Chapter 4 : Numerical Integration



Jacobians- Mathematical Review

* In 1D problems we are used to a simple change of variables, e.qg.
from x to u

[) fla)de = [ f(w(u)$2du

1D Jacobian



Example: ff %dx - 1I1(2) Substitute * = u
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2D Jacobian
 For a continuous 1-to-1 transformation from (x,y) to (u,v), then
r=x(u,v) and y = y(u, v)

[ fy f(ay)dady = [ [ fla(u,v),y(u,v)) |55

2D Jacobian

dudv

Where Region (in the xy plane) maps onto region R inthe uv plane R’
maps areas dxdy to areas dudv
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* For a continuous 1-to-1 transformation from (x,y) to (u.,v)

= x(u,v) and y = y(u,v)

[ i f(@y)dady = [ [ f@(u,v),y(u,0)) |54 | dudo

I |
» Where Region (in the xy plane) maps onto region /{ in the uv plane R’

— maps areas dxdy to
O(u,v)

areas dudv

dz  OJz .
8 ( T, y) - g 'iyl, gg 2D Jacobian
du  Dv

4h (e L u
y'IL y’L:'

| = LulYov — LoYu
* Hereafter call such terms Ccu
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Relation between Jacobians

« The Jacobian matrix d{T y) is the inverse matrix of d(-u.._._ H) i.e.,
A(u, v) oz, y)
Ly Ly Uy Uy B 1 0

Yu b Yo ’U$ 7 Uy 0 1
» Because (and 5|m|IarIy for dy)

dz = z,du —|— T, dv = fcudu + Ty (Vadx + vy dy)

x constant = -:1T = 0= 0 = zyuy + T,y
Yy ({)1’1‘-:1' il = rh U= 1 =%8dls + Ta0s

* This makes sense because JaGDbIaHS measure the relative areas of
dxdy and dudyv, i. e

1
det(AB) = det(A) det(B) =1 = det(A) =
. So det B
o(x,y) O(u,v) |
Ou,v)| "'Ox




3D Jacobian

r=z(u,v,w),y =ylu,v,w),z = 2(u,v,w)

* maps volumes (consisting of small cubes of volume dxdydz

. . to small cubes of volume dud’{}dw

// f(:r,yjz)d:rdydz:/‘// Fu,v,w)
Vv : '

¢ vvhere Ly Ly L
T Ay, 2) e
o(u, v, w) vooom I
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Numerical Integration

* Galerkin method requires integration over the element domain once for each
interpolation function (trial solution).

* In fact, an integration is required to obtain the value of every component of the
stiffness matrix of a finite element. In addition, integrations are required to obtain
nodal equivalents of nonnodal loadings.

*In the finite element context, where large numbers of elements, hence huge
numbers of integrations, are required, analytical methods are not efficient.

* Finite element software packages do not incorporate explicit integration of the
element formulation equations. Instead, they use numerical techniques, the most
popular of which is Gaussian (or Gauss-Legendre) quadrature.



Numerical Integration

* Integration is often called quadrature in one dimension and cubature in higher dimensions
however we all refer to all numerical approximations as quadrature rules We all consider
integrals and quadrature rules of the form

1 // Fl& n)dédn ~ Z Wi (&)
[

=1



Numerical Integration

Two types of elements

Global element Local element

/'\

- Spatial derivatives of shape e Shape functions defined here

functions needed here (in

matrices K ) * Numerical integration
l performed on local element
* Integration boundaries given (using Gauss-Legendre
here quadrature)



Transformation of spatial derivatives

Global element Local element

e Spatial derivatives of shape

* Spatial derivatives of shape nctions
. u I
functions ___ oN. T /{ e =3

-1 9
ox ox o& os&
VIN(x,v)= VIN(S, =
(x2)=| on. &N, (S7) =1 o5 &N,
oy oy | o on |

Transformation

VN(x,v)=J"'VN(&.77)



Transformation of integration boundaries

Local element
Global element

* Integration boundaries
* |ntegration boundaries

j j F(ny)dxdy S

Tranasformation
[ [r(&n)déan = | 1 (x»)det(I)d&dn

—1 -1 —1-1



Numerical integration

f  F(a)de = Tim 3 f(zo)d

i=1
Approximatingﬁintegral as s%nmation
[ F@de =3 feae

s=1

Can be rearranged and written as by defining Wi

b A
[ f@de =3 rzow;

=1
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Gauss-Legendre-Quadrature



Gauss-Legendre-Quadrature

= Numerical integration with Gauss-Legendre-Quadrature
only works on an idealized Element

Forx=-1t01in1D
Forx=-1tolandy=-1t01in2D

" S0, It does not solve the problem of the distorted
elements, yet.

= A coordinate transformation from the distorted element to
the idealized element is needed in addition.



Distorted vs. idealized element
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= Shape functions given in

terms of local coordinates fj

= Numerical integration more
convenient in a local coordinate
system.

= Derivatives of shape functions
with respect to global coordinates

* |ntegral form written in terms
of global coordinates (dx)
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Two transformations are necessary

=Transform locally defined derivatives of shape functions to global
coordinate system

=Transform locally performed (numerical) integration to global
coordinates



First transformation in 1D

 Derivatives of shape functions from local to global

" Global distorted element " | ocal isoparametric element
Coordinate x arbitrary Coordinate £ from -1 to 1
Derivatives of shape functions Shape functions defined here

wanted here Derivatives of shape functions

determinable here

1.2
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First transformation in 1D

— Derivatives of shape fcts. from local to global

" Global distorted element = | ocal isoparametric element
Coordinate x arbitrary Coordinate {from -1 to 1
Derivatives of shape functions Shape functions defined here

wanted here Derivatives of shape functions

determinable here

(N, (5%%
N(€)
NO=nE)  BE M)
N (&) 3N3(§%
0
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Second transformation in 1D

— Integration form from local to global

" Global distorted element = | ocal isoparametric element
Coordinate x arbitrary Coordinate £ from -1 to 1
Integral form of system of Numerical integration performed

equations given here here
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First transformation in

2D

— Derivatives of shape fcts. from local to global

= Global distorted element
Coordinate x and y arbitrary

Derivatives of shape functions wanted
here

Yilma T.(PhD)

= Local isoparametric element

Coordinate £ and 7 from -1 to 1

Shape functions and their derivatives
defined here
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First transformation in 2D

— Derivatives of shape fcts. from local to global

Global distorted element
Coordinate x and y arbitrary

Derivatives of shape functions wanted
here

N(g,n)=<

(N, (&)

N, (§.m)|
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Vo (éﬁ))

V&,IJN (5,?? ) =

= Local isoparametric element

Coordinate £ and i from -1 to 1

Shape functions and their derivatives
defined here

(0N, (£.7) N, (E,)]

o¢ on
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oé on
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First transformation in 2D

— Derivatives of shape fcts. from local to global

= Derivation of the Jacobian in a FEM manner!
x 0
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Second transformation in 2D

— Integration form from local to global

Global distorted element
Coordinate x and y arbitrary

Integral form of system of
equations given here
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" | ocal isoparametric element

Coordinate £ and 1 from -1 to 1

Numerical integration performed
here
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Gauss-Legendre quadrature

* The integration is carrled between 1 and -1

* In 1D (n=3): If(é)dcf zf(g b, B
3 3
S == E s, =0 &, = E > e [
5 8 5 1 s 1 25
w, = 5 - W, = a . W, = a

* |n 2D (Number of
Integration Points=9):

ne nip

Hf(é n)dédn =S f(&.n, )ww —Zf(é 7, ) W,

—1-1 i=1 j=1

>5



Gauss-Legendre quadrature

]. ]. f(x,y)dxdy =

The integral is transformed to integration over master element

Lll /—11 g(€, p)dEdn

1 M,
= _/ Zﬂ*’ey(&,n)dn
=1

- ZW zmg(& 75)

1=1

- ZZ Wtwjg(&.u ﬂ;)

t= 1-""1 Yilma T.(PhD)
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Integration points and weights

Int. Point Weight

U I

0. 0.00000 00000 00000 2.00000 00000 00000
+0.57735 02691 89626 1.00000 00000 00000
+0.77459 66692 41483 0.55555 55555 5HHHHE

0.00000 00000 00000 0.88888 883888 88889
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Jacobian Matrix in FEM

It is used to transformer the derivatives of shape function

from global to local coordinate system

4%

L I

(BN,
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dr Oy ) ( ON;
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on on ) L Oy

b
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( AN,
i
IN;

where [.J] 1s the Jacobian matrix.
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Inverse of Jacobian Matrix

It Is used to transformer the derivatives of shape
function from local to global coordinate system

. 55\;‘?_ b . &'}i\'r;: )

{ *{r }:[J]_l‘i dcf'&
dy L dn

e




Elements of Jacobian Matrix

di

“ d:r;r d:rj

Oy
__Zdi oy 2o Y

The determinant of Jacobean Matrix is used to

transform the integral from local to global coordinates.

dxdy = |J|d&dn
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The components in the Jacobian matrix are computed
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