CHAPTER 1

INTRODUCTION

One of the most important advances in applied mathematics in the 20th century has been
the development of the Finite Element Method as a general mathematical tool for
obtaining approximate solutions to boundary-value problems. The theory of finite
elements draws on almost every branch of mathematics and can be considered as one of
the richest and most diverse bodies of the current mathematical knowledge.

1. 1 Mathematical Modeling of Physical Systems

Due to the complexity of physical systems, some approximation must be made in the
process of turning physical reality into a mathematical model. It is important to decide at

what points in the modeling process these approximations are made. This, in turn,
determines what type of analytical or computational scheme is required in the solution
process. Let us consider a diagram of the two common branches of the general modeling-
solution process given in Figure 1:

For many real world problems the second approach is in fact the only possibility. For
instance suppose that the aim is to find the thermo-mechanical stresses in an air-cooled
turbine blade depicted in Figure 2.

The complex three-dimensional geometry of the blade along with the combined thermal
and mechanical loadings makes the analysis of the blade a formidable task. Nevertheless,
many powerful commercial finite element packages are available that can be
implemented to perform this task with relative ease.

Numerical Methods

1. Fmite Difference Method (FDIM)
® Pomtwise approxmation to differential equation (DE)
® Amay of gnd pomts

2. Finite Element Method (FENM)
® Global approximation or integral approximation to DE
®  Assembly of fimite elements (subdomains, subregions)

3. Boundary Element Method (BEM)
® Deal with integral equation rather than differential equation
® Discretization over boundary only



1.2 FEM Analysis Process

A model-based simulation process using FEM consists of a sequence of steps. This
sequence takes two basic configurations depending on the environment in which FEM is
used. These are referred to as the Mathematical FEM and the Physical FEM.

Mathematical FEM

The centerpiece in the process steps of the Mathematical FEM is the mathematical model
which is often an ordinary or partial differential equation in space and time. Using the
methods provided by the Variational Calculus, a discrete finite element model is
generated from of the mathematical model. The resulting FEM equations are processed
by an equation solver, which provides a discrete solution. In this process we may also
think of an ideal physical system, which may be regarded as a realization of the
mathematical model. For example, if the mathematical model is the Poisson’s equation,
realizations may be a heat conduction problem. In Mathematical FEM this step is
unnecessary and indeed FEM discretizations may be constructed without any reference
to physics.

The concept of error arises when the discrete solution is substituted in the mathematical
and discrete models. This replacement is generically called verification. The solution
error is the amount by which the discrete solution fails to satisfy the discrete equations.
This error is relatively unimportant when using computers. More relevant is the
discretization error, which is the amount by which the discrete solution fails to satisfy the
mathematical model.
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Figure 1.1 Comparison of Analytical and Computational Model



Physical FEM

The processes of idealization and discretization are carried out concurrently to produce
the discrete model. Indeed FEM discretizations may be constructed and adjusted without
reference to mathematical models, simply from experimental measurements. The concept
of error arises in the physical FEM in two ways, known as verification and validation,
respectively. Verification is the same as in the Mathematical FEM: the discrete solution
is replaced into the discrete model to get the solution error. As noted above, this error is
not generally important. Validation tries to compare the discrete solution against
observation by computing the simulation error, which combines modeling and solution
errors. Since the latter is typically insignificant, the simulation error in practice can be
identified with the modeling error. Comparing the discrete solution with the ideal
physical system would in principle quantify the modeling errors.

Figure 1.2 Finite Element Discretization
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Figure 1.3 Finite Element Solution
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Figure 1.4 Deviation of the solution from the mathematical model
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Figure 1.5 Deviation of the solution from physical system

Application of of FEM

® Stucteral Analysis (steady. time- dependent dynanucs, eigenvalue)
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Figure 1.6 Application Examples .of FEM



FEM PROCEDURE
1. Identify the system (govermng) equation.  (usually DE)

L{$)=0.

2_ Introduce an integral form equation. (Weak form equation) —» IFEM anulanmi

® Direct Approach
® Vanational Approach - weak form

® Nethod of Weighted Residual Approach - weak form

L[Lpl(¢]a’fl=0 = LFL'(U]L"{¢}G?Q=CI

0

3. Diuscretize the domain of mterest into elements. e

d(x) = N (x)dy + Na(x)y + N3 (x5

¢; - Nodal values of the field varnable
N; : Interpolation functions, Shape fimctions



LN

. Evaluate the integral form over each element. — @ |L\'1uneﬂr::{1 Integral

K {) = {7}

6. Assemble the global matnx equation. ——» [Assembly Procedure

=]

. Solve the matnx equation to get the unknowns —p |Snlunon Techmaues

{0} = [K]"{F)

8. Calculate the values of mterest from the approxamate solution.



CHAPTER 2

FEM FORMULATION

2.1 Direct Formulation

Direct approach has the followmg features:

® It applies physical concept (e.g. force equlibrium, energy conservation, mass
conservation, etc.) directly to discretized elements.
It 15 easy m 1ts physical nterpretation.

® It does not need elaborate, soplusticated mathematical manipulation or concept.

® Its applicabality 1s limited to certain problems for which equilibrium or
conservation law can be easily stated in terms of physical quantities one wants
to obtain. In most cases, discretized elements are self obvious m the physical

SEISE.

2.2 Weighted Residual Methods

Example with a single governing equation with only one independent variable
fIT(x)]=0inQ

T is the function sought , function of x only
Q is the domain of the region governed by f
Boundary conditions

9.[T(x)]=0inT;
g.[T(x)]=0inT,
I;and I, are parts of the boundary of Q
Approximation of the solution witha T' function:

T=T(a, 8, 8,) = Y aN, (9

which has one or more unknown( but constant) parameters a,,a, ---,a, satisfies exactly

the boundary conditions. No surprise if the approximation does not satisfy the equation
exactly! We will get a residual error:

f[TI(X;al!az!"'ran)] = R(X;al!az""’an)
The method of weighted residuals requires that the parameters a,,a, ---,a, be determined
satisfying:
[Wi(0R(x:a;,a,,++,a,)dQ =0
Q

where the functions W, (x) are the n arbitrary weighting functions



The conditions of the weighting functions is generally left to a personal judgment
The most popular weighted-residual methods are:

1) Point collection

2) Subdomain collection

3) Least squares

4) Galerkin

Point Collection
The weighted functions W, (x) are o(x — x;) and defined such that

J.:é(x—xi)dx=l for x = x;

_[:é(x— X;)dx=0 for x= x;

Substitution of this choice of w; (x) gives:
j&(x— X;)R(x;a,,a,,---a,)dQ=0 fori=12,--,n
Q

which is evaluated at n collection points x,, X,,---, X, results n algebraic equations in n
unknowns

R(x;a,,a,,---,a,)=0
R(x,;a,,8,,---,a,) =0

R(x,;a,,a,,---,a,) =0

Subdomain Collection

The weighted functions W, (x) are:

1 forxinQ,
Wl(x) = ;

0 forxnotin Q,

1 forxinQ
Wz(x) = 2

0 forxnotin Q,

Substitution of this choice of w; (x) gives the following n integral equations
IR(x;al,az,---an)dQl =0

Q

[R(xa,a,,-a,)dQ, =0

Q,

J'R(x;al,az,---an)dQn =0

Q

n



Least Squares

The method of least squares requires that the integral | of the square of the residual R be

minimized. That is:

I :J'[R(x;al,az,-o-,an)]de be a minimum, or equivalently

ol
oa; 0a; 5 0q,
Carrying out the differentiations and simplifying we have:

_[Ra —da = _[R—dQ_ _jR—dQ 0
a Q
which means that the Welghtlng functions are.
jR—dQ 0 i=12--,n

Galerkin

The weighting functions w, (x) are N, (x)

Therefore for the Galerkin method of the weighted residuals we have:

J'Ni(x)R(x;al,az,...,an)dQ =0 i=12,---,n
Q
Remember that our approximation of the T (x) function is:

T =T'(x;a1,a2,~--,an)=Zn:aiNi(X)

—:iJ'[R(x;al,aZ,--,an)]de:J'i[R(x;al,az,--~,

a,)]’ dQ

10



2.2 Galerkin’s Method

Let us consider a steady state continuous physical system described the following system

of PDEs:
F(u)+fo =0 on domain Q
Gu)+fr=0 on bounder T’

Example: Poisson’s equation
2 2 i
6'£+612'+q_20 on Q
oX~ oy k
Boundary condition
a) Dirchlet BC (Natural BC)

T=T, onI

b) Neuman BC (Essential BC)
oT

—=h(T-T,) onl,
on
or -
C —= on T
) :
I
=
Ll oa |5
L

Q - domain

Figure 2.1 The domain of the boundary

The residual is defined as follows:

R(U) = F(u) + fo

The residual vanishes when the solution is substituted.

I" - boundary

The weighted residual method consists in finding functions u that satisfy the

following integral equation

jwi R(U)dR = jwi Fu)+ f,jdo=0

where W; is weighting function and u is the solution that satisfy the boundary

condition.

11



Example
Integral of Poisson’s Equation

o°u %
W X, —+ f, |dQ=0
J- y)(ax ay? QJ

u — must be twice differentiable and it should satisfy all the boundary conditions on
[,andl’;

Integration by Parts

Gradient Theorem

[ VFdxdy = piiFds

j (i —+ J—)dxdy —jé (ni +n, J)Fds
Divergence Theorem

I V.Gdxdy = §>ﬁ.Gds

2 3 0G
IQ w(V°G)dxdy = —IQVW.Vdedy —erWa—nds

_[ w—dxdy = J'Qé—a\;dexdy + ﬁr n wGds

J'Qw&dxdy = —JQ%dedy + iﬁr n,wGds

In one dimension:

Xz

jW :—j—udx+Wu

X

_.[dﬂd_ud W

dx dx dx

In two dimension:

12



J‘W —dxdy = —J%’(V udxdy +§Wudy
r

oW
=— | —udxd Wuld
iaxunyr.r[us

| =cosé
.[W—d xdy —I—udxdy §Wudx

— | —udxd Wumd
Iayuxy+f umds

m=sind
jw—dxd ——jaW U xdy +§W—|ds
J'W—d xdy j‘aW audxdy+j3W—mds
Q
ou o oW ou oW au ou
i(w(ax 8yJ Jd xdy __I(a_a_ Ea)d xdy + )BW(—|+—Xm)ds
-] (%—V)\(’Z—“ %a—“)dxd +w (Ees

Weak Integral Form

A given integral form may be transformed to obtain a so-called weak form through
integration by parts. By this process, the order of the highest derivative can be reduced.
Boundary conditions other than u can also be specified. However, the integration by parts
introduce derivates of the weighing function W. Thus, the continuity condition of W are
more severe

Example

__J-(éN u N &u

~ ot 5 ay)dxd Y+ §N(—)ds

Weak integral of Poisson’s equation
2 2
jNi(a SR jd dy_—j(—a—“ﬁia—“—r\l f ]dQ+jN Hds=0.
o ox? oy? oX OX 0oy oy on
N; must be twice differentiable
_J-[éN du 8N du

——+——-N;f, [dQ+ | N;(f. —aU)ds =0
8X8X ayay |Qj +i|—. |(1"a)s

13



N; must be twice differentiable

nno A _ hno 6N <
_I(GN " J+5N-Zuj_’_NifQJdQ+jNi(fr—aZNjuj]ds=0
ox 4= OX oy ‘= oy T =

[Kju}=1{F}
ON 8N
j N, +6N dQ+J'aN N,ds=0 i=1..nno j=1..nno
ol Ox O oy
Fo=[N fodQ+ [ fNds=0 i=1..nno
Q T
Where:

[K is stiffness Matrix
{F}is load vector
{U} is nodal values of function of interest

i=1..nno
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Variational Formulation

A functional is linear
ou ou
u—) =\|(au+a,—)dQ
7(u,—) =[(@u+a, )

Q
A functional is quadratic if all terms are of second order, for example

ou,, )
=\1(a,(—)" +a,u’)dQ
e i(l(éx) ,u?)

For a purely quadratic functional
u

- =1I<u5_“...>[D] al 4o
25\ OX OX

[D] is a symmetric matrix independent of u

u
o =£<5u%---> 0]1 % 4o

OX

7z is positive definite if D is positive definite matrix that is all the value of D are
positive

Example

Find the variation of the following one dimensional functional
du x, 1 du,,
o) =l GG —u

Its variation

o _5r23(d—“) _u f)dx

Using properties of &

or —j (5(d—“)d—“—w f)dx

xo , d du
= —(Su)——=2au f)dx
J. ( @ )
The second variation of ncan be obtained
5 =8(5r) = j (5(—)) dx

_IXZ(d(éu)) dx =0

15



W:i(&J)
dx
o(ou)=0

(d—Wd—“— w f)dx

on =jR=0
jR j ML)+ flda=0

L is a linear operator
f, and f. are independent of u
These conditions are sufficient for a functional to exist

Example
Formulate functional for poission’s equation
a u a u
F(u)+ f, +f. =0
(v) T

The corresponding integral form is obtained previously
OW ou  Ow ou

j jQ(&& ———Wf )dmjrw(au —f.)dT =0

Choosing w= 5u

J-R :J- (5(5U)6_U+ 5(5U)6_U

OX OX oy

—Su fQ)dQ+Ir5u (@u—f)dr=0

Defining the functional
ou 1 ou 1 au
7(u ——) jQ(—(—) ) —uf )dQ+j(— qu? —uf.)dT

or=R= 0
A solution u for R =0 also renders the functional stationary 67 = 0. At this condition the
functional is either a minimum or a maximum.

To illustrate the process let us consider now a specific example.

Suppose we specify the problem by requiring the stationary of a functional

1,(oTV 1.(oT) A -
H—L{Ek[&j +Ek(§j QVT]dQngﬁdF (9.72)
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In which k and Q depend only on position and 6T such that 6T =0on
[, wherel', and I, are bounding the domain.

We now perform the variation. This can be written following rules of

differentiation as
or (oT or [aoT : —
ANl =| |k—06] — |[+k—08| — |- Q,dT |dQ— oT)dr
A R R G

As

5(ﬂj _ 0 (6T

OX OX

We can integrate by parts and, noting that 6T =0on T",, and obtain

o1 = é‘{i(ka—T}Li(kﬂ}er}dQ
Q ox\_ ox) oy\ oy
ot

+ éT(k——aJdF =0
Tq on

We immediately observe that the Euler equations are

A(T)=3(kﬂj+i[kﬂ]+qv in Q
ox\ oy) oy\ oy

or -
B(T)=k—-0q=0 L
(T)=k=--d on I,

If T is so prescribed that T =T on [, and oT = 0on that boundary, then the problem is

precisely the one we have already discussed and the functional specifies the two-

dimensional heat conduction problem in an alternative way.
In this case we have *guessed’ the functional but the reader will observe that the variation
operation could have been carried out for any functional specified and corresponding

Euler equations could have been established.

Let us continue the problem to obtain an approximate solution of the linear heat

conduction problem. Taking, as usual,

17



T~T=YNga, (9.76)

We substitute this approximation into the expression for the functional IT and obtain

1 (woN, Y 1(<oN, Y
- sz(zaai) dQ+J'Q§k£ZEai] ([@)
_IQQVZNiaidQ_Ir azNiai dr

On differentiation with respect to atypical parameter a; we have

I far {0

—jQQVdeQ—jranj dr

and a system of equations for solution of the problem is

[Klaj={f}

with

J-kaN ON;

J.kax ax ayay

f=—[ NQ dQ—jrq N;qdr
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