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Beams and frames • Beams are 

slender members used for 

supporting transverse loading. • 

Beams with cross sections 

symmetric with respect to loading 

are considered. d v dx M EI 
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 Element Formulation 

– assume the displacement w is a cubic polynomial in  

L = Length  

I  = Moment of Inertia of 

the cross sectional area 

E = Modulus of Elsaticity 

v = v(x) deflection of the 

neutral axis 

=  dv/dx slope of the 

elastic curve (rotation of 

the section 

F = F(x) = shear force 

M= M(x) = Bending 

moment about Z-axis 

a1, a2, a3, a4 are the undetermined coefficients  
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 Applying these boundary conditions, we get 

Substituting coefficients ai back into the original equation 

for v(x) and rearranging terms gives 
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 The interpolation function or shape function is given by 
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strain for a beam in bending is defined by the curvature, so 

 

 

 

 Hence 
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substitute E  in above eqn.
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External virtual workdue to body force   

w = d(x) b dv d N b dv

External virtual work due to surface force   

w = d(x) p dv d N p ds

External virtual work due to nodal forces

w d P ,  P

   

   

  

 

 

 yi i yj= P ,  M , P ,....   



the stiffness matrix [k] is defined 

dA

y

To compute equivalent nodal force vector 

for the loading shown 
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+ve directions

vi vj

qi qj

w

Equivalent nodal force due to  

Uniformly distributed load w 
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Member end forces 

1

1

2

2

1

1

2

2

For element 1

V 12  18  -12   18 0 70

M 18   36  -18   18 0 70
1555.6

V -12  -18  12  -18 0 70

18    18  -18    36 0.00249 139.6M

V

M

V

M
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For element 1

0V 0 12   6   -12   6 1285.92
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Find slope at joint 2 and deflection at 

joint 3. Also find member end forces  
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Global coordinates 

Fixed end reactions (FERs) 

Action/loads at global 

coordinates 



1 1

4
1 1

3

2 2

2 2

1   1 2 2

For element 1

f v12   24   -12   24

m 24   64   -24   321X10
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f -12  -36    12  -36 v6

36    72    -36   144m
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1

1

2

2

3

3

F 1875      3750         -1875                 3750

M 3750     10000         -3750                5000

F -1875    -3750   1875+555.56     -3750+1666.67   -555.56     1666.67

M

F

M
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-1666.67     555.56
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For element 1

f 10 12   24   -12   24 0 63.93
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For element 2

f 60 12   36    -12   36 0
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f 60 -12  -36    12  -36 0.167146
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x’

y’

q’3

q’2

q’1

q’5

q’6

q’4

displacement in local coordinates



  

  

    

If f '  member end forces in local coordinates then

f' k ' q '
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At node i  

q q cos q sin

q q sin q cos

q q

l cos ;     m sin

   

    



   

  1 2 3 4 5 6q {q ,q ,q ,q ,q ,q }

are forces in global coordinate direction





   

      
T

using conditions  q' [L]{q};      and    f' [L]{f}

Stiffness matrix for an arbitrarily oriented beam element is given by

k L k ' L
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If f '  member end forces in local coordinates then

f' k ' q '
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0 0 0 0
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Beam element for 3D analysis 

z’
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y’
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displacement in local coordinates

q’7

q’8

q’9
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 If axial load is tensile, results from beam 

elements are higher than actual  results are 

conservative 

 

 If axial load is compressive, results are less than 

actual 

– size of error is small until load is about 25% of Euler 

buckling load 



  
 for 2-d, can use rotation matrices to get 

stiffness matrix for beams in any orientation 

 

To develop 3-d beam elements, must also add 

capability for torsional loads about the axis of 

the element, and flexural loading in x-z plane 



  
 to derive the 3-d beam element, set up the beam 

with the x axis along its length, and y and z 

axes as lateral directions 

 

 torsion behavior is added by superposition of 

simple strength of materials  solution 






































j

i

xj

xi

T

T

L

JG

L

JG
L
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J = torsional moment about x axis 

G = shear modulus 

L = length 

xi, xj are nodal degrees of freedom of angle of 

twist at each end 

Ti, Tj are torques about the x axis at each end 



  

 flexure in x-z plane adds another stiffness 

matrix like the first one derived 

 

superposition of all these matrices gives a 

12  12 stiffness matrix 

 

 to orient a beam element in 3-d, use 3-d 

rotation matrices 



  
 for beams long compared to their cross section, 

displacement is almost all due to flexure of 
beam 

 

 for short beams there is an additional lateral 
displacement due to transverse shear 

 

some FE programs take this into account, but 
you then need to input a shear deformation 
constant (value associated with geometry of 
cross section) 



   limitations: 

– same assumptions as in conventional beam and 

torsion theories 

   no better than beam analysis 

– axial load capability allows frame analysis, but 

formulation does not couple axial and lateral loading 

which are coupled nonlinearly analysis does not 

account for  

 

» stress concentration at cross section changes 

» where point loads are applied 

» where the beam frame components are connected 

 



Finite Element Model 

Element formulation exact for beam spans with 

no intermediate loads 

– need only 1 element to model any such member 

that has constant cross section 

 

 for distributed load, subdivide into several 

elements 

 

need a node everywhere a point load is applied 



  
need nodes where frame members connect, 

where they change direction, or where the 

cross section properties change 

 

 for each member at a common node, all have 

the same linear and rotational displacement 

 

boundary conditions can be restraints on linear 

displacements or rotation 



  
simple supports restrain only linear 

displacements built in supports restrain 

rotation also 



  



– restrain vertical and horizontal displacements of 

nodes 1 and 3 

 

– no restraint on rotation of nodes 1 and 3 

– need a restraint in x direction to prevent rigid body 

motion, even if all forces are in y direction 



  
 cantilever beam 

– has x and y linear displacements and rotation of node 1 fixed 



  

point loads are idealized loads 

– structure away from area of application 

behaves as though point loads are applied 



  

only an exact formulation when there are no 

loads along the span 

– for distributed loads, can get exact solution 

everywhere else by replacing the distributed 

load by equivalent loads and moments at the 

nodes 





Computer Input Assistance 

preprocessor will usually have the same 

capabilities as for trusses 

a beam element consists of two node 

numbers and associated material and 

physical properties 



  

material properties: 

– modulus of elasticity 

– if dynamic or thermal analysis, mass density 
and thermal coefficient of expansion 

physical properties: 

– cross sectional area 

– 2 area moments of inertia 

– torsion constant 

– location of stress calculation point 



  

boundary conditions: 

– specify node numbers and displacement 

components that are restrained 

 loads: 

– specify by node number and load components 

– most commercial FE programs allows 

application of distributed loads but they use 

and equivalent load/moment set internally 



Analysis Step 

small models and carefully planned element 

and node numbering will save you from 

bandwidth or wavefront minimization 

potential for ill conditioned  stiffness matrix 

due to axial stiffness >> flexural stiffness 

(case of long slender beams) 



Output Processing and Evaluation 

graphical output of deformed shape usually 

uses only straight lines to represent 

members 

you do not see the effect of rotational 

constraints on the deformed shape of each 

member 

 to check these, subdivide each member and 

redo the analysis 



  

most FE codes do not make graphical 

presentations of beam stress results 

– user must calculate some of these from the stress 

values returned 

 for 2-d beams, you get a normal stress normal to 

the cross section and a transverse shear acting on 

the face of the cross section 

– normal stress has 2 components 

» axial stress 

» bending stress due to moment 



  

– expect the maximum normal stress to be at the 

top or bottom of the cross section 

– transverse shear is usually the average 

transverse load/area 

» does not take into account any variation across the 

section 



  

  BEAMS 

– normal stress is combination of axial stress, flexural 

stress from local y- and z- moments 

– stress due to moment is linear across a section, the 

combination is usually highest at the extreme 

corners of the cross section 

– may also have to include the effects of torsion 

» get a 2-d stress state which must be evaluated 

– also need to check for column buckling 


