Addis Ababa Institute of Technology (AAIT-AAU) School of Mechanical and Industrial Engineering Graduate Program in Thermal Engineering

Course Title:Renewable Energy ConversionCourse No.:MEng 6304Credit Hours:3 (ECTS 6)Instructor:Abdulkadir A. Hassen (PhD)

Module Title:	Renewable Energy Conversion			
Module Code:	MEng 6304			
Module Credit:	Credit Hours: 3			
	ESTC: 6			
Pre-requisite Module:	Undergraduate level courses – Thermodynamics I & II, Fluid			
	Mechanics I & II, and Heat Transfer			
Co-requisite Module:	Non			
Barred Combination Mo				
Module Description:	Solar Radiation; Solar water heaters; Solar Driers; Solar Stills			
	(Desalinators); Solar Photovoltaic; Hydropower generation;			
	Wind energy power generation; Biomass power generation;			
	Economic evaluation of renewable energy technologies.			
Learning Outcome:	After completion of this module the student will be able to comprehend:			
Learning Outcome.	-			
	• The basic principles involved in the Sun-Earth angles relations.			
	• The methods of estimation of extraterrestrial-, terrestrial-, beam- and			
	diffuse radiation on inclined and horizontal surfaces.			
	• The techniques involved in thermal analysis and component			
	optimization solar water heaters, solar driers, solar stills			
	(desalinators), solar steam generators, etc.			
	• The basic principles involved in photovoltaic conversion and their applications.			
	• The basic principles applied in hydropower generation analysis and			
	energy calculations.			
	• The basics of wind energy systems and analysis of wind energy			
	generation.			
	• The methods applied in the economic evaluation of renewable			
	energy technologies.			
Content:				
1. Introduction				
2. Solar Radiation: The Sun as the Source of Radiation; Solar Radiation on Horizontal				
Surfaces; Solar Radiation on Inclined Surfaces; Estimation of Solar Radiation				
3. Solar Heaters and Driers: 1 Flat Plate Collectors; Solar Concentrators; Solar Air				
	r Driers; Solar Distillation			
	roltaics: Fundamentals of Photovoltaic Conversion ; Efficiency of Solar			
Cells; PV Systems performance; Photovoltaic Applications				

- 5. **Hydropower : h**ydropower Reservoir Capacity Estimation; Hydraulic Turbine Selection; Hydropower economics
- 6. **Wind Power:** Wind Data and power availability: Wind Power Generation and Wind turbine types; Performance Determination and Selection of Wind Turbines
- 7. Biomass Energy: Wood Fuel ; Gasification of Wood; Biogas Digesters
- 8. Economic Evaluation of Renewable Energy Technologies: Introduction ; Net Present Value Concept; Life-Cycle Cost Method; Cost-Benefit Comparison Method; Pay-back Period Method

Teachir	ng Strategy/Methods:				
	B ~	Lecture:			
		Exercises:			
		Projects:			
Assessn	nent Strategy:				
		Assignments	20%		
		Projects and Presentations	30%		
T		Final examination	50%		
Teachir	ng Support and Inputs:	• • • • • • • • • • • • • • • • • • • •			
		Lectures supported	a by tutoriais		
		• Assignments, and			
	D	Projects			
Module	Requirements:		Man Januar J. Man Januar J.		
T . (P	- 1	• Minimum of 75% a	ttendance during lecture hours		
Text Bo Referen					
			IC TILL MaCrow Hill		
1. Bansal and Kleemann, <i>Renewable Energy Sources and Conversion Technology</i> , McGraw-Hill					
	Education, Mar 1, 19				
2. Bent Sorensen , Renewable Energy Conversion, Transmission, and Storage, Academic					
	Press, Nov 1, 2007				
3. C.G. Granqvist , Materials Science for Solar Energy Conversion Systems (Renewable					
	<i>Energy</i>), Pergamon;	1st ed edition, Aug 1, 1991	l		
4. Charles C. Sorrell, Sunao Sugihara, and Janusz Nowotny, Materials for energy					
	conversion devices, (CRC, Nov 16, 2005			
5.	5. F. Kreith and J.F. Kreider, Principles of Solar Engineering, McGraw-Hill Inc., 1989.				
6. J.F. Duffie and W.A. Beckman, Solar Energy Thermal Processes, John Wiley & Sons,					
	1991.	, 0,	, , ,		
7	7. J.F. Kreider and F. Kreith, <i>Solar Energy Handbook</i> , McGraw-Hill, New York, 1991.				
8. J.P. Holman, <i>Heat Transfer</i> , 7 th Edition, McGraw-Hill Inc., UK Ltd., 1992.					
9. J.R. Simonson, <i>Computing Methods in Solar Heating Design</i> , Macmillan Press, London,					
2.	1984.	oming memous in Solur 11	county Design, Machinan 11055, London,		
10		and Comparation Dhatanalt	ions Advanced Selan Freeman Commission		
10.			ics: Advanced Solar Energy Conversion		
(Springer Series in Photonics), Springer; 1 edition, Aug 13, 2003					
	Peter Gevorkian, Solar Power in Building Design, McGraw-Hill Professional; ledition,				
	Sep 14, 2007				