3. Direct Approach of Finite Element Formulation

3.1 Spring and Bars

Direct approach has the following features:

® Tt applies physical concepr (e.g. force equilibrium, energy conservation, mass
conservation, etc.) directly to discretized elements.
It 15 easy n 1ts physical nterpretation.

It does not need elaborate, sophisticated mathematical manipulation or concept.
® Tts applicabality 1s limited to certain problems for which equalibrum or
conservation law can be easily stated i terms of physical quantities one wants
to obtam. In most cases, discretized elements are self obvious mn the physical

SEISe.

There are several examples of direct approaches as illustrated in the following.
Using the first example, important features of FEM will be discussed m detail.

Example 1: Force Balance (Linear Spring System)  [Bathe P.79, Ex3.1]

The problem of a hnear spning system 15 depicted m the following figure.
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In tlus particular problem, Bt us assume that §;, F5.---, F; are specified. Solve

the displacements at the nodes, and the reaction force at the node number 1.
One can typically follow several steps as an FEM procedure described below:

. Node 1 Node 2
Ome element: i —» :\.ﬁ*‘ﬁuﬁ \ I £



Eguilibrium:
Ji =k(3; - 5)
f: = Haz _E"_},

(Note that 7, =—7, for force equilibrum.)
Element Matrix Equation for one element:
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Glabal matrix eguation by Assembly:

&Js)=1F)

where [K] 15 called “Stffness Matrx™ and
1F} 15 called ‘Resultant Nodal Force Matrix™.
The physical meaning of assembly procedure can be found in the force balance as
described below:
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from element 1 from element 2
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External nodal force applied at node 2

The typical assembly can be done as shown below:



ko -k 18] (R

-k kR+k -k 0 5,1 |F,
=k ket 1“‘% _?3L=<|F3:_ (1)

—-k; ki+ky -k i F,

0 —k, k+k -k |lal IR

L —k; ks _had,l |Fu5,

!

banded and symmetnc matrix
Now, let us pay attention to the boundary condition in this particular case.

Dhisplacements: &, = 0: specified 3,.05.8,.0;. 0, umknown
Geometric condition, Essential boundary condition

Forces: F,.F, F. F. F, specfied F, -unkown reaction force

N

Force condition, Natural boundary condition

One should recognize that for each node only one of the displacement and force can
be specified as a boundary condition. Nature does not allow to specify both the
displacement and force simultaneously at any node. If none of the two is known, then the
problem is not well posed, m other words, one does not have a problem to solve.

It should also be noted that if there 1s no geometry constramnt at all. there 1s no
umque solution. One can get a solution only up to a constant. (In other words, the
linear spring system can be moved i xaxis without further deformation.) In this case,
the stiffness matnx becomes a singular matnx. You will easily understand that
equation (1) 1s singular since the summation of six rows becomes null. Think about
the physical meaming of the fact that the summation of six rows becomes null. It just
indicates that the force applied on the system 1s in balance! In this regard, it 1s obvious
that at least one geomehy constraint should be assigned in order to get a unique
solutton. Later. we will discuss the methods of mtroducing boundary conditions into

equation (1).



Example 3: Mass Conservation (Flow network, Electric network)
[Bathe P82, Ex 3.3]

There iz a water flow network as depicted above. The problem is to find water
flow rate in the pipes and faucets given the water flow rate from the reservoir. The

nature of the problem 1s almost identical to the previous two examples. Therefore,
only the summary will be descnibed below.

e element:
A h g2
—_—r——————————— % §—
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Mass conservation:
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g, =k(P —P) :mass flow rate enfering the element th rough node 1
g, =k(P,—FB) :mass flow rate entering the element th rough node 2

(Note that g, =—g, for mass conservation.)

Element Matrix Equation for one element:

L A IR



Glabal matrix equation by Assembly:

[Klipi=10)

Now consider the assembly procedure. The assembly procedure 15 1dentical to the
previous two examples. You are requested to find the physical meaning of the
assembly procedure vourself

Also think about the boundarv condition tvpes. Which physical guantities are
corresponding to essential and natural boundary condition? Can you wmake sure the
pair characteristics of the boundary condition tyvpes for each node? Do you expect fo
obtain a singular matrix after the assembly? Why is it se? What condition

constitutes the well-posed problem? You will definitelv find the similarities among the
three examples.



3.2 Truss Element
Next example is concerned about a two-dimensional analysis of truss structures

with the so-called truss elements. Note that truss elements are jomned by pin joint so
that a truss element cannot bear the bending moment and shear force in contrast to a
beam element. It can bear the tensile/compressive force (i.e. longitudinal force) only.

Consider the following schematic diagram for this example.

: elements

One element:

HJ-.fu‘

Force-Deformation Law:

AE

Elastic Elongation: F =



which will result in the final global matrix equation of the following form:

-

K3} ={F]

p

You are requested to find the physical meaning of the assembly procedure
yourself.

Again think about the boundary condition types. Which physical quantities are
corresponding 1o essential and natural boundary condition, respectively? Can you
make sure the pair characteristics of the boundary condition fypes for each node? Do
you expect to obtain a singular matrix after the assembly? Why is it so? What
condition constitutes the well-posed problem? You will definitely find the similarity to

the previous examples.

Note: The global stiffness matrix has three rank deficiency. For a well posed
problem, one has to remove three equations (rows) or replace them with appropriate
equations associated with boundary conditions. Think about the origin of the rank

deficiency yourself.

For the deformation problems, there are two kinds of approaches depending on

which variable 1s considered unknown to be solved for.

1) [K]{x}={F} with [K]bemng stiffness matrix

2.2 Coordinate Transformation

In many cases. one can introduce a local coordinate system associated with each
element in addition to a global coordinate system. A local coordinate system can be
defined in many cases in a self-obvious way mnherent to the element itself. It is much
easier to determine the stiffness matrix with respect to the local coordinate system of an
element than with respect to the global coordinate system. The stiffness matrix with
respect to the local coordinate system 1s to be transformed to that with respect to the

global coordmate system before the assembly procedure.



Example:

V2 U’
W
1
Vi
1’
v [
.
|
. o
Iy i, |
! [ j N ¥ |I'
iy L“J. J
v,
Global system Local system

) Vector Transformation m 2-D




V=xi+yj=xi+y]
J : O r . OF
x'=coso-X+sino-y (x| | cosa sind |[x)

f— y L=

- 1 e
V' =—sinc-x+cosa-y v | —sina cosa ||y

f1| ‘cosO —sind | |r'
or L |‘— .

vl lsina cosa_'l_}"_r

i) Transformation of stiffness matiix

The element matrix equation can be generally represented in terms of the local
coordinate system. In the discussion below, we are mterested in coordinate
transformation of stiffness matrix associated with vectors such as displacement and

force. Suppose the element stiffness matrix is represented by the following equation:

KTy =) (1)

The vector transformation of {x'}" and {1'}" between the local and global coordinate

system mught be
wf =[ofxy 2)
and () = [0]p) (3)

where {x|° and {b}° are referenced to the global coordinate system. Then. equations

(1)-(3) yields

KT [e)i =[ofe) 4

To get a matrix equation in the global coordinate system m terms of

K] (=) = (b} (5)

pre-multiply Eq. (4) by [ >]_1 (a generalized inverse matrix of [CD]).



Then

o] [ olx} =[o] @b} =[]o) = ¥ (6)

By comparison between equation (6) and (5), one can find

k] =[o]"[xT[o] (7)

Note:

1. For an orthogonal coordinate system. the transformation matrix has the
.. -1 T , . . _ .
characteristics of [®]7 =[®] . If [K'T is symmetric. then [K] remains

symmetric!
2. If degree of freedom in the local coordinate system is different from that in the global
coordinate system, [®] is not a square matrix.

Example: transformation m Truss Element
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make use of the transformation rule:

[cosa 0

. AT oirs i sin o 0 |E4] 1 —1lcosa sina 0 0
[&]" =[o]"[&][®]=| =

0 cosc| L |-1 1 0 0  cosc sind]
0 sna
Finally one obtains the stiffness matrix which is exactly identical to the previously
derived one:

cos’ o S L COs O —cos’ O —sin oLcos ¢
[K]g_AE sin ¢ cos sin’ o — sin ¢.cos o —sin’ «
T L| —costo  —sinacosd cos” O sin ¢Lcos o
—sin olcos —sin’ o sin o.cos o sin ® o

The reason for using the coordinate transformation is well demonstrated via this
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example. It is much easier to evaluate [K'] in the local coordinate system than [K[

in the global coordinate system. Note, however, that one has to calculate [K[ via the

transformation rule before the assembly (element by element)

In this particular example, the coordinate transformation matrix [@] 1s 1s not
€

Note: 1 ticuls
square matrix because of the difference in the degree of freedom between the local and
Think about which part of the derivation is affected by this

global coordinate systems.
difference. You have to recognize the following facts

oIy = 1 |-lrh.

" costa cos 0l sin O 0 0
~ | cos olsin o sin > o 0 0
but (@] [0] = : L™
| 0 0 cos” o COos Ol sl O
|_ 0 0 COS O s O sin * o |
which is not expected in the derivation of equation (6), i.e. [®]7[@p}=[1l{p}={b}.
y
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* Fixed-Frame Origin

Local and Global Coordinates
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Examples

For the truss structure shown:

Find displacements of joints 2 and 3

Find stress, strain, & internal forces
in each member.

AxL =200 mm? , Ast =100 mm?

All other dimensions are in mm.

Solution

Let the following node pairs form the elements:

Element Node Pair
(1) 1-3
(2) 2-1
(3) 2-3

Using Shigley’s Machine Design book for yield strength values, we have,

Sy (AL = 0.0375kN/mm’ (375 Mpa)
Sy sm= 0.0586kN/mm?* (586 Mpa)
E )= 69kN/mm? , E )= 207kN/mm?
AY= AP =200mm?, A® =100mm’

Find the stiffness matrix for each element

Element (1)

L") =260 mm. Ujx —» T

EY = 69kN/mm?, 1
A" = 200mm’

6=0

c=cosf =1, c=1
s=sinB=0, s>=0
cs=0

(1) T
3

260 mm
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EA/L = 69 kN/mm?” x 200 mm” x 1/(260mm) = 53. 1 kN/mm

C CcS -C -CS
[Kg]“]I =(AE/L) x cs s? -CS - s
—IC2 -C8s C2 Cs
-CS —S2 CSs 52
1 0 -1 0
K" =(53.1)x 0 0 0 0
-1 0 1 0
0 0 0 0

Element 2

0= 90"
c:cos900:0, =0

. 0 0 2
s=sin90 " =cos 0 =1, s°=1
cs=0

EA/L =69 x 200 x (1/150) = 92 kN/mm

Uax U2y Uix Upy
0 0 0 0 ) ux
0 1 0 -1 | uy
kJ? = (92)] 0 0 0 0 | upy
0 -1 0 I Uty

U

24

y

—>

(2)

Ugx

Uax
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EA/L = 69 kN/mm? x 200 mm? x 1/(260mm) = 53. 1 kN/mm

c cs - € -CS
[Kg]m =(AE/L) x cs g2 -CS <o
- -CS c? CcS
2 2
-CS -8 Ccs S
1 0 -1 0
K1V =(53.1)x 0 0 0 0
. | 0 1 0
0 0 0 0
Element 2
6 = 90"
c=cos90°=0, ¢*=0 I— uy
s = sin 90° = cos 0° = | s2=1
=1 (2)
EA/L =69 x 200 x (1/150) = 92 kN/mm
2 1;’ U2x
Uox Uzy Ujx Uy
0 0 0 0 U2y
0 1 0 -1 Uzy
k® = (92)] 0 0 0 0 | ugy
0 4 | 0 ] Upy
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Element 3

6 = 30"

¢ = cos 30° = 0.866, ¢*=0.75
U3y
s=cos 60°=.5, s=0.25

cs =0.433

EA/L =207 x 100 x (1/300) = 69 kN/mm

Uax Uzy U3y Uzy
up [ .75 433 <75 =433

uy | -433 .25 -433 -25 | (69)
k= us| -75 -433 75 433
433 -25 433 .25

Assembling the stiffness matrices
Since there are 6 deflections (or DOF), u; through ug, the matrix is 6 x 6. Now, we will

place the individual matrix element from the element stiffness matrices into the global
matrix according to their position of row and column members.

Element [1]

Uix 35.1 -53.1 \
Uax
Uax -53.1 53.1

"l J

The blank spaces in the matrix have a zero value.
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Element [2]
Uix

uix /—

U2x

Usx

Uzy \

Element [3]

Upx Uy
Uix
Upy
Uox
Uzy
Uy
Usy

ngx

217
29.9
-51.7
-29.9

U2x Ugy U3y
-92
92

uﬂy U3y Usy

29.9 -51.7 -29.9
172 -29.9 -17.2
299 3.7 299
172 299 172

Assembling all the terms for elements [1] . [2] and [3]. we get the complete matrix

equation of the structure.
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Uix uly U2y U2_y U3ax U3y s A
53.1 0 0 0 -53.1 0 \ Ujx Fi
0 92 0 -92 0 0 Upy Fi
0 0 k1 299 817 -29.9 ux | = | F
0 92 299 109.2 -299 -17.2 Uay Fi
-53.1 0 -51.7 -29.9 104.8 29.9 U3y Fy
\O 0 299 ~1j2 299 17.2—/  Usy) Fi
\ /

Boundary conditions
Node 1 is fixed in both x and y directions, where as, node 2 is fixed in x-direction only
and free to move in the y-direction. Thus,

Ux= Uy = Uz = 0.

Therefore, all the columns and rows containing these elements should be set to zero. The
reduced matrix is:

109.2 —-29.9 —17.2][u,, 0
~299 1048 299 Hu, t={ 0
172 299 172 ||luy,| [-04

3¥

Writing the matrix equation into algebraic linear equations, we get,

29.9uzy -29.9 uz, - 17.2u3y = 0
-29.9u3y+ 104 uzx + 29.9u3y = 0
-17.2upy + 29.9u3x + 17.2u3y = -0.4

solving, we get uyy =-0.0043
us = 0.0131
uszy = -0.0502

Sress, Strain and deflections

Element (1)

Note that ujy, ujy, uzy, etc. are not coordinates, they
are actual displacements.
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AL = uz, = 0.0131
e=AL/L =0.0131/260 = 5.02 x 10> mm/mm
c=Ee=69x5.02x 107 = 0.00347 kN/mm?

Reaction R =6 A =0.00347 kN

Element (2)
AL = ugy = 0.0043
e = AL/L = 0.0043/150 = 2.87 x 10> mm/mm
c=E&=69x2.87x 10° = 1.9803 kN/mm’

Reaction R = 6 A = (1.9803 x 107) (200) =0.396 kN

Element (3)
Since element (3) is at an angle 30°, the change in the length is found by adding the
displacement components of nodes 2 and 3 along the element (at 30%. Thus,
AL = uzy cos 30° + Uy SiN 307 U2y cos60°
=0.0131 cos30” -0.0502 sin30” + 0.0043 cos60’
=-0.0116
e=AL/L =-0.0116/300 = -3.87 x 10” = 3.87 x 10° mm/mm

6=Ee=207 x -3.87.87 x 10” = -.0080 kN/mm?

Reaction R =6 A = (-0.0087) (100) = 0.-0.800 kN
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Factor of Safety
Factor of safety “n’ is the ratio of yield strength to the actual stress found in the part.

! 0375

Element(1) n=—’=ﬁ=10.8

o 0.00347

S, 0375
Element(2) n=—}'=ﬁ= 18.9

o 0.00198

S, 5
Element(3) n=—= 0-0586 _ 7.325

o 0.0080

The lowest factor of safety is found in element (3), and therefore, the steel bar is the most
likely to fail before the aluminum bar does.

Final Notes
- The example presented gives an insight into how the element analysis works. The
example problem is too simple to need a computer based solution; however, it
gives the insight into the actual FEA procedure. In a commercial FEA package,
solution of a typical problem generates a very large stiffness matrix, which will
require a computer assisted solution.

- In an FEA software, the node and element numbers will have variable subscripts
so that they will be compatible with a computer-solution

- Direct or equilibrium method is the earliest FEA method.
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