benefits from a meshless integra-
tion technique, and therefore is truly meshless.

2.1. The numerical formulation

The RPIM interpolation augmented with polynomials can be used to obtain an approximation Th(x, t) for the temperature
function T(x, t):
Thðx; tÞ ¼
Xn

i¼1

RiðxÞaiðtÞ þ
Xm

j¼1

pjðxÞbjðtÞ ¼ RTðxÞaðtÞ þ pTðxÞbðtÞ; ð1Þ
where Ri is a radial basis function, pj is a monomial in spatial coordinates, n is the number of nodes in the support domain of
the point x, m is the number of polynomial basis functions, and ai and bj are time dependent unknown coefficients to be
determined. In the present study, only linear monomials are used, i.e. m = 3. The value of n will be obtained based on the
support domain size, which will be addressed later.

The independent variable in the radial basis functions is the Euclidean distance between the point x and a node at xi. The
vectors R(x) and p(x) in Eq. (1) are defined as follows:
RT ¼ ½R1ðxÞR2ðxÞ � � �RnðxÞ�; ð2-aÞ
pT ¼ ½p1ðxÞp2ðxÞ � � �pmðxÞ�: ð2-bÞ
There are some specific radial basis functions used in the meshless RPIM. Four frequently used RBFs are the multi-quadrics
(MQ) function, the Gaussian (Exp) function, the thin plate Spline (TPS) function, and the Logarithmic radial basis function.
The expression for each of the mentioned functions is given in Table 1. In the present work, the TPS functions are used
for the construction of shape functions.

ac, q, and g in the expression of the RBFs in Table 1 are shape parameters that should be carefully selected. dc is the aver-
age nodal spacing in the support domain. In order to obtain well-conditioned moment matrices in the evaluation of the TPS
shape functions, Liu and Gu [32] suggest to set g equal to either of the following values: 4.001, 5.001, or 6.001. In the present
study, the value used for g is 4.001.

The n + m unknown coefficients in Eq. (1) can be found by imposing the Kronecker delta function property and some spe-
cific constraint equations. The constraint equations are necessary to ensure that the coefficients are obtained uniquely [33].
These constraints can be expressed as follows:
Xn

i¼1

pjðxiÞaiðtÞ ¼ PT
ma ¼ 0; j ¼ 1;2; � � � ;m; ð3Þ
Table 1
Conventional RBFs used in the RPIM.

Type Expression

Multi-quadrics (MQ) Ri ¼ ðr2
i þ ðacdcÞ2Þq

Gaussian (EXP)
Ri ¼ exp �ac

ri
dc

� �2
� �

Thin plate Spline (TPS) Ri ¼ rg
i

Logarithmic Ri ¼ rg
i logðriÞ



4160 A. Khosravifard et al. / Applied Mathematical Modelling 35 (2011) 4157–4174
where:
PT
m ¼

1 1 � � � 1
x1 x2 � � � xn

y1 y2 � � � yn

z1 z2 zn

..

. ..
. . .

. ..
.

pmðx1Þ pmðx2Þ � � � pmðxnÞ

2
6666666664

3
7777777775
: ð4Þ
In this way the approximation function can be written as:
Thðx; tÞ ¼
Xn

i¼1

/iðxÞTiðtÞ ¼ UTðxÞTðtÞ; ð5Þ
where T is a vector containing the nodal values of the temperature, and U is a vector containing the first n components of the
following vector:
~U ¼ RT pT
� �

G�1: ð6Þ
In Eq. (6), G is the so-called moment matrix and is obtained as follows:
G ¼
R0 Pm

PT
m 0

� 	
;

R0 ¼

R1ðr1Þ R2ðr1Þ � � � Rnðr1Þ
R1ðr2Þ R2ðr2Þ � � � Rnðr2Þ

..

. ..
.

� � � ..
.

R1ðrnÞ R2ðrnÞ � � � RnðrnÞ

2
66664

3
77775; ð7Þ
where rk in the formulation of Ri(rk) is defined as follows:
rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xiÞ2 þ ðyk � yiÞ

2 þ ðzk � ziÞ2
q

: ð8Þ
The accuracy of the interpolation at each point, among other factors, is dependent on the shape and size of the support do-
main. In this work, the simple, yet effective, method of Liu and Gu [32] is used to determine the dimensions of the support
domain. In this method, the dimension of the support domain is determined by ds = asdc, where as is a constant, usually
around 1.5, and dc is the average nodal spacing in the support domain. A simple relation for obtaining the average nodal
spacing is given by Liu and Gu [32]. Herein the shape of support domain is circular and spherical in 2D and 3D problems,
respectively.

Consider now the general transient heat conduction equation for an isotropic medium:
r � ðkðx; TÞrTðx; tÞÞ þ gðx; T; tÞ ¼ qðx; TÞcðx; TÞ @Tðx; tÞ
@t

; ð9Þ
where q is the density, c is the specific heat, k is the thermal conductivity, and g is the heat generation per unit volume. The
initial and boundary condition for Eq. (9) are as follows:

T(x, 0) = T0(x) in the domain (X),
T ¼ T on the boundaries with the essential condition (C1),
�kðrT � nÞ ¼ �q on the boundaries with the natural condition (C2),

where n is the unit outward normal vector to the boundary, T0 is the initial condition, T is the applied temperature on the
boundary, and �q is the applied normal heat flux through the boundary.

On using Eq. (5) in the Galerkin weak form of Eq. (9), one obtains the following system of equations:
MðTÞ _Tþ KðTÞT ¼ FðT; tÞ; ð10Þ
where:
Mij ¼
Z

X
qðx; TÞcðx; TÞ/i/j dX; ð11Þ

Kij ¼
Z

X
kðx; TÞ @/i

@x
@/j

@x
þ @/i

@y
@/j

@y
þ @/i

@z
@/j

@z

� 	
dX; ð12Þ

Fi ¼
Z

X
gðx; T; tÞ/idX�

Z
C2

�q/i dC: ð13Þ
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After applying the Crank–Nicholson time integration scheme [34] to Eq. (10), one can write the equilibrium equation for the
(s + 1) th time step as follows:
K̂sþ1Tsþ1 ¼ KsTs þ F̂s;sþ1; ð14Þ

K̂sþ1 ¼Msþ1 þ
1
2

Dtsþ1Ksþ1; ð15Þ

Ks ¼ Ms �
1
2

Dtsþ1Ks; ð16Þ

F̂s;sþ1 ¼
1
2

Dtsþ1½Fsþ1 þ Fs�: ð17Þ
In Eqs. (14)–(17), the subscript indicates the time step number. Since in the most general case, the thermal properties of the
material, and also the heat source vary with respect to the temperature, the problem solution at each time step should be
iterative. The mass and stiffness matrices and the load vector at each time step are computed using the temperature distri-
bution at the previous time step. Afterwards, these matrices and the load vector are updated iteratively at each time step
until the solution converges to the desired accuracy.

2.2. The Cartesian transformation method for the evaluation of domain integrals

From Eqs. (11)–(13) it is clear that at each iteration corresponding to every time step of the analysis, some domain inte-
grals should be evaluated. Therefore, a large number of domain integrals should be evaluated during the entire analysis. Con-
sequently, the fast and efficient computation of these integrals affects the overall efficiency of the method. In this section, the
2D Cartesian transformation method (CTM) [26] with a modification is presented. This method is specially designed for sit-
uations in which a large number of domain integrals with different integrands should be evaluated in a single domain.

Consider a regular integral over a 2D domain (see also Fig. 1):
I ¼
Z

X
hðxÞdX: ð18Þ
In order to obtain a meshless integration technique, the domain integral is first transformed into a boundary and a 1D inte-
gral as follows [35,36]:
I ¼
Z

C

Z x

a
hðn; yÞdndy: ð19Þ
By considering a rectangular auxiliary domain that encircles the original domain, the integral in Eq. (19) can be further trans-
formed into two 1D integrals [26]:
I ¼
Z Y2

Y1

gðyÞdy; ð20Þ
where
gðyÞ ¼
Z b

a
hðx; yÞdx: ð21Þ
Fig. 1. An integration domain in 2D and its boundary.
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The 1D integrals in Eqs. (20) and (21) can be evaluated by any numerical integration method, such as the composite Gaussian
quadrature to give [26], (see Fig. 1):
I ¼
Xu

i¼1

Xv

j¼1

JwjGðgjÞ; ð22Þ
where G(g) = g(y(g)) and J = dy/dg = (yi+1 � yi)/2; g(yi) is evaluated according to the following relation:
gðyiÞ ¼
Xl

j¼1

Z x2j

x2j�1

hðx; yiÞdx

 !
; ð23Þ

Z x2j

x2j�1

hðx; yiÞdx ¼
Xp

r¼1

Xq

s¼1

J0wsHðfsÞ; ð24Þ
where H(f) = h(x(f), yi) and J0 = (x2j � x2j-1)/2p. The integration limits in Eq. (23) are obtained according to a procedure ex-
plained in [26].

After some straightforward manipulations, the integral in Eq. (18) can be written as [26]:
I ¼
XN

i¼1

W2DðxiÞ � hðxiÞ ¼ w2D �H; ð25Þ
where W2D(xi) is the integration weight associated with the ith integration point located at xi, and N is the number of inte-
gration points associated with the CTM integration scheme. The three-dimensional counterpart of the 2D CTM, explained in
this section, can be found in [26].

When the integrand in Eq. (18) is known at some scattered points over the domain only, a meshless interpolation scheme
should be used for the evaluation of the integrand at the location of the integration points. This situation happens, for in-
stance, when the domain integrals in Eqs. (11)–(13), corresponding to a nonlinear problem, should be evaluated. At each step
of the problem solution when the nodal values of temperature are obtained, the value of the temperature at any integration
point can be obtained by a matrix relation of the following form:
fTintgN�1 ¼ ½S�N�nfTnodalgn�1; ð26Þ
where Tint and Tnodal are vectors containing the temperature values at the integration points and nodes, respectively. Here
N and n are the total numbers of integration points and nodes, respectively, over the entire domain. The matrix S is a
sparse matrix whose elements are the interpolating shape functions. For example, the ith row of S contains the shape
functions of the nodes that are located in the support domain of the ith integration point. The matrix is sparse because
only a small number of nodes are located in the support domain of each integration point. This matrix has the following
form:
S ¼

/1ðx1Þ /2ðx1Þ � � � /nðx1Þ

/1ðx2Þ /2ðx2Þ � � � /nðx2Þ

..

. ..
. . .

. ..
.

/1ðxNÞ /2ðxNÞ � � � /nðxNÞ

2
6666664

3
7777775
: ð27Þ
If the problem geometry does not change during the problem solution, the matrix S in Eq. (26) and the vector w2D in
Eq. (25) need only be evaluated once. In this way, the evaluation of the domain integrals at each time step reduces to
simple vector and matrix multiplications. Since it has been shown that the CTM improves the accuracy of the meshless
RPIM method [26], the use of the proposed technique for the evaluation of the domain integrals in transient nonlinear
heat transfer problems not only enhances the accuracy, but also can decrease the overall computational cost of the
calculations.

At each step of the problem solution, for the evaluation of the domain integrals in Eqs. (11)–(13) by the CTM, the follow-
ing relations are used:
Mij ¼
XN

l¼1

W2D
l ðRl � Cl � Si;l � Sj;lÞ; ð28Þ

Kij ¼
XN

l¼1

W2D
l ½AlðSx

i;l � Sx
j;l þ Sy

i;l � Sy
j;lÞ�; ð29Þ

Fi ¼
XN

l¼1

W2D
l ðGl � Si;lÞ; ð30Þ
where Si,l is the lth element of the ith row of the matrix S, in Eq. (27), and:
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fRg ¼

qðx1; TÞ

qðx2; TÞ

..

.

qðxN; TÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

; fCg ¼

cðx1; TÞ

cðx2; TÞ

..

.

cðxN; TÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

; fAg ¼

kðx1; TÞ

kðx2; TÞ

..

.

kðxN; TÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð31-aÞ

fGg ¼

gðx1; T; tÞ

gðx2; T; tÞ

..

.

gðxN ; T; tÞ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð31-bÞ

½Sx� ¼

@/1ðx1Þ
@x

@/2ðx1Þ
@x � � � @/nðx1Þ

@x

@/1ðx2Þ
@x

@/2ðx2Þ
@x � � � @/nðx2Þ

@x

..

. ..
. . .

. ..
.

@/1ðxNÞ
@x

@/2ðxNÞ
@x � � � @/nðxNÞ

@x

2
66666664

3
77777775
; ð31-cÞ

½Sy� ¼

@/1ðx1Þ
@y

@/2ðx1Þ
@y � � � @/nðx1Þ

@y

@/1ðx2Þ
@y

@/2ðx2Þ
@y � � � @/nðx2Þ

@y

..

. ..
. . .

. ..
.

@/1ðxNÞ
@y

@/2ðxNÞ
@y � � � @/nðxNÞ

@y

2
666666664

3
777777775
: ð31-dÞ
It should be noted that since the problem domain and the nodal arrangement do not change during the analysis, the matrices
containing the shape functions and their derivatives, Eqs. (27), (31-c), and (31-d) remain constant during the analysis. There-
fore, these matrices are evaluated and saved once in the first step, and they are used in the subsequent steps.

According to our experience, it is concluded that only the total number of nodes governs the necessary number of inte-
gration points required for accurate computations. Neither the number of nodes in the support domain of integration
points, nor the order of polynomial basis functions has an important effect on the optimum number of integration points
required for a precise integration. Our investigations show that, in order to obtain accurate results from the integration
method described, the average nodal spacing of the proposed meshless method should be about 1.5–2.5 times the average
spacing of the integration points for 2D problems. This ratio suffices to be in the range 2.0–2.5 for 3D problems. This point
is observed when the four-point Gaussian quadrature is used for calculating the integrations in Eqs. (22) and (24). For
obtaining the average spacing of the nodes and integration points, the method explained for determining the nodal spacing
in a support domain is used. To be more specific, an average nodal spacing near each node is calculated; the average spac-
ing value of all nodes is then evaluated and used as the average nodal spacing of all nodes. It should be mentioned that one
can use larger number of integration points than the values stated above; nevertheless, the improvement in the accuracy is
negligible.
3. Numerical results and discussion

In this section, two transient nonlinear heat conduction problems under the application of different heat generation
sources are studied. The meshless RPIM and the numerical integration method presented in this paper are used for the anal-
ysis of the problem. In each case, with different heat generation, the convergence of the method with respect to the number
of nodes and also the time step size is studied. Furthermore, the numerical results obtained, are compared with those of the
FEM (ANSYS). The numerical analysis of the following examples was carried out using MATLAB codes run on a PC system
with an Intel (R) Core™ 2 Quad CPU Q9550 @ 2.83 GHz and 4.00 GB of RAM.
3.1. Example 1: A 2D transient nonlinear problem

The problem geometry, boundary, and initial conditions are depicted in Fig. 2(a). An FGM made of zirconium oxide (ZrO2)
and titanium alloy (Ti–6Al–4 V) is considered. The thermal properties of the constituent materials are temperature depen-
dent and for the temperature range of 300K 6 T 6 1100 K these are given as follows [37]:



Fig. 2. Configuration of the problem, example 1: (a) the geometry and initial/boundary conditions and (b) node arrangements.
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Material 1 (ZrO2):
k ¼ 1:71þ 2:1� 10�4T þ 1:16� 10�7T2 ½W=ðmKÞ�;
c ¼ 2:74� 102 þ 7:95� 10�1T � 6:19� 10�4T2 þ 1:71� 10�7T3 ½J=ðkgKÞ�;
a ¼ 1:331� 10�5 � 1:89� 10�8T þ 1:27� 10�11T2 ½1=K�;
q ¼ 3657=½1þ aðT � 300Þ�3 ½kg=m3�:

ð32Þ
Material 2 (Ti–6Al–4 V):
k ¼ 1:1þ 1:7� 10�2T ½W=ðmKÞ�;
c ¼ 3:5� 102 þ 8:78� 10�1T � 9:74� 10�4T2 þ 4:43� 10�7T3 ½J=ðkgKÞ�;
a ¼ 7:43� 10�6 þ 5:56� 10�9T � 2:69� 10�12T2 ½1=K�;
q ¼ 4420=½1þ aðT � 300Þ�3 ½kg=m3�:

ð33Þ
It is assumed that the volume fraction of each constituent of the FGM varies linearly with the radial distance, from Ti–6Al–
4 V to ZrO2 (see Fig. 2(a)). There are several models to evaluate effective properties of FGMs. The main emphasis of this work
is on the heat conduction analysis rather than on modeling, therefore each effective property of the FGM at a point is eval-
uated by the simple mixture rule [38] as follows:
p ¼ p1v1 þ p2v2; ð34Þ
where v1 and v2 are the volume fractions of the materials 1 and 2, respectively, and p1 and p2 are the corresponding values of
the property for each material. The following functions are considered for the volume fractions:
v1 ¼
r � R
R0 � R

; v2 ¼ 1� v1; ð35Þ
where, according to Fig. 2(a), R = 0.04 and R0 ¼ 0:1
ffiffiffi
2
p

.
Three different node arrangements are considered for the convergence study of the meshless RPIM. Fig. 2(b) depicts the

node arrangements and also the number of nods in each case. The average nodal spacing for the arrangements with 335, 92,
and 44 nodes is 0.009, 0.021, and 0.036, respectively. The FEM mesh used in ANSYS is shown in Fig. 3. 3871 quadrilateral
four-node elements with 3995 nodes are used in the FEM mesh.

For the evaluation of the domain integrals, the four-point Gaussian quadrature method is used in each integration interval
of the CTM. Also, in each case the number of integration points is chosen in such a manner that the average spacing of the
nodes is twice that of the integration points.



Fig. 3. The finite element mesh, 3871 elements and 3995 nodes.
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Three different cases are analyzed by the meshless RPIM and also ANSYS. In the first case, the heat generation source var-
ies with the spatial coordinates, but is constant with respect to time and the body temperature. In the second case, the heat
generation source varies with the temperature, but is uniform over the body. In the third case, the heat generation source
varies over the body and in time, but is independent of the body temperature.

In each case, two typical points in the body are selected for plotting the temperature variation with respect to time. One
point is A = [0, 0.7055] and the other one is B = [0.0594, 0.0664]. Also, the line MN, shown in Fig. 2(a), with y = 0.0684 is se-
lected for the depiction of temperature variation within the body. In the first case, the effect of the total number of integra-
tion points of the CTM on the overall accuracy of the proposed meshless method is studied.

In the first case, the heat generation function in Eq. (9) is considered as follows:
gðx; yÞ ¼ ½1þ sinð10pxÞ sinð5pyÞ�5� 106: ð36Þ
As can be seen, the heat source has a sever variation over the domain.
Three different time step sizes of 15, 30, and 60 s are used for the analysis of the problem by the meshless RPIM. The tem-

perature variation of the body along the line MN is shown in Fig. 4 for the three node arrangements of Fig. 2(b). It is clear that
the proposed integration technique for the meshless RPIM has resulted in accurate results. In Fig. 4, the maximum relative
error at t = 180 for the arrangements with 44, 92, and 335 nodes is 7.3%, 2.2%, and 0.2%, respectively.

Fig. 5 depicts the temperature variation along the line MN for different time step sizes. It is obvious that the proposed
method has a small sensitivity to the time step size. The accuracy of the results obtained by the time step of 60 s is still
acceptable. In Fig. 5, the maximum relative error at t = 180 for the time step sizes of 60, 30, and 15 s is 0.9%, 0.5%, and
0.2%, respectively.

The time history of the temperature at points A and B is plotted in Fig. 6. This figure clearly shows the excellent agreement
between the results obtained by the proposed meshless method and those retrieved by using ANSYS with a fine mesh. Con-
sidering that the steady state temperature in the body takes place at around 600 s (Fig. 6), the time step size of 60 s is some-
what large. However, reasonably good results are obtained even with this time step size (see Fig. 5).

In order to study the effect of the number of integration points on the accuracy of the results, the temperature variation
along the line MN is plotted for three different numbers of integration points in Fig. 7. In this figure, the ratios of the average
Fig. 4. Temperature variation along the line MN for different node arrangements and Dt = 15 s in case I.



Fig. 5. Temperature variation along the line MN for different time steps and 335 nodes in case I.

Fig. 6. Temporal temperature variation of points A and B for Dt = 15 s in case I.

Fig. 7. Convergence of the proposed method with respect to the number of integration points, with 92 nodes and Dt = 15 s in case I.
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spacing of nodes to the integration points of 1, 1.5, and 2 are selected for comparison of the results. These ratios correspond
to 92, 220, and 384 integration points, respectively. The convergence of the proposed method with respect to the number of



Fig. 8. Nodes and CTM integration points, for the arrangement with 92 nodes.

Table 2
CPU times (in s) for the analysis of example 1, case I.

44 nodes 92 nodes 335 nodes

N = 44 N = 112 N = 220 N = 92 N = 220 N = 384 N = 384 N = 768 N = 1360

Dt = 60(s) 0.5 0.6 0.8 1.4 1.7 2.1 25 33 48
Dt = 30(s) 0.8 0.9 1.2 2.3 2.8 3.3 35 50 77
Dt = 15(s) 1.0 1.5 2.0 4.0 4.8 5.4 64 93 134

Fig. 9. Temperature variation of the heat generation source.
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integration points is very good. In Fig. 7, the maximum relative error at t = 600 for the cases with 84, 220, and 384 integration
points is 9.0%, 3.1%, and 1.9%, respectively.

Fig. 8 shows the integration points of the CTM in the problem domain. Also, the nodes of the meshless method are plotted.
In this figure, the average spacing of the nodes is about 1.5 times that of the integration points.

The computational time consumption of the proposed improved RPIM is investigated for this case. For different combi-
nations of the number of nodes, integration points, and time step size of the transient solution, the CPU time is given in Ta-
ble 2. It should be pointed out that as the number of nodes and, consequently, the number of integration points is increased,
the major computational time is due to the evaluation of domain integrals. Therefore, a computationally efficient meshless
integration technique, as the one proposed in this study, can be very promising. In Table 2, N is the total number of integra-
tion points, and Dt is the time step size of the transient analysis.

In the second case, a temperature dependent heat source is considered. The variation of the heat source with respect to
temperature is shown in Fig. 9. It can be clearly seen that the variation of the heat generation is quite sharp. As a result, the
nonlinearity of the problem in this case is rather strong. The heat generation in this case has the following form:
gðx; y; TÞ ¼ 175Tð103 � TÞ � 3:575� 107 300 6 T 6 500

8� 106 T P 500

(
: ð37Þ



Fig. 10. Temperature variation along the line MN for different node arrangements and Dt = 1 s in case II.

Fig. 11. Temperature variation along the line MN for different time steps and 335 nodes in case II.
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The problem is analyzed with three different node arrangements (Fig. 2(b)) and three time step sizes of 1, 5, and 25 s. In
Fig. 10, the temperature variation of the body along the line MN is plotted. In this figure the results obtained using the time
step size of 1 s is reported. The good convergence of the proposed method with respect to the number of nodes is evident. In
Fig. 10, the maximum relative error at t = 200 for the arrangements with 44, 92, and 335 nodes is 24.7%, 2.8%, and 0.2%,
respectively.

Fig. 11 depicts the variation of temperature along the line MN with different time step sizes and 335 nodes. In Fig. 11, the
maximum relative error at t = 200 for the time step sizes of 25, 5, and 1 s is 1.4%, 0.5%, and 0.2%, respectively.

The temperature variation of the points A and B with respect to time is plotted in Fig. 12. This figure clearly shows the
excellent convergence of the proposed method. Noticing the large range of temperature variation during the time period
of 600 s and the sharp variation of temperature near the boundaries (Figs. 10–12), we can conclude that the proposed mesh-
less method has grasped the variation very well.

In the third case, a non-uniform and time-dependent, but temperature-independent heat source is considered. The heat
source function considered in this case is expressed as follows:
gðx; y; tÞ ¼ ½1þ sinð10pxÞ sinð5pyÞ�5� 106 � f ðtÞ

f ðtÞ ¼
16

3000 t 1� 5
3000 t

� �
þ 0:2 0 6 t 6 300

1 t P 300

(
ð38Þ
The function f(t) in Eq. (38) is plotted in Fig. 13. For the analysis of the problem in this case, three node arrangements
(Fig. 2(b)) and time step sizes of 1, 5, and 25 s are utilized. The variation of the temperature along the line MN is depicted
in Fig. 14. The results presented in this figure correspond to the time step size of 1 s. Although the heat generation source



Fig. 12. Temporal temperature variation of points A and B for Dt = 1 s in case II.

Fig. 13. The weight function of the heat generation source, case III.

Fig. 14. Temperature variation along the line MN for different node arrangements and Dt = 1 s in case III.
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varies sharply with time, the variation of the temperature is excellently predicted by the proposed method. In Fig. 14, the
maximum relative error at t = 200 for the arrangements with 44, 92, and 335 nodes is 16.0%, 2.0%, and 0.1%, respectively.



Fig. 15. Temperature variation along the line MN for different time steps and 335 nodes in case III.

Fig. 16. Temporal temperature variation of points A and B for Dt = 1 s in case III.
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Fig. 15 plots the temperature variation along the line MN, for the three different time step sizes mentioned above. The
node arrangement with 335 nodes is used to obtain the results. As can be seen in Fig. 15, even the largest time step size gen-
erates accurate results although the source itself is time-varying. This means that with the present meshless method, tran-
sient heat conduction problems can be modeled with quite large time step sizes; this in turn, means that the method is very
efficient for the analysis of transient nonlinear problems. In Fig. 15, the maximum relative error at t = 200 for the time step
sizes of 25, 5, and 1 s is 1.0%, 0.3%, and 0.1%, respectively.

In Fig. 16 the time variation of the temperature at points A and B is shown. The results presented in this figure correspond
to the time step size of 1 s. Convergence of the results is apparent.
3.2. Example 2: A 3D transient nonlinear problem

In this example, a quarter of a hollow cylinder made of a functionally graded material is considered. The material used in
this example is the same as that from example 1. The cylinder includes a spatially variable heat source. Using the improved
meshless RPIM developed in this paper, the transient temperature variation in the cylinder is obtained. The problem geom-
etry, boundary, and initial conditions are described in Fig. 17(a).

Similar to the previous example, the effective properties of the FGM is evaluated by the mixture rule, Eq. (34), by taking
v1 = 2r � 1, v2 = 1 � v1, where r is the radial distance measured from the axis of the cylinder. The indices 1 and 2 refer to
materials 1 and 2 in Eqs. (32) and (33), respectively. Three different node arrangements are considered for the convergence
study of the meshless RPIM. Fig. 17(b) depicts the node arrangements and also the number of nodes used in each case. The
average nodal spacing for the arrangements with 1815, 637, and 385 nodes is 0.132, 0.193, and 0.231, respectively. For



Fig. 17. Configuration of the problem, example 2: (a) the geometry; the body is initially at T = 300 K; all surfaces other than those indicated in the figure are
kept at T = 300 K, (b) node arrangements.

Fig. 18. Temperature variation along the radial line at x = 0.5 for different node arrangements and Dt = 250 s in example 2.
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comparison purposes, the problem is also analyzed by ANSYS with a fine mesh (24000 eight-node brick elements and 26901
nodes).

A spatially variable heat source with the following equation is considered in the body:
gðx; y; zÞ ¼ yþ ðx2 þ y2 þ z2Þ cos
p
2

x
� �h i

1:5� 105: ð39Þ
To validate the results obtained by the proposed method, two typical points in the body are selected for plotting the tem-
perature variation with respect to time. These points are A = (0.5; 0.4243; 0.4243) and B = (0.5; 0.6187; 0.6187). Also, a radial
line at x = 0.5 is selected for the depiction of temperature variation in the body. To study the convergence of the proposed
method with respect to time step size, three different step sizes of 250, 500, and 1000 s are used for the analysis of the prob-
lem. The problem is analyzed in a time period of 10000 s.



Fig. 19. Temperature variation along the radial line at x = 0.5 for different time steps and 1815 nodes in example 2.

Fig. 20. Temporal temperature variation of points A and B for Dt = 250 s in example 2.

Fig. 21. Convergence of the proposed method with respect to the number of integration points, with 637 nodes and Dt = 500 s in example 2.
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Table 3
CPU times (in s) for the analysis of example 2, with Dt = 1000(s).

385 nodes 637 nodes 1815 nodes

N = 2176 N = 8064 N = 4240 N = 12992 N = 11760 N = 19072

62 188 261 742 5025 7301
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Fig. 18 presents the variation of temperature along the radial line at x = 0.5, for the three nodal arrangements considered.
It is evident that the proposed method shows a good convergence with respect to the number of nodes. In Fig. 18, the max-
imum relative error at t = 5000 for the arrangement with 385, 637, and 1815 nodes is 8.5%, 3.9%, and 1.6%, respectively.

The temperature variation along the radial line at x = 0.5 is plotted in Fig. 19, with different time step sizes. The figure
clearly shows the proposed method gives excellent results even with large time step sizes. In Fig. 19, the maximum relative
error at t = 5000 for the time step size of 1000, 500, and 250 s is 2.7%, 2.0%, and 1.6%, respectively.

The time history of the temperature at points A and B is plotted in Fig. 20. This figure clearly shows the excellent agree-
ment between the results obtained by the proposed meshless method and those retrieved by using ANSYS with a fine mesh.

In order to study the effect of the number of integration points on the accuracy of the results, the temperature variation
along the radial line at x = 0.5 is also plotted for three different numbers of integration points in Fig. 21. In this figure, the
ratios of the average spacing of nodes to the integration points of 1.3, 2.3, and 2.7 are selected for comparison of the results.
These ratios correspond to 1344, 8064, and 12992 integration points, respectively. The convergence of the proposed method
with respect to the number of integration points is obvious. In Fig. 21, the maximum relative error at t = 10000 for the case
with 1344, 8064, and 12992 integration points is 10.4%, 1.9%, and 0.8%, respectively.

The computational time consumption of the proposed improved RPIM is investigated for this example as well. For various
combinations of the number of nodes and integration points, the CPU time is given in Table 3. Again, in Table 3, N is the total
number of integration points.
4. Conclusion

Based on a meshless integration technique, an improved meshless radial point interpolation method was presented. The
proposed integration technique is capable of fast and accurate evaluation of domain integrals. The improved meshless RPIM
presented in this paper has the advantage of being truly meshless, while having a better accuracy and computational effi-
ciency in comparison with the original RPIM. Additionally, since the RPIM shape functions have the Kronecker delta function
property, the enforcement of essential boundary conditions in the presented method is much simpler than in the case of the
EFG and MLPG methods. The accuracy of the improved RPIM has been demonstrated through some 2D and 3D heat conduc-
tion problems. It was shown that the improved RPIM has an excellent performance for the prediction of the temperature
distribution in nonlinear transient heat conduction problems. Also, the good convergence of the method with respect to
the number of nodes and time step size has been verified. Moreover, it has been shown that for an accurate analysis, the
average nodal spacing of the meshless method should be about 1.5–2.5 times the average spacing of the integration points
for the 2D problems, and about 2.0–2.5 for 3D problems. This point was observed when the four-point Gaussian quadrature
method is employed in integration intervals of the CTM.
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