CHAPTER 9

Heat Conduction Solution by
FEM



Steady Heat Conduction Equations in apalne

Poisson’s equation
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Convection heat transfer at the surface

-LFT —WT-T,)on T

cn

c)  Spectied heat flux at the surface
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Steady Heat Conduction Equations in apalne
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Steady Heat Conduction Equations in a palne

In Glarkin’s method. the weighting function is the same as the shape or interpolation function.
Hence. the weighted residual of poisson’s equation 1s
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Steady Heat Conduction Equations in apalne

Integration by Parts
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Steady Heat Conduction Equations in a plane

Convective boundary at the surface
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Intmducing interpolation of temperature and its spatial derivatives
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Steady Heat Conduction Equations in apalne

Introducing interpolation of temperature and its spatial derivatives
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Expressing in matrix form
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Steady Heat Conduction Equations in apalne
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K ]is thermal stiffness Matrix
{F }is thermal load vector

K — [K ]mnd + [K ]c'-::-w
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dcond

- thermal stiffness matrix only due to conduction

R | -Contribution of thermal stiffness matrix due to convection. Only for
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boundary with convective boundary condition.



Steady Heat Conduction Equations in a plane

u=100sin(T%

Mesh with triangular element



Chapter 10.

Finite Element Discretization of
Transient Heat Conduction
Equation by Galerkin’s Method



The PDE of transient heat conduction in two dimensions 1s given as
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Inserting the above equation
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Introducing interpolation of temperature and its spatial derivatives
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Where:
' ]is thermal Capacitance Matrix
| K |is thermal stiffness Matrix

{F }is thermal load vector

[K ] - [K ]-mri'-:;" + [K ]-::{:-rn'
[K Lm, - Thermal stiffness matrix only due to conduction

k] - Contribution of thermal stiffness matrix due to convection,
Only for elements at boundary with convective boundary condition

Where T represents the surrounding temperature and

The above equation can finally be written in the following form
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[c]{§}+ (K']J+[K"DT 5 ={F;————(4)
Using generalized 6 method

f{%}+[K']{T}={F}————(4)

{Ti=(1-0){T®O} 8 {THtFAD} == (5)

Substituting equation 5 into equation 6 and rearranging,

The following equation will be obtained

([CIHALBIET) {T}+4 = Ae{F}*+([C] — At[£1(1 — ) {T}*
[4] )

{Ty+4° = [A]'(V)
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([C]+ BALKDAT (trAt)j= At {F}-((1- 6) At [K] - [C]) {T (D} ----- (6)
Let, [A] = ([C] + 8At[K]) and
Vi =A{F-((1-0) At [K] - [CD AT (D]

Then Substituting the above two equations into equation (6)
[A] {T(t+AD} = {v]
{T(t+AD} = [A]{v}

Teta =0 Forward difference — Conditfionally stable

Teta =1 Backward difference- Unconditionally Stable

Teta= 0.5 Crank Nicolson — Unconditionally stable with oscillation
Teta= 0.66 Galerkin- Unconditionally stable
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Start

!

Input: -Element, and nodal data, connectivity, thermo-physical
property, and boundary conditions.

v

Initialize matrices and vectors:

Formulate element matrices:

[C](s)’ [K](s)’ athd {F}(s}

ig=ig+1 Assemble global matrix

[€1€ — [€1.[K1® - [K, [FI® - (F)

Yes

Impose convective boundary

’

Update: {F}‘®) and [K]

Solve the matrices:

t=t+ At
[A] = [C] + At[K] , {V} = ALEF}4 + [CUT] |, (T} = (4] NV}
........................................... —_—
Yes
-._t<tm -
Transient heat conduction solution

algorithm using FEM 17



