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Abstract. The major methods of mathematical modelling of solidification and melting
problems are reviewed in this paper. Different analytical methods, nowadays still used
as standard references to validate numerical models, are presented. Various mathematical
formulations to numerically solve solidification and melting problems are categorized. Relative
merits and disadvantages of each formulation are analysed. Recent advances in modelling
solidification and melting problems associated with convective motion of liquid phase are
discussed. Based on this comprehensive survey, basic guidelines are outlined to choose a
correct mathematical formulation for solving solidification and melting problems.

Nomenclature

a coefficient in discretized equations
b source term in discretized equations
CA concentration
Cs, Cl, Cin, heat capacities at constant pressure for solid, liquid and liquid-solid interface
DA diffusion coefficient
g gravitational acceleration
h enthalpy
Hf latent heat
ib interface node index
k thermal conductivity
p pressure
r cylindrical coordinate direction
S source term
St Stefan number
t time
T temperature
1Tr fictitious temperature rise
u velocity in thex direction
V volume
V velocity vector
v velocity in they direction
w velocity in thez direction
x Cartesian coordinate direction
X(t) position of liquid–solid interface
y Cartesian coordinate direction
z Cartesian coordinate direction
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Greek symbols

α thermal diffusivity
0µ, 0α, 0D, dimensionless diffusion coefficients for the momentum,

energy and diffusion equations
δ thickness of boundary layer
η dimensionless number used in derivations as a temporary substitution
φ arbitrary dependent variable
λ dimensionless number in solution to Neumann problem, liquid fraction
ν kinematic viscosity
θ Kirchhoff temperature
ρ density
µ dynamic viscosity
ω vorticity
ψ stream function
ζ coefficient of thermal expansion

Subscripts

app apparent
b bottom control volume face
c concentration
e east control volume face
eff effective
h enthalpy
i pertaining to any coordinate value
in liquid–solid interface
l liquid
m melting
n north control volume face
nb general neighbour grid point
n old value (at timet) of the dependent variable
n + 1 new value (at timet + 1t) of the dependent variable
o initial
P present nodal point
p location of moving interface
s solid,

south control volume face
t top control volume face,

thermal
v velocity
w west control volume face
x Cartesian coordinate direction
y Cartesian coordinate direction
z Cartesian coordinate direction

Superscripts

o at the previous time step
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1. Introduction

The phenomena of solidification and melting are associated with many practical applications.
They occur in a diverse range of industrial processes, such as metal processing, solidification
of castings, environmental engineering and thermal energy storage system in a space station.
In these processes, matter is subject to a phase change. Consequently, a boundary separating
two different phases develops and moves in the matter during the process. Transport
properties vary considerably between phases, which result in totally different rates of energy,
mass and momentum transport from one phase to another. In these problems, the position
of the moving boundary cannot be identified in advance, but has to be determined as an
important constituent of the solution. The term ‘moving boundary problems’ is associated
with time-dependent boundary problems, where the position of the moving boundary must
be determined as a function of time and space. Moving boundary problems, also referred to
as Stefan problems, were studied as early as 1831 by Lame and Clapeyron [1]. However, the
sequence of articles [2, 3] written by Stefan has given his name to this family of problems,
which resulted from his study of the melting of the polar ice cap around 1890.

In early years, analytical methods were the only means available to render
mathematically an understanding of physical processes involving the moving boundary.
Although analytical methods offer an exact solution and are mathematically elegant, due to
their limitations, analytical solutions are mainly for the one-dimensional cases of an infinite
or semi-infinite region with simple initial and boundary conditions and constant thermal
properties [4]. Practical solidification and melting problems are rarely one dimensional,
initial and boundary conditions are always complex, thermophysical properties can vary with
phases, temperatures and concentration, and various transport mechanisms (for example,
convection, conduction, diffusion and radiation) can happen simultaneously. With the rise
of high-speed digital computers, mathematical modelling and computer simulation often
become the most economical and fastest approaches to provide a broad understanding
of the practical processes involving the moving boundary problems. Nowadays in most
engineering applications, recourse for solving the moving boundary problems has been
made to numerical analyses that utilize either finite difference, finite element of boundary
element methods. The success of finite element and boundary element methods lies in
their ability to handle complex geometries, but they are acknowledged to be more time
consuming in terms of computing and programming. Because of their simplicity in
formulation and programming, finite difference techniques are still the most popular at
the present.

Hence, the evolution of mathematical analyses on solidification and melting problems
has undergone three distinct eras. Most of the earlier investigations were confined
to one-dimensional diffusion-controlled problems with very simple geometries due to
constraints in the tools available to scientists and engineers at that time. The analytical
solutions developed during this first era serve as a cornerstone of this discipline and are
still used today as standard references to validate the numerical models. The advent
of computers, a couple of decades ago, enabled the consideration of multidimensional
problems with more complex geometries. A new era of analysis in the solidification
and melting problems commenced with the birth of numerical methods. Perhaps owing
to the limited power of the earlier computers, the numerical models in the second
era that were developed were based on one equation (e.g., and energy or diffusion
equation) and omission of convection. With the help of the more advanced and powerful
computers which have been developed in the past decade, mathematical modelling has
proceeded into a modern era. More sophisticated numerical models have been developed
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to handle multidimensional phenomena involving convection as well as the presence of
the moving boundary in complex geometries. The succeeding review will summarize
the major developments in mathematical analyses of the phase change problems involved
in melting and solidification phenomena. The intention of this review is to present and
compare some of the well known and novel numerical methods available to solve phase
change problems since it is impossible to review all the existing methods within one
article.

2. Analytical methods

2.1. Neumann’s method

The simplest phase change problem is the one-phase problem first solved analytically
by Stefan [2]. The term ‘one phase’ designates only one of the phases (liquid) being
‘active’, the other phase staying at its melting temperature. Stefan’s solution with constant
thermophysical properties shows that the rate of melting or solidification in a semi-infinite
region is governed by a dimensionless number, known as the Stefan number (St),

St = [Cl(Tl − Tm)]/Hf (1)

whereCl is the heat capacity of the liquid,Hf is the latent heat of fusion, andTl and Tm

are the temperatures of the surrounding and melting point, respectively.
Neumann [5] extended the Stefan’s solution to the two-phase problem. In this more

realistic scenario, the initial state of the phase change material is assumed to be solid, for
a melting process, but its initial temperature is not equal to the phase change temperature,
and its temperature during the melting is not maintained at a constant value. If melting
of a semi-infinite slab (0< x < ∞) is considered, initially solid at a uniform temperature
Ts 6 Tm, and a constant temperature is imposed on the facex = 0, with assumptions
of constant thermophysical properties, the problem can be mathematically expressed as
follows:

Heat conduction in liquid region

∂Tl

∂t
= αl

∂2Tl

∂x2
for 0 < x < X(t), t > 0 (2)

Heat conduction in solid region

∂Ts

∂t
= αs

∂2Ts

∂x2
for X(t) < x, t > 0 (3)

Interface temperature

T (X(t), t) = Tm t > 0 (4)

Stefan condition

ks
∂Ts

∂x
− kl

∂Tl

∂x
= Hfρ

dX

dt
for x = X(t), t > 0 (5)

Initial conditions

T (x, 0) = Ts < Tm for x > 0, X(0) = 0 (6)

Boundary conditions

T (0, t) = Tl > Tm for t > 0 (7)

T (x, t) = Ts for x → ∞, t > 0 (8)

whereX(t) is the position of the melting interface (moving boundary). Figure 1 illustrates
this problem more clearly.
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Figure 1. Schematic illustration of spacetime for the two-phase Stefan problem.

And analytical solution to such a problem was obtained by Neumann in terms of a
similarity variable

η = x

2
√

αl
. (9)

The final Neumann’s solution can be written as:

Interface position

X(t) = 2λ
√

αl t (10)

Temperature in the liquid phase

T (x, t) = Tl − (Tl − Tm)
erf

(
x/2

√
αl t

)
erfλ

(11)

Temperature in the solid phase

T (x, t) = Ts + (Tm − Ts)
erfc

(
x/2

√
αst

)
erfc

(
λ
√

αl/αs
) . (12)

The λ in equations (10)–(12) is the solution to the transcendental equation

Stl
exp(λ2) erf(λ)

− Sts
√

αs√
αl exp(αlλ2/αs) erfc

(
λ
√

αl/αs
) = λ

√
π (13)

where

Stl = Cl(Tl − Tm)

Hf
Sts = Cs(Tm − Ts)

Hf
. (14)

However, the Neumannn’s solution is available only for moving boundary problems in the
rectangular coordinate system.

For phase change problems in the cylindrical coordinate, fortunately, Paterson [6] has
shown that the exact solution is obtained if the solution is chosen as an exponential
integral function in the form Ei(−r2/4αt). Consider the case where the surface of
separation between the solid and liquid phases is at radiusX(t) = r(t). The liquid
and solid regions exist forr > X(t) and r < X(t), respectively. Both phases have
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Figure 2. Schematic illustration of melting by a line-heat source in an infinite medium with
cylindrical symmetry.

constant thermophysical properties. A line heat source of strengthQ (W m−1) is located
at r = 0 in an infinite fusible solid at a uniform temperatureTi lower than melting
temperatureTm of the material. The heat source is activated at timet = 0 to release
heat continuously for timet > 0. Consequently, the melting commences at the origin
r = 0 and the solid–liquid interface moves in the positiver direction. Figure 2 illustrates
schematically this case. The energy balance around the line-heat source is expressed
as

lim
r→0

[
−2πrkl

∂Tl

∂r

]
= Q. (15)

The solutions for the temperatures in the solid and liquid phases are given
by

Ts = Tm − Q

4πks

[
Ei

(
− r2

4αst

)
− Ei(−λ2)

]
(16)

Tl(r, t) = Ti − Ti − Tm

Ei(−λ2αs/αl)
Ei

(
− r2

4αl t

)
. (17)

The constantλ is determined from the following transcendental equation:

− Q

4π
e−λ2 + kl(Ti − Tm)

Ei(−λ2αs/αl)
e−λ2αs/αl = λ2αsρHf . (18)

The solid–liquid interface can be located by the following equation:

X(t) = 2λ(αst)
1/2. (19)

2.2. Heat balance integral method

Since the exact analytical solutions as discussed in the preceding section exist only
for semi-infinite problems with parameters constant in each phase and constant initial
and imposed temperatures, they are not applicable to problems with constant imposed
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flux. Clearly then, for most realistic cases, one is forced to seek approximate solutions.
In this section, one of them introduced by Goodman [7] is presented. Based on the
Karman–Pohlhausen’s method of the momentum integral [8] in the boundary-layer theory,
Goodman developed an integral equation which expresses the overall heat balance of
the system by integrating the one-dimensional heat conduction equation with respect
to the spatial variablex and inserting boundary conditions. The method is outlined
below:

(a) assume that the temperature distribution depends on the spatial variable in a particular
form which is consistent with the boundary conditions, e.g. a polynomial relationship;

(b) integrate the heat conduction equation with respect to the spatial variable over the
appropriate interval and substitute the assumed form of the temperature distribution to attain
the heat balance integral;

(c) solve the integral equation to obtain the time dependence of the temperature
distribution and of moving boundaries.

The method was used to solve the single-phase melting-ice problem with various
boundary conditions [7]. Goodman and Shea [9] also applied the method to the two-phase
problems of melting of a finite slab. In such problems, as illustrated in figure 3, a constant
heat flux is applied at one face of a finite slab which is initially at a uniform temperature
below the melting point; the other face of the slab is either insulated or kept at its initial
temperature. They determined how the melting propagates and how the temperature is
distributed in the melted and unmelted portions of the slab.

Figure 3. Schematic representation of melting of an infinite slab.

The heat balance integral method has been extensively applied to different problems,
and has often been modified with the intention of improving and easing the mathematical
analysis. The mathematical manipulations required for the heat balance integral method, for
anything other than relatively simple problems, can be very complicated and cumbersome.
Besides, selecting a satisfactory approximation to the temperature distribution is a major
difficulty with this method. For instance, the use of a high-order polynomial makes this
approach highly complicated, and even does not necessarily improve the accuracy of the
solution.

In an effort to improve the accuracy of the heat balance integral method, Noble [10]
proposed a spatial subdivision scheme in which quadratic profiles are used in each subregion.
Bell [11] later modified Noble’s scheme to solve a single-phase melting problem.
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3. Numerical methods for solving the pure heat conduction equation with a phase
change involved

3.1. Fixed grid methods

In this method, the heat flow equation is approximated by finite difference replacements
for the derivatives in order to calculate values of temperatureTi,n, at xi = i1x and time
tn = n1t on a fixed grid in the (x, t) plane. At any timetn = n1t , the moving boundary
will be located between two adjacent grid points; for instance, betweenib1x and(ib+1)1x,
as illustrated in figure 4.

Figure 4. Position of the moving boundary in a fixed grid.

The numerical solution of the one-phase ice-melting problem, defined by equations (2)
and (4)–(8), offer a simple illustration of this method. The new temperature is calculated
from temperatures of the previous step on the basis of the following formulation:

Ti,n+1 = Ti,n +
(

1t

1x2

)
{Ti−1,n − 2Ti,n + Ti+1,n} i = 0, ib − 1. (20)

In terms of three-point Lagrange interpolation [12] instead of (20), the temperature at
x = ib1x is computed,

Tib,n+1 = Tib,n +
(

21t

1x2

) {
1

pn + 1
Tib−1,n − 1

pn

Tib,n

}
. (21)

The variation of the location of the moving boundary is

pn+1 = pn −
(

1t

ρHf1x2

) {
pn

pn + 1
Tib−1,n − 1

pn

Tib,n

}
. (22)

As seen, the numerical solution of the method is carried out on a space grid that remains
fixed throughout the calculation.

Various schemes have been proposed for approximating both the Stefan conditions on
the moving boundary and the partial differential equation at the adjacent grid points. For
example, in a grid space containing the moving boundary at any time, Murray and Landis
[13] introduced two fictitious temperatures, one achieved by quadratic extrapolation from
temperatures in the solid region and the other from temperatures in the liquid region. The
fusion temperature and the current position of the moving interface are incorporated in
the fictitious temperatures, which are then substituted into a standard approximate, such
as equation (20), to calculate the temperature near the interface instead of using special
formulae like equation (21). For the motion of the interface, an expression similar to
equation (22) is used according to the Taylor extrapolation formula. Ciment and Guenther
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[14] developed a method of spatial mesh refinement on both sides of the moving boundary,
previously analysed by Ciment and Sweet [15]. With this method, Lazaridis [16] applied
explicit finite difference approximations to solve two-phase solidification problems in both
two and three space dimensions. Some numerical schemes have been developed based on
an auxiliary set of differential equations, which express the fact that the moving boundary
is an isotherm. Close to the boundary, formulae for unequal intervals were incorporated
into the auxiliary equations. Standard finite difference approximations to the heat flow
equation were used at grid points far enough from the moving boundary. To avoid loss of
accuracy associated with singularities, which can arise when the moving boundary is too
near a grid point, localized quadratic temperature profiles were applied. The mathematical
manipulations are very lengthy and complex indeed.

The major advantage of fixed grid methods is that these methods can handle
multidimensional problems efficiently without much difficulty. Thus, the numerical
treatment of the moving boundary can be achieved through simple modifications of existing
heat transfer codes. As such, they have come into common use for modelling a variety of
complex moving boundary problems. Two excellent surveys of the fixed grid methods can
be found in [17] and [18].

3.2. Variable grid methods

The fixed grid methods sometimes break down as the boundary moves a distance larger
than a space increment in a time step. This constraint, that depends on the velocity of the
moving boundary, may largely increase the array size (i.e. memory) and the cpu-time if
computations are to be performed for extended times. The problems associated with the
fixed grid method can be avoided by using the variable grid methods. In the variable grid
methods, the exact location of the moving boundary is evaluated on a grid at each step.
The grid can be either interface fitting or dynamic.

The interface-fitting grids (also referred to as the variable time step methods), where a
uniform spatial grid but a non-uniform time step are used, has been repeatedly employed
to solve two-phase and one-dimensional problems. Instead of applying a fixed time step
and searching for the location of the moving boundary, Douglas and Gallie [19] intended
to determine a variable time step, as part of the solution, such that the moving boundary
coincides with a grid line in space. The fully implicit finite difference equations were used.
Gupta and Kumar [20] formulated the same set of finite difference equation as Douglas
and Gallie but they used the Stefan condition to update the time step. The instability,
that develops as the depth of the moving boundary increases, was avoided with Gupta and
Kumar’s method. Goodling and Khader [21] gave another variable time step method in
which the finite difference form of the Stefan condition was incorporated into the system of
the equations to be solved. The system is solved for an arbitrary value of the temperature of
the node adjacent to the moving boundary, which is then updated from the Stefan condition.
However, Gupta and Kumar [22], in a study of a convective boundary condition at the fixed
end, found that Goodling and Khader’s method does not converge as the computation
progresses in time. They showed a satisfactory agreement between their results and those
obtained by using other variable time step methods and the Goodman’s integral method [7].
Gupta and Kumar [23] also modified the Douglas and Gallie’s method to solve the oxygen
diffusion problem due to the absence of an explicit relationship between the velocity of the
moving boundary and mass flux. Their results are very close to those obtained by Hansen
and Hougaard [24] and by Dahmardah and Mayers [25]. However, this approach is not
applicable for multidimensional problems.
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The other variable methods are based on variable space grids, also known as the dynamic
grids, where the number of spatial intervals are kept constant and the spatial intervals are
adjusted in such a manner so that the moving boundary lies on a particular grid point. Thus,
in these methods the spatial intervals are a function of time. The substantial temperature
derivative of each grid point is

dT

dt

∣∣∣∣
i

= ∂T

∂x

∣∣∣∣
t

dx

dt

∣∣∣∣
i

+ ∂T

∂t

∣∣∣∣
x

(23)

where the moving rate of each grid point is related to the moving boundary by

dx

dt

∣∣∣∣
i

= x

X(t)

dX

dt
. (24)

By substituting equations (24) and (2) into (23), the governing equation for one-dimensional
problems becomes

dT

dt

∣∣∣∣
i

= x

X(t)

dX

dt

∂T

∂x
+ ∂2T

∂x2
. (25)

The position of the moving boundaryX(t) is updated at each step by using a finite difference
form of the Stefan condition on the moving boundary.

Murray and Landis [13] used these formulations to solve a freezing problem by the
explicit method. This method was applied by Heitz and Westwater [26] to solve a one-
dimensional problem of solidification with the liquid initially at saturated temperature. They
incorporated the volume change and a higher value of liquid thermal conductivity to simulate
the effect of fluid flow. Tien and Churchill [27] extended them to cylindrical coordinates.
Although multidimensional problems are more complex, with this method Rathjen and Jiji
[28] and Tien and Wilkes [29] have obtained solutions of several two-dimensional problems.
The complications due to the non-uniform grid size around the moving boundary were
avoided by the methods of Crank and Gupta [30], in which the entire uniform grid system
moves with the velocity of the moving boundary. They presented two schemes of obtaining
the interpolated values of temperatures at the new grid points, to be used for the next step,
in terms of cubic spline or polynomials. Instead of the interpolations, Gupta [31] used a
Taylor expansion of space and time variables and derived an equation which is actually a
particular case of the Murray and Landis equation (25). Detailed discussions of various
variable time step methods can be found in [4, 17, 32].

3.3. Methods of latent-heat evolution

The focus of numerical methods described in the preceding subsections is on applying
finite difference techniques to the strong formulation of the process, locating moving
boundaries and finding temperature profiles at each time step. These methods are called
strong numerical solutions and are applicable to the problems involving one or two phases
in one space dimension. For two-dimensional cases, the complicated schemes must be
used. Hence, with the strong solution, much more computational time is required. It is
very difficult to apply the strong solution to a problem with fluid flow involved and in
three-dimensional cases.

The alternative is to reformulate the problem in such a way that the Stefan condition
is implicitly incorporated in a new form of equations, which applies over the entire region
of a fixed domain. These methods are referred to as weak numerical solutions, in which
explicit attention to the nature of the moving boundary is avoided. They are the apparent
capacity method, the effective capacity method, the heat integration method, the source
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based method, the enthalpy method, and so on. Since a large number of superb papers in
this area have been published, it is impossible to make a fully comprehensive review. In
this subsection, several prevalent methods will be discussed.

3.3.1. Apparent heat capacity methods.In this method, the latent heat is accounted for
by increasing the heat capacity of the material in the phase change temperature range. For
instance, if the latent heat is released uniformly in the phase change temperature range, the
apparent heat capacity can be defined as

Capp =


Cs T < Ts solid phase

Cin Ts < T < Tl solid/liquid phase

Cl T > Tl liquid phase

(26)

where

Cin =
{∫ Tl

Ts
C(T ) dT + Hf

}
(Tl − Ts)

. (27)

In terms of the definition of the apparent heat capacity, the energy equation in one dimension
becomes

ρCapp
∂T

∂t
= ∂

∂x

(
k
∂T

∂x

)
. (28)

Equation (28) can easily be discretized and solved numerically. The procedure for
calculating the apparent heat capacity is as follows. (i) in the explicit finite difference
formulation,Capp is determined using the temperatures at the grid points from the previous
time step; (ii) in the implicit formulation, two ways are available, the first is to evaluate
Capp based on the previous time step temperatures (as in the explicit case) and the second
is according to the present time step temperatures by an iterative scheme.

The apparent heat capacity method was first presented by Hashemi and Sliepcevich
[33] using a finite difference formulation based on the Crank–Nicolson scheme. They
applied this method to one-dimensional problems where the phase change occurs in a finite
temperature interval (i.e. a mushy range). Later Cominiet al [34] extended the method to the
finite element formulation in a generally applicable approach to one- and two-dimensional
problems with both moving boundary and temperature-dependent physical properties.

Although the apparent heat capacity method is conceptually simple, it is apparent that
the method does not perform well as compared with other methods [35]. The reason for
such a drawback is that if, for a melting case, the temperature of a control volume rises
from below the solidus to above the liquidus temperature in one time step, the absorption
of the latent heat for that control volume is not accounted for. A similar flaw exists
as the method is applied to solidification problems. As a result, very small time steps
have to be used in this method in order to overcome its shortcoming. The consequence
is poor computational efficiency. Moreover, for pure materials, an artificial phase change
temperature range must be used to avoid making equation (27) undefined. Over this artificial
phase change temperature range, the latent heat is assumed to be released or absorbed. The
introduction of an artificial phase change temperature range would result in computational
errors and simulation distortion of the real problem.

3.3.2. Effective capacity method.This method was proposed by Poirier and Salcudean
[35] in an effort to improve the apparent capacity method. In this technique, a temperature
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profile is assumed between the nodes; rather than determining an apparent capacity in terms
of the nodal temperature, an effective capacity is calculated based on the integration through
the control volume. The integration needed to obtain the effective capacity over the control
volume is

Ceff = (
∫

CappdV )

V
(29)

where Ceff, Capp and V are effective heat capacity, apparent heat capacity and control
volume, respectively.

This technique has been applied to one- and two-dimensional problems. Its implicit
and explicit finite difference, and implicit finite element formulations have been studied. It
has been seen that the method performs significantly better than the apparent heat capacity
method. By evaluating equation (29) at each step, it is ensured that the method correctly
accounts for the latent heat effect and the solution is independent of the artificial phase
change temperature range. An assumption of a large artificial phase change temperature
range is not required. The results were relatively insensitive to the time step and generally
precise both on the entire domain and near the moving boundary.

In spite of its accuracy, the effective capacity method is very troublesome to implement.
The numerical integration is substantially expensive, especially if the thermal gradients are
steep in the phase change temperature range. Further details can be found in [36].

3.3.3. Heat integration method.This method, also known as the post-iterative method,
is probably the simplest one of all the techniques reviewed in this subsection. In this
method, the temperatures of all control volumes are monitored. For the melting case, if
the temperature of any control volume rises above the melting temperature, the material in
that control volume is assumed to undergo a phase change. The temperature of that control
volume is set back to the melting temperature and the equivalent amount of heat due to
setting the temperature back is added to an enthalpy account only for that control volume.
Once the enthalpy in the account is equal to the latent heat, the temperature is allowed to
rise based on the energy equation. The procedure can be expressed mathematically

1TrCin = Hf (30)

where the fictitious temperature rise1Tr is the sum of temperature differences between the
temperature calculated by the energy equation at each time step and the melting temperature.

Early studies on the heat integration method were performed by Dusinberre [37]. Later
Rolph and Bathe [38] applied this technique to the finite element method for transient thermal
problems including a moving boundary in both a pure substance and an alloy. More recently,
it was further extended to the explicit finite difference methods by Argyropoulos and co-
workers [39–42] to simulate the steel shell growth and meltback around an exothermic
addition when it is introduced into liquid steel. They reported that the numerical model can
predict such a complex moving boundary problem in one dimension and the computer output
is in good agreement with experimental results. Nevertheless, the model simplified the
problem and considered it only from the energy contribution without solving the momentum
equations simultaneously in the liquid bath.

The heat integration method can be easily applied for multidimensional problems with
isothermal or non-isothermal phase change involved. The method is computationally
economical. However, the accuracy of the solution strongly depends on the time step and
the prediction in the region of the moving boundary is often inaccurate [35]. In addition,
a somewhat exhaustive routine of accounting and indexing must be maintained for each
control volume.
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3.3.4. Source based method.This method allows any additional heat from either a heat
source (e.g. latent heat during the solidification, and exothermic heat of mixing during the
melting) or a heat sink (e.g. latent heat during the melting) to be introduced into the general
form of the energy equation as an extra term, that is, the source term. For the illustration of
this method, a general source based method recently developed by Voller and Swaminathan
[43] will be presented as follows. In this general source based method derived from a
standard enthalpy formulation, the sensible heat (defined as the product of the specific heat
and temperature) and latent heat are separated in the transient term of the energy

ρ
∂(CT + Hf)

∂t
= ∂

∂x

(
k
∂T

∂x

)
. (31)

Recasting equation (30), the energy equation in the source formulation becomes

ρC
∂T

∂t
= ∂

∂x

(
k
∂T

∂x

)
+ S (32)

where the latent heat is now included in the source termS as

S = −ρ
∂Hf

∂t
. (33)

The fully implicit discretization of equation (31) is

aPTP =
∑

anbTnb + b (34)

where

b = ao
PT

o
P + VP(h

o
P − hP) (35)

whereVP is the volume associated with the grid point P, ‘a’ is the coupling coefficient, the
superscript ‘o’ as well as the subscripts ‘P’ and ‘nb’ refer to the value at the previous time
step, the grid point under consideration and the neighbouring grid points, respectively. The
coefficients of equations (34) considered as a general discretization form can be obtained
using either finite difference methods [44] or finite element methods [45].

The source based method has become more and more popular over the years [18, 43, 46].
The reason for this is that the algorithms handling the heat source or heat sink can be
easily adapted to the existing numerical codes which have been widely used in the public
domain, such as TEACH, PHEONICS etc. The overall accuracy of this method is fairly
good, especially for non-isothermal phase change problems, since the latent heat content is
directly joined to the temperature of the grid point. Also, the method is computationally
efficient. Although the method may introduce unreasonable predictions around the moving
boundary for isothermal phase change problems without using excessive underrelaxation for
convergence, the solution oscillation can be eliminated with Voller’s approach, that is the
linearization of the discretized source term [43].

3.3.5. Enthalpy method.The essential feature of the basic enthalpy methods is that the
evolution of the latent heat is accounted for by the enthalpy as well as the relationship
between the enthalpy and temperature. The method can be illustrated by considering a one-
dimensional heat conduction-controlled phase problem. An appropriate equation for such a
case can be expressed as

ρ
∂h

∂t
= ∂

∂x

(
k
∂T

∂x

)
. (36)

The relationship between the enthalpy and temperature can be defined in terms of the
latent heat release characteristics of the phase change material. This relationship is usually
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Figure 5. Enthalpy as a function of temperature for (a) isothermal phase change; (b) non-
isothermal phase change.

assumed to be a step function for isothermal phase change problems and a linear function
for non-isothermal phase change cases. Figure 5 shows the enthalpy–temperature curves
for both cases. The enthalpy as a function of temperature for both cases is given by

h =
{

CsT T 6 Tm solid phase

ClT + Hf T > Tm liquid phase

}
for isothermal phase change (37)

h =


CsT T < Ts solid phase

CinT + Hf(T − Ts)

(Tl − Ts)
Ts 6 T 6 Tl solid/liquid phase

ClT + Hf + Cin(Tl − Ts) T > Tl liquid phase

 for

non-isothermal phase change. (38)

The enthalpy approach was proposed as early as 1946 by Eyreset al [47] to avoid
nonlinearity in a heat conduction problem. The earliest application of an enthalpy
formulation to a finite difference scheme appears to be Rose [48]. Shamsunder and Sparrow
[49] employed the enthalpy method in conjunction with a fully-implicit finite difference
scheme to solve for solidification in a square geometry with convective boundary conditions.
Their predictions were verified by the results from an enthalpy formulation used with the
Crank–Nicholson scheme. Bell and Wood [50] evaluated the performance of the enthalpy
method by using a simple, one-dimensional Stefan problem of melting a semi-infinite solid,
initially at melting point, by exposure of one end to a hot temperature. A trigonometric series
approximation of the temperature was used for the grid points near the moving boundary.
Good agreement was obtained with the analytical solution given by Carslaw and Jaeger
[51]. It was found that their formulation of treating the moving boundary performed better
than the standard finite difference representation but the computational cost was higher.
Poirier and Salcudean [35] reported that the enthalpy method is somewhat more complex
and expensive than other methods. The computational cost increases with mesh refinement.
The solution oscillation appears in the phase change case with large ratio of latent heat
to sensible heat. However, the enthalpy method gives accurate solutions, especially for
solidification of metal in which a phase change temperature range exists. Furthermore,
the solution is independent of the time step and phase change temperature range. Tacke
[52] proposed a discretization technique of the enthalpy method based on an assumption
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of a linearized temperature distribution between the moving boundary and its adjacent grid
points. As a result of the assumption of the linear profiles, the position of the moving
boundary is calculated by

hi = Hfλ + Cl(Te − Tm)λ − Cs(Tm − Tw)(l − λ) (39)

where λ is the liquid fraction in the control volume. His formulation of the enthalpy
method removes numerical oscillations in both temperature and moving boundary position,
and produces a marked improvement in the accuracy of the results, particularly for cases
with a large ratio of the latent heat to sensible heat.

Discussion of the enthalpy method has also been comprehensively covered by Voller
and co-workers [18, 43, 53–55]. It has been known that the basic enthalpy method does
not perform very well for modelling isothermal phase change problems. Voller proposed
a technique to improve the accuracy of the prediction. He assumed that, as the moving
boundary is in the control volume, the enthalpy change rate is proportional to the state
change rate of the control volume, that is

dHi

dt
= ±Hf

dλ

dt
(40)

whereλ is the liquid fraction in the control volume; the negative sign in equation (40) is for
melting and the positive sign is for solidification. While the material in the control volume
undergoes phase change, the enthalpy of the control volume must follow

CTm 6 hi 6 CTm + Hf . (41)

Based on equation (40), the following equations can be obtained:

λ = hi − CTm

Hf
for solidification (42)

λ = Hf + CTm − hi

Hf
for melting. (43)

For the Cartesian coordinate system, when the moving boundary reaches the grid point, the
liquid fraction (λ) in the control volume is equal to 0.5. Substitution of this value into
equations (42) and (43) yields

hi = CTm + 0.5Hf (44)

for both solidification and melting. Analogous expressions may also be derived for other
coordinate systems. For a melting problem, for instance, as the moving boundary crosses
a grid point, the newly computed value of the enthalpy(hi) at that point becomes greater
than (CTm + 0.5Hf). With the assumption that the enthalpy change is linear at each time
step, a time can be determined at which the moving boundary is exactly at the grid point.
At that time, the temperature at the grid point can be imposed as the melting point. This
algorithm has been extended to track the moving boundary at all times. The accuracy of the
predictions has been greatly improved by this technique. Recently, another highly efficient
algorithm [43, 55], that incorporated the source-based method with the enthalpy technique,
was proposed. As a result, the enthalpy method has been generalized so that more general
forms of the enthalpy–temperature function can be handled; for example, cases in which
an explicit enthalpy–temperature relationship cannot be found, as shown in figure 6. The
method has been extended to two-dimensional cases and its effectiveness has also been
demonstrated.

As the conductivity of a material is dependent on the temperature, the techniques
discussed above may cause difficulties of the numerical discretization [56]. A good



386 H Hu and A Argyropoulos

Figure 6. An implicit enthalpy–temperature relationship.

alternative is to employ the so-called ‘Kirchoff transformation’ [48] into the enthalpy
method, to replace the temperature (T ) by the ‘Kirchoff temperature’ (θ ). The Kirchoff
temperature is defined as

θ =
∫ T

Tm

k(T ) dT . (45)

With this definition,

∂θ

∂x
= ∂

∂x

(
k
∂T

∂x

)
(46)

and
∂θ

∂t
= ∂

∂t

(
k
∂T

∂t

)
. (47)

Substitution of the above equations into equation (32) results in the following governing
equation:

∂θ

∂t
= ∂

∂x

(
k

ρC

∂θ

∂x

)
+ S. (48)

Solomonet al [57] introduced the Kirchoff temperature into the enthalpy formulation
to simulate the performance of a thermal energy storage system in a space station. An
explicit finite difference scheme was used in an axisymmetric cylindrical coordinate system.
Hunter and Kuttler [58] also incorporated the enthalpy with the Kirchoff transformation to
put moving boundary problems in a particularly simple form. The simple form allows
all nonlinearities in the thermophysical properties of the material to be concentrated in
the functional temperature. More recently, Caoet al [59] developed an enthalpy model
transformed by the Kirchoff temperature with the fixed grid methodology. In the model,
the energy equation can be expressed only in terms of the enthalpy

∂

∂t
(ρh) + ∂

∂x
(ρuh) + ∂

∂y
(ρvh) + ∂

∂z
(ρwh) = ∂2

∂x2
(9h) + ∂2

∂y2
(9h) + ∂2

∂z2
(9h) + Sh

(49)

where 9 = k/C. The model was tested by applying it to three-dimensional isothermal
solidification and melting problems. Zeng and Faghri [60] have extended the model to
two-dimensional non-isothermal phase change problems with the separation of the coupled
effects of temperature and concentration on the latent heat evolution in the energy equation.
The latent heat evolution due to temperature variation is accounted for by the definition of
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an effective heat coefficient, while the evolution of the latent heat owing to the concentration
variation is evaluated by a source term.

4. Numerical methods for solving convection/diffusion phase change problems

Understanding energy transport in phase change processes such as melting and solidification
is important since heat transfer during the process can affect the overall efficiency and the
evolution of the process. Meanwhile, the phase change process necessarily proceeds with
temperature and/or concentration gradients in the liquid phase where convection arises under
the action of buoyancy forces due to these gradients. Convection flow in the liquid phase
has received less attention than conduction owing to the computer limitations in the past and
considerable complexities entailed in the mathematical treatment. However, the convection
flow can have a very significant influence on the phase change process. A number of
researchers [61–67] have reported that the convection affects not only the rate of melting
or solidification but also the resulting structure and distribution of the solutes in the liquid
phase of a multicomponent system.

In order to determine quantitatively the convection in a Newtonian fluid, the set of mass
and momentum conservation equations (the Navier–Stokes equations) must be solved. They
can be written in vector notation as

∂ρ

∂t
+ ∇(ρV ) = 0 (50)

ρ
DV

Dt
= −∇p + µ∇2V + ρg (51)

where the operator

D( )

Dt
= ∂( )

∂t
+ u

∂( )

∂x
+ v

∂( )

∂y
+ w

∂( )

∂z
(52)

is the substantial derivative in Cartesian coordinates; the operator

∇ = ∂

∂x
+ ∂

∂y
+ ∂

∂z
(53)

and the operator

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(54)

is the Laplacian operator.
Because of the nonlinearity of the Navier–Stokes equations, their analytical solutions

relevant to the phase change problems are available only for a few simple cases. For
example, Huang [68] has proposed an analytical solution to the one-dimensional momentum
equation for the solution of the melting of a vertical semi-infinite region. Although analytical
methods are mathematically attractive, they cannot be applied to complex cases. Fortunately,
the development of numerical methods and the availability of more powerful computers in
the last decade make the Navier–Stokes equations solvable. Two widely used numerical
approaches, the stream-function–vorticity and the primitive variable formulations, will be
discussed in the next section.
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4.1. Stream-function–vorticity formulation

The stream-function–vorticity formulation is quite often applied in computational fluid
dynamics for solving two-dimensional problems. For two-dimensional incompressible flow,
the stream function (ψ) and vorticity (ω) are defined as

u = ∂ψ
∂y

v = −∂ψ
∂x

(55)

ω = ∂v

∂x
− ∂u

∂y
. (56)

With this definition, the continuity equation is automatically and implicitly satisfied, since

∂u

∂x
+ ∂v

∂y
= ∂2ψ

∂x∂y
− ∂2ψ

∂y∂x
= 0. (57)

A drawback of the primitive variable formulation, discussed in the following subsection, is
that the continuity equation must be satisfied separately from the solution of the Navier–
Stokes equations. With the stream-function–vorticity formulation, this hindrance can be
overcome.

With some simple algebra, the relationship between the stream function and the vorticity
can be obtained:

∇2ψ = −ω. (58)

By substituting the stream function and the vorticity expressions into the primitive variable
form of the differentiated momentum equations, the Navier–Stokes equations can be
transformed to the vorticity transport equation

Dω

Dt
= ν∇2ω. (59)

Instead of dealing with equations (50) and (51) in the primitive variable form, the problem
then becomes to solve equations (58) and (59). The technique eliminates the pressure term
from the momentum equations. As a result, no iterations to correct the pressure field are
required [44].

This formulation in conjunction with the alternating direction implicit (ADI) method [69]
was used by Wilkes and Churchill [70] and Kublbecket al [71] to solve the momentum
and energy equations for natural convection in rectangular geometries. The ADI method
provides economy of storage and speed of solution. Kee and Mckillop [72] also applied
the same method to cylindrical geometries with asymmetric boundary conditions at the
circumference. However, none of these works considered the moving boundary situation.

Ramachandran and Gupta [73] studied thermal and fluid flow effects during solidification
in a rectangular enclosure with adiabatic top and bottom boundaries. The fluid flow was
solved via the stream-function–vorticity formulation and the ADI method. The density
variation causing the natural convection was handled by the Boussinesq approximation
[74]. The velocity distribution, stream lines and isotherm patterns, that were obtained along
with the interface movement with time, indicated that natural convection has a significant
effect on the shape of the interface. Okada [75] incorporated this formulation with the
variable transformation technique to solve two-dimensional melting from a vertical wall.
This technique was also applied to simulate melting of ice around a horizontal cylinder by
Ho and Chen [76]. The coupled, nonlinear, simultaneous equations were solved using the
ADI finite difference scheme. The agreement between their predicted results and the existing
experimental data appeared to be reasonably good. Guenigault and Poots [77] employed
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the stream-function–vorticity formulation to study the inward solidification of spheres and
cylinders with consideration of isothermal latent heat release and constant thermophysical
properties. Lately, this formulation has also been utilized by Vabishchevich and Iliev [78]
to predict metal solidification in a irregular mould.

Despite its attractive features, the stream-function–vorticity formulation has some
major disadvantages. Implementation of the boundary conditions is less straightforward.
The pressure, that has been eliminated, is often an important desired result or even an
intermediate outcome required for determining thermophysical properties. Then, the effort
of extracting pressure from vorticity offsets the computational efficiency obtained otherwise.
Moreover, the major deficiency of the formulation is that it cannot easily be extended to
three-dimensional scenarios, for which a stream function does not exist. Since most real
situations are three dimensional, a method that is intrinsically constricted to two dimensions
suffers from a serious limitation.

4.2. Primitive variable formulation

Instead of the stream function and vorticity, the dependent variables in this formulation are
the velocities and pressure, which means that the Navier–Stokes equation will be solved in
a primitive variable form. The focus of this subsection will be on two techniques available
in this formulation.

The first one, known as the marker and cell (MAC) method, has been proposed and
developed by Harlow and Welch [79] and Nicholset al [80]. In this technique, the nonlinear
governing equations are discretized by finite difference methods based on a term by term
Taylor series approximation. A staggered mesh is employed where the pressure is located at
the cell centre and the velocities at the walls. The boundary conditions are imposed at a layer
of fictitious cells adjacent to the computational domain. Every cell in the computational
domain contains some massless marker particles that move at the local fluid velocity. The
motion of the fluid can be followed by these particles. Since the technique is often used in
the explicit form, the difference equations provide the time step values directly. At each time
step, the discretized momentum equations calculate new velocities in terms of an estimated
pressure field. Then, the pressure in each cell is iteratively adjusted and velocity changes
induced by each pressure correction are added to the previous velocities. This iterative
process is repeated until the continuity equation is satisfied under an imposed tolerance by
the newly computed velocities. At this time, the marker particles are moved to their new
positions and the time step is advanced.

Salcudean and Guthrie [81] utilized the MAC method to predict flow patterns during
the filling of a cylindrical vessel from the top free surface. The MAC method has also been
used by Stoher and Hwang [82] for the computation of the fluid flow during the filling of a
rectangular mould from the side. In both studies, the computed output showed reasonable
agreement with experimental results.

Although the explicit nature makes the implementation of the MAC method relatively
easy, the method suffers from severe time step limitations [83]. The time step must be
restricted in order to eliminate the possibility of the material movement and momentum
transport through more than one cell in a time step. The limitations can become increasingly
restrictive with the refinement of the mesh.

Another alternative available to solve the Navier–Stokes equations in the primitive
variable form is the control volume method. As a representative in this category of the
primitive variable formulation, the well known SIMPLE, and later the SIMPLER, algorithms
were developed by Patankar [44]. In this technique, the equations of the mass, momentum,
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energy and species conservation are expressed in a general differential equation of the form

∂

∂t
(ρφ) + ∇(ρuφ) = ∇(0φ∇φ) + Sφ (60)

whereφ is a general variable,0φ is the diffusion coefficient andSφ is the source term. The
four terms in equation (60) represent the unsteady term, the convection term, the diffusion
term and the source term. The dependent variableφ can denote a variety of different
quantities, such as the mass fraction of a chemical species, the enthalpy or the temperature,
or a velocity component. Accordingly, for each of these variables, an appropriate meaning
must be given to the diffusion coefficient and the source term,φ, 0φ andSφ for the different
equations are listed in table 1. The SIMPLER algorithm can solve the equations of the mass,
momentum, energy and species conservation simultaneously.

Table 1. Diffusion coefficients and source terms for various dependent variables.

Equation φ 0φ Sφ

Mass 1 0 0
Momentum vj µ −∇p + Sv

Thermal energy h(T ) kCp(k) Sh

Chemical species CA D SC

This technique has become more and more popular in recent years. Benardet al [84]
applied this technique to the study of a melting process where heat convection in the liquid
phase is non-negligible. Their numerical solution was validated by comparison with precise
experimental results. Neilson and Incropera [85] investigated the solidification of a binary
solution in a horizontal cylindrical annulus using the control volume technique with a finite
difference scheme. The SIMPLER algorithm was employed by Kim and Kaviany [86]
for solving a melting problem in a two-dimensional cavity driven by the coupling of heat
conduction in the solid phase and natural convection in the liquid phase. Swaminathan
and Voller [55] used the SIMPLER algorithm to simulate the melting of pure gallium in a
cavity. Recently, with the use of the SIMPLER algorithm, Chabchoubet al [87] modelled
and optimized the horizontal Ohno continuous casting process for pure tin. Trovant and
Argyropoulos [88] also utilized the SIMPLER algorithm with the heat integration method
to estimate the volumetric shrinkage in a cylindrical metal casting. Hu and Argyropoulos
[89–92] integrated the enthalpy method in to the SIMPLER algorithm to simulate a unique
melting phenomenon. This phenomenon quite often occurs in various materials processings,
where a heat source, a heat sink and natural convection are coupled, as illustrated in figure 7.
More details regarding the primitive variable formulation can be found in [93].

More recently, with the advent of the supercomputers, it appears that scientists
and engineers are more interested in modelling of microstructure evolution occurring in
solidification. The prediction of microstructure from macrotransport models that solve the
mass, momentum, energy and species macroscopic conservation differential equations is
very limited. In order to overcome this hurdle, a new generation of solidification models
which integrate the transformation kinetics (TK) into the macrotransport models (MT),
referred to as MT–TK models, is being developed [94, 95]. Various techniques which include
the continuum (deterministic) approach [96, 97], the stochastic (probabilistic) approach [98]
and a combined one [99] have been applied in MT–TK modelling to generate information on
the microstructure evolution. Among them, the probabilistic approach is more popularized
due to the advantages that individual grains can be identified and their shape and size can be
illustrated graphically throughout the entire process of solidification. It has been attempted
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Figure 7. A solid exothermically melting in a liquid. (a) Visually observed fluid flow; computed
results of (b) velocity field, (c) isotherm and (d) isoconcentrations.

by using the MT–TK analysis to predict various features of solidifying materials, such
as dendritic structure, fraction of phases, structural transition, microsegregation and even
mechanical properties. The impressive progress made in the past few years has resulted in
a large number of publications and commercial software [100]. Despite increased efforts
to verify the MT–TK models, however, their accuracy in predicting the characteristics of
microstructure and mechanical properties resulting from the solidification condition is still
in question.

5. Summary

The merits and disadvantages of various numerical methods for phase change problems
which occur in solidification and melting have been surveyed in this paper. The choice
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Figure 7. (Continued)

of the numerical method depends not only on the nature of the problem but also on the
priorities set by the user for accuracy, computational efficiency and ease of programming.
For pure substances, the variable grid methods often yield more accurate results than those
based on the fixed grid method. However, the fixed grid method is very much easier to
program. Moreover, the fixed grid method incorporated with the enthalpy technique can
easily be extended to multidimensional problems for both pure and binary materials.

Due to the importance of convection in a large number of phase change problems,
wide experience has been accumulated in the numerical simulation of convection/diffusion
processes coupled with phase change. Numerical techniques for such complex phenomena
are now being developed by scientists and engineers in different disciplines. The popularity
of the primitive variable formulation is rising since it is capable of tackling three-dimensional
problems which often occur in industrial processes. On the basis of experience gained so
far, numerical methods based on the weak solution in conjunction with the control volume
scheme in the fixed domain can be highly recommended for multidimensional melting and
solidification problems.
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With increasing interest in modelling of microstructure evolution occurring during
solidification, a new generation of solidification models (MT–TK) is rising. However,
their accuracy in predicting the peculiar characteristics of microstructure is still in question.
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