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SUMMARY 
The aim of this paper is to categorize the major fixed grid formulations and solution methods for conduction 
controlled phase change problems. Using a two phase model of. a solid/liquid phase change, the basic 
enthalpy equation is derived. Starting from this equation, a number of alternative formulations are obtained. 
All the formulations are reduced to a standard form. From this standard form, finite element and finite 
volume discretizations are developed. These discretizations are used as the basis for a number of fixed grid 
numerical solution techniques for solidification phase change systems. In particular, various apparent 
capacity and source based enthalpy methods are explored. 

INTRODUCTION 

Background 

Many important physical processes, including both solid/liquid transformations and solid 
state transformations, involve phase change. The emphasis in the numerical modelling of such 
systems centres on the treatment of the latent heat evolution. The numerical treatment of this 
non-linear phenomenon poses many problems and many alternative solution methods have been 
proposed. An excellent survey of the various techniques can be found in Crank.' 

A popular approach for the numerical modelling of phase change systems is the so called 'fixed' 
grid methods.'-' The essential feature of these methods is that the latent heat evolution is 
accounted for in the governing energy equation by defining either a total enthalpy, H, an effective 
specific heat coefficient, cA, or a heat source term, Q. Consequently, the numerical solution can be 
carried out on a space grid that remains fixed throughout the calculation. 

The major advantage of fixed grid methods is that the numerical treatment of the phase change 
can be achieved through simple modifications of existing heat transfer numerical methods 
and/or software. As such, fixed grid methods have been successful in modelling a variety of 
complex phase change systems involving arbitrary three-dimensional domains and multiple 
phenomena, e.g. convective t r a n ~ p o r t , ~ - ~  solute transport,"-" stress e~olut ion, '~  micro- 
structure evolution.8, 1 4 3  l 5  
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Scope of the present work 

The object of this paper is to provide a comprehensive review of available fixed grid methods 
for the numerical modelling and analysis of phase change systems. Emphasis will be directed at 
the numerical features that result from the solution of phase change systems as opposed to an 
analysis of the underlying physics. In this investigation, the aim is not to identify a single best 
method or class of methods. The authors recognize that the choice of method will depend on the 
context of the problem and the personal preference of the investigator. In essence, the current 
paper will provide a full range of fixed grid techniques from which a given investigator can choose 
an approach appropriate to the problem at hand. 

For clarity of presentation, this work will focus on solidification phase change systems 
controlled by transient heat conduction. This choice is justified on noting that the major 
numerical difficulties and features of fixed grid phase change techniques are manifest in such 
systems. 

THE GOVERNING EQUATION 

The nature of a solidification phase change can take many forms. An attempt to classify the 
possibilities is presented in Figure 1. This classification is based on the state of a small portion of 
the material in the phase change region, representing a single degree of freedom in the numerical 
discretization. Three classes of phase change are identified 

Case (a). Distinct: The phase change region consists of distinct solid and liquid phases 
separated by a smooth continuous front; for example the freezing of water or rapid solidification 
of pure metals. 

Case (b). Alloy: The phase change region has a crystalline structure consisting of columnar 
and/or equi-axed grains and the solid/liquid interface is a complex shape not necessarily smooth 
or continuous; for example the solidification of most metal alloys. 

A) Dis t i nc t  
E) Al loy  

Continuous 

Figure 1. Classification of solidification phase change 
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Case (c). Continuous: The liquid and solid phases are fully dispersed throughout the phase 
change region and at the chosen scale there is no distinct interface between the solid and liquid 
phases; for example the solidification of wax, polymers or glasses. 

In a distinct phase change, case (a), the state of the system is conveniently characterized by the 
position of the interface. In such cases the class of so called ‘front tracking’ methods’ offer an 
alternative solution approach to fixed grid methods. However, as the solid/liquid interface 
becomes less distinct (cases (b) and (c)), front tracking becomes computationally expensive if not 
impossible. In such cases, we feel that characterization of the phase change is best achieved by a 
model based on the phase fractions. Further, models of this nature are more easily numerically 
implemented using a fixed grid method. 

In the development of a governing equation for solidification phase change systems suitable for 
implementation on a fixed grid, we select the alloy phase change, case (b), as a representative 
system. (Note that with this choice the distinct and continuous phase changes can be viewed as 
special cases.) As demonstrated by Beckermann,I6 the appropriate governing equation can be 
rigorously derived using a local volume averaged model of the two phase solid and liquid 
region.16-’ a This model is based on performing microscopic balances on the transport of 
enthalpy in the distinct solid and liquid fractions contained in a small ‘representative elementary 
volume’ (REV). On integrating the resulting solid and liquid microscopic equations over the 
chosen REV, applying a number of integral identitie~”.’~ and assuming a constant REV 
temperature T = and small local velocity fluctuations, averaged equations are obtained, = 

d 
- (g,H,) + V.(g,H,u,) - V.(g,k,VT) + (interface term), = 0 
at 

-(g,H,) + V.(g,H,u,) - V.(glklVT) + (interface term), = 0 
at 

(la) 

(1b) 
a 

where the subscript [ 1, and [ ]I refer to the solid and liquid phases respectively. With the 
appropriate subscript, g is the phase volume fraction, k is the phase conductivity, U is the phase 
velocity and H is the phase enthalpy. In equation (l), the enthalpies and velocities are intrinsic 
phase averages e.g. 

H,(X, t )  = - H: (x ,  t)dV, (2) v, ‘s 
where V, is the volume of the solid fraction in the REV, x is the position vector of points in the 
solid, H , * ( x ,  t )  is the value of the solid enthalpy at this point and X is the position vector of the 
centroid of the REV. In the current case, since the REV is isothermal, specific heats, c, and cI, can 
be defined such that 

where p is the density and L is the latent heat of solidification. 
On assuming that only two phases are present (i.e. phenomena such as porosity formation are 

neglected), so that g1 = 1 - gs, it is convenient to additively combine equations (1). In this step, 
the interface terms cancel out (essentially they represent a generalized Stefan condition) and a 
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single governing enthalpy equation results, 

(4) 
a 
at 
-(HI + V.(gsH,us + gIHIu1) = V.(kVT) 

On neglecting convection effects (e.g. due to density change at the phase interface or density 
variations in the liquid phase) equation (4) becomes 

a 
at 
- ( H )  = V.(kVT) 

where k is a ‘mixture’ conductivity given as 

and H is a ‘mixture’ enthalpy given as’’ 

where Zef is an arbitrary reference temperature. 
In the absence of heat generation due to compressibility or viscous dissipation, equation (5)  is 

suitable for the description of a general conduction controlled phase change system. Note that it 
is similar in form to the enthalpy equation given in Crank.’ Recognize, however, that the 
definition of the mixture enthalpy, H ,  will mean that the equation is valid across the range of 
phase change systems illustrated in Figure 1. 

A key feature in the development of fixed grid methods, based on equation (5), is the definition 
of the local liquid volume fraction, gl. In general the local liquid fraction will depend on the 
nature of solidification. If the kinetics of the transformation are such that under-cooling is 
significant, g, could be a function of temperature, cooling rate, solidification speed and nucleation 
rate.*, 14, I s  In a multi-component alloy, solutal transport (macro-segregation) will also influence 
the local liquid fraction fie1d.IO-l ’ To simplify and focus subsequent discussions in the current 
work, the liquid fraction is taken to be a function of temperature alone, i.e. 

91 = F ( T )  (8) 

c ’  

z 
.- c 
U 

lL 

0 
U .- 

0 

+Solid - I -Mush- 1 B L i q u i d - .  

T=T, T=T, 

Temperature 

Figure 2. A general liquid fraction-temperature curve 
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This is justified on noting that in many systems kinetic under-cooling is small and macro- 
segregation is principally driven by convection transport. A general form of the liquid fraction 
versus temperature function, F( T), is shown in Figure 2. Referring to the two phase solid and 
liquid zone as the ‘mushy’ region, important features in this plot are 

(i) a temperature range associated with a non-linear change of y, in the mushy region; 
(ii) a step discontinuity at the ‘mush/solid’ interface that can be associated with an eutectic 

(iii) a step discontinuity at the ‘liquid/mush’ interface which can be used to approximately 
phase change; and 

represent a kinetic under-cooling at the dendrite tips.” 

ALTERNATIVE FORMS OF THE GOVERNING EQUATION 

The given governing equation (5) is non-linear in that it contains two related but unknown 
variables, H and T. In seeking a numerical solution it is often convenient, although not necessary, 
to reformulate the governing equation in terms of a single unknown variable with the non-linear 
latent heat effects ‘isolated’ in a source term or a coefficient. 

Apparent heat capacity 

On taking the derivative of H with respect to temperature, T, we can define an apparent specific 
heat as 

or, using equation (7), 

where 

and 

dH 
C A  = - 

d T  

ds  cA = cVo1 + 6H 
d T  

T 

6H = jrref ( P I C I  - Pscs)de + P 4  

is the difference between the liquid and solid enthalpies (i.e. HI - Hs), On noting that 

a H  d H a T  - 
at d T  at 

appropriate substitution into equation ( 5 )  results in 

aT 
at 

c*- = V . ( k V T )  

This equation is often referred to as the enhanced or apparent heat capacity equation. It is 
identical in form to the basic Fourier heat conduction equation. As a result, the formulation can 
be easily incorporated into existing codes. With reference to such a numerical implementation 
two points are made concerning the evaluation of the apparent heat capacity, cA. 
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1. As noted in Figure 2, the liquid fraction curve g,(T) may contain ‘jump’ discontinuities. In a 
strict mathematical context, equation(9) cannot be used to evaluate cA at such dis- 
continuities. In practice this problem is overcome on introducing small artificial temper- 
ature ranges at the jumps, thus ensuring that g,(T) is at least piecewise continuous 
throughout the temperature domain. 

2. The apparent heat capacity, cA, given in equation (9), is highly dependent on both space and 
time. In practice, this requires that care be taken to develop an effective means of 
numerically approximating equation (9).20-26 

More details on the numerical implementation of apparent heat capacity methods will be 
furnished in the discussion of the numerical solution approaches. 

The latent heat source term 

An alternative to introducing a non-linear coefficient in the form of a specific heat is to develop 
a non-linear source term in the governing equation. In the finite difference (control volume) 
literature such approaches are referred to as ‘source term’  technique^.^.',^' In the finite element 
literature they are referred to as ‘fictitious heat flow’ or ‘budget node’  method^.'^.'^ In essence, on 
using equation (7), the term aH/at  can be expanded as 

dH aT as 
at at 
_-  - cVo1 dt + 6H _I (14) 

where for simplicity and convenience temporal changes in the liquid density have been ignoted. 
Substitution of equation (14) in equation (5) results in 

aT C,,~Z = V . ( k V T )  + S 

Equation (15) is also in a form which is compatible with basic numerical solution approaches, in 
particular those based on finite difference control volumes.30 Further, unlike the apparent heat 
capacity formulation, equation (15) can deal with the general liquid fraction curve depicted in 
Figure 2 without the need for artificial temperature ranges. 

In essence, equation (15) is not constructed in terms of a single variable since the liquid fraction 
field, g,, appearing in the source term is an unknown along with the temperature field. In a 
numerical solution this problem is overcome on appropriate iteration. The key feature in such a 
numerical solution is the way in which the liquid fraction field is updated on each i t e r a t i ~ n . ~ . ~ , ~ ~  
Techniques for updating g1 will be discussed in the numerical solution section. 

The Kirchhof transformation 

In using the above formulations, difficulties may arise in the numerical discretizations when the 
conductivity is dependent on temperature. A means around this is to reformulate the problem in 
terms of the Kirchhoff temperature defined as1 



PHASE CHANGE PROBLEMS 881 

Note that with this definition 

V +  = kVT 
and 

a+ aT 
at at 
- = k -  

As such equation (5) can be written as 

or 

where S is given in equation (16). 

Total enthalpy 

From equation (7) we can write 

Substitution in equation (5) will result in a governing equation in terms of total enthalpy, H ,  

(20) 
a 
at 
- ( H )  = V . ( T V H )  + V * ( T  6H Vgl)  

where = k/cv,,. Alternative examples of this form of governing equation can be found in the 
work of Cao et and Mundim and Fortes.32 The more common practice, however, in making 
a substitution of T in terms of H (or vice versa) is to make it after the discretization of the 
governing equation (5).33-35 This approach will be discussed further in the numerical solution 
section. 

A general governing equation 

written in the general form 
All the governing equations suitable for a fixed grid numerical solution presented so far can be 

(21) 
a4 
at 

c -  = V . ( a V 4 )  + Q 

where 4 is the unknown variable, c is a specific heat, a is a diffusion coefficient and Q is a source 
term. The appropriate values of 4, c and Q for the given governing equations, equations (13), (15), 
(1 8), (19) and (20), are provided in Table I. 

For the sake of consistency in the remainder of this text, it is convenient to express the basic 
governing equation (5) in the given general form. This can simply be achieved on associating the 
source term Q with the diffusive term V . ( k V T )  and setting a = 0, see line 1 in Table I. 

THE DISCRETIZATIONS 

In discussing the possible numerical discretization approaches we concentrate attention on 
equation (21). For spatial discretization we concentrate attention on two-dimensional domains 
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Table I. Possible governing equations which can be used 
in a fixed grid solution 

The general equation: c&$/at = V . ( a V 4 )  + Q 

1. Basic equation (equation ( 5 ) )  

2. Apparent heat capacity (equation (13)) 

3. Source {equations (15) and (16)) 

4. Kirchhofl(N0. 1)  (equation (18)) 

5 .  Kirchhofl(N0. 2) (equation (19)) 

6. Total enthalpy (equation (20)) 

4= H ;  c = 1; tl = O ;  Q = V . ( k V T )  

4 = T; c = cA = c,,, + 6 H  dg,/dT; a = k; Q = 0 

4 = T ;  c = cvo,; a = k; Q = S = - 6 H  d s,/at 

4 = t+b; c = (c",,, + 6 H  dg,/dT)/k; a = 1; Q = 0 

4 = t+b; c = c,,,/k; a = 1; Q = s = - 6~ ag,jat 

~ = H ; c =  l ; a = r = k / c , , , ; Q = V . ( r 6 H V g , )  

Note: Mixture volumetric enthalpy H = g5HS + glH, 
Mixture conductivity k = g,k, + glkl 
Mixture volumetric specific heat c,,, = gspsc, + gIplc, 

and employ either a Galerkin weighted residual finite element method36 or a control volume 
based finite difference method.30 The time discretization is based on the two level backward Euler 
(fully implicit) scheme. This choice of time integration scheme has been found to be efficient and 
stable3 for a wide number of problems. In addition, its simplicity facilitates illustration of the 
various methods in the following discussions. 

Finite elements 

In the finite element method the domain of interest is discretized into a fixed mesh of elements. 
Typically, the elements are triangles, quadrilaterals or polyhedrons with node points at vertices 
for simple elements and additional node points at mid-planes when higher order approximations 
are used. Figure 3 shows a section of a typical finite element grid consisting of the elements 
associated with a node point P. The unknown variable is approximated over the entire domain 
R by 

4(& Y? t )  = N(x, Y ) . M t )  (22) 

where N is the vector of interpolation (shape) functions N P  and + is the vector of nodal unknowns 
4,. The shape functions are chosen such that N ,  = 1 at node P, 0 < N ,  < 1 in the area defined by 
the elements common to node P (i.e. the area of support) and N ,  = 0 elsewhere. Using the 

Figure 3. The region of support for node P in a mesh of triangular finite elements 
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Galerkin approach of weighted residuals, the spacewise discretization of equation (21) results in 
the matrix equations 

Using a backward Euler time discretization, the above equation becomes 

(C + AtK)+ = CVld + F (24) 

where At is the time step, the superscript [ ]Old indicates evaluation at  the old time level and all 
other evaluations are made at the current time level. Neglecting contributions from boundary 
conditions, the elements of C and K can be expressed as36 

C i J =  cNiNjdR (25) 

K . .  = aVNiVNidR (26) 

b 
” [R 

A further refinement, which is often used in finite element modelling of phase change problems, is 
to use a so called ‘lumped capacity’ formulation. Essentially, in this approach the capacitance 
matrix C becomes a diagonal matrix. One lumping approach involves using the element node 
points as the only integration points, resulting in a capacitance matrix with elements 

0; i f i # j  

” ci jR Ni; if i = j 
c . .  = (27) 

The effect of this lumped formulation is to associate with each node point a ‘control volume’, 
Vol,, over which nodal values are representative, see Figure 3. Dalhuijsen and Sega13 provide 
justification for the lumped formulation on noting that it is computationally advantageous and 
avoids oscillations in numerical solutions when used in conjunction with the backward Euler 
scheme. 

For each specific version of the governing equation the matrices C and K can be generated on 
setting CI and c to the values listed in Table I, followed by evaluation of the appropriate integrals 
given in equations (25)-(27). The vector F. in equation (24), will depend on the nature of the 
source term Q .  Specific versions of F are listed in TableII. Calculation of the global matrix 
elements Ci j  and K i j  through the evaluation of the integrals in equations (25H26) is referred to as 
the assembly step. This can be achieved on a node by node basis. evaluating the integrals over the 
appropriate regions of support.37 The more common practice, however, is to express the global 
integral equations, equations (25) and (26), as the sum of element integrals and assemble the 
equations on an element by element basis.36 

Control volumes 

Based on the structured grid illustrated in Figure 4. a fully implicit control volume integra- 

(28) 

tion3’ of the governing equation (21) results in the finite difference scheme 

UP 4~ = a w 4 w  + a E 4 ~  + UN 4 N  + as4s + bp 4;ld + VolP QP 
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Table 11. Versions of the source vector F in the finite element scheme 
equation (24) 

1. Basic equation 
F =  - A t K * T  
where T are the nodal temperatures and the elements of K* are 

KZ = kVNiVNj dR s, 
2. Apparent heat capacity 

3.  Source 
F = O  

F = M (gfd - gl) 

M p p  = Vol, 6 H p  
where M is a diagonaI matrix with elements 

and Vol, = j R  N, dR 

4. Kirchhoff(N0. I )  

5 .  Kirchhoff (No.  2) 

6 .  Total enthalpy 

F = O  

See Source method (line 3) 

F =  - A t K + g l  
where g, are the nodal liquid fractions and the elements of K +  are 

KA = ( ( ~ ~ H ) / c , , , ) V N ~ V N ~ ~ R  
” { R  

X 

Figure 4. A structured arrangement of control volumes 

where Vol, is the volume of the control volume. The coefficients in equation (28) take the form 

where the lower case subscript indicates evaluation on the faces of control volume surrounding 
aE = Atu,, a ,  = Atu,, a, = Atu, and aN = Ata, (29) 

node point P ,  
b, = V o l , ~ ,  
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and 

= %b -k bp 
nb 

where nb indicates the neighbouring nodes with influence on node P (E, W, S and N in the current 
case). The derivation of equation (28) implies a structure to the grid which is a common feature of 
a control volume formulation. This is not universal, however; for example, element by element 
 technique^^*,^^ may result in unstructured grids, with general form 

The neighbouring coefficient in equation (32) has the form 

anb = At q u (33) 
where q is a factor which is a function of the geometry of the control volumes. If nodes P and nb 
share a common control volume face, orthogonal to the line joining nodes P and nb, q can be 
defined as the ratio of the area of the common face to the distance between the nodes. The 
definition of the nodal source term, QP, in equation (32) depends on the form of the governing 
equation. Appropriate definitions of QP are given in Table 111. 

Table 111. Definitions of the nodal source 
term Qp 

1. 

2. 

3. 

4. 

5. 

6. 

Basic equation 

Q P = ' J ; T P -  E a : b b b  
nb 

where 
a:b = Atqk 
a; = 

nb 

Apparent heat capacity 

Source 

Kirchhofl(N0. 1) 

Kirchhofl(N0. 2) 

Total enthalpy 

QP 0 

Q P  = V o l p h H ~ ( C g i l ? ~  - C S I I P )  

Q P  = 0 

See Source method (line 3) 

QP = a: CSI IP  - ~ a , f , [ g , l n b  
nb 

where 
a, f ,  = Atv { ( k  SH)/C",, 1 
UP' = xa:b 

nb 

q is a geometric factor 
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Comments 

The finite element scheme (equation (24)) has been written in a matrix form whereas the finite 
difference scheme (equation(32)) has been written in a point form. This choice is made with 
respect to convention. It is strongly stressed, however, that the finite element scheme can be 
written in a point form, and by a similar token, the finite difference scheme can be written in a 
matrix form. In fact, when linear right triangular elements and lumping are used, the resulting 
finite element discretized equation, equation (24), has the same form as the control volume 
discretized equation, equation (28). The equation systems become identical when the thermal 
properties are constant and the lumping used is such that Vol, is a square.38 The potential 
commonality between the.finite element discretization and the control volume discretization will 
be emphasized extensively in the discussion of the various solution approaches. 

SOLUTION PRELIMINARIES 

A multitude of different schemes for fixed grid numerical solution of heat conduction controlled 
phase change problems can be found in the literature. The preceding sections of this paper have 
shown that the most common methods are based on a single governing equation, viz. equa- 
tion (21). Furthermore, the discretization of this equation by either finite element or finite 
difference produces similar systems of non-linear equations (equation (24) or equation (32)). In the 
present study, we will not attempt to categorize all possible solution approaches based on 
equations (24) or (32) but rather concentrate on some basic and important techniques. To this 
end, attention is restricted to the following examples. 

1. The basic formulation, equation (5)33-35 
2. The apparent heat capacity formulation, equation (1 3)20-26 
3. The source term formulation, equations (15) and (16)6,9927 

These formulations, the associated discretizations and the resulting solutions schemes can be 
considered to be representative of the range of possibilities. 

Note that, in further discussions, a distinction will not be drawn between finite element and 
finite difference schemes. A distinction will be drawn, however, between solution schemes based 
on the matrix form of the discrete equations and those based on a point form of these equations. 

Matrix form 

In matrix form the discrete equations are: 

1. The basic formulation 

CH + AtK*T = CH0ld (34) 
2. The apparent capacity method 

(C + AtK)  T = CT0ld (35) 
3. The source method 

(C + AtK) T = CT0ld + M(g"Id - g) (36) 
In equations (34)+36) the matrix K* is defined in Table IT, the matrices K and C are defined in 
equations (26) and (27) on choosing appropriate values for CI and c from Table I and the diagonal 
matrix M is defined in Table 11. Alternatively, the matrices in equations (34)-(36) can be obtained 
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using the coefficients, bp, up  and anb defined by equations (30), (31) and (33) respectively (see 
equations (40) and (41) below). 

Point form 

In point form the discrete equations are: 

1. The basic formulation 

2. The apparent capacity method 

3. The source method 

U p  T p  = 1 anb Gb b p  T"' + V O l p  6 H p  ([ gl] Pold - [ gl] P )  (39) 
nb 

In equations (37)-(39) the coefficients up* and u:b are defined in Table I11 and the coefficients b,, 
up and anb can be defined by equations (30), (31) and (33) respectively. Alternatively, these 
coefficients can be associated with the matrix forms given by equations (34)-(36) such that 

b, = C P P  

UP = A t K p p  + C p p  (41) 

unb = A N p j  ( j  = 1,2,. . . , p  - 1,p + 1, . . , n )  

SOLUTIONS: THE BASIC FORMULATION 

Successive substitution 

With reference to the point form of the basic scheme, equation (37), a common approach is a 
Gauss-Seidel point iteration with successive substitution. A recent description, based on a finite 
difference discretization, is provided by Shamsundar and R O O Z . ~ ~  In the case of a phase change 
occurring between temperatures and T,  with no jump discontinuities equation(7) can be 
inverted and linearized to give 

where 

and 

(42) 

(43) 
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Using equation (42) a point iterative scheme can be developed from equation (37), viz. 

In using this scheme, the nodal domain is 'swept' in a systematic manner and the most current 
iterative values are used. 

If a step discontinuity occurs in the H vs. T (or gl vs. T )  curve at a given fixed temperature, 
modification of the iterative approach is required. The nodal enthalpy field is checked at each 
iteration. If the current value of H ,  falls within the limits of H that define the jump then the nodal 
temperature T, is set to the fixed temperature for the next iteration.27335 

The performance of equation (45) can be improved by using over-relaxation. Shamsundar and 
R O O Z ~ ~  note that for full efficiency this over-relaxation should be applied only at nodes away from 
the phase change. Using this approach they report a greater than two-fold improvement in 
convergence rates for two-dimensional problems. 

Alternative, but similar point schemes, can be found in the work of Furzeland?' who employs 
an inner Newton iteration step to improve convergence, and Raw and S ~ h n e i d e r , ~ ~  who achieve 
'spectacular convergence' for a restricted class of problems. The point schemes of this class have 
been reviewed by V ~ l l e r . ~ ~ , ~ ~  

Newton linearization 

In solving the matrix form of the basic scheme, equation (34), a possible approach is to use a 
and T, Newton l inea r i~a t ion .~~  In the case of a phase change occurring between temperatures 

with no jump discontinuities, equation (42) can be substituted into equation (34) to give 

[C + AtKA]H = CHoLd - AtKB (46) 
where A is a diagonal matrix with components A( T,) and B is a vector with components B( T,,). 
We seek an iterative solution of the non-linear equation (46) in the form 

Hk + AHk+l (47) Hk+l = 

where the subscript k represents the iteration level. Using a Newton linearization, the following 
equation is derived for calculating the enthalpy update: 

where 

and 

JkAHk+l = -Rk 

Rk = [C + A t K A l H  - CH0ld + AtKB 

Jk = aRk/dHk = [C + AtKA] 

In practice, at the start of an iteration the residual Rk and the Jacobian Jk are calculated from 
equations (49) and (50). Then the linear equation (48) is solved for AHkfl and the enthalpy field 
updated via equation (47). Note that in the strict sense the proposed technique does not use a full 
Newton linearization since the calculation of the Jacobian J neglects variations of A and B with 
H. Further, when a jump discontinuity is present in the H vs. T curve appropriate modifications 
have to be made in the calculation of the Jacobian J and the residual R. 

SOLUTIONS: APPARENT HEAT CAPACITY 

The apparent capacity formulation, given in discrete form by equation (35) (matrix) or equation 
(38) (point), has many attributes. Of principal importance is the consistency of the equations with 
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basic finite element and control volume heat conduction solvers. The major problem in using 
such methods is in specifying an accurate numerical approximation for the rapidly changing 
apparent specific heat, cA, equation (9). In order to illustrate how the numerical approximation of 
cA is achieved, we choose the extreme case of an isothermal phase change at temperature T,. 
However, the approximation methods introduced in this way are also applicable to the general 
phase change defined in Figure 2. 

Consider an isothermal phase change occurring at temperature T,. To avoid problems 
associated with the jump in the gl(T) at T =  T,, a small artificial temperature region is 
introduced and g, is approximated by the linear piecewise continuous curve 

1 if T >  T, + E 

g, = ( T -  T, + E ) / ( ~ E )  if T, - E < T g  T, + E 

0 i f T , - E g T  

where E is small temperature value. Owing to the rapid change in dg,/dT, the apparent specific 
heat, cA, calculated on substitution of equation (51) into equation (9) will contain a ‘spike’ about 
the phase change temperature, TM. Unless some action is taken, this spike can lead to an 
erroneous solution in that latent heat effects are lost because the chosen time step allows the spike 
peak to skip a node point. The basic approach in overcoming this problem rests on selecting 
optimum values of E ,  space step and time step. As a general rule, decreasing the time and space 
steps and increasing the value of E will reduce the risk that the latent heat spike will jump a node. 
Bonacina and C ~ m i n i ~ ~  suggest as a ‘rule of thumb’, that two to three node points be maintained 
within the phase change range. Such a situation, however, may require a computationally 
demanding small time step or a large artificial temperature range that will not correctly reflect the 
physics of the problem. This situation can be alleviated on adopting a suitable numerical 
approximation for cA. The aim of such an approximation is to allow efficient choices of time and 
space steps with small choices of the temperature range E .  Many numerical approximations for cA 
have been suggested in the Recent reviews and investigations can be found in 
References 2, 3, 5, 7 and 8. In general, two classes of approximations can be identified: 

Those based on space averaging, e.g. the method proposed by Lemmon’’ 

VTVT 

where the VH is numerically approximated in the same way as VT. With equation (521, it is 
possible that cA will be discontinuous at a given node point. In a node by node a~sembly,~’ a 
weighted average value of cA needs to be calculated. In an element by element assembly,36 
however, a nodal averaged value of cA (weighted according the contribution made by the 
surrounding elements to the nodal volume Vol,) will occur naturally. 
Those based on temporal averaging, e.g. Morgan et al.23 

In the case of a backward Euler time integration, the discrete equation (equation (35) or (38)) is 
non-linear and hence an iterative solution strategy needs to be adopted. In practice, this strategy 
can be based on successive substitution or Newton linearization. With an explicit time integration 
scheme, the discrete equations are linear and can be solved in one step. 

In general, use of a numerical approximation for cA will lead to efficient and accurate solutions 
with small values of E.  Modifications that improve the performance include the following. 
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1. A post iterative correction to adjust the nodal temperatures to balance the latent heat 
evolved in the previous This step ensures a full accounting of the latent heat 
evolution. The result is that efficient and accurate results can be obtained with a very small 
temperature interval, E.  

2. As written, equation (51) will result in a ‘top hat’ function for cA which involves sharp and 
rapid changes at either end of the temperature range. The rapid change in cA can be reduced 
on redefinition of equation(51) such that the resulting ‘top hat’ function has sloping as 
opposed to vertical sides. The sharp changes in cA can be reduced on redefinition of 
equation (51), such that the liquid fraction temperature curve is C, continuous as opposed 
to CO c o n t i n u ~ u s . ~ ~  

Some further remarks are made concerning apparent heat capacity formulations. 

1. Although the apparent heat capacity methods have been presented in the context of an 
isothermal problem it is noted that these methods work best in the case of a naturally 
occurring wide phase change interval. 

2. Apparent heat capacity methods have been primarily used in conjunction with finite element 
techniques. This does not preclude them from finite difference  solution^.'^ 

3.  In equation (354, recall that C is a diagonal matrix with elements given by c$ Vol,. In the 
case of an isothermal phase change, at nodes where the phase change exists, cA will take a 
large value. This will ‘force’ changes in the nodal temperature to be small, as required (i.e. 
T, x T“dd = T,). As a result, in isothermal problems the iterative solution of the matrix 
equations is ‘inherently stable’. 

SOLUTIONS: SOURCE METHODS 

A basic method 
Source based methods, based on equations ( 3 6 )  and (39), have gained popularity over the 

 year^.^,^,^^ This is due to the fact that a wide range of phase change phenomena (e.g. convection’ 
and solute transport) can be easily handled. In using a source based method, one needs to note 
that the inverse of the liquid fraction-temperature relationship, T = F -  (g,) (see equation (8) and 
Figure 2), will always be a well posed function. In particular, at an isothermal phase change the 
temperature T = T, whenever the local liquid fraction, gl, lies strictly in the interval [0, I]. Using 
this observation the following iterative solution of equation ( 3 6 )  can be applied. 

1. At time level n, assume that the temperature, T, and liquid fraction fields, g,, are known and 
that the values at time level n + 1 need to be determined. 

2. The source term, M(g”Id - g), is approximated using the best estimate for the nodal liquid 
fractions, [ g I I P .  

3 .  With step 2 equation ( 3 6 )  will be linear in the latent heat terms and can be solved in any 
chosen manner (e.g. a direct solver). 

4. On solution of the linearized equations the predicted temperature field will not necessarily 
be consistent with the current liquid fraction field. For example, in an isothermal phase 
change the predicted nodal temperatures T, # T, when [g,], lies in the interval [0, I]. In 
such a case, the value of the nodal liquid fraction is updated so that on subsequent iterations 
(repetitions of steps 2 and 3 )  the predicted nodal temperature is ‘driven’ to T,. 

The ‘key’ to the source based iteration is the method by which the liquid fraction field, g,, is 
updated. A number of updating schemes suitable for a wide range of problems are suggested in 
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the literature.6*9.27i44 0 n considering the point form given in equation (39), a simple and robust 
scheme suitable for the general phase change system of Figure 2 can be derived. After the kth 
application of a matrix solver, the point form of the source formulation can be arranged as 

where the most current iterative values are used. If the phase change is occurring about the 
Pth node (i.e. 0 < [gllP < 1 )  then the kth estimate of nodal temperature should be such that 
Tp = F 1 ( [ g J P ) .  To achieve this the kth estimate of the liquid fraction, [gJP, needs to be 
corrected such that 

aPF-'([gllP) = (%b q b )  + bp Tild + vOIP 6HP(Cgll$d - [gllP - [AgIIP) (55 )  
nb 

where [Asl Jp is the required correction. Subtracting equation (55) from equation (54) the correc- 
tion can be approximated as 

thus leading to the liquid fraction update 

where the parameter I is an under-relaxation factor which is required if convergence is to be 
achieved.' In the strict sense, this liquid fraction update should be applied only at nodes where the 
phase change is occurring. In practice, however, the liquid fraction update is applied during each 
iteration and at every node. After the application of the liquid fraction update, to account for the 
fact that equation (57) is not appropriate at every node an 'over/under-shoot' correction 

0 if [g1Ik+l < 0 
1 if [g l lkf l  > 1 91 = 

is used. This step will ensure that a full accounting of the latent heat evolution is made. Unlike 
apparent heat capacity methods, this full accounting is achieved with no additional accuracy 
restrictions on the size of the time step. In general, when accounting for the latent heat evolution, 
the time steps used in source methods can be larger than those used in apparent heat capacity 
methods. 

In the source scheme presented above, the iterative solution of the system of linear equations 
does not contain the same stabilizing mechanism found in the solution of the apparent heat 
capacity equations. Essentially, the diagonal of the coefficient matrix does not naturally contain 
large forcing values. As a result, unless under-relaxation is wisely applied the iterative procedure 
may not converge. Practical experience with both control volume discretizations with line by line 
solvers9, 2 7  and finite elements with direct solvers44 indicates that a relaxation value in the range 
/z = 0.5-0.7 will provide efficient convergence for both one- and two-dimensional problems. 

A linearized source method 

Recently V01ler~~ has proposed a source based scheme for isothermal problems that does result 
in large diagonal terms in the coefficient matrix. The basic feature of this approach can be viewed 
as a source linearization. For illustrative purposes consider the point form of the discrete 
equation given in equation (32). An efficient solution is often obtained if the source term QP is 



892 V. R. VOLLER, C.  R. SWAMINATHAN AND B. G .  THOMAS 

linearized3O as 

QP = Sp TP + S ,  (59) 

where the S ,  term is taken to the left hand side of the equation and absorbed in the up coefficient 
(i.e. the diagonal of C). Up to this point, in the source terms introduced in this paper S ,  = 0. This 
does not have to be the case, however. On reference to the apparent heat capacity method, the 
source term S in equation (1 6) can be written as 

Taking guidance from Morgan et al.23 the term dg,/dT is approximated as 

B(Sl - sHId) 
where p = 1/( T - Told). In implementation, when gl lies strictly in the range [0, 11 /? is given an 
arbitrary large negative value ( - log say). With this approach, at nodes where the phase change 
is occurring, the source term, QP, in equation (32) can be linearized according to equation (59) 
such that at a given node P, 

On using this linearized source term, the discrete equations will almost be identical to that given 
in equation (54). The important difference is that the diagonal elements of the coefficient matrix 
corresponding to nodes which are changing phase will contain a large value. This value will 
‘stabilize’ the solution by forcing the linear equations to yield the correct nodal temperatures. In 
practice, the steps in one iteration are as follows. 

1. At  the start of the iteration the local liquid fraction field, g, is checked. At  nodes where the 

2. Solution of the modified equations is then carried out. 
3. After solution of the equations the liquid fraction field is updated. The update formula can 

be derived in the same manner used in the basic source scheme, equations (56) and (57), 
resulting in 

phase change is occurring the equations are modified according to (61). 

(62) 

Application of equation (62) is made at every node followed by the over/under shoot correction 
(equation (58)). On comparing equations (57) and (62), it is important to note that the up 
coefficient in equation (62) can be much larger and that the under-relaxation has been dropped. 

This improved source technique for isothermal phase change problems has been implemented 
in both finite difference2’ and finite element solutions.44 In a range of one-dimensional test 
problems VollerZ7 was able to report rapid convergence (one or two iterations). Work is on going 
to extend this approach to non-isothermal phase change systems.44 

The linearized source scheme can be regarded as a ‘generic’ scheme, in that appropriate choice 
of S ,  and Sc results in a variety of solution approaches. Furthermore, the scheme can be used as a 
natural ‘bridge’ between source based methods and apparent heat capacity methods. Consider 
the following alternatives for equation (61). If 

TP - T m  
Cgllk + “Vol, SH, C9lIkf1 = 
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the basic source scheme results. On the other hand, if 

s, = BPsHP(Csll;'d - rgllP) 

S ,  = - S ,  TFd" 

the apparent heat capacity scheme with the Morgan et approximation for cA results. 

ADDITIONAL COMMENTS 

The purpose of this section is to make some general comments related to modelling and analysis 
of phase change problems. 

Time stepping 

In the discretizations presented in the current work, the time stepping has been restricted to the 
backward Euler (fully implicit) two level scheme. Choice of a time stepping method, however, can 
play a significant role in the ultimate accuracy and efficiency of the method. Other two level 
schemes that can be used2, 3 7 4 5  include the Crank-Nicolson and forward Euler (fully explicit). 
Three level schemes have also been employed.2~3~25~45 The forward Euler and three level schemes 
are noteworthy since they do not require iteration within a time step. Use of such schemes, 
however, leads to a restriction in the choice of the time step. Thus, these methods are more suited 
to apparent capacity methods which require small time steps due to accuracy considerations. 
Time stepping methods that require iterations within each time step are best suited for source 
based methods. 

Two important approaches, which can also be classified as time stepping methods are: 

The implicit/explicit in essence, in parts of the domain where slow changes 
occur, an explicit time integration is used whereas in the thermally active regions, stability is 
maintained on using an implicit time i n t e g r a t i ~ n . ~ , ~ ~ . ~ ~  The advantage of this approach is 
that the size and bandwidth of the system of equations are reduced without any significant 
loss of accuracy. This approach has been effectively used in simulation of sand mould 
castings.46 
'Alternating-direction' finite element  method^:^.^^ this approach is based on factorizing the 
shape functions into directional parts. As a consequence, the matrix equations are factorized 
into directional components with very narrow bandwidths which lead to efficient 
 solution^.^*^^ 

Adaptive methods 

In the case of a distinct solid/Iiquid phase change, an alternative to a fixed grid solution 
approach is to use a front tracking method. The aim of such an approach is to ensure that a line of 
node points will always coincide with the solid/liquid interface. This is desirable in that high 
gradients and discontinuities at this interface can be readily resolved. Front tracking can be 
achieved on using a transformed grid49 or deforming elements.35 Although front tracking is 
outside the scope of the present study, a number of hybrid fixed grid and deforming grid methods 
have been proposed which are worth noting. Crivelli and I d e l s ~ h n ~ ~ * ~ ~  use a fixed grid 
formulation, i.e. equation (21). Improvements in the accuracy are achieved, however, on local 
splitting of the finite elements which are changing phase into solid and liquid components. A 
similar philosophy is adopted by Tacke5' in one-dimensional finite difference solutions. Lewis 
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et al.53 and Lacroix and V01ler~~ have proposed an adaptive grid technique in which a fine 
discretization is always present in the vicinity of the phase change. This adaptive grid is based on 
the fixed grid governing equations which removes the constraint that a grid line must lie on the 
phase front. In this way an area of fine grid can be moved such that it approximately follows the 
phase change. 

Handling of irregular geometries 

An important difference between finite element and finite difference methods, which far 
overshadows their differences in deriving the nodal equations, is the nature by which these 
equations are assembled. Control volume methods3’ often exploit extremely rapid ‘line by line’ 
solution algorithms, which take advantage of the structured nature of the grid in constructing the 
system of equations. Building this structure into the solution method, however, imposes restric- 
tions on the geometries that can be modelled or requires the application of boundary fitted co- 
o r d i n a t e ~ . ~ ~  On the other hand a finite element method assembles the nodal equations on an 
element by element basis. This will mean that fast structured solution methods cannot be applied 
but that arbitrary geometries can be more easily dealt with. This comment also applies to 
unstructured forms of the finite difference method.38. 39 

Temperature dependent conductivity 

Many practical problems involve thermal properties that will vary with temperature. In terms 
of representing the conductivity this can lead to difficulties. The Kirchhoff formulations given in 
Table I offer a means by which such problems can be solved by apparent heat capacity or source 
techniques. Alternatively, the given schemes in terms of temperature T can be used and a careful 
means of evaluating the thermal conductivities in a numerical element can be d e ~ i s e d . ~ , ~ ~  
Recently Tamma and N a m b ~ r u ~ ~  have proposed a formulation in which the diffusion term in the 
governing equation is written in terms of the heat flux q = KVT. This provides a natural means for 
variations in thermal conductivity to be absorbed into the finite element equations and also 
allows a direct introduction of non-linear boundary conditions. 

CONCLUSIONS 

In the numerical modelling of solidification phase change systems one of the central issues is the 
latent heat evolution. Many successful approaches are available. This paper has attempted to 
identify and categorize the major and most widely used methods. The choice of any one method 
over the others will depend on the problem at hand and the experience and preference of the user. 
As such, it is not possible to identify a single best method or group of methods. However, it is 
worthwhile to list some attributes of a ‘good’ method for the analysis and simulation of phase 
change problems. These include: 

1. Applicability to three dimensions and arbitrary geometries. 
2. Ability to deal with the general liquid fraction temperature curve given in Figure 2. 
3. Ease of implementation into existing computer codes (including grid generation and post 

4. Ability to deal with non-constant thermal properties and all types of boundary conditions. 
5. Ability to couple additional effects and phenomena like convection, electromagnetic forces, 

6. Reasonable computational efficiency and accuracy. 

processing software) 

solute transport, microstructural evolution. 
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In general, both the apparent heat capacity and source based methods have the potential to 
incorporate the above attributes. This is reflected in current research in the modelling phase 
change process and phenomena in which the apparent heat 7,45,46 and source based 
methods6*'-'' are by far the most widely used. 

The development of numerical techniques to deal with phase change systems is a viable area for 
research. In terms of numerical analysis, many questions related to accuracy and efficiency have 
not yet been resolved. In addition, the development of efficient solvers for the non-linear 
equations resulting from phase change problems is currently an area of considerable interest. In 
an engineering context the central challenge is to expand the basic conduction techniques so that 
more of the phenomena associated with phase changes can be incorporated into numerical 
models. This research requires the development of both sophisticated numerical approaches and 
suitable models of the underlying physics. 
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APPENDIX 

Nomenclature 

a 
a* 

b 
A, B 

C 
C"01 

C"O1 

CA 

A9 
F 
F 
9 
H 

H *  
6H 
AH 

J 
k 

K 
K *  

L 
M 
N 

C 

- 

Q 

coefficients in nodal equations (equations (3 l), (33), (41)) 
coefficients (Table 111, equation (40)) 
coefficients in nodal equations (equations (30), (41)) 
temperature linearization constants (equations (42), (43)) 
generalized heat capacity (Table I) 
finite element capacitance matrix with terms Cij, (equation (25)  or (27)) 
volume-averaged specific heat of mixture (equation (10)) 
linearized c,,, (equation (44)) 
apparent specific heat coefficient, (J/kg K)  (equation (9)) 
phase fraction correction (equation (55)) 
finite element force vector with terms Fi (Table 11) 
liquid fraction-temperature function (Figure 2, equation (8)) 
phase fraction (solid or liquid) 
total volumetric enthalpy (J/m3) (equations (3), (7, Table I)  
volumetric enthalpy inside REV ( J/m3) (equation (2)) 
difference between solid and liquid enthalpy (equation (1 1)) 
enthalpy correction ( J/m3) (equation (48)) 
Jacobian matrix (equation (50)) 
thermal conductivity of mixture (equation (6)) 
finite element conductivity matrix with terms K, (equation (26)) 
modified K (Table 11) 
volumetric latent heat of solidification ( J/m3) 
source matrix containing terms Mii (Table 11) 
vector containing finite element shape functions, N i  (equation (22)) 
generalized heat source (Tables I, 111) 
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R 
R 

REV 
S 

s c  

SP 

Tnl 
K e f  

T 

t 
At 

V 

X 

x, Y 

U 

Vol, 

X 

x 
P 
r 
E 

ul 
6 
E. 
P 
4 * 
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domain of interest 
residual vector (equation (49)) 
representative elementary volume (m3) 
volumetric heat source (Wjm’) (equation (16)) 
constant portion of linearized source term (equation (61)) 
gradient of linearized source term (equation (61)) 
temperature (“C) 
unique melting temperature (“C)  
reference temperature (“C)  
time (s) 
time step size (s) 
vector containing material velocities (m/s) 
volume (equations (I), (2)) 
volume of control volume associated with node P 
vector defining position of centroid of REV (equation (2)) 
vector defining position within REV (equation (2)) 
co-ordinate directions (m) 
generalized thermal diffusion coefficient (Table I )  
1 /( T - Told) (equation (60)) 

small temperature difference (equation (51)) 
geometric factor relating nodes P and nb 
integration parameter (equations (7), ( I  l), (17)) 
under-relaxation factor 
density (kg/m3) 
unknown variable (Table I) 
Kirchhoff temperature (equation ( 1  7)) 

k/cvo,  

Subscripts (pertaining to material type or location) 
s pertaining to solid 
1 pertaining to liquid 

nb pertaining to neighbouring nodes of influence of node P 
P pertaining to typical node point, P 

N, S, E, W north, south, east, west node points 
[I 3 used to separate multiple subscripts 

Superscripts (pertaining to time integraton) 
k iteration number (within time step) 

old previous time level 
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