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CHAPTER 1 
 

INTRODUCTION 
 

One of the most important advances in applied mathematics in the 20th century has been  
the development of the Finite Element Method as a general mathematical tool for 
obtaining approximate solutions to boundary-value problems. The theory of finite 
elements draws on almost every branch of mathematics and can be considered as one of 
the richest and most diverse bodies of the current mathematical knowledge. 
 
1. 1 Mathematical Modeling of Physical Systems  
 
Due to the complexity of physical systems, some approximation must be made in the 
process of turning physical reality into a mathematical model. It is important to decide at  
what points in the modeling process these approximations are made. This, in turn, 
determines what type of analytical or computational scheme is required in the solution 
process. Let us consider a diagram of the two common branches of the general modeling- 
solution process given in Figure 1:  
 
For many real world problems the second approach is in fact the only possibility. For 
instance suppose that the aim is to find the thermo-mechanical stresses in an air-cooled 
turbine blade depicted in Figure 2. 
 
The complex three-dimensional geometry of the blade along with the combined thermal  
and mechanical loadings makes the analysis of the blade a formidable task. Nevertheless,  
many powerful commercial finite element packages are available that can be 
implemented to perform this task with relative ease. 
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1.2 FEM Analysis Process  
 
A model-based simulation process using FEM consists of a sequence of steps. This 
sequence takes two basic configurations depending on the environment in which FEM is  
used. These are referred to as the Mathematical FEM and the Physical FEM. 
 
Mathematical FEM 
 
The centerpiece in the process steps of the Mathematical FEM is the mathematical model 
which is often an ordinary or partial differential equation in space and time. Using the 
methods provided by the Variational Calculus, a discrete finite element model is 
generated from of the mathematical model. The resulting FEM equations are processed 
by an equation solver, which provides a discrete solution. In this process we may also 
think of an ideal physical system, which may be regarded as a realization of the 
mathematical model. For example, if the mathematical model is the Poisson’s equation, 
realizations may be a heat conduction problem. In Mathematical FEM this step is 
unnecessary and indeed FEM discretizations may be constructed without any reference 
to physics.  
 
 
The concept of error arises when the discrete solution is substituted in the mathematical  
and discrete models. This replacement is generically called verification. The solution  
error is the amount by which the discrete solution fails to satisfy the discrete equations.  
This error is relatively unimportant when using computers. More relevant is the  
discretization error, which is the amount by which the discrete solution fails to satisfy the  
mathematical model.  

 
Figure 1.1 Comparison of Analytical and Computational Model 



 3

Physical FEM 
 
The processes of idealization and discretization are carried out  concurrently to produce 
the discrete model. Indeed FEM discretizations may be constructed and adjusted without 
reference to mathematical models, simply from experimental measurements. The concept 
of error arises in the physical FEM in two ways, known as verification and validation, 
respectively. Verification is the same as in the Mathematical FEM: the discrete solution 
is replaced into the discrete model to get the solution error. As noted above, this error is 
not generally important. Validation tries to compare the discrete solution against 
observation by computing the simulation error, which combines modeling and solution 
errors. Since the latter is typically insignificant, the simulation error in practice can be 
identified with the modeling error. Comparing the discrete solution with the ideal 
physical system would in principle quantify the modeling errors.  
 
 

 
 
 
 
Figure 1.2 Finite Element Discretization 
 
 
 
 
 
 
 



 4

 
Figure 1.3 Finite Element Solution 

 
Figure 1.4  Deviation of the solution from the mathematical model 
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Figure 1.5  Deviation of the solution from physical system 
 
 Application of  of FEM  
 

 
Figure 1.6  Application Examples of FEM 
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FEM PROCEDURE 
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CHAPTER 2 
 

FEM FORMULATION  
 
 
2.1 Direct Formulation 

 
 
2.2 Weighted Residual Methods 
 
Example with a single governing equation with only one independent variable 
                                 Ω= inxTf 0)]([  
 
T is the function sought , function of x only 
Ω  is the domain of the region governed by f  
 Boundary conditions 
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Approximation of the solution with a 'T  function: 

 )(),,,;(''
1

21 xNaaaaxTT
n

i
iin ∑

=

== L  

which has one or more unknown( but constant) parameters naaa ,, 21 L satisfies exactly 
the boundary conditions. No surprise if the approximation does not satisfy the equation 
exactly! We will get a residual error: 
            ),,,;()],,,;('[ 2121 nn aaaxRaaaxTf LL =  
The method of weighted residuals requires that the parameters naaa ,, 21 L be determined 
satisfying: 
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where the functions )(xWi are the n arbitrary weighting functions 
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The conditions of the weighting functions is generally left to a personal judgment 
The most popular weighted-residual methods are: 

1) Point collection 
2) Subdomain collection 
3) Least squares 
4) Galerkin 

 
Point Collection 
The weighted functions )(xWi are )( ixx −δ and defined such that 
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Substitution of this choice of )(xwi  gives: 
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Subdomain Collection 

 
The weighted functions )(xWi are: 
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 Substitution of this choice of )(xwi  gives the following n integral equations 
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Least Squares 

 
The method of least squares requires that the integral I of the square of the residual R be 
minimized. That is:  
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Carrying out the differentiations and simplifying, we have: 
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Galerkin 
 
The weighting functions )(xwi  are )(xNi  
Therefore for the Galerkin method of the weighted residuals we have: 
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2.2 Galerkin’s Method 
 
Let us consider a steady state continuous physical system described the following system 
of PDEs:  
 
 F(u) + fΩ  = 0  on domain Ω  
 G(u) + fΓ  = 0  on bounder Γ   
 
 
Example:   Poisson’s equation 
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Boundary condition 
a) Dirchlet  BC (Natural BC) 

                  T=Ts  on Γ 1 
 

b) Neuman BC (Essential BC) 
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Ω  - domain Γ - boundary 
 
Figure 2.1 The domain of the boundary 
 
The residual is defined as follows: 
       R(u) = F(u) + fΩ  
 
The residual vanishes when the solution is substituted. 
 
The weighted residual method consists in finding functions u that satisfy the 
following integral equation 
 }{ nidfuFWdRuRW ii ...10)()( ==Ω+= Ω
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where Wi is weighting function and u is the solution that satisfy the boundary 
condition. 
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Example 
Integral of Poisson’s Equation 
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u – must be twice differentiable and it should satisfy all the boundary conditions on 
fu andΓΓ  

 
Integration by Parts 
 
Gradient Theorem 
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Divergence Theorem 
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In two  dimension: 
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Weak  Integral Form 
 
A given integral form may be transformed to obtain a so-called weak form through 
integration by parts. By this process, the order of the highest derivative can be reduced. 
Boundary conditions other than u can also be specified. However, the integration by parts 
introduce derivates of the weighing function W. Thus, the continuity condition of W are 
more severe 
 
Example 
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Weak integral of Poisson’s equation 
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Ni must be twice differentiable 
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Where: 
[ ]K is stiffness Matrix 
{ }F is load vector 
{ }U  is nodal values of function of interest  
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Variational Formulation 
 
A functional is linear 
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A functional is quadratic if all terms are of second order, for example 
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[ ]D  is a symmetric matrix independent of u  
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π  is positive definite if D is positive definite matrix  that is  all the value of D are 
positive 
 
Example 
Find the variation of the following one dimensional functional 
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L  is a linear operator 
  Ωf  and Γf  are independent of   u  
These conditions are sufficient for a functional to exist 
 
 
 
Example 
Formulate functional for poission’s equation 
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Defining the functional 
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A solution u for 0=R  also renders the functional stationary 0=δπ . At this condition the 
functional is either a minimum or a maximum. 
 
To illustrate the process let us consider now a specific example. 

 

Suppose we specify the problem by requiring the stationary of a functional 
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In which k and Q depend only on position and Tδ  such that 0=Tδ on 

qandwhere ΓΓΓ φφ  are bounding the domainΩ . 

 We now perform the variation. This can be written following rules of 

differentiation as 

      Γ−Ω⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=Π ∫∫Ω dTqdTQ
y
T

y
Tk

x
T

x
Tk

qr
v )( δδδδδ &       

As 

 ( )T
xx

T δδ
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂                                
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     We immediately observe that the Euler equations are 
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If T is so prescribed that TT =  on φΓ  and 0=Tδ on that boundary, then the problem is 

precisely the one we have already discussed and the functional  specifies the two- 

dimensional heat conduction problem in an alternative way. 

 

In this case we have ‘guessed’ the functional but the reader will observe that the variation 

operation could have been carried out for any functional specified and corresponding 

Euler equations could have been established. 

 

Let us continue the problem to obtain an approximate solution of the linear heat 

conduction problem. Taking, as usual, 
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We substitute this approximation into the expression for the functional Π   and obtain 
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and a system of equations for solution of the problem is  
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