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Shape functions 

• The vertices of finite element (e.g.triangular)are numbered 
to indicate that these points are nodes. A node is a specific 
point in the finite element at which the value of the field 
variable is to be explicitly calculated.  

 

• Exterior nodes are located on the boundaries of the finite 
element and may be used to connect an element to 
adjacent finite elements.  

 

• Nodes that do not lie on element boundaries are interior 
nodes and cannot be connected to any other element. 
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Example 
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Shape functions cont.. 

• Finite element method involves the discretization of 
both the domain and the governing equations. In this 
process, the variables are represented in a piece-wise 
manner over the domain. 

•  By dividing the solution region into a number of small 
regions, called elements, and approximating the 
solution over these regions by a suitable known 
function, a relation between the differential equations 
and the elements is established. 

• The functions employed to represent the nature of the 
solution within each element are called shape 
functions, or interpolating functions, or basis functions. 
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• They are called interpolating functions as they are used 
to determine the value of the field variable within an 
element by interpolating the nodal values.  

• They are also known as basis functions as they form the 
basis of the discretization method. 

• Polynomial type functions have been most widely used 
as they can be integrated, or differentiated, easily and 
the accuracy of the results can be improved by increasing 
the order of the polynomial as shown in Figure 3.3(c) and 
(d). 
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• Figure 3.3 One-
dimensional 
finite elements. 
(a) A linear 
element, (b) a 
quadratic 
element, (c) 
linear and (d) 
quadratic 
variation of 
temperature 
over an element 

6 



Decisive point in FEM 

If the values of the field variable are computed only at 
nodes, how are values obtained at other points within a 
finite element? The answer contains the crux of the 
finite element method: 

The values of the field variable computed at the nodes 
are used to approximate the values at non nodal points 
(that is, in the element interior) by interpolation of the 
nodal values. 

• For the three-node triangle example, the nodes are all 
exterior and, at any other point within the element, the 
field variable is described by the approximate relation 
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Shape functions cont.. 

• Where                         are the values of the field variable 
at the nodes, and                   are the interpolation 
functions, also known as shape functions or blending 
functions. In the finite element approach, the nodal 
values of the field variable are treated as unknown 
constants that are to be determined. 

 

• The interpolation functions are most often polynomial 
forms of the independent variables, derived to satisfy 
certain required conditions at the nodes.  

(1.1) 
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Shape functions cont.. 

The major point to be made here is that the interpolation 
functions are predetermined, known functions of the 
independent variables; and these functions describe the 
variation of the field variable within the finite element. 

• This would be the case if the field variable represents a scalar 
field, such as temperature in a heat transfer problem. If the 
domain of Figure 1.1 represents a thin, solid body subjected to 
plane stress, the field variable becomes the displacement vector 
and the values of two components must be computed at each 
node.  

• In the latter case, the three-node triangular element has 6 
degrees of freedom.  
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Shape functions cont.. 
• In general, the number of degrees of freedom associated with a 

finite element is equal to the product of the number of nodes 
and the number of values of the field variable (and possibly its 
derivatives) that must be computed at each node. 
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FEM objective 

• The objective of the finite element method is to 
discretize the domain into a number of finite 
elements for which the governing equations are 
algebraic equations.  

• Solution of the resulting system of algebraic 
equations then gives an approximate solution to the 
problem 

• As with any approximate technique, the question, 
How accurate is the solution? must be addressed. 
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FEM Solution accuracy 
• In finite element analysis, solution accuracy is 

judged in terms of convergence as the element 
“mesh” is refined. 

• There are two major methods of mesh refinement. 

i) h-refinement, mesh refinement refers to the process 
of increasing the number of elements used to model a 
given domain, consequently, reducing individual 
element size. 
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FEM Solution accuracy 

ii) p-refinement : element size is unchanged but the 
order of the polynomials used as interpolation 
functions is increased.  

• The objective of mesh refinement in either method 
is to obtain sequential solutions that exhibit 
asymptotic convergence to values representing the 
exact solution. 
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Unstructured meshes 

• Mathematical proofs of convergence of finite 
element solutions to correct solutions are based on 
a specific, regular mesh refinement procedure. 

• Although the proofs are based on regular meshes 
of elements, irregular or unstructured meshes 
(such as in Figure 1.2) can give very good results. 
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Fig.1.2 A mesh of finite elements over a rectangular region 

having a 

central hole. 



Unstructured meshes cont.. 

 In fact, use of unstructured meshes is more often 
the case, since  

(1) The geometries being modeled are most often irregular and  

(2) The auto meshing features of most finite element software 
packages produce irregular meshes. 

 An example illustrating regular h-refinement as well 
as solution convergence is shown in Figure 1.3a, 
which depicts a rectangular elastic plate of uniform 
thickness fixed on one edge and subjected to a 
concentrated load on one corner. 
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Figure 1.3 Example showing convergence 

as element mesh is refined. 



Shape functions cont.. 

• The need for convergence during regular mesh 
refinement is rather clear. If convergence is not 
obtained, the engineer using the finite element 
method has absolutely no indication whether the 
results are indicative of a meaningful approximation 
to the correct solution. For a general field problem 
in which the field variable of interest is expressed 
on an element basis in the discretized form 

(1.1) 
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• Where M is the number of element degrees of 
freedom. 

The interpolation functions must satisfy two primary 
conditions to ensure convergence during mesh 
refinement: 

       i) The compatibility  and 

       ii) Completeness requirements 
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Compatibility 

• Along element boundaries, the field variable and its 
partial derivatives up to one order less than the 
highest-order derivative appearing in the integral 
formulation of the element equations must be 
continuous. 

•  Given the discretized representation of Equation 
1.1, it follows that the interpolation functions must 
meet this condition, since these functions 
determine the spatial variation of the field variable. 
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Compatibility 

• In addition to satisfying the criteria for convergence, 
the compatibility condition can be given a physical 
meaning as well. In structural problems, the 
requirement of displacement continuity along element 
boundaries ensures that no gaps or voids develop in 
the structure as a result of modeling procedure.  

• Similarly, the requirement of slope continuity for the 
beam element ensures that no “kinks” are developed in 
the deformed structure. In heat transfer problems, the 
compatibility requirement prevents the physically 
unacceptable possibility of jump discontinuities in 
temperature distribution. 
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Completeness 
 

• In the limit as element size shrinks to zero in mesh 
refinement, the field variable and its partial 
derivatives up to, and including, the highest-order 
derivative appearing in the integral formulation 
must be capable of assuming constant values. 
Again, because of the discretization, the 
completeness requirement is directly applicable to 
the interpolation functions. 
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POLYNOMIAL FORMS: 
ONE-DIMENSIONAL ELEMENTS 

• Formulation of finite element characteristics 
requires differentiation and integration of the 
interpolation functions in various forms. Owing to 
the simplicity with which polynomial functions can 
be differentiated and integrated, polynomials are 
the most commonly used interpolation functions. 
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1D  LINEAR ELEMENT 

1. Kronecker delta property: The shape function at any node 

has a value of 1 at that node and a value of zero at ALL other 

nodes. 
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The approximation is continuous across element boundaries 
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 Completeness 
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1D LINEAR SHAPE FUNCTIONS ON MASTER ELEMENT  
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1D QUADRATIC  MASTER ELEMENT  
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A slightly fancier assumption:  

displacement varying quadratically inside each bar 
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This is a quadratic finite element in 

1D and it has three nodes and three 

associated shape functions per element.  31 
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2D elements - bilinear element 
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2D linear rectangular element 
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Bilinear element has shape functions generated by multiplying 

linear expressions in ζ and  η direction. Due to multiplication, 

the product is not a linear function:  

           N1 = Nζ1 . Nη1 = (1 - ζ).(1 - η ) / 4 

 N2 = Nζ2 . Nη1 = (1 + ζ).(1 - η ) / 4 

 N3 = Nζ2 . Nη2 = (1 + ζ).(1 + η ) / 4 

 N4 = Nζ1 . Nη2 = (1 - ζ).(1 + η ) / 4 

Shape Functions of rectangular linear element 


