Addis Ababa Institute of Technology (AAIT-AAU) School of Mechanical and Industrial Engineering Graduate Program in Thermal Engineering

Course Title : Advan Course No. : MEng	•		
Credit Hours: 3 (ECT)			
Instructor : Abdulkadir A. Hassen (PhD)			
Module Title:	Advanced Thermodynamics		
Module Code:	MEng 6301		
Module Credit:	Credit Hours : 3		
	ESTC: 6		
Pre-requisite Module:	Undergraduate level courses - Thermodynamics I & II, Fluid Mechanics I & II, and Heat Transfer		
Co-requisite Module:	Non		
Barred Combination Modul			
Module Description:	Exergy and irreversibility to be dealt in great detail; Third law of		
	Thermodynamics to be introduced; detailed coverage of		
	Homogeneous and heterogeneous systems to be made as given in		
	the following summarized module content.		
	Introduction; Exergy analysis; Equations of state;		
	Thermodynamic property relations; Third law of		
	thermodynamics; Homogeneous systems; Multiphase-		
	Multicomponent systems; chemical reactions; Chemical		
	availability of moist air and fuels		
Learning Outcome:	On successful completion of this module students will be able to:		
	• Design and analyze practical and advanced thermodynamic		
	processes and cycles		
	 Follow advanced studies and handle independent research work 		
	on different topics in thermodynamics		
	 Handle lectures on thermodynamics at undergraduate level with 		
Content:	complete confidence		
	and the First Law of Thermodynamics		
	of Processes and Cycles: Reversible work, energy, irreversibility and		
	ency; Availability transfers; Reversible work, energy, irreversibility for		
a control mass; l cycles.	Reversible work, energy, irreversibility for a control volume; Simple		
5	ate: Compressibility factor; Two-parameter equations; Corresponding		
-	ameter equations; Other equations of state.		
-	Relations: Some fundamental relations for simple compressible		
-	ized relations for dh, ds, du, c_p , and c_{v} ; Departure functions for enthalpy		

- entropy, and availability; Properties of the saturation state; Joule-Thomson coefficient
 5. The Third Law of Thermodynamics: The third law of thermodynamics; Einstein's theory of specific heat; Debye's theory of specific heat; Absolute entropy evaluation.
- 6. **Homogeneous Systems:** Fundamental property relations for systems of variable composition; Partial molar property evaluation for binary phases; Fugacity and fugacity coefficients; Ideal solutions; Heat and work interactions for gaseous ideal solutions; The

enthalpy-composition diagram.

- 7. **Multiphase-Multicomponent Systems:** Equilibrium criteria; Phase equilibrium and mass transfer;The phase rule for nonreactive components; Vapor-liquid equilibrium and Raoult's law; Phase equilibrium of ideal binary solutions; Effect of total pressure on vapor pressure; Elevation of the boiling point and depression of the freezing point; Osmotic pressure of an ideal solution; Absorption refrigeration; The enthalpy-composition diagram.
- 8. Chemical Reactions: Combustion stoichiometry; Thermochemistry; Second-law, availability, and irreversibility; Work production from chemical reactions; Fuel cells; Criterion for reaction equilibrium; The equilibrium constant for gaseous mixtures; Equilibrium constant evaluation; Equilibrium composition evaluation.
- 9. **Chemical Availability:** Chemical availability; The environmental state; Air-conditioning processes; Chemical availability of fuels; Availability analysis of chemical processes

Teaching Strategy/Methods:		
	Lectures	
	Exercises	
Assessment Strategy:		
	Exercises	20%
	Midsemester examination	20%
	Final examination	40%
Respective Role of Instructor	rs and Students:	
Teaching Support and Input	s:	
	Lectures supported by power	point presentations
	Power point handouts are ma	de available
Module Requirements:	-	
-	• Minimum of 75%	attendance during lecture hours
		project works must be submitted by the
	specified dead line	
Textbook:	specified dead fille	uate
	Voult . A draw and Thomas draws	ing for Engineers
	Wark : Advanced Thermodynan	ncs for Engineers

- 1. Bejan, Adrian: Advanced engineering Thermodynamics
- 2. D. Winterbone , *Advanced Thermodynamics for Engineers*, : Butterworth-Heinemann, Nov 1, 1996
- 3. Ingo Müller and Wolfgang H. Müller, *Advanced Thermodynamics: With Historical Annotations*, Springer; 1 edition, Mar 1, 2008
- Kalyan Annamalai and Ishwar K. Puri , Advanced Thermodynamics Engineering (Computational Mechanics and Applied Analysis Series), : CRC; 1 edition, Aug 31, 2001
- 5. Kenneth Wark , *Advanced Thermodynamics for Engineers*, McGraw-Hill Companies, Sep 1, 1994
- 6. Rowland Benson, Advanced Engineering Thermodynamics, : Pergamon Press