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Introduction
• Random numbers are a necessary basic ingredient in the 

simulation of almost all discrete systems. 
• Most computer languages have a subroutine, object, or 

function that will generate a random number. 
• Similarly simulation languages generate random numbers 

that are used to generate event limes and other random 
variables.
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Introduction
• Properties of Random Numbers
• A sequence of random numbers, W1, W2, .. , must have two 

important statistical properties,
• Uniformity and independence
• Should be able to reproduce a given sequence of random numbers

• Helps program debugging
• Helpful when comparing alternative system design

• Should have provision to generate several streams of random 
numbers

• Computationally efficient
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Introduction
• Properties of Random Numbers
• A sequence of random numbers, W1, W2, .. , must have two 

important statistical properties,
• uniformity and independence. 

• Each random number Ri, is an independent sample drawn 
from a continuous uniform distribution between zero and 1. 
That is, the pdf is given by:
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Introduction
• Generation of Pseudo – Random Numbers
• Pseudo means false, so false random numbers are being 

generated. 
• The goal of any generation scheme, is to produce a sequence 

of numbers between 0 and 1 which simulates, or initiates, 
the ideal properties of uniform distribution and 
independence as closely as possible.

• When generating pseudo-random numbers, certain problems 
or errors can occur. 

• These errors, or departures from ideal randomness, are all 
related to the properties stated previously.
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Introduction
• Generation of Pseudo – Random Numbers
• Some examples include the following:
The generated numbers may not be uniformly distributed.
The generated numbers may be discrete -valued instead continuous 

valued.
The mean of the generated numbers may be too high or too low.
The variance of the generated numbers may be too high or low.
There may be dependence. The following are examples:

Autocorrelation between numbers.
Numbers successively higher or lower than adjacent numbers.
Several numbers above the mean followed by several numbers below the 

mean.

06/05/2020 MIEG 6582 – System Modeling and Simulation 7

Introduction
• Generation of Pseudo – Random Numbers
• Usually, pseudo-random numbers are generated by a 

computer as part of the simulation. Numerous methods are 
available. In selecting a routine, there are a number of 
important considerations.

• The routine should be fast.
• The routine should be platform independent and portable between 

different programming languages.
• The routine should have a sufficiently long cycle (much longer than 

the required number of samples).
• The random numbers should be replicable. Useful for debugging and 

variance reduction techniques.
• Most importantly, the routine should closely approximate the ideal 

statistical properties.
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Techniques for generating Random Number

• Linear Congruential Generator (LCG)
• Produces a sequence of integers, X1, X2,... between zero and m —

1 according to the following recursive relationship:
• Xi+1 = (a Xi + c) mod m i = 0,1, 2,...

• The initial value X0 is called the seed, a is called the constant 
multiplier, c is the increment, and m is the modulus.

• If c ≠ 0 in above equation, the form is called the mixed 
congruential method.

• When c = 0, the form is known as the multiplicative 
congruential method. The selection of the values for a, c, m and 
Xo drastically affects the statistical properties and the cycle length.

• Eg 1: X0=27, a=17, c=43 and m=100

• Here integer values will be between 0 and 99 because of the 
modulus m. Note that random integers are being generated 
rather than random numbers. 
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Techniques for generating Random Number
• Linear Congruential Generator (LCG)
• These integers should be uniformly distributed. Convert to numbers in 

[0,1] by normalizing with modulus m:
Ri=Xi/m

• Of primary importance is uniformity and statistical independence. Of 
secondary importance is maximum density and maximum period 
within the sequence:
Ri, i=1,2,….

• Note that, the sequence can only take values in:
{0,1/m,2/m,(m-1)/m,1}

• Thus Ri is discrete rather than continuous.
• This is easy to fix by choosing large modulus m. 
• Values such as m=231-1 and m=248 are in common use in generators 

appearing in many simulation languages). 
• Maximum Density and Maximum period can be achieved by the proper 

choice of a, c, m and X0.
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Techniques for generating Random Number

• Linear Congruential Generator (LCG)

• Starting with x0 = 5:

• The first 32 numbers obtained by the above procedure 
10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15, 12, 13, 2, 
11, 8, 9, 14, 7, 4, 5. 

• By dividing x's by 16:
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 
0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 0.2500, 0.3125, 
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 
0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 0.2500, 0.3125. 
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Techniques for generating Random Number

• Linear Congruential Generator (LCG)
Properties
• Can have at most m distinct integers in the sequence

• As soon as any number in the sequence is repeated, the whole sequence is 
repeated

• Period: number of distinct integers generated before repetition occurs

• Problem: Instead of continuous, the Xi’s can only take on discrete 
values 0, 1/m, 2/m,…, (m-1)/m

• Solution: m should be selected to be very large in order to achieve the 
effect of a continuous distribution 
(typically, m > 109)

• Approximation appears to be of little consequence
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Techniques for generating Random Number

• Linear Congruential Generator (LCG)
Characteristics of Good Generator
• Maximum Density

• Such that the values assumed by 𝑥_𝑖, 𝑖=1,2,… leave no large gaps on [0,1]

• Maximum Period
• To achieve maximum density and avoid cycling
• Achieve by: proper choice of 𝑎, 𝑐, 𝑚, and 𝑥_0

• Most digital computers use a binary representation of numbers
• Speed and efficiency are aided by a modulus, 𝑚, to be (or close to) a power 

of 2
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Techniques for generating Random Number

• Linear Congruential Generator (LCG)
• A currently popular multiplicative LCG is:

• 231-1 is a prime number and 75 is a primitive root of it 
→ Full period of 231-2. 

• This generator has been extensively analyzed and shown to be 
good
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See the following book for advanced RNGs:

Numerical Recipes: The Art of Scientific Computing
http://www.nr.com/

See the following book for advanced RNGs:

Numerical Recipes: The Art of Scientific Computing
http://www.nr.com/

Techniques for generating Random Number

• Multiplicative Congruential Generator (LCG)
• Basic Relationship:

• Xi+1 = a Xi (mod m), where a ≥ 0 and m ≥ 0

• Most natural choice for m is one that equals to the capacity of a 
computer word. m = 2b (binary machine), where b is the number 
of bits in the computer word.

• m = 10d (decimal machine), where d is the number of digits in the 
computer word
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Techniques for generating Random Number

• Multiplicative Congruential Generator (LCG)
• EXAMPLE 1: Let m = 102 = 100, a = 19, c = 0, and X0 = 63, and 

generate a sequence c random
• integers using Equation

• Xi+1 = (aXi + c) mod m, i = 0, 1, 2....
• X0 = 63; X1 = (19)(63) mod 100 = 1197 mod 100 = 97
• X2 = (19) (97) mod 100 = 1843 mod 100 = 43
• X3 = (19) (43) mod 100 = 817 mod 100 = 17 . . . .

• When m is a power of 10, say m = 10b, the modulo operation is 
accomplished by saving the b rightmost (decimal) digits.
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Techniques for generating Random Number

• Combined Linear Congruential Generators
• As computing power has increased, the complexity of the systems that 

we are able to simulate has also increased. 
• One fruitful approach is to combine two or more multiplicative 

congruential generators in such a way that the combined generator has 
good statistical properties and a longer period. 

• The following result from L'Ecuyer [1988] suggests how this can be 
done: 

• If Wi,1, Wi,2 ,... , Wi,k are any independent, discrete-valued random 
variables (not necessarily identically distributed), but one of them, say 
Wi,1, is uniformly distributed on the integers 0 to mi — 2, then

• is uniformly distributed on the integers 0 to mi — 2. 
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𝑊 = (−1) 𝑊 , 𝑚𝑜𝑑𝑚 − 1

Techniques for generating Random Number

• Combined Linear Congruential Generators
• To see how this result can be used to form combined generators,
• Let Xi,1, Xi,2,..., X i,k be the i th output from k different multiplicative 

congruential generators, where the jth generator has prime modulus mj, 
and the multiplier aj is chosen so that the period is mj – 1. 

• Then the j’th generator is producing integers Xi,j that are approximately 
uniformly distributed on 1 to mj - 1, and Wi,j = X i,j — 1 is approximately 
uniformly distributed on 0 to mj - 2. L'Ecuyer [1988] therefore suggests 
combined generators of the form
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𝑋 = (−1) 𝑊 , 𝑚𝑜𝑑𝑚 − 1

𝑅 =

𝑋

𝑚
, 𝑋 > 0

𝑚 − 1

𝑚
, 𝑋 = 0

Techniques for generating Random Number

• Combined Linear Congruential Generators
• Notice that the “(-1)j-1” coefficient implicitly performs the subtraction 

Xi,1-1; for example, if k=2, then 
• (-1)°(X i 1 - 1) - ( - l ) l ( X i 2 - 1)=∑2j=1( -1)j-1 X i,j

• The maximum possible period for such a generator is

(m1 −1)(m2 − l ) − − − ( mk − 1)
2k−1

which is achieved by the following generator: 
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Tests for Random Numbers

• To insure the desirable properties of random numbers (uniformity 

and independence) are achieved, a number of tests can be 

performed. (fortunately, the appropriate tests have already been 

conducted for most commercial simulation software). 

• The tests can be placed in two categories according to the 

properties of interest. The first entry in the list below concerns 

testing for uniformity. The second through fifth entries concern 

testing for independence. The five types of tests are:
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Tests for Random Numbers

1. Frequency test Uses the Kolmogorov-Smirnov or the chi- square test to

compare the distribution of the set of numbers generated to a uniform distribution.

2. Runs test. Tests the runs up and down or the runs above, and below the mean by

comparing the actual values to expected values. The statistics for comparison is the

chi-square.

3. Autocorrelation test Tests the correlation between numbers and compares the

sample correlation to the expected correlation of zero.

4. Gap test. Counts the number of digits that appear between repetitions of

particular digit and then uses the Kolmogorov-Smirnov test to compare with the

expected size of gaps,

5. Poker test Treats numbers grouped together as a poker hand. Then the hands

obtained are compared to what is expected using the chi-square test.
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Tests for Random Numbers

Frequency Tests

• A basic test that should always be performed to validate a new

generator is the test of uniformity.

• Two different methods of testing are available. They are the

Kolmogorov-Smirnov and the chi-square test. Both of these tests

measure the degree of agreement between the distribution of a sample

of generated random numbers and the theoretical uniform distribution.

Both tests are based on the null hypothesis of no significant difference

between the sample distribution and the theoretical distribution.
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Tests for Random Numbers

1. The Kolmogorov-Smirnov test. 

• This test compares the continuous cdf, F(X), of the uniform 
distribution to the empirical cdf, SN(x), of the sample of N 
observations. By definition,

F(x) = x, 0 ≤ x ≤ 1

• If the sample from the random-number generator is R1, R2,...,RN, 
then the empirical cdf, SN(x), is defined by

• Type equation here.

SN(X) =
number of R1 R2, ,• • •, Rn which are <= x 

𝑁
• As N becomes larger, SN(X) should become a better 

approximation to F(X), provided that the null hypothesis is 
true.
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Tests for Random Numbers

1. The Kolmogorov-Smirnov test. 

• The Kolmogorov-Smirnov test is based on the largest absolute 
deviation between F(x) and SN(X) over the range of the random 
variable. That is it is based on the statistics

• D = max | F(x) - SN(x)|

• For testing against a uniform cdf, the test procedure follows these 
steps:

• Step 1. Rank the data from smallest to largest. Let R(i) denote the ith

smallest observation, so that
R(1) ≤ R(2) ≤ • • • ≤ R(N)

• Step 2. Compute
D+ = max {  - R(i) }; D- = max {R(i) −  }
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Tests for Random Numbers

1. The Kolmogorov-Smirnov test. 

• Step 3: Compute D = max (D+, D-).
• Step 4: Determine the critical value, D𝛼, for the specified 

significance level 𝛼 and the given sample size N.

• If the sample statistics D is greater than the critical value, 
D𝛼, the null hypothesis that the data are a sample from a 
uniform distribution is rejected.

• If D ≤ D𝛼, conclude that no difference has been detected 
between the true distribution of {R1, R2, ,…….., Rn} and the 
uniform distribution.
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Tests for Random Numbers

2. The Chi-Square test. 

• The chi-square test uses the sample statistics

• 𝑋 = ∑

• Where Oi is the observed number in the ith class, Ei is the 
expected number in the ith class, and n is the number of classes.

1. Determine Order Statistics
R(1)<=R(2)<=………<=R(N)

2. Divided Range R(N)-R(1) in n equidistant intervals [ai,bi], such 
that each interval has at least 5 observations.

3. Calculate for i=1,…..,N.
Oi=N. 𝑆𝑁 𝑏𝑖 − 𝑆𝑁(𝑎𝑖) , 𝐸𝑖 = 𝑁. 𝐹 𝑏𝑖 − 𝐹(𝑎𝑖)
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Tests for Random Numbers

2. The Chi-Square test. 

• Calculate

• 𝑋 = ∑

• Where, Oi is observed number in the ith class Ei is expected 
number in the ith class,

• 𝐸𝑖 = , Where N- No. of Observation; n – No. of Classes

• Determine for significant level, , 𝑋

•
𝑋 ≤ 𝑋 ,  𝑎𝑐𝑐𝑒𝑝𝑡: 𝑁𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑁 𝑥  𝑎𝑛𝑑 𝐹(𝑥)

𝑋 > 𝑋 ,  𝑅𝑒𝑗𝑒𝑐𝑡: 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑁 𝑥  𝑎𝑛𝑑 𝐹(𝑥)
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Tests for Random Numbers

3. Auto Correlation test. 

• The tests for auto-correlation are concerned with the dependence 
between numbers in a sequence. The list of the 30 numbers 
appears to have the effect that every 5th number has a very large 
value. If this is a regular pattern, we can't really say the sequence 
is random.

• The test computes the auto-correlation between every m numbers 
(m is also known as the lag) starting with the ith number. Thus 
the autocorrelation 𝜌im between the following numbers would be 
of interest.

• Where, 𝜌im is between no.s Ri, Ri+m, Ri+2m,…, Ri+(M+1)m

• M is the largest integer; i+(M+1)m ≤N 
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Tests for Random Numbers

3. Auto Correlation test. 

• The test statistics 𝑍𝑜 = , which is distributed normally with a mean 

of zero and variance of one.

• The actual formula for 𝜌 and the standard deviation is

• ρ = R R ( ) − 0.25

• After computing Zo, do not reject the null hypothesis of independence if

• Where ∝ is the level of significance
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Random Variate
(Pseudo-) Random Number 
Generation (RNG)

• A fundamental primitive 
required for simulations

• Goal: Uniform(0,1)
• Uniformity
• Independence

• Computational efficiency
• Long period

• Multiple streams
• Common approach: LCG
• Careful design and seeding
• Never generates 0.0 or 1.0

Random Variate Generator

• Builds upon Uniform(0,1)

• Goal: any distribution
• Discrete distributions
• Continuous distributions

• Independence (usually)
• Correlation (if desired)

• Computational efficiency
• Common approach: the inverse 

transform method
• Straightforward math (usually)
• Might generate 0.0 or 1.0
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• ACCEPTANCE-REJECTION TECHNIQUE

• All these techniques assume that a source of uniform (0,1) 
random numbers is available R1,R2….. Where each R1 has 
probability density function and cumulative distribution function.

Note: The random variable may be either discrete or continuous.
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• The inverse transform technique can be used to sample from 
exponential, the uniform, the Weibull, and the triangular 
distributions and empirical distributions.

• Additionally, it is the underlying principle for sampling from a 
wide variety of discrete distributions. The technique will be 
explained in detail for the exponential distribution and then 
applied to other distributions. 

• It is the most straightforward, but always the most efficient., 
technique computationally.
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• Suppose that we wish to generate a random variate X that is 
continuous and has distribution function F that is continuous and 
strictly increasing when 0<F(x)<1. [This means that if x1<x2 and 
0<F(x1) ≤F(x2) , 1, then in fact F(x1)<F(x2).] 

• Let F-1 denote the inverse of the function F. Then an algorithm for
• generating a random variate X having distribution function F is 

as follows (recall that ~ is read “is distributed as”):
1. Generate U ~ U(0, 1).
2. Return X = F-1 (U).

• Note that F-1 (U) will always be defined, since 0 ≤ U ≤ 1 and the 
range of F is [0, 1]. 
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• To show that the value X returned by the above algorithm, called 
the general inverse-transform method, has the desired 
distribution F, we must show that for any real number x, P(X ≤ x) 
= F(x). Since F is invertible, we have

• P(X ≤ x) = P(F-1(U) ≤ x) = P(U ≤ F(x)) = F(x)
• where the last equality follows since U ~ U(0, 1) and 0 ≤ F(x) ≤ 1. 
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• Advantages and Disadvantages

• The first is to facilitate variance-reduction techniques that rely on 
inducing correlation between random variates; 

• examples of such techniques are common random numbers and 
antithetic variates. If F1 and F2 are two distribution functions, then X1
= F1

-1(U1) and X2 = F2
-1(U2) will be random variates with respective 

distribution functions F1 and F2, where U1 and U2 are random 
numbers. 

• If U1 and U2 are independent, then of course X1 and X2 will be 
independent as well. However, if we let U2 = U1, then the correlation 
between X1 and X2 is made as positive as possible, and taking U2 = 1 -
U1 (which, recall, is also distributed uniformly over [0, 1]) makes the 
correlation between X1 and X2 as negative as possible. 
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• Advantages and Disadvantages

• Thus, the inverse-transform method induces the strongest correlation 
(of either sign) between the generated random variates, which we hope 
will propagate through the simulation model to induce the strongest 
possible correlation in the output, thereby contributing to the success of 
the variance-reduction technique.

• On a more pragmatic level, inverse transform eases application of 
variance-reduction techniques since we always need exactly one 
random number to produce one value of the desired X. 
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• Advantages and Disadvantages

• The second advantage concerns ease of generating from truncated 
distributions. In the continuous case, suppose that we have a density f 
with corresponding distribution function F. For a , b (with the 
possibility that a = -∞ or b = +∞), we define the truncated density
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• Advantages and Disadvantages

• One possible impediment to use of this method in the continuous 
case is the need to evaluate F-1(U). Since we might not be able to 
write a formula for F-1 in closed form for the desired distribution 
(e.g., the normal and gamma distributions), simple use of the 
method, might not be possible. 

• A second potential disadvantage is that for a given distribution 
the inverse-transform method may not be the fastest way to 
generate the corresponding random variate;
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• Example: Let X have the exponential distribution with mean β

• Thus, to generate the desired random variate, we first generate a U~U(0,1) 
and then let X= -β ln (1-U). 
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• Step 1. Compute the cdf of the desired random variable X. For the 
exponential distribution, the cdf is F(x) = 1 — e , x > 0.

• Step 2. Set F(X) = R on the range of X. For the exponential distribution, it 
becomes 1 – e-λX = U on the range x >=0. Since X is a random variable (with 
the exponential distribution in this case), it follows that 1 - is also a random 
variable, here called U. As will be shown later, U has a uniform distribution 
over the interval (0,1).,

• Step 3. Solve the equation F(X) = U for X in terms of U. For the exponential 
distribution, the solution proceeds as follows:

1 – e-λx = R
e-λx= 1 – R
-λX= ln(1 - R)
x=-1/λ ln(1 – R)

06/05/2020 MIEG 6582 – System Modeling and Simulation 40



06/05/2020

11

Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

• Step 4. Generate (as needed) uniform random numbers R1, R2, R3,... and 
compute the desired random variates by

Xi = F-1(Ri)   (1)

• For the exponential case, F (R) = (-1/λ)ln(1- R) by Equation (1), so that

Xi = -1/λ ln( 1 – Ri)   (2)

• for i = 1,2,3,.... One simplification that is usually employed in Equation (2) is 
to replace 1 – Ri by Ri to yield

Xi = -1/λ ln Ri (3)

• which is justified since both Ri and 1- Ri are uniformly distributed on (0,1).
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

Uniform Distribution:
• Consider a random variable X that is uniformly distributed on the interval [a, b]. A 

reasonable guess for generating X is given by
X = a + (b - a)R (5)

• [Recall that R is always a random number on (0,1). The pdf of X is given by
f (x) = 1/ ( b-a ),a ≤ x ≤ b 0, otherwise

• The derivation of Equation (5) follows steps 1 through 3 of the previous example for 
exponential distribution:

• Step 1. The cdf is given by
• F(x) =  0, x < a
• ( x – a ) / ( b –a ), a ≤ x ≤ b 1, x > b

• Step 2. Set F(X) = (X - a)/(b -a) = R
• Step 3. Solving for X in terms of R yields X = a + (b — a)R, which agrees with 

Equation (5).
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Random Variate Generation

• INVERSE TRANSFORMATION TECHNIQUE

Uniform Distribution:
• Consider a random variable X that is uniformly distributed on the interval [a, b]. A 

reasonable guess for generating X is given by
X = a + (b - a)R (5)

• [Recall that R is always a random number on (0,1). The pdf of X is given by
f (x) = 1/ ( b-a ),a ≤ x ≤ b 0, otherwise

• The derivation of Equation (5) follows steps 1 through 3 of the previous example for 
exponential distribution:

• Step 1. The cdf is given by
• F(x) =  0, x < a
• ( x – a ) / ( b –a ), a ≤ x ≤ b 1, x > b

• Step 2. Set F(X) = (X - a)/(b -a) = R
• Step 3. Solving for X in terms of R yields X = a + (b — a)R, which agrees with 

Equation (5).
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