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PREFACE

THIRD EDITION

The textbook represents a first course in elec-
tronic materials and devices for undergraduate
students. With the additional topics in the accom-
panying CD, the text can also be used in a gradu-
ate introductory course in electronic materials for
electrical engineers and material scientists. The
third edition is an extensively revised and ex-
tended version of the second edition based on re-

viewer comments, with many new and expanded
topics and numerous new worked examples and
homework problems. While some of the changes
appear to be minor, they have been, nonetheless,
quite important in improving the text. For exam-
ple, the intrinsic concentration n/ in Si is now
taken as 1 X 1010 cm"3

,
 instead of the usual value

of 1.45 X 1010 cm
-3 found in many other text-

books; this change makes a significant difference
in device-related calculations. A large number of
new homework problems have been added, and
more solved problems have been provided that
put the concepts into applications. Bragg

's dif-

fraction law that is mentioned in several chapters
is now explained in Appendix A for those readers
who are unfamiliar with it.

The third edition is one of the few books on

the market that has a broad coverage of electronic
materials that today's scientists and engineers
need. I believe that the revisions have improved
the rigor without sacrificing the original semi-
quantitative approach that both the students and
instructors liked. Some of the new and extended

topics are as follows:

Chapter 1     Thermal expansion; atomic
diffusion

Chapter 2     Conduction in thin films; inter-
connects in microelectronics;
electromigration

Chapter 3     Planck's and Stefan's laws; atomic
magnetic moment; Stem-Gerlach
experiment

Chapter 4     Field emission from carbon nan-
otubes; Griineisen's thermal

expansion

Chapter 5     Piezoresistivity; amorphous semi-
conductors

Chapter 6     LEDs; solar cells; semiconductor
lasers

Chapter 7     Debye relaxation; local field in
dielectrics; ionic polarizability;
Langevin dipolar polarization;
dielectric mixtures

Chapter 8     Pauli spin paramagnetism; band
model of ferromagnetism; giant
magnetoresistance (OMR); mag-
netic storage

Chapter 9     Sellmeier and Cauchy dispersion
relations; Reststrahlen or lattice

absorption; luminescence and
white LEDs

Appendices   Bragg's diffraction law and X-ray
diffraction; luminous flux and

brightness of radiation

ORGANIZATION AND FEATURES

In preparing the text, I tried to keep the general
treatment and various proofs at a semiquantitative
level without going into detailed physics. Many
of the problems have been set to satisfy engineer-
ing accreditation requirements. Some chapters in
the text have additional topics to allow a more de-
tailed treatment, usually including quantum me-
chanics or more mathematics. Cross referencing
has been avoided as much as possible without too
much repetition and to allow various sections and

xi



xii Preface

chapters to be skipped as desired by the reader.
The text has been written to be easily usable in
one-semester courses by allowing such flexibility.

Some important features are

. The principles are developed with the mini-
mum of mathematics and with the emphasis
on physical ideas. Quantum mechanics is part
of the course but without its difficult mathe-

matical formalism.

. There are more than 170 worked examples or
solved problems, most of which have a prac-
tical significance. Students learn by way of
examples, however simple, and to that end
nearly 250 problems have been provided.

. Even simple concepts have examples to aid
learning.

. Most students would like to have clear dia-

grams to help them visualize the explanations
and understand concepts. The text includes
over 530 illustrations that have been profes-
sionally prepared to reflect the concepts and
aid the explanations in the text.

. The end-of-chapter questions and problems
are graded so that they start with easy concepts
and eventually lead to more sophisticated
concepts. Difficult problems are identified
with an asterisk (*). Many practical applica-
tions with diagrams have been included.
There is a regularly updated online extended
Solutions Manual for all instructors; simply
locate the McGraw-Hill website for this text-

book.

. There is a glossary, Defining Terms, at the end
of each chapter that defines some of the con-
cepts and terms used, not only within the text
but also in the problems.

. The end of each chapter includes a section Ad-
ditional Topics to farther develop important
concepts, to introduce interesting applications,
or to prove a theorem. These topics are in-
tended for the keen student and can be used as

part of the text for a two-semester course.

. The end of each chapter also includes a table
CD Selected Topics and Solved Problems to

enhance not only the subject coverage, but
also the range of worked examples and
applications. For example, the selected topic
Essential Mechanical Properties can be used
with Chapter 1 to obtain a broader coverage
of elementary materials science. The selected
topic Thermoelectric Effects in Semiconduc-
tors can be used with Chapters 5 and 6 to un-
derstand the origin of the Seebeck effect in
semiconductors, and the reasons behind volt-

age drift in many semiconductor devices.
There are numerous such selected topics and
solved problems in the CD.

The text is supported by McGraw-Hill's text-
book website that contains resources, such as

solved problems, for both students and in-
structors. Updates to various articles on the
CD will be posted on this website.

CD-ROM ELECTRONIC
MATERIALS AND DEVICES:
THIRD EDITION

The book has a CD-ROM that contains all the fig-
ures as large color diagrams in PowerPoint for
the instructor, and class-ready notes for the stu-
dents who do not have to draw the diagrams dur-
ing the lectures. In addition, there are numerous
Selected Topics and Solved Problems to extend
the present coverage. These are listed in each
chapter, and also at the end of the text. I strongly
urge students to print out the CD

's Illustrated

Dictionary of Electronic Materials and Devices:
Third Student Edition, to look up new terms and
use the dictionary to refresh various concepts.
This is probably the best feature of the CD.

ACKNOWLEDGMENTS

My gratitude goes to my past and present gradu-
ate students and postdoctoral research fellows,
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CHAPTER

1

Elementary Materials
Science Concepts1

Understanding the basic building blocks of matter has been one of the most intriguing
endeavors of humankind. Our understanding of interatomic interactions has now
reached a point where we can quite comfortably explain the macroscopic properties of
matter, based on quantum mechanics and electrostatic interactions between electrons
and ionic nuclei in the material. There are many properties of materials that can be ex-
plained by a classical treatment of the subject. In this chapter, as well as Chapter 2, we
treat the interactions in a material from a classical perspective and introduce a number
of elementary concepts. These concepts do not invoke any quantum mechanics, which
is a subject of modem physics and is introduced in Chapter 3. Although many useful
engineering properties of materials can be treated with hardly any quantum mechanics,
it is impossible to develop the science of electronic materials and devices without
modem physics.

1
.

1    ATOMIC STRUCTURE AND ATOMIC NUMBER

The model of the atom that we must use to understand the atom's general behavior
involves quantum mechanics, a topic we will study in detail in Chapter 3. For the pres-
ent, we will simply accept the following facts about a simplified, but intuitively satis-
factory, atomic model called the shell model, based on the Bohr model (1913).

The mass of the atom is concentrated at the nucleus, which contains protons and
neutrons. Protons are positively charged particles, whereas neutrons are neutral particles,
and both have about the same mass. Although there is a Coulombic repulsion between
the protons, all the protons and neutrons are held together in the nucleus by the

1 This chapter may be skipped by readers who have already been exposed to an elementary course in materials
science.

3
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L shell with

two subshells 

Figure 1.1   The shell model of the carbon atom,
in which the electrons are confined to certain shells
and subshells within shells.

Nucleus
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ls22s22p2 or [He]2522p2

strong force, which is a powerful, fundamental, natural force between particles. This
force has a very short range of influence, typically less than 10~15 m. When the protons
and neutrons are brought together very closely, the strong force overcomes the elec-
trostatic repulsion between the protons and keeps the nucleus intact. The number of
protons in the nucleus is the atomic number Z of the element.

The electrons are assumed to be orbiting the nucleus at very large distances com-
pared to the size of the nucleus. There are as many orbiting electrons as there are pro-
tons in the nucleus. An important assumption in the Bohr model is that only certain or-
bits with fixed radii are stable around the nucleus. For example, the closest orbit of the
electron in the hydrogen atom can only have a radius of 0.053 nm. Since the electron
is constantly moving around an orbit with a given radius, over a long time period
(perhaps ~10~12 seconds on the atomic time scale), the electron would appear as a
spherical negative-charge cloud around the nucleus and not as a single dot represent-
ing a finite particle. We can therefore view the electron as a charge contained within a
spherical shell of a given radius.

Due to the requirement of stable orbits, the electrons therefore do not randomly
occupy the whole region around the nucleus. Instead, they occupy various well-
defined spherical regions. They are distributed in various shells and subshells within
the shells, obeying certain occupation (or seating) rules.2 The example for the carbon
atom is shown in Figure 1.1.

The shells and subshells that define the whereabouts of the electrons are labeled

using two sets of integers, n and L These integers are called the principal and orbital
angular momentum quantum numbers, respectively. (The meanings of these names
are not critical at this point.) The integers n and £ have the values n = 1,2,3,..., and
£ = 0, 1, 2,..., n - 1, and £ < n. For each choice of n, there are n values of £, so higher-
order shells contain more subshells. The shells corresponding to n = 1, 2, 3,4,...

2 In Chapter 3, in which we discuss the quantum mechanical model of the atom, we will see that these shells and
subshells are spatial regions around the nucleus where the electrons are most likely to be found.
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Table 1.1   Maximum possible number of electrons in the shells and
subshells of an atom

Subshell

£=0 1 2 3

n Shell s p d f

1 K 2

2 L 2 6

3 M 2 6 10

4 N 2 6 10 14

are labeled by the capital letters K, L, M, N,... 9 and the subshells denoted by
I = 0,1, 2, 3,... are labeled s, p, d, f.... The subshell with I = 1 in the n = 2 shell is
thus labeled the 2p subshell, based on the standard notation nt.

There is a definite rule to filling up the subshells with electrons; we cannot simply
put all the electrons in one subshell. The number of electrons a given subshell can take
is fixed by nature to be3 2(2i + 1). For the s subshell (I = 0), there are two electrons,

whereas for the p subshell, there are six electrons, and so on. Table 1.1 summarizes the
most number of electrons that can be put into various subshells and shells of an atom.
Obviously, the larger the shell, the more electrons it can take, simply because it contains
more subshells. The shells and subshells are filled starting with those closest to the
nucleus as explained next.

The number of electrons in a subshell is indicated by a superscript on the subshell
symbol, so the electronic structure, or configuration, of the carbon atom (atomic num-
ber 6) shown in Figure 1.1 becomes ls22s22p2. The K shell has only one subshell,
which is full with two electrons. This is the structure of the inert element He. We can

therefore write the electronic configuration more simply as [He]2s22/?2. The general
rule is put the nearest previous inert element, in this case He, in square brackets and
write the subshells thereafter.

The electrons occupying the outer subshells are the farthest away from the nucleus
and have the most important role in atomic interactions, as in chemical reactions, be-
cause these electrons are the first to interact with outer electrons on neighboring
atoms. The outermost electrons are called valence electrons and they determine the
valency of the atom. Figure 1.1 shows that carbon has four valence electrons in the
L shell.

When a subshell is full of electrons, it cannot accept any more electrons and it
is said to have acquired a stable configuration. This is the case with the inert ele-
ments at the right-hand side of the Periodic Table, all of which have completely
filled subshells and are rarely involved in chemical reactions. The majority of such
elements are gases inasmuch as the atoms do not bond together easily to form a

3 We will actually show this in Chapter 3 using quantum mechanics.
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Virial

theorem

liquid or solid. They are sometimes used to provide an inert atmosphere instead of
air for certain reactive materials.

In an atom such as the Li atom, there are two electrons in the Is subshell and one

electron in the 2s subshell. The atomic structure of Li is ls22s
l

.
 The third electron is

in the 2s subshell, rather than any other subshell, because this is the arrangement of
the electrons that results in the lowest overall energy for the whole atom. It requires
energy (work) to take the third electron from the 2s to the 2p or higher subshells as
will be shown in Chapter 3. Normally the zero energy reference corresponds to the
electron being at infinity, that is, isolated from the atom. When the electron is inside
the atom, its energy is negative, which is due to the attraction of the positive nucleus.
An electron that is closer to the nucleus has a lower energy. The electrons nearer the
nucleus are more closely bound and have higher binding energies. The ls22sl con-

figuration of electrons corresponds to the lowest energy structure for Li and, at the
same time, obeys the occupation rules for the subshells. If the 2s electron is somehow
excited to another outer subshell, the energy of the atom increases, and the atom is
said to be excited.

The smallest energy required to remove a single electron from a neutral atom
and thereby create a positive ion (cation) and an isolated electron is defined as the
ionization energy of the atom. The Na atom has only a single valence electron in
its outer shell, which is the easiest to remove. The energy required to remove this
electron is 5.1 eV, which is the Na atom'

s ionization energy. The electron affinity
represents the energy that is needed, or released, when we add an electron to a neu-
tral atom to create a negative ion (anion). Notice that the ionization term implies the
generation of a positive ion, whereas the electron affinity implies that we have cre-
ated a negative ion. Certain atoms, notably the halogens (such as F, CI, Br, I), can
actually attract an electron to form a negative ion. Their electron affinities are neg-
ative. When we place an electron into a CI atom, we find that an energy of 3.6 eV is
released. The Cl~ ion has a lower energy than the CI atom, which means that it
is energetically favorable to form a Cl~ ion by introducing an electron into the
CI atom.

There is a very useful theorem in physics, called the Virial theorem, that allows
us to relate the averageJtinetic energy KE, average potential energy PE, and average
total or overall energy E of an electron in an atom, or electrons and nuclei in a mole-
cule, through remarkably simple relationships,4

E = KE + PE and KE= -\PE [1.1]

For example, if we define zero energy for the H atom as the ion and the
electron infinitely separated, then the energy of the electron in the H atom is -13.6
electron volts (eV). It takes 13.6 eV to ionize the H atom. The average PE of the electron,
due to its Coulombic interaction with the positive nucleus, is -27.4 eV. Its average KE
turns out to be 13.6 eV. Example 1.1 uses the Virial theorem to calculate the radius of
the hydrogen atom, the velocity of the electron, and its frequency of rotation.

4 While the final result stated in Equation 1.1 is elegantly simple, the actual proof is quite involved and certainly not
trivial. As stated here, the Virial theorem applies to a system of charges that interact through electrostatic forces only.
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VIRIAL THEOREM AND THE BOHR ATOM Consider the hydrogen atom in Figure 1.2 in which
the electron is in the stable \s orbit with a radius r0. The ionization energy of the hydrogen atom
is 13.6 eV.

a. It takes 13.6 eV to ionize the hydrogen atom, i.e., to remove the electron to infinity. If the
condition when the electron is far removed from the hydrogen nucleus defines the zero
reference of energy, then the total energy of the electron within the H atom is -13.6 eV.
Calculate the average PE and average KE of the electron.

b
. Assume that the electron is in a stable orbit of radius r0 around the positive nucleus. What

is the Coulombic PE of the electron? Hence, what is the radius r0 of the electron orbit?

c. What is the velocity of the electron?
d

. What is the frequency of rotation (oscillation) of the electron around the nucleus?

SOLUTION

a. From Equation 1.1 we obtain

J =PE + KE = \PE
or PE = 2E = 2 x (-13.6 eV) = -27.2 eV

The average kinetic energy is

KE= -\PE= 13.6 eV
b

. The Coulombic PE of interaction between two charges Qi and Q2 separated by a distance
r0, from elementary electrostatics, is given by

Q1Q2     (-«)(+«) e2
PE

Ane0r0      4ne0r0 ne0ro

where we substituted Q\ = -e (electron's charge), and Q2 = +e (charge of nucleus).
Thus the radius r0 is

 

(1.6 x IP"19 C)2
 

ro ~ 
""

47r(8.85 x 10~12 F m~1)(-27.2eV x 1.6 x lO"19 J/eV)
= 5

.
29 x lO"11 m      or      0.0529 nm

which is called the Bohr radius (also denoted a0).

Stable orbit has radius r0 Figure 1.2  The planetary model of the hydrogen atom in which
the negatively charged electron orbits the positively charged
nucleus.

V

r
o

-e

EXAMPLE 1.1
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c. Since KE = mev2f the average velocity is
IKE      /l3.6eV x 1.6 x 10-19 J/eV fi .

v = J :- = / : = 2.19 x 106 m s'1

V Im€    V       ±(9.1 x 10-31 kg)
d

. The period of orbital rotation T is

27rr0     27r(0.0529 x 10-9 m)
T =          = - = 1.52 x 10"16 seconds

v 2.19 x lO s"1

The orbital frequency v = \/T = 6.59 x 1015 s"1 (Hz).

1
.
2    ATOMIC MASS AND MOLE

We had defined the atomic number Z as the number of protons in the nucleus of an
atom. The atomic mass number A is simply the total number of protons and neutrons
in the nucleus. It may be thought that we can use the atomic mass number A of an atom
to gauge its atomic mass, but this is done slightly differently to account for the exis-
tence of different isotopes of an element; isotopes are atoms of a given element that
have the same number of protons but a different number of neutrons in the nucleus.
The atomic mass unit (amu) u is a convenient atomic mass unit that is equal to ~ of
the mass of a neutral carbon atom which has a mass number A = 12 (6 protons and
6 neutrons). It has been found that u = 1.66054 x 10_27 kg.

The atomic mass or relative atomic mass or simply atomic weight Mat of an
element is the average atomic mass, in atomic mass units, of all the naturally occurring
isotopes of the element. Atomic masses are listed in the Periodic Table. Avogadro's
number NA is the number of atoms in exactly 12 grams of carbon-12, which is
6

.022 x 1023 to three decimal places. Since the atomic mass Mat is defined as ~ of the
mass of the carbon-12 atom, it is straightforward to show that NA number of atoms of
any substance has a mass equal to the atomic mass Afat in grams.

A mole of a substance is that amount of the substance which contains exactly
Avogadro's number NA of atoms or molecules that make up the substance. One
mole of a substance has a mass as much as its atomic (molecular) mass in grams.
For example, 1 mole of copper contains 6.022 x 1023 number of copper atoms and
has a mass of 63.55 grams. Thus, an amount of an element which has 6.022 x 1023
atoms has a mass in grams equal to the atomic mass. This means we can express
the atomic mass as grams per unit mole (g mol-1). The atomic mass of Au is
196.97 amu or g mol-1. Thus, a 10 gram bar of gold has (10 g) / (196.97 g mol"1)
or 0.0507 moles.

Frequently we have to convert the composition of a substance from atomic per-
centage to weight percentage, and vice versa. Compositions in materials engineering
generally use weight percentages, whereas chemical formulas are given in terms of
atomic composition. Suppose that a substance (an alloy or a compound) is composed
of two elements, A and B. Let the weight fractions of A and B be wA and wb, respec-
tively. Let ft a and n # be the atomic or molar fractions of A and B; that is, nA represents
the fraction of type A atoms, n B represents the fraction of type B atoms in the whole
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substance, and nA + hb = 1. Suppose that the atomic masses of A and B are MA and
Mb. Then ha and    are given by

wA/MA We htto
itA =   and      its = 1 - [1.2] atomic

wA/MA + Wb/Mb

where u;a + wb = 1. Equation 1.2 can be readily rearranged to obtain wA and w;B in
terms of nA andnB.

percentage

COMPOSITIONS IN ATOMIC AND WEIGHT PERCENTAGES Consider a Pb-Sn solder that is

38.1 wt.% Pb and 61.9 wt.% Sn (this is the eutectic composition with the lowest melting point).
What are the atomic fractions of Pb and Sn in this solder?

SOLUTION

For Pb, the weight fraction and atomic mass are respectively wA = 0.381 and MA = 207.2 g
mol-1 and for Sn, wb = 0.619 and MB = 118.71 g mol"1

. Thus, Equation 1.2 gives

wA/MA (0.381)/(207.2)

and riB

wA/MA + Wb/Mb     0.381/207.2 + 0.619/118.71

= 0
.
261      or      26.1 at.%

wb/Mb (0.619)/(118.71)

wA/MA + wb/Mb     0.381/207.2 + 0.619/118.71

= 0
.
739      or      73.9 at.%

Thus the alloy is 26.1 at.% Pb and 73.9 at.% Sn which can be written as Pbo
.

26i Sno.739.

EXAMPLE 1.2

1
.
3    BONDING AND TYPES OF SOLIDS

1
.
3.1  Molecules and General Bonding Principles

When two atoms are brought together, the valence electrons interact with each other
and with the neighbor's positively charged nucleus. The result of this interaction is
often the formation of a bond between the two atoms, producing a molecule. The
formation of a bond means that the energy of the system of two atoms together must
be less than that of the two atoms separated, so that the molecule formation is ener-
getically favorable, that is, more stable. The general principle of molecule formation
is illustrated in Figure 1.3a, showing two atoms brought together from infinity.
As the two atoms approach each other, the atoms exert attractive and repulsive
forces on each other as a result of mutual electrostatic interactions. Initially, the at-
tractive force FA dominates over the repulsive force FR. The net force FN is the sum
of the two,

Fn = Fa + Fr

and this is initially attractive, as indicated in Figure 1.3a.

Net force
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Figure 1.3   (a) Force versus interatomic separation and (b) potential energy versus interatomic separation.
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The potential energy E(r) of the two atoms can be found from5

dE

F« = Tr

by integrating the net force FN. Figure 1.3a and b shows the variation of the net force
FN(r) and the overall potential energy £(>*) with the interatomic separation r as the
two atoms are brought together from infinity. The lowering of energy corresponds to
an attractive interaction between the two atoms.

The variations of FA and FR with distance are different. Force FA varies slowly,
whereas FR varies strongly with separation and is strongest when the two atoms are
very close. When the atoms are so close that the individual electron shells overlap,
there is a very strong electron-to-electron shell repulsion and FR dominates. An equi-
librium will be reached when the attractive force just balances the repulsive force and
the net force is zero, or

FN = FA + FR = 0 [1.3]

In this state of equilibrium, the atoms are separated by a certain distance r0, as
shown in Figure 1.3. This distance is called the equilibrium separation and is effec-
tively the bond length. On the energy diagram, FN = 0 means dE/dr = 0, which
means that the equilibrium of two atoms corresponds to the potential energy of the

5 Remember that the change dE in the PE is the work done against the force, dE = Fn dr.
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system acquiring its minimum value. Consequently, the molecule will only be formed
if the energy of the two atoms as they approach each other can attain a minimum. This
minimum energy also defines the bond energy of the molecule, as depicted in Fig-
ure 1.3b. An energy of E0 is required to separate the two atoms, and this represents the
bond energy.

Although we considered only two atoms, similar arguments also apply to bonding
between many atoms, or between millions of atoms as in a typical solid. Although the
actual details of FA and FR will change from material to material, the general princi-
ple that there is a bonding energy E0 per atom and an equilibrium interatomic separa-
tion r0 will still be valid. Even in a solid in the presence of many interacting atoms, we
can still identify a general potential energy curve E(r) per atom similar to the type
shown in Figure 1.3b. We can also use the curve to understand the properties of the
solid, such as the thermal expansion coefficient and elastic and bulk moduli.

1
.
3

.
2   COVALENTLY BONDED SOLIDS: DIAMOND

Two atoms can form a bond with each other by sharing some or all of their valence
electrons and thereby reducing the overall potential energy of the combination. The co-
valent bond results from the sharing of valence electrons to complete the subshells of
each atom. Figure 1.4 shows the formation of a covalent bond between two hydrogen
atoms as they come together to form the H2 molecule. When the Is subshells overlap,
the electrons are shared by both atoms and each atom now has a complete subshell. As
illustrated in Figure 1.4, electrons 1 and 2 must now orbit both atoms; they therefore
cross the overlap region more frequently, indeed twice as often. Thus, electron sharing,

H atom H atom

Electron shell

Is e e

!«>(

e * e

Covalent bond

H-H molecule

.
2 1

©2

2

Is

Figure 1.4  Formation of a covalent bond
between two H atoms, leading to the H2 molecule.
Electrons spend a majority of their time between the
two nuclei, which results in a net attraction between

the electrons and the two nuclei, which is the origin
of the covalent bond.
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Figure 1.5
(a) Covalent bonding in methane, ChU, which involves four hydrogen atoms sharing electrons with one carbon
atom.

Each covalent bond has two shared electrons. The four bonds are identical and repel each other.
(b) Schematic sketch of CH4 on paper.
(c) In three dimensions, due to symmetry, the bonds are directed toward the corners of a tetrahedron.

on average, results in a greater concentration of negative charge in the region between
the two nuclei, which keeps the two nuclei bonded to each other. Furthermore, by syn-
chronizing their motions, electrons 1 and 2 can avoid crossing the overlap region at the
same time. For example, when electron 1 is at the far right (or left), electron 2 is in the
overlap region; later, the situation is reversed.

The electronic structure of the carbon atom is [He]2,s22/?2 with four empty seats in
the 2p subshell. The 2s and 2p subshells, however, are quite close. When other atoms
are in the vicinity, as a result of interatomic interactions, the two subshells become
indistinguishable and we can consider only the shell itself, which is the L shell with a
capacity of eight electrons. It is clear that the C atom with four vacancies in the L shell
can readily share electrons with four H atoms, as depicted in Figure 1.5, whereby the C
atom and each of the H atoms attain complete shells. This is the CH4 molecule, which
is the gas methane. The repulsion between the electrons in one bond and the electrons
in a neighboring bond causes the bonds to spread as far out from each other as possi-
ble, so that in three dimensions, the H atoms occupy the comers of an imaginary
tetrahedron and the CH bonds are at an angle of 109.5° to each other, as sketched in
Figure 1.5.

The C atom can also share electrons with other C atoms, as shown in Figure 1.6.
Each neighboring C atom can share electrons with other C atoms, leading to a three-
dimensional network of a covalently bonded structure. This is the structure of the pre-
cious diamond crystal, in which all the carbon atoms are covalently bonded to each
other, as depicted in the figure. The coordination number (CN) is the number of near-
est neighbors for a given atom in the solid. As is apparent in Figure 1.6, the coordina-
tion number for a carbon atom in the diamond crystal structure is 4.
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Figure 1.6 The diamond crystal is a
covalently bonded network of carbon atoms.
Each carbon atom is bonded covalently to four
neighbors, forming a regular three-dimensional
pattern of atoms that constitutes the diamond
crystal.

Due to the strong Coulombic attraction between the shared electrons and the pos-
itive nuclei, the covalent bond energy is usually the highest for all bond types, leading
to very high melting temperatures and very hard solids: diamond is one of the hardest
known materials.

Covalently bonded solids are also insoluble in nearly all solvents. The directional
nature and strength of the covalent bond also make these materials nonductile (or non-
malleable). Under a strong force, they exhibit brittle fracture. Further, since all the va-
lence electrons are locked in the bonds between the atoms, these electrons are not free

to drift in the crystal when an electric field is applied. Consequently, the electrical con-
ductivity of such materials is very poor.

1
.
3

.3 Metallic Bonding: Copper

Metal atoms have only a few valence electrons, which are not very difficult to remove.
When many metal atoms are brought together to form a solid, these valence electrons
are lost from individual atoms and become collectively shared by all the ions. The
valence electrons therefore become delocalized and form an electron gas or electron
cloud, permeating the space between the ions, as depicted in Figure 1.7. The attrac-
tion between the negative charge of this electron gas and the metal ions more
than compensates for the energy initially required to remove the valence electrons
from the individual atoms. Thus, the bonding in a metal is essentially due to the
attraction between the stationary metal ions and the freely wandering electrons
between the ions.

The bond is a collective sharing of electrons and is therefore nondirectional. Con-
sequently, the metal ions try to get as close as possible, which leads to close-packed
crystal structures with high coordination numbers, compared to covalently bonded
solids. In the particular example shown in Figure 1.7, Cu+ ions are packed as closely
as possible by the gluing effect of the electrons between the ions, forming a crystal
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mmm

Positive      Free valence

metal ion electrons

cores forming an
electron gas

Figure 1.7  In metallic bonding, the valence electrons from the metal atoms form a "cloud of
electrons/' which fills the space between the metal ions and "glues" the ions together through
Coulombic attraction between the electron gas and the positive metal ions.

structure called the face-centered cubic (FCC). The FCC crystal structure, as
explained later in Section 1.8, has Cu+ ions at the comers of a cube and a Cu+ at the
center of each cube-face. (See Figure 1.31.)

The results of this type of bonding are dramatic. First, the nondirectional nature
of the bond means that under an applied force, metal ions are able to move with re-
spect to each other, especially in the presence of certain crystal defects (such as
dislocations). Thus, metals tend to be ductile. Most importantly, however, the "free"
valence electrons in the electron gas can respond readily to an applied electric field
and drift along the force of the field, which is the reason for the high electrical con-
ductivity of metals. Furthermore, if there is a temperature gradient along a metal bar,
the free electrons can also contribute to the energy transfer from the hot to the cold
regions, since they frequently collide with the metal ions and thereby transfer energy.
Metals therefore, typically, also have good thermal conductivities; that is, they eas-
ily conduct heat. This is why when you touch your finger to a metal it feels cold be-
cause it conducts heat "away

"

 from the finger to the ambient (making the fingertip
feel" cold).a
.

1
.
3

.
4 Ionically Bonded Solids: Salt

Common table salt, NaCl, is a classic example of a solid in which the atoms are held
together by ionic bonding. Ionic bonding is frequently found in materials that nor-
mally have a metal and a nonmetal as the constituent elements. Sodium (Na) is an al-
kaline metal with only one valence electron that can easily be removed to form an Na+
ion with complete subshells. The ion Na+ looks like the inert element Ne, but with a
positive charge. Chlorine has five electrons in its 3p subshell and can readily accept
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Figure 1.8 The formation of an ionic bond
between Na and CI atoms in NaCl.

The attraction is due to Coulombic forces.

Na+
35 3pFa F

A       1A

@@

r

(b)

cr

Na+

®

c)

one more electron to close this subshell. By taking the electron given up by the Na
atom, the CI atom becomes negatively charged and looks like the inert element Ar with
a net negative charge. Transferring the valence electron of Na to CI thus results in two
oppositely charged ions, Na+ and Cl~, which are called the cation and anion, respec-
tively, as shown in Figure 1.8. As a result of the Coulombic force, the two ions pull
each other until the attractive force is just balanced by the repulsive force between the
closed electron shells. Initially, energy is needed to remove the electron from the Na
atom; this is the energy of ionization. However, this is more than compensated for by
the energy of Coulombic attraction between the two resulting oppositely charged ions,
and the net effect is a lowering of the potential energy of the Na+ and CI" ion pair.

When many Na and CI atoms are ionized and brought together, the resulting col-
lection of ions is held together by the Coulombic attraction between the Na+ and CI"
ions. The solid thus consists of Na+ cations and CI" anions holding each other through
the Coulombic force, as depicted in Figure 1.9. The Coulombic force around a charge
is nondirectional; also, it can be attractive or repulsive, depending on the polarity of
the interacting ions. There are also repulsive Coulombic forces between the Na+ ions
themselves and between the CI" ions themselves. For the solid to be stable, each Na*

ion must therefore have CI" ions as nearest neighbors and vice versa so that like-ions
are not close to each other.

The ions are in equilibrium and the solid is stable when the net potential energy
is minimum, or dE/dr = 0. Figure 1.10 illustrates the variation of the net potential
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Na+ Na+ Na+cr crcr

Na+Na+ Na+cr crcr

Na+ Na+ Na+crcr cr

Na+ Na+cr crcr Na

Na+Na+ crcr crNa

+Na+Na+ crcrcr Na

w (b)

Figure 1.9
(a) A schematic illustration of a cross section from solid NaCI. Solid NaCI is made of CI- and Na"1"
ions arranged alternatingly, so the oppositely charged ions are closest to each other and attract
each other. There are also repulsive forces between the like-ions. In equilibrium, the net force acting
on any ion is zero.

(b) Solid NaCI.

Figure 1,10 Sketch of the potential
energy per ion pair in solid NaCI.
Zero energy corresponds to neutral Na
and CI atoms infinitely separated.

Potential energy E(r), eV/(ion-pair)
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energy for a pair of ions as the interatomic distance r is reduced from infinity to less
than the equilibrium separation, that is, as the ions are brought together from infinity.
Zero energy corresponds to separated Na and CI atoms. Initially, about 1.5 eV is
required to transfer the electron from the Na to CI atom and thereby form Na4- and

CI" ions. Then, as the ions come together, the energy is lowered, until it reaches a
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r

minimum at about 6.3 eV below the energy of the separated Na and CI atoms. When
0

.28 nm, the energy is minimum and the ions are in equilibrium. The bonding
energy per ion in solid NaCl is thus 6.3/2 or 3.15 eV, as is apparent in Figure 1.10. The
energy required to take solid NaCl apart into individual Na and CI atoms is the atomic
cohesive energy of the solid, which is 3.15 eV per atom.

In solid NaCl, the Na+ and CI" ions are thus arranged with each one having op-
positely charged ions as its neighbors, to attain a minimum of potential energy. Since
there is a size difference between the ions and since we must avoid like-ions getting
close to each other, if we want to achieve a stable structure, each ion can have only six
oppositely charged ions as nearest neighbors. Figure 1.9b shows the packing of Na+
and CI

"

 ions in the solid. The number of nearest neighbors, that is, the coordination
number, for both cations and anions in the NaCl crystal is 6.

A number of solids consisting of metal-nonmetal elements follow the NaCl ex-
ample and have ionic bonding. They are called ionic crystals and, by virtue of their
ionic bonding characteristics, share many physical properties. For example, LiF, MgO
(magnesia), CsCl, and ZnS are all ionic crystals. They are strong, brittle materials with
high melting temperatures compared to metals. Most become soluble in polar liquids
such as water. Since all the electrons are within the rigidly positioned ions, there are no
free or loose electrons to wander around in the crystal as in metals. Therefore, ionic
solids are typically electrical insulators. Compared to metals and covalently bonded
solids, ionically bonded solids have lower thermal conductivity since ions cannot read-
ily pass vibrational kinetic energy to their neighbors.

IONIC BONDING AND LATTICE ENERGY The potential energy E per Na+-CI" pair within the
NaCl crystal depends on the interionic separation r as

E(r) = -
e2M B

_

Ane0r rm
[1.4]

where the first term is the attractive and the second term is the repulsive potential energy, and
M

, By and m are constants explained in the following. If we were to consider the potential
energy PE of one ion pair in isolation from all others, the first term would be a simple Coulom-
bic interaction energy for the Na+-Cr pair, and M would be 1. Within the NaCl crystal, how-
ever, a given ion, such as Na+, interacts not only with its nearest six CI" neighbors (Figure
1

.9b), but also with its twelve second neighbors (Na"1"), eight third neighbors (CI"), and so on,
so the total or effective PE has a factor M, called the Madelung constant, that takes into account
all these different Coulombic interactions. M depends only on the geometrical arrangement of
ions in the crystal, and hence on the particular crystal structure; for the FCC crystal structure,
M = 1.748. The Na","-Cr ion pair also have a repulsive PE that is due to the repulsion between
the electrons in filled electronic subshells of the ions. If the ions are pushed toward each other,
the filled subshells begin to overlap, which results in a strong repulsion. The repulsive PE de-
cays rapidly with distance and can be modeled by a short-range PE of the form B/rm as in the

second term in Equation 1.4 where for Na+-Cr, m = 8 and B = 6.972 x lO-96 J m8
.
 Find the

equilibrium separation (r0) of the ions in the crystal and the ionic bonding energy, defined as
-E(r0). Given the ionization energy of Na (the energy to remove an electron) is 5.14 eV and
the electron affinity of CI (energy released when an electron is added) is 3.61 eV, calculate the
atomic cohesive energy of the NaCl crystal as joules per mole.

EXAMPLE 1.3

Energy per
ion pair in an

ionic crystal



18 chapter i . Elementary Materials Science Concepts

Equilibrium
ionic

separation

Minimum PE

at bonding

SOLUTION

Bonding occurs when the potential energy E{r) is a minimum at r = r0 corresponding to the
equilibrium separation between the Na+ and CI" ions. We differentiate E{r) and set it to zero
atr = r0%

e2M mB
0      at r = r0

dE(r)

dr AnSor1 rm+1

Solving for r0,

Thus,

ro
[4ne0BmV,{m-X)
L   e2M J [1.5]

ro [ 47r(8.85 x IP"12 Fm-1)(6.972 x 10~96 J m8)(8)"

j1/(8 0
(1.6 x 10-19C)2(1.748) J

0
.
281 x l(r9m or 0

.
28 nm

The minimum energy E  per ion pair is £(r0) and can be simplified further by substituting for
B in terms of r0:

e2M       B e2M  ( \\
Entn =   + - =   1 " "

47re0r0    r™       47i;e0r0\ m/
[1.6]

Thus,

(1.6 x lO"19 C)2(1.748)2/

Emin
4 (8.85 x lO"12 Fm-1)(2.81 x lO"10 m)

= -1
.
256 x 10~18 J      or       - 7.84 eV

This is the energy with respect to two isolated Na"f and CI" ions. We need 7.84 eV to break
up a Na","

-Cr pair into isolated Na"1" and CI" ions, which represents the ionic cohesive energy.
Some authors call this ionic cohesive energy simply the lattice energy. To take the crystal apart
into its neutral atoms, we have to transfer the electron from the CI" ion to the Na+ ion to obtain

neutral Na and CI atoms. It takes 3.61 eV to remove the electron from the CI
" ion, but 5.14 eV is

released when it is put into the Na+ ion. Thus, we need 7.84 eV + 3.61 eV but get back 5.14 eV.

Bond energy per Na-Cl pair = 7.84 eV + 3.61 eV - 5.14 eV = 6.31 eV

The atomic cohesive energy in terms of joules per mole is

Cohesive = (6.31 eV)( 1.6022 x 10"19 J/eV)(6.022 x 1023mol -1) = 608 kJ mol"1

1
.
3

.
5  Secondary Bonding

Covalent, ionic, and metallic bonds between atoms are known as primary bonds. It
may be thought that there should be no such bonding between the atoms of the inert
elements as they have full shells and therefore cannot accept or lose any electrons, nor
share any electrons. However, the fact that a solid phase of argon exists at low temper-
atures, below -189 0C

, means that there must be some bonding mechanism between the
Ar atoms. The magnitude of this bond cannot be strong because above -189 0C solid
argon melts. Although each water molecule H2O is neutral overall, these molecules
nonetheless attract each other to form the liquid state below 100 0C and the solid state

below 0 0C. Between all atoms and molecules, there exists a weak type of attraction, the
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Figure 1.11
(a) A permanently polarized molecule is called an electric dipole moment.
(b) Dipoles can attract or repel each other depending on their relative orientations.
(c) Suitably oriented dipoles attract each other to form van der Waals bonds.

so-called van der Waals-London force, which is due to a net electrostatic attraction be-

tween the electron distribution of one atom and the positive nucleus of the other.
In many molecules the concentrations of negative and positive charges do not coin-

cide. As apparent in the HCl molecule in Figure 1.11a, the electrons spend most of their
time around the CI nucleus, so the positive nucleus of the H atom is exposed (H has ef-
fectively donated its electron to the CI atom) and the Cl-region acquires more negative
charge than the H-region. An electric dipole moment occurs whenever a negative and a
positive charge of equal magnitude are separated by a distance as in the H+-Cr mole-
cule in Figure 1.11a. Such molecules are polar, and depending on their relative orienta-
tions, they can attract or repel each other as depicted in Figure 1.11b. Two dipoles
arranged head to tail attract each other because the closest separation between charges on
A and B is between the negative charge on A and the positive charge on 2?, and die net
result is an electrostatic attraction. The magnitude of die net force between two dipoles
A and B, however, does not depend on their separation r as 1/r2 because there are both
attractions and repulsions between the charges on A and charges on B and the net force
is only weakly attractive. (In fact, the net force depends on 1/r4.) If the dipoles are
arranged head to head or tail to tail, then, by similar arguments, the two dipoles repel
each other. Suitably arranged dipoles can attract each other and form van der Waals
bonds as illustrated in Figure 1.11c. The energies of such dipole arrangements as in Fig-
ure 1.11c are less than that of totally isolated dipoles and therefore encourage "bonding."
Such bonds are weaker than primary bonds and are called secondary bonds.

The water molecule H2O is also polar and has a net dipole moment as shown in
Figure 1.12a. The attractions between the positive charges on one molecule and the
negative charges on a neighboring molecule lead to van der Waals bonding between
the H2O molecules in water as illustrated in Figure 1.12b. When the positive charge of
a dipole as in H2O arises from an exposed H nucleus, van der Waals bonding is referred
to as hydrogen bonding. In ice, the H2O molecules, again attracted by van der Waals
forces, bond to form a regular pattern and hence a crystal structure.

Van der Waals attraction also occurs between neutral atoms and nonpolar mole-
cules. Consider the bonding between Ne atoms at low temperatures. Each has closed
(or full) electron shells. The center of mass of the electrons in the closed shells, when
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Figure 1.12  The origin of van der Waals bonding between water molecules.
(a) The H2O molecule is polar and has a net permanent dipole moment.
(b) Attractions between the various dipole moments in water give rise to van der
Waals bonding.

Time averaged electron (negative
charge) distribution

Closed L shell

Ne
+

B
van der Waals force

Ionic core

(nucleus + K shell)

Instantaneous electron (negative
charge) distribution fluctuates about
the nucleus

Synchronized fluctuations
of the electrons

Figure 1.13  Induced-dipole-induced-dipole interaction and the resulting van der Waals force.

averaged over time, coincides with the location of the positive nucleus. At any one in-
stant, however, the center of mass is displaced from the nucleus due to various motions
of the individual electrons around the nucleus as depicted in Figure 1.13. In fact, the
center of mass of all the electrons fluctuates with time about the nucleus. Consequently,
the electron charge distribution is not static around the nucleus but fluctuates asym-
metrically, giving rise to an instantaneous dipole moment.

When two Ne atoms, A and B, approach each other, the rapidly fluctuating negative
charge distribution on one affects the motion of the negative charge distribution on the
other. A lower energy configuration (i.e., attraction) is produced when the fluctuations
are synchronized so that the negative charge distribution on A gets closer to the nu-
cleus of the other, B9 while the negative distribution on B at that instant stays away
from that on A as shown in Figure 1.13. The strongest electrostatic interaction arises
from the closest charges which are the displaced electrons in A and the nucleus in B.
This means that there will be a net attraction between the two atoms and hence a low-

ering of the net energy which in turn leads to bonding.
This type of attraction between two atoms is due to induced synchronization of

the electronic motions around the nuclei, and we refer to this as induced-dipole-induced-
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Table 1.2  Comparison of bond types and typical properties (general trends)

Bond

Type
Typical
Solids

Bond

Energy
(eV/atom)

Melt. Elastic

Temp. Modulus
(0C) (GPa)

Density
(g cm-3) Typical Properties

Ionic

Metallic

Covalent

van der

Waals:

NaCl

(rock salt)

MgO
(magnesia)

Cu

Mg

Si

C (diamond)

PVC

(polymer)
hydrogen H2O (ice)
bonding

van der Crystalline
Waals: argon
induced

dipole

3
.
2

10

3
.

1

1
.

1

4

7
.
4

801

2852

1083

650

1410

3550

0
.
52

212

0

0
.
09 -189

40 2.17       Generally electrical insulators. May
become conductive at high temperatures.

250 3.58       High elastic modulus. Hard and brittle but
cleavable.

Thermal conductivity less than metals.

120 8.96       Electrical conductor.

44 1.74       Good thermal conduction.

High elastic modulus.
Generally ductile. Can be shaped.

190 2.33       Large elastic modulus.
Hard and brittle.

827 3.52       Diamond is the hardest material.

Good electrical insulator.

Moderate thermal conduction, though
diamond has exceptionally high
thermal conductivity.

Low elastic modulus.

Some ductility.
Electrical insulator.

Poor thermal conductivity.
Large thermal expansion coefficient.

8 1.8        Low elastic modulus.

Electrical insulator.

Poor thermal conductivity.
Large thermal expansion coefficient.

4 1.3

9
.

1 0.917

dipole. It is weaker than permanent dipole interactions and at least an order of magni-
tude less than primary bonding. This is the reason why the inert elements Ne and Ar
solidify at temperatures below 25 K (-248 0C) and 84 K (-189 0C).

 Induced di-

pole-induced dipole interactions also occur between nonpolar molecules such as H2,
I2, CH4, etc. Methane gas (CH4) can be solidified at very low temperatures. Solids in
which constituent molecules (or atoms) have been bonded by van der Waals forces are
known as molecular solids; ice, solidified CO2 (dry ice), O2, H2, CH4, and solid inert
gases, are typical examples.

Van der Waals bonding is responsible for holding the carbon chains together in
polymers. Although the C-to-C bond in a C-chain is due to covalent bonding, the in-
teraction between the C-chains arises from van der Waals forces and the interchain

bonding is therefore of secondary nature. These bonds are weak and can be easily
stretched or broken. Polymers therefore have substantially lower elastic moduli and
melting temperatures than metals and ceramics.

Table 1.2 compares the energies involved in the five types of bonding found in ma-
terials. It also lists some important properties of these materials to show the correlation
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with the bond type and its energy. The greater is the bond energy, for example, the
higher is the melting temperature. Similarly, strong bond energies lead to greater
elastic moduli and smaller thermal expansion coefficients. Metals generally have the
greatest electrical conductivity since only this type of bonding allows a very large
number of free charges (conduction electrons) to wander in the solid and thereby con-
tribute to electrical conduction. Electrical conduction in other types of solid may
involve the motion of ions or charged defects from one fixed location to another.

1
.
3

.6 Mixed Bonding

In many solids, the bonding between atoms is generally not just of one type; rather, it
is a mixture of bond types. We know that bonding in the silicon crystal is totally cova-
lent, because the shared electrons in the bonds are equally attracted by the neighboring
positive ion cores and are therefore equally shared. When there is a covalent-type bond
between two different atoms, the electrons become unequally shared, because the two
neighboring ion cores are different and hence have different electron-attracting abili-
ties. The bond is no longer purely covalent; it has some ionic character, because the
shared electrons spend more time close to one of the ion cores. Covalent bonds that
have an ionic character, due to an unequal sharing of electrons, are generally called
polar bonds. Many technologically important semiconductor materials, such as III-V
compounds (e.g., GaAs), have polar covalent bonds. In GaAs, for example, the electrons
in a covalent bond spend slightly more time around the As5+ ion core than the Ga+3
ion core.

Electronegativity is a relative measure of the ability of an atom to attract the elec-
trons in a bond it forms with another atom. The Pauling scale of electronegativity assigns
an electronegativity value X, a pure number, to various elements, the highest being 4 for
F

, and the lowest values being for the alkali metal atoms, for which X are less than 1. In
this scheme, the difference XA - XB in the electronegativities of two atoms A and B is
a measure of the polar or ionic character of the bond A-B between A and B. There is ob-
viously no electronegativity difference for a covalent bond. While it is possible to calcu-
late the fractional ionicity of a single bond between two different atoms using XA - XBi
inside the crystal the overall ionic character can be substantially higher because ions can
interact with distant ions further away than just the nearest neighbors, as we have found
out in NaCl. Many technologically important semiconductor materials, such as III-V
compounds (e.g., GaAs) have polar covalent bonds. In GaAs, for example, the bond in
the crystal is about 30 percent ionic in character (XAs - Xq  = 2.18 - 1.81 = 0.37). In
the ZnSe crystal, an important II-VI semiconductor, the bond is 63 percent ionic
(Xsc - Xzn = 2.55 - 1.65 = 0.85).6

Ceramic materials are compounds that generally contain metallic and nonmetallic
elements. They are well known for their brittle mechanical properties, hardness, high

6 Chemists use "Ionicity = 1 - exp[0.24(X/A - Xb)]" to calculate the ionicity of the bond between A and B. While
this is undoubtedly useful in identifying the trend, it substantially underestimates the actual ionicity of bonding within
the crystal itself. (It is left as an exercise to show this fact from the above    and Xb values.) The quoted ionicity
percentages are from J. C. Phillips' book Bonds and Bands in Semiconductors, New York: Academic Press, 1973.

By the way, the units of X are sometimes quoted as Pauling units, after its originator Linus Pauling.
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melting temperatures, and electrical insulating properties. The type of bonding in a
ceramic material may be covalent, ionic, or a mixture of the two, in which the bond be-
tween the atoms involves some electron sharing and, to some extent, the partial forma-
tion of cations and anions; the shared electrons spend more time with one type of atom,
which then becomes a partial anion while the other becomes a partial cation. Silicon
nitride (SisN , magnesia (MgO), and alumina (AI2O3) are all ceramics, but they have
different types of bonding: Si3N4 has covalent, MgO has ionic, and AI2O3 has a mix-
ture of ionic and covalent bonding. All three are brittle, have high melting tempera-
tures, and are electrical insulators.

ENERGY OF SECONDARY BONDING Consider the van der Waals bonding in solid argon.
The potential energy as a function of interatomic separation can generally be modeled by the
Lennard-Jones 6-12 potential energy curve, that is,

E(r) = -Ar'6 + Br"12

where A and B are constants. Given that A = 8.0 x 10"77 J m6 and B = 1.12 x 10"133 J m12
,

calculate the bond length and bond energy (in eV) for solid argon.

SOLUTION

Bonding occurs when the potential energy is at a minimum. We therefore differentiate the
Lennard-Jones potential E(r) and set it to zero at r = rot the interatomic equilibrium separa-
tion or

- = 6Ar~7 - 12£r"13 =0      at r = r0
dr

that is,

6 
_ r

o ~ 
~

A

or

f
-ll/6

r0 = 1 - I

Substituting A = 8.0 x 10"77 and B = 1.12 x 10"133 and solving for r09 we find

r0 = 3.75 x 10
"10 m      or      0.375 nm

When r = r0 = 3.75 x 10"10 m, the potential energy is at a minimum and corresponds to
-£bond> SO

8
.
0 x lO"77 1.12 x lO"133

+£bond = |-Ar;6 + £r;12

that is,

(3.75 x lO"10)6    (3.75 x lO"10)12

£bond = 1.43 x lO"20 J      or      0.089 eV

Notice how small this energy is compared to primary bonding.

EXAMPLE 1.4
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EXAMPLE 1.5

Definition of
elastic

modulus

Elastic

modulus and

bonding

ELASTIC MODULUS The elastic modulus, or Young's modulus 7, of a solid indicates its abil-
ity to deform elastically. The greater is the elastic modulus, the more effort is required for the
same amount of elastic deformation given a constant sample geometry. When a solid is sub-
jected to tensile forces F acting on two opposite faces, as in Figure 1.14a, it experiences a stress
a defined as thz force per unit area F/A, where A is the area on which F acts. If the original
length of the specimen is L0, then the applied stress o stretches the solid by an amount <5L. The
strain s is the fractional increase in the length of the solid 8L/L0. As long as the applied force
displaces the atoms in the solid by a small amount from their equilibrium positions, the defor-
mation is elastic and recoverable when the forces are removed. The applied stress a and the re-
sulting elastic strain e are related by the elastic modulus Y by

[1.7]a Ye

The applied stress causes two neighboring atoms along the direction of force to be further
separated. Their displacement <5r(= r - r0) results in a net attractive force 8FN between two
neighboring atoms as indicated in Figure 1.14b (which is the same as Figure 1.3a) where FN is
the net interatomic force. 8 FN attempts to restore the separation to equilibrium. This force 8 FN,
however, is balanced by a portion of the applied force acting on these atoms as in Figure 1.14a.
If we were to proportion the area A in Figure 1.14a among all the atoms on this area, each atom
would have an area roughly r]. (If there are N atoms on A, Nrl = A.) The force 8FN is there-
fore ar*. The strain s is 8r/r0. Thus, Equation 1.7 gives

&FN
r2r
o

8r
Y -

ro

Clearly, Y depends on the gradient of the FN versus r curve at r0, or the curvature of the
minimum of E versus r at r0,

r0 L dr J
r=r()

     r0 L rfr2 Jr=r
o

[1.8]

So d
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Figure 1.14
(a) Applied forces F stretch the solid elastically from L0 to L0 + 8L The force is divided among chains of
atoms that make the solid. Each chain carries a force 8Fh.

(b) In equilibrium, the applied force is balanced by the net force 8Fm between the atoms as a result of
their increased separation.
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The bonding energy Ebond is the minimum of E versus r at r0 (Figure 1.3b) and can be re-
lated to the curvature of E versus r which leads to7

Y * /
£bond

[1.9]

where / is a numerical factor (constant) that depends on the crystal structure and the type of
bond (of the order of unity). The well-known Hooke's law for a spring expresses the magnitude
of the net force 8FN in terms of the displacement 8r by 8FN = ft \8r | where ft is the spring con-
stant. Thus Y = p/r0.

Solids with higher bond energies therefore tend to have higher elastic moduli as appar-
ent in Table 1.2. Secondary bonding has both a smaller E d and a larger r0 than primary
bonding and Y is much smaller. For NaCl, from Figure 1.10, bond = 6.3 eV, r0 = 0.28 nm,
and Y is of the order of 50 GPa using Equation 1.9 and / % 1; and not far out from the
value in Table 1.2.

PV = ±Nmv2 [1.10]

where m is the mass of the gas molecule. Comparing this theoretical derivation with
the experimental observation that

PV = (-)rt

where NA is Avogadro's number and R is the gas constant, we can relate the mean
kinetic energy of the molecules to the temperature. Our objective is to derive Equa-
tion 1.10; to do so, we make the following assumptions:

1
. The molecules are in constant random motion. Since we are considering a large

number of molecules, perhaps 1020 m"3
, there are as many molecules traveling in

one direction as in any other direction, so the center of mass of the gas is at rest.

Elastic

modulus and

bond energy

1A    KINETIC MOLECULAR THEORY

1 A. 1  Mean Kinetic Energy and Temperature

The kinetic molecular theory of matter is a classical theory that can explain such seem-
ingly diverse topics as the pressure of a gas, the heat capacity of metals, the average
speed of electrons in a semiconductor, and electrical noise in resistors, among many
interesting phenomena. We start with the kinetic molecular theory of gases, which
considers a collection of gas molecules in a container and applies the classical equa-
tions of motion from elementary mechanics to these molecules. We assume that the
collisions between the gas molecules and the walls of the container result in the gas
pressure P. Newton

's second law, dp/dt = force, where p = mv is the momentum, is
used to relate the pressure P (force per unit area) to the mean square velocity v2, and
the number of molecules per unit volume N/V. The result can be stated simply as Kinetic

molecular

theory for
gases

7 The mathematics and a more rigorous description may be found in the textbook's CD.



26 chapter i  . Elementary Materials Science Concepts

2
. The range of intermolecular forces is short compared to the average separation of

the gas molecules. Consequently,

a. Intermolecular forces are negligible, except during a collision.
b

. The volume of the gas molecules (all together) is negligible compared to the
volume occupied by the gas (that is, the container).

3
. The duration of a collision is negligible compared to the time spent in free motion

between collisions.

4
. Each molecule moves with uniform velocity between collisions, and the accelera-

tion due to the gravitational force or other external forces is neglected.
5

. On average, the collisions of the molecules with one another and with the walls of
the container are perfectly elastic. Collisions between molecules result in exchanges
of kinetic energy.

6
. Newtonian mechanics can be applied to describe the motion of the molecules.

We consider a collection of Ngas molecules within a cubic container of side a. We
focus our attention on one of the molecules moving toward one of the walls. The
velocity can be decomposed into two components, one directly toward the wall vx, and
the other parallel to the wall Vy, as shown in Figure 1.15. Clearly, the collision of the
molecule, which is perfectly elastic, does not change the component Vy along the wall,
but reverses the perpendicular component vx. The change in the momentum of the
molecule following its collision with the wall is

A/? = 2m vx

where m is the mass of the molecule. Following its collision, the molecule travels back
across the box, collides with the opposite face B, and returns to hit face A again. The
time interval Ar is the time to traverse twice the length of the box, ox At = 2a/vx.
Thus, every At seconds, the molecule collides with face A and changes its momentum
by 2mvx. To find the force F exerted by this molecule on face A, we need the rate of

Figure 1.15 The gas molecules in the
container are in random motion. Square container
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change of momentum, or

p
     Ap      2mvx mv*

"~

 At     (2a/vx) a

The total pressure P exerted by N molecules on face A, of area a2, is due to the
sum of all individual forces F, or

Total force     mir  + mu  +  h tnv*N
P =

a2 a3

= 5(Uxl + 2+-" + iV)

that is,
mNv2

P =
V

where v2 is the average of v2 for all the molecules and is called the mean square
velocity, and V is the volume g3

.

Since the molecules are in random motion and collide randomly with each other,
thereby exchanging kinetic energy, the mean square velocity in the x direction is the
same as those in the y and z directions, or

v2 = v2 = v2
x        y z

For any molecule, the velocity v is given by

v2 = v2 + v2 + u2 = 3i;2

The relationship between the pressure P and the mean square velocity of the mol-
ecules is therefore

Nmv2     1   Gas pressure
P =   = -pv2 [1.11]     in the kinetic

3V       3 iJ J theory
where p is the density of the gas, or Nm/V. By using elementary mechanical concepts,
we have now related the pressure exerted by the gas to the number of molecules per
unit volume and to the mean square of the molecular velocity.

Equation 1.11 can be written explicitly to show the dependence of PV on the mean
kinetic energy of the molecules. Rearranging Equation 1.11, we obtain

PV

where mv2 is the average kinetic energy KE per molecule. If we consider one mole of
gas, then N is simply A , Avogadro

's number.

Experiments on gases lead to the empirical gas equation

pv= (-)rt

where R is the universal gas constant. Comparing this equation with the kinetic theory
equation shows that the average kinetic energy per molecule must be proportional to
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Mean kinetic

energy per
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Molar heat

capacity at
constant

volume

the temperature.

  1  _ 3
KE = -mv2 = -kT

2 2
[1.12]

where k = R/NA is called the Boltzmann constant. Thus, the mean square velocity is
proportional to the absolute temperature. This is a major conclusion from the kinetic
theory, and we will use it frequently.

When heat is added to a gas, its internal energy and, by virtue of Equation 1.12, its
temperature both increase. The rise in the internal energy per unit temperature is called
the heat capacity. If we consider 1 mole of gas, then the heat capacity is called the
molar heat capacity Cm. The total internal energy U of 1 mole of monatomic gas (i.e.,
a gas with only one atom in each molecule) is

U = NA( -mv2)j = *
-NAkT

so, from the definition of Cm, at constant volume, we have

dU    3 3
c

m
 = - = -NAk = -R [1.13]

Thus, the heat capacity per mole of a monatomic gas at constant volume is simply
| R. By comparison, we will see later that the heat capacity of metals is twice this amount.
The reason for considering constant volume is that the heat added to the system then in-
creases the internal energy without doing mechanical work by expanding the volume.

There is a useful theorem called Maxwell's principle of equipartition of energy,
which assigns an average of kT to each independent energy term in the expression for
the total energy of a system. A monatomic molecule can only have translational kinetic
energy, which is the sum of kinetic energies in the x, y, and z directions. The total en-
ergy is therefore

E = \mv2x + \mv2y + \mv2z
2 2 2

Each of these terms represents an independent way in which the molecule can be
made to absorb energy. Each method by which a system can absorb energy is called a
degree of freedom. A monatomic molecule has only three degrees of freedom.
According to Maxwell's principle, for a collection of molecules in thermal equilib-
rium, each degree of freedom has an average energy of \kT, so the average kinetic en-
ergy of the monatomic molecule is 3{ kT).

A rigid diatomic molecule (such as an O2 molecule) can acquire energy as transla-
tional motion and rotational motion, as depicted in Figure 1.16. Assuming the moment of
inertia Ix about the molecular axis (along x) is negligible, the energy of the molecule is

1 1
.
2

1
2

1
2

1
.
2

2 2 2 2 2

where ly and Iz are moments of inertia about the y and z axes and coy and q)z are angular
velocities about the y and z axes (Figure 1.16).
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Figure 1.16 Possible
translational and rotational
motions of a diatomic molecule.

Vibrational motions are neglected.

This molecule has five degrees of freedom and hence an average energy of
5( kT). Its molar heat capacity is therefore |/?.

The atoms in the molecule will also vibrate by stretching or bending the bond,
which behaves like a "spring." At room

,
 temperature, the addition of heat only results

in the translational and rotational motions becoming more energetic (excited), whereas
the molecular vibrations remain the same and therefore do not absorb energy. This oc-
curs because the vibrational energy of the molecule can only change in finite steps; in
other words, the vibrational energy is quantized. For many molecules, the energy
required to excite a more energetic vibration is much more than the energy possessed
by the majority of molecules. Therefore, energy exchanges via molecular collisions
cannot readily excite more energetic vibrations; consequently, the contribution of mo-
lecular vibrations to the heat capacity is negligible.

In a solid, the atoms are bonded to each other and can only move by vibrating about
their equilibrium positions. In the simplest view, a typical atom in a solid is joined to
its neighbors by "springs" that represent the bonds, as depicted in Figure 1.17. If we
consider a given atom, its potential energy as a function of displacement from the
equilibrium position is such that if it is displaced slightly in any direction, it will expe-
rience a restoring force proportional to the displacement. Thus, this atom can acquire
energy by vibrations in three directions. The energy associated with the x direction, for
example, is the kinetic energy of vibration plus the potential energy of the "spring,

" or

mvl + \Kxx2
, where vx is the velocity, x is the extension of the spring, and Kx is the

spring constant, all along the x direction. Clearly, there are similar energy terms in the
y and z directions, so there are six energy terms in the total energy equation:

1
E = -mv2

x + -mv* + -m  + Kxx* + -Kyy' + -Kzz
1

.
2

1
.
2

1
2

1
.

2
1

2

2 2 2 2 2 2

We know that for simple harmonic motion, the average KE is equal to the average
PE. Since, by virtue of the equipartition of energy principle, each average KE term has
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I

i
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z

a

x

4
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lb)

Figure 1.17
(a) The balkmd-spring model of solids, in which the springs represent the interatomic bonds. Each ball (atom) is linked to
its neighbors by springs. Atomic vibrations in a solid involve three dimensions.
(b) An atom vibrating about its equilibrium position. The atom stretches and compresses its springs to its neighbors and
has both kinetic and potential energy.

Dulong-Petit
rule

an energy of kT'

, the average total energy per atom is 6{\kT). The internal energy U
per mole is

U = NA6( -kT  =
The molar heat capacity then becomes

?>RT

C
m
 =  = 3R = 25 J K"1 moP1

dT

This is the Dulong-Petit rule.
The kinetic molecular theory of matter is one of the successes of classical physics,

with a beautiful simplicity in its equations and predictions. Its failures, however, are
numerous. For example, the theory fails to predict that, at low temperatures, the heat
capacity increases as T3 and that the resistivity of a metal increases linearly with the
absolute temperature. We will explain the origins of these phenomena in Chapter 4.

EXAMPLE 1.6 SPEED OF SOUND IN AIR Calculate the root mean square (rms) velocity of nitrogen molecules
in atmospheric air at 27 0C. Also calculate the root mean square velocity in one direction (Urms,*)-
Compare the speed of propagation of sound waves in air, 350 m s-1, with and explain the
difference.

SOLUTION

From the kinetic theory

1 2
2

mV
rms

3
-kT
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so that

IkT
Vrms - V

V m

where m is the mass of the nitrogen molecule N2. The atomic mass of nitrogen is Afat
14g mol"1, so that in kilograms

2Mat(10-3)
m =  

NA

Thus

 1/2    r    „„„ -.1/2

rms
r 3kNAT 17 

_

 r  3/?r i

L2Mat(10-3)J    " L2Mat(10-3)J

[3(8.314 J mol"1 R- OOOK)] 1/2

I --7--I = 517 ms
L    2(14 x lO kgmor1) J

Consider an rms velocity in one direction. Then

Vrms
,
x = yfo2

x
 = yj\ v2 = - v  = 298 m s"1

-1

which is slightly less than the velocity of sound in air (350 m s"1).
 The difference is due to the

fact that the propagation of a sound wave involves rapid compressions and rarefactions of air,
and the result is that the propagation is not isothermal. Note that accounting for oxygen in air
lowers Unns

,
,. (Why?)

SPECIFIC HEAT CAPACITY Estimate the heat capacity of copper per unit gram, given that its
atomic mass is 63.6.

SOLUTION

From the Dulong-Petit rule, Cm = 3R for NA atoms. But NA atoms have a mass of Afat grams,
so the heat capacity per gram, the specific heat capacity cs, is

3R     25 J mol"1 K"1
Cs

Mat      63.6 g mol"1

0
.39 J g"1 K"1      (The experimental value is 0.38 J g-1 K-1.)

EXAMPLE 1.7

1
.
4

.
2 Thermal Expansion

Nearly all materials expand as the temperature increases. This phenomenon is due to
the asymmetric nature of the interatomic forces and the increase in the amplitude of
atomic vibrations with temperature as expected from the kinetic molecular theory.

The potential energy curve U(r) for two atoms separated by a distance r is shown
in Figure 1.18. In equilibrium the PE is a minimum at 17  = -U0 and the bonding
energy is simply U0. The atoms are separated by the equilibrium separation r0. However,
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Interatomic separation, r
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U(r) = PE

r
o

0
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Figure 1 .! 8  The potential energy PE curve has a minimum when the atoms in the solid attain
the interatomic separation at r = r0.
Because of thermal energy, the atoms will be vibrating and will have vibrational kinetic energy. At
7

'

 =T\f the atoms will be vibrating in such a way that the bond will be stretched and compressed
by an amount corresponding to the KE of the atoms. A pair of atoms will be vibrating between 8
and C. Their average separation will be at A and greater than r0.

State A

State B, KE = 0,
E=U

B

State A

State C, KE

E=UC

0
,

Figure 1.19  Vibrations of atoms in the solid.
We consider for simplicity a pair of atoms.
Total energy is E = PE + KE, and this is
constant for a pair of vibrating atoms
executing simple harmonic motion. At 8 and
C

, KE is zero (atoms are stationary and about
to reverse direction of oscillation) and PE is
maximum.

according to the kinetic molecular theory, atoms are vibrating about their equilibrium
positions with a mean vibrational kinetic energy that increases with the temperature as
§fc7\ At any instant the total energy E of the pair of atoms is U + KE, and this is con-
stant inasmuch as no external forces are being applied. The atoms will be vibrating
about their equilibrium positions, stretching and compressing the bond, as depicted in
Figure 1.19. At positions B and C, U is maximum and the KE is zero; the atoms are
stationary and about to reverse their direction of oscillation. Thus at B and C the total
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energy E = Ub = Uq and the PE has increased from its minimum value by an
amount equal to KE. The line BC corresponds to the total energy E. The atoms are
confined to vibrate between B and C, executing simple harmonic motion and hence
maintaining E = U + KE = constant.

But the PE curve U(r) is asymmetric. U(r) is broader in the r > r0 region. Thus,
the atoms spend more time in the r > r0 region, that is, more time stretching the bond
than compressing the bond (with respect to the equilibrium length r0). The average
separation corresponds to point A,

av = \(rB + rc)

which is clearly greater than r0. As the temperature increases, KE increases, the total
energy E increases, and the atoms vibrate between wider extremes of the U(r) curve,
between Bf and C. The new average separation at A' is now greater than that at
A:rA> > rA. Thus as the temperature increases, the average separation between the
atoms also increases, which leads to the phenomenon of thermal expansion. If the PE
curve were symmetric, then there would be no thermal expansion as the atoms would
spend equal times in the r < r0 and r > r0 regions.

When the temperature increases by a small amount 8T, the energy per atom in-
creases by Catom 8T where Catom is the heat capacity per atom (molar heat capacity
divided by NA). If Catom 8T is large, then the line B'C in Figure 1.18 will be higher up
on the energy curve and the average separation A' will therefore be larger. Thus, the
increase 8rav in the average separation is proportional to ST. If the total length L0 is
made up of N atoms, L0 = Nrav, then the change 8L in L0 is proportional to N 8T or
L

0 8T. The proportionality constant is the thermal coefficient of linear expansion, or
simply, thermal expansion coefficient X, which is defined as the fractional change in
length per unit temperature,

X~~

T
0

'

8T
[1.14]

If L0 is the original length at temperature T0, then the length L at temperature 7\
from Equation 1.14, is

L = L0[l + HT - T0)] [1.151

We note that X is a material property that depends on the nature of the bond. The
variation of rav with T in Figure 1.18 depends on the shape of the PE curve U(r). Typ-
ically, X is larger for metallic bonding than for covalent bonding.

We can use a mathematical procedure (known as a Taylor expansion) to describe
the U(r) versus r curve in terms of its minimum value Umn, plus correction terms that
depend on the powers of the displacement (r - r0) from r0,

U(r) = t/ n + a2(r - r0)2 + a3(r - r0)3 + . . . [1.16]

where a2 and 03 are coefficients that are related to the second and third derivatives of U
at r0. The term ai(r - r0) is missing because dU/dr = 0 at r = r0 where U = f/min-
The l/min and a2(r - r0)2 terms in Equation 1.16 give a parabola about which is a
symmetric curve around r0 and therefore does not lead to thermal expansion. The average

Definition of
thermal

expansion
coefficient

Thermal

expansion

Potential

energy of an
atom
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Thermal

expansion
coefficient
and

temperature

location at any energy on a symmetric curve at r0 is always at r0. It is the 03 term that
gives the expansion because it leads to asymmetry. Thus, X depends on the amount of
asymmetry, that is, fls/fla- The asymmetric PE curve in Figure 1.18 which has a finite
cubic as term as in Equation 1.16 does not lead to a perfect simple harmonic (sinu-
soidal) vibration about r0 because the restoring force is not proportional to the dis-
placement alone. Such oscillations are unharmonic, and the PE curve is said to possess
an unharmonicity (terms such as as). Thermal expansion is an unharmonic effect.

The thermal expansion coefficient normally depends on the temperature, X = X(r),
and typically increases with increasing temperature, except at the lowest temperatures.
We can always expand X{T) about some useful temperature such as T0 to obtain a
polynomial series in temperature terms up to the most significant term, usually the T1

containing term. Thus, Equation 1.14 becomes

dL
= X(T) = A + B(T- T0) + C(T - To)1 +

L0dT
[1.17]
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Figure 1.20 Dependence of the linear thermal expansion coefficient k (K 
on temperature T (K) on a log-log plot.
HDPE, high-density polyethylene; PMMA, polymethylmethacrylate (acrylic); PC,
polycarbonate; PET, polyethylene terephthalate (polyester); fused silica, Si02;
alumina, AI2O3.

I SOURCE: Data extracted from various sources including G. A. Slack and S. F. Bartram,
I lAppl P/iys.,46, 89, 1975.
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where A, B, and C are temperature-independent constants, and the expansion is about
T

0. To find the total fractional change in the length AL/L0 from T0 to T, we have to
integrate X(T) with respect to temperature from T0 to T. We can still employ Equation
1
.15 provided that we use a properly defined mean value for the expansion coefficient

from T0 tor,

where

L = L0[l+X(T-T0)] [1.18]

[1.19]

Figure 1.20 shows the temperature dependence of X for various materials. In very gen-
eral terms, except at very low (typically below 100 K) and very high temperatures
(near the melting temperature), for most metals X does not depend strongly on the tem-
perature; many engineers take X for a metal to be approximately temperature indepen-
dent. There is a simple relationship between the linear expansion coefficient and the
heat capacity of a material, which is discussed in Chapter 4.

Thermal

expansion

Mean thermal

expansion
coefficient

VOLUME EXPANSION COEFFICIENT Suppose that the volume of a solid body at temperature
T

0 is V0. The volume expansion coefficient av of a solid body characterizes the change in its
volume from V0 to V due to a temperature change from T0 to T by

V = V0[l+av(T-T0)]

Show that ay is given by

3k

[1.20]

[1.21]

Aluminum has a density of 2.70 g cm 3 at 25 0C. Its thermal expansion coefficient is 24 x
lO"6 0C-1. Calculate the density of Al at 350 0C.

SOLUTION

Consider the solid body in the form of a rectangular parallelepiped with sides x0, yOJ and Zo-
Then at T09

and atr,

that is

V
o

V

XoyoZo

[x0(l + X AT)][y0(l + X AT)][Zo(l + X AT)]

XoyoZoil + X AT)
3

V = x0y0Zoll -h 3X AT + 3X2(Ar)2 + X3(Ar)3]

We can now substitute for V from Equation 1.20, use V0 = x0y0Zo, and neglect the
X2(AT)2 and X3(Ar)3 terms compared with the X AT term (X «; 1) to obtain,

V = Voll + 3X(T - T0)] = V0[l +av(T- T0)]

Since density p is mass/volume, volume expansion leads to a density reduction. Thus,
Po

P \+av{T-T0)

For Al, the density at 350 0C is
*-6

Poll -av(T-T0)}

p = 2.70[1 - 3(24 x 10
-o)(350 - 25)] = 2.637 g cm

-3

EXAMPLE 1.8

Volume

expansion

Volume

expansion
coefficient
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EXAMPLE 1.9

Thermal

expansion
coefficient of
Si

EXPANSION OF Si The expansion coefficient of silicon over the temperature range 120-
1500 K is given by Okada and Tokumaru (1984) as

X = 3.725 x 10-6[1 - e- o
-

Hr-m  + 5 548 x 10-ior [1#22]

where k is in K~1 (or 0C"1) and T is in kelvins. At a room temperature of 20 0C
, the above gives

k = 2.51 x 10~6 K-1. Calculate the fractional change AL/L0 in the length L0 of the Si crystal
from 20 to 320 0C, by (a) assuming a constant k equal to the room temperature value and
(b) assuming the above temperature dependence. Calculate the mean k for this temperature range.

SOLUTION

Assuming a constant we have

(2.51 x lO-6 oC"1)(320 - 20) = 0.753 x 10"3

With a temperature-dependent k(T),

k(T) dT

AL
-- = k(T- To) or 0

.
075%

AL 
_

 CT

-L
320+273

{3.725 X 10-6[1 - -3.725x10-3(1-124)] + 5 543 x lQ- T]dT
'20+273

The integration can either be done numerically or analytically (both left as an exercise) with the
result that

AL

7
1
.
00 x 10

-3
or 0

.
1%

which is substantially more than when using a constant k. The mean k over this temperature
range can be found from

AL -
-- = k(T- T0) or 1

.00 x KT3 = M320 - 20)

which gives k = 3.33 x 10"6 0C"1
. A 0.1 percent change in length means that a 1 mm chip

would expand by 1 micron.

1
.
5    MOLECULAR VELOCITY AND ENERGY

DISTRIBUTION

Although the kinetic theory allows us to determine the root mean square velocity of
the gas molecules, it says nothing about the distribution of velocities. Due to random col-
lisions between the molecules and the walls of the container and between the molecules

themselves, the molecules do not all have the same velocity. The velocity distribution of
molecules can be determined experimentally by the simple scheme illustrated in Figure
1

.21. Gas molecules are allowed to escape from a small aperture of a hot oven in which
the substance is vaporized. Two blocking slits allow only those molecules that are mov-
ing along the line through the two slits to pass through, which results in a collimated
beam. This beam is directed toward two rotating disks, which have slightly displaced
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Effusing gas atoms
Hot oven I Collimating slits

Velocity selector
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e
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Figure 1.21 Schematic diagram of a Stem-type experiment for determining the distribution of
molecular speeds.
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Figure 1.22 Maxwell-Boltzmann
distribution of molecular speeds in
nitrogen gas at two temperatures.

The ordinate is c/N/(N dv), the fractional
number of molecules per unit speed
interval in (km/s)"1.

slits. The molecules that pass through the first slit can only pass through the second if
they have a certain speed; that is, the exact speed at which the second slit lines up with
the first slit. Thus, the two disks act as a speed selector. The speed of rotation of the disks
determines which molecular speeds are allowed to go through. The experiment therefore
measures the number of molecules AN with speeds in the range v to (v + Av).

It is generally convenient to describe the number of molecules dN with speeds in
a certain range v to (v + dv) by defining a velocity density function nv as follows:

dN = nv dv

where nv is the number of molecules per unit velocity that have velocities in the range
v to (v + dv). This number represents the velocity distribution among the molecules
and is a function of the molecular velocity nv = nv(v). From the experiment, we can
easily obtain nv by nv = AN/Av at various velocities. Figure 1.22 shows the velocity
density function nv of nitrogen gas at two temperatures. The average (vav)9 most prob-
able (v*)9 and rms (vrms) speeds are marked to show their relative positions. As ex-
pected, these speeds all increase with increasing temperature. From various experi-
ments of the type shown in Figure 1.21, the velocity distribution function nv has been
widely studied and found to obey the following equation:

3/2 / 2 \/    mv \
nv = AnN

m

\2nkT

Y (1   u2exp( -
2kT

[1.231

Maxwell-

Boltzmann

distribution

for molecular
speeds
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where N is the total number of molecules and m is the molecular mass. This is the

Maxwell-Boltzmann distribution function, which describes the statistics of particle
velocities in thermal equilibrium. The function assumes that the particles do not interact
with each other while in motion and that all the collisions are elastic in the sense that

they involve an exchange of kinetic energy. Figure 1.22 clearly shows that molecules
move around randomly, with a variety of velocities ranging from nearly zero to almost
infinity. The kinetic theory speaks of their rms value only.

What is the energy distribution of molecules in a gas? In the case of a monatomic
gas, the total energy E is purely translational kinetic energy, so we can use E = mv2

.

To relate an energy range dE to a velocity range dv,vjz have dE = mv dv. Suppose
that nE is the number of atoms per unit volume per unit energy at an energy E. Then
nEdEis the number of atoms with energies in the range E to (E + dE). These are also
the atoms with velocities in the range v to (v + dv), because an atom with a velocity i;
has an energy E. Thus,

hecIE = nv dv

i.e.,

-(£)
If we substitute for nv and (dv/dE), we obtain the expression for n£ as a function

of E:

[1.24]

Thus, the total internal energy is distributed among the atoms according to
the Maxwell-Boltzmann distribution in Equation 1.24. The exponential factor
exp(-E/kT) is called the Boltzmann factor. Atoms have widely differing kinetic en-
ergies, but a mean energy of kT. Figure 1.23 shows the Maxwell-Boltzmann energy
distribution among the gas atoms in a tank at two temperatures. As the temperature
increases, the distribution extends to higher energies. The area under the curve is the
total number of molecules, which remains the same for a closed container.

Equation 1.24 represents the energy distribution among the N gas atoms at any time.
Since the atoms are continually colliding and exchanging energies, the energy of one

Figure 1.23 Energy distribution of gas
molecules at two different temperatures.
The shaded area shows the number of

molecules that have energies greater than
Ea- This area depends strongly on the
temperature as exp(-E /ZcT).
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atom will sometimes be small and sometimes be large, but averaged over a long time,
this energy will be kT as long as all the gas atoms are in thermal equilibrium (i.e., the
temperature is the same everywhere in the gas). Thus, we can also use Equation 1.24 to
represent all possible energies an atom can acquire over a long period. There are a total
of Af atoms, and he dE of them have energies in the range E to (E + dE). Thus,

Probability of energy being in E to (E + dE) =
riEdE

N
[1.25]

When the probability in Equation 1.25 is integrated (i.e., summed) for all energies
(E = 0 to oo), the result is unity, because the atom must have an energy somewhere in
the range of zero to infinity.

What happens to the Maxwell-Boltzmann energy distribution law in Equation 1.24
when the total energy is not simply translational kinetic energy? What happens when we
do not have a monatomic gas? Suppose that the total energy of a molecule (which may
simply be an atom) in a system of N molecules has vibrational and rotational kinetic en-
ergy contributions, as well as potential energy due to intermolecular interactions. In all
cases, the number of molecules per unit energy n e turns out to contain the Boltzmann fac-
tor, and the energy distribution obeys what is called the Boltzmann energy distribution:

nE     
„
     ( E\

- = C exp
,

kTJ
[1.26]

where E is the total energy (KE + PE), N is the total number of molecules in the sys-
tem, and C is a constant that relates to the specific system (e.g., a monatomic gas or a
liquid). The constant C may depend on the energy E, as in Equation 1.24, but not as
strongly as the exponential term. Equation 1.26 is the probability per unit energy that
a molecule in a given system has an energy E. Put differently, (nE dE)/N is the fraction
of molecules in a small energy range E to E + dE.

Boltzmann

energy ,

distribution

MEAN AND RMS SPEEDS OF MOLECULES Given the Maxwell-Boltzmann distribution law

for the velocities of molecules in a gas, derive expressions for the mean speed (vav), most prob-
able speed (v*), and rms velocity (Urms) of the molecules and calculate the corresponding val-
ues for a gas of noninteracting electrons.

SOLUTION

The number of molecules with speeds in the range v to (v + dv) is

/   m   \3/2 2     / mv2\
dN = nv dv = 47tN\   v expl dv

\2nkT ) v\ 2kT )

EXAMPLE 1.10

By definition, then, the mean speed is given by

f vdN     J vnv dv
fdN -

where the integration is over all speeds (v

IZkT
V jrmfnv dv

0 to oo). The mean square velocity is given by

/ v2nv dv 3kT

Mean speed

f dN        fnvdv m
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so the rms velocity is

-/I

vrms

fJkT

where nvIN is the probability per unit speed that a molecule has a speed in the range v to
(v + dv). Differentiating nv with respect to i; and setting this to zero, dnv/dv = 0, gives the po-
sition of the peak of nv versus v, and thus the most probable speed v*,

Substituting m = 9.1 x 10~31 kg for electrons and using T = 300 K, we find d* =
95.3 km s"1, vav = 108 km s"1, and = 117 km s"1, all of which are close in value. We
often use the term thermal velocity to describe the mean speed of particles due to their thermal
random motion. Also, the integrations shown are not trivial and they involve substitution and
integration by parts.

1
.6    HEAT, THERMAL FLUCTUATIONS, AND NOISE

Generally, thermal equilibrium between two objects implies that they have the same
temperature, where temperature (from the kinetic theory) is a measure of the mean
kinetic energy of the molecules. Consider a solid in a monatomic gas atmosphere such
as He gas, as depicted in Figure 1.24. Both the gas and the solid are at the same temper-
ature. The gas molecules move around randomly, with a mean kinetic energy given
by mv2 = \kT, where m is the mass of the gas molecule. We also know that the atoms
in the solid vibrate with a mean kinetic energy given by \MV2 = \kT\ where M is the
mass of the solid atom and V is the velocity of vibration. The gas molecules will collide
with the atoms on the surface of the solid and will thus exchange energy with those solid
atoms. Since both are at the same temperature, the solid atoms and gas molecules
have the same mean kinetic energy, which means that over a long time, there will be no
net transfer of energy from one to the other. This is basically what we mean by thermal
equilibrium.

If, on the
_

other hand, the solid is hotter than the gas, 7;oiid > Tgas, and thus
MV2 > mv29 then when an average gas molecule and an average solid atom collide,

Solid

Gas

6 Qr<S>sf

o06
Gas

atom

Figure 1.24  Solid in equilibrium in air.
During collisions between the gas and solid atoms,,
kinetic energy is exchanged.
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Figure 1.25 Fluctuations of a mass attached to a spring, due to
random bombardment by air molecules.

energy will be transferred from the solid atom to the gas molecule. As many more gas
molecules collide with solid atoms, more and more energy will be transferred, until the
mean kinetic energy of atoms in each substance is the same and they reach the same
temperature: the bodies have equilibrated. The amount of energy transferred from the
kinetic energy of the atoms in the hot solid to the kinetic energy of the gas molecules
is called heat. Heat represents the energy transfer from the hot body to the cold body
by virtue of the random motions and collisions of the atoms and molecules.

Although, over a long time, the energy transferred between two systems in thermal
equilibrium is certainly zero, this does not preclude a net energy transfer from one to
the other at one instant. For example, at any one instant, an average solid atom may be
hit by a fast gas molecule with a speed at the far end of the Maxwell-Boltzmann dis-
tribution. There will then be a transfer of energy from the gas molecule to the solid
atom. At another instant, a slow gas molecule hits the solid, and the reverse is true.
Thus, although the mean energy transferred from one atom to the other is zero, the in-
stantaneous value of this energy is not zero and varies randomly about zero.

As an example, consider a small mass attached to a spring, as illustrated in Fig-
ure 1.25. The gas or air molecules will bombard and exchange energy with the solid
atoms. Some air molecules will be fast and some will be slow, which means that there

will be an instantaneous exchange of energy. Consequently, the spring will be com-
pressed when the bombarding air molecules are fast (more energetic) and extended
when they are less energetic. This leads to a mechanical fluctuation of the mass about
its equilibrium position, as depicted in Figure 1.25. These fluctuations make the mea-
surement of the exact position of the mass uncertain, and it is futile to try to measure
the position more accurately than these fluctuations permit.

If the mass m compresses the spring by Ajc, then at time r, the energy stored as po-
tential energy in the spring is

P£(0 = - (Ax)
2

2
[1.27]
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where K is the spring constant. At a later instant, this energy will be returned to the
gas by the spring. The spring will continue to fluctuate because of the fluctuations in
the velocity of the bombarding air molecules. Over a long period, the average value of
PE will be the same as KE and, by virtue of the Maxwell equipartition of energy theo-
rem, it will be given by

1 o 1
-K(&x)2 = -kT
2 2

[1.281

Thus, the rms value of the fluctuations of the mass about its equilibrium position is

[kT

iX)rms - y -(A; [1.291

To understand the origin of electrical noise, for example, we consider the thermal
fluctuations in the instantaneous local electron concentration in a conductor

,
 such as

that shown in Figure 1.26. Because of fluctuations in the electron concentration at any
one instant, end A of the conductor can become more negative with respect to end B,
which will give rise to a voltage across the conductor. This fluctuation in the electron
concentration is due to more electrons at that instant moving toward end A than toward
B

.
 At a later instant, the situation reverses and more electrons move toward B than

toward A, resulting in end B becoming more negative and leading to a reversal of the
voltage between A and B. Clearly, there will therefore be voltage fluctuations across
the conductor, even though the mean voltage across it over a long period is always
zero. If the conductor is connected to an amplifier, these voltage fluctuations will be
amplified and recorded as noise at the output. This noise corrupts the actual signal at
the amplifier input and is obviously undesirable. As engineers, we have to know how
to calculate the magnitude of this noise. Although the mean voltage due to thermal
fluctuations is zero, the rms value is not. The average voltage from a power outlet is
zero, but the rms value is 120 V. We use the rms value to calculate the amount of aver-

age power available.
Consider a conductor of resistance R. To derive the noise voltage generated by R

we place a capacitor C across this conductor, as in Figure 1.27, and we assume that both
are at the same temperature; they are in thermal equilibrium. The capacitor is placed as
a convenient device to obtain or derive the noise voltage generated by R. It should be
emphasized that C itself does not contribute to the source of the fluctuations (it gener-
ates no noise) but is inserted into the circuit to impose a finite bandwidth over which we
will calculate the noise voltage. The reason is that all practical electric circuits have
some kind of bandwidth, and the noise voltage we will derive depends on this band-
width. Even if we remove the capacitor, there will still be stray capacitances; and if we
short the conductor, the shorting wires will have some inductance that will also impose
a bandwidth. As we mentioned previously, thermal fluctuations in the conductor give
rise to voltage fluctuations across R. There is only so much average energy available in
these thermal fluctuations, and this is the energy that is used to charge and discharge the
external capacitor C. The voltage across the capacitor depends on how much energy
that can be stored on it, which in turn depends on the thermal fluctuations in the con-
ductor. Charging a capacitor to a voltage

_

u implies that an energy E = Cv2 is stored on

the capacitor. The mean stored energy E in a thermal equilibrium system can only be
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Figure 1.26 Random motion of conduction
electrons in a conductor, resulting in electrical
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Figure 1.27  Charging and discharging of
a capacitor by a conductor, due to the
random thermal motions of the conduction
electrons.

\kT, according to the Maxwell energy equipartition theorem. Thus £(f), the mean en-
ergy stored on C due to thermal fluctuations, is given by

E(t) = \Cv(t)2 = iJtr
We see that the mean square voltage across the capacitor is given by

v(t)2 = -
C

[1.30]

Interestingly, the rms noise voltage across an RC network seems to be independent
of the resistance. However, the origin of the noise voltage arises from the electron fluc-
tuations in the conductor and we must somehow reexpress Equation 1.30 to reflect this
fact; that is, we must relate the electrical fluctuations to R.

The voltage fluctuations across the network will have many sinusoidal components,
but only those below the cutoff frequency of the RC network will contribute to the mean
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square voltage (that is, we effectively have a low-pass filter). If B is the bandwidth of the
RC network,8 then B = l/ilnRC) and we can eliminate C in Equation 1.30 to obtain

v(t)2 = InkTRB

This is the key equation for calculating the mean square noise voltage from a re-
sistor over a bandwidth B. A more rigorous derivation makes the numerical factor 4
rather than In. For a network with a bandwidth £, the rms noise voltage is therefore

rms
-MkTRB [1.31]

Equation 1.31 is known as the Johnson resistor noise equation, and it sets the
lower limit of the magnitude of small signals that can be amplified. Note that Equa-
tion 1.31 basically tells us the rms value of the voltage fluctuations within a given
bandwidth (B) and not the origin and spectrum (noise voltage vs. frequency) of the
noise. The origin of noise is attributed to the random motions of electrons in the
conductor (resistor), and Equation 1.31 is the fundamental description of electrical
fluctuations; that is, the fluctuations in the conductor's instantaneous local electron

concentration that charges and discharges the capacitor. To determine the rms noise
voltage across a network with an impedance Zijco), all we have to do is find the real
part of Z, which represents the resistive part, and use this for R in Equation 1.31.

EXAMPLE 1.11 NOISE IN AN RLC CIRCUIT Most radio receivers have a tuned parallel-resonant circuit, which
consists of an inductor L, capacitor C, and resistance R in parallel. Suppose L is 100 /xH; C is
100 pF; and R, the equivalent resistance due to the input resistance of the amplifier and to the
loss in the coil (coil resistance plus ferrite losses), is about 200 kft. What is the minimum rms
radio signal that can be detected?

SOLUTION

Consider the bandwidth of this tuned RLC circuit, which can be found in any electrical engi-
neering textbook:

B = -
Q

where f0 = I/PttVLC] is the resonant frequency and Q = 27tf0CR is the quality factor. Sub-
stituting for L, C, and R, we get, f0 = 107/2  = 1.6 x 106 Hz and Q = 200, which gives
B = 107/[27r(200)] Hz, or 8 kHz. The rms noise voltage is

[4kTRB]l/2 = [4(1.38 x lO-23 J K XBOO K)(200 x 103 )(8 x 103 Hz)]1/2
5
.1xlO-6V      or      5.1/xV

vrms

This rms voltage is within a bandwidth of 8 kHz centered at 1.6 MHz. This last informa-
tion is totally absent in Equation 1.31. If we attempt to use

11/2
I 'Ci f

Urms ffl

8 A low-pass filter allows all signal frequencies up to the cutoff frequency 8 to pass. 8 is ]/[2nRC).
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we get

[(1.38 x lO"23 JK-1)(300 K)11/2
V™ = Y 100xlO-»F J =6-4MV

However, Equation 1.30 was derived using the RC circuit in Figure 1.27, whereas we now
have an LCR circuit. The correct approach uses Equation 1.31, which is generally valid, and the
appropriate bandwidth B.

17    THERMALLY ACTIVATED PROCESSES

1
.
7
.1  Arrhenius Rate Equation

Many physical and chemical processes strongly depend on temperature and exhibit what
is called an Arrhenius type behavior, in which the rate of change is proportional to
exp( -EAlkT), where EA is a characteristic energy parameter applicable to the particular
process. For example, when we store food in the refrigerator, we are effectively using the
Arrhenius rate equation: cooling the food diminishes the rate of decay. Processes that ex-
hibit an Arrhenius type temperature dependence are referred to as thermally activated.

For an intuitive understanding of a thermally activated process, consider a vertical fil-
ing cabinet that stands in equilibrium, with its center of mass at A, as sketched in Figure
1

.28. Tilting the cabinet left or right increases the potential energy PE and requires exter-
nal work. If we could supply this energy, we could move the cabinet over its edge and lay
it flat, where its PE would be lower than at A. Clearly, since the PE at B is lower, this is a
more stable position than A. Further, in going from A to B, we had to overcome a poten-
tial energy barrier of amount EA, which corresponds to the cabinet standing on its edge
with the center of mass at the highest point at A*. To topple the cabinet, we must first pro-
vide energy9 equal to EA to take the center of mass to A*, from which point the cabinet,
with the slightest encouragement, will fall spontaneously to B to attain the lowest PE, At
the end of the whole tilting process, the internal energy change for the cabinet, A U, is due
to the change in the PE (= mgh) from A to B, which is negative; B has lower PE than A.

Suppose, for example, a person with an average energy less than EA tries to topple
the cabinet. Like everyone else, that person experiences energy fluctuations as a result
of interactions with the environment (e.g., what type of day the person had). During
one of those high-energy periods, he can topple the cabinet, even though most of the
time he cannot do so because his average energy is less then EA. The rate at which the
cabinet is toppled depends on the number of times (frequency) the person tries and
the probability that he possesses energy greater than EA.

As an example of a thermally activated process, consider the diffusion of impu-
rity atoms in a solid, one of which is depicted in Figure 1.29. In this example, the
impurity atom is at an interatomic void A in the crystal, called an interstitial site. For
the impurity atom to move from A to a neighboring void B, the atom must push the
host neighbors apart as it moves across. This requires energy in much the same way

9 According to the conservation of energy principle, the increase in the PE from A to A* must come from the
external work.
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Figure 1.28  Tilting a filing cabinet from
state A to its edge in state A* requires an en-
ergy Ea.
After reaching A*, the cabinet spontaneously
drops to the stable position B. The PE of state
B is lower than A, and therefore state B is
more stable than A.

U(X) = PE

u
E   BWIB A*

-

mgh

Metastable
IJnstable (activated state)

Stable
A*

A

B

X
A*

X
A B

->x

System coordinate, X = Position of center of mass

Figure 1.29  Diffusion of an
interstitial impurity atom in a crystal
from one void to a neighboring
void.

The impurity atom at position A
must possess an energy Ea to push
the host atoms away and move
into the neighboring void at B.
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as does toppling the filing cabinet. There is a potential energy barrier Ea to the mo-
tion of this atom from A to B.

Both the host and the impurity atoms in the solid vibrate about their equilibrium po-
sitions, with a distribution of energies, and they also continually exchange energies,
which leads to energy fluctuations. In thermal equilibrium, at any instant, we can expect
the energy distribution of the atoms to obey the Boltzmann distribution law (see Equa-
tion 1.26). The average kinetic energy per atom is vibrational and is \kTwhich will not
allow the impurity simply to overcome the PE barrier EA, because typically EA » |fc7\

The rate of jump, called the diffusion, of the impurity from A to B depends on two
factors. The first is the number of times the atom tries to go over the potential barrier,
which is the vibrational frequency v0, in the AB direction. The second factor is the prob-
ability that the atom has sufficient energy to overcome the PE barrier. Only during those
times when the atom has an energy greater than the potential energy barrier
EA = UA* - UA will it jump across from A to B. During this diffusion process, the
atom attains an activated state, labeled A* in Figure 1.29, with an energy EA above
UA, so the crystal internal energy is higher than UA. EA is called the activation energy.



i. 7 Thermally Activated Processes 47

Suppose there are Af impurity atoms. At any instant, according to the Boltzmann
distribution, nE dE of these will have kinetic energies in the range E to (£ + dE), so
the probability that an impurity atom has an energy E greater than EA is

Probability (£ > £A) =
Number of impurities with E > Ea

Total number of impurities

f
™

A
nEdE

N
= A exp (-£)

where A is a dimensionless constant that has only a weak temperature dependence.
The rate of jumps, jumps per seconds, or simply the frequency of jumps # from void
to void is

# = (Frequency of attempt along AB)(Probability of E > Ea)

= Av0exp(- j      Ea = I/a* - Ua [1.32]

Equation 1.32 describes the rate of a thermally activated process, for which in-
creasing the temperature causes more atoms to be energetic and hence results in more
jumps over the potential barrier. Equation 1.32 is the well-known Arrhenius rate
equation and is generally valid for a vast number of transformations, both chemical
and physical.

1
.
7

.2 Atomic Diffusion and the Diffusion Coefficient

Consider the motion of the impurity atom in Figure 1.29. For simplicity, assume a two-
dimensional crystal in the plane of the paper, as in Figure 1.30. The impurity atom has
four neighboring voids into which it can jump. If 0 is the angle with respect to the
x axis, then these voids are at directions 0 = 0°

, 90°, 180°, and 270°; as depicted in
Figure 1.30. Each jump is in a random direction along one of these four angles. As the
impurity atom jumps from void to void, it leaves its original location at O, and after Af
jumps, after time t, it has been displaced from O to O'.

Let a be the closest void-to-void separation. Each jump results in a displacement
along x which is equal to a cos 0, with 0 = 0°, 90°, 180°, or 270°. Thus, each jump

Rate for a
thermally
activated

process

O'

After N jumps

6= 180o
< 

y
 >6>=0o    1 jL /P

o

Figure 1.30 An impurity atom has four site choices for diffusion to a neighboring interstitial vacancy.
After N jumps, the impurity atom would have been displaced from the original position at O.
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results in a displacement along x which can be a, 0, -a, or 0, corresponding to the four
possibilities. After Af jumps, the mean displacement along x will be close to zero, just
as the mean voltage of the ac voltage from a power outlet is zero, even though it has an
rms value of 120 V. We therefore consider the square of the displacements. The total
square displacement, denoted X2

,
 is

X2 = az cosz 0i + az cos162 H h az cosz 0N

Clearly, 0 = 90° and 270° give cos2 0 = 0. Of all N jumps, are 0 = 0 and
180°, each of which gives cos2 0 = 1. Thus,

X2 = -a2N
2

There will be a similar expression for Y2, which means that after N jumps, the
total square distance L2 from O to O' in Figure 1.30 is

L2 = X2 + Y2 = a2N

The rate of jumping (frequency of jumps) is given by Equation 1.32

.
2

,
2

,
2 2

, .

2
,
2

# = i;0Aexp -
so the time per jump is 1 /#. Time t for Af jumps is N/ft. Thus, Af = # t and

L2 = a2$t = 2Dt [1.33]

where, by definition, D = 2
, which is a constant that depends on the diffusion

process, as well as the temperature, by virtue of This constant is generally called the
diffusion coefficient. Substituting for   we find

or

D = -a v0A exp  I2 FV kTj

D = D (-w) [1.34]

where D0 is a constant. The root square displacement L in time t, from Equation 1.33,
is given by L = [2Df]1/2. Since L2 is evaluated from X2 and y2, L is known as the
root mean square (rms) displacement.

The preceding specific example considered the diffusion of an impurity in a void
between atoms in a crystal; this is a simple way to visualize the diffusion process. An
impurity, indeed any atom, at a regular atomic site in the crystal can also diffuse around
by various other mechanisms. For example, such an impurity can simultaneously ex-
change places with a neighbor. But, more significantly, if a neighboring atomic site has
a vacancy that has been left by a missing host atom, then the impurity can simply jump
into this vacancy. (Vacancies in crystals are explained in detail in Section 1.9.1; for the
present, they simply correspond to missing atoms in the crystal.) The activation energy
Ea in Equation 1.34 is a measure of the difficulty of the diffusion process. It may be as
simple as the energy (or work) required for an impurity atom to deform (or strain) the
crystal around it as it jumps from one interstitial site to a neighboring interstitial site, as
in Figure 1.29; or it may be more complicated, for example, involving vacancy creation.
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Various Si semiconductor devices are fabricated by doping a single Si crystal with
impurities (dopants) at high temperatures. For example, doping the Si crystal with
phosphorus (P) gives the crystal a higher electrical conductivity. The P atoms substi-
tute directly for Si atoms in the crystal. These dopants migrate from high to low dopant
concentration regions in the crystal by diffusion, which occurs efficiently only at suf-
ficiently high temperatures.

DIFFUSION OF DOPANTS IN SILICON The diffusion coefficient of P atoms in the Si crystal
follows Equation 1.34 with D0 = 10.5 cm2 s-1 and EA = 3.69 eV. What is the diffusion coef-
ficient at a temperature of 1100 0C at which dopants such as P are diffused into Si to fabricate
various devices? What is the rms distance diffused by P atoms in 5 minutes? Estimate, as an
order of magnitude, how many jumps the P atom makes in 1 second if you take the jump dis-
tance to be roughly the mean interatomic separation, ~0.27 nm.

SOLUTION

From Equation 1.34,

/   EA\ ,   ,       f      (3.69eV)(1.602 x lO- JeV"1) 1
D = D0 exp   = (10.5 cm2 s"1) exp = -

V   kTj FL   (1.381 x lO- JK-'XllOO + 273K)J
= 3

.
0 x 10-13cm2 s'1

The rms distance L diffused in a time t = 5 min = 5 x 60 seconds is

L = y/2Dt = [2(3.0 x lO"13 cm2 s"1)  x 60 s)
'

]1/2 = 1.3 x lO"5 cm   or   13 jxm
Equation 1.33 was derived for a two-dimensional crystal as in Figure 1.30, and for an impurity
diffusion. Nonetheless, we can still use it to estimate how many jumps a P atom makes in
1 second. From Equation 1.33, # « 2D/a2 « 2(3.0 x 10-17m2 s-1)/(0.27 x lO"9 m)2 = 823
jumps per second. It takes roughly 1 ms to make one jump. It is left as an exercise to show that
at room temperature it will take a P atom 1046 years to make a jump! (Scientists and engineers
know how to use thermally activated processes.)

1
.
8    THE CRYSTALLINE STATE

1
.
8
.1  Types of Crystals

A crystalline solid is a solid in which the atoms bond with each other in a regular pat-
tern to form a periodic collection (or array) of atoms, as shown for the copper crystal
in Figure 1.31. The most important property of a crystal is periodicity, which leads to
what is termed long-range order. In a crystal, the local bonding geometry is repeated
many times at regular intervals, to produce a periodic array of atoms that constitutes
the crystal structure. The location of each atom is well known by virtue of periodicity.
There is therefore a long-range order, since we can always predict the atomic arrange-
ment anywhere in the crystal. Nearly all metals, many ceramics and semiconductors,
and various polymers are crystalline solids in the sense that the atoms or molecules are
positioned on a periodic array of points in space.

EXAMPLE 1.12
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Figure 1.31
(a) The crystal structure of copper which is face-centered cubic (FCC). The atoms are positioned at well-defined sites
arranged periodically, and there is a long-range order in the crystal.
(b) An FCC unit cell with close-packed spheres.
(c) Reduced-sphere representation of the FCC unit cell.
Examples: Ag, Al, Au, Ca, Cu, K-Fe (>912 0C), Ni, Pd, Pt, Rh.

All crystals can be described in terms of a lattice and a basis.10 A lattice is an infi-
nite periodic array of geometric points in space, without any atoms. When we place an
identical group of atoms (or molecules), called a basis, at each lattice point, we obtain
the actual crystal structure. The crystal is thus a lattice plus a basis at each lattice
point. In the copper crystal in Figure 1.31a, each lattice point has one Cu atom and the
basis is a single Cu atom. As apparent from Figure 1.31a, the lattice of the copper crys-
tal has cubic symmetry and is one of many possible lattices.

Since the crystal is essentially a periodic repetition of a small volume (or cell) of
atoms in three dimensions, it is useful to identify the repeating unit so that the crystal
properties can be described through this unit. The unit cell is the most convenient
small cell in the crystal structure that carries the properties of the crystal. The repeti-
tion of the unit cell in three dimensions generates the whole crystal structure, as is ap-
parent in Figure 1.31a for the copper crystal.

The unit cell of the copper crystal is cubic with Cu atoms at its comers and one Cu
atom at the center of each face, as indicated in Figure 1.31b. The unit cell of Cu is thus
said to have a face-centered cubic (FCC) structure. The Cu atoms are shared with
neighboring unit cells. Effectively, then, only one-eighth of a comer atom is in the unit
cell and one-half of the face-centered atom belongs to the unit cell, as shown in Fig-
ure 1.31b. This means there are effectively four atoms in the unit cell. The length of the
cubic unit cell is termed the lattice parameter a of the crystal structure. For Cu, for
example, a is 0.362 nm, whereas the radius R of the Cu atom in the crystal is 0.128 nm.

10 Lattice is a purely imaginary geometric concept whose only requirement is that the infinite array of points has
periodicity. In many informal discussions, the term lattice or crystal lattice is used to mean the crystal structure itself.
These concepts are further developed in Section 1.13 under Additional Topics.
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Figure 1.32 Body-centered cubic (BCC) crystal
structure.

f    (a) A BCC unit cell with close-packed hard spheres
representing the Fe atoms.
(b) A reduced-sphere unit cell.
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Figure 1.33  The hexagonal close-packed (HCP) crystal structure.
(a) The hexagonal close-packed (HCP) structure. A collection of many Zn atoms. Color difference distinguishes layers
(stacks).
(b) The stacking sequence of closely packed layers is ABAB.
(c) A unit cell with reduced spheres.
(d) The smallest unit cell with reduced spheres.

Assuming the Cu atoms are spheres that touch each other, we can geometrically relate
a and R. For clarity, it is often more convenient to draw the unit cell with the spheres
reduced, as in Figure 1.31c.

The FCC crystal structure of Cu is known as a close-packed crystal structure
because the Cu atoms are packed as closely as possible, as is apparent in Figure 1.31a
and b. The volume of the FCC unit cell is 74 percent full of atoms, which is the maxi-
mum packing possible with identical spheres. By comparison, iron has a body-
centered cubic (BCC) crystal structure and its unit cell is shown in Figure 1.32. The
BCC unit cell has Fe atoms at its comers and one Fe atom at the center of the cell. The

volume of the BCC unit cell is 68 percent full of atoms, which is lower than the max-
imum possible packing.

The FCC crystal structure is only one way to pack the atoms as closely as possible.
For example, in zinc, the atoms are arranged as closely as possible in a hexagonal sym-
metry, to form the hexagonal close-packed (HCP) structure shown in Figure 1.33a.
This structure corresponds to packing spheres as closely as possible first as one layer A,
as shown in Figure 1.33b. You can visualize this by arranging six pennies as closely as
possible on a table top. On top of layer A we can place an identical layer B, with the
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Figure 1.34  The diamond unit cell
which is cubic. The cell has eight
atoms.

Gray Sn (a-Sn) and the elemental
semiconductors Ge and Si have this

crystal structure.

S

a

Zn

a

a

Figure 1.35  The zinc blende (ZnS)
cubic crystal structure.
Many important compound crystals have
the zinc blende structure. Examples:
AlAs, GaAs, GaP, GaSb, InAs, InP,
InSb, ZnS, ZnTe.

spheres taking up the voids on layer A, as depicted in Figure 1.33b. The third layer can
be placed on top of B and lined up with layer A. The stacking sequence is therefore
ABAB. ... A unit cell for the HCP structure is shown in Figure 1.33c, which shows
that this is not a cubic structure. The unit cell shown, although convenient, is not the
smallest unit cell. The smallest unit cell for the HCP structure is shown in Figure 1.33d
and is called the hexagonal unit cell. The repetition of this unit cell will generate the
whole HCP structure. The atomic packing density in the HCP crystal structure is 74 per-
cent, which is the same as that in the FCC structure.

Covalently bonded solids, such as silicon and germanium, have a diamond crystal
structure brought about by the directional nature of the covalent bond, as shown in
Figure 1.34 (see also Figure 1.6). The rigid local bonding geometry of four Si-Si
bonds in the tetrahedral configuration forces the atoms to form what is called the
diamond cubic crystal structure. The unit cell in this case can be identified with the
cubic structure. Although there are atoms at each comer and at the center of each face,
indicating an FCC-like structure, there are four atoms within the cell as well. Thus,
there are eight atoms in the unit cell. The diamond unit cell can actually be described
in terms of an FCC lattice (a geometric arrangement of points) with each lattice point
having a basis of two Si atoms. If we place the two Si atoms at each site appropriately,
for example, one right at the lattice point, and the other displaced from it by a quarter
lattice distance a /4 along the cube edges, we can easily generate the diamond unit cell.
In the copper crystal, each FCC lattice point has one Cu atom, whereas in the Si crys-
tal each lattice point has two Si atoms; thus there are 4 x 2 = 8 atoms in the diamond
unit cell.

In the GaAs crystal, as in the silicon crystal, each atom forms four directional
bonds with its neighbors. The unit cell looks like a diamond cubic, as indicated in
Figure 1.35 but with the Ga and As atoms alternating positions. This unit cell is termed
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Ratio of radii = 1      Ratio of radii = 0.75     C\ i f'QSr )
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Nearest neighbors = 6   Nearest neighbors = 4    A two-dimensional crystal of
pennies and quarters

Figure 1.36  Packing of coins on a table top to build a two-dimensional crystal.

the zinc blende structure after ZnS, which has this type of unit cell. Many important
compound semiconductors have this crystal structure, GaAs being the most commonly
known. The zinc blende unit cell can also be described in terms of a fundamental FCC

lattice and a basis that has two atoms, Zn and S (or Ga and As). For example, we can
place one Zn at each lattice point and one S atom displaced from the Zn by a /4 along
the cube edges.

In ionic solids, the cations (e.g., Na+) and the anions (CI") attract each other
nondirectionally. The crystal structure depends on how closely the opposite ions can be
brought together and how the same ions can best avoid each other while maintaining
long-range order, or maintaining symmetry. These depend on the relative charge and
relative size per ion.

To demonstrate the importance of the size effect in two dimensions, consider iden-
tical coins, say pennies (1-cent coins). At most, we can make six pennies touch one
penny, as shown in Figure 1.36. On the other hand, if we use quarters11 (25-cent coins)
to touch one penny, at most only five quarters can do so. However, this arrangement
cannot be extended to the construction of a two-dimensional crystal with periodicity.
To fulfill the long-range symmetry requirement for crystals, we can only use four quar-
ters to touch the penny and thereby build a two-dimensional "penny-quarter" crystal,
which is shown in the figure. In the two-dimensional crystal, a penny has four quarters
as nearest neighbors; similarly, a quarter has four pennies as nearest neighbors. A con-
venient unit cell is a square cell with one-quarter of a penny at each comer and a full
penny at the center (as shown in the figure).

The three-dimensional equivalent of the unit cell of the penny-quarter crystal is the
NaCl unit cell shown in Figure 1.37. The Na+ ion is about half the size of the CI" ion,
which permits six nearest neighbors while maintaining long-range order. The repetition
of this unit cell in three dimensions generates the whole NaCl crystal, which was de-
picted in Figure 1.9b.

A similar unit cell with Na+ and Cl~ interchanged is also possible and equally
convenient. We can therefore describe the whole crystal with two interpenetrating FCC

11 Although many are familiar with the United States coinage, any two coins with a size ratio of about 0.75 would
work out the same.
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Figure 1.37 A possible reduced-
sphere unit cell for the NaCI (rock salt)
crystal.
An alternative unit cell may have Na+
and CI interchanged. Examples:
AgCI, CaO, CsF, LiF, LiCI, NaF, NaCI,
KF, KCI, MgO.
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Figure 1.38 A possible reduced-sphere
umf cell for the CsCl crystal.
An alternative unit cell may have Cs* and
CI interchanged. Examples: CsCl, CsBr,
Csl, TICI, TlBr, Til.

unit cells, each having oppositely charged ions at the comers and face centers. Many
ionic solids have the rock salt (NaCI) crystal structure.

When the cation and anions have equal charges and are about the same size, as
in the CsCl crystal, the unit cell is called the CsCl structure, which is shown in
Figure 1.38. Each cation is surrounded by eight anions (and vice versa), which are at

Table 1.3  Properties of some important crystal structures

Crystal
Structure

a and/?

(/? is the Radius

of the Atom)

Coordination

Number (CN)

Number of

Atoms per
Unit Cell

Atomic

Packing
Factor Examples

Simple cubic

BCC

FCC

HCP

Diamond

Zinc blende

NaCI

CsCl

a = 2R

a =

c =

a -

2R

1
.
633a

75

6

8

12

12

4

4

6

8

1

2

4

2

8

8

4 cations

4 anions

1 cation

1 anion

0
.52 No metals (Except Po)

0
.68 Many metals: a-Fe, Cr, Mo, W

0
.74 Many metals: Ag, Au, Cu, Pt

0
.74 Many metals: Co, Mg, Ti, Zn

0
.
34 Covalent solids:

Diamond, Ge, Si, a-Sn

0
.34 Many covalent and ionic solids.

Many compound semiconductors.
ZnS, GaAs, GaSb, InAs, InSb

0
.67 Ionic solids such as NaCI, AgCI,

LiF, MgO, CaO

(NaCI) Ionic packing factor depends on
relative sizes of ions.

Ionic solids such as CsCl, CsBr, Csl



i. 8 The Crystalline State 55

the comers of a cube. This is not a true BCC unit cell because the atoms at various

BCC lattice points are different. (As discussed in Section 1.13, CsCl has a simple cubic
lattice with a basis that has one CI" ion and one Na+ ion.)

Table 1.3 summarizes some of the important properties of the main crystal struc-
tures considered in this section.

THE COPPER (FCC) CRYSTAL Consider the FCC unit cell of the copper crystal shown in
Figure 1.39.

a. How many atoms are there per unit cell?
b

. If R is the radius of the Cu atom, show that the lattice parameter a is given by a = Rl-Jl.
c. Calculate the atomic packing factor (APF) defined by

Volume of atoms in unit cell
APF

Volume of unit cell

d
. Calculate the atomic concentration (number of atoms per unit volume) in Cu and the den-

sity of the crystal given that the atomic
'mass of Cu is 63.55 g mol-1 and the radius of the

Cu atom is 0.128 nm.

EXAMPLE 1.13

SOLUTION

a.

b
.

There are four atoms per unit cell. The Cu atom at each comer is shared with eight other
adjoining unit cells. Each Cu atom at the face center is shared with the neighboring unit
cell. Thus, the number of atoms in the unit cell = 8 comers (| atom) + 6 faces (  atoms) =
4 atoms.

Consider the unit cell shown in Figure 1.39 and one of the cubic faces. The face is a square
of side a and the diagonal is Va2 + a2 oxa-Jl. The diagonal has one atom at the center of
diameter 2R, which touches two atoms de tered at the comers. The diagonal, going from
comer to comer, is therefore R + 2R + fl/Thus, 4# = ajl and a = 4R/<S2= Rljl.
Therefore, a = 0.3620 nm. /

c.
APF

(Number of atoms in unit cell) x (Volume of atom)

Volume of unit cell

4 42
4 x -tt/?3       - nR?
 

3      
_

 3 427r

a
3 (/?2v/2)3 3(2v/2)3

0
.
74

R

2a

aR

a

-th of an atom

Half of an atom

Figure 1.39  The FCC unit cell.
The atomic radius is ft and the lattice

parameter is a.
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d
.   In general, if there are x atoms in the unit cell, the atomic concentration is

Number of atoms in unit cell x

Thus, for Cu

at Volume of unit cell a3

Wat = = r = 8.43 x 1022 cm
"3

(0.3620 x lO"7 cm)3

There are x atoms in the unit cell, and each atom has a mass of Mat/NA grams. The density
p is

x
Mass of all atoms in unit cell

P = -
Volume of unit cell a3

1
    . natMat     (8.43 x 1022 cm-3)(63.55 gmol"1)    _ ,

that is,      p = =  = 8.9 g cm-3y      NA 6.022 x 1023 mol"1 6

The expression p = (natMat)/NA is independent of the crystal structure.

1
.
8

.
2 Crystal Directions and Planes

There can be a number of possibilities for choosing a unit cell for a given crystal struc-
ture, as is apparent in Figure 1.33c and d for the HCP crystal. As a convention, we gen-
erally represent the geometry of the unit cell as a parallelepiped with sides a, £,and c
and angles a, and y, as depicted in Figure 1.40a. The sides a, b, and c and angles
a, fi, and y are referred to as tne lattice parameters. To establish a reference frame
and to apply three-dimensional geometry, we insert an xyz coordinate system. The
jc, y, and z axes follow the edges of the parallelepiped and the origin is at the lower-
left rear comer of the cell. The unit cell extends along the x axis from 0 to a, along y
from 0 to b, and along z from 0 to c.

For Cu and Fe, the unit-cell geometry has a = b = c, a =  = y = 90°, and
cubic symmetry. For Zn, the unit cell has hexagonal geometry, with a = b c,
a = p = 90°

, and y = 120°, as shown in Figure 1.33d.
In explaining crystal properties, we must frequently specify a direction in a crys-

tal, or a particular plane of atoms. Many properties, for example, the elastic modulus,
electrical resistivity, magnetic susceptibility, etc., are directional within the crystal. We
use the convention described here for labeling crystal directions based on three-
dimensional geometry.

All parallel vectors have the same indices. Therefore, the direction to be labeled
can be moved to pass through the origin of the unit cell. As an example, Figure 1.40b
shows a direction whose indices are to be determined. A point P on the vector can be
expressed by the coordinates x0, y0, Zo, where x0, y0, and Zo are projections from point
P onto the jc, y, and z axes, respectively, as shown in Figure 1.40b. It is generally con-
venient to place P where the line cuts a surface (though this is not necessary). We can
express these coordinates in terms of the lattice parameters a, b, and c, respectively.
We then have three coordinates, say x\, y\, and z\, for point P in terms of a, b, and c.
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(a) A parallelepiped is chosen to describe
the geometry of a unit cell. We line the
x, y, and z axes with the edges of the
parallelepiped taking the lower-left rear
corner as the origin.
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(b) Identification of a direction in a crystal.
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(c) Directions in the cubic crystal system.
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Figure 1.40

For example, if

then P is at

1 1
Xo,yo>Zo      are -a,b,-c

1 
,
 1

*i, y\, z\      i.e., 1, -

We then multiply or divide these numbers until we have the smallest integers (which
may include 0). If we call these integers u9v9 and w, then the direction is written in square
brackets without commas as [uv w]. If any integer is a negative number, we use a bar on
top of that integer. For the particular direction in Figure 1.40b, we therefore have [121].
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Some of the important directions in a cubic lattice are shown in Figure 1. 40c. For
example, the jc, y, and z directions in the cube are [100], [010], and [001], as shown.
Reversing a direction simply changes the sign of each index. The negative jc, y, and z
directions are [100], [010], and [001], respectively.

Certain directions in the crystal are equivalent because the differences between
them are based only on our arbitrary decision for labeling x, y, and z directions. For
example, [100] and [010] are different simply because of the way in which we labeled
the x and y axes. Indeed, directional properties of a material (e.g., elastic modulus,
and dielectric susceptibility) along the edge of the cube [100] are invariably the same
as along the other edges, for example, [010] and [001]. All of these directions along
the edges of the cube constitute a family of directions, which is any set of directions
considered to be equivalent. We label a family of directions, for example, [100], [010],
[001], ..., by using a common notation, triangular brackets. Thus, (100) represents
the family of six directions, [100], [010], [001], [100], [010], and [001] in a cubic crysx
tal. Similarly, the family of diagonal directions in the cube, shown in Figure 1.40c, is
denoted (111).

We also frequently need to describe a particular plane in a crystal. Figure 1.41
shows a general unit cell with a plane to be labeled. We use the following convention,
called the Miller indices of a plane, for this purpose.

We take the intercepts x0, y0, and Zo of the plane on the jc, y, and z axes, respec-
tively. If the plane passes through the origin, we can use another convenient parallel
plane, or simply shift the origin to another point. All planes that have been shifted by
a lattice parameter have identical Miller indices.

We express the intercepts x0iy0, and Zo in terms of the lattice parameters a, b, and
c, respectively, to obtain xi,y\, and zi. We then invert these numbers. Taking the rec-
iprocals, we obtain

_

L JL 1

We then clear all fractions, without reducing to lowest integers, to obtain a set of
integers, say h, k, and £. We then put these integers into parentheses, without commas,
that is, (hkt). For the plane in Figure 1.41a, we have

Intercepts x0i y0i and Zo are a, lby and oo c.
Intercepts jti, y\, and z\, in terms of a, b, and c, are    1, and oo.

Reciprocals l/x\, l/y\, and l/zi are 1/ , 1/1, l/oo = 2, 1,0.
This set of numbers does not have fractions, so it is not necessary to clear frac-

tions. Hence, the Miller indices (hki) are (210).
If there is a negative integer due to a negative intercept, a bar is placed across the

top of the integer. Also, if parallel planes differ only by a shift that involves a multiple
number of lattice parameters, then these planes may be assigned the same Miller
indices. For example, the plane (010) is the xz plane that cuts the y axis at - b. If we
shift the plane along y by two lattice parameters (2b), it will cut the y axis at b and
the Miller indices will become (010). In terms of the unit cell, the (010) plane is the
same as the (010) plane, as shown in Figure 1.41b. Note that not all parallel planes are
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(b) Various planes in the cubic lattice.

Figure 1.41   Labeling of crystal planes and typical examples in the cubic lattice.

identical. Planes can have the same Miller indices only if they are separated by a mul-
tiple of the lattice parameter. For example, the (010) plane is not identical to the (020)
plane, even though they are geometrically parallel. In terms of the unit cell, plane (010)
is a face of the unit cell cutting the y axis at b, whereas (020) is a plane that is halfway
inside the unit cell, cutting the y axis at \b. The planes contain different numbers of
atoms. The (020) plane cannot be shifted by the lattice parameter b to coincide with
plane (010).

It is apparent from Figure 1.41b that in the case of the cubic crystal, the \hkl\
direction is always perpendicular to the (hkt) plane.

Certain planes in the crystal belong to a family of planes because their indices dif-
fer only as a consequence of the arbitrary choice of axis labels. For example, the in-
dices of the (100) plane become (010) if we switch the x and y axes. All the (100),
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EXAMPLE 1.14

(010), and (001) planes, and hence the parallel (100), (010), (001) planes, form a fam-
ily of planes, conveniently denoted by curly brackets as {100}.

Frequently we need to know the number of atoms per unit area on a given plane
(hkl). For example, if the surface concentration of atoms is high on one plane, then
that plane may encourage oxide growth more rapidly than another plane where there
are less atoms per unit area. Planar concentration of atoms is the number of atoms
per unit area, that is, the surface concentration of atoms, on a given plane in the crys-
tal. Among the {100}, {110}, and {111}, planes in FCC crystals, the most densely
packed planes, those with the highest planar concentration, are {111} planes and the
least densely packed are {110}.

MILLER INDICES AND PLANAR CONCENTRATION Consider the plane shown in Figure 1.42a,
which passes through one side of a face and the center of an opposite face in the FCC lattice. The
plane passes through the origin at the lower-left rear comer. We therefore shift the origin to say
point O' at the lower-right rear comer of the unit cell. In terms of a, the plane cuts the x, y, and
z axes at oo, -1, respectively. We take the reciprocals to obtain, 0, -1, 2. Therefore, the
Miller indices are (012).

To calculate the planar concentration n ko on a given (hki) plane, we consider a bound
area A of the (hki) plane within the unit cell as in Figure 1.42b. Only atoms whose centers lie
on A are involved in n ). For each atom, we then evaluate what portion of the atomic cross
section (a circle in two dimensions) cut by the plane (hki) is contained within A. Consider the
Cu FCC crystal with a = 0.3620 nm.

The (100) plane corresponds to a cube face and has an area A = a2. There is one full
atom at the center; that is, the (100) plane cuts through one full atom, one full circle in two
dimensions, at the face center as in Figure 1.42b. However, not all comer atoms are within A.
Only a quarter of a circle is within the bound area A in Figure 1.42b.

Number of atoms in A = (4 comers) x (£ atom) + 1 atom at face center = 2

z

FCC unit cell
(012)

o
.

o 1y = -a 1t
z=-a

2
a

m4

O'

o

x

-asfl-
a

a

€»

(3
A = a2

a A = a2V2

€» 0-©-€)

(b) (100) plane (c) (110) plane

(a) (012) plane

Figure 1,42  The (012) plane and planar concentrations in an FCC crystal.
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Planar concentration «(ioo) of (100) is

4(i) + 1      2 2
"(ioo) =  5 - ~7 - TTTTT  ir,_9   x2 = 15.3 atoms nma2 a2     (0.3620 x 10 9 m)2

Consider the (110) plane as in Figure 1.42c. The number of atoms in the area A =
(a)(a\f2) defined by two face diagonals and two cube sides is

(4 comers) x     atom) + (2 face diagonals) x     atom at diagonal center) = 2
Planar concentration on (110) is

4(i) + 2(i) 2
ttmo) = - 7= - =  7= = 10.8 atoms nm 2

(fl)(flV2) 02V2

Similar for the (111) plane, n(111) is 17.0 atoms nm-2. Clearly the (111) planes are the most
and (110) planes are the least densely packed among the (100), (110), and (111) planes.

1
.
8

.
3 Allotropy and Carbon

Certain substances can have more than one crystal structure, iron being one of the best-
known examples. This characteristic is termed polymorphism or allotropy. Below
912 0C, iron has the BCC structure and is called a-Fe. Between 912 0C and 1400 0C,
iron has the FCC structure and is called y-Fe. Above 1400 0C, iron again has the BCC
structure and is called 5-Fe. Since iron has more than one crystal structure, it is called
polymorphic. Each iron crystal structure is an allotrope or a polymorph.

The allotropes of iron are all metals. Furthermore, one allotrope changes to another at
a well-defined temperature called a transition temperature, which in this case is 912 0C.

Many substances have allotropes that exhibit widely different properties. More-
over, for some polymorphic substances, the transformation from one allotrope to
another cannot be achieved by a change of temperature, but requires the application of
pressure, as in the transformation of graphite to diamond.

Carbon has three important crystalline allotropes: diamond, graphite, and the
newly discovered buckminsterfullerene. These crystal structures are shown in Fig-
ure 1.43a, b and c, respectively, and their properties are summarized in Table 1.4.
Graphite is the carbon form that is stable at room temperature. Diamond is the stable
form at very high pressures. Once formed, diamond continues to exist at atmospheric
pressures and below about 900 0C

,
 because the transformation rate of diamond to

graphite is virtually zero under these conditions. Graphite and diamond have widely
differing properties, which lead to diverse applications. For example, graphite is an
electrical conductor, whereat diamond is an insulator. Diamond is the hardest sub-

stance known. On the other hand, the carbon layers in graphite can readily slide over
each other under shear stresses, because the layers are only held together by weak
secondary bonds (van der Waals bonds). This is the reason for graphite's lubricating
properties.

Buckminsterfullerene is another polymorph of carbon. In the buckminsterfullerene
molecule (called the "buckyball"), 60 carbon atoms bond with each other to form a
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Figure 1.43  The three allotropes of carbon.

perfect soccer ball-type molecule. The €50 molecule has 12 pentagons and 20 hexa-
gons joined together to form a spherical molecule, with each C atom at a comer, as
depicted in Figure 1.43c. The molecules are produced in the laboratory by a carbon arc
in a partial atmosphere of an inert gas (He); they are also found in the soot of partial
combustion. The crystal form of buckminsterfullerene has the FCC structure, with
each C6o molecule occupying a lattice point and being held together by van der Waals
forces, as shown in Figure 1.43c. The Buckminsterfullerene crystal is a semiconductor,
and its compounds with alkali metals, such as K3C60, exhibit superconductivity at low
temperatures (below 18 K). Mechanically, it is a soft material.

Diamond, graphite, and the fullerene crystals are not the only crystalline
allotropes of carbon, and neither are they the only structural forms of carbon. For
example, lonsdaleite, which is another crystalline allotrope, is hexagonal diamond
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Table 1.4  Crystalline allotropes of carbon (p is the density and Y is the elastic modulus or Young's modulus)

Graphite Diamond

Buckminsterfullerene

Crystal

Structure Covalent bonding within layers.
Van der Waals bonding
between layers. Hexagonal
unit cell.

Electrical Good electrical conductor.

and Thermal conductivity
thermal comparable to metals.
properties

Mechanical        Lubricating agent. Machinable.
properties Bulk graphite:

K  27 GPa

p = 2.25 g cm""3

Comment Stable allotrope at atmospheric
pressure

Uses, Metallurgical crucibles, welding
potential electrodes, heating elements,
uses electrical contacts

, refractory
applications.

Covalently bonded network.
Diamond crystal structure.

Very good electrical
insulator. Excellent

thermal conductor, about

five times more than silver

or copper.

The hardest material.

K= 827 GPa

p = 3.25 g cm-3

High-pressure allotrope.

Cutting tool applications.
Diamond anvils. Diamond

film coated drills, blades,

bearings, etc. Jewelry. Heat
conductor for ICs. Possible

thin-film semiconductor

devices, as the charge
carrier mobilities are large.

Covalently bonded Ceo
spheroidal molecules held in
an FCC crystal structure by
van der Waals bonding.

Semiconductor. Compounds
with alkali metals

{e.g., K3C60) exhibit
superconductivity.

Mechanically soft.
Y % 18 GPa

p = 1.65 g cm"3

Laboratory synthesized.
Occurs in the soot of partial
combustion.

Possible future semiconductor

or superconductivity
applications.

in which each C atom covalently bonds to four neighbors, as in diamond, but the
crystal structure has hexagonal symmetry. (It forms from graphite on meteors when
the meteors impact the Earth; currently it is only found in Arizona.) Amorphous
carbon has no crystal structure (no long-range order), so it is not a crystalline
allotrope, but many scientists define it as a form or phase of carbon, or as a struc-
tural "allotrope." The recently discovered carbon nanotubes are thin and long
carbon tubes, perhaps 10 to 100 microns long but only several nanometers in diam-
eter, hence the name nanotube. They are tubes made from rolling a graphite sheet
into a tube and then capping the ends with hemispherical buckyballs. The carbon
tube is really a single macromolecule rather than a crystal in its traditional sense12;
it is a structural form of carbon. Carbon nanotubes have many interesting and
remarkable properties and offer much potential for various applications in electron-
ics; the most topical currently being carbon nanotube field emission devices.
(Chapter 4 has an example.)

12 It is possible to define a unit cell on the surface of a carbon nanotube and apply various crystalline concepts, as
some scientists have done. To date, however, there seems to be no single crystal of carbon nanotubes in the same
way that there is a fullerene crystal in which the C60 molecules are bonded to form an FCC structure.
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1
.9    CRYSTALLINE DEFECTS AND THEIR

SIGNIFICANCE

By bringing all the atoms together to try to form a perfect crystal, we lower the total
potential energy of the atoms as much as possible for that particular structure. What
happens when the crystal is grown from a liquid or vapor; do you always get a perfect
crystal? What happens when the temperature is raised? What happens when impurities
are added to the solid?

There is no such thing as a perfect crystal. We must therefore understand the types
of defects that can exist in a given crystal structure. Quite often, key mechanical and
electrical properties are controlled by these defects.

1
.
9
.

1   Point Defects: Vacancies and Impurities

Above the absolute zero temperature, all crystals have atomic vacancies or atoms
missing from lattice sites in the crystal structure. The vacancies exist as a requirement
of thermal equilibrium and are called thermodynamic defects. Vacancies introdu6e
disorder into the crystal by upsetting the perfect periodicity of atomic arrangements.

We know from the kinetic molecular theory that all the atoms in a crystal vibrate
about their equilibrium positions with a distribution of energies, a distribution that closely
resembles the Boltzmann distribution. At some instant, there may be one atom with suffi-
cient energy to break its bonds and jump to an adjoining site on the surface, as depicted in
Figure 1.44. This leaves a vacancy behind, just below the surface. This vacancy can then
diffuse into the bulk of the crystal, because a neighboring atom can diffuse into it.

This latter process of vacancy creation has been shown to be a sequence of events
in Figure 1.44. Suppose that Ev is the average energy required to create such a
vacancy. Then only a fraction, exp(-Ev/kT), of all the atoms in the crystal can have
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(a) Perfect crystal
without vacancies
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(b) An energetic
atom at the surface
breaks bonds and
jumps on to a new
adjoining position on
the surface. This
leaves behind a

vacancy.
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(c) An atom in the
bulk diffuses to fill
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vacancy toward the
bulk.
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(d) Atomic diffusions
cause the vacancy to
diffuse into the bulk.

Figure 1.44 Generation of a vacancy by the diffusion of an atom to the surface and the subsequent
diffusion of the vacancy into the bulk.
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(a) A vacancy in the
crystal.

(b) A substitutional
impurity in the crystal. The
impurity atom is larger
than the host atom.

(c) A substitutional impurity (d) An interstitial impurity
in the crystal. The impurity in the crystal. The impurity
atom is smaller than the occupies an empty space
host atom. between host atoms.

Figure 1.45   Point defects in the crystal structure.
The regions around the point defect become distorted; the lattice becomes strained.

sufficient energy to create vacancies. If the number of atoms per unit volume in the
crystal is N, then the vacancy concentration nv is given by13

nv = N exp(-£) [1.35]

At all temperatures above absolute zero, there will always be an equilibrium con-
centration of vacancies, as dictated by Equation 1.35. Although we considered only
one possible vacancy creation process in Figure 1.44 there are other processes that also
create vacancies. Furthermore, we have shown the vacancy to be the same size in the
lattice as the missing atom, which is not entirely true. The neighboring atoms around a
vacancy close in to take up some of the slack, as shown in Figure 1.45a. This means
that the crystal lattice around the vacancy is distorted from the perfect arrangement
over a few atomic dimensions. The vacancy volume is therefore smaller than the vol-
ume of the missing atom.

Vacancies are only one type of point defect in a crystal structure. Point defects
generally involve lattice changes or distortions of a few atomic distances, as depicted in
Figure 1.45. The crystal structure may contain impurities, either naturally or as a con-
sequence of intentional addition, as in the case of silicon crystals grown for microelec-
tronics. If the impurity atom substitutes directly for the host atom, the result is called a
substitutional impurity and the resulting crystal structure is that of a substitutional
solid solution, as shown in Figure 1.45b and c. When a Si crystal is "doped" with small
amounts of arsenic (As) atoms, the As atoms substitute directly for the Si atoms in the
Si crystal; that is, the arsenic atoms are substitutional impurities. The impurity atom
can also place itself in an interstitial site, that is, in a void between the host atoms, as

0

Equilibrium
concentration

of vacancies

13 The proper derivation of the vacancy concentration involves considering thermodynamics and equilibrium
concepts. In the actual thermodynamic expression, the pre-exponential term in Equation 1.35 is not unity but a factor
that depends on the change in the entropy of the crystal upon vacancy creation. For nearly all practical purposes
Equation 1.35 is sufficient.
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(a) Schottky and Frenkel defects in an ionic (b) Two possible imperfections caused by ionized
crystal. substitutional impurity atoms in an ionic crystal.

Figure 1.46  Point defects in ionic crystals.

carbon does in the BCC iron crystal. In that case, the impurity is called an interstitial
impurity, as shown in Figure 1.45d.

In general, the impurity atom will have both a different valency and a different
size. It will therefore distort the lattice around it. For example, if a substitutional im-
purity atom is larger than the host atom, the neighboring host atoms will be pushed
away, as in Figure 1.45b. The crystal region around an impurity is therefore dis-
torted from the perfect periodicity and the lattice is said to be strained around a
point defect. A smaller substitutional impurity atom will pull in the neighboring
atoms, as in Figure 1.45c. Typically, interstitial impurities tend to be small atoms
compared to the host atoms, a typical example being the small carbon atom in the
BCC iron crystal.

In an ionic crystal, such as NaCl, which consists of anions (Cl~) and cations
(Na+), one common type of defect is called a Schottky defect. This involves a miss-
ing cation-anion pair (which may have migrated to the surface), so the neutrality is
maintained, as indicated in Figure 1.46a. These Schottky defects are responsible for
the major optical and electrical properties of alkali halide crystals. Another type of de-
fect in the ionic crystal is the Frenkel defect, which occurs when a host ion is dis-
placed into an interstitial position, leaving a vacancy at its original site. The interstitial
ion and the vacancy pair constitute the Frenkel defect, as identified in Figure 1.46a.
For the AgCl crystal, which has predominantly Frenkel defects, an Ag+ is jn an inter-
stitial position. The concentration of such Frenkel defects is given by Equation 1.35,
with an appropriate defect creation energy defect instead of Ev.

Ionic crystals can also have substitutional and interstitial impurities that become
ionized in the lattice. Overall, the ionic crystal must be neutral. Suppose that an Mg2"1"
ion substitutes for an Na+ ion in the NaCl crystal, as depicted in Figure 1.46b. Since
the overall crystal must be neutral, either one Na"1" ion is missing somewhere in the
crystal, or an additional Cl

~

 ion exists in the crystal. Similarly, when a doubly charged
negative ion, such as O2-

,
 substitutes for Cl_, there must either be an additional cation

(usually in an interstitial site) or a missing Cl~ somewhere in order to maintain charge
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neutrality in the crystal. The most likely type of defect depends on the composition of
the ionic solid and the relative sizes and charges of the ions.

VACANCY CONCENTRATION IN A METAL The energy of formation of a vacancy in the alu-
minum crystal is about 0.70 eV. Calculate the fractional concentration of vacancies in Al at
room temperature, 300 K, and very close to its melting temperature 660 0C

. What is the vacancy
concentration at 660 0C given that the atomic concentration in Al is about 6.0 x 1022 cm

-3?

SOLUTION

Using Equation 1.35, the fractional concentration of vacancies are as follows:
.

At300oC,

(1.38 x lO"23 JK-1)(300K) J
= 1

.
7 x lO"12

At 660 0Cor933 K,

n
1_ /_ £V\ _ f" (0.7QeV)(1.6 x IP"1- 
- expj-    J - exp  io_23 j

_

 /
_

 EA 
_

 f (0.70 eV)(1.6 x IP"19 JeV1)]
- -exp -- J -exp          lO"23 JK"1:(1.38

1
.
7 x lO"4

1)(933 K) J

That is, almost 1 in 6000 atomic sites is a vacancy. The atomic concentration Af in Al is about
6

.0 x 1022 cm-3, which means that the vacancy concentration nv at 660 0C is

nv = (6.0 x 1022 cm
-3)(1.7 x lO-4) = 1.0 x 1019 cm-3

The mean vacancy separation (on the order of «~1/3) at 660 0C is therefore roughly 5 nm. The
mean atomic separation in Al is ~ 0.3 nm (~ Af ~1/3), so the mean separation between vacancies
is only about 20 atomic separations! (A more accurate version of Equation 1.35, with an en-
tropy term, shows that the vacancy concentration is even higher than the estimate in this exam-
ple.) The increase in the linear thermal expansion coefficient of a metal with temperature near
its melting temperature, as shown for Mo in Figure 1.20, has been attributed to the generation
of vacancies in the crystal.

EXAMPLE 1.15

VACANCY CONCENTRATION IN A SEMICONDUCTOR The energy of vacancy formation in the
Ge crystal is about 2.2 eV. Calculate the fractional concentration of vacancies in Ge at 938 0C, just
below its melting temperature. What is the vacancy concentration given that the atomic mass Mat
and density p of Ge are 72.64 g mol-1 and 5.32 g cm-3

, respectively? Neglect the change in the
density with temperature which is small compared with other approximations in Equation 1.35.

SOLUTION

Using Equation 1.34, the fractional concentration of vacancies at 938 0C or 1211 K is

(2.2eV)(1.6 x lO"19 JeV1)nv (   Ev\ \
=expl~ j=:expL" 7

.
0 x lO"10

(1.38 x lO"23 JK-1)(12n K)

which is orders of magnitude less than that for Al at its melting temperature in Example 1.15;
vacancies in covalent crystals cost much more energy than those in metals.

EXAMPLE 1.16
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The number of Ge atoms per unit volume is

pNA     (5.32 g cm-3)(6.022 x 1023 g moP1)
4

.
41 x 1022 cm*3

Mat 72.64 gmol-1
so that at 938 0C

,

nv = (4.4 x 1022 cm
-3)(7.0 x lO"10) = 3.1 x 1013 cm"3

Only 1 in 109 atoms is a vacancy.

1
.9.

2 Line Defects: Edge and Screw Dislocations

A line defect is formed in a crystal when an atomic plane terminates within the crystal
instead of passing all the way to the end of the crystal, as depicted in Figure 1.47a. The
edge of this short plane of atoms is therefore like a line running inside the crystal. The
planes neighboring (i.e., above) this short plane are dislocated (displaced) with respect
to those below the line. We therefore call this type of defect an edge dislocation and
use an inverted T symbol. The vertical line corresponds to the half-plane of atoms in
the crystal, as illustrated in Figure 1.47a. It is clear that the atoms around the disloca-
tion line have been effectively displaced from their perfect-crystal equilibrium posi-
tions, which results in atoms being out of registry above and below the dislocation. The
atoms above the dislocation line are pushed together, whereas those below it are pulled
apart, so there are regions of compression and tension above and below the dislocation
line, respectively, as depicted by the shaded region around the dislocation line in Fig-
ure 1.47b. Therefore, around a dislocation line, we have a strain field due to the

stretching or compressing of bonds.
The energy required to create a dislocation is typically in the order of 100 eV per

nm of dislocation line. On the other hand, it takes only a few eV to form a point defect,

A

Edge dislocation line

(a) Dislocation is a line defect. The dislocation
shown runs into the paper.

t
Compression

Tension

(b) Around the dislocation there is a strain field as
the atomic bonds have been compressed above
and stretched below the dislocation line.

Figure 1.47 Dislocation in a crystal. This is a line defect, which is accompanied by lattice distortion and hence a
lattice strain around it.
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Figure 1.48 A screw dislocation, which involves shearing one portion of a perfect crystal with respect to another, on one
side of a line (AB).

[a) A screw dislocation in a crystal

which is a few nanometers in dimension. In other words, forming a number of point
defects is energetically more favorable than forming a dislocation. Dislocations are not

equilibrium defects. They normally arise when the crystal is deformed by stress, or
when the crystal is actually being grown.

Another type of dislocation is the screw dislocation, which is essentially a shearing
of one portion of the crystal with respect to another, by one atomic distance, as illustrated
in Figure 1.48a. The displacement occurs on either side of the screw dislocation line.
The circular arrow around the line symbolizes the screw dislocation. As we move away
from the dislocation line, the atoms in the upper portion become more out of registry
with those below; at the edge of the crystal, this displacement is one atomic distance, as
illustrated in Figure 1.48b.

Both edge and screw dislocations are generally created by stresses resulting from
thermal and mechanical processing. A line defect is not necessarily either a pure edge
or a pure screw dislocation; it can be a mixture, as depicted in Figure 1.49. Screw dis-
locations frequently occur during crystal growth, which involves atomic stacking on
the surface of a crystal. Such dislocations aid crystallization by providing an additional
"edge

" to which the incoming atoms can attach, as illustrated in Figure 1.50. To
explain, if an atom arrives at the surface of a perfect crystal, it can only attach to one
atom in the plane below. However, if there is a screw dislocation, the incoming atom
can attach to an edge and thereby form more bonds; hence, it can lower its potential
energy more than anywhere else on the surface. With incoming atoms attaching to the
edges, the growth occurs spirally around the screw dislocation, and the final crystal
surface reflects this spiral growth geometry.

The phenomenon of plastic or permanent deformation of a metal depends
totally on the presence and motions of dislocations, as discussed in elementary books
on the mechanical properties of materials. In the case of electrical properties of metals,
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Figure 1.50  Screw dislocation aids
crystal growth -because the newly arriving
atom can attach to two or three atoms

instead of one atom and thereby form
more bonds.

Growth spiral on the surface of a
polypropylene crystal due to screw dislocation
aided crystal growth.
I SOURCE: Photo by Phillip Geil, Courtesy of
I Case Western Reserve University.

we will see in Chapter 2 that dislocations increase the resistivity of materials, cause
significant leakage current in a pn junction, and give rise to unwanted noise in various
semiconductor devices. Fortunately, the occurrence of dislocations in semiconductor
crystals can be controlled and nearly eliminated. In a metal interconnection line on a
chip, there may be an average of 104-105 dislocation lines per mm2 of crystal, whereas
a silicon crystal wafer that is carefully grown may typically have only 1 dislocation
line per mm2 of crystal.

1
.
9.3  Planar Defects: Grain Boundaries

Many materials are poly crystalline; that is, they are composed of many small crys-
tals oriented in different directions. In fact, the growth of a flawless single crystal
from what is called the melt (liquid) requires special skills, in addition to scientific
knowledge. When a liquid is cooled to below its freezing temperature, solidifica-
tion does not occur at every point; rather, it occurs at certain sites called nuclei,
which are small crystal-like structures containing perhaps 50 to 100 atoms. Figure
1
.51a to c depicts a typical solidification process from the melt. The liquid atoms

adjacent to a nucleus diffuse into the nucleus, thereby causing it to grow in size to
become a small crystal, or a crystallite, called a grain. Since the nuclei are ran-
domly oriented when they are formed, the grains have random crystallographic
orientations during crystallite growth. As the liquid between the grains is con-
sumed, some grains meet and obstruct each other. At the end of solidification, there-
fore, the whole structure has grains with irregular shapes and orientations, as shown
in Figure 1.51c.

It is apparent from Figure 1.51c that in contrast to a single crystal, a poly crys-
talline material has grain boundaries where differently oriented crystals meet. As indi-
cated in Figure 1.52, the atoms at the grain boundaries obviously cannot follow their
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Dislocations can be seen by examining a thin slice of the
sample under a transmission electron microscope (TEM).
They appear as dark lines and loops as shown here in a
Ni-Si al oy single crystal. The loop dislocations are
around NiaSi particles inside the crystal. The sample had
been mechanically deformed, which generates
dislocations.
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Left: A polycrystalline diamond film on the (100) surface of a single crystal silicon wafer. The film thickness is
6 microns and the SEM magnification is 6000.
Right: A 6-micron-thick CVD diamond film grown on a single crystal silicon wafer. SEM magnification is 8000.

I SOURCE: Courtesy of Dr. Paul May, The School of Chemistry, University of Bristol, England.
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(a) Nucleation (b) Growth (c) The solidified polycrystalline solid

Figure 1.51   Solidification of a polycrystalline solid from the melt. For simplicity, cubes represent atoms.

Foreign impurity
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Figure 1.52 The grain boundaries have broken bonds, voids, vacancies,
strained bonds, and interstitial-type atoms.
The structure of the grain boundary is disordered, and the atoms in the grain
boundaries have higher energies than those within the grains.

natural bonding habits, because the crystal orientation suddenly changes across the
boundary. Therefore, there are both voids at the grain boundary and stretched and bro-
ken bonds. In addition, in this region, there are misplaced atoms that do not follow the
crystalline pattern on either side of the boundary. Consequently, the grain boundary
represents a high-energy region per atom with respect to the energy per atom within
the bulk of the grains themselves. The atoms can diffuse more easily along a grain
boundary because (a) less bonds need to be broken due to the presence of voids and
(b) the bonds are strained and easily broken anyway. In many polycrystalline materi-
als, impurities therefore tend to congregate in the grain boundary region. We generally
refer to the atomic arrangement in the grain boundary region as being disordered due
to the presence of the voids and misplaced atoms.
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Since the energy of an atom at the grain boundary is greater than that of an
atom within the grain, these grain boundaries are nonequilibrium defects; conse-
quently, they try to reduce in size to give the whole structure a lower potential en-
ergy. At or around room temperature, the atomic diffusion process is slow; thus, the
reduction in the grain boundary is insignificant. At elevated temperatures, however,
atomic diffusion allows big grains to grow, at the expense of small grains, which
leads to grain coarsening (grain growth) and hence to a reduction in the grain
boundary area.

Mechanical engineers have learned to control the grain size, and hence the me-
chanical properties of metals to suit their needs, through various thermal treatment cy-
cles. For electrical engineers, the grain boundaries become important when designing
electronic devices based on polysilicon or any polycrystalline semiconductor. For
example, in highly polycrystalline materials, particularly thin-film semiconductors
(e.g., polysilicon), the resistivity is invariably determined by polycrystallinity, or grain
size, of the material, as discussed in Chapter 2.

1
.
9

.
4 Crystal Surfaces and Surface Properties

In describing crystal structures, we assume that the periodicity extends to infinity
which means that the regular array of atoms is not interrupted anywhere by the pres-
ence of real surfaces of the material. In practice, we know that all substances have real
surfaces. When the crystal lattice is abruptly terminated by a surface, the atoms at the
surface cannot fulfill their bonding requirements as illustrated in Figure 1.53. For sim-
plicity, the figure shows a Si crystal schematically sketched in two dimensions where
each atom in the bulk of the crystal has four covalent bonds, each covalent bond

H
2
0

Reconstructed Absorbed

Dangling bond        surface oxygen

Surface

Surface atoms

Bulk crystal

o

Figure 1.53  At the surface of a hypothetical two-dimensional crystal, the atoms cannot fulfill
their bonding requirements and therefore have broken, or dangling, bonds.
Some of the surface atoms bond with each other; the surface becomes reconstructed. The surface

can have physisorbed and chemisorbed atoms.
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having two electrons.14 The atoms at the surface are left with dangling bonds, bonds
that are half full, only having one electron. These dangling bonds are looking for atoms
to which they can bond. Two neighboring surface atoms can share each other's dan-
gling bond electrons, that is, form a surface bond with each other. This bonding be-
tween surface atoms causes a slight displacement of the surface atoms and leads to a
surface that has been reconstructed.

Atoms from the environment can also bond with the atoms on the crystal surface.
For example, a hydrogen atom can be captured by a dangling bond at the surface to
form a chemical bond as a result of which hydrogen becomes absorbed. Primary
bonding of foreign atoms to a crystal surface is called chemisorption. The H atom in
Figure 1.53 forms a covalent bond with a Si atom and hence becomes chemisorbed.
However, the H2O molecule cannot form a covalent bond, but, because of hydrogen
bonding, it can form a secondary bond with a surface Si atom and become adsorbed.
Secondary bonding of foreign atoms or molecules to a crystal surface is called
physisorption (physical adsorption). Water molecules in the air can readily become
adsorbed at the surface of a crystal. Although the figure also shows a physisorbed H2
molecule as an example, this normally occurs at very low temperatures where crystal
vibrations are too weak to quickly dislodge the H2 molecule. It should be remarked
that in many cases, atoms or molecules from the environment become adsorbed at the
surface for only a certain period of time; they have a certain sticking or dwell time. For
example, at room temperature, inert gases stick to a metal surface only for a duration
of the order of microseconds, which is extremely long compared with the vibrational
period of the crystal atoms (MO-12 seconds). A dangling bond can capture a free
electron from the environment if one is available in its vicinity. The same idea applies
to a dangling bond at a grain boundary as in Figure 1.52.

At sufficiently high temperatures, some of the absorbed foreign surface atoms can
diffuse into the crystal volume to become bulk impurities. Many substances have a nat-
ural oxide layer on the surface that starts with the chemical bonding of oxygen atoms to
the surface atoms and the subsequent growth of the oxide layer. For example, aluminum
surfaces always have a thin aluminum oxide layer. In addition, the surface of the oxide
often has adsorbed organic species of atoms usually from machining and handling. The
surface condition of a Si crystal wafer in microelectronics is normally controlled by first
etching the surface and then oxidizing it at a high temperature to form a Si02 passivat-
ing layer on the crystal surface. This oxide layer is an excellent barrier against the dif-
fusion of impurity atoms into the crystal. (It is also an excellent electrical insulator.)

Figure 1.53 shows only some of the possibilities at the surface of a crystal. Gener-
ally the surface structure depends greatly on the mode of surface formation, which
invariably involves thermal and mechanical processing, and previous environmental
history. One visualization of a crystal surface is based on the terrace-ledge-kink
model, the so-called Kossel model, as illustrated in Figure 1.54. The surface has
ledges, kinks, and various imperfections such as holes and dislocations, as well as
impurities which can diffuse to and from the surface. The dimensions of the various im-
perfections (e.g., the step size) depend on the process that generated the surface.

14 Not all possibilities shown in Figure 1.53 occur in practice; their occurrences depend on the preparation method
of the crystal.
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Figure 1.54  Typically, a crystal surface has many types of
imperfections, such as steps, ledges, kinks, crevices, holes, and
dislocations.
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.5 Stoichiometry, Nonstoichiometry, and Defect Structures

Stoichiometric compounds are those that have an integer ratio of atoms, for exam-
ple, as in CaF2 where two F atoms bond with one Ca atom. Similarly, in the compound
ZnO, if there is one O atom for every Zn atom, the compound is stoichiometric, as
schematically illustrated in Figure 1.55a. Since there are equal numbers of O2" anions

and Zn2"1" cations, the crystal overall is neutral. It is also possible to have a nonstoi-
chiometric ZnO in which there is excess zinc. This may result if, for example, there is
insufficient oxygen during the preparation of the compound. The Zn2+ ion has a radius
of 0.074 nm, which is about 1.9 times smaller than the 02~ anion (radius of 0.14 nm),
so it is much easier for a Zn2+ ion to enter an interstitial site than the O2" ion or the Zn

atom itself, which has a radius of 0.133 nm. Excess Zn atoms therefore occupy
interstitial sites as Zn2+ cations. Even though the excess zinc atoms are still ionized
within the crystal, their lost electrons cannot be taken by oxygen atoms, which are all

Oooooo
0O0O0O
Oooooo
oOoOoO
Oooooo

(a) Stoichiometric ZnO crystal with
equal number of anions and
cations and no free electrons

Oooooo o o2-
o OX) O o O oZn2+

V>Sy \ -n s~\ f-N . 
"Free" (or mobile) electron

\J U Kj vj {J U within the crystal
oOoCfeO
O o O cro o
(b) Nonstoichiometric ZnO crystal with
excess Zn in interstitial sites as Zn2+

cations

Figure 1.55   Stoichiometry and nonstoichiometry and the resulting defect structure.
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O2- anions, as indicated in Figure 1.55b. Thus, the nonstoichiometric ZnO with excess
Zn has Zn2+ cations in interstitial sites and mobile electrons within the crystal, which
can contribute to the conduction of electricity. Overall, the crystal is neutral, as the
number of Zn2+ ions is equal to the number of O2" ions plus two electrons from each
excess Zn. The structure shown in Figure 1.55b is a defect structure, since it deviates
from the stoichiometry.

1
.10    SINGLE-CRYSTAL CZOCHRALSKI GROWTH

The fabrication of discrete and integrated circuit (IC) solid-state devices requires semi-
conductor crystals with impurity concentrations as low as possible and crystals that
contain very few imperfections. A number of laboratory techniques are available for
growing high-purity semiconductor crystals. Generally, they involve either solidifica-
tion from the melt or condensation of atoms from the vapor phase. The initial process
in IC fabrication requires large single-crystal wafers that are typically 15 cm in diam-
eter and 0.6 mm thick. These wafers are cut from a long, cylindrical single Si crystal
(typically, 1-2 m in length).

Large, single Si crystals for IC fabrication are often grown by the Czochralski
method, which involves growing a single-crystal ingot from the melt, using solidifi-
cation on a seed crystal, as schematically illustrated in Figure 1.56a. Molten Si is held
in a quartz (crystalline Si02) crucible in a graphite susceptor, which is either heated by

Quartz
crucible

Graphite
susceptor

Graphite
resistance

heater

Argon gas -

Pull shaft

i I
Seed

J V crystal
Growing f     \ \

Si ingotcrystal

oltcn

Si

To pump
Gas outlet

(a) Schematic illustration of the growth of
a single-crystal Si ingot by the Czochralski
technique.

Flat

Single-crystal Si ingot (about 2 m)
////

(100)
Plane

Cut wafer

[100]
Direction

Ground edge or flat

(b) The crystallographic orientation of the silicon
ingot is marked by grounding a flat. The ingot can
be as long as 2 m. Wafers are cut using a rotating annula
diamond saw. Typical wafer thickness is 0.6-0.7 mm.

Figure 1.56
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I

,6

Silicon ingot being pulled from the melt in a
Czochralski crystal drawer.
I SOURCE: Courtesy of MEMC Electronic
I Materials, Inc.

a graphite resistance heater or by a radio frequency induction coil (a process called RF
heating).15 A small dislocation-free crystal, called a seed, is lowered to touch the melt
and then slowly pulled out of the melt; a crystal grows by solidifying on the seed crys-
tal. The seed is rotated during the pulling stage, to obtain a cylindrical ingot. To sup-
press evaporation from the melt and prevent oxidation, argon gas is passed through the
system.

Initially, as the crystal is withdrawn, its cross-sectional area increases; it then
reaches a constant value determined by the temperature gradients, heat losses, and the
rate of pull. As the melt solidifies on the crystal, heat of fusion is released and must be
conducted away; otherwise, it will raise the temperature of the crystal and remelt it.
The area of the melt-crystal interface determines the rate at which this heat can be con-
ducted away through the crystal, whereas the rate of pull determines the rate at which
latent heat is released. Although the analysis is not a simple one, it is clear that to ob-
tain an ingot with a large cross-sectional area, the pull speed must be slow. Typical
growth rates are a few millimeters per minute.

The sizes and diameters of crystals grown by the Czochralski method are obviously
limited by the equipment, though crystals 20-30 cm in diameter and 1-2 m in length are
routinely grown for the IC fabrication industry. Also, the crystal orientation of the seed
and its flatness with melt surface are important engineering requirements. For example,
for very large scale integration (VLSI), the seed is placed with its (100) plane flat to the
melt, so that the axis of the cylindrical ingot is along the [100] direction.

Following growth, the Si ingot is usually ground to a specified diameter. Using
X-ray diffraction, the crystal orientation is identified and either a flat or an edge is
ground along the ingot, as shown in Figure 1.56b. Subsequently, the ingot is cut into
thin wafers by a rotating annular diamond saw. To remove any damage to the wafer
surfaces caused by sawing and obtain flat, parallel surfaces, the wafers are lapped
(ground flat with alumina powder and glycerine), chemically etched, and then pol-
ished. The wafers are then used in IC fabrication, usually as a substrate for the growth
of a thin layer of crystal from the vapor phase.

The Czochralski technique is also used for growing Ge, GaAs, and InP single crys-
tals, though each case has its own particular requirements. The main drawback of the
Czochralski technique is that the final Si crystal inevitably contains oxygen impurities
dissolved from the quartz crucible.

I 15 The induced eddy currents in the graphite give rise to l2R heating of the graphite susceptor.
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1
-11    GLASSES AND AMORPHOUS SEMICONDUCTORS

1
.11.1  Glasses and Amorphous Solids

A characteristic property of the crystal structure is its periodicity and degree of sym-
metry. For each atom, the number of neighbors and their exact orientations are well
defined; otherwise, the periodicity would be lost. There is therefore a long-range
order resulting from strict adherence to a well-defined bond length and relative bond
angle (or exact orientation of neighbors). Figure 1.57a schematically illustrates the
presence of a clear, long-range order in a hypothetical two-dimensional crystal. Tak-
ing an arbitrary origin, we can predict the position of each atom anywhere in the crys-
tal. We can perhaps use this to represent crystalline Si02 (silicon dioxide), for exam-
ple, in two dimensions. In reality, a Si atom bonds with four oxygen atoms to form a
tetrahedron, and the tetrahedra are linked at the corners to create a three-dimensional

crystal structure.
Not all solids exhibit crystallinity. Many substances exist in a noncrystalline or

amorphous form, due to their method of formation. For example, Si02 can have an
amorphous structure, as illustrated schematically in two dimensions in Figure 1.57b. In
the amorphous phase, Si02 is called vitreous silica, a form of glass, which has wide
engineering applications, including optical fibers. The structure shown in the figure for
vitreous silica is essentially that of a frozen liquid, or a supercooled liquid. Vitreous
silica is indeed readily obtained by cooling the melt.

Many amorphous solids are formed by rapidly cooling or quenching the liquid to
temperatures where the atomic motions are so sluggish that crystallization is virtually j
halted. (The cooling rate is measured relative to the crystallization rate, which depends 1
on atomic diffusion.) We refer to these solids as glasses. In the liquid state, the atoms!

. Silicon (or arsenic) atom    O Oxygen (or selenium) atom

(a) A crystalline solid reminiscent of (b) An amorphous solid reminiscent of
crystalline SiOj (density = 2.6 g cm-3) vitreous silica (SiOj) cooled from the melt

(density = 2.27 g cm'3)

Figure 1.57 Crystalline and amorphous structures illustrated schematically in two
dimensions.
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have sufficient kinetic energy to break and make bonds frequently and to bend and twist
their bonds. There are bond angle variations, as well as rotations of various atoms around
bonds (bond twisting). Thus, the bonding geometry around each atom is not necessar-
ily identical to that of other atoms, which leads to the loss of long-range order and the
formation of an amorphous structure, as illustrated in Figure 1.57b for the same mater-
ial in Figure 1.57a. We may view Figure 1.57b as a snapshot of the structure of a liquid.
As we move away from a reference atom, after the first and perhaps the second neigh-
bors, random bending and twisting of the bonds is sufficient to destroy long-range order.
The amorphous structure therefore lacks the long-range order of the crystalline state.

To reach the glassy state, the temperature is rapidly dropped well below the melt-
ing temperature where the atomic diffusion processes needed for arranging the atoms
into a crystalline structure are infinitely slow on the time scale of the observation. The
liquid structure thus becomes frozen. Figure 1.57b shows that for an amorphous struc-
ture, the coordination of each atom is well defined, because each atom must satisfy
its chemical bonding requirement, but the whole structure lacks long-range order.
Therefore, there is only a short-range order in an amorphous solid. The structure is a
continuous random network of atoms (often called a CRN model of an amorphous
solid). As a consequence of the lack of long-range order, amorphous materials do not
possess such crystalline imperfections as grain boundaries and dislocations, which is a
distinct advantage in certain engineering applications.

Whether a liquid forms a glass or a crystal structure on cooling depends on a com-
bination of factors, such as the nature of the chemical bond between the atoms or mol-

ecules, the viscosity of the liquid (which determines how easily the atoms move), the
rate of cooling, and the temperature relative to the melting temperature. For example,
the oxides SiCh, B2O3, Ge02, and P2O5 have directional bonds that are a mixture of co-
valent and ionic bonds and the liquid is highly viscous. These oxides readily form
glasses on cooling from the melt. On the other hand, it is virtually impossible to
quench a pure metal, such as copper, from the melt, bypass crystallization, and form a
glass. The metallic bonding is due to an electron gas permeating the space between the
copper ions, and that bonding is nondirectional, which means that on cooling, copper
ions are readily (and hence, quickly) shifted with respect to each other to form the
crystal. There are, however, a number of metal-metal (Cu66Zt ) and metal-metalloid
alloys (Fe8oB2o, Pd8oSi2o) that form glasses if quenched at ultrahigh cooling rates of
106-108 0C s-1. In practice, such cooling rates are achieved by squirting a thin jet of
the molten metal against a fast-rotating, cooled copper cylinder. On impact, the melt is
frozen within a few milliseconds, producing a long ribbon of metallic glass. The
process is known as melt spinning and is depicted in Figure 1.58.

Many solids used in various applications have an amorphous structure. The ordi-
nary window glass (Si02)o

.
8(Na20)o.2 and the majority of glassware are common exam-

ples. Vitreous silica (Si02) mixed with germania (Ge02) is used extensively in optical
fibers. The insulating oxide layer grown on the Si wafer during IC fabrication is the
amorphous form of Si02. Some intermetallic alloys, such as Feo

.
8Bo.2, can be rapidly

quenched from the liquid (as shown in Figure 1.58) to obtain a glassy metal used in low-
loss transformer cores. Arsenic triselenide, As2Se3, has a crystal structure that resembles
the two-dimensional sketch in Figure 1.57a, where an As atom (valency III) bonds with
three Se atoms, and a Se atom (valency VI) bonds with two As atoms. In the amorphous
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Inert gas pressure

Quartz tube

O

Molten alloy

Heater coil

Jet of molten metal

Ribbon of

glassy
metal

Rotating
cooled metal
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Figure 1.58  It is possible to rapidly
quench a molten metallic alloy, thereby
bypassing crystallization, and forming a
glassy metal commonly called a metallic
glass.
The process is called melt spinning.

Melt spinning involves squirting a jet of molten metal onto a
rotating cool metal drum. The molten jet is instantly solidified into a
glassy metal ribbon which is a few microns in thickness. The
process produces roughly 1 to 2 kilometers of ribbon per minute.
I SOURCE: Photo courtesy of the Estate of Fritz Goro.

phase, this crystal structure looks like the sketch in Figure 1.57b, in which the bonding
requirements are only locally satisfied. The crystal can be prepared by condensation
from the vapor phase, or by cooling the melt. The vapor-grown films of amorphous
As2Se3 are used in some photoconductor drums in the photocopying industry.

1
.
11.2  Crystalline and Amorphous Silicon

A silicon atom in the silicon crystal forms four tetrahedrally oriented, covalent bonds
with four neighbors, and the repetition of this exact bonding geometry with a well-
defined bond length and angle leads to the diamond structure shown in Figure 1.6. A
simplified two-dimensional sketch of the Si crystal is shown in Figure 1.59. The crys-
tal has a clear long-range order. Single crystals of Si are commercially grown by the
Czochralski crystal pulling technique.

It is also possible to grow amorphous silicon, denoted by a-Si, by the condensa-
tion of Si vapor onto a solid surface, called a substrate. For example, an electron
beam is used to vaporize a silicon target in a vacuum; the Si vapor then condenses on
a metallic substrate to form a thin layer of solid noncrystalline silicon. The technique,*
which is schematically depicted in Figure 1.60, is referred to as electron beam
deposition. The structure of amorphous Si (a-Si) lacks the long-range order of
crystalline Si (c-Si), even though each Si atom in a-Si, on average, prefers to bond
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(a) Two-dimensional
schematic

representation of a
silicon crystal.

HDangling
bond. H

H
H

H

H

(b) Two-dimensional schematic
representation of the structure
of amorphous silicon.
The structure has voids and

dangling bonds and there is
no long-range order.

(c) Two-dimensional schematic
representation of the structure of
hydrogenated amorphous silicon.
Tne number of hydrogen atoms
shown is exaggerated.

Figure 1.59 Silicon can be grown as a semiconductor crystal or as an amorphous semiconductor film. Each line
represents an electron in a bond. A full covalent bond has two lines,

 and a broken bond has one line.
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Figure 1.60  Amorphous silicon, a-Si, can be
prepared by an electron beam evaporation of
silicon.

Silicon has a high melting temperature, so an
energetic electron beam is used to melt the crystal in
the crucible locally and thereby vaporize Si atoms.
Si atoms condense on a substrate placed above the
crucible, to form a film of a-Si.

with four neighbors. The difference is that the relative angles between the Si-Si
bonds in a-Si deviate considerably from those in the crystal, which obey a strict
geometry. Therefore, as we move away from a reference atom in a-Si, eventually the
periodicity for generating the crystalline structure is totally lost, as illustrated
schematically in Figure 1.59. Furthermore, because the Si-Si bonds do not follow the
equilibrium geometry, the bonds are strained and some are even missing, simply be-
cause the formation of a bond causes substantial bond bending. Consequently, the
ti-Si structure has many voids and incomplete bonds, or dangling bonds, as schemat-
ically depicted in Figure 1.59.

One way to reduce the density of dangling bonds is simply to terminate a dangling
bond using hydrogen. Since hydrogen only has one electron, it can attach itself to a
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dangling bond, that is, passivate the dangling bond. The structure resulting from hy-
drogen in amorphous silicon is called hydrogenated amorphous Si (a-Si:H).

Many electronic devices, such as a-Si:H solar cells, are based on a-Si being de-
posited with H to obtain a-Si:H, in which the hydrogen concentration is typically 10 at.%
(atomic %). The process involves the decomposition of silane gas, SiRw in an electrical
plasma in a vacuum chamber. Called plasma-enhanced chemical vapor deposition
(PECVD), the process is illustrated schematically in Figure 1.61. The silane gas mole-
cules are dissociated in the plasma, and the Si and H atoms then condense onto a sub-
strate to form a film of a-Si:H. If the substrate temperature is too hot,

 the atoms on the

substrate surface will have sufficient kinetic energy, and hence the atomic mobility,
 to

orient themselves to form a polycrystalline structure. Typically, the substrate temperature
is ~ 250 0C. The advantage of a-Si:H is that it can be grown on large areas, for such ap-
plications as photovoltaic cells, flat panel thin-film transistor (TFT) displays, and the
photoconductor drums used in some photocopying machines. Table 1.5 summarizes the
properties of crystalline and amorphous silicon, in terms of structure and applications.

Table 1.5  Crystalline and amorphous silicon

Crystalline Si (c-Si) Amorphous Si (a-Si) Hydrogenated a-Si (a-Si:H)

Structure Diamond cubic. Short-range order only. On average,
each Si covalently bonds with four
Si atoms.

Has microvoids and dangling bonds.

Typical preparation      Czochralski technique.      Electron beam evaporation of Si.

Density (g cm-3)
Electronic

applications

2
.
33

Discrete and integrated
electronic devices.

About 3-10% less dense.

None

Short-range order only,
Structure typically contains
10% H. Hydrogen atoms
passivate dangling bonds and
relieve strainirorn bonds.

Chemical vap/or deposition
of silane gas by RF plasma.

About 1-3% less dense.

Large-area electronic devices such
as solar cells, flat panel displays,
and some photoconductor drums
used in photocopying.
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1
.
12    SOLID SOLUTIONS AND TWO-PHASE SOLIDS

1
.12.1  Isomorphous Solid Solutions: Isomorphous Alloys

A phase of a material has the same composition, structure, and properties everywhere,
so it is a homogeneous portion of the chemical system under consideration. In a given
chemical system, one phase may be in contact with another phase. For example, at 0 0C,
iced water will have solid and liquid phases in contact. Each phase, ice and water, has a
distinct structure.

A bartender knows that alcohol and water are totally miscible; she can dilute
whisky with as much water as she likes. When the two liquids are mixed, the molecules
are randomly mixed with each other and the whole liquid is a homogenous mixture of
the molecules. The liquid therefore has one phase; the properties of the liquid are the
same everywhere. The same is not true when we try to mix water and oil. The mixture
consists of two distinctly separate phases, oil and water, in contact. Each phase has a
different composition, even though both are liquids.

Many solids are a homogeneous mixture of two types of separate atoms. For ex-
ample, when nickel atoms are added to copper, Ni atoms substitute directly for the Cu
atoms, and the resulting solid is a solid solution, as depicted in Figure 1.62a. The
structure remains an FCC crystal whatever the amount of Ni we add, from 100% Cu to
100% Ni. The solid is a homogenous mixture of Cu and Ni atoms, with the same struc-
ture everywhere in the solid solution, which is called an isomorphous solid solution.
The atoms in the majority make up the solvent, whereas the atoms in the minority are
the solute, which is dissolved in the solvent. For a Cu-Ni alloy with a Ni content of
less than 50 at.%, copper is the solvent and nickel is the solute.

The substitution of solute atoms for solvent atoms at various lattice sites of the

solvent can be either random (disordered) or ordered. The two cases are schematically
illustrated in Figure 1.62a and b, respectively. In many solid solutions, the substitution
is random, but for certain compositions, the substitution becomes ordered. There is a

1

(a) Disordered substitutional
solid solution. Example:
Cu-Ni alloys ({100} planes)

(b) Ordered substitutional
solid solution. Example:
Cu-Zn alloy of composition
50% Cu-50% Zn. ({110} planes!

(c) Interstitial solid solution.
Example: Small number of C
atoms in FCC Fe (austenite).
({100} planes)

Figure 1.62 Solid solutions can be disordered substitutional, ordered substitutional, and interstitial
substitutional.

Only one phase within the alloy has the same composition, structure, and properties everywhere.
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distinct ordering of atoms around each solute atom such that the crystal structure re-
sembles that of a compound. For example, ft brass has the composition 50 at.% Cu-
50 at.% Zn. Each Zn atom is surrounded by eight Cu atoms and vice versa, as depicted
in two dimensions in Figure 1.62b. The structure is that of a metallic compound be-
tween Cu and Zn.

Another type of solid solution is the interstitial solid solution, in which solute
atoms occupy interstitial sites, or voids between atoms, in the crystal. Figure 1.62c
shows an example in which a small number of carbon atoms have been dissolved in a
y-iron crystal (FCC) at high temperatures.

1
.
12.2  Phase Diagrams: Cu-Ni and Other Isomorphous Alloys

The Cu-Ni alloy is isomorphous. Unlike pure copper or pure nickel, when a Cu-Ni
alloy melts, its melting temperature is not well defined. The alloy melts over a range of
temperatures in which both the liquid and the solid coexist as a heterogeneous mixture.
It is therefore instructive to know the phases that exist in a chemical system at various
temperatures as a function of composition, and this need leads to the use of phase
diagrams.

Suppose we take a crucible of molten copper and allow it to cool. Above its melt-
ing temperature (1083 0C), there is only the liquid phase. The temperature drops with
time, as shown in Figure 1.63a, until at the melting or fusion temperature at point Lq
when copper crystals begin to nucleate (solidify) in the crucible. During solidification,
the temperature remains constant. As long as we have both the liquid and solid phases
coexisting, the temperature remains constant at 1083 0C. During this time, heat is
given off as the Cu atoms in the melt attach themselves to the Cu crystals. This heat
is called the heat of fusion. Once all the liquid has solidified (point So), the tempera-
ture begins to drop as the solid cools. There is therefore a sharp melting temperature
for copper, at 1083 0C.

If we were to cool pure nickel from its melt, we would observe a behavior similar
to that of pure copper, with a well-defined melting temperature at 1453 0C.

Now suppose we cool the melt of a Cu-Ni alloy with a composition16 of 80 wt.%
Cu and 20 wt.% Ni. In the melt, the two species of atoms are totally miscible, and
there is only a single liquid phase. As the cooling proceeds, we reach the temperature
1195 0C, identified as point L20 in Figure 1.63a, where the first crystals of Cu-Ni
alloy begin to appear. In this case, however, the temperature does not remain con-
stant until the liquid is solidified, but continues to drop. Thus, there is no single melt-
ing temperature, but a range of temperatures<iY£i>which both the liquid and the solid
phases coexist in a heterogeneous mixture. We find that when the temperature
reaches 1130 0C, corresponding to point S20, all the liquid has solidified. Below
1130 0C, we have a single-phase solid that is an isomorphous solid solution of Cu and
Ni. If we repeat these experiments for other compositions, we find a similar behavior;
that is, freezing occurs over a transition temperature range. The beginning and end

I 16ln materials science, we generally prefer to give alloy composition in wt.%, which henceforth will simply be %.
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Figure 1.63  Solidification of an isomorphous alloy such as Cu-Ni.
(a) Typical cooling curves.
(b) The phase diagram marking the regions of existence for the phases.

of solidification, at points L and 5, respectively, depend on the specific composition
of the alloy.

To characterize the freezing or melting behavior of other compositions of Cu-Ni
alloys, we can plot the temperatures for the beginning and end of solidification ver-
sus the composition and identify those temperature regions where various phases
exist, as shown in Figure 1.63b. When we join all the points corresponding to the be-
ginning of freezing, that is, all the L points, we obtain what is called the liquidus
curve. For any given composition, only the liquid phase can exist above the liquidus
curve. If we join all the points where the liquid has totally solidified, that is, all the
5 points, we have a curve called the solidus curve. At any temperature and compo-
sition below the solidus curve, we can only have the solid phase. The region between



86 chapter i  . Elementary Materials Science Concepts

L(20%Ni) -f Liquid

5(36%Ni)

L(20%Ni) %

5(28%Ni)

L(13%Ni)

5(20%Ni)

Liquid

1300~ L
0

V

y
0 % 8

L1200- o
S

L X
2

5
t-H2

3
5 Solid3

(a-phase)1100

s
4

1000

0

t
PureCu c

20 40 60

t wt
.
%Ni-

o

Figure 1.64 Cooling of a 80% Cu-20% Ni alloy from the melt to the
solid state.

the liquidus and solidus curves marks where a heterogeneous mixture of liquid and
solid phases exists.

Let's follow the cooling behavior of the 80% Cu-20% Ni alloy from the melt at
1300 0C down to the solid state at 1000 0C, as shown in Figure 1.64. The vertical
dashed line at 20% Ni represents the overall composition of the alloy (the whole *
chemical system) and the cooling process corresponds to movement down this dashed
line, starting from the liquid phase at Lq.

When the Cu-Ni alloy begins to solidify at 1195 0C, at point L \, the first solid that
forms is richer in Ni content. The only solid that can exist at this temperature has
a composition Si, which has a greater Ni content than the liquid, as shown in Fig-
ure 1.64. Intuitively, we can see this by noting that Cu, the component with the lower
melting temperature, prefers to remain in the liquid, whereas Ni, which has a higher
melting temperature, prefers to remain in the solid. When the temperature drops fur-
ther, say to 1160 0C (indicated by X in the figure), the alloy is a heterogeneous mixture
of liquid and solid. At this temperature, the only solid that can coexist with the liquid
has a composition 52. The liquid has the composition L2. Since the liquid has lost some
of its Ni atoms, the liquid composition is less than that at L\. The liquidus and solidus
curves therefore give the compositions of the liquid and solid phases coexisting in the
heterogeneous mixtjire during melting.

At 1160 0C, the overall composition of the alloy (the whole chemical system) is
still 20% Ni and is represented by point X in the phase diagram. When the temperature
reaches 1130 0C

, nearly all the liquid has been solidified. The solid has the composi-
tion 53, which is 20% Ni, as we expect since the whole alloy is almost all solid. The
last drops of the liquid in the alloy have the composition L3, since at this temperature,
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Table 1.6  Phase in the 80% Cu-20% Ni isomorphous alloy

Temperature, 0C Phases Composition Amount

1300

1195

1160

1130

1050

Liquid only

Liquid and solid

Liquid and solid

Liquid and solid

Solid only

Lo = 20% Ni

Li = 20% Ni
Si = 36% Ni

L2= 13% Ni
S2 = 28% Ni

L3 = 7% Ni
= 20% Ni

54 = 20% Ni

100%

100%

First solid appears
53.3%

46.7%

The last liquid drop
100%

100%

only the liquid with this composition can coexist with the solid at 53. Table 1.6 sum-
marizes the phases and their compositions, as observed during the cooling process
depicted in Figure 1.64. By convention, all solid phases that can exist are labeled
by different Greek letters. Since we can only have one solid phase, this is labeled the
a-phase.

During the solidification process depicted in Figure 1.64, the solid composition
changes from Si to S2 to S3. We tacitly assume that the cooling is sufficiently slow to
allow time for atomic diffusion to change the composition of the whole solid. There-
fore, the phase diagram in Figure 1.63b, which assumes near equilibrium conditions
during cooling, is termed an equilibrium phase diagram. If the cooling is fast, there
will be limited time for atomic diffusion in the solid phase, and the resulting solid
will have a composition variation. The inner core will correspond to the solidification
at Si and will be Ni rich. Since the solidification occurs quickly, the Ni atoms do not
have time to diffuse out from the inner core to allow the composition in the solid to
change from Si to S2 to S3. Thus, the outer region, the final solidification, will be Ni
deficient (or Cu rich); its composition is not S3 but less, because S3 is the average com-
position in the whole solid. The solid structure will be cored, as depicted in Figure
1

.65. The cooling process is then said to have occurred under nonequilibrium condi-
tions, which leads to a segregation of the elements in the grains. Under nonequilibrium
cooling conditions we cannot quantitatively use the equilibrium phase diagram in Fig-
ure 1.63b. The diagram can only serve as a qualitative guide.

The amounts of liquid and solid in the mixture can be determined from the phase di-
agram using the lever rule, which is based on the fact that the total mass of the alloy

Last solidification

Ni deficient

Cu rich

First solidification

(SjJNi rich

Grain boundary

Figure 1.65 Segregation in a grain due to rapid
cooling (nonequilibrium cooling).
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remains the same throughout the entire cooling process. Let WL and Ws be the weight
(or mass) fraction of the liquid and solid phases in the alloy mixture. The composi-
tions of the liquid and solid are denoted as CL and C5, respectively. The overall
composition of the alloy is denoted Co, which is the overall weight fraction of Ni in the
alloy.

If we take the alloy to have a weight of unity, then the conservation of mass means
that

WL + Ws = 1

Further, the weight fraction of Ni in both the liquid and solid must add up to the com-
position Co of Ni in the whole alloy, or

CLWL + CsWs = Co

We can substitute for Ws in the above equation to find the weight fraction of the
liquid and then that of the solid phase, as follows:

Cs - Co Cq - Cl
Lever rules WL =   and      Ws -   [1.36]

Cs - CL Cs - CL

To apply Equation 1.36, we first draw a line (called a tie line) from L2 to 52 cor-
responding to Ci and Cs, as shown in Figure 1.64. The line represents a "horizontal

lever" and point X at Co at this temperature is the lever's fulcrum. The lengths of the
lever arms from the fulcrum to the liquidus and solidus curves are (Co - CL) and
(Cs - Co), respectively. The lever must be balanced by the weights WL and Ws at-
tached to the ends. The total length of the lever is (Cs - CL). At 1160 0C, CL = 0.13
(13% Ni) and Cs = 0.28 (28% Ni), so the weight fraction of the liquid phase is t

Cs - Co    0.28 - 0.20
WL = -         =  = 0.533      or 53.3%

Cs-CL 0.28-0.13

Similarly, the weight fraction of the solid phase is 1 - 0.533 or 0.467.

1
.12.3  Zone Refining and Pure Silicon Crystals

Zone refining is used for the production of high-purity crystals. Silicon, for example,
has a high melting temperature, so any impurities present in the crystal decrease the
melting temperature. This is similar to the depression of the melting temperature of
pure Ni by the addition of Cu, as shown by the right-hand side of Figure 1.63b. We can
represent the phase diagram of Si with small impurities as shown in Figure 1.66. Con-
sider what happens if we have a rod of the solid and we melt only the left end by ap-

plying heat locally (using RFlieating, for example). At the same time, we move the
melted zone toward the right by moving the heater. We therefore melt the solid at A
and refreeze it at B, as shown in Figure 1.67a.

The solid has an impurity concentration of Co; when it melts at A, the melt ini-
tially also has the same concentration Ci = Co. However, at temperature Tb, the melt
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begins to solidify. At the start of solidification the solid that freezes has a composition
which is considerably less than Co, as is apparent in Figure 1.66. The cooling at B

occurs rapidly, so the concentration Cb cannot adjust to the equilibrium value at the
end of freezing. Thus, the solid that freezes at B has a lower concentration of impuri-
ties. The impurities have been pushed out of the solid at B and into the melt, whose im-
purity concentration increases from CL to CL>.

Next, refreezing at B\ shown in Figure 1.67b, occurs at a lower temperature 7>,
because the melt concentration Cv is now greater than Co- The solid that freezes at Bf
has the concentration shown in Figure 1.66, which is greater than Cb but less than
Co- As the melted zone is floated toward the right, the melt that is solidified at B, B\
etc., has a higher and higher impurity concentration, until its impurity content reaches
that of the impure solid, at which point the concentration remains at Co. When the
melted zone approaches the far right where the freezing is halted, the impurities in the
final melt appear in the last frozen region at the far right. The resulting impurity con-
centration profile is schematically depicted in Figure 1.67c. The region of impurity
concentration below Co is the zone refined section of the rod. The zone refining proce-
dure can be repeated again, starting from the left toward the right, to reduce the impu-
rity concentration even lower. The impurity concentration profile after many passes
is sketched in Figure 1.67d. Although the profile is nonuniform, due to the segregation
effect, the impurity concentrations in the zone refined section may be as low as a factor
of 10-6

.

1
.12.4 Binary Eutectic Phase Diagrams and Pb-Sn Solders

When we dissolve salt in water, we obtain a brine solution. If we continue to add more

salt, we eventually reach the solubility limit of salt in the solution, and the excess salt
remains as a solid at the bottom of the container. We then have two coexisting phases:
brine (liquid solution) and salt (solid), as shown in Figure 1.68. The solubility limit of
one component in another in a mixture is represented by a solvus curve shown
schematically in Figure 1.68 for salt in brine. In the solid state, there are many ele-
ments that can only be dissolved in small amounts in another solid.

Lead in the solid phase has an FCC crystal structure, and tin has a BCT (body-
centered tetragonal) structure. Although the two elements are totally miscible in any

Figure 1.68  We can only dissolve so much salt in
brine (solution of salt in water).
Eventually we reach the solubility limit at Xs, which
depends on the temperature. If we add more salt, then
the excess salt does not dissolve and coexists with the

brine. Past Xs we have two phases, brine (solution) and
salt (solid).

B A Brine
t8 Bnne

9o
Salt8. 5s

Brine Bnne + salt

X
1

X
s

Wt.% salt
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Figure 1.69  The equilibrium phase diagram of the Pb-Sn alloy.
The microstructures on the left show the observations at various paints during the cooling of a 90%
Pb-10% Sn from the melt along the dashed line (the overall alloy composition remains constant at
10% Sn).

proportion when melted, this is not so in the solid state. We can only dissolve so much
Sn in solid Pb, and vice versa. We quickly reach the solubility limit, and the resulting
solid is a mixture of two distinctly different solid phases. One solid phase, labeled a,
is Pb rich and has the FCC structure with some Sn atoms dissolved in the crystal. The
amount of Sn dissolved in a is given by the solvus curve of Sn in a at that temperature.
The other phase, labeled is Sn rich and has the BCT structure with some Pb atoms
dissolved in it. The amount of Pb dissolved in is given by the solvus curve of Pb in
P at that temperature.

The existence of various phases and their compositions as a function of tem-
perature are given by the equilibrium phase diagram for the Pb-Sn alloy, shown in
Figure 1.69. This is called an equilibrium eutectic phase diagram. The liquidus
and solidus curves, as usual, mark the borders for the liquid and solid phases. Be-
tween the liquidus and solidus curves, we have a heterogeneous mixture of melt
and solid. Unlike the Cu-Ni case, the melting temperature of both elements here
is depressed with alloying. The liquidus and solidus curves thus decrease from
both ends, starting at A and B. They meet at a point E, called the eutectic point,
at 61.9% Sn and 183 0C

. This point has a special significance: No liquid can
exist below this temperature, so 183 0C is the lowest melting temperature of the
alloy.
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In addition, we must insert the solvus curves at both the Pb and Sn ends to mark

the extent of solid-state solubility and hence identify the two-phase solid region. The
solvus curve for the solubility limit of Sn in Pb meets the solidus curve at point C,
19.2% Sn. Similarly, the solubility limit of Pb in Sn meets the solvus curve at D. A
characteristic feature of this phase diagram is that CD is a straight line through E at
183 0C. Below 183 0C, between the two solvus curves, we have a solid with two

phases, a and    This is identified as ot +   in the diagram.
The usefulness of such a phase diagram is best understood by examining the phase

transformations and microstructures during the cooling of a melt of a given composi-
tion alloy. Consider a 90% Pb-10% Sn alloy being cooled from the melt at 350 0C
(point L) where there is only one phase, the liquid phase. At point M, 315 0C, few nu-
clei of the a-phase appear in the liquid. The composition of the a-phase is given by the
solidus curve at 315 0C and is about 5% Sn. At point N> 290 0C, there is more a?-phase
in the mixture. The compositions of the liquid and a-phases are given respectively by
the liquidus and solidus curves at 290 0C. At point (9, 275 0C, all liquid has been solid-
ified into the a-phase, which then has the composition 10% Sn.

Between Af and 0, the alloy is a coexistent mixture of the liquid phase (melt) and
the solid a-phase. At point P, 175 0C, we still have only the a-phase. When we reach
the solvus curve at point g, 140 0C, we can no longer keep all the Sn dissolved in the
a-phase, as we have reached the solubility limit of Sn in a. Some of the Sn atoms must
diffuse out from the a-phase; they do so by forming a second solid phase, which is the
£ -phase. The -phase nucleates within the a-phase (usually at the grain boundaries,
where atomic diffusion occurs readily). The -phase will contain as much dissolved
Pb as is allowed by the solubility of Pb in the -phase, which is given by the solvus
curve on the Sn side and marked as point Q\ about 98% Sn. Thus, the microstructure
is now a mixture of the a and £ phases.

As cooling proceeds, the two phases continue to coexist, but their relative propor-
tions change. At /?, 50 0C, the alloy is a mixture of the a-phase given by R'(4% Sn) and
the ft -phase given by /?//(99% Sn). The relative amounts of a and ft phases are given
by the lever rule. Figure 1.69 illustrates the microstructure of the 90% Pb-10%
Sn alloy as it is cooled.

An interesting phenomenon can be observed when we cool an alloy of the eu-
tectic composition 38.1% Pb-61.9% Sn from the melt. The cooling process and the
observed microstructures are illustrated in Figure 1.70; the microstructures are on
the right. The temperature-time profile is also depicted in Figure 1.70. At point L,
350 0C, the alloy is all liquid; as it cools, its temperature drops until point E at
183 0C. At £, the temperature remains constant and a solid phase nucleates within
the melt. With time, the amount of solid grows until all the liquid is solidified and the
temperature begins to drop again. This behavior is much like that of a pure element,
for which melting occurs at a well-defined temperature. This behavior only occurs
for the eutectic composition (61.9% Sn), because this is the composition at which the
liquidus and solidus curves meet at one temperature. Generally, the liquid with the
eutectic composition will solidify through the eutectic transformation at the eutec-
tic temperature, or

Eutectic

transformation L 9% Sn     ai9>2% Sn + faM Sn   (183 oq 37,
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Figure 1,70  The alloy with the eutectic composition cools like a pure element, exhibiting a single solidification
temperature at 1 83 0C.

The solid has the special eutectic structure. The alloy with the composition 60% Pb-40% Sn when solidified is a mixture
of primary a and eutectic solid.

The solid that forms from the eutectic solidification has a special microstructure,
consisting of alternating plates, or lamellae, of a and p phases, as shown in Fig-
ure 1.70. This is called the eutectic microstructure (or eutectic solid). The formation
of a Pb-rich a-phase and an Sn-rich p -phase from the 61.9% Sn liquid requires the
redistribution of the two types of atoms by atomic diffusion. Atomic diffusions are eas-
ier in the liquid than in the solid. The formation of a solid with alternating a and p lay-
ers allows the Pb and Sn atoms to diffuse in the liquid without having to move over
long distances. The eutectic structure is not a phase itself, but a mixture of the two
phases, a and p.

When cooled from the melt, an alloy with a composition between 19.2% Sn and
61.9% Sn solidifies into a mixture of a-phase and a eutectic solid (a mixture of a and
P phases). Consider the cooling of an alloy with a composition of 40% Sn, starting

from the liquid phase L at 350 0C, as shown in Figure 1.70. At point M(235 0C), the
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first solid, the a-phase, nucleates. Its composition is about 15% Sn. At N9 210 0C, the
alloy is a mixture of liquid, composition 50% Sn, and a-phase, composition 18% Sn.
The composition of the liquid thus moves along the liquidus line from M toward E.
At 183 0C, the liquid has the composition 61.9% Sn, or the eutectic composition, and
therefore undergoes the eutectic transformation indicated in Equation 1.37. There is
still a-phase in the alloy, but its composition is now 19.2% Sn; it does not take part in
the eutectic transformation of the liquid. During the eutectic transformation, the tem-
perature remains constant. When all the liquid has been solidified, we have a mixture
of the preexisting a-phase, called primary a (or proeutectic a), and the newly
formed eutectic solid. The final microstructure is shown in Figure 1.70 and consists of
a primary a and a eutectic solid; therefore, two solid phases, a and fi, coexist.

During cooling between points M and O, the alloy 60% Pb-40% Sn is a mixture
of melt and a-phase, and it exhibits plastic-like characteristics while solidifying. Fur-
ther, the temperature range for the solidification is about 183 0C to 235 0C, or about
50 0C. Such an alloy is preferable for such uses as soldering wiped joints to join
pipes together, giving the plumber sufficient play for adjusting and wiping the joint.
On the other hand, a solder with the eutectic composition (commercially, this is 40%
Pb-60% Sn solder, which is close to the eutectic) has the lowest melting temperature
and solidifies quickly. The liquid also has good wetting properties. Therefore, 40%
Pb-60% Sn is widely used for soldering semiconductor devices, where good wetting
and minimal exposure to high temperature are required.

EXAMPLE 1.17 THE 60% Pb-40% Sn ALLOY Consider the solidification of the 60% Pb-40% Sn alloy. What
are the phases, compositions, and weight fractions of various phases existing in the alloy at
250 0C, 210 0C, 183. 5 0C (just above 183 0C), and 182.5 0C (just below 183 0C)?

SOLUTION

We again refer to the phase diagram in Figure 1.70 to identify which phases exist at what tem-
peratures. At 250 0C, we only have the liquid phase. At 210 0C, point N, the liquid and the or -phase
are in equilibrium. The composition of the a-phase is given by the solidus line; at 210 0C

,

C
a
 = 18% Sn

. The composition of the liquid is given by the liquidus line; at 210 0C, Ci = 50%
Sn. To find the weight fraction of a the alloy, we use the lever rule,

Q-Co 
=

 50-40 
= 0313

CL -Ca     50 - 18

From Wa + WL = 1, we obtain the weight fraction of the liquid phase, WL =1 - 0.313 =0.687.
At 183.5 0C, point 0, the composition of the a-phase is 19.2% Sn corresponding to C

and that of the liquid is 61.9% Sn corresponding to E. The liquid therefore has the eutectic
composition. The weight fractions are

W
m
 , SLlSo = = 0

.
513

CL-Ca 61.9-19.2

WL = 1 -0.513 = 0.487

As expected, the amount of a-phase increases during solidification; at the same time, its
composition changes along the solidus curve. Just above 183 0C

, about half the alloy is the solid
a-phase and the other half is liquid with the eutectic composition. Thus, on solidification, the liquid
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Table 1.7  The 60% Pb-40% Sn alloy

Temperature ( C)    Phases    Composition    Mass (g)    Microstructure and Comment

250

235

210

183.5

182.5

L

L

a

L

a

L

a

a

40% Sn

40% Sn

15% Sn

50% Sn

18% Sn

61.9% Sn

19.2% Sn

19.2% Sn

97.5% Sn

100

100

0

68.7

31.3

48.7

51.3

73.4

26.6

The first solid (of-phase) nucleates in the
liquid.

Mixture of liquid and a phases. More solid
forms. Compositions change.

Liquid has the eutectic composition.

Eutectic (a and  phases) and primary
a-phase.

I Assume mass of the alloy is 100 g.

undergoes the eutectic transformation and forms the eutectic solid. Just below 183 0C, therefore,
the microstructure is the primary a-phase and the eutectic solid. Stated differently, below 183 0C,
the a and phases coexist, and is in the eutectic structure. The weight fraction of the eutectic
phase is the same as that of the liquid just above 183 0C

, from which it was formed. The weight
fractions of a and p in the whole alloy are given by the lever rule applied at point P, or

w

Cp - Co 
_

 97.5 - 40

Cp ~ ca

Co ~~ Ca

97.5 - 19.2

40 - 19.2
P

0
.
734

0
.
266

Cp - Ca     97.5 - 19.2

The microstructure at room temperature will be much like that just below 183 0C, at which
the alloy is a two phase solid because atomic diffusions in the solid will not be sufficiently fast
to allow the compositions to change. Table 1.7 summarizes the phases that exist in this alloy at
various temperatures.

ADDITIONAL TOPICS

1
.
13    BRAVAIS LATTICES

An infinite periodic array of geometric points in space defines a space lattice or sim-
ply a lattice. Strictly, a lattice does not contain any atoms or molecules because it is
simply an imaginary array of geometric points. A two-dimensional simple square
lattice is shown in Figure 1.71a. In three dimensions, Figure 1.71a would correspond
to the simple cubic (SC) lattice. The actual crystal is obtained from the lattice by plac-
ing an identical group of atoms (or molecules) at each lattice point. The identical group
of atoms is called the basis of the crystal structure. Thus, conceptually, as illustrated in
Figure 1.71a toe,

Crystal = Lattice + Basis
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(a) A simple square lattice. The unit cell is a square with a side a.
(b) Basis has two atoms.
(c) Crystal = Lattice + Basis. The unit cell is a simple square with two atoms.
(d) Placement of basis atoms in the crystal unit cell.

The unit cell of the two-(timensional lattice in Figure 1.71a is a square which is
characterized by the length a of one of the sides; a is called a lattice parameter. A
given lattice can generate different patterns of atoms depending on the basis. The lat-
tice in Figure 1.71a with the two-atom basis in Figure 1.71b produces the crystal in
Figure 1.71c. Although the latter crystal appears as a body-centered square (similar to
BCC in three dimensions), it is nonetheless a simple square lattice with two atoms
comprising the basis. Suppose that the basis had only one atom; then the crystal would
appear as the simple square lattice in Figure 1.71a (with each point now being an
atom). The patterns in Figure 1.71a and c are different but the underlying lattice is the
same. Because they have the same lattice, the two crystals would have certain identi-
cal symmetries. For example, for both crystals, a rotation by 90° about a lattice point
would produce the same crystal structure.

To fully characterize the crystal, we also have to specify the locations of the basis
atoms in the unit cell as in Figure 1.7Id. By convention, we place a Cartesian coordi-
nate system at the rear-left comer of the unit cell with the x and y axes along the square
edges. We indicate the coordinates (*,-, yt) of each ith atom in terms of the lattice
parameters along x and y. Thus, the atoms in the unit cell in Figure 1.7Id are at (0, 0)
and at {\,\). The CsCl unit cell in Figure 1.38 appears as BCC, but it can be described
by a SC lattice and a basis that has one CI" ion and one Cs+ ion. The ions in the SC
unit cell are located at (0, 0, 0) and at the cell center at (5, \, \). Similarly, the NaCl
crystal in Figure 1.37 is an FCC lattice with a basis of Na* and CI" ions.

The diamond unit cell of silicon is an FCC lattice with two Si atoms constituting
the basis. The two Si atoms are placed at (0, 0, 0) and (|, j, \). Most of the important
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III-V compound semiconductors such as GaAs, AlAs, InAs, InP, etc., which are
widely used in numerous optoelectronic devices, have the zinc blende (ZnS) unit cell.
The zinc blende unit cell consists of an FCC lattice and a basis that has the Zn and S

atoms placed at (0, 0,0) and (£, |, respectively.
We generally represent the geometry of the unit cell of a lattice as a parallelepiped

with sides a, b, c and angles a, , y as depicted in Figure 1.40a. In the case of copper
and iron, the geometry of the unit cell has a = b = c, a =   = y =90°

,
 and cubic

Cubic system
a = b = c

a = f3 = y = 90o

Many metals, Al, Cu, Fe, Pb. Many
ceramics and semiconductors, NaCl, CsCl,
LiF, Si, GaAs
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Figure 1.72  The seven crystal systems (unit<ell geometries) and fourteen Bravais lattices.
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symmetry. For Zn, the unit cell has hexagonal geometry with a = b c1a = p = 90°,
and y = 120° as shown in Figure 1.33d. Based on different lattice parameters, there are
seven possible distinct unit-cell geometries, which we call crystal systems each with a
particular distinct symmetry. The seven crystal systems are depicted in Figure 1.72 with
typical examples. We are already familiar with the cubic and hexagonal systems. The
seven crystal systems only categorize the unit cells based on the geometry of the unit
cell and not in terms of the symmetry and periodicity of the lattice points. (One should
not confuse the unit-cell geometry with the lattice, which is a periodic array of points.)
In the cubic system, for example, there are three possible distinct lattices corresponding
to SC, BCC, and FCC which are shown in Figure 1.72. All three have the same cubic
geometry: a = b = c and a = ft = y = 90°

.

Many distinctly different lattices, or distinct patterns of points, exist in three
dimensions. There are 14 distinct lattices whose unit cells have one of the seven

geometries as indicated in Figure 1.72. Each of these is called a Bravais lattice. The
copper crystal, for example, has the FCC Bravais lattice, but arsenic, antimony, and bis-
muth crystals have the rhombohedral Bravais lattice. Tin's unit cell belongs to the
tetragonal crystal system, and its crystal lattice is a body-centered tetragonal (BCT).
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DEFINING TERMS

Activated state is the state that occurs temporarily
during a transformation or reaction when the reactant
atoms or molecules come together to form a particular
arrangement (intermediate between reactants and
products) that has a higher potential energy than the re-
actants. The potential energy barrier between the acti-
vated state and the reactants is the activation energy.

Activation energy is the potential energy barrier
against the formation of a product. In other words, it is
the minimum energy that the reactant atom or mole-
cule must have to be able to reach the activated state

and hence form a product.

Amorphous solid is a solid that exhibits no crys-
talline structure or long-range order. It only possesses a
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short-range order in the sense that the nearest neigh-
bors of an atom are well defined by virtue of chemical
bonding requirements.

Anion is an atom that has gained negative charge by
virtue of accepting one or more electrons. Usually,
atoms of nonmetallic elements can gain electrons eas-
ily to become anions. Anions become attracted to the
anode (positive terminal) in ionic conduction. Typical
anions are the halogen ions F

~

,
 CI", Br", and I~.

Atomic mass (or relative atomic mass or atomic

weight) of an element is the average atomic mass,
in atomic mass units (amu), of all the naturally occur-
ring isotopes of the element. Atomic masses are listed
in the Periodic Table. The amount of an element that

has 6.022 x 1023 atoms (the Avogadro number of
atoms) has a mass in grams equal to the atomic mass.

Atomic mass unit (amu) is a convenient mass mea-

surement equal to one-twelfth of the mass of a neutral
carbon atom that has a mass number of A = 12 (6 pro-
tons and 6 neutrons). It has been found that amu =
1

.66054 x 1027 kg, which is equivalent to lO-3/ ,
where     is Avogadro's number.

Atomic packing factor (APF) is the fraction of vol-
ume actually occupied by atoms in a crystal.

Avogadro's number (NA) is the number of atoms in
exactly 12 g of carbon-12. It is 6.022 x 1023

.
 Since

atomic mass is defined as one-twelfth of the mass of

the carbon-12 atom, the NA number of atoms of any
substance has a mass equal to the atomic mass Mat, in
grams.

Basis represents an atom, a molecule, or a collection
of atoms, that is placed at each lattice point to generate
the true crystal structure of a substance. All crystals are
thought of as a lattice with each point occupied by a
basis.

Bond energy or binding energy is the work (or en-
ergy) needed to separate two atoms infinitely from
their equilibrium separation in the molecule or solid.

Bulk modulus K is volume stress (pressure) needed
per unit elastic volume strain and is defined by
p = -KA, where p is the applied volume stress (pres-
sure) and A is the volume strain. K indicates the extent

to which a body can be reversibly (and hence elasti-
cally) deformed in volume by an applied pressure.

Cation is an atom that has gained positive charge by
virtue of losing one or more electrons. Usually, metal
atoms can lose electrons easily to become cations.
Cations become attracted to the cathode (negative ter-
minal) in ionic conduction, as in gaseous discharge.
The alkali metals, Li, Na, K,..., easily lose their va-
lence electron to become cations, Li+, Na+, K+, ...

Coordination number is the number of nearest

neighbors around a given atom in the crystal.

Covalent bond is the sharing of a pair of valence
electrons between two atoms. For example, in H2, the
two hydrogen atoms share their electrons, so that each
has a closed shell.

Crystal is a three-dimensional periodic arrangement
of atoms, molecules, or ions. A characteristic property
of the crystal structure is its periodicity and a degree of
symmetry. For each atom, the number of neighbors and
their exact orientations are well defined; otherwise the

periodicity will be lost. Therefore, a long-range order
results from strict adherence to a well-defined bond

length and relative bond angle (that is, exact orienta-
tion of neighbors).

> Crystallization is a process by which crystals of a sub-
stance are formed from another phase of that substance.
Examples are solidification just below the fusion tem-
perature from the melt, or condensation of the molecules
from the vapor phase onto a substrate. The crystalliza-
tion process initially requires the formation of small
crystal nuclei, which contain a limited number (perhaps
103-104) of atoms or molecules of the substance.
Following nucleation, the nuclei grow by atomic diffu-
sion from the melt or vapor.

Diffusion is the migration of atoms by virtue of their
random thermal motions.

Diffusion coefficient is a measure of the rate at

which atoms diffuse. The rate depends on the nature of
the diffusion process and is typically temperature de-
pendent. The diffusion coefficient is defined as the
magnitude of diffusion flux per unit concentration
gradient.

Dislocation is a line imperfection within a crystal that
extends over many atomic distances.

Edge dislocation is a line imperfection within a crys-
tal that occurs when an additional, short plane of atoms
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does not extend as far as its neighbors. The edge of this
short plane constitutes a line of atoms where the bond-
ing is irregular, that is, a line of imperfection called an
edge dislocation.

Elastic modulus or Young's modulus (Y) is a mea-
sure of the ease with which a solid can be elastically
deformed. The greater Y is, the more difficult it is to
deform the solid elastically. When a solid of length i is
subjected to a tensile stress a (force per unit area), the
solid will extend elastically by an amount Si where
81/1 is the strain e. Stress and strain are related by
a = Ye, so Y is the stress needed per unit elastic strain.

Electric dipole moment is formed when a positive
charge + Q is separated from a negative charge - Q of
equal magnitude. Even though the net charge is zero,
there is nonetheless an electric dipole moment formed
by the two charges - Q and + Q being separated by a
finite distance. Just as two charges exert a Coulombic
force on each other, two dipoles also exert an electro-
static force on each other that depends on the separa-
tion of dipoles and their relative orientation.

Electron affinity represents the energy that is needed
to add an electron to a neutral atom to create a negative
ion (anion). When an electron is added to CI to form

CI", energy is actually released.

Electronegativity is a relative measure of the ability
of an atom to attract the electrons in a bond it forms

with another atom. The Pauling scale of electronega-
tivity assigns an electronegativity value (a pure num-
ber) X to various elements, the highest being 4 for F,
and the lowest values being for the alkali metal atoms,
for which X are less than 1. The difference XA - XB

in the electronegativities of two atoms A and B is a
measure of the polar or ionic character of the bond
A-B between A and B

.
 A molecule A-B would be

polar, that is, possess a dipole moment, if XA and XB
are different.

Equilibrium between two systems requires mechani-
cal, thermal, and chemical equilibrium. Mechanical
equilibrium means that the pressure should be the same
in the two systems, so that one does not expand at the
expense of the other. Thermal equilibrium implies that
both have the same temperature. Equilibrium within a
single-phase substance (e.g., steam only or hydrogen

gas only) implies uniform pressure and temperature
within the system.

Equilibrium state of a system is the state in which
the pressure and temperature in the system are uniform
throughout. We say that the system possesses mechan-
ical and thermal equilibrium.

Eutectic composition is an alloy composition of two
elements that results in the lowest melting temperature
compared to any other composition. A eutectic solid has
a structure that is a mixture of two phases. The eutectic
structure is usually special, such as alternating lamellae.

Face-centered cubic (FCC) lattice is a cubic lattice

that has one lattice point at each comer of a cube and
one at the center of each face. If there is a chemical

species (atom or a molecule) at each lattice point, then
the structure is an FCC crystal structure.

Frenkel defect is an ionic crystal imperfection that
occurs when an ion moves into an interstitial site,

thereby creating a vacancy in its original site. The im-
perfection is therefore a pair of point defects.

Grain is an individual crystal within a polycrystalline
material. Within a grain, the crystal structure and ori-

t entation are the same everywhere and the crystal is ori-
ented in one direction only.

Grain boundary is a surface region between differ-
ently oriented, adjacent grain crystals. The grain bound-
ary contains a lattice mismatch between adjacent grains.

Heat is the amount of energy transferred from one sys-
tem to another (or between the system and its surround-
ings) as a result of a temperature difference. Heat is not a
new form of energy, but rather the transfer of energy

from one body to another by virtue of the random mo-
tions of their molecules. When a hot body is in contact
with a cold body, energy is transferred from the hot body
to the cold one. The energy that is transferred is the ex-
cess mean kinetic energy of the molecules in the hot
body. Molecules in the hot body have a higher mean ki-
netic energy and vibrate more violently. As a result of the
collisions between the molecules, there is a net transfer

of energy (heat) from the hot body to the cold one, until
the molecules in both bodies have the same mean kinetic

energy, that is, until their temperatures become equal.

Heat capacity at constant volume is the increase in the
total energy E of the system per degree increase in the
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temperature of the system with the volume remaining
constant: C = (dE/dT)v. Thus, the heat added to the
system does no mechanical work due to a volume
change but increases the internal energy. Molar heat
capacity is the heat capacity for 1 mole of a substance.
Specific heat capacity is the heat capacity per unit mass.

Interstitial site (interstice) is an unoccupied space
between the atoms (or ions, or molecules) in a crystal.

Ionization energy is the energy required to remove an
electron from a neutral atom; normally the most outer
electron that has the least binding energy to the nucleus
is removed to ionize an atom.

Isomorphous describes a structure that is the same
everywhere (from iso, uniform, and morphology,
structure).

Isotropic substance is a material that has the same
property in all directions.

Kinetic molecular theory assumes that the atoms and
molecules of all substances (gases, liquids, and solids)
above absolute zero of temperature are in constant
motion. Monatomic molecules (e.g., He, Ne) in a gas
exhibit constant and random translational motion,
whereas the atoms in a solid exhibit constant vibra-

tional motion.

Lattice is a regular array of points in space with a dis-
cernible periodicity. There are 14 distinct lattices pos-
sible in three-dimensional space. When an atom or
molecule is placed at each lattice point, the resulting
regular structure is a crystal structure.

Lattice parameters are (a) the lengths of the sides of
the unit cell, and (b) the angles between the sides.

Mechanical work is qualitatively defined as the en-
ergy expended in displacing a constant force through a
distance. When a force F is moved a distance dx, work

done dW = F . dx. When we lift a body such as an
apple of mass m (100 g) by a distance h (1 m), we do
work by an amount F Ax = mgh (1 J), which is then
stored as the gravitational potential energy of the
body. We have transferred energy from ourselves to
the potential energy of the body by exchanging energy
with it in the form of work. Further, in lifting the apple,
the molecules have been displaced in orderly fashion,
all upwards. Work therefore involves an orderly dis-
placement of atoms and molecules of a substance in

complete contrast to heat. When the volume V of a
substance changes by d V when the pressure is P, the
mechanical work involved is P dV and is called the

PV work.

Metallic bonding is the binding of metal atoms in a
crystal through the attraction between the positive
metal ions and the mobile valence electrons in the

crystal. The valence electrons permeate the space be-
tween the ions.

Miller indices (hki,) are indices that conveniently
identify parallel planes in a crystal. Consider a plane
with the intercepts, jci, yi, and zi, in terms of lattice
parameters a, b, and c. (For a plane passing through
the origin, we shift the origin or use a parallel plane.)
Then, (hki) are obtained by taking the reciprocals of
x\, y\, and z\ and clearing all fractions.

Miscibility of two substances is a measure of the mu-
tual solubility of those two substances when they are in
the same phase, such as liquid.

Mole of a substance is that amount of the substance

that contains NA number of atoms (or molecules),

% where NA is Avogadro's number (6.023 x 1023). One
mole of a substance has a mass equal to its atomic
(molecular) mass, in grams. For example, 1 mole of
copper contains 6.023 x 1023 atoms and has a mass of

63.55 g.

Phase of a system is a homogeneous portion of the
chemical system that has the same composition, struc-
ture, and properties everywhere. In a given chemical
system, one phase may be in contact with another phase
of the system. For example, iced water at 0 0C will have
solid and liquid phases in contact. Each phase, solid ice
and liquid water, has a distinct structure.

Phase diagram is a temperature versus composition
diagram in which the existence and coexistence of var-
ious phases are identified by regions and lines. Be-
tween the liquidus and solidus lines, for example, the
material is a heterogeneous mixture of the liquid and
solid phases.

Planar concentration of atoms is the number of

atoms per unit area on a given (hki) plane in a crystal.

Polarization is the separation of positive and negative
charges in a system, which results in a net electric di-
pole moment.
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Polymorphism or allotropy is a material attribute
that allows the material to possess more than one crys-
tal structure. Each possible crystal structure is called a
polymorph. Generally, the structure of the polymorph
depends on the temperature and pressure, as well as on
the method of preparation of the solid. (For example,
diamond can be prepared from graphite by the applica-
tion of very high pressures.)

Primary bond is a strong interatomic bond, typically
greater then 1 eV/atom, that involves ionic, covalent, or
metallic bonding.

Property is a system characteristic or an attribute that
we can measure. Pressure, volume, temperature, mass,
energy, electrical resistivity, magnetization, polarization,
and color are all properties of matter. Properties such as
pressure, volume, and temperature can only be attributed
to a system of many particles (which we treat as a con-
tinuum). Note that heat and work are not properties of a
substance; instead, they represent energy transfers in-
volved in producing changes in the properties.

Saturated solution is a solution that has the maximum

possible amount of solute dissolved in a given amount
of solvent at a specified temperature and pressure.

Schottky defect is an ionic crystal imperfection that *
occurs when a pair of ions is missing, that is, when
there is a cation and anion pair vacancy.

Screw dislocation is a crystal defect that occurs when
one portion of a perfect crystal is twisted or skewed with
respect to another portion on only one side of a line.

Secondary bond is a weak bond, typically less than
0
.1 eV/atom, which is due to dipole-dipole interac-

tions between the atoms or molecules.

Solid solution is a homogeneous crystalline phase
that contains two or more chemical components.

Solute is the minor chemical component of a solution;
the component that is usually added in small amounts
to a solvent to form a solution.

Solvent is the major chemical component of a solution.

Stoichiometric compounds are compounds with an
integer ratio of atoms, as in CaF2, in which two fluo-
rine atoms bond with one calcium atom.

Strain is a relative measure of the deformation a ma-

terial exhibits under an applied stress. Under an ap-
plied tensile (or compressive) stress, strain e is the
change in the length per unit original length. When a
shear stress is applied, the deformation involves a
shear angle. Shear strain is the tangent of the shear
angle that is developed by the application of the shear-
ing stress. Volume strain A is the change in the vol-
ume per unit original volume.

Stress is force per unit area. When the applied force
F is perpendicular to the area A, stress o = F/A is
either tensile or compressive. If the applied force is
tangential to the area, then stress is shear stress,
r = F/A.

Thermal expansion is the change in the length or vol-
ume of a substance due to a change in the temperature.
Linear coefficient of thermal expansion X is the
fractional change in the length per unit temperature
change or AL/L0 = k AT. Volume coefficient of ex-
pansion ctv is the fractional change in the volume per
unit temperature change; otv « 3k.

Unit cell is the most convenient small cell in a crystal
structure that carries the characteristics of the crystal.
The repetition of the unit cell in three dimensions
generates the whole crystal structure.

Vacancy is a point defect in a crystal, where a nor-
mally occupied lattice site is missing an atom.
Valence electrons are the electrons in the outer shell

of an atom. Since they are the farthest away from the
nucleus, they are the first electrons involved in atom-
to-atom interactions.

Young's modulus see elastic modulus.

QUESTIONS AND PROBLEMS
1
.1 Virial theorem The Li atom has a nucleus with a +3e positive charge, which is surrounded by a full

Is shell with two electrons, and a single valence electron in the outer 2s subshell. The atomic radius of
the Li atom is about 0.17 nm. Using the Virial theorem, and assuming that the valence electron sees the
nuclear +3e shielded by the two Is electrons, that is, a net charge of +e, estimate the ionization energy
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of Li (the energy required to free the 2s electron). Compare this value with the experimental value of
5

.39 eV. Suppose that the actual nuclear charge seen by the valence electron is not -\-e but a little higher,
say +1.25e, due to the imperfect shielding provided by the closed Is shell. What would be the new ion-
ization energy? What is your conclusion?

1
.2      Atomic mass and molar fractions

a. Consider a multicomponent alloy containing N elements. If w\, W2,..., wn are the weight frac-
tions of components 1, 2,..., N in the alloy and M\, M2,..., Mn are the respective atomic
masses of the elements, show that the atomic fraction of the ith component is given by

1
.
3

1:1

rii
Wi/Mi

-- -j-- -\ 1--
M[    M2 Mn

b
. Suppose that a substance (compound or an alloy) is composed of N elements, A, B, C,... and

that we know their atomic (or molar) fractions nA,nB,nc,  Show that the weight fractions
wa , wb , wc, . . . are given by

wa

Wb

haMa

uaMa + + ncMc +

 

iibMb
 

iiaMa + iibMb + ncMc +

c.

d
.

Consider the semiconducting II-VI compound cadmium selenide, CdSe. Given the atomic masses
of Cd and Se, find the weight fractions of Cd and Se in the compound and grams of Cd and Se
needed to make 100 grams of CdSe.

A Se-Te-P glass alloy has the composition 77 wt.% Se, 20 wt.% Te, and 3 wt.% P. Given their
atomic masses, what are the atomic fractions of these constituents?

The covalent bond Consider the H2 molecule in a simple way as two touching H atoms, as depicted
in Figure 1.73. Does this arrangement have a lower energy than two separated H atoms? Suppose that
electrons totally correlate their motions so that they move to avoid each other as in the snapshot in Fig-
ure 1.73. The radius r0 of the hydrogen atom is 0.0529 nm. The electrostatic potential energy of two
charges Q\ and Q2 separated by a distance r is given by Q\ Q2/(47Te0r). Using the virial theorem as in
Example 1.1 consider the following:

a. Calculate the total electrostatic potential energy PE of all the charges when they are arranged as
shown in Figure 1.73. In evaluating the PE of the whole collection of charges you must consider all
pairs of charges and, at the same time, avoid double counting of interactions between the same pair
of charges. The total PE is the sum of the following: electron 1 interacting with the proton at a dis-
tance r0 on the left, proton at r0 on the right, and electron 2 at a distance 2r0 + electron 2 interact-
ing with a proton at r0 and another proton at 3r0 + two protons, separated by 2r0, interacting with
each other. Is this configuration energetically favorable?

b
. Given that in the isolated H atom the PE is 2 x (- 13.6 eV), calculate the change in PE in going from

two isolated H atoms to the H2 molecule. Using the virial theorem, find the change in the total energy
and hence the covalent bond energy. How does this compare with the experimental value of 4.51 eV?

Weight to atomic
percentage

Atomic to

weight
percentage

Nucleus

-©---

Nucleus

e
o o

Hydrogen Hydrogen
Figure 1,73 A simplified view of the covalenf bond in H2.
A snapshot at one instant.
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Energy per ion
pair in ionic
crystals

Madelung
constant Mfor
NaCl

General PE

curve for
bonding

Bulk modulus

definition

Bulk modulus

1
.
4

1
.
5

*1.6

Ionic bonding and CsCI The potential energy E per Cs+-Cl pair within the CsCl crystal depends on
the interionic separation r in the same fashion as in the NaCl crystal,

E(r) = -
e2M B

_

Ane0r r~m
[1.38]

where for CsCl, M = 1.763, B = 1.192 x lO"104 J m9 or 7.442 x KT5 eV (nm)9
,
 and m = 9. Find

the equilibrium separation (r ) of the ions in the crystal and the ionic bonding energy, that is, the
ionic cohesive energy, and compare the latter value to the experimental value of 657 kJ mol~l.
Given that the ionization energy of Cs is 3.89 eV and the electron affinity of CI (energy released
when an electron is added) is 3.61 eV, calculate the atomic cohesive energy of the CsCl crystal as
joules per mole.

Madelung constant If we were to examine the NaCl crystal in three dimensions, we would find that
each Na+ ion has

6 CI" ions as nearest neighbors at a distance r

12 Na+ ions as second nearest neighbors at a distance r\/2
8 Cl~ ions as third nearest neighbors at a distance ry/3

and so on. Show that the electrostatic potential energy of the Na+ atom can be written as

e2   T      12      8        1 e2M
E(r) =  6  + -  = 

JtSor L     V2    V3       J 47re0r
where M, called the Madelung constant, is given by the summation in the square brackets for this par-
ticular ionic crystal structure (NaCl). Calculate M for the first three terms and compare it with
M = 1.7476, its value had we included the higher terms. What is your conclusion?

Bonding and bulk modulus In general, the potential energy E per atom, or per ion pair, in a crystal
as a function of interatomic (interionic) separation r can be written as the sum of an attractive PE and a
repulsive PE,

*<r>~4 + 4 [1.39]

where A and n are constants characterizing the attractive PE and B and m are constants characteriz-
ing the repulsive PE. This energy is minimum when the crystal is in equilibrium. The magnitude of
the minimum energy and its location r0 define the bonding energy and the equilibrium interatomic
(or interionic) separation, respectively.

When a pressure P is applied to a solid, its original volume V0 shrinks to V by an amount
A V = V - V0. The bulk modulus K relates the volume strain A V/ V to the applied pressure P by

P = -K-
AV

[1.40]

The bulk modulus K is related to the energy curve. In its simplest form (assuming a simple cubic
unit cell) K can be estimated from Equation 1.39 by

[1.41]
..To

where c is a numerical factor, of the order of unity, given byb/p where p is the number of atoms or ion
pairs in the unit cell and b is a numerical factor that relates the cubic unit cell lattice parameter a0 to the
equilibrium interatomic (interionic) separation r0by b = al/r%.

Show that the bond energy and equilibrium separation are given by
/ \ /       \ l/(m-«)

*
(l-*) and

r;\ mj

a.

£bond ro m
'
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b
.    Show that the bulk modulus is given by

An mnEbond
K =  -5- (m - n)      or      K = --=-

9crr3 9cr3

c. For a NaCl-type crystal, Na+ and Cl~ ions touch along the cube edge so that r0 - (a0/2). Thus,
a? = 23r  and b = 23 = 8

. There are four ion pairs in the unit cell, p - 4. Thus,
c = b/p = 8/4 = 2. Using the values from Example 1.2, calculate the bulk modulus of NaCl.

'1
.7     Van der Waals bonding  Below 24.5 K, Ne is a crystalline solid with an FCC structure. The inter-

atomic interaction energy per atom can be written as

E(r) = -2e 14.45  -12.13  j (eV/atom)
where e and a are constants that depend on the polarizability, the mean dipole moment, and the extent
of overlap of core electrons. For crystalline Ne, e = 3.121 x 10~3 eV and a = 0.274 nm.

a. Show that the equilibrium separation between the atoms in an inert gas crystal is given by
r0 = (1.090)0-. What is the equilibrium interatomic separation in the Ne crystal?

b
. Find the bonding energy per atom in solid Ne.

c. Calculate the density of solid Ne (atomic mass = 20.18).

1
.8 Kinetic molecular theory

a. In a particular Ar-ion laser tube the gas pressure due to Ar atoms is about 0.1 torr at 25 0C when the
laser is off. What is the concentration of Ar atoms per cm3 at 25 0C in this laser? (760 torr = 1 atm =
1
.013 x 105 Pa.)

b
. In the He-Ne laser tube He and Ne gases are mixed and sealed. The total pressure P in the gas is

given by contributions arising from He and Ne atoms:

where Pne and P e are the partial pressures of He and Ne in the gas mixture, that is, pressures due to
He and Ne gases alone,

Nue/RA NNjRT\
 = - (-f]  and  = r( j

In a particular He-Ne laser tube the ratio of He and Ne atoms is 7:1, and the total pressure is about 1 torr
at 22 0C

. Calculate the concentrations of He and Ne atoms in the gas at 22 0C. What is the pressure at an
operating temperature of 130 0C?

1
.9 Kinetic molecular theory Calculate the effective (rms) speeds of the He and Ne atoms in the He-Ne

gas laser tube at room temperature (300 K).

* 1.10 Kinetic molecular theory and the Ar-ion laser An argon-ion laser has a laser tube that contains Ar
atoms that produce the laser emission when properly excited by an electrical discharge. Suppose that the
gas temperature inside the tube is 1300 0C (very hot).

a. Calculate the mean speed (Uav)> rms velocity (fmis = v ), and the rms speed (frms
,*
 = yf )

in one particular direction of the Ar atoms in the laser tube, assuming 1300 0C . (See Exam-
ple 1.10.)

b
. Consider a light source that is emitting waves and is moving toward an observer, somewhat like a

whistling train moving toward a passenger. If /0 is the frequency of the light waves emitted at the
source, then, due to the Doppler effect, the observer measures a higher frequency / that depends on
the velocity vp oi the source moving toward the observer and the speed c of light,

/ = /«..(.  i)
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It is the At ions that emit the laser output light in the Ar-ion laser. The emission wavelength X0 = c/f0
is 514.5 nm. Calculate the wavelength X registered by an observer for those atoms that are moving with
a mean speed toward the observer. Those atoms that are moving away from the observer will result
in a lower observed frequency because t>Ar will be negative. Estimate the width of the wavelengths (the
difference between the longest and shortest wavelengths) emitted by the Ar-ion laser.

* 1.11    Vacuum deposition  Consider air as composed of nitrogen molecules N2.
a. What is the concentration n (number of molecules per unit volume) of N2 molecules at 1 atm and

27 0C?

b
. Estimate the mean separation between the N2 molecules.

c. Assume each molecule has a finite size that can be represented by a sphere of radius r. Also as-
sume that I is the mean free path, defined as the mean distance a molecule travels before col-
liding with another molecule, as illustrated in Figure 1.74a. If we consider the motion of one N2
molecule, with all the others stationary, it is apparent that if the path of the traveling molecule
crosses the cross-sectional area 5 = 7r(2r)2,

 there will be a collision. Since I is the mean dis-

tance between collisions, there must be at least one stationary molecule within the volume Si,

Molecule

S n(2r)

V

1

2 (a) A molecule moving with a
velocity v travels a mean distance

Any molecule with € between collisions
.
 Since the

center in S gets hit. collision cross-sectional area is S
,

Molecule in the volume Si there must be at
least one molecule.

Consequently, n(S£) = 1.

Semiconductor

Evaporated
metal atoms

FTWFI
Hot

Metal film

Vacuum
filament

Vacuum

pump

(b) Vacuum deposition of metal
electrodes by thermal evaporation.

Figure 1.74

Walter Houser Brattain (1902-1987), experimenting with metal contacts on copper oxide (1935)
at Bell Telephone Labs. A vacuum evaporation chamber is used to deposit the metal electrode.

I SOURCE: Bell Telephone Laboratories, courtesy AIP Emilio Segre Visual Archives.
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as shown in Figure 1.74a. Since n is the concentration, we must have n(St) = 1 or
£ = l/(7t4r2n). However, this must be corrected for the fact that all the molecules are in motion,
which only introduces a numerical factor, so that

1

21/24 r2w

Assuming a radius r of 0.1 nm, calculate the mean free path of N2 molecules between collisions at
27 0C and 1 atm.

d
. Assume that an Au film is to be deposited onto the surface of a Si chip to form metallic interconnec-

tions between various devices. The deposition process is generally carried out in a vacuum chamber
and involves the condensation of Au atoms from the vapor phase onto the chip surface. In one pro-
cedure, a gold wire is wrapped around a tungsten filament, which is heated by passing a large current
through the filament (analogous to the heating of the filament in a light bulb) as depicted in Fig-
ure 1.74b. The Au wire melts and wets the filament, but as the temperature of the filament increases,
the gold evaporates to form a vapor. Au atoms from this vapor then condense onto the chip surface,
to solidify and form the metallic connections. Suppose that the source (filament)-to-substrate (chip)
distance L is 10 cm. Unless the mean free path of air molecules is much longer than L, collisions
between the metal atoms and air molecules will prevent the deposition of the Au onto the chip sur-
face. Taking the mean free path £, to be 100L, what should be the pressure inside the vacuum system?
(Assume the same r for Au atoms.)

1
.
12

1
.
13

1
.
14

Heat capacity

Calculate the heat capacity per mole and per gram of N2 gas, neglecting the vibrations of the mole-
cule. How does this compare with the experimental value of 0.743 J g-1 K-1 ?

Calculate the heat capacity per mole and per gram of CO2 gas, neglecting the vibrations of the
molecule. How does this compare with the experimental value of 0.648 J K-1 g

-1? Assume that

the CO2 molecule is linear (O-C-O) so that it has two rotational degrees of freedom.

Based on the Dulong-Petit rule, calculate the heat capacity per mole and per gram of solid silver.

a.

b
.

c.

How does this compare with the experimental value of 0.235 J K 1 g 1 ?
d

. Based on the Dulong-Petit rule, calculate the heat capacity per mole and per gram of the silicon
crystal. How does this compare with the experimental value of 0.71 J K-1 g-1 ?

Dulong-Petit atomic heat capacity Express the Dulong-Petit rule for the molar heat capacity as
heat capacity per atom and in the units of eV K-1 per atom, called the atomic heat capacity. Csl is
an ionic crystal used in optical applications that require excellent infrared transmission at very long
wavelengths (up to 55 p.m). It has the CsCl crystal structure with one Cs+ and one I~ ion in the unit

cell. Given the density of Csl as 4.51 g cm-3
, calculate the specific heat capacity of Csl and com-

pare it with the experimental value of 0.2 J K"1 g
-1

. What is your conclusion?

Dulong-Petit specific heat capacity of alloys and compounds
a. Consider an alloy AB, such as solder, or a compound material such as MgO, composed of wa,

atomic fractions of A, and W5, atomic fractions of B. (The atomic fraction of A is the same as its
molar fraction.) Let Ma and Mb be the atomic weights of A and B, in g mol-1

.
 The mean atomic

weight per atom in the alloy or compound is then

M = haMa + iflA/fl

Show that the Dulong-Petit rule for the specific heat capacity    leads to

25c = SC* M kaMa + tibMb
JK

-v1

b
. Calculate the specific heat capacity of Pb-Sn solder assuming that its composition is 38 wt.% Pb

and 62 wt.% Sn.

Average atomic
weight

Specific heat
capacity
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Alloy specific
heat capacity

Silicon linear

expansion

coefficient

Silicon linear

expansion
coefficient

GaAs linear

expansion
coefficient

1
.
16

1
.
17

1
.
18

c. Calculate the specific heat capacities of Pb and Sn individually as csa and cS5, respectively, and
then calculate the cs for the alloy using

Cs =Csawa +csbwb

where wa and wb are the weight fractions of A (Pb) and B (Sn) in the alloy (solder). Compare your
result with part (a). What is your conclusion?

d
. ZnSe is an important optical material (used in infrared windows and lenses and high-power CO2

laser optics) and also an important II-VI semiconductor that can be used to fabricate blue-green
laser diodes. Calculate the specific heat capacity of ZnSe, and compare the calculation to the

g
"experimental value of 0.345 J K 1 " 1

1
.15     Thermal expansion

a. If A. is the thermal expansion coefficient, show that the thermal expansion coefficient for an area is
2k. Consider an aluminum square sheet of area 1 cm2. If the thermal expansion coefficient of Al at
room temperature (25 0C) is about 24 x 10~6 K-1

, at what temperature is the percentage change
in the area+1%?

b
. A particular incandescent light bulb (100 W, 120 V) has a tungsten (W) filament of length 57.9 cm

and a diameter of 63.5 \im. Calculate the length of the filament at 2300 0C
, the approximate oper-

ating temperature of the filament inside the bulb. The linear expansion coefficient A. of W is approx-
imately 4.50 x 10~6 K-1 at 300 K. How would you improve your calculation?

Thermal expansion of Si The expansion coefficient of silicon over the temperature range 120-1500 K
is given by Okada and Tokumaru (1984) as

A
.

 = 3
.725 x 10-6[1 - e-3.725xio

-3(r-i24)] + 5 548 x 10-ior

where A is in K_1 (or 0C_1) and T is in kelvins.

a. By expanding the above function around 20 0C (293 K) show that,

A = 2.5086 x lO"6 + (8.663 x 10-9)(r - 293) - (2.3839 x lO-11)  - 293)2

b
. The change 8p in the density due to a change ST in the temperature, from Example 1.5, is given by

8p = -po<xv     = -3p0X 8T

Given the density of Si as 2.329 g cm-3 at 20 0C, calculate the density at 1000 0C by using the full
expression and by using the polynomials expansion of A. What is your conclusion?

Thermal expansion of GaP and GaAs

a. GaP has the zinc blende structure. The linear expansion coefficient in GaP has been measured as
follows: A = 4.65 x lO"6 K"1 at 300 K; 5.27 x lO"6 K"1 at 500 K; 5.97 x lO"6 K"1 at 800 K.

Calculate the coefficients, A, B, and C in

dL

L0dT
HT) = A + B(T - T0) + C(T - T0)2 +

b
.

where T0 = 300 K. The lattice constant of GaP, a, at 27 0C is 0.5451 nm. Calculate the lattice con-

stant at 300 0C.

The linear expansion coefficient of GaAs over 200-1000 K is given by

A
.
 = 4

.25 x lO"6 + (5.82 x \0-9)T - (2.82 x lO"12)?2

where T is in kelvins. The lattice constant a at 300 K is 0.56533 nm. Calculate the lattice constant

and the density at -40PC.

Electrical noise Consider an amplifier with a bandwidth B of 5 kHz, corresponding to a typical
speech bandwidth. Assume the input resistance of the amplifier is 1 MQ. What is the rms noise voltage
at the input? What will happen if the bandwidth is doubled to 10 kHz? What is your conclusion?
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1
.19 Thermal activation A certain chemical oxidation process (e.g., Si02) has an activation energy of

2eV atom-1.

a. Consider the material exposed to pure oxygen gas at a pressure of 1 atm at 27 0C. Estimate how
many oxygen molecules per unit volume will have energies in excess of 2 eV? (Consider the
numerical integration of Equation 1.24.)

b
. If the temperature is 900 0C, estimate the number of oxygen molecules with energies more than

2 eV. What happens to this concentration if the pressure is doubled?

1
.20 Diffusion in Si The diffusion coefficient of boron (B) atoms in a single crystal of Si has been

measured to be 1.5 x lO-18 m2 s"1 at 1000 0C and 1.1 x lO-16 m2 s-1 at 1200 0C
.

a. What is the activation energy for the diffusion of B, in eV/atom?
b

. What is the preexponential constant D0?

c. What is the rms distance (in micrometers) diffused in 1 hour by the B atom in the Si crystal at
1200 0C and 1000 0C?

d
. The diffusion coefficient of B in polycrystalline Si has an activation energy of 2.4-2.5 eV/atom and

D0 = (1.5 - 6) x 10_7 m2 s-1. What constitutes the diffusion difference between the single crys-
tal sample and the polycrystalline sample?

1
.21 Diffusion in Si02 The diffusion coefficient of P atoms in Si02 has an activation energy

of 2.30 eV/atom and D0 - 5.73 x 10-9 m2 s-1
. What is the rms distance diffused in 1 hour by P atoms

in Si02 at 1200 0C?

1
.22 BCC and FCC crystals

a. Molybdenum has the BCC crystal structure, a density of 10.22 g cm-3, and an atomic mass of
95.94 g mol-1. What is the atomic concentration, lattice parameter a, and atomic radius of molyb-
denum?

b
. Gold has the FCC crystal structure, a density of 19.3 g cm"3, and an atomic mass of 196.97 g

mol-1
. What is the atomic concentration, lattice parameter a, and atomic radius of gold?

1
.23 BCC and FCC crystals

a. Tungsten (W) has the BCC crystal structure. The radius of the W atom is 0.1371 nm. The atomic
mass of W is 183.8 amu (g mol-1). Calculate the number of W atoms per unit volume and density
ofW

b
. Platinum (Pt) has the FCC crystal structure. The radius of the Pt atom is 0.1386 nm. The atomic

mass of Pt is 195.09 amu (g mol-1). Calculate the number of Pt atoms per unit volume and density
ofPt.

1
.24 Planar and surface concentrations Niobium (Nb) has the BCC crystal with a lattice parameter

a - 0.3294 nm. Find the planar concentrations as the number of atoms per nm2 of the (100), (110), and

(111) planes. Which plane has the most concentration of atoms per unit area? Sometimes the number of
atoms per unit area surface on the surface of a crystal is estimated by using the relation wSurface =
where Wbuik is the concentration of atoms in the bulk. Compare Hsurface values with the planar concen-
trations that you calculated and comment on the difference. [Note: The BCC (111) plane does not cut
through the center atom and the (111) has one-sixth of an atom at each comer.]

1
.25 Diamond and zinc blende Si has the diamond and GaAs has the zinc blende crystal structure. Given

the lattice parameters of Si and GaAs, a = 0.543 nm and a = 0.565 nm, respectively, and the atomic
masses of Si, Ga, and As as 28.08, 69.73, and 74.92, respectively, calculate the density of Si and GaAs.
What is the atomic concentration (atoms per unit volume) in each crystal?

1
.26 Zinc blende, NaCl, and CsCl

a. InAs is a III-V semiconductor that has the zinc blende structure with a lattice parameter of 0.606 nm.
Given the atomic masses of In (114.82 g mol"1) and As (74.92 g mol-1), find the density.

b
. CdO has the NaCl Crystal structure with a lattice parameter of 0.4695 nm. Given the atomic masses

of Cd (112.41 g mol"1) and O (16.00 g mol-1), find the density.
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c. KCl has the same crystal structure as NaCl. The lattice parameter a of KCl is 0.629 nm. The atomic
masses of K and CI are 39.10 g mol

~1 and 35.45 g mol
"1

, respectively. Calculate the density of KCl.

1
.27     Crystallographic directions and planes  Consider the cubic crystal system.

a. Show that the line [hki] is perpendicular to the (hkt) plane.
b

. Show that the spacing between adjacent {hkt) planes is given by

d
a

V/i2 + k2 + i2

1
.28 SiandSiOa

a.

b
.

c.

0
.543 nm, calculate the number of Si atoms per unit volume, inGiven the Si lattice parameter a

nm
-3

.

Calculate the number of atoms per m2 and per nm2 on the (100), (110), and (111) planes in the Si
crystal as shown in Figure 1.75. Which plane has the most number of atoms per unit area?

The density of Si02 is 2.27 g cm-3. Given that its structure is amorphous, calculate the number of
molecules per unit volume, in nm-3

. Compare your result with (a) and comment on what happens
when the surface of an Si crystal oxidizes. The atomic masses of Si and O are 28.09 and 16, re-
spectively.

7

a

a

a

(100) plane (110) plane (111) plane

Figure 1.75   Diamond cubic crystal structure and planes.
Determine what portion of a black-colored atom belongs to the plane that is hatched.

1
.
29     Vacancies in metals

a. The energy of formation of a vacancy in the copper crystal is about 1 eV. Calculate the con-
centration of vacancies at room temperature (300 K) and just below the melting temperature,
1084 0C. Neglect the change in the density which is small.

b
. The following table shows the energies of vacancy formation in various metals with close-packed

crystal structures and the melting temperature Tm. Plot Ev in eV versus. Tm in kelvins, and explore
if there is a correlation between a and Tm. Some materials engineers take Ev to be very roughly
lOfcTm. Do you think that they are correct? (Justify.)

Metal

Al Ag Au Cu Mg Pt Pb Ni Pd

Crystal
Ev (eV)
Tm (0C)

FCC

0
.
70-0.76

660

FCC

1
.
0-1

.
1

962

FCC

0
.
90-0.98

1064

FCC

1-1
.
28

1085

HCP

0
.
89

650

FCC

1
.
3-1

.
5

1768

FCC

0
.
50

328

FCC

1
.
63-1.79

1455

FCC

1
.
54-1.85

1555
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1
.
30

1
.
31

1
.
32

Vacancies in silicon In device fabrication, Si is frequently doped by the diffusion of impurities
(dopants) at high temperatures, typically 950-1200oC. The energy of vacancy formation in the Si crys-
tal is about 3.6 eV. What is the equilibrium concentration of vacancies in a Si crystal at 1000 0C? Ne-
glect the change in the density with temperature which is less than 1 percent in this case.

Pb-Sn solder Consider the soldering of two copper components. When the solder melts, it wets both
metal surfaces. If the surfaces are not clean or have an oxide layer, the molten solder cannot wet the sur-
faces and the soldering fails. Assume that soldering takes place at 250 0C, and consider the diffusion of
Sn atoms into the copper (the Sn atom is smaller than the Pb atom and hence diffuses more easily).

a. The diffusion coefficient of Sn in Cu at two temperatures is D = 1.69 x 10~9 cm2 hr_1 at 400 0C
and D = 2.48 x 10~7 cm2 hr-1 at 650 0C. Calculate the rms distance diffused by an Sn atom into
the copper, assuming the cooling process takes 10 seconds.

b
. What should be the composition of the solder if it is to begin freezing at 250 0C?

c. What are the components (phases) in this alloy at 200 0C? What are the compositions of the phases
and their relative weights in the alloy?

d
. What is the microstructure of this alloy at 25 0C? What are weight fractions of the a and phases

assuming near equilibrium cooling?

Pb-Sn solder  Consider 50% Pb-50% Sn solder.

a. Sketch the temperature-time profile and the microstructure of the alloy at various stages as it is
cooled from the melt.

b
. At what temperature does the solid melt?

c. What is the temperature range over which the alloy is a mixture of melt and solid? What is the
structure of the solid?

d
. Consider the solder at room temperature following cooling from 182 0C. Assume that the rate of

cooling from 182 0C to room temperature is faster than the atomic diffusion rates needed to change
the compositions of the a and ft phases in the solid. Assuming the alloy is 1 kg, calculate the masses
of the following components in the solid: 
1

. The primary of.
2

. a in the whole alloy.
3

.
 of in the eutectic solid.

4
. 0 in the alloy. (Where is the 0-phase?)

e. Calculate the specific heat of the solder given the atomic masses of Pb (207.2) and Sn (118.71).

A
,

1 r*ni

.A   . ;
.

Pi

Walter Houser Brattain (1902-1987), one of the inventors of the
transistor, looking at a vacuum evaporator used for depositing metal film
electrodes on semiconductors (1937).

I SOURCE: AIP Emilio Segre Visual Archives, Brattain Collection.
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Highly magnified scanning electron microscope (SEM) view of
IBM's six-level copper interconnect technology in an integrated
circuit chip. The aluminum in transistor interconnections in a
silicon chip has been replaced by copper that has a higher
conductivity (by nearly 40%) and also a better ability to carry
higher current densities without electromigration. Lower copper
interconnect resistance means higher speeds and lower RC
constants (1997).
I SOURCE: Courtesy of IBM Corporation.
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SEM view of three levels of copper interconnect metallization in
IBM's new faster CMOS integrated circuits (1997).
I SOURCE: Courtesy of IBM Corporation.
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Electrical

and

Thermal Conduction

in Solids

Electrical conduction involves the motion of charges in a material under the influence
of an applied electric field. A material can generally be classified as a conductor if it
contains a large number of "free" or mobile charge carriers. In metals, due to the na-
ture of metallic bonding, the valence electrons from the atoms form a sea of electrons
that are free to move within the metal and are therefore called conduction electrons. In

this chapter, we will treat the conduction electrons in metal as "free charges" that can
be accelerated by an applied electric field. In the presence of an electric field, the con-
duction electrons attain an average velocity, called the drift velocity, that depends on
the field, By applying Newton's second law to electron motion and using such con-
cepts as mean free time between electron collisions with lattice vibrations, crystal de-
fects, impurities, etc., we will derive the fundamental equations that govern electrical
conduction in solids. A key concept will be the drift mobility, which is a measure of the
ease with which charge carriers in the solid drift under the influence of an external
electric field.

Good electrical conductors, such as metals, are also known to be good thermal
conductors. The conduction of thermal energy from higher to lower temperature re-
gions in a metal involves the conduction electrons carrying the energy. Consequently,
there is an innate relationship between the electrical and thermal conductivities, which
is supported by theory and experiments.

113
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Current

density
definition

Definition of
drift velocity

Current

density and
drift velocity

2
.1    CLASSICAL THEORY: THE DRUDE MODEL

2
.
1
.

1   Metals and Conduction by Electrons

The electric current density / is defined as the net amount of charge flowing across a
unit area per unit time, that is,

A At

where Aq is the net quantity of charge flowing through an area A in time At. Figure 2.1
shows the net flow of electrons in a conductor section of cross-sectional area A in the

presence of an applied field Notice that the direction of electron motion is opposite
to that of the electric field !EX and of conventional current, because the electrons experi-
ence a Coulombic force e'Ex in the x direction, due to their negative charge.

We know that the conduction electrons are actually moving around randomly1 in
the metal, but we will assume that as a result of the application of the electric field
they all acquire a net velocity in the x direction. Otherwise, there would be no net flow
of charge through area A.

The average velocity of the electrons in the x direction at time t is denoted vdxi*)-
This is called the drift velocity, which is the instantaneous velocity vx in the x direc-
tion averaged ovpr many electrons (perhaps, ~1028 m~3); that is

1
Vdx = TTt l + Vx2 + Vx3 + '" + VxN] [2.11

where vXi is the x direction velocity of the /th electron, and N is the number of
conduction electrons in the metal. Suppose that n is the number of electrons per unit
volume in the conductor (n = N/V). In time At, electrons move a distance
Ax = Vdx Af, so the total charge Aq crossing the area A is enA Ax. This is valid
because all the electrons within distance Ax pass through A; thus, n(A Ax) is the total
number of electrons crossing A in time At.

The current density in the x direction is

Jx =
Aq      enAvdx At

A At A At
= en Vdx

This general equation relates Jx to the average velocity Vdx of the electrons. It must be
appreciated that the average velocity at one time may not be the same as at another
time, because the applied field, for example, may be changing: = 'Exit). We there-
fore allow for a time-dependent current by writing

Jx(t) = envdxit) [2.2]

To relate the current density Jx to the electric field we must examine the effect
of the electric field on the motion of the electrons in the conductor. To do so, we will

consider the copper crystal.

i All the conduction electrons are "free" within the metal and move around randomly, being scattered from vibrating
metal ions, as we discuss in this chapter.
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< Ax > J*

o t
 Q v l   [   e-V-      Figure 2.1   Drift of electrons in a

presence of an applied
J

_ eV Figured! Drift
r   | conductor in the pr
x 1 0  p  »  J electric field.

7 
 

\    o /  Electrons drift with
Z

. 
 \ y in the x direction.

an average velocity vjx

!; The copper atom has a single valence electron in its 4  subshell, and this electron
is loosely bound. The solid metal consists of positive ion cores, Cu+, at regular sites,
in the face-centered cubic (FCC) crystal structure. The valence electrons detach them-
selves from their parents and wander around freely in the solid, forming a kind of elec-
tron cloud or gas. These mobile electrons are free to respond to an applied field, creat-
ing a current density Jx. The valence electrons in the electron gas are therefore
conduction electrons.

The attractive forces between the negative electron cloud and the Cu+ ions are re-
sponsible for metallic bonding and the existence of the solid metal. (This simplistic
view of metal was depicted in Figure 1.7 for copper.) The electrostatic attraction be-
tween the conduction electrons and the positive metal ions, like the electrostatic attrac-
tion between the electron and the proton in the hydrogen atom, results in the conduction
electron having both potential energy PE and kinetic energy KE. The conduction elec-
trons move about the crystal lattice in the same way that gas atoms move randomly in a
cylinder. Although the average KE for gas atoms is \ k T J this is not the case for electrons
in a metal, because these electrons strongly interact with the metal ions and with each
other as a result of electrostatic interactions.

The mean KE of the conduction electrons in a metal is primarily determined
by the electrostatic interaction of these electrons with the positive metal ions and
also with each other. For most practical purposes, we will therefore neglect the
temperature dependence of the mean KE compared with other factors that control
the behavior of the conduction electrons in the metal crystal. We can speculate
from Example 1.1, that the magnitude of mean KE must be comparable to the
magnitude of the mean PE of electrostatic interaction2 or, stated differently, to the
metal bond energy which is several electron volts per atom. If u is the mean speed
of the conduction electrons, then, from electrostatic interactions alone, we expect

rrieU1 to be several electron volts which means that u is typically ~106 m s"1
.
 This

purely classical and intuitive reasoning is not sufficient, however, to show that the
mean speed u is relatively temperature insensitive and much greater than that
expected from kinetic molecular theory. The true reasons are quantum mechanical
and are discussed in Chapter 4. (They arise from what is called the Pauli exclusion
principle.)

f
2 There is a theorem in classical mechanics called the virial theorem, which states that for a collection of particles,
the mean KE has half the magnitude of the mean PE if the only forces acting on the particles are such that they
follow an inverse square law dependence on the particle-particle separation (as in Coulombic and gravitational
forces).
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Vibrating Cu ions

(a) A conduction electron in the electron gas moves
about randomly in a metal (with a mean speed u)
being freauently and randomly scattered by
thermal vibrations of the atoms. In the absence of

an applied field there is no net drift in any direction.

x

Ax

I I+

V

(b) In the presence of an applied field, 'Ex, there
is a net drift along the x direction. This net drift
along the force of the field is superimposed on
the random motion of the electron. After many
scattering events the electron has been displaced
by a net distance, A x, from its initial position
toward the positive terminal.

Figure 2.2  Motion of a conduction electron in a metal.

In general, the copper crystal will not be perfect and the atoms will not be sta-
tionary. There will be crystal defects, vacancies, dislocations, impurities, etc., which
will scatter the conduction elbctrons. More importantly, due to their thermal energy,
the atoms will vibrate about their lattice sites (equilibrium positions), as depicted in
Figure 2.2a. An electron will not be able to avoid collisions with vibrating atoms;
consequently, it will be "scattered" from one atom to another. In the absence of an

applied field, the path of an electron may be visualized as illustrated in Figure 2.2a,
where scattering from lattice vibrations causes the electron to move randomly in the
lattice. On those occasions when the electron reaches a crystal surface, it becomes
"deflected" (or "bounced") back into the crystal. Therefore, in the absence of a
field, after some duration of time, the electron crosses its initial x plane position
again. Over a long time, the electrons therefore show no net displacement in any one
direction.

When the conductor is connected to a battery and an electric field is applied to the
crystal, as shown in Figure 2.2b, the electron experiences an acceleration in the jc
direction in addition to its random motion, so after some time, it will drift a finite dis-

tance in the x direction. The electron accelerates along the x direction under the action
of the force and then it suddenly collides with a vibrating atom and loses the
gained velocity. Therefore, there is an average velocity in the x direction, which, if cal-
culated, determines the current via Equation 2.2. Note that since the electron experi-
ences an acceleration in the x direction, its trajectory between collisions is a parabola,
like the trajectory of a golf ball experiencing acceleration due to gravity.

To calculate the drift velocity vdx of the electrons due to applied field IE*, we first
consider the velocity vXi of the ith electron in the x direction at time r. Suppose its last
collision was at time f, ; therefore, for time (t - r, ), it accelerated free of collisions, as
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Velocity gained along x Present time 2- x2
vjc1-wjciI A

f

Last collision

Electron 1

t
l
 Free time /

> time

Electron 2

t
,2

t
time

Electron 3

r
.

3

Figure 2.3 Velocity gained in the x direction at time t from the electric field ((Ex) for three electrons.
There will be N electrons to consider in the metal.

>. time
t

indicated in Figure 2.3. Let uXi be the velocity of electron / in the x direction just after
the collision. We will call this the initial velocity. Since efLxlme is the acceleration of
the electron, the velocity vXi in the x direction at time t will be

Vxi = Uxi +  -(* -
me

However, this is only for the i th electron. We need the average velocity vdx for all
such electrons along x. We average the expression for / = 1 to Af electrons, as in Equa-
tion 2.1. We assume that immediately after a collision with a vibrating ion, the electron
may move in any random direction; that is, it can just as likely move along the nega-
tive or positive x, so that uXi averaged over many electrons is zero. Thus,

1
Vdx = TTtfjtl + Vjr2 +

/V m e

where (r - f, ) is the average free time for N electrons between collisions.
Suppose that r is the mean free time, or the mean time between collisions (also

known as the mean scattering time). For some electrons, {t - r, ) will be greater than
r, and for others, it will be shorter, as shown in Figure 2.3. Averaging (t - r,) for N
electrons will be the same as r. Thus, we can substitute r for (t - f,-) in the previous
expression to obtain

ex

Vdx = -
me

[2.3]

Equation 2.3 shows that the drift velocity increases linearly with the applied field.
The constant of proportionality ex/me has been given a special name and symbol. It is
called the drift mobility //,</, which is defined as

where

Vdx = V<d<E>x

ex

= -
me

[2.4]

[2.5]

Equation 2.5 relates the drift mobility of the electrons to their mean scattering
time r. To reiterate, r, which is also called the relaxation time, is directly related to

Drift velocity

Definition of
drift mobility

Drift mobility
and mean free
time
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Ohm's law

Unipolar
conductivity

Drift velocity

the microscopic processes that cause the scattering of the electrons in the metal; that is,
lattice vibrations, crystal imperfections, and impurities, to name a few.

From the expression for the drift velocity vdX9 the current density Jx follows im-
mediately by substituting Equation 2.4 into 2.2, that is,

J
x
 = eniid<E

x [2.6]

Therefore, the current density is proportional to the electric field and the conduc-
tivity a is the term multiplying     that is,

[2.7]

It is gratifying that by treating the electron as a particle and applying classical me-
chanics (F = ma ), we are able to derive Ohm's law. We should note, however, that we
assumed r to be independent of the field.

Drift mobility is important because it is a widely used electronic parameter in
semiconductor device physics. The drift mobility gauges how fast electrons will drift
when driven by an applied field. If the electron is not highly scattered, then the mean
free time between collisions will be long, r will be large, and by Equation 2.5, the
drift mobility will also be large; the electrons will therefore be highly mobile and be
able to "respond" to the field. However, a large drift mobility does not necessarily
imply high conductivity, because a also depends on the concentration of conduction
electrons n.

The mean time between collisions r has further significance. Its reciprocal 1 /r
represents the mean frequency of collisions or scattering events; that is, 1/r is the
mean probability per unit time that the electron will be scattered (see Example 2.1).
Therefore, during a small time interval <$r, the probability of scattering will be St/r.
The probability of scattering per unit time 1/r is time independent and depends only
on the nature of the electron scattering mechanism.

There is one important assumption in the derivation of the drift velocity vdx in
Equation 2.3. We obtained vdx by averaging the velocities vXi of N electrons along x
at one instant, as defined in Equation 2.1. The drift velocity therefore represents the
average velocity of all the electrons along x at one instant; that is, vdxis a number av-
erage at one instant. Figure 2.2b shows that after many collisions, after a time interval
At > r, an electron would have been displaced by a net distance Ax along x. The
term Ax/At represents the effective velocity with which the electron drifts along x. It
is an average velocity for one electron over many collisions, that is, over a long time
(hence, At > r), so Ax/At is a time average. Provided that At contains many colli-
sions, it is reasonable to expect that the drift velocity Ax/At from the time average for
one electron is the same as the drift velocity vdx per electron from averaging for all
electrons at one instant, as in Equation 2.1, or

Ax
~

At
= Vdx

The two velocities are the same only under steady-state conditions (At > r). The
proof may be found in more advanced texts.

ii
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PROBABILITY OF SCATTERING PER UNIT TIME AND THE MEAN FREE TIME If 1/r is defined
as the mean probability per unit time that an electron is scattered, show that the mean time be-
tween collisions is r.

SOLUTION

Consider an infinitesimally small time interval dt at time t. Let Af be the number of unscattered
electrons at time t. The probability of scattering during dt is (1/r) dt, and the number of scat-
tered electrons during dt is N(1/t) dt. The change dN in N is thus

dN -a) dt

The negative sign indicates a reduction in N because, as electrons become scattered, N de-
creases. Integrating this equation, we can find Af at any time f, given that at time t = 0, Nq is
the total number of unscattered electrons. Therefore,

N No exp -0
This equation represents the number of unscattered electrons at time t. It reflects an expo-

nential decay law for the number of unscattered electrons. The mean free time t can be calcu-
lated from the mathematical definition of i,

t
f
~

tNdt
T

where we have used Af

unit time.
Nq exp(-t/z). Clearly, 1/r is the mean probability of scattering per

EXAMPLE 2.1

Unscattered

electron

concentration

Mean free
time

ELECTRON DRIFT MOBILITY IN METALS Calculate the drift mobility and the mean scattering
time of conduction electrons in copper at room temperature, given that the conductivity of copper
is 5.9 x 105 ft-1 cm-1. The density of copper is 8.96 g cm"3 and its atomic mass is 63.5 g mol-1.

SOLUTION

We can calculate  from a = enfAj because we already know the conductivity a. The number
of free electrons n per unit volume can be taken as equal to the number of Cu atoms per unit
volume, if we assume that each Cu atom donates one electron to the conduction electron gas in
the metal. One mole of copper has NA (6.02 x 1023) atoms and a mass of 63.5 g. Therefore, the
number of copper atoms per unit volume is

n
dNA

where d - density = 8.96 g cm"3
, and Mat = atomic mass = 63.5 (g mol"1)- Substituting for

d
, NA, and Mat, we find n = 8.5 x 1022 electrons cm"3.

The electron drift mobility is therefore

5
.
9 x lO - m"1cr

V>d = -
en [(1.6 x lO"19 C)(8.5 x 1022 cm-3)]

43.4 cm2 V s"1

EXAMPLE 2.2



120 chapter 2 . Electrical and Thermal Conduction in Solids

From the drift mobility we can calculate the mean free time r between collisions by using
Equation 2.5,

fjidme     (43.4 x lO"4 m2 V"1 s-1)(9.1 x KT31 kg)
r

e 1
.
6 x 10-19C

2
.
5 x 10"14s

Note that the mean speed u of the conduction electrons is about 1.5 x 106 m s 1, so that
their mean free path is about 37 nm.

EXAMPLE 2.3 DRIFT VELOCITY AND MEAN SPEED What is the applied electric field that will impose a drift
velocity equal to 0.1 percent of the mean speed m(M06 m s"1) of conduction electrons in

copper? What is the corresponding current density and current through a Cu wire of diameter
1 mm?

SOLUTION

The drift velocity of the conduction electrons is vjx = where fjLd is the drift mobility, which
for copper is 43.4 cm2 V"1 s"1 (see Example 2.2). With vjx = 0.001 u = 103 m s~1, we have

103ms-1

43 A x 10-4 m2V-1s-1
2

.
3 x 105 V nT1 or 230 kV m

-i

This is an unattainably large electric field in a metal. Given the conductivity cr of copper, the
equivalent current density is

Jx =       = (5.9 x 107 ST1 m-1)(2.3 x 105 V nT1)
= 1

.
4 x 1013 Am"2      or      1.4 x 107 A mm~2

This means a current of 1.1 x 107 A through a 1 mm diameter wire! It is clear from this
example that for all practical purposes, even under the highest working currents and volt-
ages, the drift velocity is much smaller than the mean speed of the electrons. Consequently,
when an electric field is applied to a conductor, for all practical purposes, the mean speed is
unaffected.

EXAMPLE 2.4

Distance

traversed

along x before
collision

DRIFT VELOCITY IN A FIELD: A CLOSER LOOK There is another way to explain the observed
dependence of the drift velocity on the field, and Equation 2.3. Consider the path of a conduc-
tion electron in an applied field £ as shown in Figure 2.4. Suppose that at time t = 0 the elec-
tron has just been scattered from a lattice vibration. Let ux\ be the initial velocity in the
x direction just after this initial collision (to which we assign a collision number of zero). We
will assume that immediately after a collision, the velocity of the electron is in a random direc-
tion. Suppose that the first collision occurs at time t\. Since e(Ex/me is the acceleration, the dis-
tance si covered in the x direction during the free time t\ will be

At time t\, the electron collides with a lattice vibration (its first collision), and the velocity
is randomized again to become uX2. The whole process is then repeated during the next interval
which lasts for a free time f2, and the electron traverses a distance 52 along x, and so on. To find
the overall distance traversed by the electron after p such scattering events, we sum all the
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Electric field

 * 

i< * 1

Start

Collision

s = Ax

Distance drifted in total time At

Finish

Collision
U . i P 1

tt 2

2u

t0 33

4
Figure 2.4  The motion of a single
electron in the presence of an electric
field    During a time interval f,-, the
electron traverses a distance s, along x.
After p collisions, it has drifted a distance
s AX.

above distances su S2>... for p free time intervals,

5 = J, + J2 + . . . + Jp = [ll f! + Ux2t2 + . . . + uxptp] + ijf/j2 + t\ + . . . + 2] [2.8]

Since after a collision the "initial" velocity ux is always random, the first term has val-
ues that are randomly negative and positive, so for many collisions (large p) the first term on the
right-hand side of Equation 2.8 is nearly zero and can certainly be neglected compared with the
second term. Thus, after many collisions, the net distance s = Ax traversed in the x direction is
given by the second term in Equation 2.8, which is the electric field induced displacement term.
If r2is the mean square free time, then

2 \ me )

where ,2=I[,i
2 + f2 + ...+,2]

Suppose that r is the mean free time between collisions, where r = {tx +  H V tp)lp .
Then from straightforward elementary statistics it can be shown that t2 = 2(7)2 = 2r2. So in
terms of the mean free time r between collisions, the overall distance s = Ax drifted in the

x direction after p collisions is

s - (pr2
)

171 e

Further, since the total time At taken for these p scattering events is simply pr, the drift
velocity vdx is given by Ax/At ors/ipr), that is,

Vdx
ex

- 'Ex
171 e

[2.9]

This is the same expression as Equation 2.3, except that r is defined here as the average
free time for a single electron over a long time, that is, over many collisions, whereas previously
it was the mean free time averaged over many electrons. Further, in Equation 2.9 VdX is an
average drift for an electron over a long time, over many collisions. In Equation 2.1 Vdx is the

Distance

drifted after p
scattering
events

Mean square
free time
definition

Drift velocity
and mean free
time



122 chapter 2 . Electrical and Thermal Conduction in Solids

Drift mobility
and conducti-

vity and mean
free path

average velocity averaged over all electrons at one instant. For all practical purposes, the two
are equivalent. (The equivalence breaks down when we are interested in events over a time
scale that is comparable to one scattering, M0~14 second.)

The drift mobility from Equation 2.9 is identical to that of Equation 2.
5

, ixd - ex/me.
Suppose that the mean speed of the electrons (not the drift velocity) is u.

 Then an electron

moves a distance i = ux in mean free time r
, which is called the mean free path. The drift

mobility and conductivity become,

ei            
j                          e -ni r ,

fld =   and       or = ennd =   [2.101
meu meu

Equations 2.3 and 2.10 both assume that after each collision the velocity is randomized.

The scattering process, lattice scattering, is able to randomize the velocity in one single scatter-
ing. In general not all electron scattering processes can randomize the velocity in one scattering
process. If it takes more than one collision to randomize the velocity, then the electron is able to
carry with it some velocity gained from a previous collision and hence possesses a higher drift
mobility. In such cases one needs to consider the effective mean free path a carrier has to move
to eventually randomize the velocity gained; this is a point considered in Chapter 4 when we
calculate the resistivity at low temperatures.

2
.
2    TEMPERATURE DEPENDENCE OF RESISTIVITY:

IDEAL PURE METALS

When the conduction electrons are only scattered by thermal vibrations of the
metal ions, then r in the mobility expression fid = eT/me refers to the mean time

between scattering events by this process. The resulting conductivity and resistivity
are denoted by aT and pr, where the subscript T represents 

"thermal vibration scat-

tering."
To find the temperature dependence of a, we first consider the temperature

dependence of the mean free time r, since this determines the drift mobility. An elec-
tron moving with a mean speed u is scattered when its path crosses the cross-
sectional area 5 of a scattering center, as depicted in Figure 2.5. The scattering center

Figure 2.5  Scattering of an electron from
the thermal vibrations of the atoms.

The electron travels a mean distance i. = ur
between collisions. Since the scattering cross-
sectional area is S, in the volume S£ there
must be at least one scatterer, Ns (Sur) = 1.

S = 7raI

a

u

A vibrating
metal atom

Electron



! 2.2 Temperature Dependence of Resistivity: Ideal Pure Metals

may be a vibrating atom, impurity, vacancy, or some other crystal defect. Since r is
the mean time taken for one scattering process, the mean free path t of the electron
between scattering processes is wr. If Ns is the concentration of scattering centers,
then in the volume S£, there is one scattering center, that is, (Sut)Ns = 1. Thus, the
mean free time is given by

1
T =

SuNs
[2.11]

The mean speed u of conduction electrons in a metal can be shown to be only
slightly temperature dependent.3 In fact, electrons wander randomly around in the
metal crystal with an almost constant mean speed that depends largely on their con-
centration and hence on the crystal material. Taking the number of scattering centers
per unit volume to be the atomic concentration, the temperature dependence of r then
arises essentially from that of the cross-sectional area S. Consider what a free electron
"

sees
"

 as it approaches a vibrating crystal atom as in Figure 2.5. Because the atomic
vibrations are random, the atom covers a cross-sectional area na2

,
 where a is the am-

plitude of the vibrations. If the electron's path crosses na2
, it gets scattered. Therefore,

the mean time between scattering events r is inversely proportional to the area na2
that scatters the electron, that is, t a l/na2.

The thermal vibrations of the atom can be considered to be simple harmonic
motion, much the same way as that of a mass M attached to a spring. The average
kinetic energy of the oscillations is \Ma2Q)2, where co is the oscillation frequency.
From the kinetic theory of matter, this average kinetic energy must be on the order
of \kT. Therefore,

2 2
CO \kT

so a2 (x T. Intuitively, this is correct because raising the temperature increases the am-
plitude of the atomic vibrations. Thus,

1
r a

na

1
or _

 C

T " T

where C is a temperature-independent constant. Substituting for r in nd = eT/me, we
obtain

eC

meT

So, the resistivity of a metal is

1        1 mj
    aT eniJLd e2nC

123

Mean free
time between

collisions

3 The fact that the mean speed of electrons in a metal is only weakly temperature dependent can be proved from
what it called the Fermi-Dirac statistics for the collection of electrons in a metal (see Chapter 4). This result contrasts
sharply with the kinetic molecular theory of gases (Chapter 1), which predicts that the mean speed of molecules is
proportional to VT. For the time being, we simply use a constant mean speed u for the conduction electrons in a
metal.
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Pure metal

resistivity due
to thermal

vibrations of
the crystal

that is,

Pj - AT [2.12]

where A is a temperature-independent constant. This shows that the resistivity of a pure metal
wire increases linearly with the temperature, and that the resistivity is due simply to the scatter-
ing of conduction electrons by the thermal vibrations of the atoms. We term this conductivity
lattice-scattering-limited conductivity.

EXAAAPLE 2.5 TEMPERATURE DEPENDENCE OF RESISTIVITY What is the percentage change in the resistance
of a pure metal wire from Saskatchewan's summer to winter, neglecting the changes in the di-
mensions of the wire?

SOLUTION

Assuming 20 0C for the summer and perhaps -30 0C for the winter, from R a p = A T, we have

R
summer

- Rwinter summer
- Twimer     (20 + 273) - (- 30 + 273)

R
summer summer

0
.
171

(20 + 273)

or 17%

Notice that we have used the absolute temperature for T. How will the outdoor cable power
losses be affected?

EXAMPLE 2.6 DRIFT MOBILITY AND RESISTIVITY DUE TO LATTICE VIBRATIONS Given that the mean speed
of conduction electrons in copper is 1.5 x 106 m s-1 and the frequency of vibration of the cop-
per atoms at room temperature is about 4 x 1012 s

~1
, estimate the drift mobility of electrons and

the conductivity of copper. The density d of copper is 8.96 g cm-3 and the atomic mass is
63.56 grnol"1.

SOLUTION

The method for calculating the drift mobility and hence the conductivity is based on evaluating
the mean free time r via Equation 2.11, that is, r = \/SuNs. Since r is due to scattering from
atomic vibrations, Ns is the atomic concentration,

dNA     (8.96 x 103 kg m-3)(6.02 x 1023 mol"1)
63.56 x lO"3 kg mol

-i

8
.
5 x 1028 m"3

The cross-sectional area S = na2 depends on the amplitude a of the thermal vibrations as
shown in Figure 2.5. The average kinetic energy KE  associated with a vibrating mass M
attached to a spring is given by KE  = jMa2

a)
2

, where cd is the angular frequency of the
vibration (cd = In4 x 1012 rad s-1). Applying this equation to the vibrating atom and equating
the average kinetic energy KEav to kT, by virtue of equipartition of energy theorem, we have
a

2 2kT/Mco2 and thus

S na
2

InkT

Mco2

2 (1.38 x lO"23 JK-'XSOO K)-i>

/63.56 x lO kgmor1 n      A „

 

t- \ {2n x 4 x 1012 rad s 1)2
V  6.022 x 1023 mol-1 /

=3
.
9 x 10~22m2
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Therefore,

1
 

1
 

T " SuNs " (3.9 x lO"22 m2)(1.5 x 106 m s-1)(8.5 x 1028 m"3)

= 2
.
0 x 10-14s

The drift mobility is

er     (1.6 x l(r19C)(2.0 x lO"14 s)
Uj = - =  1

me (9.1 x lO"31 kg)

= 3
.
5 x lO"3 m2 V"1 s"1 = 35 cm2 V"1 s"1

The conductivity is then

a = enfid = (1.6 x lO-19 C)(8.5 x 1022 cm-3)(35 cm2 V-1 s""1)

= 4
.
8 x 105 Q-lcm-1

The experimentally measured value for the conductivity is 5.9 x 105 Q~l cm-1, so our
crude calculation based on Equation 2.11 is actually only 18 percent lower, which is not bad for
an estimate. (As we might have surmised, the agreement is brought about by using reasonable
values for the mean speed u and the atomic vibrational frequency co. These values were taken

from quantum mechanical calculations, so our evaluation for r was not truly based on classical
concepts.)

2
.
3    MATTHIESSEN'S AND NORDHEIM'S RULES

2
.
3
.

1 Matthiessen's Rule and the Temperature

Coefficient of Resistivity (a)

The theory of conduction that considers scattering from lattice vibrations only works
well with pure metals; unfortunately, it fails for metallic alloys. Their resistivities are
only weakly temperature dependent. We must therefore search for a different type of
scattering mechanism.

Consider a metal alloy that has randomly distributed impurity atoms. An electron
can now be scattered by the impurity atoms because they are not identical to the host
atoms, as illustrated in Figure 2.6. The impurity atom need not be larger than the host
atom; it can be smaller. As long as the impurity atom results in a local distortion of the
crystal lattice, it will be effective in scattering. One way of looking at the scattering
process from an impurity is to consider the scattering cross section. What actually
scatters the electron is a local, unexpected change in the potential energy PE of the
electron as it approaches the impurity, because the force experienced by the electron
is given by

_

 d(PE)

dx

For example, when an impurity atom of a different size compared to the host atom is
placed into the crystal lattice, the impurity atom distorts the region around it, either by



Overall

frequem

scattering

126 chapter 2 . Electrical and Thermal Conduction in Solids

Strained region by impurity exerts a
scattering force F = - d(PE) /dx
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Figure 2.6  Two different types of O
y O* jl Q t  ( ) 

scattering processes involving J sA
/ f -J? r

~

X / wV
scattering from impurities alone and CJAI ) y J \
from thermal vibrations alone. y   

pushing the host atoms farther away, or by pulling them in, as depicted in Figure 2.6.
The cross section that scatters the electron is the lattice region that has been elastically
distorted by the impurity (the impurity atom itself and its neighboring host atoms), so
that in this zone, the electron suddenly experiences a force F = -d(PE)/dx due to a
sudden change in the PE. This region has a large scattering cross section, since the dis-
tortion induced by the impurity may extend a number of atomic distances. These impu-
rity atoms will therefore hinder the motion of the electrons, thereby increasing the
resistance.

We now effectively have two types of mean free times between collisions: one, tr,
for scattering from thermal vibrations only, and the other, r/, for scattering from im-
purities only. We define tt as the mean time between scattering events arising from
thermal vibrations alone and r/ as the mean time between scattering events arising
from collisions with impurities alone. Both are illustrated in Figure 2.6.

In general, an electron may be scattered by both processes, so the effective mean
free time r between any two scattering events will be less than the individual scatter-
ing times tt and r/. The electron will therefore be scattered when it collides with either
an atomic vibration or an impurity atom. Since in unit time, 1/r is the net probability
of scattering, \/tt is the probability of scattering from lattice vibrations alone, and
1/r/ is the probability of scattering from impurities alone, then within the realm of
elementary probability theory for independent events, we have

frequency of i = - + ~ [2
.13]

T       TT T/

In writing Equation 2.13 for the various probabilities, we make the reasonable as-
sumption that, to a greater extent, the two scattering mechanisms are essentially inde-
pendent. Here, the effective mean scattering time r is clearly smaller than both xt and
r/. We can also interpret Equation 2.13 as follows: In unit time, the overall number of
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collisions (1/r) is the sum of the number of collisions with thermal vibrations alone
(l/tr) and the number of collisions with impurities alone (1/r/).

The drift mobility /x  depends on the effective scattering time r via /Xd = eT/me9
so Equation 2.13 can also be written in terms of the drift mobilities determined by the
various scattering mechanisms. In other words,

1 
_

 
_

L
_

 1

M<d     Ml M/
[2.14]

where /iL is the lattice-scattering-limited drift mobility, and /x/ is the impurity-
scattering-limited drift mobility. By definition, /xL = eTT/me and ixt = exilme.
The effective (or overall) resistivity p of the material is simply l/en/x , or

1 1
P = +

1

which can be written

eniid     enjjLL en/jii

P = Pt + Pi [2.15]

where \/en L is defined as the resistivity due to scattering from thermal vibrations,
and l/enjjLj is the resistivity due to scattering from impurities, or

1
Pt = and

1

eniJLL
Pi =

enfif

The final result in Equation 2.15 simply states that the effective resistivity p is the
sum of two contributions. First, pr = 1 /en L is the resistivity due to scattering by ther-
mal vibrations of the host atoms. For those near-perfect pure metal crystals, this is the
dominating contribution. As soon as we add impurities, however, there is an additional
resistivity, p/ = 1/en/x/, which arises from the scattering of the electrons from the im-
purities. The first term is temperature dependent because tt oc T~l (see Section 2.2),
but the second term is not.

The mean time r/ between scattering events involving electron collisions with im-
purity atoms depends on the separation between the impurity atoms and therefore on
the concentration of those atoms (see Figure 2.6). If ii is the mean separation between
the impurities, then the mean free time between collisions with impurities alone will be
£//m, which is temperature independent because tj is determined by the impurity con-
centration Ni (i.e., ii = N/" 3), and the mean speed of the electrons u is nearly con-
stant in a metal. In the absence of impurities, r/ is infinitely long, and thus pi = 0. The
summation rule of resistivities from different scattering mechanisms, as shown by
Equation 2.15, is called Matthiessen's rule.

There may also be electrons scattering from dislocations and other crystal defects,
as well as from grain boundaries. All of these scattering processes add to the resistiv-
ity of a metal, just as the scattering process from impurities. We can therefore write the
effective resistivity of a metal as

P = Pt + Pr [2.16]

Effective drift
mobility

Matthiessen's

rule

Resistivities

due to lattice

and impurity
scattering

Matthiessen's

rule
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Definition of
temperature

coefficient of
resistivity

Temperature
dependence
of resistivity

where pR is called the residual resistivity and is due to the scattering of electrons by
impurities, dislocations, interstitial atoms, vacancies, grain boundaries, etc. (which
means that pR also includes pj). The residual resistivity shows very little temperature
dependence, whereas pr = AT, so the effective resistivity p is given by

p % AT + B [2.17]

where A and B are temperature-independent constants.
Equation 2.17 indicates that the resistivity of a metal varies almost linearly with

the temperature, with A and B depending on the material. Instead of listing A and B in
resistivity tables, we prefer to use a temperature coefficient that refers to small, nor-
malized changes around a reference temperature. The temperature coefficient of
resistivity (TCR) ao is defined as the fractional change in the resistivity per unit tem-
perature increase at the reference temperature Tq, that is,

= 4-1 [2.18]

where po is the resistivity at the reference temperature To, usually 273 K (0 0C) or
293 K (20 0C), and &p = p - po is the change in the resistivity due to a small increase
in temperature, 8T = T - Tq.

When the resistivity follows the behavior p & AT + B in Equation 2.17, then
according to Equation 2.18, cto is constant over a temperature range TqIoT, and Equa-
tion 2.18 leads to the well-known equation,

P = PoU + <xo(T - 7b)] [2.19]

Equation 2.19 is actually only valid when cto is constant over the temperature
range of interest, which requires Equation 2.17 to hold. Over a limited temperature
range, this will usually be the case. Although it is not obvious from Equation 2.19,
we should note that cxq depends on the reference temperature 7b, by virtue of po j
depending on 7b.

The equation p = AT, which we used for pure-metal crystals to find the change
in the resistance with temperature, is only approximate; nonetheless, for pure metals,
it is useful to recall in the absence of tabulated data. To determine how good the
formula p = AT is, put it in Equation 2.19, which leads to ao = Tq1. If we take the
reference temperature 7b as 273 K (0 0C), then ao is simply 1/273 K; stated differently,
Equation 2.19 is then equivalent to p = AT.

Table 2.1 shows that p a T is not a bad approximation for some of the familiar
pure metals used as conductors (Cu, Al, Au, etc.), but it fails badly for others, such as
indium, antimony, and, in particular, the magnetic metals, iron and nickel.

The temperature dependence of the resistivity of various metals is shown in Fig-
ure 2.7, where it is apparent that except for the magnetic materials, such as iron and
nickel, the linear relationship p a T seems to be approximately obeyed almost all the
way to the melting temperature for many pure metals. It should also be noted that for
the alloys, such as nichrome (Ni-Cr), the resistivity is essentially dominated by the
residual resistivity, so the resistivity is relatively temperature insensitive, with a very
small TCR.
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Table 2.1   Resistivity, thermal coefficient of resistivity cto at 273 K (0 0C) for various metals. The
resistivity index n in p a Tn for some of the metals is also shown.

Metal po (n£2 m) (s) n Comment

Aluminum, Al

Antimony, Sb

Copper, Cu

Gold, Au

Indium, In

Platinum, Pt

Silver, Ag

Tantalum, Ta

Tin, Sn

Tungsten, W

Iron, Fe

Nickel, Ni

25.0

38

15.7

22.8

78.0

98

14.6

117

110

50

84.0

59.0

_

1
_

233

1

196

1

232

1

251

1

196

1

255

1

244

1

294

1

217

1

220

1

152

1

125

1
.
20

1
.
40

1
.
15

1
.
11

1
.
40

0
.
94

1
.
11

0
.
93

1
.
11

1
.
20

1
.80 Magnetic metal; 273 < T < 1043 K

1
.72       Magnetic metal; 273 < T < 627 K

I SOURCE: Data were extracted and combined from several sources. Typical values.

Frequently, the resistivity versus temperature behavior of pure metals can be
empirically represented by a power law of the form

P =40 [2.20]

where po is the resistivity at the reference temperature Tb, and n is a characteristic
index that best fits the data. Table 2.1 lists some typical n values for various pure met-
als above 0 0C. It is apparent that for the nonmagnetic metals, n is close to unity,
whereas it is closer to 2 than 1 for the magnetic metals Fe and Ni. In iron, for example,
the conduction electron is not scattered simply by atomic vibrations, as in copper, but
is affected by its magnetic interaction with the Fe ions in the lattice. This leads to a
complicated temperature dependence.

Although our oversimplified theoretical analysis predicts a linear p = AT + B
behavior for the resistivity down to the lowest temperatures, this is not true in reality,

Resistivity of
pure metals
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Figure 2.7 The resistivity of various metals as a function of temperature
above 0 0C

.

Tin melts at 505 K, whereas nickel and iron go through a magnetic-to-
nonmagnetic (Curie) transformation at about 627 K and 1043 K, respectively.
The theoretical behavior [p ~ T) is shown for reference.
I SOURCE: Data selectively extracted from various sources, including sections in Metals
I Handbook, 10th ed., 2 and 3. Metals Park, Ohio: ASM, 1991.

as depicted for copper in Figure 2.8. As the temperature decreases, typically below
-100 K for many metals, our simple and gross assumption that all the atoms are
vibrating with a constant frequency fails. Indeed, the number of atoms that are vibrat-
ing with sufficient energy to scatter the conduction electrons starts to decrease rapidly
with decreasing temperature, so the resistivity due to scattering from thermal vibra-
tions becomes more strongly temperature dependent. The mean free time r = l/SuNs
becomes longer and strongly temperature dependent, leading to a smaller resistivity
than the p a T behavior. A full theoretical analysis, which is beyond the scope of this
chapter, shows that p oc T5

. Thus, at the lowest temperature, from Matthiessen's rule,
the resistivity becomes p = DT5 + pr, where D is a constant. Since the slope of p ver-
sus T is dp/dT = 5DT4

, which tends to zero as T becomes small, we have p curving
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Figure 2.8 The resistivity of copper from lowest to highest temperatures (near
melting temperature, 1358 K) on a log-log plot.
Above about 100 K, p a J, whereas at low temperatures, p a T"5,

 and at the lowest

temperatures p approaches the residual resistivity pr. The inset shows the p vs. T
behavior below 100 K on a linear plot, (pa is too small on this scale.)

toward pR as T decreases toward 0 K. This is borne out by experiments, as shown in
Figure 2.8 for copper. Therefore, at the lowest temperatures of interest, the resistivity
is limited by scattering from impurities and crystal defects.4

MATTHIESSEN'S RULE Explain the typical resistivity versus temperature behavior of annealed
and cold-worked (deformed) copper containing various amounts of Ni as shown in Figure 2.9.

EXAMPLE 2.7

SOLUTION

When small amounts of nickel are added to copper, the resistivity increases by virtue of
Matthiessen's rule, p = Pt + Pr + Pi, where pr is the resistivity due to scattering from ther-
mal vibrations; pR is the residual resistivity of the copper crystal due to scattering from crystal
defects, dislocations, trace impurities, etc.; and    is the resistivity arising from Ni addition

4 At sufficiently low temperatures (typically, below 10-20 K for many metals and below ~135 K for certain
ceramics) certain materials exhibit superconductivity in which the resistivity vanishes (p = 0), even in the presence of
impurities and crystal defects. Superconductivity and its quantum mechanical origin will be explained in Chapter 8.
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Figure 2.9  Typical temperature
dependence of the resistivity of
annealed and cold-worked (deformed)
copper containing various amounts of
Ni in atomic percentage.

I SOURCE: Data adapted from J.O. Linde,
I Ann Pkysik, 5, 219 (Germany, 1932).
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alone (scattering from Ni impurity regions). Since is temperature independent, for small
amounts of Ni addition, p[ will simply shift up the p versus T curve for copper, by an amount pro-
portional to the Ni content, p; a AfNi, where AfNi is the Ni impurity concentration. This is apparent
in Figure 2.9, where the resistivity of Cu-2.16% Ni is almost twice that of Cu-1.12% Ni. Cold
working (CW) or deforming a metal results in a higher concentration of dislocations and therefore
increases the residual resistivity pR by pew - Thus, cold-worked samples have a resistivity curve
that is shifted up by an additional amount pew that depends on the extent of cold working.

EXAMPLE 2.8 TEMPERATURE COEFFICIENT OF RESISTIVITY a AND RESISTIVITY INDEX n If cto is the tem-
perature coefficient of resistivity (TCR) at temperature T0 and the resistivity obeys the equation

P Po

show that

(to -\L]
What is your conclusion?
Experiments indicate that n = 1.2 for W. What is its ao at 20 0C? Given that, experimen-

tally, cto = 0.00393 for Cu at 20 0C, what is n?

SOLUTION

Since the resistivity obeys p = po(T/ To)n, we substitute this equation into the definition of TCR,

PoldT] TolToi

n-l

It is clear that, in general, cto depends on the temperature T, as well as on the reference
temperature Tq. The TCR is only independent of T when n = 1.
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At 7 = To, we have

otoTo
1 or

n
n = aoT0

For W, n = 1.2, so at T = T0 = 293 K, we have 0*293 k = 0.0041, which agrees reasonably
well with #293 k = 0.0045, frequently found in data books.

For Cu, a293 k = 0.00393, so that n = 1.15, which agrees with the experimental value of n.

TCR AT DIFFERENT REFERENCE TEMPERATURES If a, is the temperature coefficient of resis-
tivity (TCR) at temperature Ti and oto is the TCR at Tq, show that

1 + ctoiTi - To)

SOLUTION

Consider the resistivity at temperature T in terms of ao and ai:

p = poll + (x0(T - To)]      and      p = [1 + a T - T,)]

These equations are expected to hold at any temperature T, so the first and second equa-
tions at Ti and To, respectively, give

p, = poll +oio(Tl - To)]      and      po = PiU + a,(To - r,)]

These two equations can be readily solved to eliminate po and pi to obtain

1 + a0(7i - Fq)

EXAMPLE 2.9

TEMPERATURE OF THE FILAMENT OF A LIGHT BULB

a
. Consider a 40 W, 120 V incandescent light bulb. The tungsten filament is 0.381 m long and

has a diameter of 33 /xm. Its resistivity at room temperature is 5.51 x 10~8 Q m. Given that
the resistivity of the tungsten filament varies at T12, estimate the temperature of the bulb
when it is operated at the rated voltage, that is, when it is lit directly from a power outlet,
as shown schematically in Figure 2.10. Note that the bulb dissipates 40 W at 120 V.

b
. Assume that the electrical power dissipated in the tungsten wire is radiated from the sur-

face of the filament. The radiated electromagnetic power at the absolute temperature T can

EXAMPLE 2.10

40 W

\t /

0
.
333 A

120 V

Figure 2.10  Power radiated from a light bulb is
equal to the electrical power dissipated in the
filament.
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be described by Stefan's law, as follows:

radiated = €GsA{T4 - Tq)
where as is Stefan's constant (5.67 x 10~8 W m-2 K~4), e is the emissivity of the surface
(0.35 for tungsten), A is the surface area of the tungsten filament, and To is the room
temperature (293 K). For 74 > T4, the equation becomes

radiated = €GsATA

Assuming that all the electrical power is radiated as electromagnetic waves from the
surface, estimate the temperature of the filament and compare it with your answer in part (a).

SOLUTION

a.   When the bulb is operating at 120 V, it is dissipating 40 W, which means that the current is

P     40 W
/ = - =  = 0.333 A

V     120 V

The resistance of the filament at the operating temperature T must be

V 120
R = - = = 360 Q

/ 0.333

Since R = pL/ A, the resistivity of tungsten at the operating temperature T must be

R(7rD2/4)     360 Q 7r(33 x lO"6 m)2 7
p(T) = - - =  = 8.08 x lO-7 £2 m

L 4(0.381 m)

BuUp(T) = po( /7o)1-2,so that

.
x 1/1.2

T = Tn /80.8 x IP"8 yroV5.51 x 10-V
= 2746 K     or     2473 0C      (melting temperature of W is about 3680, K)

b
.   To calculate T from the radiation law, we note that T = [Pradiated /eos A]1/4.

The surface area is

A = L(7rD) = (0.381)(7r33 x lO'6) = 3.95 x lO"5 m2

Then,

T = 1
"

 i1/4  r
 

4ow
 i

l/4

L €UsA J        L(0.35)(5.67 x lO"8 Wm'2 K-4)(3.95 x 10-5m2)J
= [5.103 x 1013]1/4 = 2673 K      or      2400 0C

The difference between the two methods is less than 3 percent.

2
.
3

.
2 Solid Solutions and Nordheem's Rule

In an isomorphous alloy of two metals, that is, a binary alloy that forms a solid solution,
we would expect Equation 2.15 to apply, with the temperature-independent impurity
contribution pI increasing with the concentration of solute atoms. This means that as the
alloy concentration increases, the resistivity p increases and becomes less temperature
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Table 2.2  The effect of alloying on the resistivity

Material

Resistivity at 20 0C
(nQ m)

a at 20 0C

(1/K)

Nickel

Chrome

Nichrome

69

129

1120

0
.
006

0
.
003

0
.
0003

1500

1400
v?2u

Liquid phase0

1300
sl-H

3

g 1200
a

1100
Solid solution

1000
20 800

100% Cu

40 60

at.% Ni

100

100% Ni

600

Cu-Ni alloys500
E

400
c

0
80

>>300

I 200
S 100

0 20

100% Cu

40 60

at.% Ni

100

100% Ni

(a) Phase diagram of the Cu-Ni alloy system.
Above the liquidus line only the liquid phase
exists. In the L + 5 region, the liquid (L) and
solid (5) phases coexist whereas below the
solidus line, only the solid phase (a solid
solution) exists.

(b) The resistivity of the Cu-Ni alloy as a
function of Ni content (at.%) at room
temperature.

Figure 2.11   The Cu-Ni alloy system.
I SOURCE: Data extracted from Metals Handbook, 10th ed., 2 and 3, Metals Park, Ohio: ASM, 1991

,
 and M. Hansen and

I K. Anderko, Constitution of Binary Alloys, New York: McGraw-Hill, 1958.

dependent as p/ overwhelms pr, leading to a <  1 /273. This is the advantage of alloys
in resistive components. Table 2.2 shows that when 80% nickel is alloyed with 20%
chromium, the resistivity of Ni increases almost 16 times. In fact, the alloy is called
nichrome and is widely used as a heater wire in household appliances and industrial
furnaces.

As a further example of the resistivity of a solid solution, consider the copper- nickel
alloy. The phase diagram for this alloy system is shown in Figure 2.1 la. It is clear that the
alloy forms a one-phase solid solution for all compositions. Both Cu and Ni have the
same FCC crystal structure, and since the Cu atom is only slightly larger than the Ni atom
by about ~3 percent (easily checked on the Periodic Table), the Cu-Ni alloy will there-
fore still be FCC, but with Cu and Ni atoms randomly mixed, resulting in a solid solu-
tion. When Ni is added to copper, the impurity resistivity p/ in Equation 2.15 will
increase with the Ni concentration. Experimental results for this alloy system are shown
in Figure 2.11b. It should be apparent that when we reach 100% Ni, we again have a pure
metal whose resistivity must be small. Therefore, p versus Ni concentration must pass
through a maximum, which for the Cu-Ni alloy seems to be at around ~50% Ni.
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Nordheim's

rule for solid
solutions

There are other binary solid solutions that reflect similar behavior to that depicted
in Figure 2.11, such as Cu-Au, Ag-Au, Pt-Pd, Cu-Pd, to name a few. Quite often, the
use of an alloy for a particular application is necessitated by the mechanical properties,
rather than the desired electrical resistivity alone. For example, brass, which is 70%
Cu-30% Zn in solid solution, has a higher strength compared to pure copper; as such,
it is a suitable metal for the prongs of an electrical plug.

An important semiempirical equation that can be used to predict the resistivity of
an alloy is Nordheim's rule which relates the impurity resistivity pI to the atomic
fraction X of solute atoms in a solid solution, as follows:

p/ = CZ(l-X) [2.21]

where C is the constant termed the Nordheim coefficient, which represents the effec-
tiveness of the solute atom in increasing the resistivity. Nordheim's rule assumes that
the solid solution has the solute atoms randomly distributed in the lattice, and these
random distributions of impurities cause the electrons to become scattered as they
whiz around the crystal. For sufficiently small amounts of impurity, experiments show
that the increase in the resistivity p/ is nearly always simply proportional to the impu-
rity concentration X, that is, pi oc X, which explains the initial approximately equal in-
crements of rise in the resistivity of copper with 1.11% Ni and 2.16% Ni additions as
shown in Figure 2.9. For dilute solutions, Nordheim's rule predicts the same linear be-
havior, that is, pi = CX for X     1.

Table 2.3 lists some typical Nordheim coefficients for various additions to copper
and gold. The value of the Nordheim coefficient depends on the type of solute and the
solvent. A solute atom that is drastically different in size to the solvent atom will result
in a bigger increase in p/ and will therefore lead to a larger C. An important assumption

Table 2.3   Nordheim coefficient C (at 20 0C) for dilute alloys obtained from
p/= CXandX< 1 at.%*

Solute in Solvent

(element in matrix)

C

(nft m)
Maximum Solubility at 25 0C

(at.%)

Au in Cu matrix

Mn in Cu matrix

Ni in Cu matrix

Sn in Cu matrix

Zn in Cu matrix

Cu in Au matrix

Mn in Au matrix

Ni in Au matrix

Sn in Au matrix

Zn in Au matrix

5500

2900

1200

2900

300

450

2410

790

3360

950

100

24

100

0
.
6

30

100

25

100

5

15

*NOTE: For many isomorphous alloys C may be different at higher concentrations; that is, it may
depend on the composition of the alloy.
SOURCES: D.G. Fink and D. Christiansen, eds., Electronics Engineers' Handbook, 2nd ed.,
New York, McGraw-Hill, 1982. J. K. Stanley, Electrical and Magnetic Properties of Metals, Metals
Park, OH, American Society for Metals, 1963. Solubility data from M. Hansen and K. Anderko,
Constitution of Binary Alloys, 2nd ed., New York, McGraw-Hill, 1985.
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in Nordheim's rule in Equation 2.21 is that the alloying does not significantly vary the
number of conduction electrons per atom in the alloy. Although this will be true for al-
loys with the same valency, that is, from the same column in the Periodic Table (e.g.,
Cu-Au, Ag-Au), it will not be true for alloys of different valency, such as Cu and Zn.
In pure copper, there is just one conduction electron per atom, whereas each Zn atom
can donate two conduction electrons. As the Zn content in brass is increased, more con-

duction electrons become available per atom. Consequently, the resistivity predicted by
Equation 2.21 at high Zn contents is greater than the actual value because C refers to
dilute alloys. To get the correct resistivity from Equation 2.21 we have to lower C,
which is equivalent to using an effective Nordheim coefficient Ceff that decreases as
the Zn content increases. In other cases, for example, in Cu-Ni alloys, we have to in-
crease C at high Ni concentrations to account for additional electron scattering mech-
anisms that develop with Ni addition. Nonetheless, the Nordheim rule is still useful for
predicting the resistivities of dilute alloys, particularly in the low-concentration region.

With Nordheim's rule in Equation 2.21, the resistivity of an alloy of composition
Xis

P = matrix + CX (I - X) [2.22]

where pmatnx = Pt + Pr is the resistivity of the matrix due to scattering from thermal
vibrations and from other defects, in the absence of alloying elements. To reiterate, the
value of C depends on the alloying element and the matrix. For example, C for gold in
copper would be different than C for copper in gold, as shown in Table 2.3.

In solid solutions, at some concentrations of certain binary alloys, such as 75%
Cu-25% Au and 50% Cu-50% Au, the annealed solid has an orderly structure; that
is, the Cu and Au atoms are not randomly mixed, but occupy regular sites. In fact,
these compositions can be viewed as pure compound-like the solids CU3AU and
CuAu. The resistivities of CU3AU and CuAu will therefore be less than the same
composition random alloy that has been quenched from the melt. As a consequence,
the resistivity p versus composition X curve does not follow the dashed parabolic
curve throughout; rather, it exhibits sharp falls at these special compositions, as illus-
trated in Figure 2.12.

Combined

Matthiessen

and Nordheim

rules

160

140 H

| 80H
| 60H

<p 40-1

0- -F-

Quenched . _

e 120- \

a loo-

Annealed

04

20 Cu Au CuAu
l 1 l 1 l 1 l 1 l ' I 1 l ' I 1

0   10 20 30 40 50 60 70 80 90 100

Composition (at.% Au)

Figure 2.12   Electrical resistivity vs. composition at room
temperature in Cu-Au alloys.
The quenched sample (dashed curve) is obtained by quenching the
liquid, and the Cu and Au atoms are randomly mixed. The resistivity
obeys the Nordheim rule. When the quenched sample is annealed
or the liquid is slowly cooled (solid curve), certain compositions
(CuaAu and CuAu) result in an ordered crystalline structure in which
the Cu and Au atoms are positioned in an ordered fashion in the
crystal and the scattering effect is reduced.
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EXAMPLE 2.11 NORDHEIM'S RULE The alloy 90 wt.% Au-10 wt.% Cu is sometimes used in low-voltage dc
electrical contacts, because pure gold is mechanically soft and the addition of copper increases the
hardness of the metal without sacrificing the corrosion resistance. Predict the resistivity of the
alloy and compare it with the experimental value of 108 n£2 m.

SOLUTION

We apply Equation 2.22, p{X) = pAu + CX(1 - X) but with 10 wt.% Cu converted to the
atomic fraction for X. If w is the weight fraction of Cu, w = 0.1, and if MAu and A/cu are the
atomic masses of Au and Cu, then the atomic fraction X of Cu is given by (see Example 1.2),

X
w/M{Cu 0

.1/63.55
0

.
256

WMcu + (1 - w)/MAu     (0.1/63.55) + (0.90/197)

Given that pAu = 22.8 nft m and C = 450 nft m,

p = pAu + CX(1 - X) = (22.8 nft m) + (450 n£2 m)(0.256)(l - 0.256)

= 108
.
5 nft m

This value is only 0.5% different from the experimental value.

EXAMPLE 2.12 RESISTIVITY DUE TO IMPURITIES The mean speed of conduction electrons in copper is about
1
.5 x 106 m s-1. Its room temperature resistivity is 17 nQ m, and the atomic concentration A at

in the crystal is 8.5 x 1022 cm-3. Suppose that we add 1 at.% Au to form a solid solution. What
is the resistivity of the alloy, the effective mean free path, and the mean free path due to colli-
sions with Au atoms only?

SOLUTION

According to Table 2.3, the Nordheim coefficient C of Au in Cu is 5500 nft m. With X = 0.01
(1 at.%), the overall resistivity from Equation 2.22 is

P = Anatrix + CX(1 - X) = 17 nQ m + (5500 uQ m)(0.01)(l - 0.01)

= 17 nft m + 54.
45 nft m = 71.45 nft m

Suppose that i is the overall or effective mean free path and r is the effective mean free time be-
tween scattering events (includes both scattering from lattice vibrations and impurities). Since
£ = wr, and the effective drift mobility /z  = er/me, the expression for the conductivity be-
comes

Conductivity
and mean free
path

a eniid
e

2
nT

me

e
lni

meu

We can now calculate the effective mean free path £ in the alloy given that copper has a valency
of / and the electron concentration n = NaU

1 (1.6 x 10-19C)2(8.5 x 102/ .28 m
-3

71.5 x lO"9 £2 m     (9.1 x 10-31kg)(1.5 x 106 m s"1)

which gives i = 8.8 nm. We can repeat the calculation for pure copper using a =
l/Anatrix = 1/(17 x 10~9 Q, m) to find icu = 37 nm. The mean free path is reduced approxi-
mately by 4 times by adding only 1 at.% Au. The mean free path £ / due to scattering from im-
purities only can be found from Equation 2.13 multiplied through by 1/w, or by using
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Matthiessen's rule in Equation 2.14:

1

I

J
_

 1

Substituting €cu = 37 nm and I = 8.8 nm, we find ij = 11.5 nm.
We can take these calculations one step further. If Nj is the impurity concentration in the

alloy, then Nj = 0.01 Na, = 0.01(8.5 x 1028 m-3) = 8.5 x 1026 m"3. The mean separation dj
between the impurities can be estimated roughly from di « 1 /N1/3, which gives dj » 1.0 nm.
It is clear that not all Au atoms can be involved in scattering the electrons since i / is much
longer than df. (Another way to look at it is to say that it takes more than just one collision with
an impurity to randomize the velocity of the electron.)

2A   RESISTIVITY OF MIXTURES AND POROUS

MATERIALS

2
.
4
.

1  Heterogeneous Mixtures

Nordheim's rule only applies to solid solutions that are single-phase solids. In other
words, it is valid for homogeneous mixtures in which the atoms are mixed at the
atomic level throughout the solid, as in the Cu-Ni alloy. The classic problem of
determining the effective resistivity of a multiphase solid is closely related to the
evaluation of the effective dielectric constant, effective thermal conductivity, effec-
tive elastic modulus, effective Poisson's ratio, etc., for a variety of mixtures, includ-
ing such composite materials as fiberglass. Indeed, many of the mixture rules are
identical.

Consider a material with two distinct phases a and fi, which are stacked in layers
as illustrated in Figure 2.13a. Let us evaluate the effective resistivity for current flow

-L-

A

-] 1
r

J*

a P

y

V
"

1

I L

A

a (b)

Continuous phase
Dispersed phase

y

A

o o JX

®

L

(c)

Figure 2.13  The effective resistivity of a material with a layered structure.
(a) Along a direction perpendicular to the layers.
(b) Along a direction parallel to the plane of the layers.
(c) Materials with a dispersed phase in a continuous matrix.
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Effective
resistance

Resistivity-
mixture rule

Conductivity-
mixture rule

Mixture rule

in the x direction. Since the layers are in series, the effective resistance for the
whole material is

Aeff =  : h
A A

[2.23]

where La is the total length (thickness) of the a-phase layers, and is the total length
of the -phase layers, La + Lp = L is the length of the sample, and A is the cross-
sectional area. Let Xa and xp be the volume fractions of the a and phases. The
effective resistance is defined by

eff =
Lpeff

A

where /Ogff is the effective resistivity. Using Xa = La/L and xp = Lp/L in Equa-
tion 2.23, we find

Peff = XaPct + XpPp [2.24]

which is called the resistivity-mixture rule (or the series rule of mixtures).
If we are interested in the effective resistivity in the y direction, as shown in Fig-

ure 2.13b, obviously the a and layers are in parallel, so an effective conductivity
could be calculated in the same way as we did for the series case to find the parallel
rule of mixtures, that is,

tfeff = Xc a + XpVp [2.25]

where a is the electrical conductivity of those phases identified by the subscript. No-
tice that the parallel rule uses the conductivity, and the series rule uses the resistivity.
Equation 2.25 is often referred to as the conductivity-mixture rule.

Although these two rules refer to special cases, in general, for a random mixture
of phase a and phase we would not expect either equation to apply rigorously.
When the resistivities of two randomly mixed phases are not markedly different, the
series mixture rule can be applied at least approximately, as we will show in Exam-
ple 2.13.

However, if the resistivity of one phase is appreciably different than the other,
there are two semiempirical rules that are quite useful in materials engineering.5 Con-
sider a heterogeneous material that has a dispersed phase (labeled d), in the form of
particles, in a continuous phase (labeled c) that acts as a matrix, as depicted in Fig-
ure 2.13c. Assume that pc and pd are the resistivities of the continuous and dispersed
phases, and Xc and Xd are their volume fractions. If the dispersed phase is much more
resistive with respect to the matrix, that is, pd > 10pc, then

Peff = Pc'
(1 + {Xd)
(1 " Xd)

(pd > 10pc) [2.26]

5 Over the years, the task of predicting the resistivity of a mixture has challenged many theorists and
experimentalists, including Lord Rayleigh who, in 1892, published an excellent exposition on the subject in the
Philosophical Magazine. An extensive treatment of mixtures can be found in a paper by J. A. Reynolds and
J

. M. Hough published in 1957 (Proceedings of the Physical Society, 70, no. 769, London), which contains nearly
all the mixture rules for the resistivity.
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On the other hand, if pd < (pc/lO), then

Pctt = Pc
(1 - Xd)

(l+2xd)
(pd < 0Apc) [2.27]    Mixture rule

We therefore have at least four mixture rules at our disposal, the uses of which de-
pend on the mixture geometry and the resistivities of the various phases. The problem
is identifying which one to use for a given material, which in turn requires a knowl-
edge of the microstructure and properties of the constituents. It should be emphasized
that, at best, Equations 2.24 to 2.27 provide only a reasonable estimate of the effective
resistivity of the mixture.6

Equations 2.26 and 2.27 are simplified special cases of a more general mixture
rule due to Reynolds and Hough (1957). Consider a mixture that consists of a contin-
uous conducting phase with a conductivity ac that has dispersed spheres of another
phase of conductivity ad and of volume fraction x, similar to Figure 2.13c. The effec-
tive conductivity of the mixture is given by

(7 - (7.c

= X
a + 2ac       ad 4- 2crc

[2.28]

It is assumed that the spheres are randomly dispersed in the material. It is left as an
exercise to show that if ad < ac, then Equation 2.28 reduces to Equation 2.26. A good
application would be the calculation of the effective resistivity of porous carbon elec-
trodes, which can be 50-100 percent higher than the resistivity of bulk poly crystalline
carbon (graphite). If, on the other hand, ad » ac, the dispersed phase is very conduct-
ing, for example, silver particles mixed into a graphite paste to increase the conductiv-
ity of the paste, then Equation 2.28 reduces to Equation 2.27. The usefulness of Equa-
tion 2.28 cannot be underestimated inasmuch as there are many types of materials in
engineering that are mixtures of one type or another.

Reynolds and
Hough rule
for mixture of
dispersed
phases

THE RESISTIVITY-MIXTURE RULE Consider a two-phase alloy consisting of phase a and phase
/J randomly mixed as shown in Figure 2.14a. The solid consists of a random mixture of
two types of resistivities, pa of a and ppoffi. We can divide the solid into a bundle of N parallel
fibers of length L and cross-sectional area A/N, as shown in Figure 2.14b. In this fiber (infmi-
tesimally thin), the a and phases are in series, so if Xa - Va/V is the volume fraction of phase
a and is that of fi, then the total length of all oi regions present in the fiber is and the
total length of   regions is XpL. The two resistances are in series, so the fiber resistance is

D
 Pu(XaL) PpiXpL)

A fiber  r  

(A/AO (A/N)

But the resistance of the solid is made up of N such fibers in parallel, that is,

EXAMPLE 2.13

R solid

R fiber

N

PaXaL PpXpL
A A

6 More accurate mixture rules have been established for various types of mixtures with components possessing
widely different properties, which the keen reader can find in P. L. Rossiter, The Electrical Resistivity of Metals and
Alloys (Cambridge University Press, Cambridge, 1987).
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Figure 2.14
(a) A two-phase solid.
(b) A thin fiber cut out from the solid.

L

a

r

A

a

6
L

A/N

(b)

a

Resistivity
mixture rule

By definition, Rsom = PzuL/A, where ptff is the effective resistivity of the material, so

A   
"

    A A

Thus, for a two-phase solid, the effective resistivity will be

Peff = XaPa + X P/S

If the densities of the two phases are not too different, we can use weight fractions instead of
volume fractions. The series rule fails when the resistivities of the phases are vastly different. A
major (and critical) tacit assumption here is that the current flow lines are all parallel, so that no cur-
rent crosses from one fiber to another. Only then can we say that the effective resistance is /N.

EXAMPLE 2.14 A COMPONENT WITH DISPERSED AIR PORES What is the effective resistivity of 95/5 (95%
Cu-5% Sn) bronze, which is made from powdered metal containing dispersed pores at 15%
(volume percent, vol.%). The resistivity of 95/5 bronze is 1 x 10~7 Q m.

SOLUTION

Pores are infinitely more resistive (pd

Peff Pc- 
1 - Xd

oo) than the bronze matrix, so we use Equation 2.26,

1 + £(0.15)
(1 x lO"7 nm) 1

1 -0.15
1

.
27 x lO-7 nm

EXAMPLE 2.15 COMBINED NORDHEIM AND MIXTURE RULES  Brass is an alloy composed of Cu and Zn. The
alloy is a solid solution for Zn content less than 30 wt.%. Consider a brass component made
from sintering 90 at.% Cu and 10 at.% Zn brass powder. The component contains dispersed air
pores at \570 (vol.%). The Nordheim coefficient C of Zn in Cu is 300 n£2 m, under very dilute
conditions. Each Zn atom donates two, whereas each Cu atom of the matrix donates one con-

duction electron, so that the Cu-Zn alloy has a higher electron concentration than in the Cu
crystal itself. Predict the effective resistivity of this brass component.

SOLUTION

We first calculate the resistivity of the alloy without the pores, which forms the continuous
phase in the powdered material. The simple Nordheim's rule predicts that

>rass Pcopper + CX{\ - X) = 17 nn m + 300(0.1)(1 - 0.1) = 44 nQ m

The experimental value, about 40 n£2 m, is actually less because Zn has a valency of 2, and
when a Zn atom replaces a host Cu atom, it donates two electrons instead of one. We can very
roughly adjust the calculated resistivity by noting that a 10 at.% Zn addition increases the
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conduction electron concentration by 10% and hence reduces the resistivity Pbrass by 10% to
40 nft m.

The powdered metal has = 0.15, which is the volume fraction of the dispersed phase,
that is, the air pores, and pc = Pbrass = 40nQm is the resistivity of the continuous matrix. The
effective resistivity of the powdered metal is given by

Peff Pc- 
'
 

i - Xd
(40 nft m)

1 + (0.15)
1 - (0.15)

50.6 nft m

If we use the simple conductivity mixture rule, peff is 47.1 n£2 m, and it is underestimated.
The effective Nordheim coefficient Ceff at the composition of interest is about 255 n£2 m,

which would give pbrass = p0 + CeffX(l - X) = 40 nQ m. It is left as an exercise to show that
the effective number of conduction electrons per atom in the alloy is 1 + X so that we must divide
the pbrass calculated above by (1 + X) to obtain the correct resistivity of brass if we use the listed
value of C under dilute conditions. (See Question 2.8.)

2A.2 Two-Phase Alloy (Ag-Ni) Resistivity
and Electrical Contacts

Certain binary alloys, such as Pb-Sn and Cu-Ag, only exhibit a single-phase alloy
structure over very small composition ranges. For most compositions, these alloys
form a two-phase heterogeneous mixture of phases a and p. A typical phase diagram
for such a eutectic binary alloy system is shown in Figure 2.15a, which could be a

O Xj   Composition, X (% B)

(b)

100%B

TT B
A

Liquid, L
i P+La+L P /

a
E

8
.

Two phase region
a+pE

2 T
l

100%A X(%B) XX
2

a)

. i-i

Mixture rule

Nordheim's rule

PA

One phase

region: P
only

X2 100%B

Figure 2.15 Eutectic-forming
alloys, e.g., Cu-Ag.
(a) The phase diagram for a binary,
eutectic-forming alloy.
(b) The resistivity versus composition
for the binary alloy.
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schematic scheme for the Cu-Ag system or the Pb-Sn system. The phase diagram
identifies the phases existing in the alloy at a given temperature and composition. If the
overall composition X is less than Xx, then at Ti, the alloy will consist of phase a only.
This phase is Cu rich. When the composition X is between Xi and X2, then the alloy
will consist of the two phases a and randomly mixed. The phase a is Cu rich (that is,
it has composition Xi) and the phase is Ag rich (composition X2). The relative
amounts of each phase are determined by the well-known lever rule, which means that
we can determine the volume fractions of a and Xa and x , as the alloy composition
is changed from Xi to X2.

For this alloy system, the dependence of the resistivity on the alloy composition is
shown in Figure 2.15b. Between O and Xi (% Ag), the solid is one phase (isomor-
phous); therefore, in this region, p increases with the concentration of Ag by virtue of
Nordheim's rule. At Xi, the solubility limit of Ag in Cu is reached, and after Xi, a sec-
ond phase, which is rich, is formed. Thus, in the composition range Xi to X2, we
have a mixture of a and phases, so p is given by Equation 2.24 for mixtures and is
therefore less than that for a single-phase alloy of the same composition. Similarly, at
the Ag end (X2 < X < 100%), as Cu is added to Ag, between 100% Ag and the solu-
bility limit at X2, the resistivity is determined by Nordheim's rule. The expected
behavior of the resistivity of an eutectic binary alloy over the whole composition range
is therefore as depicted in Figure 2.15b.

Electrical, thermal, and other physical properties make copper the most widely
used metallic conductor. For many electrical applications, high-conductivity copper,
having extremely low oxygen and other impurity contents, is produced. Although alu-
minum has a conductivity of only about half that of copper, it is also frequently used
as an electrical conductor. On the other hand, silver has a higher conductivity than cop-
per, but its cost prevents its use, except in specialized applications. Switches often
have silver contact specifications, though it is likely that the contact metal is actually a
silver alloy. In fact, silver has the highest electrical and thermal conductivity and is
consequently the natural choice for use in electrical contacts. In the form of alloys with
various other metals, it is used extensively in make-and-break switching applications
for currents of up to about 600 A. The precious metals, gold, platinum, and palladium,
are extremely resistant to corrosion; consequently, in the form of various alloys,
particularly with Ag, they are widely used in electrical contacts. For example, Ag-Ni
alloys are common electrical contact materials for the switches in many household
appliances.

It is frequently necessary to improve the mechanical properties of a metal alloy
without significantly impairing its electrical conductivity. Solid-solution alloying im-
proves mechanical strength, but at the expense of conductivity. A compromise must
often be found between electrical and mechanical properties. Most often, strength is
enhanced by introducing a second phase that does not have such an adverse effect on
the conductivity. For example, Ag-Pd alloys form a solid solution such that the
resistivity increases appreciably due to Nordheim

's rule. The resistivity of Ag-Pd is
mainly controlled by the scattering of electrons from Pd atoms randomly mixed in the
Ag matrix. In contrast, Ag and Ni form a two-phase alloy, a mixture of Ag-rich and
Ni-rich phases. The Ag-Ni alloy is almost as strong as the Ag-Pd alloy, but it has a
lower resistivity because the mixture rule volume averages the two resistivities.
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2
.5    THE HALL EFFECT AND HALL DEVICES

An important phenomenon that we can comfortably explain using the "electron as a
particle

" concept is the Hall effect, which is illustrated in Figure 2.16. When we apply
a magnetic field in a perpendicular direction to the applied field (which is driving the
current), we find there is a transverse field in the sample that is perpendicular to the
direction of both the applied field and the magnetic field Bz, that is, in the y direc-
tion. Putting a voltmeter across the sample, as in Figure 2.16, gives a voltage reading
VH. The applied field drives a current Jx in the sample. The electrons move in the -x
direction, with a drift velocity Vdx. Because of the magnetic field, there is a force (called
the Lorentz force) acting on each electron and given by Fy = -evdxBz. The direction
of this Lorentz force is the - y direction, which we can show by applying the cork-
screw rule, because, in vector notation, the force F acting on a charge q moving with a
velocity v in a magnetic field B is given through the vector product

F = q\ x B [2.29]    Lorentz force

All moving charges experience the Lorentz force in Equation 2.29 as shown
schematically in Figure 2.17. In our example of a metal in Figure 2.16, this Lorentz
force is the -y direction, so it pushes the electrons downward, as a result of which
there is a negative charge accumulation near the bottom of the sample and a positive
charge near the top of the sample, due to exposed metal ions {e.g., Cu+).

©
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Figure 2.16  Illustration of the Hall effect.
The z direction is out of the plane of the paper. The
externally applied magnetic field is along the z direction.
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CT)  v     f v       O Lorentz force in a magnetic field.
/ / / (a) A positive charge moving in the x direction

j> experiences a force downward.
B      W g 

~

         T (k) A negative charge moving in the -x direction
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q = -e Figure 2,17  A moving charge experiences a

F = qs x B    a'so experiences a force downward.
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Definition
of Hall
coefficient

Hall

coefficient for
electron

conduction

The accumulation of electrons near the bottom results in an internal electric field
'Eh in the -y direction. This is called the Hall field and gives rise to a Hall voltage
VH between the top and bottom of the sample. Electron accumulation continues until
the increase in is sufficient to stop the further accumulation of electrons. When
this happens, the magnetic-field force evdxBz that pushes the electrons down just bal-
ances the force eEn that prevents further accumulation. Therefore, in the steady state,

cEh = evdxBz

However, Jx = envdx- Therefore, we can substitute for VdX to obtain      = JxBz/nor

[2.30]

A useful parameter called the Hall coefficient Rh is defined as

y

J
X

B
[2.31]

z

The quantity RH measures the resulting Hall field, along y, per unit transverse
applied current and magnetic field. The larger RH, the greater for a given Jx and Bz.
Therefore, RH is a gauge of the magnitude of the Hall effect. A comparison of Equa-
tions 2.30 and 2.31 shows that for metals,

1
RH =  

en

[2.32]

The reason for the negative sign is that £// = - £y, which means that Eh is in the -y
direction.

Inasmuch as RH depends inversely on the free electron concentration, its value in
metals is much less than that in semiconductors. In fact, Hall-effect devices (such as
magnetometers) always employ a semiconductor material, simply because the RH is
larger. Table 2.4 lists the Hall coefficients of various metals. Note that this is negative

Table 2.4  Hall coefficient and Hall mobility (/xh = k nl) of selected metals

Magnetically operated Hall-effect
position sensor as available from
Micro Switch.

Metal

Ag
Al

Au

Be

Cu

Ga

In

Mg
Na

n

[m-3]
(xlO28)

5
.
85

18.06

5
.
90

24.2

8
.
45

15.3

11.49

8
.
60

2
.
56

Rh (Experimental)
IVA-1 s"1]

(xur11)

-9
.
0

-3
.
5

-7
.
2

+3.4
-5

.
5

-6
.
3

-2
.
4

-9
.
4

-25

HH = \gRh\

(xlO"4)

57

13

31

?

32

3
.
6

2
.
9

22

53

SOURCES: Data from various sources, including C. Hording and J. Osterman, Physics Handbook,
Bromley England: Chartwell-Bratt Ltd., 1982.
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for most metals, although a few metals exhibit a positive Hall coefficient (see Be in
Table 2.4). The reasons for the latter involve the band theory of solids, which we will
discuss in Chapter 4.

Since the Hall voltage depends on the product of two quantities, the current density
J

x and the transverse applied magnetic field Bz, we see that the effect naturally multi-
plies two independently variable quantities. Therefore, it provides a means of carrying
out a multiplication process. One obvious application is measuring the power dissipated
in a load, where the load current and voltage are multiplied. There are many instances
when it is necessary to measure magnetic fields, and the Hall effect is ideally suited to
such applications. Commercial Hall-effect magnetometers can measure magnetic fields
as low as 10 nT, which should be compared to the earth's magnetic field of 50 |iT.
Depending on the application, manufacturers use different semiconductors to obtain the
desired sensitivity. Hall-effect semiconductor devices are generally inexpensive, small,
and reliable. Typical commercial, linear Hall-effect sensor devices are capable of pro-
viding a Hall voltage of ~ 10 mV per mT of applied magnetic field.

The Hall effect is also widely used in magnetically actuated electronic switches.
The application of a magnetic field, say from a magnet, results in a Hall voltage that is
amplified to trigger an electronic switch. The switches invariably use Si and are read-
ily available from various companies. Hall-effect electronic switches are used as non-
contacting keyboard and panel switches that last almost forever, as they have no me-
chanical contact assembly. Another advantage is that the electrical contact is "bounce"

free. There are a variety of interesting applications for Hall-effect switches, ranging
from ignition systems, to speed controls, position detectors, alignment controls, brush-
less dc motor commutators, etc.

HALL-EFFECT WATTMETER The Hall effect can be used to implement a wattmeter to measure
electrical power dissipated in a load. The schematic sketch of the Hall-effect wattmeter is shown
in Figure 2.18, where the Hall-effect sample is typically a semiconductor material (usually Si).
The load current IL passes through two coils, which are called current coils and are shown as C
in Figure 2.18. These coils set up a magnetic field Bz such that Bz cx IL. The Hall-effect sample
is positioned in this field between the coils. The voltage VL across the load drives a current

EXAMPLE 2.16

r Wattmeter r1l    * .

Source

O
V RL L

u
Load

VlO

L

cc
VV H

B
z

VA

R

VlO MM

Figure 2.18  Wattmeter based on the Hall effect.
Load voltage and load current have i as subscript; C denotes the current coils for setting up a magnetic field through the
Hall-effect sample (semiconductor).
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EXAMPLE 2.17

I
x
 = VL/R through the sample, where R is a series resistance that is much larger than the resis-

tance of the sample and that of the load. Normally, the current Ix is very small and negligible
compared to the load current. If w is the width of the sample, then the measured Hall voltage is

H WEh = wRHJxBz a IXBZ a VLIL

which is the electrical power dissipated in the load. The voltmeter that measures Vh can now be
calibrated to read directly the power dissipated in the load.

HALL MOBILITY Show that if RH is the Hall coefficient and a is the conductivity of a metal,
then the drift mobility of the conduction electrons is given by

fid = \crRH\ [2.331

The Hall coefficient and conductivity of copper at 300 K have been measured to be
-0

.55 x lO-10 m3 A-1 s-1 and 5.9 x 107 Q~l m"1, respectively. Calculate the drift mobility of
electrons in copper.

SOLUTION

Consider the expression for

-1
Rm = -

en

Since the conductivity is given by cr = enixd, we can substitute for en to obtain

RH or

<7

-RHa

which is Equation 2.33. The drift mobility can thus be determined from RH and o.
The product of <j and Rh is called the Hall mobility ixH. Some values for the Hall mobility

of electrons in various metals are listed in Table 2.4. From the expression in Equation 2.33, we get

Vd -(-0
.55 x lO-10 m3 A"1 s-1)  x 107 Q-x m"1) 3

.
2 x lO"3 m2 V"1 s-1

It should be mentioned that Equation 2.33 is an oversimplification.The actual relationship
involves a numerical factor that multiplies the right term in Equation 2.33. The factor depends
on the charge carrier scattering mechanism that controls the drift mobility.

EXAMPLE 2.18 CONDUCTION ELECTRON CONCENTRATION FROM THE HALL EFFECT Using the electron
drift mobility from Hall-effect measurements (Table 2.4), calculate the concentration of con-
duction electrons in copper, and then determine the average number of electrons contributed to
the free electron gas per copper atom in the solid.

SOLUTION

The number of conduction electrons is given by n = cr/efid- The conductivity of copper is
5

.9 x 107 Q-'m-1, whereas from Table 2.4,theelectrondriftmobilityis3.2 x 10-3m2V-1 s"1. So,

(5.9 x 107 Q-x m"1)
n

[(1.6 x 10-19 C)(3.2 x 10-3 m2 V"1 s"1)]
1
.
15 x 1029 m'3

Since the concentration of copper atoms is 8.5 x 1028 m 3, the average number of elec-
trons contributed per atom is (1.15 x 1029 m-3)/(8.5 x 1028 m-3) 1.36.
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2
.6 THERMAL CONDUCTION

2
.
6
.1 Thermal Conductivity

Experience tells us that metals are both good electrical and good thermal conductors.
We may therefore surmise that the free conduction electrons in a metal must also play
a role in heat conduction. Our conjecture is correct for metals, but not for other mate-

rials. The transport of heat in a metal is accomplished by the electron gas (conduction
electrons), whereas in nonmetals, the conduction is due to lattice vibrations.

When a metal piece is heated at one end, the amplitude of the atomic vibrations,
and thus the average kinetic energy of the electrons, in this region increases, as de-
picted in Figure 2.19. Electrons gain energy from energetic atomic vibrations when the
two collide. By virtue of their increased random motion, these energetic electrons then
transfer the extra energy to the colder regions by colliding with the atomic vibrations
there. Thus, electrons act as "energy carriers."

The thermal conductivity of a material, as its name implies, measures the ease
with which heat, that is, thermal energy, can be transported through the medium.
Consider the metal rod shown in Figure 2.20, which is heated at one end. Heat will
flow from the hot end to the cold end. Experiments show that the rate of heat flow,
Q' = dQ/dt, through a thin section of thickness 8x is proportional to the temperature
gradient 8T/8x and the cross-sectional area A, so

8T
Q> = -Ak -

8x
[2.34]

Fourier's law

of thermal
conduction

Hot Cold

!;:.

\

Heat

4   ?-Te

e

TOP]
e

Electron gas Vibrating Cu+ ions

Figure 2.19  Thermal conduction in a metal involves
transferring energy from the hot region to the cold region
by conduction electrons.
More energetic electrons (shown with longer velocity
vectors) from the hotter regions arrive at cooler regions,
collide with lattice vibrations, and transfer their energy.
Lengths of arrowed lines on atoms represent the
magnitudes of atomic vibrations.

Heat

8THot Cold

dQ
dt

A

8x

Figure 2.20 Heat flow in a metal rod heated at
one end.

Consider the rate of heat flow, dQ/dt, across a
thin section 8x of the rod. The rate of heat flow is

proportional to the temperature gradient 8T/8x
and the cross-sectional area A.
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450

Figure 2.21   Thermal conductivity k versus
electrical conductivity a for various metals
(elements and alloys) at 20 0C.
The solid line represents the WFL law with Cwfl
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where k is a material-dependent constant of proportionality that we call the thermal
conductivity. The negative sign indicates that the heat flow direction is that of decreasing
temperature. Equation 2.34 is often referred to as Fourier's law of heat conduction and is
a defining equation for k. The driving force for the heat flow is the temperature gradient
5 T/Sx. If we compare Equation 2.34 with Ohm's law for the electric current /, we see that

I = -Ac - [2.35]

which shows that in this case, the driving force is the potential gradient, that is, the elec-
tric field.7 In metals, electrons participate in the processes of charge and heat transport,
which are characterized by a and /c, respectively. Therefore, it is not surprising to find
that the two coefficients are related by the Wiedemann-Franz-Lorenz law,8 which is

K

gT
= CWFL [2.36]

where Cwfl = 7T2k2/3e2 = 2.44 x 10"8 W Q K"2 is a constant called the Lorenz
number (or the Wiedemann-Franz-Lorenz coefficient).

Experiments on a wide variety of metals, ranging from pure metals to various
alloys, show that Equation 2.36 is reasonably well obeyed at close to room tempera-
ture and above, as illustrated in Figure 2.21. Since the electrical conductivity of pure
metals is inversely proportional to the temperature, we can immediately conclude that
the thermal conductivity of these metals must be relatively temperature independent at
room temperature and above.

7 Recall that J= oT, which is equivalent to Equation 2.35.
8 Historically, Wiedemann and Franz noted in 1853 that k/ct is the same for all metals at the same temperature.
Lorenz in 1 881 showed that k/o is proportional to the temperature with a proportionality constant that is nearly
the same for many metals. The law stated in Equation 2.36 reflects both observations. By the way, Lorenz,

 who was
a Dane, should not be confused with Lorentz, who was Dutch.
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Figure 2.22  Thermal conductivity versus temperature
for two pure metals (Cu and Al) and two alloys (brass and
AI-14%Mg).

SOURCE: Data extracted from Y. S. Touloukian, etai,
Thermophysical Properties of Matter, vol. 1: "Thermal
Conductivity, Metallic Elements and Alloys," New York:
Plenum, 1970.
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Figure 2.23 Conduction of heat in insulators involves the generation and propagation of atomic
vibrations through the bonds that couple the atoms (an intuitive figure).

Figure 2.22 shows the temperature dependence of k for copper and aluminum down to
the lowest temperatures. It can be seen that for these two metals, above MOO K, the ther-
mal conductivity becomes temperature independent, in agreement with Equation 2.36.
Qualitatively, above MOO K, k is constant, because heat conduction depends essentially
on the rate at which the electron transfers energy from one atomic vibration to another as it
collides with them (Figure 2.19). This rate of energy transfer depends on the mean speed
of the electron m, which increases only fractionally with the temperature. In fact, the frac-
tionally small increase in u is more than sufficient to carry the energy from one collision to
another and thereby excite more energetic lattice vibrations in the colder regions.

Nonmetals do not have any free conduction electrons inside the crystal to transfer
thermal energy from hot to cold regions of the material. In nonmetals, the energy trans-
fer involves lattice vibrations, that is, atomic vibrations of the crystal. We know that we
can view the atoms and bonds in a crystal as balls connected together through springs
as shown for one chain of atoms in Figure 2.23. As we know from the kinetic molecu-
lar theory, all the atoms would be vibrating and the average vibrational kinetic energy
would be proportional to the temperature. Intuitively, as depicted in Figure 2.23, when
we heat one end of a crystal, we set up large-amplitude atomic vibrations at this hot
end. The springs couple the vibrations to neighboring atoms and thus allow the large-
amplitude vibrations to propagate, as a vibrational wave, to the cooler regions of the
crystal. If we were to grab the left-end atom in Figure 2.23 and vibrate it violently, we
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would be sending vibrational waves down the ball-spring-ball chain. The efficiency of
heat transfer depends not only on the efficiency of coupling between the atoms, and
hence on the nature of interatomic bonding, but also on how the vibrational waves
propogate in the crystal and how they are scattered by crystal imperfections and by
their interactions with other vibrational waves; this topic is discussed in Chapter 4. The
stronger the coupling, the greater will be the thermal conductivity, a trend that is intu-
itive but also borne out by experiments. Diamond has an exceptionally strong covalent
bond and also has a very high thermal conductivity; k « 1000 W m-1 K"1. On the
other hand, polymers have weak secondary bonding between the polymer chains and
their thermal conductivities are very poor; k < 1 W m-1 K"1.

The thermal conductivity, in general, depends on the temperature. Different classes
of materials exhibit different k values and also different k versus T behavior. Table 2.5

Table 2.5  Typical thermal conductivities of various classes
of materials at 25 0C

Material (Wm K1)

Pure metal

Nb 52

Fe 80

Zn 113

W 178

Al 250

Cu 390

Ag 420

Metal alloys
Stainless steel 12-16

55% Cu-45% Ni 19.5

70% Ni-30% Cu 25

1080 steel 50

Bronze (95% Cu-5% Sn) 80
Brass (63% Cu-37% Zn) 125

Dural (95% Al-4% Cu-1 % Mg) 147

Ceramics and glasses
Glass-borosilicate 0.75

Silica-fused (Si02) 1.5
S3N4 20
Alumina (AI2O3) 30

Sapphire (AI2O3) 37
Beryllium (BeO) 260
Diamond M000

Polymers
Polypropylene 0.12
PVC 0.17

Polycarbonate 0.22
Nylon 6,6 0.24
Teflon 0.25

Polyethylene, low density 0.3
Polyethylene, high density 0.5



2.6 Thermal Conduction 153

summarizes k at room temperature for various classes of materials. Notice how ce-
ramics have a very large range of k values.

THERMAL CONDUCTIVITY A 95/5 (95% Cu-5% Sn) bronze bearing made of powdered metal
contains 15% (vol.%) porosity. Calculate its thermal conductivity at 300 K, given that the
electrical conductivity of 95/5 bronze is 107 ft-1 m

-1
.

SOLUTION

Recall that in Example 2.14, we found the electrical resistivity of the same bronze by using the
mixture rule in Equation 2.26 in Section 2.4. We can use the same mixture rule again here, but
we need the thermal conductivity of 95/5 bronze. From k/ctT = Cwfl , we have

k = otTCwfl = (1 x 107)(300)(2.44 x lO-8) = 73.2 W m-1 K"1

Thus, the effective thermal conductivity is

_

L = irili l =       i       ri +1(0.15)1
*eff     KcLl-Xd\     (73.2 Wm-1 K"1)!-  1-0.15 J

so that

Ke{{ = 57.9 Wm"1 K"1

EXAMPLE 2.19

2
.
6

.
2 Thermal Resistance

Consider a component of length L that has a temperature difference AT between its
ends as in Figure 2.24a. The temperature gradient is A T/L. Thus, the rate of heat flow,
or the heat current, is

AT AT
Q' = Ak =  

(L/kA)

This should be compared with Ohm's law in electric circuits,

AV AV

[2.37]    Fourier fs law

I =
R (L/a A)

[2.381     Ohm's law

where AV is the voltage difference across a conductor of resistance R, and / is the
electric current.

AT1

Q
'

Q' = ATIB

- AT Hot/ ~7| Cold <-

Figure 2.24  Conduction of heat through a
component in (a) can be modeled as a thermal
resistance 6 shown in (b) where     = AT/6.

Q
'

L

a (b)
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In analogy with electrical resistance, we may define thermal resistance 0 by
Definition of
thermal Q! =   [2.39]
resistance

0

where, in terms of thermal conductivity,

Thermal 
„

 L
0 =   [2.40]

resistance K a

The rate of heat flow Qf and the temperature difference AT correspond to the
electric current / and potential difference A V, respectively. Thermal resistance is the
thermal analog of electrical resistance and its thermal circuit representation is shown
in Figure 2.24b.

EXAMPLE 2.20 THERMAL RESISTANCE A brass disk of electrical resistivity 50 n£2 m conducts heat from
a heat source to a heat sink at a rate of 10 W. If its diameter is 20 mm and its thickness is

30 mm, what is the temperature drop across the disk, neglecting the heat losses from the
surface?

SOLUTION

We first determine the thermal conductivity:

k = or7
,CwFL = (5 x 10-8 m)-1(300 K)(2.44 x lO WnK"2)

= 146 Wm-1 K-1

The thermal resistance is

L (30 x lO"3 m) .
6 = - =  -  = 0.65 K W"1

kA     7r(10 x lO"3 m)2(146 W m"1 K"1)

Therefore, the temperature drop is

AT1 = OQ' = (0.65 K W-'XIO W) = 6.5 K or 0C

2
.7    ELECTRICAL CONDUCTIVITY OF NONMETALS

All metals are good conductors because they have a very large number of conduction
electrons free inside the metal. We should therefore expect solids that do not have
metallic bonding to be very poor conductors, indeed insulators. Figure 2.25 shows
the range of conductivities exhibited by a variety of solids. Based on typical values
of the conductivity, it is possible to empirically classify various materials into con-
ductors, semiconductors, and insulators as in Figure 2.25. It is apparent that non-
metals are not perfect insulators with zero conductivity. There is no well-defined
sharp boundary between what we call insulators and semiconductors. Conductors
are intimately identified with metals. It is more appropriate to view insulators as
high resistivity (or low conductivity) materials. In general terms, current conduc-
tion is due to the drift of mobile charge carriers through a solid by the application of
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Figure 2.25   Range of conductivities exhibited by various materials.

an electric field. Each of the drifting species of charge carriers contributes to the ob-
served current. In metals, there are only free electrons. In nonmetals there are other
types of charge carriers that can drift.

1

1012

2
.
7
.1 Semiconductors

A perfect Si crystal has each Si atom bonded to four neighbors, and each covalent
bond has two shared electrons as we had shown in Figure 1.59a. We know from clas-
sical physics (the kinetic molecular theory and Boltzmann distribution) that all the
atoms in the crystal are executing vibrations with a distribution of energies. As the
temperature increases, the distribution spreads to higher energies. Statistically some
of the atomic vibrations will be sufficiently energetic to rupture a bond as indicated
in Figure 2.26a. This releases an electron from the bond which is free to wander in-
side the crystal. The free electron can drift in the presence of an applied field; it is
called a conduction electron. As an electron has been removed from a region of the
crystal that is otherwise neutral, the broken-bond region has a net positive charge.
This broken-bond region is called a hole (h+). An electron in a neighboring bond can
jump and repair this bond and thereby create a hole in its original site as shown in
Figure 2.26b. Effectively, the hole has been displaced in the opposite direction to the
electron jump by this bond switching. Holes can also wander in the crystal by the
repetition of bond switching. When a field is applied, both holes and electrons con-
tribute to electrical conduction as in Figure 2.26c. For all practical purposes, these
holes behave as if they were free positively charged particles (independent of the
original electrons) inside the crystal. In the presence of an applied field, holes drift
along the field direction and contribute to conduction just as the free electrons
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Hole
e

a (b) (c)

Figure 2.26
(a) Thermal vibrations of the atoms rupture a bond and release a free electron into the crystal. A hole is left in the broken
bond, which has an effective positive charge.
(b) An electron in a neighboring bond can jump and repair this bond and thereby create a hole in its original site; the hole
has been displaced.
(c) When a field is applied, both holes and electrons contribute to electrical conduction.

Conductivity
of a semi-
conductor

released from the broken bonds drift in the opposite direction and contribute to con-
duction.

It is also possible to create free electrons or holes by intentionally doping a semi-
conductor crystal, that is substituting impurity atoms for some of the Si atoms. Defects
can also generate free carriers. The simplest example is nonstoichiometric ZnO that is
shown in Figure 1.55b which has excess Zn. The electrons from the excess Zn are free
to wander in the crystal and hence contribute to conduction.

Suppose that n and p are the concentrations of electrons and holes in a semicon-
ductor crystal. If electrons and holes have drift mobilities of [xe and /x/j, respectively,
then the overall conductivity of the crystal is given by

[2.41]

Unless a semiconductor has been heavily doped, the concentrations n and p are
much smaller than the electron concentration in a metal. Even though carrier drift mo-
bilities in most semiconductors are higher than electron drift mobilities in metals,
semiconductors have much lower conductivities due to their lower concentration of

free charge carriers.

EXAMPLE 2.21 HALL EFFECT IN SEMICONDUCTORS The Hall effect in a sample where there are both nega-
tive and positive charge carriers, for example, electrons and holes in a semiconductor, involves
not only the concentrations of electrons and holes, n and p, respectively, but also the electron
and hole drift mobilities, e and \xh. We first have to reinterpret the relationship between the
drift velocity and the electric field £.
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Figure 2.27  Hall effect for ambipolar
conduction as in a semiconductor where there
are both electrons and holes.

The magnetic field 8Z is out from the plane of
the paper. Both electrons and holes are
deflected toward the bottom surface of the

conductor and consequently the Hall voltage
depends on the relative mobilities and
concentrations of electrons and holes.

j

If iie is the drift mobility and ve is the drift velocity of the electrons, then we already know that
ve = iLe(E. This has been derived by considering the net electrostatic force eTL acting on a single
electron and the imparted acceleration a = e<E/me. The drift is therefore due to the net force
Fnet = e!£ experienced by a conduction electron. If we were to keep eT, as the net force Fnet acting
on a single electron, then we would have found

e
net [2.421

Equation 2.42 emphasizes the fact that drift is due to a net force Fnet acting on an electron. A sim-
ilar expression would also apply to the drift of a hole in a semiconductor.

When both electrons and holes are present in a semiconductor sample, both charge carriers
experience a Lorentz force in the same direction since they would be drifting in the opposite di-
rections as illustrated in Figure 2.27. Thus, both holes and electrons tend to pile near the bottom
surface. The magnitude of the Lorentz force, however, will be different since the drift mobili-
ties and hence drift velocities will be different in general. Once equilibrium is reached, there
should be no current flowing in the y direction as we have an open circuit. Suppose that more
holes have accumulated near the bottom surface so there is a built-in electric field Try along y as
shown in Figure 2.27. Suppose that vey and vhy are the usual electron and hole drift ve-
locities in the - y and +y directions, respectively, as if the electric field 'Ey existed
alone in the +y direction. The net current along y is zero, which means that

Jy = Jh + Je = epvhy + envey - 0

From Equation 2.43 we obtain

[2.431

[2.44]pvhy = -nvey

We note that either the electron or the hole drift velocity must be reversed from its usual di-
rection; for example, holes drifting in the opposite directon to  The net force acting on the
charge carriers cannot be zero. This is impossible when two types of carriers are involved and
both carriers are drifting along y to give a net current Jy that is zero. This is what Equation 2.43
represents. We therefore conclude that, along y, both the electron and the hole must experience a

Drift velocity
and net force
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Current

density
along x

Hall effect for
ambipolar
conduction

Hall effect for
ambipolar
conduction

driving force to drift them. The net force experienced by the carriers, as shown in Figure 2.27, is

Fhy = e'Ly - evhxBz      and       - Fey
 = e'Ey + evexBz [2.45]

where vhx and vex are the hole and electron drift velocities, respectively, along jc . In general, the drift
velocity is determined by the net force acting on a charge carrier; that is, from Equation 2.42

Fhy

so that Equation 2.45 becomes,

evhy

and
eve

e

ety - evhxBz and
ev

e'Ey + evexBz

e

where vhy and vey are the hole and electron drift velocities along y. Substituting Vhx = Vh'Ex and
vex = iie<Ex, these become

- = 'Ey- Hh xBt
Vh

and +lle'ExBZ [2.461
e

or

From Equation 2.46 we can substitute for vhy and vey in Equation 2.44 to obtain

Pfih'Ey - PufoxBi = -niXe'Ey - np}e<ExBz

tyiPV-h + niie) = Bz4Ex(pfi2h - nix2e) [2.471

We now consider what happens along the jc direction. The total current density is finite and
is given by the usual expression,

J
x
 = epvhx + envex = {pixh + nfie)e<E

x

We can use Equation 2.48 to substitute for    in Equation 2.47, to obtain

etyiniie + pixh)2 = B
z
Jx(pp}h - np}e)

The Hall coefficient, by definition, is RH - tEylJxBz, so

PA - np}e

[2.48]

R H

or

R H

e{piih + niie)

p-nb2

e(p + nb)2

2
[2.49]

[2.50]

where b = p e/ h . It is clear that the Hall coefficient depends on both the drift mobility ratio and
the concentrations of holes and electrons. For p > nb2, RH will be positive and for p < nb2, it
will be negative. We should note that when only one type of carrier is involved, for example,
electrons only, the Jy = 0 requirement means that Jy = envey = 0, or vey = 0. The drift veloc-
ity along y can only be zero, if the net driving force Fey along y is zero. This occurs when
e'Ey - evex Bz = 0, that is, when the Lorentz force just balances the force due to the built-in field.

EXAMPLE 2.22 HALL COEFFICIENT OF INTRINSIC SILICON At room temperature, a pure silicon crystal (called
intrinsic silicon) has electron and hole concentrations n = /? = «/ = 1.5 x 1010 cm"3, and
electron and hole drift mobilities pe - 1350 cm2 V"1 s-1 and ph = 450 cm2 V-1 s

-1
.
 Calcu-

late the Hall coefficient and compare it with a typical metal.
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SOLUTION

Given n = p = m = 1.5 x 1010 cm"3, fie = 1350 cm2 V-1 s-1, and fih = 450 cm2 V-1 s"1,
we have

Mi
=

 1350 
=

450

Then from Equation 2.50,

Rh  
(1.5 x 1016 m"3) - (1.5 x 1016 m-3)(3)2

 

(1.6 x lO"19 C)[(1.5 x 1016 m-3) + (1.5 x 1016 m-3)(3)]2

-208 m3 A-1 s'1

which is orders of magnitude larger than that for a typical metal. All Hall-effect devices use a
semiconductor rather than a metal sample.

I
.

2
.
7.2 Ionic Crystals and Glasses

Figure 2.28a shows how crystal defects in an ionic crystal lead to mobile charges that
can contribute to the conduction process. All crystalline solids possess vacancies and
interstitial atoms as a requirement of thermal equilibrium. Many solids have intersti-
tial impurities which are often ionized or charged. These interstitial ions can jump,
i
.e., diffuse, from one interstitial site to another and hence drift by diffusion in the

presence of a field. A positive ion at an interstitial site such as that shown in Figure
2

.28a always prefers to jump into a neighboring interstitial site along the direction of
the field because it experiences an effective force in this direction. When an ion with

Vacancy aids the diffusion of positive ion

© (z) ©\0 e o ©
0© 0i;j0©G
©0(±r0©0©
0 © 0 © Op© 0
rT%0©>0©

0/© q © o
0
©

_
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Anion vacancy
acts as a donor

2-O o
:4+Si

Na

Interstitial cation diffuses

la) (b)

Figure 2.28   Possible contributions to the conductivity of ceramic and glass insulators.
(a) Possible mobile charges in a ceramic.
(b) An Na+ ion in the glass structure diffuses and therefore drifts in the direction of the field.
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This soda glass rod when heated under a torch becomes electrically conducting. It passes
4 mA when the voltage is 50 V (2 x 25 V); a resistance of 12.5 k£2! Ordinary soda glass at
room temperature is an insulator but can be quite conducting at sufficiently high temperatures.

General

conductivity

charge #ion jumps a distance d along the field, its potential energy decreases by
qion'Ed. If it tries to jump in the opposite direction, it has to do work qlon'Ed against
the force of the field.

Deviations from stoichiometry in compound solids often lead to the generation of
mobile electrons (or holes) and point defects such as vacancies. Therefore, there are
electrons, holes, and various mobile ions available for conduction under an applied
field as depicted in Figure 2.28a. Many glasses and polymers contain a certain con-
centration of mobile ions in the structure. An example of a Na+ ion in silica glass is
shown in Figure 2.28b. Aided by the field, the Na4" can jump from one interstice to a
neighboring interstice along the field and thereby drift in the glass and contribute to
current conduction. The conduction process is then essentially field-directed diffusion.
Ordinary window glass, in fact, has a high concentration of Na+ ions in the structure
and becomes reasonably conducting above 300-400 0C. Some polymers may contain
ions derived from the polymerization process, from the local degradation (dissocia-
tion) of the polymer itself, or from water absorption.

Conductivity a of the material depends on all the conduction mechanisms with
each species of charge carrier making a contribution, so it is given by

qiHifii [2.51]

where n/ is the concentration, is the charge carried by the charge carrier species of
type i (for electrons and holes = e), and /z, is the drift mobility of these carriers. The
dominant conduction mechanism in Equation 2.51 is often quite difficult to uniquely
identify. Further, it may change with temperature, composition, and ambient condi-
tions such as the air pressure as in some oxide ceramics. For many insulators, whether
ceramic, glass, or polymer, it has been found that, in the majority of cases, the conducti-
vity follows an exponential or Arrhenius-type temperature dependence so that a is
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Figure 2.29 Conductivity versus reciprocal temperature for various low-conductivity
solids.

I SOURCE: Data selectively combined from numerous sources.

thermally activated,

(7

Temperature

12 52]    dependence of
conductivity

where Ea is the activation energy for conductivity.
Figure 2.29 shows examples of the temperature dependence of conductivity for

various high-resistivity solids: oxide ceramics, glasses, and polymers. When Equa-
tion 2.51 is plotted as log (a) versus l/T, the result is a straight line with a negative
slope that indicates the activation energy Ea. Equation 2.52 is useful in predicting
the conductivity at different temperatures and evaluating the temperature stability of
the insulator.

CONDUCTIVITY OF A SODA-SILICATE GLASS Figure 2.29 shows the temperature dependence
of 12% Na20-88% Si02, soda-silicate glass which has 12 mol% Na20 and 88 mol% Si02.
Calculate the activation energy of conductivity and compare this with the activation energy
for the diffusion of Na+ ions in the soda-silicate glass structure which is in the range 0.65-
0

.
75 eV.

SOLUTION

According to Equation 2.52 when In (a) is plotted against l/r, the slope should be -Ea/k. If the
conductivity at temperatures Ti and    are ai and G2, respectively, then the slope of the straight

EXAMPLE 2.23
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line for 12% Na20-88% SiOi in Figure 2.29 is

In ( M) Ea

EXAMPLE 2.24

Slope

1 and

and l/r2 = 0.00261. Then, Ea as eV is

(i/r2 - i/ro k

Taking a! = lO"4 ft"1 m"1 and (72 = lO"6 ST1 m"1 in Figure 2.29, we find \/Tx =0.00205

InWaQ   k 
=

        ln(10-6/10-4)      1.38 x IP"23 
_

(1/72 - l/ i) e       (0.00261 - 0.00205) 1.602 x lO"19      
' 6

A similar calculation for the 24% Na20-76% Si02 gives an activation energy of 0.69 eV.
Both of these activation energies are comparable with the activation energy for the diffu-

sion of Na+ ions in the structure. Thus, Na+ diffusion is responsible for the conductivity.

DRIFT MOBILITY DUE TO IONIC CONDUCTION The soda-silicate glass of composition 20%
Na2O-80% Si02 and density of approximately 2.4 g cm-3 has a conductivity of 8.25 x
10~6 Qrx m-1 at 150 0C. If conduction occurs by the diffusion of Na+ ions,

 what is their drift

mobility?

SOLUTION

We can calculate the drift mobility  of the Na+ ions from the conductivity expression
or = qitiitii where is the charge of the ion Na'f

,
 so that it is +e, and is the concentration of

Na+ ions in the structure. For simplicity we can take the glass to be made of (Na20)o
.

2(Si02)o.8
units. The atomic masses of Na, O, and Si are 23, 16, and 28.1, respectively. The atomic mass
of(Na20)o

.
2(Si02)o.8 is

Mat = 0.2[2(23) + 1(16)] +0.8[1 (28.1)+ 2(16)]

= 60.48 g mol"1 of (Na20)o
.
2(Si02)o.8

The number of (Na20)o
.
2(Si02)o.8 units per unit volume can be found from the density d by

dNA     (2.4 x 103 kg nr3)(6.02 x 1023 mol"1)
n

Mat (lO"3 kg/g)(60.48 g mol"1
)

= 2.39 x 10Z5(Na20)o
.

2(Si02)o.8 units m
"

The concentration of Na+ ions is the concentration of Na atoms as each would be ionized.

Then rc, can be expressed as    = nNa = [atomic fraction of Na in (Na20)o
.
2(Si02)o.8] x n.

[ 0-2(2) 1
[0.2(2+ 1) +0.8(1+ 2) Jni = I
 ,

 7 7  ,     | (2.39 x 1028 m"3) = 3.186 x 1027 m"3

and

- 
-

 
- (8.25 x IP"6       m"1) - i 62 x lO"14 m2 V"1 s "1

/X' " eni 
~ (1.60 x lO"19 C)(3.186 x 1027 m"3) X        m v s

This is an extremely small drift mobility, by orders of magnitude, compared with the typi-
cal electron drift mobility in metals and semiconductors. The reason is that the drift involves the
Na+ ion jumping from one site to another by a diffusion process. This diffusion requires over-
coming a potential energy barrier, typically 0.5 to 1 eV, which limits drastically the rate of dif-
fusion by virtue of the Boltzmann factor.
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ADDITIONAL TOPICS

2
.8    SKIN EFFECT: HF RESISTANCE OF A CONDUCTOR

Consider the cylindrical conductor shown in Figure 2.30a, which is carrying a current
/ into the paper (x). The magnetic field B of / is clockwise. Consider two magnetic
field values Bi and Z?2, which are shown in Figure 2.30a. Bi is inside the core and B2
is just outside the conductor.

Assume that the conductor is divided into two conductors. The hypothetical cut is
taken just outside of Bi. The conductor in Figure 2.30a is now cut into a hollow cylin-
der and a smaller solid cylinder, as shown in Figure 2.30b and c, respectively. The
currents /1 and I2 in the solid and hollow cylinders sum to /. We can arrange things and
choose Bi such that our cut gives /1 = I2 = \l. Obviously, /1 flowing in the inner
conductor is threaded (or linked) by both Bi and B2. (Remember that #1 is just inside
the conductor in Figure 2.30b, so it threads at least 99% of /1.) On the other hand, the
outer conductor is only threaded by #2, simply because h flows in the hollow cylinder
and there is no current in the hollow, which means that Bi is not threaded by I2.
Clearly, /1 threads more magnetic field than h and thus conductor (c) has a higher in-
ductance than (b). Recall that inductance is defined as the total magnetic flux threaded
per unit current. Consequently, an ac current will prefer paths near the surface where
the inductive impedance is smaller. As the frequency increases, the current is confined
more and more to the surface region.

For a given conductor, we can assume that most of the current flows in a surface
region of depth 8, called the skin depth, as indicated in Figure 2.31. In the central region,

(a) Total current
into paper is /.

B
2

B

X

B
2

B

B
2

B

(b) Current in hollow
outer cylinder is //2.

(c) Current in solid
inner cylinder is 1/2.

Figure 2.30  Illustration of the skin effect.
A hypothetical cut produces a hollow outer cylinder and a solid inner cylinder. Cut is
placed where it would give equal current in each section. The two sections are in parallel so
that the currents in (b) and (c) sum to that in (a).
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8 = Skin depth

Figure 2.31   At high frequencies, the core
region exhibits more inductive impedance
than the surface region, and the current
flows in the surface region of a conductor
defined approximately by the skin depth, 8.
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Skin depth for
conduction

HF resistance

per unit
length due to
skin effect

the current will be negligibly small. The skin depth will obviously depend on the fre-
quency co. To find 8, we must solve Maxwell

'

s equations in a conductive medium, a te-
dious task that, fortunately, has been done by others. We can therefore simply take the
result that the skin depth 8 is given by

8 =
1

[2.53]

cocrjA

where co is the angular frequency of the current, a is the conductivity (a is constant
from dc up to ~ 1014 Hz in metals), and /z is the magnetic permeability of the medium,
which is the product of the absolute (free space) permeability /x0 and the relative
permeability /xr.

We can imagine the central conductor as a resistance R in series with an inductance
L

. Intuitively, those factors that enhance the inductive impedance coL over the resistance
R will also tend to emphasize the skin effect and will hence tend to decrease the skin
depth. For example, the greater the permeability of the conducting medium, the stronger
the magnetic field inside the conductor, and hence the larger the inductance of the cen-
tral region. The higher the frequency of the current, the greater the inductive impedance
coL compared with R and the more significant is the skin effect. The greater is the con-
ductivity a, the smaller is R compared with coL and hence the more important is the skin
effect. All these dependences are accounted for in Equation 2.53.

With the skin depth known, the effective cross-sectional area is given approxi-
mately by

A = na2 - n(a - 8)2 % 2na8

where 82 is neglected (8 < a). The ac resistance rac of the conductor per unit length is
therefore

P p

2na8
[2.54]

where p is the ac resistivity at the frequency of interest, which for all practical pur-
poses is equal to the dc resistivity of the metal. Equation 2.54 clearly shows that as co
increases, 8 decreases, by virtue of 8 a co~l/2 and, as a result, rac increases.
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From this discussion, it is obvious that the skin effect arises because the mag-
netic field of the ac current in the conductor restricts the current flow to the surface

region within a depth of 8 < a. Since the current can only flow in the surface region,
there is an effective increase in the resistance due to a decrease in the cross-sectional

area for current flow. Taking this effective area for current flow as InaS leads to
Equation 2.54.

The skin effect plays an important role in electronic engineering because it limits
the use of solid-core conductors in high-frequency applications. As the signal frequen-
cies reach and surpass the gigahertz (109 Hz) range, the transmission of the signal over
a long distance becomes almost impossible through an ordinary, solid-metal conduc-
tor. We must then resort to pipes (or waveguides).

SKIN EFFECT FROM DIMENSIONAL ANALYSIS Using dimensional analysis, obtain the general
form of the equation for the skin depth 8 in terms of the angular frequency of the current co, con-
ductivity a, and permeability /x.

SOLUTION

The skin effect depends on the angular frequency co of the current, the conductivity a, and the
magnetic permeability /x of the conducting medium. In the most general way, we can group
these effects as

where the indices x,y9 and z are to be determined. We then substitute the dimensions of each
quantity in this expression. The dimensions of each, in terms of the fundamental units, are as
follows:

EXAMPLE 2.25

Quantity Units Fundamental Units Comment

8

a

m

s
"1

sr1 nr1

WbA"1 nr1

m

s
"1

C2 skg

kg m C-2

-1 nr3 VA~l (JC-'XCs"1)-1
= N m s CT2 = (kg m s~2)(m s CT2)

Wb = Tm2 (N A-1 m-'Xnr4)
~2vr<-i(kgrns- XCr1 s)(m)

!

Therefore,

|i [m] = [s-lf [C2 s kg"1 m-3]y[kg m CT2]*

Matching the dimensions of both sides, we see that y = z; otherwise C and kg do not

I cancel.
For m 1 = -3y + z

For s 0 = -x + >'

For Cor kg        0 = 2y - 2z      or      0 = -y + z
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Clearly, x - y = z = - \ is the only possibility. Then, b a [cog/x]~1/2 . It should be reem-
phasized that the dimensional analysis is not a proof of the skin depth expression, but a consis-
tency check that assures confidence in the equation.

EXAMPLE 2.26 SKIN EFFECT IN AN INDUCTOR What is the change in the dc resistance of a copper wire of ra-
dius 1 mm for an ac signal at 10 MHz? What is the change in the dc resistance at 1 GHz? Cop-
per has /0dc = 1.70 x 10

"8 £2 m or ordc = 5.9 x 107 ft-1 m-1 and a relative permeability near
unity.

SOLUTION

Per unit length, rdc = p jna1 and at high frequencies, from Equation 2.54, rac = p /lnab.
Therefore, rac/rdc = a/28.

We need to find 8. From Equation 2.53, at 10 MHz we have

8 = [ adc/u,]
~"1/2 = [i x In x 10 x 106 x 5

.9 x 107 x 1.257 x lO'6]
"172

= 2
.07 x 10"5 m = 20.7 /xm

Thus

rac     a (10~3 m)

rdc     28     (2 x 2.07 x lO"5 m)
24.13

The resistance has increased by 24 times. At 1 GHz, the increase is 240 times. Furthermore,
the current is confined to a surface region of about 2 x 10~5(20 jim) at 10 MHz and
~2 x 10~6 m (2 jim) at 1 GHz, so most of the material is wasted. This is exactly the reason why
solid conductors would not be used for high-frequency work. As very high frequencies, in the
gigahertz range and above, are reached, the best bet would be to use pipes (waveguides).

One final comment is appropriate. An inductor wound from a copper wire would have a
certain Q (quality factor) value9 that depends inversely on its resistance. At high frequencies, Q
would drop, because the current would be limited to the surface of the wire. One way to over-
come this problem is to use a thick conductor that has a surface coating of higher-conductivity
metal, such as silver. This is what the early radio engineers practiced. In fact, tank circuits of
high-power radio transmitters often have coils made from copper tubes with a coolant flowing
inside.

2
.9    THIN METAL FILMS

2
.
9
.1   Conduction in Thin Metal Films

The resistivity of a material, as listed in materials tables and in our analysis of con-
duction, refers to the resistivity of the material in bulk form; that is, any dimension of
the specimen is much larger than the mean free path for electron scattering. In such
cases resistivity is determined by scattering from lattice vibrations and, if significant,
scattering from various impurities and defects in the crystal. In certain applications,

9 The Q value refers to the quality factor of an inductor, which is defined by Q = (00L/Rt where (o0 is the resonant
frequency, L is the inductance, and R is the resistance due to the losses in the inductor.
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notably microelectronics, metal films are widely used to provide electrical conduction
paths to and from the semiconductor devices. Various methods are used to deposit thin
films. In many applications, the metal film is simply deposited onto a substrate, such
as a semiconductor or an insulator (e.g., Si02), by physical vapor deposition (PVD),
that is, by vacuum deposition, which typically involves either evaporation or sputter-

!: ing. In thermal evaporation, the metal is evaporated from a heated source in a vac-
j uum chamber as depicted in Figure 1.74. As the metal atoms, evaporated from the

source, impinge and adhere to the semiconductor surface, they form a metal film
which is often highly polycrystalline. Stated differently, the metal atoms in the vapor
condense to form a metal film on a suitably placed substrate. In electron beam depo-
sition, an energetic electron beam is used to melt and evaporate the metal. Sputtering
is a vacuum deposition process that involves bombarding a metal target material with
energetic Ar ions, which dislodges the metal atoms and then condenses them onto a
substrate. The use of sputtering is quite common in microelectronic fabrication. Cop-
per metal interconnect films used in microelectronics are usually grown by electrode-
position, that is, using electroplating, an electrochemical process, to deposit the metal
film onto the required chip areas. In many applications, especially in microelectronics,
we are interested in the resistivity of a metal film in which the thickness of the film or
the average size of the grains is comparable to the mean distance between scattering
events £buik (the mean free path) in the bulk material. In such cases, the resistivity of the
metal film is greater than the corresponding resistivity of the bulk crystal. A good ex-
ample is the resistivity of interconnects and various metal films used in the "shrinking

"

world of microelectronics, in which more and more transistors are packed into a single
Si crystal, and various device dimensions are scaled down.

2
.
9

.2 Resistivity of Thin Films

Polycrystalline Films and Grain Boundary Scattering In a highly polycrys-
talline sample the conduction electrons are more likely to be scattered by grain bound-
aries than by other processes as depicted in Figure 2.32a. Consider the resistivity due
to scattering from grain boundaries alone as shown in Figure 2.32b. The conduction
electron is free within a grain, but becomes scattered at the grain boundary. Its mean
free path grains is therefore roughly equal to the average grain size d. If X = Crystal is

Grain 1

L OOOOOOOn r noI OOOOOOO VOc "2
I 00QOOQpOnQOQQOQ

oooooocPo Oq
OOOOOOOOq Oq

Grain  00(§)0
boundary 

Figure 2.32
(a) Grain boundaries cause scattering of
the electron and therefore add to the

resistivity by Matthiessen's rule.

(b) For a very grainy solid, the electron
is scattered from grain boundary to
grain boundary and the mean free path
is approximately equal to the mean
grain diameter.

a (b)
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Mean free
path in
poly crystalline
sample

Resistivity of a
poly crystalline
sample

Resistivity

due to grain
boundary

scattering

the mean free path of the conduction electrons in the single crystal (no grain bound-
aries), then

1

1
i      i 

_ ! + i
crystal      " grains       d

[2.55]

The resistivity is inversely proportional to the mean free path which means that the
resistivity of the bulk single crystal Pcrystai oc 1/A and the resistivity of the polycrys-
talline sample p <x\/t. Thus,

Pcrystai
[2.56]

Polycrystalline metal films with a smaller grain diameter d (i.e., more grainy films)
will have a higher resistivity.

In a more rigorous theory we have to consider a number of effects. It may take
more than one scattering at a grain boundary to totally randomize the velocity, so we
need to calculate the effective mean free path that accounts for how many collisions
are needed to randomize the velocity. There is a possibility that the electron may be to-
tally reflected back at a grain boundary (bounce back). Suppose that the probability of
reflection at a grain boundary is R. If d is the average grain size (diameter), then the
popular Mayadas-Shatkez formula is approximately given by10

P

where

1 + 1.33)8
Pcrystai

t-H-)H d\l-Rj

[2.57a]

[2.57b]

s Equation 2.57a is in the form of Matthiessen's rule and indicates that the grain bound-
ary-scattering contribution Pgrains to the overall resistivity is (1.33j8)pciystai. The approxi-
mate sign in Equation 2.57 implies that Matthiessen's rule is "approximately,

"

 though rea-
sonably well, obeyed. For copper, typical R values are 0.24 to 0.40, and R is somewhat
smaller for Al. Equation 2.57 for a Cu film with R « 0.3 predicts p/Pcrystai % 120 for
d « 3A. or a grain size d « 120 nm since the bulk crystal k  40 nm.

Surface Scattering Consider the scattering of electrons from the surfaces of a con-
ducting film as in Figure 2.33. Take the film thickness as D. Assume that the scatter-
ing from the surface is inelastic; that is, the electron loses the gained velocity from the
field. Put differently, the direction of the electron after the scattering process is inde-
pendent of the direction before the scattering process. This type of scattering is called
nonspecular. (If the electron is elastically reflected from the surface just like a rubber
ball bouncing off a wall, then there is no increase in the resistivity.) It is unlikely that
one surface scattering will completely randomize the electron

's velocity. The mean
free path €surf of the electron will depend on its direction right after the scattering

10 This is obtained by expanding the original long expression about £ = 1 to the first term. To two decimal places,
the expansion is 1 +1.33/8.
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    Figure 2.33  Conduction in thin
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scattering from the surfaces.
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Figure 2.34  The mean free
path of the electron depends on
the angle 0 after scattering.

process as depicted in Figure 2.34. For example, if the angle 6 after surface scattering
is zero, (the electron moves transversely to the film length), then isurf = D. In general,
the mean free path iSUTf will be D/(cos 0) as illustrated in Figure 2.34.

Consider the surface scattering example in Figure 2.34 where the electron is scat-
tered from the bottom surface. If the scattering of the electron were truly random, then
the probability of being scattered in a direction back into the film, that is, in the +y di-
rection, would be 0.5 on average. However, the electron's direction right after the sur-
face scattering is not totally random because we know that the electron cannot leave
the film; thus 0 is between - n/l and H-7r/2 and cannot be between - n and +7r. The
electron's velocity after the first surface scattering must have a y component along +>>
and not along -y. The electron can only acquire a velocity component along - y again
after the second surface scattering as shown in Figure 2.34. It therefore takes two col-
lisions to randomize the velocity, which means that the effective mean free path must
be twice as long, that is ID/ cos 0. To find the overall mean free path t for calculating
the resistivity we must use Matthiessen's rule. If k is the mean free path of the con-
duction electrons in the bulk crystal (no surface scattering), then

1 
_

 1 1

$
,       A. " surf

1 COS0
[2.58]

We have to average for all possible 9 values per scattering, that is, 6 from -n/l
to +71-/2. Oncie this is done we can relate t to k as follows:

k 
_ i k

The resistivity of the bulk crystal is pbuik oc and the resistivity of the film is
p oc l/£.Thus,

[2.59]
1 / kP

= 1 H 1 -
71 \ DPbulk

Mean free
path in a film

Averaged
mean free
path in a film

Resistivity of
a conducting
thin film
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Table 2.6  Resistivities of some thin Cu and Au films at room temperature

Film D (nm)    d (nm) p (nQ m) Comment

Cu films (Polycrystalline)

Cu on TiN, W, and

TiW[l]

Cu on 500 nm Si02 [2]

Cu on Si (100) [3]

Cu on glass [4]

>250

20.5

37

52

100

40

40

40

186

45

21

32

35

27

38

22

50

29

25

Chemical vapor deposition (CVD).
Substrate temperature 200 0C. p

depends on d not D - 250-900 nm.
Thermal evaporation. Substrate at RT.

Sputtered Cu films. Annealing at 150 0C has
no effect. R % 0.40 and p * 0.

As deposited
Annealed at 200 0C

Annealed at 250 0C

All thermal evaporated and PC.

Au films

Au epitaxial film on mica

Au PC film on mica

Au film on glass

Au on glass [5]

30

30

30

40

40

8
.
5

3
.
8

25

54

70

92

189

Single crystal on mica, p  0.8.
Specular scattering.

PC. Sputtered on mica, p is small.
PC. Evaporated onto glass, p is small.

Nonspecular scattering.
PC. Sputtered films. R = 0.27-0.33.

NOTE: PC-polycrystdline film, RT-room temperature, D = film thickness, d = average grain size. At RT for Cu, X = 38-40 nm, and for Au,
X - 36-38 nm.

SOURCES: Data selectively combined from various sources, including [1] S. Riedel etaL, Microelec. Engin. 33, 165, 1997; [2] H. D. Liu et
al., Thin Solid Films, 34, 151, 2001; [3] J. W. Lim ef a/., Appl. Surf. Sci. 217, 95, 2003. [4] R. Suri ef a/., J. Appl. Phys., 46, 2574, 1975;
[5] R. H. Comely and T. A. Ali, J. Appl. Phys., 49, 4094, 1978.

A more rigorous calculation modifies the numerical factor 1 /n and also considers
what fraction p of surface collisions is specular and results in11

Surface
scattering

resistivity

P

Pbulk

3X D
1 +  (l-p)      - > 0.3 [2.60]

which is valid down to about D  0.3k. Equation 2.60 is in Matthiessen
's rule format,

which means that the second term is the fractional contribution of the surfaces to the

resistivity. It can be seen that for elastic or specular scattering p = 1 and there is no
change in the resistivity. For p = 0, Equation 2.60 predicts p/pbu\k  120 for roughly
D % 1.9X or a thickness D « 75 nm for Cu for which A  40 nm. The value of p de-
pends on the film preparation method (e.g., sputtering, epitaxial growth) and the sub-
strate on which the film has been deposited.

Equation 2.60 involves scattering from two surfaces, that is, from the two inter-
faces of the film. In general the two interfaces will not be identical and hence will
have different p coefficients; p in Equation 2.60 is some mean p value. Table 2.6

11 This is known as the Fuchs-Sondheimer equation in a simplified form.
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Figure 2.35
(a) /0fiim of Cu polycrystalline films versus reciprocal mean grain size (diameter) 1/c/. Film thickness
D= 250-900 nm does not affect the resistivity. The straight line is /Ofj|m = 17.8 x\Q. m + (595 nf2 m
nm)(l/cO.
(b) pfiim of thin Cu polycrystalline films versus film thickness D. In this case, annealing (heat treating) the
films to reduce the polycrystallinity does not significantly affect the resistivity because pfi|m is controlled
mainly by surface scattering.
| SOURCES: Data extracted from (a) S. Riedel ef a/., Microelec. Engin. 33, 165, 1997, and (b) W. Lim eta!., Appl.
I Surf. Sci., 217, 95, 2003.

summarizes the resistivity of thin Cu and Au gold films deposited by various prepa-
ration techniques. Notice the large difference between the Au films deposited on a
noncrystalline glass substrate and on a crystalline mica substrate. Such differences
between films are typically attributed to different values of p. The p value can also
change (increase) when the film is annealed. Obviously, the polycrystallinity of the
film will also affect the resistivity as discussed previously. Typically, most epitaxial
thin films, unless very thin (D < X), deposited onto heated crystalline substrates ex-
hibit highly specular scattering with p = 0.9-1.

It is generally very difficult to separate the effects of surface and grain boundary scat-
tering in thin polycrystalline films; the contribution from grain boundary scattering is
likely to exceed that from the surfaces. In any event, both contributions, by Matthiessen's
general rule, increase the overall resistivity. Figure 2.35a shows an example in which the
resistivity pfiim of thin Cu polycrystalline films is due to grain boundary scattering, and
thickness has no effect (D was 250-900 nm and much greater than X). The resistivity pmm
is plotted against the reciprocal mean grain size 1 /d, which then follows the expected lin-
ear behavior in Equation 2.57a. On the other hand, Figure 2.35b shows the resistivity of
Cu films as a function of film thickness D. In this case, annealing (heat treating) the films
to reduce the polycrystallinity does not significantly affect the resistivity because pfiim is
controlled primarily by surface scattering and is given by Equation 2.60.

THIN-FILM RESISTIVITY Consider the data presented in Figure 2.35a. What can you conclude
from the plot given that the mean free path A  40 nm in Cu?

EXAMPLE 2.27
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SOLUTION

Consider the results in Figure 2.35a. It is stated that the film thickness D = 250-900 nm does
not affect the resistivity, which implies that Pfiim is controlled only by the grain size d. From
Equation 2.57a and b we expect

Pfilm  Pcrystal (1 + 1.33/0  crystal + l-33pcrystai \\-r) d

This equation represents the observed line when is plotted against 1 /d as in Figure 2.35a.
The pfiim - \/d line has an intercept given by 17.8 n£2 m and a slope given by 595 (n£2 m)
(nm). The intercept approximately matches the bulk resistivity Pcrystai of Cu. The slope is

Slope  1.33pcrystal  fl) x
or 595(nQ m)(nm) % 1.33(17.8 nQ m)        -(40 nm)

Solving this equation yields R  0.39 for these copper films.

2
.
10    INTERCONNECTS IN MICROELECTRONICS

An integrated circuit (IC) is a single crystal of Si that contains millions of transistors
that have been fabricated within this one crystal. Interconnects are simply metal con-
ductors that are used to wire the devices together to implement the desired overall op-
eration of the IC; see the photographs in Figure 2.36. Aluminum and Al alloys, or
Al silicides, have been the workhouse of the interconnects, but today's fast chips rely
on copper interconnects, which have three distinct advantages. First, copper has a re-
sistivity that is about 40 percent lower than that of Al. In high-transistor-density chips
in which various voltages are switched on and off, what limits the speed of operation
is the RC time constant, that is, the time constant that is involved in charging and dis-
charging the capacitance between the interconnects, and the input capacitance of the
transistor; usually the former dominates. The RC is substantially reduced with Cu re-
placing Al so that the chip speed is faster. The second advantage is that a lower overall
interconnect resistance leads to a lower power consumption, lower I2R.

The third advantage is that copper has superior resistance to electromigration, a
process in which metal atoms are forced to migrate by a large current density. Such
electromigration can eventually lead to a failure of the interconnect. The current den-
sity in interconnects with a small cross-sectional area can be very high, and hence the
electron drift velocities can also be very high. As these fast electrons collide with the
metal ions there is a momentum transfer that slowly drifts the metal ions. Thus, the
metal ions are forced to slowly migrate as a result of being bombarded by drifting elec-
trons; the migration is in the direction of electron flow (not current flow). This atomic
migration can deplete or accumulate material in certain local regions of the intercon-
nect structure. The result is that electromigration can lead to voids (material depletion)
or hillocks (material accumulation), and eventually there may be a break or a short be-
tween interconnects (an interconnect failure). The electromigration effects are reduced
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Figure 2.36
(a) Metal interconnects wiring devices on a silicon crystal. Three different metallization levels Ml, M2, and M3 are used.
The dielectric between the interconnects has been etched away to expose the interconnect structure.
(b) Cross section of a chip with seven levels of metallization, Ml to M7. The image is obtained with a scanning electron
microscope (SEM).
I SOURCES: (a) Courtesy of IBM. (b) Courtesy of Mark Bohr, Intel.

in Cu interconnects because the Cu atoms are heavier and cannot be as easily migrated
by an electric current as are Al atoms.

There is a relatively simple expression for estimating the RC time constant of
multilevel interconnects that is useful in comparing various interconnect technolo-
gies and the effects of interconnect metal resistance p, the relative permittivity sr of
the interlevel dielectric (insulation) between the interconnects, and the geometry of
the whole interconnect wiring. First consider a simple interconnect line, as in Figure
2

.37a, whose thickness is 7\ width is W, and length is L. Its resistance R is simply
pL/(TW). In the chip, this interconnect will have other interconnects around it as
shown in a simplified way in Figure 2.37b. It will couple with all these different con-
ductors around it and will have an overall (effective) capacitance Ceff. RC ff is what
we know as the RC time constant associated with the interconnect line in Figure
2

.
37b.

Suppose that the interconnect is an Mth-level metallization. It will have a series of
many "horizontal" neighbors along this Mth level. Let X be the nearest edge-to-edge
separation and P be the pitch of these horizontal neighbors at the Mth level. The pitch
P refers to the separation from center to center, or the periodicity of interconnects;
p = w + X. At a height H above the interconnect there will be a line running at the
(M + 1) level. Similarly there will be an interconnect line at a distance H below at the
(M - 1) level. We can identify two sets of capacitances. Cv represents the capacitance
in the vertical direction, between the interconnect and its upper or lower neighbor. Ch
is the lateral capacitance in the horizontal direction, between a neighbor on the right or
left. Both are shown in Figure 2.37c. The interconnect therefore has two Cv and two
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Figure 2.37
(a) A single line interconnect surrounded by dielectric insulation.
(b) Interconnects crisscross each other. There are three levels of interconnect: A/I - 1, M, and A/I + 1.
(c) An interconnect has vertical and horizontal capacitances Cyand Ch.
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Ch, four capacitances in total, and all are in parallel as shown in Figure 2.37c. From
the simple parallel plate capacitance formula we can write

e0srTL

X
and

s0sr WL

H

Usually CH is greater than Cv. From Figure 2.37c, the effective capacitance
Ceff = 2(Ch + Cy),

/T W\
Ceff = 2£0SrLl- + - I [2.61]

which is the effective multilevel interconnect capacitance. We now multiply this
with R = pL/(TW) to obtain the RC time constant,

2

[2.62]
/L2\/T W

RC = 2s0srp\ h -)
Equation 2.62 is only an approximate first-order calculation, but, nonetheless,

it turns out to be quite a useful equation for roughly predicting the RC time constant
and hence the speed of multilevel interconnect based high-transistor-density
chips.12 Most significantly, it highlights the importance of three influencing effects:
the resistivity of the interconnect metal; relative permittivity sr of the dielectric in-
sulation between the conductors; and the geometry or "architecture" of the inter-

connects L, T, W, X, and H. Notice that L appears as L2 in Equation 2.62 and has

12 A more rigorous theory would consider the interconnect system as having a distributed resistance and a
distributed capacitance, similar to a transmission line; a topical research area. The treatment here is more than
sufficient to obtain approximate results and understand the factors that control the interconnect delay time.
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significant control on the overall RC. Equation 2.62 does not obviously include the
time it takes to turn on and off the individual transistors connected to the intercon-

nects. In a high-transistor-density chip, the latter is smaller than the interconnect
flCtime constant.

The reduction in the interconnect resistivity p by the use of Cu instead of Al has
been a commendable achievement, and cuts down RC significantly. Further reduction
in p is limited because Cu already has a very small resistivity; the smallest p is for Ag
which is only about 5 percent lower. Current research efforts for reducing RC further
are concentrated on mainly two factors. First is the reduction of sr as much as possible
by using dielectrics such as fluorinated Si02 (known as FSG) for which sr = 3.6, or,
more importantly, using what are called low-A: dielectric materials (k stands for sr)
such as various polymers or porous dielectrics13 that have a lower er, typically 2-3,
which is a substantial reduction from 3.6. The second is the development of optimized
interconnect geometries that reduce L1 in Equation 2.62. (7, W, X, and H are all of
comparable size, so L2 is the most dominant geometric factor.)

The ratio of the thickness T to width W of an interconnect is called the aspect
ratio, Ar = T/W. This ratio is typically between 1 to 2. Very roughly, in many cases,
X and W are the same, X  W and X % P/2 (see Figure 2.37b). Then Equation 2.62
simplifies further,

[2.631

The signal delays between the transistors on a chip arise from the interconnect RC
time constant. Equations 2.62 and 2.63 are often also used to calculate the multilevel
interconnect delay time. Suppose that we take some typical values, L & 10 mm,
T % 1 /xm, P  1 /xm, p = 17 nQ m for a Cu interconnect, and er % 3.6 for FSG;
then RC % 0.43 ns, not a negligible value in today's speed hungry computing.

RC time

constant in

multilevel

interconnect

structures

MULTILEVEL INTERCONNECT RC TIME CONSTANT In a particular high-transistor-density IC
where copper is used as the interconnect, one level of the multilevel interconnects has the fol-
lowing characteristics: pitch P = 0.45 /txm, T = 0.36 /xm, AR = 1.6, H = X, and er « 3.6.
Find the effective capacitance per millimeter of interconnect length, and the RC delay time per
L2 as ps/mm2 (as norfnally used in industry).

SOLUTION

Since AR = T/W, W = T/AR = 0.36/1.6 = 0.225 /txm. Further, from Figure 2.37b,
P = W + X, so that X = P - W = 0.45 - 0.225 = 0.225 /xm. H = X = 0.225 /xm.
Thus, Equation 2.61 for L = 1 mm = 10~3 m gives

/T    W\ ,0 , f 0.36 0.2251
Ce!f = 2s0erL(1

 + -) =2(8.85 x l0-)(3.6)(10-)[- + - J = 0.17 pF

EXAMPLE 2.28

13 The mixture rules mentioned in this chapter turn up again in a different but recognizable form for predicting the
overall relative permittivity of porous dielectrics.
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which is about 0.2 pF per millimeter of interconnect. The RC time constant per L2 is

RC           ( 1 \(T     W\           /I        1 \
u = 2£°£rp{w) U+ h )= 2£o£rpy +m)

= 2(8.85 x l(r12)(3.6)(17 x lO"9)

[(0.225 x 10-6)(0.225 x lO"6) + (0.36 x 10-6)(0.225 x lO"6)]
= 3

.4 x 10~5 s m~2       or       34 ps mm"2

2
.11    ELECTROMIGRATION AND BLACK'S EQUATION

Interconnects have small cross-sectional dimensions, and consequently the current
densities can be quite large. Figure 2.38a depicts how the continual bombardment of
lattice atoms (metal ions) by many "fast" conduction electrons in high-current-density
regions can transfer enough momentum to a host metal atom to migrate it, that is, dif-
fuse it along a suitable path in the crystal. The bombarded metal atom has to jump to a
suitable lattice location to migrate, which is usually easiest along grain boundaries or
surfaces where there is sufficient space as depicted in Figure 2.38a and b. Grain bound-
aries that are parallel to the electron flow therefore can migrate atoms more efficiently
than grain boundaries in other directions. Atomic diffusion can also occur along a sur-
face of the interconnect, that is, along an interface between the interconnect metal and
the neighboring material. The final result of atomic migration is usually either mater-
ial depletion or accumulation as depicted in Figure 2.38c. The depletion of material
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Figure 2.38
(a) Electrons bombard the metal ions and force them to slowly migrate.
(b) Formation of voids and hillocks in a polycrystalline metal interconnect by the electromigration of metal ions along grain
boundaries and interfaces.

(c) Accelerated tests on a 3 Jim chemical vapor deposited Cu line: 7= 200 0C and J = 6 AAA cm-2. The photos show void
formation and fatal failure (break), and hillock formation.
I SOURCE: Courtesy of L. Arnaud et a/.. Microelectronics Reliability, AO, 86, 2000.
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leads to a void and a possible eventual break in the interconnect. The accumulation of
material leads to a hillock and a short between lines. Interconnect failure by electromi-
gration is measured by the mean time to 50 percent failure mtf- There are two factors
that control the rate of electromigration REm. First is the activation energy EA involved
in migrating (diffusing) the metal atom, and the second is the rate at which the atoms are
bombarded with electrons, which depends on the current density J. Thus,

Rem oc Jn exp (4)
in which the rate is proportional to 7", instead of just / because it is found
experimentally that n >1. From the electromigration rate we can find the average time
tuTF it takes for 50 percent failure of interconnects because this time is inversely
proportional to the electromigration rate just given:

'mtf = AbJ "exp [2.64]

where AB is a constant. Equation 2.64 is known as Black's equation, and it is ex-
tremely useful in extrapolating high-temperature failure tests to normal operating tem-
peratures. Electromigration-induced interconnect failures are typically examined at
elevated temperatures where the failure times are over a measurable time scale in the
laboratory (perhaps several hours or a few days). These experiments are called accel-
erated failure tests because they make use of the fact that at high temperatures the
electromigration failure occurs more quickly. The results are then extrapolated to room
temperature using Black's equation.

Typically electromigration occurs along grain boundaries or along various inter-
faces that the interconnect has with its surroundings, the semiconductor, dielectric
material, etc. The diffusion coefficient has a lower activation energy EA for these mi-
gration paths than for diffusion within the volume of the crystal. The electromigration
process therefore depends on the microstructure of the interconnect metal, and its in-
terfaces. Usually another metal, called a barrier, is deposited to occupy the interface
space between the interconnect and the semiconductor or the oxide. The barrier passi-
vates the interface, rendering it relatively inactive in terms of providing an electromi-
gration path. An interconnect can also have a temperature gradient along it. (The heat
generated by I2R may be conducted away faster at the ends of the interconnect, leav-
ing the central region hotter.) Electromigration would be faster in the hot region and
very slow (almost stationary) in the cold region since it is a thermally activated
process. Consequently a pileup of electromigrated atoms can occur as atoms are mi-
grated from hot to cold regions along the interconnect, leading to a hillock.14

Pure Al suffers badly from electromigration problems and is usually alloyed with
small amounts of Cu, called Al(Cu), to reduce electromigration to a tolerable level. But
the resistivity increases. (Why?) In recent Cu interconnects, the most important diffu-
sion path seems to be the interface between the Cu surface and the dielectric. Surface
coating of these Cu interconnects provides control over electromigration failures.

Electromigra-
tion rate

Black's

electromigra-
tion failure
equation

14 Somewhat like a traffic accident pileup in which speeding cars run into stationary cars ahead of them.
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DEFINING TERMS

Alloy is a metal that contains more than one element.

Brass is a copper-rich Cu-Zn alloy.

Bronze is a copper-rich Cu-Sn alloy.

Drift mobility is the drift velocity per unit applied field.
If fid is the drift mobility, then the defining equation
is vd - iiffE, where vd is the drift velocity and £ is the
field.

Drift velocity is the average electron velocity, over
all the conduction electrons in the conductor, in the

direction of an applied electrical force (F = - eUL for
electrons). In the absence of an applied field, all the
electrons move around randomly, and the average
velocity over all the electrons in any direction is zero.
With an applied field there is a net velocity per
electron vdx, in the direction opposite to the field,
where vdx depends , on eLx by virtue of vdx = AidlE*,
where yLd is the drift mobility.

Electrical conductivity {o) is a property of a material
that quantifies the ease with which charges flow inside
the material along an applied electric field or a voltage
gradient. The conductivity is the inverse of electrical
resistivity p. Since charge flow is caused by a voltage
gradient, o is the rate of charge flow across a unit area
per unit voltage gradient, J ~ aT,.

Electromigration is current density-induced diffusion
of host metal atoms due to their repeated bombardment
by conduction electrons at high current densities; the
metal atoms migrate in the direction of electron flow.
Black's equation describes the mean time to failure

of metal film interconnects due to electromigration
failure.

Fourier's law states that the rate of heat flow Q'

through a sample, due to thermal conduction, is pro-
portional to the temperature gradient dj/dx and the
cross-sectional area A, that is, Q' = -KA(dT/dx),

where k is the thermal conductivity.

Hall coefficient (/?#) is a parameter that gauges
the magnitude of the Hall effect. If Hy is the electric
field in the y direction, due to a current density Jx
along x and a magnetic field Bz along z, then RH =

Hall effect is a phenomenon that occurs in a conduc-
tor carrying a current when the conductor is placed in a
magnetic field perpendicular to the current. The charge
carriers in the conductor are deflected by the magnetic
field, giving rise to an electric field (Hall field) that is
perpendicular to both the current and the magnetic
field. If the current density Jx is along x and the
magnetic field Bz is along z, then the Hall field is along
either +y or -y, depending on the polarity of the
charge carriers in the material.

Heterogeneous mixture is a mixture in which the in-
dividual components remain physically separate and
possess different chemical and physical properties; that
is, a mixture of different phases.

Homogeneous mixture is a mixture of two or more
chemical species in which the chemical properties
(e.g., composition) and physical properties (e.g., density,



Defining Terms 179

heat capacity) are uniform throughout. A homogeneous
mixture is a solution.

Interconnects are various thin metal conductors in a

Si integrated circuit that connect various devices to im-
plement the required wiring of the devices. In modem
ICs, these interconnects are primarily electrodeposited
Cu films.

Ionic conduction is the migration of ions in the mater-
ial as a result of field-directed diffusion. When a positive
ion in an interstitial site jumps to a neighboring
interstitial site in the direction of the field, it lowers its

potential energy which is a favorable process. If it jumps
in the opposite direction, then it has to do work against
the force of the field which is undesirable. Thus the dif-

fusion of the positive ion is directed along the field.

Isomorphous phase diagram is a phase diagram for
an alloy that has unlimited solid solubility.

Joule's law relates the power dissipated per unit vol-
ume Pvoi by a current-carrying conductor to the applied
field £ and the current density 7, such that Pvoi =
/£= a£2.

Lorentz force is the force experienced by a moving
charge in a magnetic field. When a charge q is moving
with a velocity v in a magnetic field B, the charge ex-
periences a force F that is proportional to the magni-
tude of its charge q, its velocity v, and the field B, such
thatF = qy x B.

Magnetic field, magnetic flux density, or magnetic
induction (B) is a vector field quantity that describes
the magnitude and direction of the magnetic force ex-
erted on a moving charge or a current-carrying con-
ductor. The magnetic force is essentially the Lorentz
force and excludes the electrostatic force

Magnetic permeability (/u) or simply permeability is
a property of the medium that characterizes the effec-
tiveness of a medium in generating as much magnetic
field as possible for given external currents. It is the
product of the permeability of free space (vacuum) or
absolute permeability (ii0) and relative permeability of
the medium 0u,r), i.e., fx = /i0/ir.

Magnetometer is an instrument for measuring the
magnitude of a magnetic field.

Matthiessen's rule gives the overall resistivity of a
metal as the sum of individual resistivities due to

scattering from thermal vibrations, impurities, and
crystal defects. If the resistivity due to scattering from
thermal vibrations is denoted pT and the resistivities

due to scattering from crystal defects and impurities
can be lumped into a single resistivity term called the
residual resistivity pR, then p = pT + pR.

Mean free path is the mean distance traversed by an
electron between scattering events. If r is the mean free
time between scattering events and u is the mean speed
of the electron, then the mean free path is i = u r.

Mean free time is the average time it takes to scatter
a conduction electron. If is the free time between

collisions (between scattering events) for an electron
labeled i, then r = F, averaged over all the electrons.
The drift mobility is related to the mean free time by
lJLd = ex/me. The reciprocal of the mean free time is
the mean probability per unit time that a conduction
electron will be scattered; in other words, the mean

frequency of scattering events.

Nordheim's rule states that the resistivity of a solid
solution (an isomorphous alloy) due to impurities pj is
proportional to the concentrations of the solute X and
the solvent (1 - X).

Phase (in materials science) is a physically homoge-
neous portion of a materials system that has uniform
physical and chemical characteristics.

Relaxation time is an equivalent term for the mean
free time between scattering events.

Residual resistivity (pR) is the contribution to the
resistivity arising from scattering processes other than
thermal vibrations of the lattice, for example, impuri-
ties, grain boundaries, dislocations, point defects.

Skin effect is an electromagnetic phenomenon that, at
high frequencies, restricts ac current flow to near the
surface of a conductor to reduce the energy stored in
the magnetic field.

Solid solution is a crystalline material that is a homo-
geneous mixture of two or more chemical species. The
mixing occurs at the atomic scale, as in mixing alcohol
and water. Solid solutions can be substitutional (as in

Cu-Ni) or interstitial (for example, C in Fe).

Stefan's law is a phenomenological description of
the energy radiated (as electromagnetic waves) from a
surface per second. When a surface is heated to a
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temperature 7\ it radiates net energy at a rate given by
Radiated = eGsA T4 - Tq), where as is Stefan's con-
stant (5.67 x lO-8 W m-2 K-4), e is the emissivity of
the surface, A is the surface area, and Tq is the ambient

temperature.

Temperature coefficient of resistivity (TCR) (ojo) is
defined as the fractional change in the electrical resis-
tivity of a material per unit increase in the temperature
with respect to some reference temperature Tq.

Thermal conductivity (k) is a property of a material
that quantifies the ease with which heat flows along the
material from higher to lower temperature regions.
Since heat flow is due to a temperature gradient, k is
the rate of heat flow across a unit area per unit temper-
ature gradient.

Thermal resistance (0) is a measure of the difficulty
with which heat conduction takes place along a material

sample. The thermal resistance is defined as the tem-
perature drop per unit heat flow, 6 = AT/Q'

.
 It de-

pends on both the material and its geometry. If the heat
losses from the surfaces are negligible, then 0 = L/kA,
where L is the length of the sample (along heat flow)
and A is the cross-sectional area.

Thermally activated conductivity means that the
conductivity increases in an exponential fashion with
temperature as in a = a0 exp(-Ea/kT) where Ea is
the activation energy.

Thin film is a conductor whose thickness is typically
less than ~ 1 micron; the thickness is also much less

than the width and length of the conductor. Typically
thin films have a higher resistivity than the corre-
sponding bulk material due to the grain boundary and
surface scattering.

QUESTIONS AND PROBLEMS
2
.1       Electrical conduction   Na is a monovalent metal (BCC) with a density of 0.9712 g cm 3. Its atomic

mass is 22.99 g mol-1
. The drift mobility of electrons in Na is 53 cm2 V-1 s-1.

a. Consider the collection of conduction electrons m the solid. If each Na atom donates one electron

to the electron sea, estimate the mean separation between the electrons. (Note: If n is the concen-
tration of particles, then the particles' mean separation d - 1/n1/3.)

b
. Estimate the mean separation between an electron (e~) and a metal ion (Na+), assuming that most

of the time the electron prefers to be between two neighboring Na+ ions. What is the approximate
Coulombic interaction energy (in eV) between an electron and an Na+ ion?

c. How does this electron/metal-ion interaction energy compare with the average thermal energy per
particle, according to the kinetic molecular theory of matter? Do you expect the kinetic molecular
theory to be applicable to the conduction electrons in Na? If the mean electron/metal-ion interac-
tion energy is of the same order of magnitude as the mean KE of the electrons, what is the mean
speed of electrons in Na? Why should the mean kinetic energy be comparable to the mean
electron/metal-ion interaction energy?

d
. Calculate the electrical conductivity of Na and compare this with the experimental value of

2
.

1 x 107 Q~l m-1 and comment on the difference.

2
.2 Electrical conduction The resistivity of aluminum at 25 0C has been measured to be 2.72 x 10~8 £2 m.

The thermal coefficient of resistivity of aluminum at 0 0C is 4.29 x 10_3 K-1. Aluminum has a valency
of 3, a density of 2.70 g cm-3

,
 and an atomic mass of 27.

a. Calculate the resistivity of aluminum at -40 0C.
b

. What is the thermal coefficient of resistivity at -40 0C? H
c. Estimate the mean free time between collisions for the conduction electrons in aluminum at 25 0C,

and hence estimate their drift mobility.

d
. If the mean speed of the conduction electrons is about 2.0 x 106 m s_1, calculate the mean free

path and compare this with the interatomic separation in Al (Al is FCC). What should be the
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thickness of an Al film that is deposited on an IC chip such that its resistivity is the same as that
of bulk Al?

e. What is the percentage change in the power loss due to Joule heating of the aluminum wire when
the temperature drops from 25 0C to -40 0C?

2
.3 Conduction in gold Gold is in the same group as Cu and Ag. Assuming that each Au atom donates one

conduction electron, calculate the drift mobility of the electrons in gold at 22 0C. What is the mean free
path of the conduction electrons if their mean speed is 1.4 x 106 m s-1 ? (Use p0 and a0 in Table 2.1.)

2
.4 Effective number of conduction electrons per atom

a. Electron drift mobility in tin (Sn) is 3.9 cm2 V-1 s-1. The room temperature (20 0C) resistivity of
Sn is about 110 n£2 m. Atomic mass Mat and density of Sn are 118.69 g mol-1 and 7.30 g cm-3,
respectively. How many "free" electrons are donated by each Sn atom in the crystal? How does this
compare with the position of Sn in Group IVB of the Periodic Table?

b
. Consider the resistivity of few selected metals from Groups I to IV in the Periodic Table in Table

2
.
7

. Calculate the number of conduction electrons contributed per atom and compare this with the
location of the element in the Periodic Table. What is your conclusion?

Table 2.7  Selection of metals from Groups I to IV in the Periodic Table

Metal

Periodic

Group Valency
Density
(g cm-3)

Resistivity
(nQ m)

Mobility
(cn VV-1)

Na

Mg
Ag
Zn

Al

Sn

Pb

IA

IIA

IB

IIB

IIIB

IVB

IVB

1

2

1

2

3

4

4

0
.
97

1
.
74

10.5

7
.
14

2
.
7

7
.
30

11.4

42.0

44.5

15.9

59.2

26.5

110

206

53

17

56

8

12

3
.
9

2
.
3

NOTE: Mobility from Hall-effect measurements.

2
.5 TCR and Matthiessen's rule Determine the temperature coefficient of resistivity of pure iron and of

electrotechnical steel (Fe with 4% C), which are used in various electrical machinery, at two tempera-
tures: 0 0C and 500 0C. Comment on the similarities and differences in the resistivity versus tempera-
ture behavior shown in Figure 2.39 for the two materials.

1
.
5-

;§o.5H

0

-400

Fe + 4%C

-i-i

0

Pure Fe

11 i -

pi-i-i-r

400 800

Temperature (0C)

Figure 2.39 Resistivity versus temperature for
pure iron and 4% C steel.

1200



182 CHAPTER 2   .   ELECTRICAL AND THERMAL CONDUCTION IN SOLIDS

*2
.6     TCR of isomorphous alloys

a. Show that for an isomorphous alloy A%-B% (B% solute in A% solvent), the temperature coeffi-
cient of resistivity oiab is given by

_
 a a Pa

dAB ~  
Pab

where pab is the resistivity of the alloy (AB) and pa and a a are the resistivity and TCR of pure A.
What are the assumptions behind this equation?

b
. Determine the composition of the Cu-Ni alloy that will have a TCR of 4 x 10~4 K-1, that is, a

TCR that is an order of magnitude less than that of Cu. Over the composition range of interest,
 the

resistivity of the Cu-Ni alloy can be calculated from pcum % PCu + CeffX(l - X), where Ceff, the
effective Nordheim coefficient, is about 1310 nQ m.

2
.7 Resistivity of isomorphous alloys and Nordheim's rule What are the maximum atomic and weight

percentages of Cu that can be added to Au without exceeding a resistivity that is twice that of pure gold?
What are the maximum atomic and weight percentages of Au that can be added to pure Cu without ex-
ceeding twice the resistivity of pure copper? (Alloys are normally prepared by mixing the elements in
weight.)

2
.8 Nordheim's rule and brass Brass is a Cu-Zn alloy. Table 2.8 shows some typical resistivity values for

various Cu-Zn compositions in which the alloy is a solid solution (up to 30% Zn).
a. Plot p versus X(l - X). From the slope of the best-fit line find the mean (effective) Nordheim co-

efficient C for Zn dissolved in Cu over this compositional range.
b

. Since X is the atomic fraction of Zn in brass, for each atom in the alloy, there are X Zn atoms and
(1 - X) Cu atoms. The conduction electrons consist of each Zn donating two electrons and each
copper donating one electron. Thus, there are 2(X) + 1(1 - X) = 1 + X conduction electrons
per atom. Since the conductivity is proportional to the electron concentration, the combined
Nordheim-Matthiessens rule must be scaled up by (1 + X),

_

 p0 + CX(l-X)
Pbrass -

Plot the data in Table 2.8 as p(l + X) versus X(l - X). From the best-fit line find C and po. What
is your conclusion? (Compare the correlation coefficients of the best-fit lines in your two plots.15)

Table 2.8  Cu-Zn brass alloys

Zn at.% in Cu-Zn 0 0.34 0.5 0.93 3.06 4.65 9.66 15.6 19.59 29.39

Resistivity nft m      17-    18.1       18.84    20.7      26.8      29.9      39.1      49.0    54.8 63.5

I SOURCE: H. A. Fairbank, Phys. Rev., 66, 27A, 1944.

2
.9 Resistivity of solid solution metal alloys: testing Nordheim's rule Nordheim's rule accounts for the

increase in the resistivity resulting from the scattering of electrons from the random distribution of im-
purity (solute) atoms in the host (solvent) crystal. It can nonetheless be quite useful in approximately

15 More rigorously, Pbrass = /Omatrix + Ceff X (1 -X), in which /Omatrix is the resistivity of the perfect matrix. Accounting
for the extra electrons, /0matrix  A)/(l+X), where p0 is the pure metal matrix resistivity and Ceff is the Nordheim
coefficient at the composition of interest, given by Ceff?« C/(l+X}2/3. (It is assumed that the atomic concentration
does not change significantly.) As always, there are also other theories; part b is more than sufficient for most
practical purposes.
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predicting the resistivity at one composition of a solid solution metal alloy, given the value at another
composition. Table 2.9 lists some solid solution metal alloys and gives the resistivity p at one composi-
tion X and asks for a prediction p' based on Nordheim's rule at another composition X'

'

.
 Fill in the table

for p' and compare the predicted values with the experimental values, and comment.

Table 2.9  Resistivities of some solid solution metal alloys

Alloy

Ag-Au Au-Ag Cu-Pd Ag-Pd Au-Pd Pd-Pt Pt-Pd Cu-Ni

X(at%)

Po (nQ m)
p at X (nft m)
Ceff

X

p' at X' (nQ m)

p' atX'inQ m)

Experimental

8
.
8% Au

16.2

44.2

8
.77% Ag

22.7

54.1

6
.
2% Pd

17

70.8

10.1% Pd

16.2

59.8

8
.
88% Pd

22.7

54.1

7
.
66% Pt

108

188.2

7
.
1% Pd

105.8

146.8

2
.
16% Ni

17

50

15.4% Au     24.4% Ag      13% Pd      15.2% Pd       17.1% Pd     15.5% Pt     13.8% Pd   23.4% Ni

66.3 107.2 121.6 83.8 82.2 244 181 300

?»;«!!.  1 iii,        i i ii i I. i      i    ii     11. i I.  

I NOTE: First symbol (e.g., Ag in AgAu) is the matrix (solvent) and the second (Au) is the added solute. X is in at.%, converted from
I traditional weight percentages reported with alloys. Ceff is the effective Nordheim coefficient in p = p0+Ceff X(l -X).

*2
.10 TCR and alloy resistivity Table 2.10 shows the resistivity and TCR (a) of Cu-Ni alloys. Plot TCR

versus 1/p, and obtain the best-fit line. What is your conclusion? Consider the Matthiessen rule, and ex-
plain why the plot should be a straight line. What is the relationship between pcu, ofcu, PCuNi» and ofcuNi ? Can
this be generalized?

Table 2.10  Cu-Ni alloys, resistivity, and TCR

Resistivity (nQ m)
TCR (ppm 0C-1)

Ni wt% in Cu-Ni

0 2 6 11 20

17 50 100       150 300

4270       1350      550       430 160

I NOTE: ppm-parts per million, i.e., 10 6.

2
.11 Electrical and thermal conductivity of In Electron drift mobility in indium has been measured to

be 6 cm2 V-1 s-1. The room temperature (27° C) resistivity of In is 8.37 x 10~8 Q m, and its atomic mass
and density are 114.82 amu or g mol""1 and 7.31 g cm-3

,
 respectively.

a. Based on the resistivity value, determine how many free electrons are donated by each In atom in
the crystal. How does this compare with the position of In in the Periodic Table (Group IIIB)?

b
. If the mean speed of conduction electrons in In is 1.74 x 108 cm s_1, what is the mean free path?

c. Calculate the thermal conductivity of In. How does this compare with the experimental value of
81.6 Wm"1 K"1?

2
.12 Electrical and thermal conductivity of Ag The electron drift mobility in silver has been measured to

be 56 cm2 V-1 s-1 at 27 0C. The atomic mass and density of Ag are given as 107.87 amu or g mol-1
and 10.50 g cm-3

,
 respectively.

a. Assuming that each Ag atom contributes one conduction electron, calculate the resistivity of Ag at
27 0C. Compare this value with the measured value of 1.6 x 10~8 £2m at the same temperature and
suggest reasons for the difference.

b
. Calculate the thermal conductivity of silver at 27 0C and at 0 0C.
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2
.13 Mixture rules A 70% Cu-30% Zn brass electrical component has been made of powdered metal and

contains 15 vol.% porosity. Assume that the pores are dispersed randomly. Given that the resistivity of
70% Cu-30% Zn brass is 62 nQ m, calculate the effective resistivity of the brass component using the
simple conductivity mixture rule, Equation 2.26, and the Reynolds and Hough rule.

2
.
14 Mixture rules

a. A certain carbon electrode used in electrical arcing applications is 47 percent porous. Given that the
resistivity of graphite (in polycrystalline form) at room temperature is about 9.1 fxQm, estimate the
effective resistivity of the carbon electrode using the appropriate Reynolds and Hough rule and
the simple conductivity mixture rule. Compare your estimates with the measured value of 18 fxQ m
and comment on the differences.

b
. Silver particles are dispersed in a graphite paste to increase the effective conductivity of the paste.

If the volume fraction of dispersed silver is 30 percent, what is the effective conductivity of this
paste?

2
.15 Ag-Ni alloys (contact materials) and the mixture rules Silver alloys, particularly Ag alloys with the

precious metals Pt, Pd, Ni, and Au, are extensively used as contact materials in various switches. Alloy-
ing Ag with other metals generally increases the hardness, wear resistance, and corrosion resistance at
the expense of electrical and thermal conductivity. For example, Ag-Ni alloys are widely used as con-
tact materials in switches in domestic appliances, control and selector switches, circuit breakers, and au-
tomotive switches up to several hundred amperes of current. Table 2.11 shows the resistivities of four
Ag-Ni alloys used in make-and-break as well as disconnect contacts with current ratings up to ~ 100 A.
a. Ag-Ni is a two-phase alloy, a mixture of Ag-rich and Ni-rich phases. Using an appropriate mixture

rule, predict the resistivity of the alloy and compare with the measured values in Table 2.11. Ex-
plain the difference between the predicted and experimental values.

b
. Compare the resistivity of Ag-10% Ni with that of Ag-10% Pd in Table 2.9. The resistivity of the

Ag-Pd alloy is almost a factor of 5 greater. Ag-Pd is an isomorphous solid solution, whereas Ag-Ni
is a two-phase mixture. Explain the difference in the resistivities of Ag-Ni and Ag-Pd.

Table 2.11   Resistivity of Ag-Ni contact alloys for switches

p(n£2 m)
dig cm-3)
Hardness

VHN

Ni%in Ag-Ni
0       10        15 20 30 100

16.9 20.9 23.6 25 31.1 71.4

10.5     10.3       9.76       9.4       9.47 8.9

30       50       55 60 65 80

NOTE: Compositions are in wt.%. Ag-10% Ni means 90% Ag-10% Ni.
Vickers hardness number (VHN) is a measure of the hardness or strength of the
alloy, and d is density.

2
.16 Ag-W alloys (contact materials) and the mixture rule Silver-tungsten alloys are frequently used in

heavy-duty switching applications (e.g., current-carrying contacts and oil circuit breakers) and in arcing
tips. Ag-W is a two-phase alloy, a mixture of Ag-rich and W-rich phases. The measured resistivity and
density for various Ag-W compositions are summarized in Table 2.12.
a. Plot the resistivity and density of the Ag-W alloy against the W content (wt.%)
b

. Show that the density of the mixture, d, is given by

d
-i -1

where wa is the weight fraction of phase a, wp is the weight fraction of phase fi, da is the density
of phase of, and dp is the density of phase
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c. Show that the resistivity mixture rule is

dwa dwe
P=Pa-+P0-

where p is the resistivity of the alloy (mixture), d is the density of the alloy (mixture), and sub-
scripts a and £ refer to phases oc and respectively.

d
. Calculate the density d and the resistivity p of the mixture for various values of W content (in

wt.%) and plot the calculated values in the same graph as the experimental values. What is your
conclusion?

Mixture rule and

weight fractions

Table 2.12  Dependence of resistivity in Ag-W alloy on composition as a function of wt.% W

W(wt.%)
0     10     15      20    30     40      65       70      75       80      85    90 100

pinQm)   16.2   18.6    19.7    20.9  22.7   27.6    35.5     38.3    40       46      47.9  53.9 55.6

flf(gcm
-3) 10.

5   10.75 10.95   11.3   12     12.35   14.485  15.02   15.325  16.18   16.6   17.25 19.1

NOTE: p = resistivity and d = density.

2
.
17

2
.
18

*2
.
19

2
.
20

Thermal conduction Consider brass alloys with an X atomic fraction of Zn. Since Zn addition in-
creases the number of conduction electrons, we have to scale the final alloy resistivity calculated from
the simple Matthiessen-Nordheim rule in Equation 2.22 down by a factor (1 4- X) (see Question 2.8) so
that the resistivity of the alloy is p % [p0 4- CX(1 - X)]/(l + X) in which C = 300 nft m and
Po = Pcu = 17 nft m.

a. An 80 at.% Cu-20 at.% Zn brass disk of 40 mm diameter and 5 mm thickness is used to conduct

heat from a heat source to a heat sink.

(1) Calculate the thermal resistance of the brass disk.

(2) If the disk is conducting heat at a rate of 100 W, calculate the temperature drop along the disk.
b

. What should be the composition of brass if the temperature drop across the disk is to be halved?

Thermal resistance Consider a thin insulating disk made of mica to electrically insulate a semicon-
ductor device from a conducting heat sink. Mica has k = 0.75 W m-1 K-1. The disk thickness is 0.1 mm,
and the diameter is 10 mm. What is the thermal resistance of the disk? What is the temperature drop
across the disk if the heat current through it is 25 W?

Thermal resistance Consider a coaxial cable operating under steady-state conditions when the cur-
rent flow through the inner conductor generates Joule heat at a rate P = I2R

. The heat generated per
second by the core conductor flows through the dielectric; Q' = I2R

.
 The inner conductor reaches a

temperature 7}, whereas the outer conductor is at T0. Show that the thermal resistance 6 of the hollow
cylindrical insulation for heat flow in the radial direction is

e
(Tt - T0) ]n(b/a)

Q' IttkL
[2.65]

where a is the inside (core conductor) radius, b is the outside radius (outer conductor), k is the thermal
conductivity of the insulation, and L is the cable length. Consider a coaxial cable that has a copper core
conductor and polyethylene (PE) dielectric with the following properties: Core conductor resistivity
p = 19 n£2 m, core radius a = 4 mm, dielectric thickness b - a = 3.5 mm, dielectric thermal conduc-
tivity k = 0.3 W m-1 K"1. The outside temperature T0 is 25 0C. The cable is carrying a current of
500 A. What is the temperature of the inner conductor?

The Hall effect Consider a rectangular sample, a metal or an rc-type semiconductor, with a length
L

, width W, and thickness D. A current / is passed along L, perpendicular to the cross-sectional

Thermal

resistance of
hollow cylinder
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Hall voltage

area WD. The face W x L is exposed to a magnetic field density B. A voltmeter is connected across
the width, as shown in Figure 2.40, to read the Hall voltage V#.
a.    Show that the Hall voltage recorded by the voltmeter is

Vh
IB

Den

b
. Consider a 1-micron-thick strip of gold layer on an insulating substrate that is a candidate for a Hall

probe sensor. If the current through the film is maintained at constant 100 mA, what is the magnetic
field that can be recorded per jx V of Hall voltage?

Figure 2.40  Hall effect in a rectangular material
with length I, width W, and thickness D.
The voltmeter is across the width W.

B

7

L V
H

D

I

2
.21 The strain gauge A strain gauge is a transducer attached to a body to measure its fractional elongation

AL/L under an applied load (force) F. The gauge is a grid of many folded runs of a thin, resistive wire
glued to a flexible backing, as depicted in Figure 2.41. The gauge is attached to the body under test such
that the resistive wire length is parallel to the strain.
a.    Assume that the elongation does not change the resistivity and show that the change in the resis-

tance A/? is related to the strain e = AL/L by
Strain gauge
equation

Poisson ratio

AR % 2v)e

where v is the Poisson ratio, which is defined by

Transverse strain

Longitudinal strain si

[2.66]

[2.67]

b
.

where £/ is the strain along the applied load, that is, £/ = AL/L = e, and et is the strain in the
transverse direction, that is, et = AD/D, where D is the diameter (thickness) of the wire.

Explain why a nichrome wire would be a better choice than copper for the strain gauge (consider
the TCR).

Figure 2,41   The strain gauge consists of a long,
 thin wire

folded several times along its length to form a grid as shown
and embedded in a self-adhesive tape.
The ends of the wire are attached to terminals (solder pads)
for external connections. The tape is stuck on the component
for which the strain is to be measured.

Gauge length

1

\

Solder tab

Adhesive tape

Grid of metal wires
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2
.
22

2
.
23

c. How do temperature changes affect the response of the gauge? Consider the effect of temperature
on p. Also consider the differential expansion of the specimen with respect to the gauge wire such
that even if there is no applied load, there is still strain, which is determined by the differential ex-
pansion coefficient, A-specimen- gauge, where k is the thermal coefficient of linear expansion:
L = Lo[l + k(T - 7b)], where 7b is the reference temperature.

d
. The gauge factor for a transducer is defined as the fractional change in the measured property

A/?//? per unit input signal (e). What is the gauge factor for a metal-wire strain gauge, given that
for most metals, v « \ ?

e. Consider a strain gauge that consists of a nichrome wire of resistivity 1 m, a total length of 1 m,
and a diameter of 25 jim. What is A/? for a strain of 10~3? Assume that v % .

/    What will A/? be if constantan wire with a resistivity of 500 n£2 m is used?

a.

Thermal coefficients of expansion and resistivity

Consider a thin metal wire of length L and diameter D. Its resistance is R = pL/A, where
A = 7zD2/A. By considering the temperature dependence of L, A, and p individually, show that

1 dR

Rdf=ao-Xo

where ao is the temperature coefficient of resistivity (TCR), and ko is the temperature coefficient
of linear expansion (thermal expansion coefficient or expansivity), that is,

ko = L{0"l( )
r=ro

or

To

Note: Consider differentiating R = pL/[(7T D2)/4] with respect to T with each parameter, p, L,
and D, having a temperature dependence.

Given that typically, for most pure metals, ao % 1/273 K-1 and A-o « 2 x 10~5 K-1, con-
firm that the temperature dependence of p controls /?, rather than the temperature dependence
of the geometry. Is it necessary to modify the given equation for a wire with a noncircular cross
section?

b
.   Is it possible to design a resistor from a suitable alloy such that its temperature dependence is al-

most nil? Consider the TCR of an alloy of two metals A and B, for which cxab  uaPa/pab -

a.

Temperature of a light bulb filament

Consider a 100 W, 120 V incandescent bulb (lamp). The tungsten filament has a length of 0.579 m
and a diameter of 63.5 m. Its resistivity at room temperature is 56 nQ m. Given that the resistiv-
ity of the filament can be represented as

P

where T is the temperature in K, po is the resistance of the filament at Tq K, and n = 1.2, estimate
the temperature of the bulb when it is operated at the rated voltage, that is, directly from the main
outlet. Note that the bulb dissipates 100 W at 120 V.

b
. Suppose that the electrical power dissipated in the tungsten wire is totally radiated from the surface

of the filament. The radiated power at the absolute temperature T can be described by Stefan
's law

radiated = 6 A (f4 - [2.69]
where as is Stefan's constant (5.67 x 10~8 W m-2 K-4), € is the emissivity of the surface (0.35
for tungsten), A is the surface area of the tungsten filament, and To is room temperature (293 K).
Obviously, for T > Tq, /Radiated = €asAT4.

Assuming that all the electrical power is radiated from the surface, estimate the temperature of
the filament and compare it with your answer in part (a).

c. If the melting temperature of W is 3407 0C, what is the voltage that guarantees that the light bulb
will blow?

Change in R
with

temperature

[2.68]     Resistivity of W

Radiated power
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2
.24 Einstein relation and ionic conductivity In the case of ionic conduction, ions have to jump from one

interstice to the neighboring one. This process involves overcoming a potential energy barrier just like
atomic diffusion, and drift and diffusion are related. The drift mobility of ions is proportional to the
diffusion coefficient D because drift is limited by the atomic diffusion process. The Einstein relation
relates the two by

D kT
Einstein relation - = - [2.70]

ix e

Diffusion coefficient of the Na+ ion in sodium silicate (Na20-Si02) glasses at 400 0C is 3.4 x 10"9
cm2 s

-1
. The density of such glasses is approximately 2.4 g cm-3. Calculate the ionic conductivity and

resistivity of (17.5 mol% Na20)(82.5 mol% Si02) sodium silicate glass at 400 0C and compare your re-
sult with the experimental values of the order of 104 £1 cm for the resistivity.

2
.25 Skin effect

a. What is the skin depth for a copper wire carrying a current at 60 Hz? The resistivity of copper at
27 0C is 17 n£2 m. Its relative permeability /xr « 1. Is there any sense in using a conductor for
power transmission which has a diameter more than 2 cm?

b
. What is the skin depth for an iron wire carrying a current at 60 Hz? The resistivity of iron at 27 0C

is 97 n£2 m. Assume that its relative permeability iAr « 700. How does this compare with the cop-
per wire? Discuss why copper is preferred over iron for power transmission even though iron is
nearly 100 times cheaper than copper.

2
.
26 Thin films

a. Consider a polycrystalline copper film that has R = 0.40. What is the approximate mean grain size
d in terms of the mean free path k in the bulk that would lead to the polycrystalline Cu film having
a resistivity that is 1.5pbuik- If the mean free path in the crystal is about 40 nm at room temperature,
what is J?

b
. What is the thickness D of a copper film in terms of k in which surface scattering increases the film

resistivity to 1.2/0buik if the specular scattering fraction p is 0.5?

c. Consider the data of Lim et al. (2003) presented in Table 2.13. Show that the excess resistivity, i.e.
resistivity above that of bulk Cu, is roughly proportional to the reciprocal film thickness.

Table 2.13   Resistivity pfj|m of a copper film as a function of thickness D.

D(nm) 8.61      17.2     34.4     51.9     69       85.8     102.6     120.3     173.2 224.3
pfiim(nftm)   121.8      75.3     46.1     38.5     32.1     25.2      22.0       20.5      19.9 18.8

NOTE: Film annealed at 150 0C

SOURCE: Data extracted from J. W. Lim et al, Appl. Surf. Sci. 217, 95, 2003.

2
.27 Interconnects Consider a high-transistor-density CMOS chip in which the interconnects are copper

with a pitch P of 500 nm, interconnect thickness T of 400 nm, aspect ratio 1.4, and H = X. The dielectric
is FSG with er = 3.6. Consider two cases, L = 1mm and L = 10 mm, and calculate the overall effec-

tive interconnect capacitance Ceff and the RC delay time. Suppose that Al, which is normally Al with
about 4 wt.% Cu in the microelectronics industry with a resistivity 31 n£2 m, is used as the interconnect.
What is the corresponding /?Cdelay time?

*2
.28 Thin 50 nm interconnects Equation 2.60 is for conduction in a thin film of thickness D and assumes

scattering from two surfaces, which yields an additional resistivity P2 = /Obuik| (VD)(l - p). An inter-
connect line in an IC is not quite a thin film and has four surfaces (interfaces), because the thickness T
of the conductor is comparable to the width W. If we assume T = W, we can very roughly take
P4 & Pi + Pi % Pbu\k | (k/D)(l - p) in which D = T. (The exact expression is more complicated, but
the latter will suffice for this problem.) In addition there will be a contribution from grain boundary
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scattering, (Equation 2.57a). For simplicity assume T W X H 60 nm, k = 40 nm, p = 0.5
and er = 3.6. If the mean grain size d is roughly 40 nm and R = 0.4, estimate the resistivity of the
interconnect and hence the RC delay for a 1 mm interconnect.

2
.29 TCR of thin films Consider Matthiessen's rule applied to a thin film. Show that, very approximately,

the product of the thermal coefficient of resistivity (TCR) afiim and the resistivity pfiim is equivalent to
the product of the bulk TCR and resistivity:

Of film Pfiim % abulk/Obulk

2
.30 Electromigration Although electromigration-induced failure in Cu metallization is less severe than in

Al metallization, it can still lead to interconnect failure depending on current densities and the operating
temperature. In a set of experiments carried out on electroplated Cu metallization lines, failure of the Cu
interconnects have been examined under accelerated tests (at elevated temperatures). The mean lifetime
fso (time for 50 percent of the lines to break) have been measured as a function of current density J and
temperature T at a given current density. The results are summarized in Table 2.14.

a. Plot semilogarithmically tsQ versus 1/7 (Tin Kelvins) for the first three interconnects. Al(Cu) and
Cu (1.3 x 0.7pm2) have single activation energies Ea.Calculate Ea for these interconnects. Cu
(1.3 x 0.7pm2) exhibits different activation energies for the high-and low-temperature regions.
Estimate these Ea.

b
. Plot on a log-log plot fso versus Jat 370 0C. Show that at low 7, n % 1.1 and at high 7, n & 1.8.

Table 2.14  Results of electromigration failure experiments on various Al and Cu interconnects

Al(Cu)
[7 = 25 mA/jam2,
A = 0.35 x 0.2 (/xm)2]

Cu

[7= 25 mA/pm2,
A = 0.24 x 0.28 (Aim)2]

Cu

[7 = 25 mA/pm2,
A = 1.3 x 0.7 (/xm)2]

Cu

(7=370oC)

TTC) tso(hr) rro tso(hr) TTC) fso (hr)     J mA pm~2      tso (hr)

365

300

259

233

0
.
11

0
.
98

5
.
73

15.7

397

354

315

269

232

2
.
87

12.8

70.53

180

899

395

360

314

285

40.3

196

825

2098

3
.
54

11.7

24.8

49.2

74.1

140

131.5

25.2

14.9

4
.
28

2
.
29

0
.
69

NOTE: A = width X height in micron2.
SOURCE: Data extracted from R. Rosenberg ef al., (IBM, T. J. Watson Research Center, Annu. Rev. Mater. Sci., 30,
229, 2000, figures 29 and 31, and subject to small extraction errors.)

if
-1

Gordon Teal (Left) and Morgan Sparks fabricated
the first grown-junction Ge transistor in
1950-1951 at Bell Labs. Gordon Teal started at
Bell Labs but later moved to Texas Instruments

where he lead the development of the first
commercial Si transistor; the first Si transistor was

made at Bell Labs by Morris Tanenbaum.
I SOURCE: Courtesy of Bell Laboratories, Lucent
I Technologies.
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CHAPTER

3

Elementary Quantum Physics

The triumph of modem physics is the triumph of quantum mechanics. Even the sim-
plest experimental observation that the resistivity of a metal depends linearly on the
temperature can only be explained by quantum physics, simply because we must take
the mean speed of the conduction electrons to be nearly independent of temperature.
The modem definitions of voltage and ohm, adopted in January 1990 and now part of
the IEEE standards, are based on Josephson and quantum Hall effects, both of which
are quantum mechanical phenomena.

One of the most important discoveries in physics has been the wave-particle
duality of nature. The electron, which we have so far considered to be a particle and
hence to be obeying Newton's second law (F = ma), can also exhibit wave-like prop-
erties quite contrary to our intuition. An electron beam can give rise to diffraction
patterns and interference fringes, just like a light wave. Interference and diffraction
phenomena displayed by light can only be explained by treating light as an electro-
magnetic wave. But light can also exhibit particle-like properties in which it behaves
as if it were a stream of discrete entities ("photons

"

), each carrying a linear momen-
tum and each interacting discretely with electrons in matter (just like a particle collid-
ing with another particle).

3
.

1 PHOTONS

3.
1
.

1  Light as a Wave

In introductory physics courses, light is considered to be a wave. Indeed, such phe-
nomena as interference, diffraction, refraction, and reflection can all be explained
by the theory of waves. In all these phenomena, a ray of light is considered to be an
electromagnetic (EM) wave with a given frequency, as depicted in Figure 3.1. The
electric and magnetic fields, 'Ey and BZi of this wave are perpendicular to each other and
to the direction of propagation jc. The electric field !Ey at position x at time t may be

191
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z

y
A

Direction

of propagation
 > X

B
z

 Velocity = c

>- x

Figure 3.1   The classical view of light as an electromagnetic wave.
An electromagnetic wave is a traveling wave with time-varying electric and magnetic fields that
are perpendicular to each other and to the direction of propagation.

Traveling
wave

Intensity of
light wave

described by
"Eyix, t) = *£(, sin(fcjc - cot) [3.1]

where k is the wavenumber (propagation constant) related to the wavelength k by
k = In Ik, and (o is the angular frequency of the wave (or Inv, where v is the fre-
quency). A similar equation describes the variation of the magnetic field Bz (directed
along z) with x at any time t. Equation 3.1 represents a traveling wave in the x direc-
tion, which, in the present example, is a sinusoidally varying functiori (Figure 3.1). The
velocity of the wave (strictly the phase velocity) is

CO

c = - = vk
k

where v is the frequency. The intensity J, that is, the energy flowing per unit area per
second, of the wave represented by Equation 3.1 is given by

1
2

I = -C60&
0

[3.2]

where e0 is the absolute permittivity.
Understanding the wave nature of light is fundamental to understanding interfer-

ence and diffraction, two phenomena that we experience with sound waves almost on
a daily basis. Figure 3.2 illustrates how the interference of secondary waves from the
two slits Si and S2 gives rise to the dark and bright fringes (called Young's fringes)
on a screen placed at some distance from the slits. At point P on the screen, the waves
emanating from Si and S2 interfere constructively, if they are in phase. This is the
case if the path difference between the two rays is an integer multiple of the wave-
length X, or

SiP - S2P = nk

where n is an integer. If the two waves are out of phase by a path difference of A./2, or

SlP-S2P = (" + )*
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Destructive interference

Photographic film showing
Young's fringes

Figure 3.2  Schematic illustration of Young's double-slit experiment.
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Figure 3.3 Diffraction patterns obtained by passing X-rays through crystals can only be explained by using ideas based
on the interference of waves.

(a) Diffraction of X-rays from a single crystal gives a diffraction pattern of bright spots on a photographic film.
(b) Diffraction of X-rays from a powdered crystalline material or a polycrystalline material gives a diffraction pattern of
bright rings on a photographic film.
(c) X-ray diffraction involves the constructive interference of waves being "reflected'' by various atomic planes in the crystal.

then the waves interfere destructively and the intensity at point P vanishes. Thus, in the
y direction, the observer sees a pattern of bright and dark fringes.

When X-rays are incident on a crystalline material, they give rise to typical dif-
fraction patterns on a photographic plate, as shown in Figure 3.3a and b, which can
only be explained by using wave concepts. For simplicity, consider two waves, 1 and
2

, in an X-ray beam. The waves are initially in phase, as shown in Figure 3.3c. Sup-
pose that wave 1 is "reflected" from the first plane of atoms in the crystal, whereas
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Bragg
diffraction
condition

wave 2 is "reflected" from the second plane.1 After reflection, wave 2 has traveled an
additional distance equivalent to 2d sin 0 before reaching wave 7. The path difference
between the two waves is 2d sinO, where d is the separation of the atomic planes. For
constructive interference, this must be nX, where n is an integer. Otherwise, waves 1
and 2 will interfere destructively and will cancel each other. Waves reflected from ad-
jacent atomic planes interfere constructively to constitute a diffracted beam only when
the path difference between the waves is an integer multiple of the wavelength, and
this will only be the case for certain directions. Therefore the condition for the
existence of a diffracted beam is

2d sin 0 = nX n = 1, 2, 3,... [3.3]

The condition expressed in Equation 3.3, for observing a diffracted beam,
 forms

the whole basis for identifying and studying various crystal structures (the science of
crystallography). The equation is referred to as Bragg's law, and arises from the con-
structive interference of waves.

Aside from exhibiting wave-like properties, light can behave like a stream of "par-
ticles" of zero rest-mass. As it turns out, the only way to explain a vast number of
experiments is to view light as a stream of discrete entities or energy packets called
photons, each carrying a quantum of energy h v, and momentum h/X, where h is a uni-
versal constant that can be determined experimentally, and v is the frequency of light.
This photonic view of light is drastically different than the simple wave picture and
must be examined closely to understand its origin.

3
.
1
.2 The Photoelectric Effect

Consider a quartz glass vacuum tube with two metal electrodes, a photocathode and an
anode, which are connected externally to a voltage supply V (variable and reversible)
via an ammeter, as schematically illustrated in Figure 3.4. When the cathode is illumi-
nated with light, if the frequency v of the light is greater than a certain critical value vq,

the ammeter registers a current /, even when the anode voltage is zero (i.e., the supply
is bypassed). When light strikes the cathode, electrons are emitted with sufficient ki-
netic energy to reach the opposite electrode. Applying a positive voltage to the anode
helps to collect more of the electrons and thus increases the current, until it saturates
because all the photoemitted electrons have been collected. The current, then, is lim-
ited by the rate of supply of photoemitted electrons. If, on the other hand, we apply a
negative voltage to the anode, we can "push" back the photoemitted electrons and
hence reduce the current /. Figure 3.5a shows the dependence of the photocurrent on
the anode voltage, for one particular frequency of light.

Recall that when an electron traverses a voltage difference V, its potential energy
changes by eV (potential difference is defined as work done per unit charge). When a
negative voltage is applied to the anode, the electron has to do work to get to this elec-
trode, and this work comes from its kinetic energy just after photoemission. When the
negative anode voltage V is equal to Vb» which just "extinguishes

" the current /, we

1 Strictly, one must consider the scattering of waves from the electrons in individual atoms [e.g., atoms A and 8 in
Figure 3.3c) and examine the constructive interference of these scattered waves,

 which leads to the same condition

as that derived in Equation 3.3.
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Figure 3.4  The photoelectric effect.
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(a) Photoelectric current versus voltage when
the cathode is illuminated with light of
identical wavelength but different intensities
(l). The saturation current is proportional to the
light intensity.

Figure 3.5   Results from the photoelectric experiment.

(b) The stopping voltage and therefore the
maximum kinetic energy of the emitted
electron increases with the frequency of light,
v. (The light intensity is not the same; it is
adjusted to keep the saturation current the
same.)

know that the potential energy "gained" by the electron is just the kinetic energy lost
by the electron, or

1
eVo = -nieV2 = KEm

where v is the velocity and KEm is the kinetic energy of the electron just after photo-
emission. Therefore, we can conveniently measure the maximum kinetic energy KEm
of the Emitted electrons.

For a given frequency of light, increasing the intensity of light I requires the same
voltage Vq to extinguish the current; that is, the KEm of emitted electrons is indepen-
dent of the light intensity J. This is quite surprising. However, increasing the intensity
does increase the saturation current. Both of these effects are noted in the I-V results

shown in Figure 3.5a.
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Figure 3.6 The effect of varying the frequency of light
and the cathode material in the photoelectric experiment.
The lines for the different materials have the same slope h
but different intercepts.
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Since the magnitude of the saturation photocurrent depends on the light intensity
J

, whereas the KE of the emitted electron is independent of J, we are forced to con-
clude that only the number of electrons ejected depends on the light intensity. Further-
more, if we plot KEm (from the Vq value) against the light frequency v for different
electrode metals for the cathode, we find the typical behavior shown in Figure 3.6.
This shows that the KE of the emitted electron depends on the frequency of light. The
experimental results shown in Figure 3.6 can be summarized by a statement that relates
the KEm of the electron to the frequency of light and the electrode metal, as follows:

KEm = hv - hvo [3.41

where h is the slope of the straight line and is independent of the type of metal, whereas
vq depends on the electrode material for the photocathode (e.g., vqi, V02, etc.). Equa-
tion 3.4 is essentially a succinct statement of the experimental observations of the photo-
electric effect as exhibited in Figure 3.6. The constant h is called Planck's constant,
which, from the slope of the straight lines in Figure 3.6, can be shown to be about
6

.6 x 10~34 J s. This was beautifully demonstrated by Millikan in 1915, in an excellent
series of photoelectric experiments using different photocathode materials.

The successful interpretation of the photoelectric effect was first given in 1905
by Einstein, who proposed that light consists of "energy packets," each of which has
the magnitude hv. We can call these energy quanta photons. When one photon strikes
an electron, its energy is transferred to the electron. The whole photon becomes ab-
sorbed by the electron. Yet, an electron in a metal is in a lower state of potential energy
(PE) than in vacuum, by an amount O, which we call the work function of the metal,
as illustrated in Figure 3.7. The lower PE is what keeps the electron in the metal;
otherwise, it would "drop out."
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Figure 3.7 The PE of an electron
inside the metal is lower than outside by
an energy called the workfunction of the
metal.

Work must be done to remove the
electron from the metal.

This lower PE is a result of the Coulombic attraction interaction between the elec-

tron and the positive metal ions. Some of the photon energy hv therefore goes toward
overcoming this PE barrier. The energy that is left (hv - O) gives the electron its KE.
The work function O changes from one metal to another. Photoemission only occurs
when hv is greater than O. This is clearly borne out by experiment, since a critical fre-
quency vq is needed to register a photocurrent. When v is less than vq, even if we use
an extremely intense light, no current exists because no photoemission occurs, as
demonstrated by the experimental results in Figure 3.6. Inasmuch as O depends on the
metal, so does vq- Therefore, in Einstein's interpretation hv0 = <$>. In fact, the mea-
surement of vq constitutes one method of determining the work function of the metal.

This explanation for the photoelectric effect is further supported by the fact that the
work function O from hvo is in good agreement with that from thermionic emission ex-
periments. There is an apparent similarity between the I-V characteristics of the photo-
tube and that of the vacuum tube used in early radios. The only difference is that in the
vacuum tube, the emission of electrons from the cathode is achieved by heating the cath-
ode. Thermal energy ejects some electrons over the PE barrier O. The measurement of
4> by this thermionic emission process agrees with that from photoemission experiments.

In the photonic interpretation of light, we still have to resolve the meaning of the
intensity of light, because the classical intensity in Equation 3.2

1
2

is obviously not acceptable. Increasing the intensity of illumination in the photoelec-
tric experiment increases the saturation current, which means that more electrons are

Classical

light intensity
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Figure 3.8   Intuitive visualization of
light consisting of a stream of photons
(not to be taken too literally).

SOURCE: R. Serway, C. J. Moses, and
C

. A. Moyer, Modern Physics, Saunders
College Publishing, 1989, p. 56,
figure 2.16(b).
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emitted per unit time. We therefore infer that the cathode must be receiving more pho-
tons per unit time at higher intensities. By definition, "intensity" refers to the amount
of energy flowing through a unit area per unit time. If the number of photons crossing
a unit area per unit time is the photon flux, denoted by Fph, then the flow of energy
through a unit area per unit time, the light intensity, is the product of this photon flux
and the energy per photon, that is,

i= rphhv

where

fph =
AN,ph

AAt

[3.5]

[3.61

in which AA ph is the net number of photons crossing an area A in time At. With the
energy of a photon given as hv and the intensity of light defined as fph/iv, the ex-
planation for the photoelectric effect becomes self-consistent. The interpretation of
light as a stream of photons can perhaps be intuitively imagined as depicted in
Figure 3.8.

EXAMPLE 3.1 ENERGY OF A BLUE PHOTON   What is the energy of a blue photon that has a wavelength of
450 nm?

SOLUTION

The energy of the photon is given by

£ph = hv = *£ = (6-6 ><  JS)(3 * 108
mS

"1) = 4
.4 x 10-» Jp X 450 x lO"9 m

Generally, with such small energy values, we prefer electron-volts (eV), so the energy of
the photon is

4
.
4 x lO"19 J

1
.6 x 10"19 J/eV

2
.
75 eV
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THE PHOTOELECTRIC EXPERIMENT In the photoelectric experiment, green light, with a wave-
length of 522 nm, is the longest-wavelength radiation that can cause the photoemission of elec-
trons from a clean sodium surface.

a.
 What is the work function of sodium, in electron-volts?

b
. If UV (ultraviolet) radiation of wavelength 250 nm is incident to the sodium surface, what

will be the kinetic energy of the photoemitted electrons, in electron-volts?

| c. Suppose that the UV light of wavelength 250 nm has an intensity of 20 mW cm-2. If the
emitted electrons are collected by applying a positive bias to the opposite electrode, what
will be the photoelectric current density?

SOLUTION

a.   At threshold, the photon energy just causes photoemissions; that is, the electron just over-
comes the potential barrier <£. Thus, hc/Xo = e<P, where 4) is the work function in eV,

|       and Xq is the longest wavelength.
he 

_

 (6.626 x lO"34 Js)(3 x lO s"1)
eXo

2
.
38 eV

(1.6 x lO"19 J/eV)(522 x 10-9m)

b
.   The energy of the incoming photon Eph is (hc/X), so the excess energy over e > goes to the

kinetic energy of the electron. Thus,

(6.626 x lO"34 Js)(3 x lO s"1)
KE

he
 cD
eX

- 2.38 eV = 2.58 eV
(1.6 x lO"19 J/eV)(250 x 10-9m)

I;

I  c.   The light intensity (defined as energy flux) is given by J = rvh(hc/X)9 where Fph is the
number of photons arriving per unit area per unit time; that is, photon flux and (hc/X) is

;       the energy per photon. Thus, if each photon releases one electron, the electron flux will be
equal to the photon flux, and the current density, which is the charge flux, will be

J eVph

elX     (1.6 x 10-19C)(20 x lO"3 x 104 Js-1 nr2)(250 x lO"9 m)
he

40.3 A m'2 or

(6.626 x lO- JsXS x K ms"1)

4
.
0 mA cm'2

EXAMPLE 3.2

3
.
1

.3 Compton Scattering

When an X-ray strikes an electron, it is deflected, or "scattered." In addition, the elec-
tron moves away after the interaction, as depicted in Figure 3.9. The wavelength of the
incoming and scattered X-rays can readily be measured. The frequency v' of the scat-
tered X-ray is less than the frequency v of the incoming X-ray. When the KE of the
electron is determined, we find that

KE = hv - hvf

Since the electron now also has a momentum pe, then from the conservation of linear mo-
mentum law, we are forced to accept that the X-ray also has a momentum. The Compton
effect experiments showed that the momentum of the photon is related to its wavelength by

h

p = -x [3.7]
Momentum of
a photon
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X-ray photon J F c    Electron   ,   .
„
 

.

Recoiling electron

A
Figure 3.9  Scattering of an X-ray
photon by a "free" electron in a
conductor.

Scattered photontioton Qfc v\X

c

Photon

energy and
momentum

We see that a photon not only has an energy hv, but also a momentum p, and it
interacts as if it were a discrete entity like a particle. Therefore, when discussing the
properties of a photon, we must consider its energy and momentum as if it were a
particle.

We should mention that the description of the Compton effect shown in Figure 3.9
is, in fact, the inference from a more practical experiment involving the scattering of
X-rays from a metal target. A collimated monochromatic beam of X-rays of wave-
length strikes a conducting target, such as graphite, as illustrated in Figure 3.10a.
A conducting target contains a large number of nearly "free" electrons (conduction
electrons), which can scatter the X-rays. The scattered X-rays are detected at various
angles 0 with respect to the original direction, and their wavelength A/ is measured.
The result of the experiment is therefore the scattered wavelength k' measured at var-
ious scattering angles 0, as shown in Figure 3.10b. It turns out that the k' versus 0
results agree with the conservation of linear momentum law applied to an X-ray pho-
ton colliding with an electron with the momentum of the photon given precisely by
Equation 3.7.

The photoelectric experiment and the Compton effect are just two convincing
experiments in modem physics that force us to accept that light can have particle-like
properties. We already know that it can also exhibit wave-like properties, in such
experiments as Young

's interference fringes. We are then faced with what is known as
the wave-particle dilemma. How do we know whether light is going to behave like a
wave or a particle? The properties exhibited by light depend very much on the nature
of the experiment. Some experiments will require the wave model, whereas others may
use the particulate interpretation of light. We should perhaps view the two interpreta-
tions as two complementary ways of modeling the behavior of light when it interacts
with matter, accepting the fact that light has a dual nature. Both models are needed for
a full description of the behavior of light.

The expressions for the energy and momentum of the photon, E = hv and
p = h/k, can also be written in terms of the angular frequency co(= 2nv) and the
wave number fc, defined as k = 2n/k. If we define fi = h/2n9 then

E = hv = fioo and P [3.8]
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[a) A schematic diagram of the Compton experiment
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K

(b) Results from the Compton experiment

Figure 3.10  The Compton experiment and its results.

A

X-RAY PHOTON ENERGY AND MOMENTUM X-rays are photons with very short wave-
lengths that can penetrate or pass through objects, hence their use in medical imaging, security
scans at airports, and many other applications including X-ray diffraction studies of crystal
structures. Typical X-rays used in mammography (medical imaging of breasts) have a wave-
length of about 0.6 angstrom (1 A = 10~10 m). Calculate the energy and momentum of an
X-ray photon with this wavelength, and the velocity of a corresponding electron that has the
same momentum.

SOLUTION

The photon energy £ph is given by

Eph

hc
_

 
_

 (6.6 x IQ"34 Js)(3 x IQ s-1)
T ~        ~ -" x

eV J
-i

0
.
6 x 10-10m

= 2
.
06 x 104 eV      or      20.6 keV

The momentum p of this X-ray photon is

1
.
6 x lO"19

h 6
.6xlO-34Js „
 - = 1

.1 x 10"23 kg m s
0

.
6 x lO"10 m 5

-i

EXAMPLE 3.3
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A corresponding electron with the same momentum, m electron = P, would have a velocity

p      1.1 x lO"23 kgrns
"1 7 ,

electron =   =  "  = 1.2 X 10   m S
me 9.1xl0-31kg

This is much greater than the average speed of conduction (free) electrons whizzing around in-
side a metal, which is ~ 106 m s-1

.

3
.
1

.
4 Black Body Radiation

Experiments indicate that all objects emit and absorb energy in the form of radiation,
and the intensity of this radiation depends on the radiation wavelength and temperature
of the object. This radiation is frequently termed thermal radiation. When the object
is in thermal equilibrium with its surroundings, that is, at the same temperature, the
object absorbs as much radiation energy as it emits. On the other hand, when the tem-
perature of the object is above the temperature of its surroundings, there is a net emis-
sion of radiation energy. The maximum amount of radiation energy that can be emitted
by an object is called the black body radiation. Although, in general, the intensity of
the radiated energy depends on the material's surface, the radiation emitted from a cav-
ity with a small aperture is independent of the material of the cavity and corresponds
very closely to black body radiation.

The intensity of the emitted radiation has the spectrum {i.e., intensity vs. wave-
length characteristic), and the temperature dependence illustrated in Figure 3.11. It is
useful to define a spectral irradiance ix as the emitted radiation intensity (power per
unit area) per unit wavelength, so that Ix SX is the intensity in a small range of wave-
lengths 8X. Figure 3.11 shows the typical versus A behavior of black body radiation
at two temperatures. We assume that the characteristics of the radiation emerging from
the aperture represent those of the radiation within the cavity.

Escaping black body
radiation

Hot body

Small hole acts as a black body

IA

A
3000 K

9
'

73

.
5

13

8
.

00

2500 K

542 310

Classical theory

Planck's radiation law

A( Urn)

Figure 3.11   Schematic illustration of black body radiation and its characteristics.
Spectral irradiance versus wavelength at two temperatures (3000 K is about the temperature of the incandescent
tungsten filament in a light bulb).
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Classical physics predicts that the acceleration and deceleration of the charges
due to various thermal vibrations, oscillations, or motions of the atoms in the surface
region of the cavity material result in electromagnetic waves of the emissions. These
waves then interfere with each other, giving rise to many types of standing electro-
magnetic waves with different wavelengths in the cavity. Each wave contributes an
energy kTto the emitted intensity. If we calculate the number of standing waves within
a small range of wavelength, the classical prediction leads to the Rayleigh-Jeans law
in which 1  a l/X4 and Ik ex T, which are not in agreement with the experiment,
especially in the short-wavelength range (see Figure 3.11).

Max Planck (1900) was able to show that the experimental results can be
explained if we assume that the radiation within the cavity involves the emission and
absorption of discrete amounts of light energy by the oscillation of the molecules of
the cavity material. He assumed that oscillating molecules emit and absorb a quan-
tity of energy that is an integer multiple of a discrete energy quantum that is deter-
mined by the frequency v of the radiation and given by hv. This is what we now call
a photon. He then considered the energy distribution (the statistics) in the molecular
oscillations and took the probability of an oscillator possessing an energy nhv
(where n is an integer) to be proportional to the Boltzmann factor, exp(-nhv/kT).
He eventually derived the mathematical form of the black body radiation character-
istics in Figure 3.11. Planck's black body radiation formula for is generally ex-
pressed as

27t he2

X5 -

kkTj J

[3.9]

203

Planck's

radiation law

I.

where k is the Boltzmann constant. Planck's radiation law based on the emission and

absorption of photons is in excellent agreement with all observed black body radiation
characteristics as depicted in Figure 3.11.

Planck's radiation law is undoubtedly one of the major successes of modem
physics. We can take Equation 3.9 one step further and derive Stefan

's black body ra-
diation law that was used in Chapter 2 to calculate the rate of radiation energy emitted
from the hot filament of a light bulb. If we integrate over all wavelengths,2 we will
obtain the total radiative power Ps emitted by a black body per unit surface area at a
temperature T,

Ps -L
oo

where Gs =

o

2n5kA

15c2/i3

V15c2W S

= 5
.
670 x lO-8 Wm-2 K"4

[3.10]

[3.11]

Stefan's black
body
radiation law

Stefan's
constant

2The integration of Equation 3.9 can be done by looking up definite integral tables in math handbooks-we only
need the result of the mathematics, which is Equation 3.10. The Ps in Equation 3.10 is sometimes called the radiant
emittance. Stefan's law is also known as the Stefan-Boltzmann law.
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Equation 3.10 in which Ps = crsT4 is Stefan's law for black body radiation, and the as
in Equation 3.11 is the Stefan constant with a value of approximately 5.67 x
10~8 W m"2 K~4. Stefan's law was known before Planck used quantum physics to derive
his black body radiation law embedded in Ik. A complete explanation of Stefan's law
and the value for as however had to wait for Planck's law. The h in Equation 3.10 or
3
.11 is a clear pointer that the origin of Stefan's law lies in quantum physics.

EXAMPLE 3.4
 

 STEFAN'S LAW AND THE LIGHT BULB Stefan's law as stated in Equation 3.10 applies to a per-
fect black body that is emitting radiation into its environment which is at absolute zero. If the
environment or the surroundings of the black body is at a finite temperature T0, than the sur-
roundings would also be emitting radiation. The same black body will then also absorb radia-
tion from its environment. By definition, a black body is not only a perfect emitter of radiation
but also a perfect absorber of radiation. The rate of radiation absorbed from the environment
per unit surface is again given by Equation 3.10 but with T0 instead of T since it is the surround-
ings that are emitting the radiation. Thus, a$7* is the absorbed radiation rate from the sur-
roundings, so

Net rate of radiative power emission per unit surface = asT4 - GsT*

Further, not all surfaces are perfect black bodies. Black body emission is the maximum possi-
ble emission from a surface at a given temperature. A real surface emits less than a black body.
Emissivity s of a surface measures the efficiency of a surface in terms of a black body emitter;
it is the ratio of the emitted radiation from a real surface to that emitted from a black body at a
given temperature and over the same wavelength range. The total net rate of radiative power

Stefan's law       emission becomes
for a real Radiation = Ssas{TA - T*) [3.12]
surface where S is the surface area that is emitting the radiation. Consider the tungsten filament of a

100 W light bulb in a lamp. When we switch the lamp on, the current through the filament gen-
erates heat which quickly heats up the filament to an operating temperature 7}. At this tempera-
ture, the electric energy that is input into the bulb is radiated away from the filament as radiation
energy. A typical 100 W bulb filament has a length of 57.9 cm and a diameter of 63.5 jum. Its
surface area is then

S = 7r(63.5 x lO-6 m)(0.579 m) = 1.155 x lO-4 m2

The emissivity e of tungsten is about 0.35. Assuming that under steady-state operation all the
electric power that is input into the bulb's filament is radiated away,

100 W = Pradiation = Seos(T} - T04)
= (1.155 x lO-4 m2)(0.35)(5.67 x lO-8 W m-2 K"4) / - 3004)

Solving we find,

Tf = 2570 K      or      2297 0C

which is well below the melting temperature of tungsten which is 3422 0C
.
 The second term that

has T4 has very little effect on the calculation as radiation absorption from the environment is
practically nil compared with the emitted radiation at Tf.

The shift in the spectral intensity emitted from a black body with temperature is of partic-
ular interest to many photoinstrumention engineers. The peak spectral intensity in Figure 3.11
occurs at a wavelength A,max, which, by virtue of Equation 3.9, depends on the temperature of
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the black body. By substituting a new variable x = hc/{kTX) into Equation 3.9 and differenti-
ating it, or plotting it against   we can show that the peak occurs when

A
max

r % 2.89 x lO-3 mK

which is known as Wien's displacement law. The peak emission shifts to lower wavelengths as
the temperature increases. We can calculate the wavelength Amax corresponding to the peak in the
spectral distribution of emitted radiation from our 100 W lamp: Amax = (2.89 x 10"3 m K)/
(2570 K) = 1.13 jum (in the infrared).

Wien's dis-

placement
law

3
.
2   THE ELECTRON AS A WAVE

3
.
2
.

1 De Brogue Relationship

It is apparent from the photoelectric and Compton effects that light, which we thought
was a wave, can behave as if it were a stream of particulate-like entities called photons.
Can electrons exhibit wave-like properties? Again, this depends on the experiment and
on the energy of the electrons.

When the interference and diffraction experiments in Figures 3.2 and 3.3 are
repeated with an electron beam, very similar results are found to those obtainable with
light and X-rays. When we use an electron beam in Young's double-slit experiment,
we observe high- and low-intensity regions (i.e.. Young's fringes), as illustrated in
Figure 3.12. The interference pattern is viewed on a fluorescent TV screen. When an
energetic electron beam hits an Al polycrystalline sample, it produces diffraction
rings on a fluorescent screen (Figure 3.13), just like X-rays do on a photographic

Fluorescent screen

„
 50 kV

"       I      Two slits1      Two j

u
Elec ons5  J

Filament

* *!    -.<.        CO**-«. t* >.

Vacuum

Electron diffraction fringes on
the screen

Figure 3.12  Young's double-slit experiment with electrons involves an electron
gun and two slits in a cathode ray tube (CRT) (hence, in vacuum).
Electrons from the filament are accelerated by a 50 kV anode voltage to produce a
beam that is made to pass through the slits. The electrons then produce a visible
pattern when they strike a fluorescent screen [e.g., a TV screen), and the resulting
visual pattern is photographed.
I SOURCE: Pattern from C. Jonsson, D. Brandt, and S. Hirschi, Am. J. Physics, 42, 1974, p. 9,
I figure 8. Used with permission.
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Screen

Diffraction pattern

S

"  Gold foil

Cathode rays:
electrons

(a) Thomson diffracted electrons by using a thin gold
foil and produced a diffraction pattern on the screen of
his apparatus in (b). The foil was polycrystalline, so
the diffraction pattern was circular rings.

E
11

Photographic plate
(retractable)

D

r
, v , Pump

4=0 4*)       Capillary tube
[
 

J I    / (0.23 mm dia.)
25 cm-ytfj= B A JH

Foil Cathnde

3

Fluorescent viewing screen

Cathode

Gas

(b) In Thomson's electron diffraction apparatus a beam of
electrons is generated in tube A, passed through collimating
tube B, and made to impinge on a thin gold foil C. The
transmitted electrons impinge on the fluorescent screen E,
or a photographic plate D, which could be lowered into
the path. The entire apparatus was evacuated during
the experiment.

(c) Electron diffraction
pattern obtained by G. P.
Thomson using a gold foil
target. (d) Composite photograph showing diffraction

patterns produced with an aluminum foil by
X-rays and electrons of similar wavelength.
Left: X-rays of k = 0.071 nm. Right: Electrons
of energy 600 eV.

JVV
X

f

(e) Diffraction pattern produced by
40 keV electrons passing through zinc
oxide powder. The distortion of the
pattern was produced by a small
magnet placed between the sample
and the photographic plate. An X-ray
diffraction pattern would not be
affected by a magnetic field.

Figure 3.13  The diffraction of electrons by crystals gives typical diffraction patterns that would be expected if waves
were being diffracted, as in X-ray diffraction with crystals.

SOURCE: (b) from G. P. Thomson, Proceedings of the Royal Society, Al 17, no. 600, 1928; (c) and (d) from A. P. French and
F

. Taylor, An Introduction to Quantum Mechanics, Norton, New York, 1978, p. 75; (e) from R. B. Leighton, Principles of Modern
Physics, New York: McGraw-Hill, 1959, p. 84.
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plate. The diffraction pattern obtained with an electron beam (Figure 3.13) means that
the electrons are obeying the Bragg diffraction condition 2d sin 0 = nk just as much as
the X-ray waves.

Since we know the interatomic spacing d and we can measure the angle of diffrac-
tion 26, we can readily evaluate the wavelength A associated with the wave-like behav-
ior of the electrons. Furthermore, from the accelerating voltage V in the electron tube,
we can also determine the momentum of the electrons, because the kinetic energy
gained by the electrons, (p2/2me)9 is equal to eV. Simply by adjusting the accelerating
voltage V, we can therefore study how the wavelength of the electron depends on the
momentum.

As a result of such studies and other similar experiments, it has been found that an
electron traveling with a momentum p behaves like a wave of wavelength X given by

h
X = -

P
[3.131

This is just the reverse of the equation for the momentum of a photon given its
wavelength. The same equation therefore relates wave-like and particle-like properties
to and from each other. Thus,

h
X = -

P
or P =

h

X

is an equation that exposes the wave-particle duality of nature. It was first hypothe-
sized by De Broglie in 1924. As an example, we can calculate the wavelengths of a
number of particle-like objects:

a.   A 50 gram golf ball traveling at a velocity of 20 m s"1.
The wavelength is

6
.
63 x 10-34Js

X =
h

mv     (50 x lO"3 kg)(20m s"1)
= 6

.
63 x 10"34 m

The wavelength is so small that this golf ball will not exhibit any wave effects.
Firing a stream of golf balls at a wall will not result in "diffraction rings" of golf balls.

b
. A proton traveling at 2200 m s~1.

Using mp = 1.67 x 10~27 kg, we have X = (h/mv) ~ 0.18 nm. This is only
slightly smaller than the interatomic distance in crystals, so firing protons at a
crystal can result in diffraction. (Recall that to get a diffraction peak, we must sat-
isfy the Bragg condition, 2d sinO = nX.) Protons, however, are charged, so they
can penetrate only a small distance into the crystal. Hence, they are not used in
crystal diffraction studies.

c. Electron accelerated by 100 V.
This voltage accelerates the electron to a KE equal to eV. From KE =

p
2/2me = eV9 we can calculate p and hence X - h/p. The result is

X = 0.123 nm. Since this is comparable to typical interatomic distances in solids,
we would see a diffraction pattern when an electron beam strikes a crystal. The
actual pattern is determined by the Bragg diffraction condition.

Wavelength of
the electron

De Broglie
relations
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3
.
2

.2 Time-Independent Schrodinger Equation

The experiments in which electrons exhibit interference and diffraction phenomena
show quite clearly that, under certain conditions, the electron can behave as a wave; in
other words, it can exhibit wave-like properties. There is a general equation that
describes this wave-like behavior and, with the appropriate potential energy and
boundary conditions, will predict the results of the experiments. The equation is called
the Schrodinger equation and it forms the foundations of quantum theory. Its funda-
mental nature is analogous to the classical physics assertion of Newton

's second law,

F - ma, which of course cannot be proved. As a fundamental equation, Schrodinger's
has been found to successfully predict every observable physical phenomenon at the
atomic scale. Without this equation, we will not be able to understand the properties of
electronic materials and the principles of operation of many semiconductor devices.
We introduce the equation through an analogy.

A traveling electromagnetic wave resulting from sinusoidal current oscillations, or
the traveling voltage wave on a long transmission line, can generally be described by
a traveling-wave equation of the form

!EU, t) = Tro exp j(kx - cot) = (x) exp(- jcot) [3.14]

where £(.*) = 'EQexp(jkx) represents the spatial dependence, which is separate from
the time variation. We assume that no transients exist to upset this perfect sinusoidal
propagation. We note that the time dependence is harmonic and therefore predictable.
For this reason, in ac circuits we put aside the exp(-jcot) term until we need the
instantaneous magnitude of the voltage.

The average intensity Jav = ceoT  depends on the square of the amplitude. In
Young's double-slit experiment, the intensity varies along the y direction, which means
that £  for the resultant wave depends on y. In the electron version of this experiment
in Figure 3.12, what changes in the y direction is the probability of observing elec-
trons; that is, there are peaks and troughs in the probability of finding electrons along
y, just like the variation along y. We should therefore attach some probability inter-
pretation to the wave description of the electron.

In 1926, Max Bom suggested a probability wave interpretation for the wave-like
behavior of the electron.

t) = Tro s\n(kx - cot)

is a plane traveling wavefunction for an electric field; experimentally, we measure and
interpret the intensity of a wave, namely f)|2. There may be a similar wave func-
tion for the electron, which we can represent by a function {x.t). According to Bom,
the significance of vl/Qc, t) is that its amplitude squared represents the probability of
finding the electron per unit distance. Thus, in three dimensions, if vl/(jc, y, z, t) repre-
sents the wave property of the electron, it must have one of the following interpretations:

|vl/(x,   z, 0I2 is the probability of finding the electron per unit volume at
x, y, z at time t.

| (jc, y, z, t)\2 dx dy dz is the probability of finding the electron in a small
elemental volume dxdydzatx,y,zdLt time t.
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If we are just considering one dimension, then the wavefunction is (x, f), and
|  (x, t) |2 dx is the probability of finding the electron between x and Qc + dx) at time t.

We should note that since only |4>|2 has meaning, not 4>, the latter function need
not be real; it can be a complex function with real and imaginary parts. For this reason,
we tend to use * vl>, where 4> * is the complex conjugate of , instead of 14> |2, to rep-
resent the probability per unit volume.

To obtain the wavefunction 4>(;c, t) for the electron, we need to know how the
electron interacts with its environment. This is embodied in its potential energy func-
tion V = V(x, t), because the net force the electron experiences is given by

F = -dV/dx.

For example, if the electron is attracted by a positive charge (e.g., the proton in a
hydrogen atom), then it clearly has an electrostatic potential energy given by

V(r) = -
e

2

Ane0r

where r = Jx2 + y2 + z2 is the distance between the electron and the proton.
If the PE of the electron is time independent, which means that V = V(x) in one

dimension, then the spatial and time dependences of 4>0, t) can be separated, just as
in Equation 3.14, and the total wavefunction 4> (jc, t) of the electron can be written as

vl>(jc, t) = fix) exp [3.15]

where f (jc) is the electron wavefunction that describes only the spatial behavior, and E
is the energy of the electron. The temporal behavior is simply harmonic, by virtue of
exp(-jEt/h)9 which corresponds to exp(- jcot) with an angular frequency co = E/h.
The fundamental equation that describes the electron's behavior by determining x/r (x) is
called the time-independent Schrodinger equation. It is given by the famous equation

d2\lf 2m
[3.16a]

where m is the mass of the electron.

This is a second-order differential equation. It should be reemphasized that the
potential energy V in Equation 3.16a depends only on x. If the potential energy of the
electron depends on time as well, that is, if V = V(x, f), then in general 4>(jc, 0 can-
not be written as ir(x)exp(-jEt/ti). Instead, we must use the full version of the
Schrodinger equation, which is discussed in more advanced textbooks.

In three dimensions, there will be derivatives of x/r with respect to jc, y, and z. We
use the calculus notation (df/dx), differentiating fix, y, z) with respect to jc but
keeping y and z constant. Similar notations df/dy and dt/s/dz are used for derivatives
with respect to y alone and with respect to z alone, respectively. In three dimensions,
Equation 3.16a becomes

d2f     dlxlr d2irl2 2
,

ajc2 + dy2
+

dz2

2m
+ -(E-V)i,=0 [3.16b]

where V = V(x, y, z) and  = fix, y, z).

Steady-state
total wave

function

Schrodinger's
equation
for one
dimension

Schrodinger's
equation
for three
dimensions
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Equation 3.16b is a fundamental equation, called the time-independent Schrodinger
equation, the solution of which gives the steady-state behavior of the electron in a
time-independent potential energy environment described by V = V(jc, y, z). By
solving Equation 3.16b, we will know the probability distribution and the energy of the
electron. Once \lf(x, y, z) has been determined, the total wavef unction for the electron
is given by Equation 3.15 so that

\V(x,y,z,t)\2=\Mx,y,z)\ 2

which means that the steady-state probability distribution of the electron is simply
\Mx,y,z)\2.

The time-independent Schrodinger equation can be viewed as a "mathematical
crank." We input the potential energy of the electron and the boundary conditions, turn
the crank, and get the probability distribution and the energy of the electron under
steady-state conditions.

Two important boundary conditions are often used to solve the Schrodinger equa-
tion. First, as an analogy, when we stretch a string between two fixed points and put it
into a steady-state vibration, there are no discontinuities or kinks along the string. We
can therefore intelligently guess that because ir(x) represents wave-like behavior, it
must be a smooth function without any discontinuities.

The first boundary condition is that vl> must be continuous, and the second is that
dV/dx must be continuous. In the steady state, these two conditions translate directly
to x/r and d\lf/dx being continuous. Since the probability of finding the electron is
represented by | |2, this function must be single-valued and smooth, without any
discontinuities, as illustrated in Figure 3.14. The enforcement of these boundary
conditions results in strict requirements on the wavef unction yj/{x), as a result of
which only certain wavefunctions are acceptable. These wavefunctions are called the
eigenfunctions (characteristic functions) of the system, and they determine the be-
havior and energy of the electron under steady-state conditions. The eigenfunctions
rlr(x) are also called stationary states, inasmuch as we are only considering steady-
state behavior.

It is important to note that the Schrodinger equation is generally applicable to all
matter, not just the electron. For example, the equation can also be used to describe
the behavior of a proton, if the appropriate potential energy V(x,y,z) and mass
("Voton) are used. Wavefunctions associated with particles are frequently called
matter waves.

A
\lf(x) not continuous \l/(x)

A

X

dm
,

dx
not continuous

A
\lf{x) not single-valued

 x 1
 

Figure 3.14   Unacceptable forms of  (x).
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THE FREE ELECTRON Solve the Schrodinger equation for a free electron whose energy is E.
What is the uncertainty in the position of the electron and the uncertainty in the momentum of
the electron?

EXAMPLE 3.5

SOLUTION

Since the electron is free, its potential energy is zero, V = 0. In the Schrodinger equation, this
leads to

d21r
dx2

2m
0

We can write this as

d2xlf
dx2

+ k2f 0

where we defined k2 = (2m/fi2)E. Solving the differential equation, we get

\lf(x) = A exp(jkx)      or      B exp(-jkx)

The total wavefunction is obtained by multiplying 00 by exp(-jEt/ti). We can define
a fictitious frequency for the electron by co = E/fi and multiply \l/(x) by exp(- jcot):

(x, t) = A exp j(kx - cot)      or      B exp j(-kx - cot)

Each of these is a traveling wave. The first solution is a traveling wave in the +x direction,
and the second one is in the -x direction. Thus, the free electron has a traveling wave solution
with a wavenumber k = In/X, that can have any value. The energy E of the electron is simply
KE, so

KE = E
m

2m

2

When we compare this with the classical physics expression KE = (p2/2m), we see that
the momentum is given by

P tik or

h

This is the de Broglie relationship. The latter therefore results naturally from the
Schrodinger equation for a free electron.

The probability distribution for the electron is

| (A:)|2 = |Aexp;( )|2 = A2

which is constant over the entire space. Thus, the electron can be anywhere between x = - oo
and x = +oo. The uncertainty A* in its position is infinite. Since the electron has a well-
defined wavenumber fc, its momentum p is also well-defined by virtue of p = tik. The uncer-
tainty Ap in its momentum is thus zero.

WAVELENGTH OF AN ELECTRON BEAM Electrons are accelerated through a 100 V potential
difference to strike a polycrystalline aluminum sample. The diffraction pattern obtained indi-
cates that the highest intensity and smallest angle diffraction, corresponding to diffraction from
the (111) planes, has a diffraction angle of 30.4°. From X-ray studies, the separation of the (111)

EXAMPLE 3.6
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planes is 0.234 nm. What is the wavelength of the electron and how does it compare with that
from the de Broglie relationship?

SOLUTION

Since we know the angle of diffraction 20 (= 30.4°) and the interplanar separation d {- 0.234 nm),
we can readily calculate the wavelength of the electron from the Bragg condition for diffraction,
2d sin 0 = nk.Withn = 1,

X = 2d sin 0 = 2(0.234 nm) sin(15.20) = 0.1227 nm

This is the wavelength of the electron.
When an electron is accelerated through a voltage V, it gains KE equal to eV, so p2/2m =

eV and p - (2me V)l/2. This is the momentum imparted by the potential difference V. From the
de Broglie relationship, the wavelength should be

h h
X = -

p (2meVy/2

or

\2meVj

Substituting for e, h, and m, we obtain

1
.
226 nm

X- yi/2

The experiment uses 100 V, so the de Broglie wavelength is

1
.
226 nm     1.226 nm

X =  -- =  -- = 0.1226 nm
yi/2 iq0i/2

which is in excellent agreement with that determined from the Bragg condition.

3
.
3   INFINITE POTENTIAL WELL:

A CONFINED ELECTRON

Consider the behavior of the electron when it is confined to a certain region,
0 < x < a. Its PE is zero inside that region and infinite outside, as shown in
Figure 3.15. The electron cannot escape, because it would need an infinite PE. Clearly
the probability |  I2 of finding the electron per unit volume is zero outside 0 < x < a.
Thus, V" = 0 when x < 0 and x > a, and  is determined by the Schrodinger equation
in 0 < x < a with V = 0. Therefore

, in the region 0 < x < a

--f -rEf = 0 [3.17]
dxz ti

This is a second-order linear differential equation. As a general solution, we can take

x[r(x) = Acxp(jkx) + i?exp(-jkx)
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Figure 3.15   Electron in a one-dimensional infinite PEwell.
The energy of the electron is quantized. Possible wavefunctions and the probability distributions for the electron
are shown.

where k is some constant (to be determined) and substitute this in Equation 3.17 to
find k. We first note that (0) = 0; therefore, B = - A, so that

{x) = A[exp(jkx) - exp(-jkx)] = 2Aj sinkx [3.18]

We now substitute this into the Schrodinger Equation 3.17 to relate the energy E
to k. Thus, Equation 3.17 becomes

-2A7 2(sin kx) 4- ( f) E(2AJ sin kx) = 0
which can be rearranged to obtain the energy of the electron:

n2k2
E =

2m
[3.19]

 
!
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Wavefunction
in infinite PE
well

Electron

energy in
infinite PE
well

Since the electron has no PE within the well, its total energy E is kinetic energy KE,
and we can write

E - KE = -
2m

where px is its momentum. Comparing this with Equation 3.19, we see that the momen-
tum of the electron must be

px = ±.fik [3.20]

The momentum px may be in the +x direction or the -x direction (which is the
reason for ±), so the average momentum is actually zero,     = 0.

We have already seen this relationship, when we defined k as In/X (wavenumber)
for a free traveling wave. So the constant k here is a wavenumber-type quantity even
though there is no distinct traveling wave. Its value is determined by the boundary
condition at x = a where  = 0, or

yjf (a) = 2Aj sin ka - 0

The solution to sin ka = 0 is simply ka = nn, where n = 1, 2, 3,... is an integer.
We exclude n = 0 because it will result in  = 0 everywhere (no electron at all).

We notice immediately that and therefore the energy of the electron, can only
have certain values; they are quantized by virtue of n being an integer. Here, n is
called a quantum number. Fpr each n, there is a special wavefunction

/ nnx\
\lrn(x) = 2Aj sin I -- I [3.21]

which is called an eigenfunction.3 All  forn = 1, 2, 3 ... constitute the eigenfunc-
tions of the system. Each eigenfunction identifies a possible state for the electron. For
each n, there is one special k value, kn = nn/a, and hence a special energy value En,
since

fi2k2
n

2m

that is,

ti2(7m¥ hzn\2 2
M

2

En =
2ma2 Sma2

[3.22]

The energies En defined by Equation 3.22 with n = 1, 2, 3 ... are called eigenenergies
of the system.

We still have not completely solved the problem, because A has yet to be deter-
mined. To find A, we use what is called the normalization condition. The total prob-
ability of finding the electron in the whole region 0 < x < a is unity, because we know
the electron is somewhere in this region. Thus, 1 12 dx summed between x = 0 and

I 3 From the German meaning "characteristic function."
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x = a must be unity, or

fxssa 2 rx=a\ /nnx\\
2

/      \ir(x)\2dx= /      2A/sin(  I   dx = 1

Carrying out the simple integration, we find

A -(£)
1/2

The resulting wavefunction for the electron is thus
1/2

*.<*) = ) sin( ) [3.23]

We can now summarize the behavior of an electron in a one-dimensional PE well.

Its wavefunction and energy, shown in Figure 3.15, are given by Equations 3.23 and
3

.22, respectively. Both depend on the quantum number n. The energy of the electron
increases with n2, so the minimum energy of the electron corresponds to n = 1. This is
called the ground state, and the energy of the ground state is the lowest energy the
electron can possess. Note also that the energy of the electron in this potential well
cannot be zero, even though the PE is zero. Thus, the electron always has KE, even
when it is in the ground state.

The node of a wavefunction is defined as the point where  = 0 inside the well.
It is apparent from Figure 3.15 that the ground wavefunction V i with the lowest energy
has no nodes, 2 has one node, 3 has two nodes, and so on. Thus, the energy increases
as the number of nodes increases in a wavefunction.

It may seem surprising that the energy of the electron is quantized; that is, that it
can only have finite values, given by Equation 3.22. The electron cannot be made to
take on any value of energy, as in the classical case. If the electron behaved like a par-
ticle, then an applied force F could impart any value of energy to it,

 because

F = dp/dt (Newton's second law), or p = / Fdt. By applying a force F for a time r,

we can give the electron a KE of
0        /i    \ r /. n2

However, Equation 3.22 tells us that, in the microscopic world, the energy can only
have quantized values. The two conflicting views can be reconciled if we consider the
energy difference between two consecutive energy levels, as follows:

h2(2n + 1)
Sma2

AE = En+i - En =

As a increases to macroscopic dimensions, a -> 00, the electron is completely
free and AE -> 0. Since AE = 0, the energy of a completely free electron (a = 00) is
continuous. The energy of a confined electron, however, is quantized, and AE depends
on the dimension (or size) of the potential well confining the electron.

In general, an electron will be "contained" in a spatial region of three dimensions,
within which the PE will be lower (hence the confinement). We must then solve the

Normalization

condition

Energy
separation
in infinite
PE well
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Schrodinger equation in three dimensions. The result is three quantum numbers that
characterize the behavior of the electron.

Examination of the wavefunctions xlrn in Figure 3.15 shows that these are either
symmetric or antisymmetric with respect to the center of the well at x = \a. The sym-
metry of a wavefunction is called its parity. Whenever the potential energy function
V(x) exhibits symmetry about a certain point C, for example, about x = \a in
Figure 3.15, then the wavefunctions have either even parity (such as Vi, . . . that
are symmetric) or have odd parity (such as t/ ,     . . . that are antisymmetric).

EXAMPLE 3.7 ELECTRON CONFINED WITHIN ATOMIC DIMENSIONS Consider an electron in an infinite po-
tential well of size 0.1 nm (typical size of an atom). What is the ground energy of the electron?
What is the energy required to put the electron at the third energy level? How can this energy be
provided?

SOLUTION

The electron is confined in an infinite potential well, so its energy is given by

E
n

Sma2

We use n = 1 for the ground level and a = 0.1 nm. Therefore,

(6.6 x lO"34 Js)2(l)2 ,0
El =    

ft

 r = 6.025 x lO'18 J
8(9.1 x lO"31 kg)(0.1 x lO"9 m)2

The frequency of the electron associated with this energy is

or 37.6 eV

E
co = -

6
.
025 x 10"18 J

5
.
71 x 1016 rad s-i

or v 9
.
092 x I0n s15 -1

h     1.055 x 10-34 Js

The third energy level Ej is

E3 = Ein2 = (37.6 eV)(3)2 = 338.4 eV

The energy required to take the electron from 37.6 eV to 338.4 eV is 300.8 eV. This can be pro-
vided by a photon of exactly that energy; no less, and no more. Since the photon energy is
E = hv = hc/X, or

_

 he 
_

 (6.6 x lO"34 J s)(3 x 108 m s"1)
-

 TF ~     300.8 eV x 1.6 x lO"19 C

i

4
.
12 nm

which is an X-ray photon.

EXAMPLE 3.8 ENERGY OF AN APPLE IN A CRATE Consider a macroscopic object of mass 100 grams (say,
an apple) confined to move between two rigid walls separated by 1 m (say, a typical size of a
large apple crate). What is the minimum speed of the object? What should the quantum number
n be if the object is moving with a speed 1 m s

~1 ? What is the separation of the energy levels of
the object moving with that speed?
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SOLUTION

Since the object is within rigid walls, we take the PE outside the walls as infinite and use

_

!' n ~ Sma2

to find the ground-level energy. With n = 1, a = 1 m, m = 0.1 kg, we have

(6.6 x lO"34 Js)2(l)2 fi7 ,8
#! = = 5.45 x lO"67 J = 3.4 x lO-48 eV

| 8(0.1 kg)(lm)2

i        Since this is kinetic energy, \mv2 = E\, so the minimum speed is
' [2E      /2(5.45 x 10-67 J) „ .I v, = J-- = J  i = 3.3 x lO"33 m s-1

V  m      V        0-1 kg

This speed cannot be measured by any instrument; therefore, for all practical purposes, the
apple is at rest in the crate (a relief for the fruit grocer). The time required for the object to
move a distance of 1 mm is 3 x 1029 s or 1021 years, which is more than the present age of the
universe!

When the object is moving with a speed 1 m s-1,

KE = -mv2 = i(0.1 kg)(l m s-1)2 = 0.05 J

This must be equal to En = h2n2/Sma2 for some value of n

{Sma2En\l/2    [8(0.1 kg)(l m)2(0.05 J)]1/2 in32
n =  - I    = -      = 3.03 x 10

\    h2    J        L    (6.6 x lO"34 J s)2 J

which is an enormous number. The separation between two energy levels corresponds to a
change in n from 3.03 x 1032 to 3.03 x 1032 + 1. This is such a negligibly small change in n
that for all practical purposes, the energy levels form a continuum. Thus,

_

 [(6.6 x IP"34 J s)2(2 x 3.03 x 1032 + 1)]
"

 [8(0.1 kg)(lm)2]
= 3

.
30 x lO-34 J      or      2.06 x lO-15 eV

I

This energy separation is not detectable by any instrument. So for all practical purposes, the en-
ergy of the object changes continuously.

We see from this example that in the limit of large quantum numbers, quantum predictions
agree with the classical results. This is the essence of Bohr's correspondence principle.

3.4   HEISENBERG'S UNCERTAINTY PRINCIPLE

The wavefunction of a free electron corresponds to a traveling wave with a single
wavelength X, as shown in Example 3.5. The traveling wave extends over all space,
along all x, with the same amplitude, so the probability distribution function is uniform
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: and these uncertainties will be related by Heisenberg
's uncertainty relationship in

Equation 3.24.
These uncertainties are not in any way a consequence of the accuracy of a mea-

surement or the precision of an instrument. Rather, they are the theoretical limits to
what we can determine about a system. They are part of the quantum nature of the uni-
verse. In other words, even if we build the most perfectly engineered instrument to
measure the position and momentum of a particle at one instant, we will still be faced
with position and momentum uncertainties Ax and Apx such that Ax Apx > ft.

There is a similar uncertainty relationship between the uncertainty AE in the
energy E (or angular frequency go) of the particle and the time duration At during
which it possesses the energy (or during which its energy is measured). We know that
the kx part of the wave leads to the uncertainty relation Ax Apx > fi or Ax Ak > 1.
By analogy we should expect a similar relationship for the cot part, or Aco At > 1. This
hypothesis is true, and since E = hco, we have the uncertainty relation for the particle
energy and time:

AEAt>fi [3.25]

Note that the uncertainty relationships in Equations 3.24 and 3.25 have been
written in terms of ti, rather than ft, as implied by the electron in an infinite potential
energy well {Ax Apx > h). In general there is also a numerical factor of \ multiplying
fi in Equations 3.24 and 3.25 which comes about when we consider a Gaussian spread
for all possible position and momentum values. The proof is not presented here, but
can be found in advanced quantum mechanics books.

It is important to note that the uncertainty relationship applies only when the
position and momentum are measured in the same direction (such as the x direction).
On the other hand, the exact momentum, along, say, the y direction and the exact
position, along, say, the x direction can be determined exactly, since Ax Apy need not
satisfy the Heisenberg uncertainty relationship (in other words, Ax Apy can be zero).

Heisenberg
uncertainty

principle for
energy and
time

THE MEASUREMENT TIME AND THE FREQUENCY OF WAVES: AN ANALOGY WITH AE At>ti

Consider the measurement of the frequency of a sinusoidal wave of frequency 1000 Hz (or
cycles/s). Suppose we can only measure the number of cycles to an accuracy of 1 cycle, because
we need to receive a whole cycle to record it as one complete cycle. Then, in a time interval of
At = 1 s, we will register 1000 ± 1 cycles. The uncertainty A/ in the frequency is 1 cycle/1 s
or 1 Hz. If At is 2 s, we will measure 2000 ± 1 cycles, and the uncertainty A/ will be 1 cycle/
2 s or  cycle/s or  Hz. Thus, A/ decreases with At.

Suppose that in a time interval At, we measure N ± 1 cycles. Since the uncertainty is
1 cycle in a time interval At, the uncertainty in/will be

Af
(1 cycle) 1
  =   Hz

At At

Since a) = 2jrf,we have

Aco At 27T

In quantum mechanics, under steady-state conditions, an object has a time-oscillating
wavefunction with a frequency co which is related to its .energy E by co = E/ti (see Equation 3.15).

EXAMPLE 3.9
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Substituting this into the previous relationship gives

A£ Af = h

The uncertainty in the energy of a quantum object is therefore related, in a fundamental
way, to the time duration during which the energy is observed. Notice that we again have h, as
for A;c &px = h, though the quantum mechanical uncertainty relationship in Equation 3.25
has ti.

EXAMPLE 3.10 THE UNCERTAINTY PRINCIPLE ON THE ATOMIC SCALE Consider an electron confined to a

region of size 0.1 nm, which is the typical dimension of an atom. What will be the uncertainty
in its momentum and hence its kinetic energy?

SOLUTION

We apply the Heisenberg uncertainty relationship, A* A/7X « ti, or

fi      1.055 x lO"34 J s 24
i
 .

Apx * - = - -
9
        = 1.055 x lO"24 kg m s"1

Ajc       0.1 x 10 9 m

The uncertainty in the velocity is therefore

Apx     1.055 x IQ- kgms-1 6
Au =  = = 1.16 x 10 ms

me 9.1 x lO"31 kg

We can take this uncertainty to represent the order of magnitude of the actual speed. The
kinetic energy associated with this momentum is

A/      (1.055 x lO- kgrns"1)2KE
2me 2(9.1 x 10-31kg)

6
.
11 x lO-19 J      or      3.82 eV

EXAMPLE 3.11 THE UNCERTAINTY PRINCIPLE WITH MACROSCOPIC OBJECTS Estimate the minimum velocity
of an apple of mass 100 g confined to a crate of size 1 m.

SOLUTION

Taking the uncertainty in the position of the apple as 1 m, the apple is somewhere in the crate,

ti      1.05 x lO"34 Js U
i ,Apx % - =  = 1.05 x 10"34 kgms-1

Ajc 1 m

So the minimum uncertainty in the velocity is

Apx     1.05 x lO- kgms"1 „ ,
Avx = - = = 1.05 x lO"33 ms"1

0
.1kgm

The quantum nature of the universe implies that the apple in the crate is moving with a ve-
locity on the order of 10"33 m s"1. This cannot be measured by any instrument; indeed, it would
take the apple ~ 1019 years to move an atomic distance of 0.1 nm.
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3
.5   TUNNELING PHENOMENON: QUANTUM LEAK

To understand the tunneling phenomenon, let us examine the thrilling events experi-
enced by the roller coaster shown in Figure 3.16a. Consider what the roller coaster can
do when released from rest at a height A. The conservation of energy means that the
carriage can reach B and at most C, but certainly not beyond C and definitely not D and
E

. Classically, there is no possible way the carriage will reach E at the other side of the
potential barrier D. An extra energy corresponding to the height difference, D - A, is
needed. Anyone standing at E will be quite safe. Ignoring frictional losses, the roller
coaster will go back and forth between A and C.

Now, consider an analogous event on an atomic scale. An electron moves with an
energy E in a region x < 0 where the potential energy PE is zero; therefore, E is solely
kinetic energy. The electron then encounters a potential barrier of "height" V0, which

Start here from rest

a

D

EC

A

B

(b)

V(x)
V

oA E< V
o

Inciden
A

2
efle ed Transmitted

®®
x = 0 Xx = a

Figure 3.16
(a) The roller coaster released from A can at most make it to C, but not to E. Its PE at A is
less than the PE at D. When the car is at the bottom, its energy is totally KE. CD is the
energy barrier that prevents the car from making it to E. In quantum theory, on the other
hand, there is a chance that the car could tunnel (leak) through the potential energy barrier
between C and E and emerge on the other side of the.

hill at E.

(b) The wavefunction for the electron incident on a potential energy barrier (Vo). The
incident and reflected waves interfere to give i iM- There is no reflected wave in region III.
In region II, the wavefunction decays with x because E < V0.
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is greater than E at x = 0. The extent (width) of the potential barrier is a. On the other
side of the potential barrier, x > a, the PE is again zero. What will the electron do?
Classically, just like the roller coaster, the electron should bounce back and thus be
confined to the region x < 0, because its total energy E is less than V0. In the quantum
world, however, there is a distinct possibility that the electron will 

"tunnel" through
the potential barrier and appear on the other side; it will leak through.

To show this, we need to solve the Schrodinger equation for the present choice of
V(x). Remember that the only way the Schrodinger equation will have the solution
t/r(x) = 0 is if the PE is infinite, that is, V = oo. Therefore, within any zero or finite
PE region, there will always be a solution x/six) and there always will be some proba-
bility of finding the electron.

We can divide the electron's space into three regions, I, II, and III, as indicated in
Figure 3.16b. We can then solve the Schrodinger equation for each region, to obtain
three wavefunctions ViC*)* nOO* and VmOO- In regions I and III, \lr(x) must be trav-
eling waves, as there is no PE (the electron is free and moving with a kinetic en-
ergy E). In zone II, however, E - V0 is negative, so the general solution of the
Schrodinger equation is the sum of an exponentially decaying function and an expo-
nentially increasing function. In other words,

ifriix) = Ai exp(jkx) + A2exp(-jkx) [3.26a]

(jc) = Bi exp(afx) + 2?2exp(-ax) [3.26b]

mOO = C\ expO'foc) + C2exp(-jkx) [3.26c]

are the wavefunctions in which

9
    2m E

k2 = -j- [3.27]

and

2 2m(V0-E)
cT =    [3.28]

fi2

Both k2 and a2, and hence k and a, in Equations 3.26a to c are positive numbers.
This means that exp(jkx) and exp(- jkx) represent traveling waves in opposite di-
rections, and exp(-ax) and exp(ax) represent an exponential decay and rise, respec-
tively. We see that in region I, iri(x) consists of the incident wave Ai Qxp(jkx) in the
+x direction, and a reflected wave A2 exp( - jkx), in the -x direction. Furthermore,
because the electron is traveling toward the right in region III, there is no reflected
wave, so C2 = 0.

We must now apply the boundary conditions and the normalization condition to
determine the various constants A1, A2, #1, #2* and C\. In other words, we must match
the three waveforms in Equations 3.26a to c at their boundaries (x = 0 and x = a) so
that they form a continuous single-valued wavefunction. With the boundary conditions
enforced onto the wavefunctions ViOO* ii(*)» and V'mC*)' all the constants can be
determined in terms of the amplitude Ai of the incoming wave. The relative probability
that the electron will tunnel from region I through to III is defined as the transmission



3. s Tunneling Phenomenon: Quantum Leak 223

coefficient T, and this depends very strongly on both the relative PE barrier height
(V0 - E) and the width a of the barrier. The final result that comes out from a tedious
application of the boundary conditions is

T =
IV'mOOl 2

2

where

| t i (incident) |

D =

A]

1

1 + D sinh2(afl)
[3.29]

2

AE{V0-E)
[3.30]

and a is the rate of decay of hOO as expressed in Equation 3.28. For a wide or high
barrier, using aa > 1 in Equation 3.29 and sinh(aa) « 5 exp(afl), we can deduce

7 = T0 exp(-2afl)

where

7; =
16£(VQ- E)

[3.31]

[3.32]

By contrast, the relative probability of reflection is determined by the ratio of the
square of the amplitude of the reflected wave to that of the incident wave. This quan-
tity is the reflection coefficient /?, which is given by

R = -I = 1 - T [3.33]

We can now summarize the entire tunneling affair as follows. When an electron
encounters a potential energy barrier of height V0 greater than its energy £, there is a
finite probability that it will leak through that barrier. This probability depends sensi-
tively on the energy and width of the barrier. For a wide potential barrier, the proba-
bility of tunneling is proportional to exp(-2aa), as in Equation 3.31. The wider or
higher the potential barrier, the smaller the chance of the electron tunneling.

One of the most remarkable technological uses of the tunneling effect is in the
scanning tunneling microscope (STM), which elegantly maps out the surfaces of
solids. A conducting probe is brought so close to the surface of a solid that electrons
can tunnel from the surface of the solid to the probe, as illustrated in Figure 3.17. When
the probe is far removed, the wavefunction of an electron decays exponentially outside
the material, by virtue of the potential energy barrier being finite (the work function is
~10 eV). When the probe is brought very close to the surface, the wavefunction pen-
etrates into the probe and, as a result, the electron can tunnel from the material into the
probe. Without an applied voltage, there will be as many electrons tunneling from
the material to the probe as there are going in the opposite direction from the probe to
the material, so the net current will be zero.

On the other hand, if a positive bias is applied to the probe with respect to the ma-
terial, as shown in Figure 3.17, an electron tunneling from the material to the probe
will see a lower potential barrier than one tunneling from the probe to the material.
Consequently, there will be a net current from the probe to the material and this current

Probability of
tunneling

Probability of
tunneling
through

Reflection
coefficient
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0
(a) The wavefunction decays exponentially as we move (b) If we bring a second metal close to the first metal, then
away from the surface because the PE outside the metal the wavefunction can penetrate into the second metal. The
is V

0 and the energy of the electron, E < V0. electron can tunnel from the first metal to the second.

Probe
Scan

L
tunnel

Material
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i

i

tunnel / \

Image of surface
(schematic sketch)

(c) The principle of the scanning tunneling microscope. The tunneling current
depends on exp(-2aa) where a is the distance of the probe from the surface
of the specimen and a is a constant.

Figure 3.17

will depend very sensitively on the separation a of the probe from the surface, by
virtue of Equation 3.31.

Because the tunneling current is extremely sensitive to the width of the potential
barrier, the tunneling current is essentially dominated by electrons tunneling to the
probe atom nearest to the surface. Thus, the probe tip has an atomic dimension. By
scanning the surface of the material with the probe and recording the tunneling current
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II

m

Figure 3.18  Scanning tunneling
microscope (STM) image of a graphite
surface where contours represent electron
concentrations within the surface, and carbon

rings are clearly visible. The scale is in 2 A.

| SOURCE: Courtesy of Veeco Instruments,I Metrology Division, Santa Barbara, CA.

the user can map out the surface topology of the material with a resolution compara-
ble to the atomic dimension. The probe motion along the surface, and also perpendic-
ular to the surface, is controlled by piezoelectric transducers to provide sufficiently
small and smooth displacements. Figure 3.18 shows an STM image of a graphite sur-
face, on which the hexagonal carbon rings can be clearly seen. Notice that the scale is
0

.2 nm (2 A). The contours in the image actually represent electron concentrations
within the surface since it is the electrons that tunnel from the graphite surface to the
probe tip. The astute reader will notice that not all the carbon atoms in a hexagonal
ring are at the same height; three are higher and three are lower. The reason is that the
exact electron concentration on the surface is also influenced by the second layer of
atoms underneath the top layer. The overall effect makes the electron concentration

fV

\      
.
 0

 Jjil*
f

« 
.

STM's inventors Gerd Binning (right) and Heinrich Rohrer (left),
at IBM Zurich Research Laboratory with one of their early
devices. They won the 1986 Nobel prize for the STM.
I SOURCE: Courtesy of IBM Zurich Research Laboratory.

An STM image of a Ni (110) surface.
I SOURCE: Courtesy of IBM.
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change (alternate) from one atomic site to a neighboring site within the hexagonal
rings. STM was invented by Gerd Binning and Heinrich Rohrer at the IBM Research
Laboratory in Zurich, for which they were awarded the 1986 Nobel prize.5

EXAMPLE 3.12 TUNNELING CONDUCTION THROUGH METAL-TO-METAL CONTACTS Consider two copper
wires separated only by their surface oxide layer (CuO). Classically, since the oxide layer is an
insulator, no current should be possible through the two copper wires. Suppose that for the con-
duction ("free") electrons in copper, the surface oxide layer looks like a square potential energy
barrier of height 10 eV. Consider an oxide layer thickness of 5 nm and evaluate the transmission
coefficient for conduction electrons in copper, which have a kinetic energy of about 7 eV. What
will be the transmission coefficient if the oxide barrier is 1 nm?

SOLUTION

We can calculate a. from

|
~

2m(yo-£)j
1/2

[2(9.1 x 10-31kg)(10eV-7eV)(1.6x 10-19J/eV)
L (1.05 x lO"34 Js)2 ]

1/2

8
.
9 x lO9! 1

so that

aa = (8.9 x 109 m"1)  x 10"* m) = 44.50-9

Since this is greater than unity, we use the wide-barrier transmission coefficient in Equa-
tion 3.31.

Now,

T
0

16E(V0 - E)     16(7eV)(10eV -7eV)

V
o

2 (10 eV) 2
3

.
36

Thus,

T = T0 Qxp(-2aa)

= 3
.36 exp[-2(8.9 x 109m-1)(5 x 10-9m)] = 3.36exp(-89)

 7
.
4 x lO-39

an incredibly small number.
With a - 1 nm,

T = 3.36 exp[-2(8.9 x 109m-1)(l x 10-9m)]
= 3

.36 exp(-17.8)  6.2 x lO"8

Notice that reducing the layer thickness by five times increases the transmission probability by
1031! Small changes in the barrier width lead to enormous changes in the transmission

5 The IBM Research Laboratory in Zurich, Switzerland, received both the 1986 and the 1987 Nobel prizes. The first
was for the scanning tunneling microscope by Gerd Binning and Heinrich Rohrer. The second was awarded to Georg
Bednorz and Alex Muller for the discovery of high-temperature superconductors which we will examine in Chapter 8.
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probability. We should note that when a voltage is applied across the two wires, the potential en-
ergy height is altered (PE = charge x voltage), which results in a large increase in the trans-
mission probability and hence results in a current.

SIGNIFICANCE OF A SMALL h Estimate the probability that a roller coaster carriage that
weighs 100 kg released from point A in Figure 3.16a from a height at 10 m can reach point E
over a hump that is 15 m high and 10 m wide. What will this probability be in a universe where
ti % 10 kJ s?

EXAMPLE 3.13

SOLUTION

The total energy of the carriage at height A is

E = PE = mg(height) = (100 kg)(10 m s-2)(10 m) = 104 J

Suppose that as a first approximation, we can approximate the hump as a square hill of
height 15 m and width 10 m. The PE required to reach the peak would be

V
0
 = mg(height) = (100 kg)(10 m s-2)(15 m) = 1.5 x 104J

Applying this, we have

2    2m(V0-E)     2(100kg)(1.5 x 104J- 104J)
a

h 2 (1.05 x lO"34 Js)2
9.

07 x 10" m73 -2

I
Br,'

t

Hi

1/ \
535

7i

v
I)

7'

*<

r
fc2

ft
~Z1

XX'

mM
m

is m

1

ilSvIt
t

M

-

>

6 "

"Just like the good old ghost of the middle ages." In a
world where n is of the order of unity, one can expect
tunneling surprises.

SOURCE: George Gamow, Mr. Tompkins in
Paperback, Cambridge, England, University Press,
1965, p. 96. Used with permission.
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and so

a = 9.52 x lO rn
"1

With a - 10 m, we have aa > 1, so we can use the wide-barrier tunneling equation,

T - T0 exp(-2aa)

where

\6[E{V0 - £)]
T1 o

V
o

2
3

.
56

Thus,

T = 3.56exp[-2(9.52 x 1036 m XlOm)] = 3.56exp(-1.9 x 1038)

which is a fantastically small number, indicating that it is impossible for the carriage to tunnel
through the hump.

Suppose that h « 10 kJ s. Then

7    2m(V0-E)     2(100kg)(1.5 x 104J- 104J) 
_9

a = =  = 0.01 m
ti2 (104Js)2

so that a = 0.1 m-1
. Clearly, aa = 1, so we must use

T = [1 + Dsinh2 )]"1

where

Thus,

D
[4£(V E)]

1
.
125

T = [1 + 1.125 sinh l)]"1 = 0.39

Thus, after three goes, the carriage would tunnel to the other side (giving the person standing at
E the shock of his life).

Schrddinger
equation in
three

dimensions

3
.6   POTENTIAL BOX: THREE QUANTUM NUMBERS

To examine the properties of a particle confined to a region of space, we take a three-
dimensional space with a volume marked by a, b, c along the x, y, z axes. The PE
is zero (V = 0) inside the space and is infinite on the outside, as illustrated in
Figure 3.19. This is a three-dimensional potential energy well. The electron essen-
tially lives in the "box." What will the behavior of the electron be in this box? In
this case we need to solve the three-dimensional version of the Schrodinger equa-
tion,6 which is

32}fr     d2f 2m
3x2 3y2 dz2 

'

 h2
[3.34]

6 The term drfs/dx simply means differentiating (x, y, z) with respect to x while keeping y and z constant, just like
difr/dx in one dimension.
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Electron

energy in
infinite
PEbox

since the electron is somewhere in the box. The result for a square box is
A = (2/a)3/2.

We can find the energy of the electron by substituting the wavefunction in Equa-
tion 3.35 into the Schrodinger Equation 3.34. The energy as a function of kx,ky, kz is
then found to be

2

E   =   E(kX, ky,  kz)   =   |- + k2y  + kl)

which is quantized by virtue of kx, ky, and kz being quantized. We can write this energy
in terms of n2, by using Equation 3.36, as follows:

E
8m Va2    Z>2 c2/

For a square box for which a = b = c, the energy is

/i2(n? + nl + n2) / tf2
[3.38]

where N2 = {n\ + n\ + n2), which can only have certain integer values. It is apparent
that the energy now depends on three quantum numbers. Our conclusion is that in three
dimensions, we have three quantum numbers, each one arising from boundary condi-
tions along one of the coordinates. They quantize the energy of the electron via Equa-
tion 3.38 and its momentum in a particular direction, such as, Px = ±hkx =
±(hni/2a), though the average momentum is zero.

The lowest energy for the electron is obviously equal to Em, not zero. The next
energy level corresponds to £

'

211»which is the same as £121 and £112, so there are three
states (/.£., 211, 121* 112) for this energy. The number of states that have the same
energy is termed the degeneracy of that energy level. The second energy level £

'

211 is
thus three-fold degenerate.

EXAMPLE 3.14 NUMBER OF STATES WITH THE SAME ENERGY   How many states (eigenfunctions) are there at
energy level £

"

443 for a square potential energy box?

SOLUTION

This energy level corresponds to tii = 4, /12 = 4, and n3 = 3, but the energy depends on

N 2 222
nl + 2 + n3 42 + 42 + 32 = 41

41 for any choice of (ni, /i2> "3)> not just (4, 4, 3), the energyvia Equation 3.38. As long as N2

will be the same.

The value N2 = 41 can be obtained from (4,4, 3), (4, 3,4), and (3,4,4) as well as (6, 2,1),
(6, 1, 2), (2, 6, 1), (2, 1, 6), (1, 6, 2), and (1, 2, 6). There are thus three states from (4, 4, 3)
combinations and six from (6, 2, 1) combinations, giving nine possible states, each with a
distinct wavefunction, irnin2n3. However, all these irnin2n3 for the electron have the same
energy £443.



3.7 Hydrogenic Atom 231

37 HYDROGENIC ATOM

3
.
7
.1 Electron Wavefunctions

Consider the behavior of the electron in a hydrogenic (hydrogen-like) atom, which has
a nuclear charge of +Ze, as depicted in Figure 3.20. For the hydrogen atom, Z = 1,
whereas for an ionized helium atom He+, Z = 2. For a doubly ionized lithium atom
Li++, Z = 3, and so on. The electron is attracted by a positive nuclear charge and
therefore has a Coulombic PE,

2

V(r) =
-Ze

4ne0r
[3.39]

Since force F = -dV/dr, Equation 3.39 is simply a statement of Coulomb's force
between the positive charge +Ze of the nucleus and the negative charge - e of the
electron. The task of finding i/r(jt, y, z) and the energy E of the electron now involves
putting V (r) from Equation 3.39 into the Schrodinger equation with r = jx2 + y2 + z2
and solving it.

Fortunately, the problem has a spherical symmetry, and we can solve the
Schrodinger equation by transforming it into the r, 0, (/> coordinates shown in Fig-
ure 3.20. Even then, obtaining a solution is not easy. We must then ensure that the solu-
tion for \lf(rf6, (/>) satisfies all the boundary conditions, as well as being single-valued
and continuous with a continuous derivative. For example, when we go In around
the 0 coordinate, i/r(r, 0, 0) should come back to its original value, or i/r(r, 0, 0) =

(r, 0, (f) + 2jr), as is apparent from an examination of Figure 3.20. Along the radial

Electron PE

in hydrogenic
atom

P(r, 0, cf>)
e    A -e

z

A

r

Nucleus

+Ze

4>
X

V(r)

A

2
-Ze

V{r) =

Figure 3.20  The electron in the hydrogenic atom is
attracted by a central force that is always directed
toward the positive nucleus.
Spherical coordinates centered at the nucleus are used to
describe the position of the electron. The PE of the
electron depends only on r.

+Ze
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coordinate, we need (r, 0, (/>) 0 as r oo; otherwise, the total probability will
diverge when | r(r, 0f 0)|2 is integrated over all space. In an analogy with the three-
dimensional potential well, there should be three quantum numbers to characterize the
wavefunction, energy, and momentum of the electron. The three quantum numbers are
called the principal, orbital angular momentum, and magnetic quantum numbers
and are respectively denoted by n, and m . Unlike the three-dimensional potential
well, however, not all the quantum numbers run as independent positive integers.

The solution to the Schrodinger equation (r, 0, 0) depends on three variables,
r, 0, (/>. The wavefunction (r, 0, 0) can be written as the product of two functions

yKr,0,4>) = R(r) Y(9,4>)

where R(r) is a radial function depending only on r, and 7(0,0) is called the
spherical harmonic, which expresses the angular dependence of the wavefunction.
These functions are characterized by the quantum numbers nflfme. The radial part
R(r) depends on n and I, whereas the spherical harmonic depends on i and me, so

Mr, 0f 0) = Vw,m<(r, 0,0) = RnAr) >W0, 0) [3.40]

By solving the Schrodinger equation, these functions have already been evaluated. It
turns out that we can only assign certain values to the quantum numbers n, I, and me
to obtain acceptable solutions, that is, fn mein 0, 0) that are well behaved: single-
valued and with  and the gradient of  continuous. We can summarize the allowed
values of n, I, me as follows:

Principal quantum number n = 1, 2, 3,...
Orbital angular momentum quantum number        I = 0,1,2,..., (n - 1) < n
Magnetic quantum number me = -I, -(t - 1),0, ...,(£ - 1), £ or \mt \ < i

The i values carry a special notation inherited from spectroscopic terms. The first
four i values are designated by the first letters of the terms sharp, principal, diffuse,
and fundamental, whereas the higher i values follow from / onwards, as g, h, /, etc.
For example, any state Vn

. .
m*
 that has t = 0 is called an s state, whereas that which

has i = 1 is termed a p state. We can also use n as a prefix to i to identify n. Thus
tynj.me with n = 2 and I = 0 corresponds to the 25 state. The notation for identifying
the I value and labeling a state is summarized in Table 3.1.

Table 3.1   Labeling of various ni possibilities

e

n 0 1 2 3 4 J
 

 i1 Is

2 2s 2p
3 3s 3p 3d i
4 4s 4p Ad 4/
5 5s Sp 5d 5/ 5g

.I
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Table 3.2  The radial and spherical harmonic parts of the wavefunction in the hydrogen atom (a0, = 0.0529 nm

n i R(r) me     ¥($, <f>)

1 0 2exp( flo)

2  1   (i) ( fc) '""("i)

0

0

0

1

V

2V7r

1

-J - cos
2V

1

2 V 2 -

-1 y sin

a sin  cos 0

a sin 0 sin 0

Correspond to
= - 1 and +1.

Table 3.2 summarizes the functional forms of Rn
,
e(r) Y me(0, 0). For t = 0

(the 5 states), the angular dependence of yo,o(0,0) is constant, which means that
if(r,09 (/>) is spherically symmetrical about the nucleus. For the I = 1 and higher
states, there is a strong directionality to the wavefunctions with respect to each other.
The radial part Rn

,
dr) is sketched in Figure 3.21a for two choices of n and I. Notice

that Rn
,
dr) is largest at r = 0, when I = 0. However, this does not mean that the elec-

tron will be mainly at r = 0, because the probability of finding the electron at a dis-
tance r actually depends on r2|/?w (r)|2, which vanishes as r -> 0.

Let us examine the probability of finding the electron at a distance r within a thin
spherical shell of radius r and thickness 8r (assumed to be very small). The directional
dependence of the probability will be determined by the function Ye

,
mf (0>
 We can

average this over all directions (all angles 6 and 0) to obtain Yt
y
me(0f 0),

 which turns

out to be simply 1 /An. The volume of the spherical shell is 8 V = 47rr28r. The proba-
bility of finding the electron in this shell is then

1( (9, 0))( (r))|2x (47rrz«r)

If 8P(r) represents the probability that the electron is in this spherical shell of thick-
ness <5r, then

.

2,

8P(r) = \Rnj(r)\2r28r [3.41]

The radial probability density Pn
,
t(r)ls defined as the probability per unit radial

distance, that is, dP/dr which from Equation 3.41 is \Rn
f
e(r)\2r2

.
 The latter vanishes

at the nucleus and peaks at certain locations, as shown in Figure 3.21b. This behavior
implies that the probability of finding the electron within a thin spherical shell close to
the nucleus also disappears. For n = 1, and I = 0, for example, the maximum proba-
bility is at r = a0 = 0.0529 nm, which is called the Bohr radius. Therefore, if the
electron is in the Is state, it spends most of its time at a distance a0. Notice that the
probability distribution does not depend on m , but only on n and t.
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Figure 3.21
(a) Radial wavefunctions of the electron in a hydrogenic atom for various n and I values.
(b) r2 \ Rnti\ gives the radial probability density. Vertical axis scales are linear in arbitrary units.

Table 3.2 summarizes the nature of the functions RnAr) Ye
,
me(0, 0) for vari-

ous n9l9me values. Each possible wavefunction irn me(r, 0, 0) with a particular
choice of n,t,mt constitutes a quantum state for the electron. The function

n,£,me(r 0) basically describes the behavior of the electron in the atom in proba-
bilistic terms, as distinct from a well-defined line orbit for the electron, as one might
expect from classical mechanics. For this reason, Vr«

,
*
,
m<('*

, 0, <p) is often referred to as
an orbital, in contrast to the classical theory, which assigns an orbit to the electron.

Figure 3.22a shows the polar plots of Y mt(09 0) for s and p orbitals. The radial
distance from the origin in the polar plot represents the magnitude of Yt

f
mt(6,0),

which depends on the angles 0 and 0. The polar plots of the probability distribution
\Yt,me(0, 0)l2 are shown in Figure 3.22b. Although for the s states, Yi (0, (/>) is spher-
ically symmetric, resulting in a spherically symmetrical probability distribution
around the nucleus, this is not so for t = 1 and higher states.

For example, each of the p states has a distinctly directional character, as illus-
trated in the polar plots in Figure 3.22. The angular dependence of l i

.
oto 0, for

which me = 0, is such that most of the probability is oriented along the z axis. This
wavefunction is referred to as the 2pz orbital. The two wavefunctions for me = ±1 are
often represented by if2px(r, 0, </>) and t/ Cr, 0, 0), or more simply, 2px and 2py or-
bitals, which do not possess a specific me individually, but together represent the two
me = ±1 wavefunctions. The angular dependence of 2px and 2py are essentially
along the x and y directions. Thus, the three orbitals for me = 0, ±1 are all oriented
perpendicular to each other, as depicted in Figure 3.22.
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Figure 3.22
(a) The polar plots of        0) for Is and 2p states.
(b) The angular dependence of the probability distribution, which is
proportional to 1 (0, 0)|2.
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It should be noted that the probability distributions in Figures 3.21b and 3.22b
do not depend on time. As previously mentioned, under steady-state conditions, the
magnitude of the total wavefunction is

|*(r,0,0,OI =

which is independent of time.

VK 0,0)exp(- | = |VKr, 0,0)1

EXAMPLE 3.15

Average
distance of
electron from
nucleus

PROBABILITY DENSITY FUNCTION The quantity |Rn
<
i (r) |2r2 in Equation 3.41 is called the ra-

dial probability density function and is simply written as Pn
,
i(r). Thus, dP(r) = Pn,i(r) dr is

the probability of finding the electron between r and r + dr. We can use Pn
>
i (r) to conveniently

calculate the probability of finding the electron within a certain region of the atom, or to find the
mean distance of the electron from the nucleus, and so on. For example, the electron in the Is or-
bital has the wavefunction shown for n = 1, t = 0 in Table 3.2, which decays exponentially,

Rntt(r) = 2a

The total probability of finding the electron inside the Bohr radius a0 can be found by summing
(integrating) Pn%i dr from r = 0 to r = a0f

total (r < a0) = f 
0

 PH
t
t(r) dr = f ° \Rn

,
t(r)\

2
r2 dr

Jo Jo

= j 0 4a;3 exp (-~) 2 dr = 0.32 or 32%

The integration is not trivial but can nonetheless be done as indicated by the result 0.32 above.
Thirty-two percent of the time the electron is therefore closer to the nucleus than the Bohr radius.

The mean distance r of the electron, from the definition of the mean, becomes

r j; --°4ii-'w} [3.42]

where we have simply inserted the result of the integration for various orbitals. (Again we take
the mathematics as granted.) For the Is orbital, in the hydrogen atom, Z = 1, n = 1, and t = 0,
so 7 = f a0, further than the Bohr radius. Notice that the mean distance 7 of the electron in-
creases as n2

.

3
.
7

.2 Quantized Electron Energy

Onrp the wawfiinriionr ilr.. n ... (r Q fh\ havp Iwn fnnnH thpv ran he. snhstitntftH into
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or

Z2(13.6 eV)
n

2
n

2
[3.43b]

where

me
4

£/=8  = 218Xl0
"18j or 13.6 eV [3.43c

r

This corresponds to the energy required to remove the electron in the hydrogen
atom (Z = 1) from the lowest energy level E\ (at n = 1) to infinity; hence, it rep-
resents the ionization energy. The energy En in Equation 3.43b is negative with
respect to that for the electron completely isolated from the nucleus (at r = oo,
therefore V = 0). Thus, when the electron is in the vicinity of the nucleus, +Ze, it
has a lower energy, which is a favorable situation (hence, formation of the hydro-
genic atom is energetically favorable). In general, the energy required to remove an
electron from the nth shell to n = oo (where the electron is free) is called the ion-
ization energy for the nth shell, which from Equation 4.43b is simply |2?n| or
(13.6 eV)Z2/"2.

Since the energy is quantized, the lowest energy of the electron corresponds to
n = 1, which is -13.6 eV. The next higher energy value it can have is E2 = -3.40 eV
when n = 2, and so on, as sketched in Figure 3.23. Normally, the electron will take up
a state corresponding to n = 1, because this has the lowest energy, called the ground
energy. Its wavefunction corresponds to ioo  0, 0), which has a probability peak at

a0 and no angular dependence, as indicated in Figures 3.21 and 3.22.
The electron can only become excited to the next energy level if it is supplied by

the right amount of energy E2 - £1. A photon of energy hv = E2 - E\ can readily sup-
ply this energy when it strikes the electron. The electron then gets excited to the state
with n = 2 by absorbing the photon, and its wavefunction changes to lofo 0, 0)*
which has the maximum probability at r = Aa0. The electron thus spends most of its
time in this excited state, at r = Aa0. It can return from the excited state at £2 to the
ground state at E\ by emitting a photon of energy hv = E2 - E\.

By virtue of the quantization of energy, we see that the emission of light from
excited atoms can only have certain wavelengths: those corresponding to transitions
from higher quantum-number states to lower ones. In fact, in spectroscopic analysis,
these wavelengths can be used to identify the elements, since each element has its
unique set of emission and absorption wavelengths arising from a unique set of energy
levels. Figure 3.24 illustrates the origin of the emission and absorption spectra of
atoms, which are a direct consequence of the quantization of the energy.

The electrons in atoms can also be excited by other means, for example, by colli-
sions with other atoms as a result of heating a gas. Figure 3.25 depicts how collisions
with other atoms can excite an electron to higher energies. If an impinging atom has
sufficient kinetic energy, it can impart just the right energy to excite the electron to a
higher energy level. Since the total energy must be conserved, the incoming atom will
lose some of its kinetic energy in the process. The excited electron can later return to

Ionization

energy of
hydrogen
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Electron energy, E
n

A

E = KE

Figure 3.23  The energy of the
electron in the hydrogen atom (Z= 1).
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©
Atom

b) Before collision

onPhoton

0
n=l

n = 2

(b) Just after collision (c) Photon emission

Figure 3.25 An atom can become excited by a collision with another atom.
When it returns to its ground energy state, the atom emits a photon.

its ground state by emitting a photon. Excitation by atomic collisions is the process by
which we obtain light from an electrical discharge in gases, a quantum phenomenon
we experience every day as we read a neon sign. Indeed, this is exactly how the Ne
atoms in the common laboratory HeNe laser are excited, via atomic collisions between
Ne and He atoms.

Since the principal quantum number determines the energy of the electron and
also the position of maximum probability, as we noticed in Figure 3.21, various n val-
ues define electron shells, within which we can most likely find the electron. These
shells are customarily labeled K, L, M, N,..corresponding to n = 1,2, 3, - For
each n value, there are a number of t values that determine the spatial distribution of
the electron. For a given n, each I value constitutes a subshell. For example, we often
talk about 35, 3p, 3d subshells within the M shell. From the radial dependence of the
electron's wavefunction irn

,
t
,
mt(r, 0, 0), shown in Figure 3.21, we see that for higher

values of n, which correspond to more energetic states, the mean distance of the elec-
tron from the nucleus increases. In fact, we observe from Figure 3.21 that an orbital
with I = n - 1 (e.g., Is, 2p) exhibits a single maximum in its radial probability distri-
bution, and this maximum rapidly moves farther away from the nucleus as n increases.
By examining the electron wavefunctions, we can show that the location of the
maxima for these I = n - 1 states are at

r max -
n

2
a0

Z
for i = n - 1 [3.44]

where a0 is the radius of the ground state (0.0529 nm). The maximum probability
radius rmax in Equation 3.44 is the Bohr radius. Note that rmax in Equation 3.44 is for
t = n - 1 states only. For other i values, there are multiple maxima, and we must
think in terms of the average position of the electron from the nucleus. When we
evaluate the average position from V'wXm r, 0,4)), we see that it depends on both n
and t, strongly on n and weakly on £.

Maximum

probability
for i = n - 1
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EXAMPLE 3.16 THE IONIZATION ENERGY OF He+  What is the energy required to further ionize He+ ions to
He++?

SOLUTION

He+ is a hydrogenic atom with one electron attracted by a nucleus with a +2e charge. Thus
Z = 2. The energy of the electron in a hydrogenic atom (in eV) is given by

Z213.6
£n(eV)

n
2

Since Z = 2, the energy required to ionize He+ further is

\Ei\ = | -(22)13.6| = 54.4eV

EXAMPLE 3.17

Ionization

and effective
nuclear

charge

IONIZATION ENERGY AND EFFECTIVE Z The Li atom has a nucleus with a +3e positive
charge, which is surrounded by a full Is orbital with two electrons, and a single valence elec-
tron in the outer 2s orbital as shown in Figure 3.26a. Intuitively we expect the valence electron
to see the nuclear +3e charge shielded by the two Is electrons, that is, a net charge of + le. It
seems that we should be able to predict the ionization energy of the 25 electron by using the hy-
drogenic atom model and by taking Z = 1 and n = 2 as indicated in Figure 3.26b. However,
according to quantum mechanics, the 2s electron has a probability distribution that has two
peaks as shown in Figure 3.21; a major peak outside the Is orbital, and a small peak around the
Is orbital. Thus, although the 2s electron spends a substantial time outside the Is orbital, it does
nonetheless penetrate the Is shell and get close to the nucleus. Instead of experiencing a net
-hie of nuclear charge, it now experiences an effective nuclear charge that is greater than +le,
which we can represent as -\-ZC{{CC ce, where we have used an effective Z. Thus, the ionization
energy from Equation 3.43 is

2
e

2
ffective(13.6eV)

EI
,n

n
2

[3.45]

The experimental ionization energy of Li is 5.39 eV which corresponds to creating a Li+ ion and
an isolated electron. Calculate the effective nuclear charge seen by the 25 electron.

Nucleus

charge = +3e
Z=3

ii

n = 2

a)

Closed*: shell
with 2 electrons
n=l

Valence electron
in 25 orbital
n = 2

Z

2s

Charge
effective

= +l
.
26e

= 1
.
26

(b)

Figure 3.26
(a) The Li atom has a nucleus with charge +3e; two electrons in the K shell, which is closed; and one electron
in the 2s orbital.

(b) A simple view of (a) would be one electron in the 2s orbital that sees a single positive charge, Z = 1.



3.7 Hydrogenic Atom 241

SOLUTION

The most outer electron in the Li atom is in the 2s orbital, which is the electron that is removed

I   in the ionization process. For this 25 electron, n - 2, and hence from Equation 3.45
Z

e

2
ffective(13.6eV)

(2)2
5

.
39 eV

Solving, we find Zeffective = 1.26. If we simply use Z = 1 in Equation 3.45, we would find
El

<
n
 = 3

.4 eV, too small compared with the experimental value because, according to its prob-
ability distribution, the electron spends some time close to the nucleus, and hence increases its
binding energy (stronger attraction). Variables Z and Zeffective should not be confused. Z is the
integer number of protons in the nucleus of the simple hydrogenic atom that are attracting the
electron, as in H, He+, or Li++. Zeffective is a convenient way of describing what the outer elec-
tron experiences in an atom because we would like to continue to use the simple expression for
£/

,
„, Equation 3.45, which was originally derived for a hydrogenic atom.

3
.
7

.3 Orbital Angular Momentum and Space Quantization

The electron in the atom has an orbital angular momentum L. The electron is attracted
to the nucleus by a central force, just like the Earth is attracted by the central gravitational
force of the sun and thus possesses an orbital angular momentum. It is well known that
in classical mechanics, under the action of a central force, both the total energy
{KE + PE) and the orbital angular momentum (L) of an orbiting object are conserved.
In quantum mechanics, the orbital angular momentum of the electron, like its energy,
is also quantized, but by the quantum number t. The magnitude of L is given by

L = h[l{l + 1)]1/2 [3.46]

where i = 0, 1, 2,... < n. Thus, for an electron in the ground state, n = 1 and i = 0,
the angular momentum is zero, which is surprising since we always think of the
electron as orbiting the nucleus. In the ground state, the spherical harmonic is a
constant, independent of the angles 0 and (/>, so the electron has a spherically symmet-
rical probability distribution that depends only on r.

The quantum numbers n and € quantize the energy and the magnitude of the
orbital angular momentum. What is the significance of m ? In the presence of an
external magnetic field Bz, taken arbitrarily in the z direction, the component of the an-
gular momentum along the z axis, Lz, is also quantized and is given by

Lz = m ti [3.471

Therefore, the quantum number me quantizes the component of the angular
momentum along the direction of an external magnetic field Bz, which for reference
purposes is taken along z, as illustrated in Figure 3.27. Therefore, m , is appropriately
called the magnetic quantum number. For any given l9 quantum mechanics requires
thatm  must have values in the range - (£ - 1),..., -1, 0,1, ...,(£ - 1), t. We
see that \m \ < t. Moreover, me can be negative, since Lz can be negative or positive,
depending on the orientation of the angular momentum vector L. Since |m | < l9 L
can never align with the magnetic field along z; instead, it makes an angle with Bz, an

Orbital

angular
momentum

Orbital

angular
momentum

along Bz
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Figure 3.27
(a) The electron has an orbital angular momentum, which has a quantized component i along an external magnetic field

external-

(b) The orbital angular momentum vector L rotates about the z axis. Its component lz is quantized; therefore, the
L orientation, which is the angle 9, is also quantized. L traces out a cone.
(c) According to quantum mechanics, only certain orientations (#) for L are allowed, as determined by I and

Selection

rules for EM
radiation

angle that is determined by I and m . We say that L is space quantized. Space quan-
tization is illustrated in Figure 3.27 for i = 2.

Since the energy of the electron does not depend on either I or we can have a
number of possible states for a given energy. For example, when the energy is £2, then
n = 2, which means that £ = 0 or 1. For £ = 1, we have = -1, 0, 1, so there are a
total of three different orbitals for the electron.

Since the electron has a quantized orbital angular momentum, when an electron
interacts with a photon, the electron must obey the law of the conservation of angular
momentum, much as an ice skater does sudden fast spins by pulling in her arms. All
experiments indicate that the photon has an intrinsic angular momentum with a con-
stant magnitude given by ti. Therefore, when a photon of energy hv = E2 - Ex is
absorbed, the angular momentum of the electron must change. This means that fol-
lowing photon absorption or emission, both the principal quantum number n and the
orbital angular momentum quantum number £ must change.

The rules that govern which transitions are allowed from one state to another as a
consequence of photon absorption or emission are called selection rules. As a result of
photon absorption or emission, we must have

M = ±1      and      Am£ = 0, ±1 [3.48]

As an example, consider the excitation of the electron in the hydrogen atom from
the ground energy E\ to a higher energy level E2. The photon energy hv must be
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Energy > V
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Figure 3.28 An illustration of the allowed
photon emission processes.
Photon emission involves At = ±1.

exactly Ei - E\. The wavefunction of the Is ground state is Vxco* whereas there are
four wavefunctions at E2. one 25 state, 2

,
0

,
0; and three 2p states, 02,1,-1. 2,1,0> and

2,1,1 . The excited electron cannot jump into the 25 state, because M must be ±1,
so it enters a 2p state corresponding to one of the orbitals 2

,
1
,
-1, 2,1

,
0, or 2,1,1 .

Various allowed transitions for photon emission in the hydrogen atom are indicated in
Figure 3.28.

EXCITATION BY ELECTRON-ATOM COLUSIONS IN A GAS DISCHARGE TUBE A projectile
electron with a velocity 2.1 x 106 m s_1 collides with a hydrogen atom in a gas discharge tube.
Find the nth energy level to which the electron in the hydrogen atom gets excited. Calculate the
possible wavelengths of radiation that will be emitted from the excited H atom as the electron
returns to its ground state.

SOLUTION

The energy of the electron in the hydrogen atom is given by En (eV) = -13.6/ n2. The electron
must be excited from its ground state £1 = -13.6 eV to a quantized energy level - (13.6/n2) eV.

The change in the energy is A£ = (-13.6/n2) - (-13.6) eV. This must be supplied by the
incoming projectile electron, which has an energy of

E = -mv2
2

-(9.1 x lO-31 kg)(2.1 x 106 m s-1)2

2
.
01 x lO-18 J

EXAMPLE 3.18

or 12.5 eV
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Therefore,

EXAMPLE 3.19

12.5eV=13.6eV-[iH£X)]
Solving this for n, we find

,
 13.6

n2 =  = 12
.
36

(13.6- 12.5)

so n = 3.51. But n can only be an integer; thus, the electron gets excited to the level n = 3
where its energy is E3 = -13.6/32 = -1

.
51 eV.

The energy of the incoming electron after the collision is less by

(£3 - £1) = 13.6 - 1.51 = 12.09eV

Since the initial energy of the incoming electron was 12.5 eV, it leaves the collision with a
kinetic energy of 12.5 - 12.09 = 0.41 eV. From the £3 level, the electron can undergo a transi-
tion from n = 3 to n = 1,

A£3i = -1.51 eV - (-13.6eV) = 12.09eV

The emitted radiation will have a wavelength X given by hc/k = AE, so that

_

   he   
_

 (6.626 x 10-34Js)(3 x 108 m s-1)
k31 ~ A£31 ~ 12.09 x 1.6 x 10-19 J

= 1
.026 x 10~7m      or      102.6 nm      (in the ultraviolet region)

Another possibility is the transition from n = 3 to n = 2, for which

A£32 = -1.51 eV - (-3.40eV) = 1.89eV

This will give a wavelength

A
. 32 =  = 656 nm

A £32

which is in the red region of the visible spectrum. For the transition from n = 2 to n = 1,

A£2i = -3.40eV - (-13.6eV) = 10.2eV

which results in the emission of a photon of wavelength A.21 = he/A £21 = 121.5 nm. Note that
each transition obeys At = ± 1.

THE FRAUNHOFER LINES IN THE SUN'S SPECTRUM The light from the sun includes extremely
sharp "dark lines" at certain wavelengths, superimposed on a bright continuum at all other
wavelengths, as discovered by Josef von Fraunhofer in 1829. One of these dark lines occurs in
the orange range and another in the blue. Fraunhofer measured their wavelengths to be 6563 A
and 4861 A, respectively. With the aid of Figure 3.23, show that these are spectral lines from the
hydrogen atom spectrum. (They are called the and Fraunhofer lines. Such lines provided
us with the first clues to the chemical composition of the sun.)

SOLUTION

The energy of the electron in a hydrogenic atom is

E
n

Z2El

n2
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where Ej = me4/(Se h2). Photon emission resulting from a transition from quantum number
«2 to tii has an energy

AZT =      - En j = -Z2 E

From hv = Ac/A. = AjE, we have

k-(h

'

c)Z2(n\     nl)-ReeZ2(nl n2)
where = Ej/hc = 1.0974 x 107 m

"1
. The equation for X is called the Balmer-Rydberg

formula, and is called the Rydberg constant. We apply the Balmer-Rydberg formula with
«i = 2 and n2 = 3 to obtain

 = (1.0974 x rn Xl2)  -       = 1.524 x 106 m
"1

to get k = 6561 A. We can also apply the Balmer-Rydberg formula with tii = 2 and 2 = 4 to
get X = 4860 A.

GIANT ATOMS IN SPACE Radiotelescopic studies by B. Hoglund and P. G. Mezger (Science
vol. 150, p. 339, 1965) detected a 5009 MHz electromagnetic radiation in space. Show that this
radiation comes from excited hydrogen atoms as they undergo transitions from n = 110 to 109.
What is the size of such an excited hydrogen atom?

SOLUTION

Since the energy of the electron is En = -(Z2Er/n2), the energy of the emitted photon in the
transition from n2 to ri] is

hv = En2 - EHl = Z2EI (n 2 - n-2)

With n2 = 110, rti = 109, and Z = 1, the frequency is

V -  

h

_

 [(1.6 x IP"19 x 13.6)][(109-2 - HO"2)]

(6.626 x lO"34)

= 5xl09
s-1      or      5000 MHz

The size of the atom from Equation 3.44 is on the order of

2rmax = 2n2a0 = 2(1102)(52.918 x 10"12m) = 1.28 x 10-6m      or      1.28 fim

A giant atom!

3.
7

.
4 Electron Spin and Intrinsic Angular Momentum S

One aspect of electron behavior does not come from the simple Schrodinger equation.
That is the spin of the electron about its own axis, which is analogous to the 24-hour

Emitted

wavelengths
for
transitions in

hydrogenic
atom

EXAMPLE 3.20
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Figure 3.29  Spin angular
momentum exhibits space quantization.
Its magnitude along z is quantized,
so the angle of S to the z axis is also
quantized.
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spin of Earth around its axis.7 Earth has an orbital angular momentum due to its motion
around the sun, and an intrinsic or spin angular momentum due to its rotation about its
own axis. Similarly, the electron has a spin or intrinsic angular momentum, denoted
by S. In classical mechanics, in the absence of external torques, spin angular momen-
tum is conserved. In quantum mechanics, this spin angular momentum is quantized, in
a manner similar to that of orbital angular momentum. The magnitude of the spin has
been found to be constant, with a quantized component Sz in the z direction along a
magnetic field:

S = h[s(s + 1)]1/2
1

*=

2

1

2

[3.49]

[3.50]

where, in an analogy with i and m , we use the quantum numbers s and ms, which are
called the spin and spin magnetic quantum numbers. Contrary to our past experi-
ence with quantum numbers, s and ms are not integers, but are  and respectively.
The existence of electron spin was put forward by Goudsmit and Uhlenbeck in 1925
and derived by Dirac from relativistic quantum theory, which is beyond the scope of
this book. Figure 3.29 illustrates the spin angular momentum of the electron and the two
possibilities for Sz. When Sz =        using classical orbital motion as an analogy, we

7 Do not take the meaning of "spin
" too literally, as in classical mechanics. Remember that the electron is assumed to

have wave-like properties, which can have no classical spin.
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Table 3.3  The four quantum numbers for the hydrogenic atom

n Principal quantum number

£ Orbital angular momentum
quantum number

mi       Magnetic quantum number

ms       Spin magnetic quantum
number

» = 1,2,3, ...

e =o, 1,2,...(«- i)

me

m s

:0
,±1,±2. ...,±£

4

Quantizes the electron energy

Quantizes the magnitude of
orbital angular momentum L

Quantizes the orbital angular
momentum component along a
magnetic field Bz

Quantizes the spin angular
momentum component

along a magnetic field Bz

can label the spin of the electron as being in the clockwise direction, so Sz = - can
be labeled as a counterclockwise spin. However, no such true clockwise or counter-
clockwise spinning of the electron can in reality8 be identified. When Sz = H- ft, we
could just as easily label the electron spin as "up,

" and call it "down" when Sz = - h.
This terminology is used henceforth in this book.

Since the magnitude of the electron spin is constant, which is a remarkable fact, and
is determined by s = , we need not mention it further. It can simply be regarded as a fun-
damental property of the electron, in much the same way as its mass and charge. We do,
however, need to specify whether ms = +  or - 5, since each of these selections gives
the electron a different behavior. We therefore need four quantum numbers to specify
what the electron is doing. Each state of the electron needs the spin magnetic quantum
numberm , in addition ton, £, and For each orbital \lsn

,
e
,
me(r, 0, (/>), we therefore have

two possibilities: ms = ± . The quantum numbers n, t, and determine the spatial ex-
tent of the electron by specifying the form of iA„

,
m£ (r, 0, 0), whereas ms determines the

"direction" of the electron's spin. A full description of the behavior of the electron must
therefore include all four quantum numbers n,t,mz, and m s.

An electronic state is a wavefunction that defines both the spatial (ilrn
%
t

%
mi) and

spin {ms) properties of an electron. Frequently, an electronic state is simply denoted
fn mt, ms > which adds the spin quantum number to the orbital wavefunction.

The quantum numbers are extremely important, because they quantize the various
properties of the electron: its total energy, orbital angular momentum, and the orbital
and spin angular momenta along a magnetic field. Their significance is summarized in
Table 3.3.

The spin angular momentum S, like the orbital angular momentum, is space
quantized. Sz = ±(5*) is smaller than S = ft\/3/2, which means that S can never
line up with z, or a magnetic field, and the angle 0 between S and the z axis can only
have two values corresponding to mt = +  and -\, which means that cos0 =
SZIS = ±l/\/3. Classically, Sz of a spinning object, or the orientation of S to the
z-axis

, can be any value inasmuch as classical spin has no space quantization.

8 The explanation in terms of spin and its two possible orientational directions ("clockwise" and "counterclockwise")
serve as mental aids in visualizing a quantum mechanical phenomenon. One question, however, is, "If the electron

is a wave, what is spinning?"
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3J,5 Magnetic Dipole Moment of the Electron

Consider the electron orbiting the nucleus with an angular frequency co as illustrated in
Figure 3.30a. The orbiting electron is equivalent to a current loop. The equivalent cur-
rent / due to the orbital motion of the electron is given by the charge flowing per unit
time, / = charge/period = -e((D/2n). The negative sign indicates that current /
flows in the opposite direction to the electron motion. The magnetic field around the
current loop is similar to that of a permanent magnet as depicted in Figure 3.30a. The
magnetic moment is defined as ix = M, the product of the current and the area en-
closed by the current loop. It is a vector normal to the surface A in a direction deter-
mined by the corkscrew rule applied to the circulation of the current /. If r is the radius
of the orbit (current loop), then the magnetic moment is

/  e(o\ 9 ecor
~

2

2

-e

B

B

orbilal

N

s

a) The orbiting electron is equivalent to a current loop that behaves like a bar magnet.

s

Spin direction

S

NEquivalent current

M-spin  Magnetic moment

(b) The spinning electron can be imagined to be equivalent to a current loop
as shown. This current loop behaves like a bar magnet, just as in the orbital
case.

Figure 3.30
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Consider now the orbital angular momentum L, which is the linear momentum p
multiplied by the radius r, or

L = pr = mevr = mecor2

Using this, we can substitute for cor2 in /jl = -ecor2/! to obtain

e

fi =
2me

L

In vector notation, using the subscript "orbital" to identify the origin of the mag-
netic moment,

e

orbital - ~  
2m e

[3.51]

This means that the orbital magnetic moment |xorbital is in the opposite direction to that
of the orbital angular momentum L and is related to it by a constant (e/2me).

Similarly, the spin angular momentum of the electron S leads to a spin magnetic
moment |xspin, which is in the opposite direction to S and given by

e

M'spin - ~~S
me

[3.52]

which is shown in Figure 3.30b. Notice that there is no factor of 2 in the denominator.
We see that, as a consequence of the orbital motion and also of spin, the electron has
two distinct magnetic moments. These moments act on each other, just like two mag-
nets interact with each other. The result is a coupling of the orbital and the spin angular
momenta L and S and their precession about the total angular momentum J = L + S,
which is discussed in Section 3.7.6.

Since both L and S are quantized, so are the orbital and spin magnetic moments
orbital an(l M'spin- n presence of an external magnetic field B, the electron has an

additional energy term that arises from the interaction of these magnetic moments with
B

. We know from electromagnetism that a magnetic dipole (equivalent to a magnet)
placed in a magnetic field B will have a potential energy PE. (A free magnet will ro-
tate to align with the magnetic field, as in a compass, and thereby reduce the PE.) The
potential energy EBL due to  orbital and B interacting is given by

EBL = -/iorbital£cOS0

where 0 is the angle between /Xorbitai and B. The potential energy EBL is minimum when
Morbitai (the magnet) and B are parallel, 0 = 0. We know that, by definition, the z axis
is always along an external field B, and Lz is the component of L along z (along B),
and is quantized, so that Lz = L cos 0 = mtfi. We can substitute for /Xorbitai to find

which depends on m , and it is minimum for the largest m . Since mi = -t,...,
0
,..., negative and positive values through zero, the electron's energy splits into

a number of levels determined by m . Similarly, the spin magnetic moment |xspin
 and

Orbital

magnetic
moment

Spin
magnetic
moment

Potential

energy of a
magnetic
moment

Potential

energy of
orbital

angular
momentum

in B
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B interact to give the electron a potential energy Est,

( eti\
Esl = -[ - )msB

\meJ

which depends on ms. Since ms = ±5, Est has only two values, positive {ms = -\)
and negative {ms = +5), which add and subtract from the electron

's energy depend-
ing on whether the spin is down or up. Thus, in an external magnetic field, the elec-
tron's spin splits the energy level into two levels. The separation A£s£ of the split
levels is (eti/me)B, which is 0.12 meV T-1, very small compared with the energy En
in the absence of the field. It should also be apparent that a single wavelength emission
k0 corresponding to a particular transition from Zv to En will now be split into a num-
ber of closely spaced wavelengths around k0. Although the separation A Esl is small,
it is still more than sufficient even at moderate fields to be easily detected and used in
various applications. As it turns out, spin splitting of the energy in a field can be fruit-
fully used to study the electronic structures of not only atoms and molecules, but also
various defects in semiconductors in what is called electron spin resonance.

I
1

EXAMPLE 3.21 STERN-GERLACH EXPERIMENT AND SPIN The Stern-Gerlach experiment is quite famous
for demonstrating the spin of the electron and its space quantization. A neutral silver atom
has one outer valence electron in a 45 orbital and looks much like the hydrogenic atom. (We
can simply ignore the inner filled subshells in the Ag atom.). The 45 electron has no orbital
angular momentum. Because of the spin of this one outer 45 electron, the whole Ag atom has
a spin magnetic moment |ULSpin. When Otto Stern and Walther Gerlach (1921-1922) passed a
beam of Ag atoms through a nonuniform magnetic field, they found that the narrow beam
split into two distinct beams as depicted in Figure 3.31a. The interpretation of the experi-
ment was that the Ag atom

'

s magnetic moment along the field direction can have only two
values, hence the split beam. This observation agrees with the quantum mechanical fact that
in a field along z, Mspin.

z = -(e/me)msti where ms = +5 or that is, the electron
'

s spin
can have only two values parallel to the field, or in other words, the electron spin is space
quantized.

In the Stern-Gerlach experiment, the nonuniform magnetic field is generated by using a
big magnet with shaped poles as in Figure 3.31a. The N-pole is sharp and the S-pole is wide, so
the magnetic field lines get closer toward the N-pole and hence the magnetic field increases to-
wards the N-pole. (This is much like a sharp point having a large electric field.) Whenever a
magnetic moment, which we take to be a simple bar magnet, is in a nonuniform field, its poles
experience different forces, say FIarge and FsmaH, and hence the magnet, overall, experiences a net
force. The direction of the net force depends on the orientation of the magnet with respect to the
z axis as illustrated in Figure 3.31b for two differently oriented magnets representing magnetic
moments labeled as 1 and 2. The S-pole of magnet 1 is in the high field region and experiences
a bigger pull (Fjarge) from the big magnet

'

s N-pole than the small force (Fsmaii) pulling the
N-pole of 1 to the big magnet's S-pole. Hence magnet 1 is pulled toward the N-pole and is de-
flected up. The overall force on a magnetic moment is the difference between Flarge and Fsmaii,
and its direction here is determined by the force on whichever pole is in the high field region.
Magnet 2 on the other hand has its N-pole in the high field region, and hence is pushed away
from the big magnet's N-pole and is deflected down. If the magnet is at right angles to the z axis
(6 = n/2), it would experience no net force as both of its poles would be in the same field. This
magnetic moment would pass through undeflected.

1
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Figure 3.31
(a) Schematic illustration of the Stern-Gerlach experiment. A stream of Ag atoms passing through a nonuniform magnetic field
splits into two.
(b) Explanation of the Stern-Gerlach experiment.
(c) Actual experimental result recorded on a photographic plate by Stern and Gerlach (O. Stern and W. Gerlach, Zeitschr.
fur. Physik, 9, 349, 1922.) When the field is turned off, there is only a single line on the photographic plate. Their experiment
is somewhat different than the simple sketches in (a) and (b) as shown in (d).
(d) Stern-Gerlach memorial plaque at the University of Frankfurt. The drawing shows the original Stern-Gerlach experiment in
which the Ag atom beam is passed along the long-length of the external magnet to increase the time spent in the nonuniform
field, and hence increase the splitting.
(e) The photo on the lower right is Otto Stern (1888-1969), standing and enjoying a cigar while carrying out an experiment.
Otto Stern won the Nobel prize in 1943 for development of the molecular beam technique.
I SOURCES: (d) Courtesy of Horst Schmidt-Bocking from B. Friedrich and D. Herschbach, "Stern and Gerlach: How a Bad Cigar Helped
I Reorient Atomic Physics," Physics Today, December 2003, pp. 53-59. (e) AlP Emilio Segre Visual Archives, Segre Collection.
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When we pass a stream of classical magnetic moments through a nonuniform field, there will
be all possible orientations of the magnetic moment, from -n to +7r, with the field because there
is no space quantization. Classically, the Ag atoms passing through a nonuniform field would be
deflected through a distribution of angles and would not split into two distinct beams. The actual
result of Stem and Gerlach'

s experiment is shown in Figure 3.31c, which is their photographic
recording of a flat line-beam of Ag atoms passing through a long nonuniform field. In the absence
of the field, the image is a simple horizontal line, the cross section of the beam. With the field
turned on, the line splits into two. The edges of the line do not experience splitting because the
field is very weak in the edge region. In the actual experiment, as shown in Figure 3.31c, an Ag
atomic beam is passed along the long-length of the external magnet to increase the time spent in
the nonuniform field, and hence increase the splitting. The physics remains the same.

Total angular
momentum

3
.
7

.6 Total Angular Momentum J

The orbital angular momentum L and the spin angular momentum S add to give the
electron a total angular momentum J = L + S, as illustrated in Figure 3.32. There are
a number of possibilities for the total angular momentum J, based on the relative
orientations of L and S. For example, for a given L, we can add S either in parallel or
antiparallel, as depicted in Figure 3.32a and b, respectively.

Since in classical physics the total angular momentum of a body (not experiencing
an external torque) must be conserved, we can expect J (the magnitude of J) to be
quantized. This turns out to be true. The magnitude of J and its z component along an
external magnetic field are quantized via

.
/=ft[7 0

- + l)]1/2 [3.53]

Jz = mjfi [3.54]

7 = <+5

d5
S ms 2

[a) Parallel (b) Antiparallel

Figure 3.32 Orbital angular momentum vector L and spin angular momentum vector S
can add either in parallel as in (a) or antiparallel, as in (b).
The total angular momentum vector J = L + S, has a magnitude J = >/[/(/ + 1)]/ where in
(a)/ = €+ and in (b)/ =
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Figure 3.33
(a) The angular momentum vectors L and S precess
around their resultant total angular momentum vector J.
(b) The total angular momentum vector is space
quantized. Vector J precesses about the z axis, along
which its component must be m/ft.

i

where both j and mj are quantum numbers9 like I and m , but j and mj can have frac-
tional values. A rigorous theory of quantum mechanics shows that when i > s, the
quantum numbers for the total angular momentum are given by j = £ + s and £ - s
and ntj = ±j,±(j - 1). For example, for an electron in ap orbital, where I = 1, we
have 7 = | and 5, and my = |, 5, - and - |. However, when i = 0 (as for all s or-
bitals), we have 7=5 =  and mj = ms = ±  which are the only possibilities. We
note from Equations 3.53 and 3.54 that \JZ\ < J and both are quantized, which means
that J is space quantized; its orientation (or angle) with respect to the z axis is deter-
mined by j and mj.

The spinning electron actually experiences a magnetic field Bint due to its or-
bital motion around the nucleus. If we were sitting on the electron, then in our ref-
erence frame, the positively charged nucleus would be orbiting around us, which
would be equivalent to a current loop. At the center of this current loop, there would
be an "internal" magnetic field Bint, which would act on the magnetic moment of
the spinning electron to produce a torque. Since L and S add to give J, and since the
latter quantity is space quantized (or conserved), then as a result of the internal
torque on the electron, we must have L and S synchronously precessing about J, as
illustrated in Figure 3.33a. If there is an external magnetic field B taken to be along
z, this torque will act on the net magnetic moment due to J to cause this quantity to
precess about B, as depicted in Figure 3.33b. Remember that the component along
the z axis must be quantized and equal to mjti, so the torque can only cause preces-
sion. To understand the precession of the electron's angular momentum about the
magnetic field B, think of a spinning top that precesses about the gravitational field
of Earth.

I 9 The quantum number / as used here should not be confused with / for y/-\.
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PE of one
electron in

He atom

3
.8    THE HELIUM ATOM AND THE PERIODIC TABLE

3
.
8
.1 He Atom and Pauli Exclusion Principle

In the He atom, there are two electrons in the presence of a nucleus of charge +2e, as
depicted in Figure 3.34. (Obviously, in higher-atomic-number elements, there will be Z
electrons around a nucleus of charge +Ze.) The PE of an electron in the He atom con-
sists of two interactions. The first is due to the Coulombic attraction between itself and

the positive nucleus; the second is due to the mutual repulsion between the two
electrons. The PE function V of any one of the electrons, for example, that labeled as 1,
therefore depends on both its distance from the nucleus n and the separation of the
two electrons r\2. The PE of electron 1 thus depends on the locations of both the
electrons, or

V(r1>r12) = -
2e 2

+
e

2

A7T80r\ Ane0ri2
[3.55]

When we use this PE in the Schrodinger equation for a single electron, we find the
wavefunction and energy of one of the electrons in the He atom. We thus obtain the
one-electron wavefunction and the energy of one electron within a many-electron
atom.

One immediate and obvious result is that the energy of an electron now depends
not only on n but also on £, because the electron-electron potential energy term (the
second term in Equation 3.55, which contains r ) depends on the relative orientations
of the electron orbitals, which change rn. We therefore denote the electron energy by
En%i. The dependence on I is weaker than on n, as shown in Figure 3.35. As n and I
increase, Enj also increases. Notice, however, that the energy of a 45 state is lower
than that of a 3d state, and the same pattern also occurs at 4s and 55.

One of the most important theorems in quantum physics is the Pauli exclusion
principle, which is based on experimental observations. This principle states that no
two electrons within a given system (e.g., an atom) may have all four identical quan-
tum numbers, n,t,mt, and m s. Each set of values for n, i, m i, and m s represents a pos-
sible electronic state, that is, a wavefunction denoted by ifn

,
e
,me,ms<>

 that the electron

may (or may not) acquire. For example, an electron with the quantum numbers given
by 2, 1, 1, 5 will have a definite wavefunction n m ms

 = 2
,
1
,
1
,
1/2. and it is said to be

Figure 3.34  A helium-like atom.
The nucleus has a charge of H-Ze, where Z= 2 for He. If one
electron is removed, we have the He+ ion, which is

equivalent to the hydrogenic atom with Z= 2.

-e

Nucleus

Electron 1

+Ze

-e

Electron 2
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Figure 3*35 Energy of various one-electron states.
The energy depends on both n and €.

2

Figure 3.36  Paired spins in an orbital.

in the state 2p,me = 1 and spin up. Its energy will be E2p. The Pauli exclusion prin-
ciple requires that no other electron be in this same state.

The orbital motion of an electron is determined by n, i, and m , whereas ms de-
termines the spin direction (up or down). Suppose two electrons are in the same orbital
state, with identical n, i, me. By the Pauli exclusion principle, they would have to spin
in opposite directions, as shown in Figure 3.36. One would have to spin "up" and the
other "down." In this case we say that the electrons are spin paired. Two electrons can
thus have the same orbitals (occupy the same region of space) if they pair their spins.
However, the Pauli exclusion principle prevents a third electron from entering this or-
bital, since ms can only have two values.

Using the Pauli exclusion principle, we can determine the electronic structure of
many-electron atoms. For simplicity, we will use a box to represent an orbital state
defined by a set of n, t, me values. Each box can take two electrons at most, with
their spins paired. When we put an electron into a box, we are essentially assigning a
wavefunction to that electron; that is, we are defining its orbital n, I, m . We use an
arrow to show whether the electron is spinning up or down. As depicted in Figure
3

.37, we arrange all the boxes to correspond to the electronic subshells. As an exam-
ple, consider boron, which has five electrons. The first electron enters the Is orbital
at the lowest energy. The second also enters this orbital by spinning in the opposite
direction. The third goes into then = 2 orbital. The lowest energy there is in the s or-
bitals corresponding to £ = 0 and me = 0. The fourth electron can also enter the 2s
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Figure 3.37 Electronic configurations for the first five elements.
Each box represents an orbital \lf(n, I, m ).

m
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B

orbital, provided that it spins in the opposite direction. Similarly, the fifth must go
into another orbital, and the next nearest low-energy orbitals are those having i - 1
(p states) and mi = -1, 0, +1. The final electronic structure of the B atom is shown
in Figure 3.37.

We see that because the electron energy depends on n and I, there are a number of
states for a given energy En  Each of these states corresponds to different sets of mi
and ms. For example, the energy £2

,
1 (or £2/?) corresponding to n = 2, t = 1 has six

possible states, arising from mi - -1,0, 1 and ms = + \, - \. Each mi state can have
an electron spinning up or down, ms = +\oxms = - \, respectively.

EXAMPLE 3.22 THE NUMBER OF STATES AT AN ENERGY LEVEL Enumerate and identify the states corre-
sponding to the energy level E , oxn = 3,1 = 2.

SOLUTION

When n = 3 and £ = 2, mi and ms can have these following values: me = -2, -1,0, 1,2, and
ms = - 5. This means there are 10 combinations. The possible wavefunctions (electron
states) are

. 3
,
2
,
2
,
1/2; 3,2,1,1/2; 3,2,0,1/2; 3,2,-1,1/2; 3,2,-2,1/2, all of which have spins up

. 3
,
2
,
2
,
-1/2; 3,2,1,-1/2; 3,2,0,-1/2; 3,2,-1,-1/2; 3,2,-2,-1/2, all of which have spins

down (ms = -5)

3
.
8.2 Hund'sRule

In the many-electron atom, the electrons take up the lowest-energy orbitals and obey
the Pauli exclusion principle. However, the Pauli exclusion principle does not deter-
mine how any two electrons distribute themselves among the many states of a given n
and £. For example, there are six 2p states corresponding to mi = -1, 0, +1, with each
mi having ms = ± . The two electrons could pair their spins and enter a given mi state,
or they could align their spins (same m ) and enter different mi states. An experimental
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fact deducted from spectroscopic studies shows that electrons in the same n, i orbitals
prefer their spins to be parallel (same ms). This is known as Hund's rule.

The origin of Hund's rule can be readily understood. If electrons enter the same me
state by pairing their spins (different ms), their quantum numbers n,i,me will be the
same and they will both occupy the same region of space (same n

,
e

,
me orbital). They

will then experience a large Coulombic repulsion and will have a large Coulombic
potential energy. On the other hand, if they parallel their spins (same ms), they will
each have a different me and will therefore occupy different regions of space (different
i n me orbitals), thereby reducing their Coulombic repulsion.

The oxygen atom has eight electrons and its electronic structure is shown in
Figure 3.38. The first two electrons enter the Is box (orbital). The next two enter the 2s
box. But p states can accommodate six electrons, so the remaining four electrons have
a choice. Hund's rule forces three of the four electrons to enter the boxes correspond-
ing to me = -1,0,4-1, all with their spins parallel. The last electron can go into any of
the 2p boxes, but it has no choice for spin. It must pair its spin with the electron already
in the box. Thus, the oxygen atom has two unpaired electrons in half-occupied orbitals,
as indicated in Figure 3.38. Since these two unpaired electrons spin in the same direc-
tion, they give the O atom a net angular momentum. An angular momentum due
to charge rotation (i.e., spin) gives rise to a magnetic moment ji. If there is an external
magnetic field present, then jjl experiences a force given by ii-dB/dx. Oxygen
atoms will therefore be deflected by a nonuniform magnetic field, as experimentally
observed.

Following the Pauli exclusion principle and Hund's rule, it is not difficult to
build the electronic structure of various elements in the Periodic Table. There are

only a few instances of unusual behavior in the energy levels of the electronic states.
The 4s state happens to be energetically lower than the 3d states, so the 4s state fills
up first. Similarly, the 55 state is at a lower energy than the 4d states. These features
are summarized in the energy diagram of Figure 3.35. There is a neat shorthand way
of writing the electronic structure of any atom. To each ni state, we attach a super-
script to represent the number of electrons in those ni states. For example, for oxygen,
we write ls22s22p

4
, or simply [lle]2s22p4, since Is2 is a full (closed) shell corre-

sponding to He.

C N O F Ne

L
P

s 4* 41
|4      |4|  M 4 4  M ft 4  4+ 4t 41

4i 4+ 4*

K s 41 41 41 41 4*

Figure 3.38   Electronic configurations for C, N, O, F, and Ne atoms.
Notice that in C, N, and O, Hund's rule forces electrons to align their spins. For the Ne atom, all the Kand [ orbitals
are full.
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EXAMPLE 3.23 HUND'S RULE The Fe atom has the electronic structure [Ar]3d64s2. Show that the Fe atom has
four unpaired electrons and therefore a net angular momentum and a magnetic moment due to
spin.

SOLUTION

In a closed subshell, for example, 2p subshell with six states given by = -1, 0, +1 and
ms = all me and ms values have been taken up by electrons, so each me orbital is occu-
pied and has paired electrons. Each positive me (or ms) value assigned to an electron is
canceled by the negative me (oTms) value assigned to another electron in the subshell. There-
fore, there is no net angular momentum from a closed subshell. Only unfilled subshells con-
tribute to the overall angular momentum. Thus, only the six electrons in the 3d subshell need
be considered.

There are five d orbitals, corresponding to me = -2, -1, 0, 1, 2. Five of the six electrons
obey Hund's rule and align their spins, with each taking one of the me values.

mi = -2      -1      0      1 2

The sixth must take the same me as another electron. This is only possible if they pair their
spins. Consequently, there are four electrons with unpaired spins in the Fe atom, which gives the
Fe atom a net angular momentum. The Fe atom therefore possesses a magnetic moment as a re-
sult of four electrons having their charges spinning in the same direction.

Many isolated atoms possess unpaired spins and hence also possess a magnetic moment.
For example, the isolated Ag atom has one outer 55 electron with an unpaired spin and hence it
is magnetic; it can be deflected in a magnetic field. The silver crystal, however, is nonmagnetic.
In the crystal, the 5s electrons become detached to form the electron gas (metallic bonding)
where they pair their spins, and the silver crystal has no net magnetic moment. The iron crystal
is magnetic because the constituent Fe atoms retain at least two of the unpaired electron spins
which then all align in the same direction to give the crystal an overall magnetic moment; iron
is a magnetic metal.10

3
.
9   STIMULATED EMISSION AND LASERS

3
.
9
.

1 Stimulated Emission and Photon Amplification

An electron can be excited from an energy level Ei to a higher energy level E2 by the
absorption of a photon of energy hv = E2 - Eu as show in Figure 3.39a. When an
electron at a higher energy level transits down in energy to an unoccupied energy level,

I  10 This qualitative explanation is discussed in Chapter 8.
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Figure 3.39  Absorption, spontaneous emission, and stimulated emission.

it emits a photon. There are essentially two possibilities for the emission process. The
electron can spontaneously undergo the downward transition by itself, or it can be
induced to do so by another photon.

In spontaneous emission, the electron falls in energy from level E2 to Ei and
emits a photon of energy hv = E2 - E\, as indicated in Figure 3.39b. The transition is
only spontaneous if the state with energy E\ is not already occupied by another elec-
tron. In classical physics, when a charge accelerates and decelerates, as in an oscilla-
tory motion, with a frequency v, it emits an electromagnetic radiation also of
frequency v. The emission process during the transition of the electron from £2 to E\
appears as if the electron is oscillating with a frequency v.

In stimulated emission, an incoming photon of energy hv = E2 - E\ stimulates
the emission process by inducing the electron at £2 to transit down to E\. The emitted
photon is in phase with the incoming photon, it is going in the same direction, and
it has the same frequency, since it must also have the energy E2 - E\, as shown in
Figure 3.39c. To get a feel for what is happening during stimulated emission, imagine
the electric field of the incoming photon coupling to the electron and thereby driving
it with the same frequency as the photon. The forced oscillation of the electron at a fre-
quency v = (#2 - Ei)/h causes the electron to emit electromagnetic radiation, for
which the electric field is totally in phase with that of the stimulating photon. When the
incoming photon leaves the site, the electron can return to Eu because it has emitted a
photon of energy hv = E2 - Ex.

Stimulated emission is the basis for photon amplification, since one incoming
photon results in two outgoing photons, which are in phase. It is possible to achieve
a practical light amplifying device based on this phenomenon. From Figure 3.39c,
we see that to obtain stimulated emission, the incoming photpn should not be ab-
sorbed by another electron at E\. When we are considering using a collection of
atoms to amplify light, we must therefore require that the majority of the atoms be at
the energy level £2. If this were not the case, the incoming photons would be ab-
sorbed by the atoms at Ex. When there are more atoms at £2 than at Eu we have
what is called a population inversion. It should be apparent that with two energy
levels, we can never achieve a population at £2 greater than that at £1, because, in
the steady state, the incoming photon flux will cause as many upward excitations as
downward stimulated emissions.
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Figure 3.40  The principle of the LASER.
(a) Atoms in the ground state are pumped up
to energy level £3 by incoming photons of
energy hv]3 = £3 - E].
(b) Atoms at £3 rapidly decay to the
metastable state at energy level £2 by
emitting photons or emitting lattice vibrations:
hv32 = £3 - £2-

(c) Since the states at £2 are metastable, they
quickly become populated, and there is a
population inversion between £2 and £].
(d) A random photon of energy hv2] =
£2 - £1 can initiate stimulated emission.
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leading to an avalanche of stimulated
emissions and coherent photons being
emitted.
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Let us consider the three-energy-level system shown in Figure 3.40. Suppose
an external excitation causes the atoms11 in this system to become excited to energy
level £3. This is called the pump energy level, and the process of exciting the atoms
to E3 is called pumping. In the present case, optical pumping is used, although this
is not the only means of taking the atoms to £3. Suppose further that the atoms in £3
decay rapidly to energy level E2, which happens to correspond to a state that does not
rapidly and spontaneously decay to a lower energy state. In other words, the state at E2
is a long-lived state.12 Quite often, the long-lived states are referred to as metastable
states. Since the atoms cannot decay rapidly from E2 to Ei, they accumulate at this en-
ergy level, causing a population inversion between E2 and £1 as pumping takes more
and more atoms to £3 and hence to £2.

11 An atom is in an excited state when one (or more) of its electrons is excited from the ground energy to a higher
energy level. The ground state of an atom has all the electrons in their lowest energy states consistent with the Pauli
exclusion principle and Hund's rule.

12 We will not examine what causes certain states to be long lived; we will simply accept that these states do not
decay rapidly and spontaneously to lower energy states.
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Arthur L. Schawlow in 1961 with a ruby laser built by his
Stanford group. The solid state laser was a dark ruby
crystal containing Cr3+ ions. Losing is obtained by stimulated
emission from the Cr3+ ions. Arthur Schawlow won the Nobel

prize in Physics in 1981 for his contribution to the
development of laser spectroscopy.
I SOURCE: Stanford University, courtesy of AIP Emilio Segre
I Visual Archives.

When one atom at £2 decays spontaneously, it emits a photon, which can go on to
a neighboring atom and cause that to execute stimulated emission. The photons from
the latter can then go on to the next atom at #2 and cause that atom to emit by stimu-
lated emission, and so on. The result is an avalanche effect of stimulated emission

processes with all the photons in phase, so the light output is a large collection of
coherent photons. This is the principle of the ruby laser in which the energy levels
Eu E2, and £3 are those of the Cr+3 ion in the AI2O3 crystal. At the end of the
avalanche of stimulated emission processes, the atoms at E2 will have returned to Ei
and can be pumped again to repeat the stimulated emission cycle again. The emission

from £2 to £"1 is called the lasing emission.
The system we have just described for photon amplification is a LASER, an

acronym for light amplification by stimulated emission of radiation. In the ruby laser,
pumping is achieved by using a xenon flashlight. The lasing atoms are chromium ions
(Ct3+) in a crystal of alumina AI2O3 (sapphire). The ends of the ruby crystal are sil-
vered to reflect the stimulated radiation back and forth so that its intensity builds up, in
much the same way we build up voltage oscillations in an electric oscillator circuit.
One of the mirrors is partially silvered to allow some of this radiation to be tapped out.
What comes out is a highly coherent radiation with a high intensity. The coherency and
the well-defined wavelength of this radiation are what make it distinctly different from
a random stream of different-wavelength photons emitted from a tungsten bulb.

3
.
9

.
2 Helium-Neon Laser

With the helium-neon (HeNe) laser, the actual operation is not simple, since we need
to know such things as the energy states of the whole atom. We will therefore only con-
sider the lasing emission at 632.8 nm, which gives the well-known red color to the
laser light. The actual stimulated emission occurs from the Ne atoms; He atoms are
used to excite the Ne atoms by atomic collisions.
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Ali Javan and his associates William Bennett Jr. and Donald
Herriott at Bell Labs were first to successfully demonstrate a
continuous wave (cw) helium-neon laser operation (1960).
I SOURCE: Courtesy of Bell Labs, Lucent Technologies.

1

Z'

Flat mirror (reflectivity = 0.999) Concave mirror

(reflectivity = 0.985)

Very thin tube

He-Ne gas mixture

o

Laser beam

Current-regulated HV power supply

Figure 3.41   Schematic illustration of the HeNe laser.
A modern stabilized HeNe laser.

I SOURCE: Courtesy of Melles Griot.

Ne is an inert gas with a ground state (ls22s22p6), which is represented as (2p6)
when the inner closed Is and 2s subshells are ignored. If one of the electrons from the
2p orbital is excited to a orbital, the excited configuration (2p55s{) is a state of the
Ne atom that has higher energy. Similarly, He is an inert gas with the ground-state
configuration of (Is2),

 The state of He when one electron is excited to a 2s orbital can

be represented as (Isl2s1), which has higher energy.
The HeNe laser consists of a gaseous mixture of He and Ne atoms in a gas dis-

charge tube, as shown schematically in Figure 3.41. The ends of the tube are mirrored
to reflect the stimulated radiation and to build up the intensity within the cavity. If suf-
ficient dc high voltage is used, electrical discharge is obtained within the tube, causing
the He atoms to become excited by collisions with the drifting electrons. Thus,

He + e~     He* + e~

where He* is an excited He atom.
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Figure 3.42  The principle of operation of the HeNe laser. Important HeNe laser
energy levels (for 632.8 nm emission).

The excitation of the He atom by an electron collision puts the second electron in
He into a 2s state, so the excited He atom, He*, has the configuration (lsl2sl). This
atom is metastable (long lasting) with respect to the (Is2) state, as shown schemati-

cally in Figure 3.42. He* cannot spontaneously emit a photon and decay down to the
(Is2) ground state because Ai must be ±1. Thus, a large number of He* atoms build
up during the electrical discharge.

When an excited He atom collides with a Ne atom, it transfers its energy to the Ne
atom by resonance energy exchange. This happens because, by good fortune, Ne has
an empty energy level, corresponding to the (2p55sl) configuration, which matches
that of (lsl2sl) of He*. The collision process excites the Ne atom and de-excites He*
down to its ground energy, that is,

He* + Ne -+ He + Ne*

With many He*-Ne collisions in the gaseous discharge, we end up with a large
number of Ne* atoms and a population inversion between the (2p55sl) and (2p53pl)
states of the Ne atom, as indicated in Figure 3.42. The spontaneous emission of a photon

from one Ne* atom falling from 5s to 3p gives rise to an avalanche of stimulated emission
processes, which leads to a lasing emission with a wavelength of 632.8 nm, in the red.

There are a few interesting facts about the HeNe laser, some of which are quite subtle.
First, the (2p55sl) and (2p53pi) electronic configurations of the Ne atom actually have
a spread of energies. For example for Ne(2p5551), there are four closely spaced energy
levels. Similarly, for Ne(2Jp53/71), there are 10 closely separated energies. We can
therefore achieve population inversion with respect to a number of energy levels. As a
result, the lasing emissions from the HeNe laser contain a variety of wavelengths. The two
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lasing emissions in the visible spectrum, at 632.8 nm and 543 nm, can be used to build a
red or green HeNe laser. Further, we should note that the energy of the Ne(2p54pl) state

(not shown) is above that of Ne(2p53p1) but below that of Ne(2p5551). Consequently,
there will also be stimulated transitions from Ne(2/75551) to Ne(2p54pl), and hence a
lasing emission at a wavelength of ~3.39 fjim infrared. To suppress lasing emissions at the
unwanted wavelengths (e.g., the infrared) and to obtain lasing only at the wavelength of
interest, we can make the reflecting mirrors wavelength selective. This way the optical
cavity builds up optical oscillations at the selected wavelength.

From (2p53pl) energy levels, the Ne atoms decay rapidly to the (2p53sl) energy
levels by spontaneous emission. Most of the Ne atoms with the (2p5351) configuration,
however, cannot simply return to the ground state 2p6, because the return of the electron
in 3s requires that its spin be flipped to close the 2p subshell. An electromagnetic
radiation cannot change the electron spin. Thus, the Ne(2p53sl) energy levels are
metastable. The only possible means of returning to the ground state (and for the next
repumping act) is collisions with the walls of the laser tube. Therefore, we cannot
increase the power obtainable from a HeNe laser simply by increasing the laser tube
diameter, because that will accumulate more Ne atoms at the metastable (2p5351) states.

Atypical HeNe laser, illustrated in Figure 3.41, consists of a narrow glass tube that
contains the He and Ne gas mixture (typically, the He to Ne ratio is 10:1). The lasing
emission intensity increases with tube length, since more Ne atoms are then used in
stimulated emission. The intensity decreases with increasing tube diameter, since Ne
atoms in the (2p5351) states can only return to the ground state by collisions with the
walls of the tube. The ends of the tube are generally sealed with a flat mirror
(99.9 percent reflecting) at one end and, for easy alignment, a concave mirror (98.5
percent reflecting) at the other end, to obtain an optical cavity within the tube. The
outer surface of the concave mirror is ground to behave like a convergent lens, to
compensate for the divergence in the beam arising from reflections from the concave
mirror. The output radiation from the tube is typically a beam of diameter 0.5-2 mm
and a divergence of 1 milliradians at a power of a few milliwatts. In high-power HeNe
lasers, the mirrors are external to the tube. In addition, Brewster windows are fused at

the ends of the laser tube, to allow only polarized light to be transmitted and amplified
within the cavity, so that the output radiation is polarized (that is, has electric field
oscillations in one plane).

EXAMPLE 3.24 EFFICIENCY OF THE HeNe LASER A typical low-power 2.5 mW HeNe laser tube operates at a
dc voltage of 2 kV and carries a current of 5 mA. What is the efficiency of the laser?

SOLUTION

From the definition of efficiency,

Output power
Efficiency =  

Input power

(2.5 x lO"3 W)
 

i = 0
.
00025      or 0.025%

(5 x lO"3 A)(2000 V)
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.3 Laser Output Spectrum

The output radiation from a laser is not actually at one single well-defined wavelength
corresponding to the lasing transition. Instead, the output covers a spectrum of
wavelengths with a central peak. This is not a simple consequence of the Heisenberg
uncertainty principle (which does broaden the output). Predominantly, it is a result of the
broadening of the emitted spectrum by the Doppler effect. We recall from the kinetic
molecular theory that gas atoms are in random motion, with an average translational
kinetic energy of §/:7\ Suppose that these gas atoms emit radiation of frequency vq
which we label as the source frequency. Then, due to the Doppler effect, when a gas
atom moves toward an observer, the latter detects a higher frequency V2, given by

V2
. = 4 + 7)

where vx is the relative velocity of the atom with respect to the observer and c is the
speed of light. When the atom moves away, the observer detects a smaller frequency,
which corresponds to

- <> - t)
Since the atoms are in random motion, the observer will detect a range of

frequencies, due to this Doppler effect. As a result, the frequency or wavelength of the
output radiation from a gas laser will have a "linewidth" of Av = V2 - vi, called a
Doppler-broadened linewidth of a laser radiation. Other mechanisms also broaden the
output spectrum, but we will ignore these at present.

The reflections from the laser end mirrors give rise to traveling waves in opposite
directions within the cavity. Since the waves are in phase, they interfere constructively,
to set up a standing wave-in other words, stationary oscillations. Some of the energy
in this wave is tapped by the 99 percent reflecting mirror to get an output, in much the
same way that we tap the energy from an oscillating field in an LC circuit by attaching
an antenna to it.

Only standing waves with certain wavelengths can be maintained within the
optical cavity, just as only certain acoustic wavelengths can be obtained from musical
instruments. Any standing wave in the cavity must have a half-wavelength k/2 that fits
into the cavity length L, or

id- L [3.56]

where n is an integer called the mode number of the standing wave. Each possible
standing wave within the laser tube (cavity) satisfying Equation 3.56 is called a
cavity mode. The laser output thus has a broad spectrum with peaks at certain
wavelengths corresponding to various cavity modes existing within the Doppler-
broadened emission curve. Figure 3.43 shows the expected output from a typical gas
laser. At wavelengths satisfying Equation 3.56, that is, representing certain cavity
modes, we have intensity spikes in the output. The net envelope of the output

Doppler
effect

Doppler
effect

Laser cavity
modes
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Figure 3.43
(a) Doppler-broadened emission versus wavelength characteristics of the losing medium.
(b) Allowed oscillations and their wavelengths within the optical cavity.
(c) The output spectrum is determined by satisfying (a) and (b) simultaneously.

radiation is a Gaussian distribution, which is essentially due to the Doppler-
broadened linewidth.

Even though we can try to get as parallel a beam as possible by lining the mirrors up
perfectly, we will still be faced with diffraction effects at the output. When the output
laser beam hits the end of the laser tube, it becomes diffracted, so the emerging beam is
necessarily divergent. Simple diffraction theory can readily predict the divergence angle.

EXAMPLE 3.25

Doppler-
broadened

frequency
width

DOPPLER-BROADENED LINEWIDTH Calculate the Doppler-broadened linewidths Av and AX
for the HeNe laser transition X = 632.8 nm, if the gas discharge temperature is about 127 0C.
The atomic mass of Ne is 20.2 g mol-1.

SOLUTION

Due to the Doppler effect, the laser radiation from gas lasers is broadened around a central
frequency voy which corresponds to the source frequency. Higher frequencies detected will be
due to radiations emitted from atoms moving toward the observer, and lower frequencies
detected will be the result of emissions from atoms moving away from the observer. Therefore,
the width of the observed frequencies will be approximately

a d * Vx\       d    Vx\ 2VoVx

From X = c/v, we obtain the following by differentiation:

dX        c        X X2

dv v
2

V c

We need to know vx, which is given by kinetic theory SLSv2 = kT/m. For the HeNe laser,
the Ne atoms lase, so

i-i

m
20.2 x 10"  kg mol
6

.
023 x 1023 mol"1

3
.35 x lO"26 kg

Thus

_ ["(1.38 x 10-23JIV
x ~ L (3.35 x

JK-1)(127 + 273 K)l1/2

lO"26 kg) j 406 m s"1
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The central frequency is

c      3 x 108 m s"1 14 .
v0 = - =  - = 4.74 x 1014 s

"1

X
0
     632.8 xl0-9m

The frequency linewidth is

Av = (2v ) 
=

 2(4.74 x 10" ,-)(406 m.-') 
=  

c 3 x 108 ms"1

To get AA., we use dX/dv = - A/v, so that

AX = Ay
(1.283 x 109 Hz)(632.8 x IQ-9 m)

4
.
74 x 1014 s"1

1
.
71xl0-12m      or      0.0017 nm

ADDITIONAL TOPICS

3
.
10    OPTICAL FIBER AMPLIFIERS

A light signal that is traveling along an optical fiber communications link over a long
distance suffers marked attenuation. It becomes necessary to regenerate the light signal
at certain intervals for long-haul communications over several thousand kilometers.
Instead of regenerating the optical signal by photodetection, conversion to an electrical
signal, amplification, and then conversion back from electrical to light energy by a
laser diode, it becomes practical to amplify the signal directly by using an optical
amplifier. The photons in an optical signal have a wavelength of 1550 nm, and optical
amplifiers have to amplify signal photons at this wavelength.

One practical optical amplifier is based on the erbium (Er3+ ion) doped fiber
amplifier (EDFA).13 The core region of an optical fiber is doped with Er3* ions. The

host fiber core material is a glass based on SiOs-GeOi and perhaps some other glass-
forming oxides such as AI2O3. It is easily fused to a long-distance optical fiber by a
technique called splicing.

When the Er3"  ion is implanted in the host glass material, it has the energy levels
indicated in Figure 3.44 where E\ corresponds to the lowest energy possible consistent
with the Pauli exclusion principle and Hund

's rule. One of the convenient energy levels
for optically pumping the Er3"  ion is at £3, approximately 1.27 eV above the ground
energy level. The Er3"1" ions are optically pumped, usually from a laser diode, to excite
them to £3. The wavelength for this pumping is about 980 nm. The Er3"1" ions decay
rapidly from £3 to a long-lived energy level at £2 which has a long lifetime of ~10 ms
(very long on the atomic scale). The decay £3 to £2 involves energy losses by
radiationless transitions (generation of crystal vibrations) and are very rapid. Thus, more
and more Er3"  ions accumulate at £2 which is 0.80 eV above the ground energy. The
accumulation of Er3"  ions at £2 leads to a population inversion between £2 and £1.
Signal photons at 1550 nm have an energy of 0.80 eV, or £2 - £1, and give rise to
stimulated transitions of Er3* ions from £2 to E\. Any Er3"1" ions left at £1, however, will

13 EDFA was first reported in 1987 by E. Desurvire, J. R. Simpson, and P. C. Becker and, within a short period,
AT&T began deploying EDFA repeaters in long-haul fiber communications in 1994.
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Figure 3.44  Energy diagram for the Er3+ ion in the
glass fiber medium and light amplification by stimulated
emission from E2 to El-

Dashed arrows indicate radiationless transitions (energy
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Figure 3,45  A simplified schematic illustration of an EDFA (optical amplifier).
The erbium-ion doped fiber is pumped by feeding the light from a laser pump diode, through a coupler, into the erbium-
ion doped fiber.

absorb the incoming 1550 nm photons to reach E2. To achieve light amplification we
must therefore have stimulated emission exceeding absorption. This is only possible if
there are more Er3* ions at the E2 level than at the E\ level, that is, if we have population
inversion. With sufficient optical pumping, population inversion is readily achieved.

In practice the erbium-doped fiber is inserted into the fiber communications line
by splicing as shown in the simplified schematic diagram in Figure 3.45 and it is
pumped from a laser diode through a coupling fiber arrangement which allows only
the pumping wavelength to be coupled.

} CD Selected Topics and Solved Problems
Selected Topics

Compton Scattering
Stimulated Emission and Laser Principles
Stimulated Emission and Optical Amplifiers
Time-Dependent Schrodinger Equation

Solved Problems

Modem Physics: Photoelectric Experiment, Ionization
Energy

He-Ne Laser Problem
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DEFINING TERMS

Angular momentum L about a point O is defined as
L = p x r, where p is the linear momentum and r is
the position vector of the body from O. For a circular
orbit around O, the angular momentum is orbital and
L = pr = mvr.

Bragg diffraction law describes the diffraction of an
X-ray beam by a crystal in which the interplanar sepa-
ration d of a given set of atomic planes causing the X-
ray diffraction is related to the diffraction angle 20 and
the wavelength X of the X-rays through 2d sin 0 = nk
where n is an integer, usually unity.

Complementarity principle suggests that the wave
model and the particle model are complementary
models in that one model alone cannot be used to

explain all the observations in nature. For example, the
electron diffraction phenomenon is best explained by
the wave model, whereas in the Compton experiment,
the electron is treated as a particle; that is, it is
deflected by an impinging photon that imparts an
additional momentum to the electron.

Compton effect is the scattering of a high-energy
photon by a "free" electron. The effect is experimen-
tally observed when an X-ray beam is scattered from a
target that contains many conduction ("free") elec-
trons, such as a metal or graphite.

De Broglie relationship relates the wave-like proper-
ties (e.g., wavelength X) of matter to its particle-like
properties (e.g.y momentum p) via X = h/p.

Diffraction is the bending of waves as a result of the
interaction of the waves with an object of size compa-
rable to the wavelength. If the object has a regular pat-
tern, periodicity, an incident beam of waves can be
bent (diffracted) in certain well-defined directions that

depend on the periodicity, which is used in the X-ray
diffraction study of crystals.

Doppler effect is the change in the measured fre-
quency of a wave due to the motion of the source
relative to the observer. In the case of electromagnetic
radiation, if v is the relative velocity of the source
object toward the observer and v0 is the source fre-
quency, then the measured electromagnetic wave
frequency is v = v0[l + (v/c)] for (v/c) 1.

Energy density pe is the amount of energy per unit
volume. In a region where the electric field is £, the

energy stored per unit volume is sq'E2
.

Flux is a term used to describe the rate of flow

through a unit area. If AN is the number of particles
flowing through an area A in time At, then particle
flux T is defined as F = AN/(A At). If an amount of
energy AE flows through an area A in time At, energy
flux is rE = AE/(AAt), which defines the intensity
(I) of an electromagnetic wave.

Flux in radiometry is the flow of radiation (electro-
magnetic wave) energy per unit time in watts. It is sim-
ply the radiation power that is flowing. In contrast, the
photon or particle flux refers to the number of photons
or particles flowing per unit time per unit area. Radi-
ant flux emitted by a source refers to the radiation
power in watts that is emitted. Flux in radiometry nor-
mally has either radiant or luminous as an adjective,
e.g., radiant flux, luminous flux.

Ground state is the state of the electron with the

lowest energy.

Heisenberg's uncertainty principle states that the
uncertainty Ax in the position of a particle and the
uncertainty Apx in its momentum in the x direction
obey (Ax)(Apx)  h. This is a consequence of the
wave nature of matter and has nothing to do with the
precision of measurement. If A E is the uncertainty in
the energy of a particle during a time At, then
according to the uncertainty principle, (AE)(At) £ h.
To measure the energy of a particle without any
uncertainty means that we would need an infinitely
long time Ar -  oo.

Hund's rule states that electrons in a given subshell ni
try to occupy separate orbitals (different me) and keep
their spins parallel (same ms). In doing so, they achieve
a lower energy than pairing their spins (different m,)
and occupying the same orbital (same mi).

Intensity (I) is the flow of energy per unit area per
unit time. It is equal to an energy flux.

LASER (light amplification by stimulated emission
of radiation) is a device within which photon
multiplication by stimulated emission produces an
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output radiation that is nearly monochromatic and
coherent (vis-a-vis an incoherent stream of photons
from a tungsten light bulb). Furthermore, the output
beam has very little divergence.

Luminous flux or power <&v is a measure of flow of
"visual energy

" per unit time that takes into account
the wavelength dependence of the efficiency of the
human eye, that is, whether the energy that is flowing
is perceptible to the human eye. It is a measure of
"brightness.,, One lumen of luminous flux is obtained
from a 1.58 mW light source emitting a single wave-
length of 555 nm (green).

Magnetic quantum number m€ specifies the compo-
nent of the orbital angular momentum Lz in the
direction of a magnetic field along z so that Lz = ±timi,
where mt can be a negative or positive integer from
-i to +t including 0, that is, -(t - 1),...,
0

, ...,(£- 1), I. The orbital of the electron depends
on mt, as well as on n and i. The m , however, generally
determines the angular variation of ty.

Orbital is a region of space in an atom or molecule
where an electron with a given energy may be found.
Two electrons with opposite spins can occupy the same
orbital. An orbit is a well-defined path for an electron,
but it cannot be used to describe the whereabouts of the

electron in an atom or molecule, because the electron

has a probability distribution. The wavefunction
tyntrntir, 0, 0) is often referred to as an orbital that
represents the spatial distribution of the electron, since
\ nime(r, 0, (/>)|2 is the probability of finding the
electron per unit volume at (r, 0,0).

Orbital (angular momentum) quantum number
specifies the magnitude of the orbital angular
momentum of the electron via L = WlW + 1)1,
where £ is the orbital quantum number with values
0

, 1, 2, 3,..., n - 1. The I values 0, 1, 2, 3 are labeled

the s, p, d, f states.

Orbital wavefunction describes the spatial depen-
dence of the electron, not its spin. It is \lr(r, 0, 0),
which depends on n, t, and me, with the spin depen-
dence ms excluded. Generally, (r, 0,0) is simply
called an orbital.

Pauli exclusion principle requires that no two elec-
trons in a given system may have the same set of
quantum numbers, n, I, mi, ms. In other words, no two

electrons can occupy a given state \lr(n, I, m , ms).
Equivalently, up to two electrons with opposite spins
can occupy a given orbital (n i.mi).
Photoelectric effect is the emission of electrons from

a metal upon illumination with a frequency of light
above a critical value which depends on the material.
The kinetic energy of the emitted electron is inde-
pendent of the light intensity and dependent on the
light frequency v, via KE - hv - $ where h is
Planck's constant and $ is a material-related constant

called the work function.

Photon is a quantum of energy h v (where h is Planck's
constant and v is the frequency) associated with
electromagnetic radiation. A photon has a zero rest mass
and a momentum p given by the de Broglie relationship
p = h/X9 where X the wavelength. A photon does have
a "moving mass" of hv/c2, so it experiences
gravitational attraction from other masses. For example,
light from a star gets deflected as it passes by the sun.

Population inversion is the phenomenon of having
more atoms occupy an excited energy level £2, higher
than a lower energy level, Ei, which means that the
normal equilibrium distribution is reversed; that is,
N(E2) > N(Ei). Population inversion occurs tem-
porarily as a result of the excitation of a medium
(pumping). If left on its own, the medium will even-
tually return to its equilibrium population distribution,
with more atoms at Ei than at £2. For gas atoms,
this means N(E2)/N(Ei) % exp[-(£2 - Erf/kT],

Principal quantum number n is an integer quantum
number with values 1, 2, 3,... that characterizes the

total energy of an electron in an atom. The energy
increases with n. With the other quantum numbers £
and m€, n determines the orbital of the electron in an

atom, or irnimi(r, 0, 0). The values n = 1, 2, 3, 4,...
are labeled the AT, L, M, N,... shells, within each of

which there may be subshells based on £ =
0

, 1, 2,... (n - 1) and corresponding to the s, p,
d
,...

 states.

Pumping means exciting atoms from their ground
states to higher energy states.

Radiant is a common adjective used to imply the in-
volvement of radiation, that is, electromagnetic waves,
in the noun that it qualifies; e.g., radiant energy is the
energy transmitted by radiation.
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Radiant power is radiation energy flowing, or emitted
from a source, per unit time, which is also known as
optical power even if the wavelength is not within the
visible spectrum. Radiant flux signifies radiant power
flow in radiometry, measured in watts.

Radiation normally signifies a traveling electromag-
netic wave that is carrying energy. Due to the particle-
like behavior of waves, radiation can also mean a

stream of photons.

Schrodinger equation is a fundamental equation in
nature, the solution of which describes the wave-like

behavior of a particle. The equation cannot be derived
from a more fundamental law. Its validity is based on
its ability to predict any known physical phenomena.
The solution requires as input the potential energy
function V(x, y, z> t) of the particle and the boundary
and initial conditions. The PE function V(x, y, z, t)

describes the interaction of the particle with its
environment. The time-independent Schrodinger
equation describes the wave behavior of a particle
under steady-state conditions, that is, when the PE is
time-independent V(x, y,z). If E is the total energy
andV2 = (d2/dx2 + d2/dy2 + d2/dz2),±tn

V V + [E - V(x, y, zM = 0

The solution of the time-independent Schrodinger
equation gives the wavefunction r(jc,y,z) of the
electron and its energy E. The interpretation of the
wavefunction i/r (x, y, z) is that | (x, y, z) \2 is the prob-
ability of finding the electron per unit volume at point
x, y, z.

Selection rules determine what values of € and me are

allowed for an electron transition involving the
emission and absorption of electromagnetic radiation,
that is, a photon. In summary, Ai = ±1 and Ame =
0

, ±1. The spin number ms of the electron remains
unchanged. Within an atom, the transition of the
electron from one state (n, t, mt,ms) to another
x/r(n', t, m'  m's),

 due to collisions with other atoms

or electrons, does not necessarily obey the selection
rules.

Spin of an electron S is its intrinsic angular mo-
mentum (analogous to the spin of Earth around its own
axis), which is space quantized to have two possi-

bilities. The magnitude of the electron's spin is a
constant, ft a/3/2, but its component along a magnetic
field in the z direction is msh, where ms is the spin

magnetic quantum number, which is +1 or - .
Spontaneous emission is the phenomenon in which a
photon is emitted when an electron in a high energy
state I, me, ms) with energy £2 spontaneously
falls down to a lower, unoccupied energy state
ilf(n\l'ym

'

e,m
'

s) with energy Ej. The photon energy is
hv = (#2 - Since the emitted photon has an
angular momentum, the orbital quantum number i of
the electron must change, that is A£ = I' - I = ± 1.

State is a possible wavefunction for the electron that
defines its spatial (orbital) and spin properties. For
example, (n, t, mt, ms) is a state of the electron.
From the Schrodinger equation, each state corresponds
to a certain electron energy E. We use the terms state of
energy £, or energy state. There is generally more than
one state t/t with the same energy E.

Stimulated emission is the phenomenon in which an
incoming photon of energy hv = E2 - Ei interacts
with an electron in a high-energy state T/r(n, t,mi,ms)
at £2, and induces that electron to oscillate down to a

lower, unoccupied energy state, x/r (n\ t\ , m's) at Ei.

The photon emitted by stimulation has the same energy
and phase as the incoming photon, and it moves in
the same direction. Consequently, stimulated emission
results in two coherent photons, with the same energy,
traveling in the same direction. The stimulated
emission process must obey the selection rule
Ai = t' - i = ±1, just as spontaneous emission must.

Tunneling is the penetration of an electron through a
potential energy barrier by virtue of the electron'

s

wave-like behavior. In classical mechanics, if the

energy E of the electron is less than the PE barrier V0,
the electron cannot cross the barrier. In quantum
mechanics, there is a distinct probability that the
electron will "tunnel" through the barrier to appear on
the other side. The probability of tunneling depends
very strongly on the height and width of the PE
barrier.

Wave is a periodically occurring disturbance, such as
the displacement of atoms from their equilibrium

. positions in a solid carrying sound waves, or a periodic
variation in a measurable quantity, such as the electric
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field £(.*, t) in a medium or space. In a traveling wave,
energy is transferred from one location to another
by the oscillations. For example, <Ey(xyt) = <E0
sm(kx - cot) is a traveling wave in the x direction,
where k = 2n/\ and co = 2n v. The electric field in the
y direction varies periodically along x, with a period X
called the wavelength. The field also varies with time,
with a period where v is the frequency. The wave
propagates along the x direction with a velocity of
propagation c. Electromagnetic waves are transverse
waves in which the electric and magnetic fields

<Ey{x, t) and Bz(x, t) are at right angles to each other,
as well as to the direction of propagation x. A traveling
wave in the electric field must be accompanied by a
similar traveling wave in the associated magnetic
field Bz(x, t) = Bzo sin(kx - cot). Typical wave-like
properties are interference and diffraction.

Wave equation is a general partial differential equation
in classical physics, of the form

v
2

dx2

d2u

dt2
o

the solution of which describes the space and time
dependence of the displacement u(x,t) from equi-
librium or zero, given the boundary conditions. The
parameter v in the wave equation is the propagation
velocity of the wave. In the case of electromagnetic
waves in a vacuum, the wave equation describes the

variation of the electric (or magnetic) field t) with
space and time, (c2d2<E/dx2) - (d2(E/dt2) = 0, where
c is the speed of light.

Wavefunction V(x,y,z, t) is a probability-based
function used to describe the wave-like properties of a
particle. It is obtained by solving the Schrodinger
equation, which in turn requires a knowledge of the PE
of the particle and the boundary and initial conditions.
The term I C*, y, z, Ol2 is the probability per unit
volume of finding the electron at {x, y, z) at time t. In
other words, \ty(x, y, z, f)l2 dx dy dz is the probability
of finding the electron in the small volume dx dy dz at
(x, y, z) at time t. Under steady-state conditions, the
wavefunction can be separated into a space-dependent
component and a time-dependent component, i.e.,
V(x, y, z, t) = if(x, y, z) exp(-jEt/h),

 where E is

the energy of the particle and fi = h/ln. The spatial
component xl/(x,y,z) satisfies the time-independent
Schrodinger equation.

Wavenumber (or wavevector) k is the number of

waves per In of length, that is, k = In/X.

Work function is the minimum energy required to
remove an electron from inside a metal to vacuum.

X-rays are electromagnetic waves of wavelength typi-
cally in the range 10 pm-1 nm, which is shorter than
ultraviolet light wavelengths. X-rays can be diffracted
by crystals due to their wave-like properties.

QUESTIONS AND PROBLEMS

3
.1 Photons and photon flux

Consider a 1 kW AM radio transmitter at 700 kHz. Calculate the number of photons emitted from
the antenna per second.

The average intensity of sunlight on Earth's surface is about 1 kW m~2. The maximum intensity is
at a wavelength around 800 nm. Assuming that all the photons have an 800 nm wavelength, calcu-
late the number of photons arriving on Earth's surface per unit time per unit area. What is the mag-
nitude of the electric field in the sunlight?

Suppose that a solar cell device can convert each sunlight photon into an electron, which can then
give rise to an external current. What is the maximum current that can be supplied per unit area
(m2) of this solar cell device?

3
.2 Yellow, cyan, magenta, and white Three primary colors, red, green, and blue (RGB), can be added

together in various proportions to generate any color on various displays and light emitting devices in
what is known as the additive theory of color. For example, yellow can be generated from adding red
and green, cyan from blue and green, and magenta from red and blue.

a.

b
.

c.
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a. A device engineer wants to use three light emitting diodes (LEDs) to generate various colors in an
LED-based color display that is still in the research stage. His three LEDs have wavelengths of
660 nm for red, 563 nm for green, and 450 nm for blue. He simply wishes to generate the yellow and
cyan by mixing equal optical powers from these LEDs; optical power, or radiant power, is defined
as the radiation energy emitted per unit time. What are the numbers of red and blue photons needed
(to the nearest integer) to generate yellow and cyan, respectively, for every 100 green photons?

b
. An equi-energy white light is generated by mixing red, green, and blue light in equal optical powers.

Suppose that the wavelengths are 700 nm for red, 546 nm for green, and 436 nm for blue (which is
one set of possible standard primary colors). Suppose that the optical power in each primary color is
0
.1 W. Calculate the total photon flux (photons per second) needed from each primary color.

c. There are bright white LEDs on the market that generate the white light by mixing yellow (a com-
bination of red and green) with blue emissions. The inexpensive types use a single blue LED to
generate a strong blue radiation, some of which is absorbed by a phosphor in front of the LED which
then emits yellow light. The yellow and the blue passing through the phosphor mix and make up
the white light. In one type of white LED, the blue and yellow wavelengths are 450 nm and 564 nm,
respectively. White light can be generated by setting the optical (radiative) power ratio of yellow to
blue light emerging from the LED to be about 1.74. What is the ratio of the number of blue to yel-
low photons needed? (Sometimes the mix is not perfect and the white LED light tends to have a no-
ticeable slight blue tint.) If the total optical power output from the white LED is 100 mW, calculate
the blue and yellow total photon fluxes (photons per second).

3
.3 Brightness of laser pointers The brightness of a light source depends not only on the radiation (op-

tical) power emitted by the source but also on its wavelength because the human eye perceives each
wavelength with a different efficiency. The visual "brightness" of a source as observed by an average
daylight-adapted eye is proportional to the radiation power emitted, called the radiant flux 4>e, and the
efficiency of the eye to detect the spectrum of the emitted radiation. While the eye can see a red color
source, it cannot see an infrared source and the brightness of the infrared source would be zero. The
luminous flux <PV is a measure of brightness, in lumens (1m), and is defined by

<>„ = <t>e x (633 1m W-1) x ifeye [3.57]

where <$>e is the radiant flux or the radiation power emitted (in watts) and rjeye = fayeM is the relative
luminous efficiency (or the relative sensitivity) of an average light-adapted eye which depends on the
wavelength; rj  is a Gaussian looking function with a peak of unity at 555 nm. (See Figure 3.46 for
/7eye vs. A.) One lumen of luminous flux, or brightness, is obtained from a 1.58 mW light source emit-
ting at a single wavelength of 555 nm (green). A typical 60 W incandescent lamp provides roughly
9001m. When we buy a light bulb, we are buying lumens. Consider one 5 mW red 650 nm laser pointer,
and another weaker 2 mW green 532 nm laser: r?eye(650 nm) = 0.11 and eye(532 nm) = 0.86. Find the
luminous flux (brightness) of each laser pointer. Which is brighter? Calculate the number of photons
emitted per unit time, the total photon flux, by each laser.

3
.4 Human eye Photons passing through the pupil are focused by the lens onto the retina of the eye and

are detected by two types of photosensitive cells, called rods and cones, as visualized in Figure 3.46.
Rods are highly sensitive photoreceptors with a peak response at a wavelength of about 507 nm
(green-cyan). They do not register color and are responsible for our vision under dimmed light condi-
tions, termed scotopic vision. Cones are responsible for our color perception and daytime vision,
called photopic vision. These three types of cone photoreceptors are sensitive to blue, green, and red
at wavelengths, respectively, of 430 nm, 535 nm, and 575 nm. All three cones have an overall peak re-
sponse at 555 nm (green), which represents the peak response of an average daylight-adapted eye or in
our photopic vision.

a. Calculate the photon energy (in eV) for the peak responsivity for each of the photoreceptors in the
eye (one rod and three cones).

b
. Various experiments (the most well known being by Hecht et al., 7. Opt. Soc. America, 38, 196,

1942) have tested the threshold sensitivity of the dark-adapted eye and have estimated that visual

Luminous flux,
brightness
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Figure 3.46
(a) The retina in the eye has photoreceptors that carr sense the incident photons on them and hence provide necessary
visual perception signals. It has been estimated that for minimum visual perception there must be roughly 90 photons
falling on the cornea of the eye.
(b) The wavelength dependence of the relative efficiency rjeye(X) of the eye is different for daylight vision, or photopic
vision (involves mainly cones), and for vision under dimmed light, or scotopic vision, which represents the dark-adapted
eye, and involves rods.
(c) SEM photo of rods and cones in the retina.
I SOURCE: Dr. Frank Werblin, University of California, Berkeley.

perception requires a minimum of roughly 90 photons to be incident onto the cornea in front of the
eye

'

s pupil and within 1/10 second. Taking 90 incident photons every 100 ms as the threshold sen-
sitivity, calculate the total photon flux (photons per second), total energy in eV (within 100 ms), and
the optical power that is needed for threshold visual perception.

c. Not all photons incident on the eye make it to the actual photoreceptors in the retina. It has been
estimated that only 1 in 10 photons arriving at the eye's cornea actually make it to rod photore-
ceptors, due to various reflections and absorptions in the eye and other loss mechanisms. Thus,
only nine photons make it to photoreceptors on the retina.14 It is estimated that the nine test pho-
tons fall randomly onto a circular area of about 0.0025 mm2. What is the estimated threshold in-
tensity for visual perception? If there are 150,000 rods mm-2 in this area of the eye, estimate the
number of rods in this test spot. If there are a large number of rods, more than 100 in this spot,
then it is likely that no single rod receives more than one photon since the nine photons arrive ran-
domly. Thus, a rod must be able to sense a single photon, but it takes nine excited rods, somehow
summed up by the visual system, to generate the visual sensation. Do you agree with the latter
conclusion?

d
. It is estimated that at least 200,000 photons per second must be incident on the eye to generate a

color sensation by exciting the cones. Assuming that this occurs at the peak sensitivity at 555 nm,

14 Sometimes one comes across a statement that the eye can detect a single photon. While a rod photoreceptor can
indeed sense a single photon (or, put differently, a photon can activate a single rod), the overall human visual
perception needs roughly nine photons at around 507 nm to consciously register a visual sensation.
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and that as in part (b) only about 10 percent of the photons make it to the retina, estimate the thresh-
old optical power stimulating the cones in the retina.

3
.5 X-ray photons In chest radiology, a patient's chest is exposed to X-rays, and the X-rays passing

through the patient are recorded on a photographic film to generate an X-ray image of the chest for med-
ical diagnosis. The average wavelength of X-rays in chest radiology is about 0.2 A (0.02 nm). Numer-
ous measurements indicate that the patient, on average, is exposed to a total radiation energy per unit
area of roughly 0.1 jiJ cm-2 for one chest X-ray image. Find the photon energy used in chest radiology,
and the average number of photons incident on the patient per unit area (per cm2).

*3
.6 X-rays, exposure, and roentgens X-rays are widely used in many applications such as medical imag-

ing, security scans, X-ray diffraction studies of crystals, and for examining defects such as cracks in ob-
jects and structures. X-rays are highly energetic photons that can easily penetrate and pass though vari-
ous objects. Different materials attenuate X-rays differently, so when X-rays are passed through an
object, the emerging X-rays can be recorded on a photographic film, or be captured by a modem flat
panel X-ray image detector, to generate an X-ray image of the interior of the object; this is called radi-
ography. X-rays also cause ionization in a medium and hence are known as ionization radiation. The
amount of exposure (denoted by X) to X-rays, ionizing radiation, is measured in terms of the ionizing
effects of the X-ray photons. One roentgen (1 R) is defined as an X-ray exposure that ionizes 1 cm3 of

air to generate 0.33 nC of charge in this volume at standard temperature and pressure (STP). When a
body is exposed to X-rays, it will receive a certain amount of radiation energy per unit area, called
energy fluence e, that is, so many joules per cm2

, that depends on the exposure X. If X in roentgens
is the exposure, then the energy fluence is given by

= ["8.73 x 10~6"L j
I   A en.air/Pair J

cm
-2 [3.58]

Fluence and

roentgens

0

X

X-ray image of an American one-cent coin captured using
an X-ray a-Se HARP camera. The first image at the top left
is obtained under extremely low exposure, and the
subsequent images are obtained with increasing exposure
of approximately one order of magnitude between each
image. The slight attenuation of the X-ray photons by Lincoln
provides the image. The image sequence clearly shows the
discrete nature of X-rays, and hence their description in
terms of photons.
I SOURCE: Courtesy of Dylan Hunt and John Rowlands,
I Sunnybrook Hospital, University of Toronto.
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Quantum

efficiency
definition

3
.
9

where is in J cm-2
, and /Xen

.
air/Pair is the mass energy absorption coefficient of air in g cm-2 at the

photon energy £ph of interest; the en,air/Pair values are listed in radiological tables. For example, for
1 R of exposure, X = 1, £ph = 20 keV, and /Xen.

air/Pair = 0.539 cm2 g-1. Equation 3.54 gives vi/£ =
1
.62 x 10-5 J cm-2 incident on the object.

a.    In mammography (X-ray imaging of the breasts for breast cancer), the average photon energy is
about 20 keV, and the X-ray mean exposure is 12 mR. At Eph = 20 keV, /Xen

,
air/Pair =

0
.539 cm2 g 1. Find the mean energy incident per unit area in joJ cm 2, and the mean number of

X-ray photons incident per unit area (photons cm-2), called photon fluence <I>.
In chest radiography, the average photon energy is about 60 keV, and the X-ray mean exposure is
300 jliR. At £ph = 60 keV, en.

air/Pair = 0.0304 cm2 g_1. Find the mean energy incident per unit
area in (iJ cm-2

, and the mean number of X-ray photons incident per unit area.
A modem flat panel X-ray image detector is a large area image sensor that has numerous arrays of
tiny pixels (millions) all tiled together to make one large continuous image sensor. Each pixel is an
independent X-ray detector and converts the X-rays it receives to an electrical signal. Each tiny de-
tector is responsible for capturing a small pixel of the whole image. (Typically, the image resolu-
tion is determined by the detector pixel size.) Each pixel in a particular experimental chest radiol-
ogy X-ray sensor is 150 |im x 150 jam. If the mean exposure is 300 nR, what is the number of
photons received by each pixel detector? If each pixel is required to have at least 10 photons for an
acceptable signal-to-noise ratio, what is the minimum exposure required in nR?

Photoelectric effect A photoelectric experiment indicates that violet light of wavelength 420 nm is the
longest wavelength radiation that can cause the photoemission of electrons from a particular multi-alkali
photocathode surface.

What is the work function of the photocathode surface, in eV?

If a UV radiation of wavelength 300 nm is incident upon the photocathode surface, what will be the
maximum kinetic energy of the photoemitted electrons, in eV?

Given that the UV light of wavelength 300 nm has an intensity of 20 mW cm-2, if the emitted elec-
trons are collected by applying a positive bias to the opposite electrode, what will be the photo-
electric current density in mA cm-2?

Photoelectric effect and quantum efficiency Cesium metal is to be used as the photocathode mater-
ial in a photoemissive electron tube because electrons are relatively easily removed from a cesium sur-
face. The work function of a clean cesium surface is 1.9 eV.

What is the longest wavelength of radiation which can result in photoemission?

If blue radiation of wavelength 450 nm is incident onto the Cs photocathode, what will be the
kinetic energy of the photoemitted electrons in eV? What should be the voltage required on the op-
posite electrode to extinguish the external photocurrent?

Quantum efficiency {QE) of a photocathode is defined by,

b
.

c.

a.

b
.

c.

a.

b
.

c.

Quantum efficiency
Number of photoemitted electrons

Number of incident photons
[3.59]

QE is 100 percent if each incident photon ejects one electron. Suppose that blue light of wavelength 450
nm with an intensity of 30 mW cm is incident on a Cs photocathode that is a circular disk of diame-
ter 6 mm. If the emitted electrons are collected by applying a positive bias voltage to the anode, and the
photocathode has a QE of 25 percent, what will be the photoelectric current?

Photoelectric effect A multi-alkali metal alloy is to be used as the photocathode material in a photoe-
missive electron tube. The work function of the metal is 1.6 eV, and the photocathode area is 0.5 cm2

.

Suppose that blue light of wavelength 420 nm with an intensity of 50 mW cm-2 is incident on the pho-
tocathode.

a.    If the photoemitted electrons are collected by applying a positive bias to the anode, what will be the
photoelectric current density assuming that the quantum efficiency r) is 15 percent? Quantum efficiency

1

i
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as a percentage is the number of photoemitted electrons per 100 absorbed photons and is defined in
Equation 3.60. What is the kinetic energy of a photoemitted electron at 420 nm?

b
. What should be the voltage and its polarity to extinguish the current?

c. What should be the intensity of an incident red light beam of wavelength 600 nm that would give
the same photocurrent if the quantum efficiency is 5 percent at this wavelength? (Normally the
quantum efficiency depends on the wavelength.)

Planck's law and photon energy distribution of radiation Planck's law, stated in Equation 3.9, pro-
vides the spectral distribution of the black body radiation intensity in terms of wavelength through Ix,

intensity per unit wavelength. Suppose that we wish to find the distribution in terms of frequency v or
photon energy hv. Frequency v = c/k and the wavelength range X to X + dX corresponds to a frequency
range v to v + dv. (dX and dv have opposite signs since v increases as X decreases.) The intensity Ix dX
\nXtoX + dX must be the same as the intensity in v to v + dv, which we can write as Iv dv where Iv
is the radiation intensity per unit frequency. Thus,

\dX\
Iv = Ix -

\dv I

The magnitude sign is needed because X = c/v results in a negative dX/dv, and Iv must be positive by
definition. We can simply substitute X = c/v for X in Ix and obtain Ix as a function of v,

 and then find

\dX/dv\ to find Iv from the preceding expression.
Show thata.

Iv
27t(hv)3

c2h3[exp(-hv/kT) - 1]
[3.60]

b
.

Equation 3.60 is written to highlight that it is a function of the photon energy hv, which is in joules
in Equation 3.60 but can be converted to eV by dividing by 1.6 x 10-19 J cV-1.

If we integrate Iv over all photon energies (numerically on a calculator or a computer from 0 to say
6 eV), we would obtain the total intensity at a temperature 7. Find the total intensity It emitted at
T = 2600 K (a typical incandescent light bulb filament temperature) and at 6000 K (roughly
representing the sun

'

s spectrum). Plot y = Iv/It versus the photon energy in eV. What are the
photon energies for the peaks in the distributions? Calculate the corresponding wavelength for
each using X = c/v and then compare these wavelengths with those predicted by Wien's law,

max  ~ 2.89 x 10-3mK.

Wien's law The maximum in the intensity distribution of black body radiation depends on the tem-
perature. Substitute x = hc/(XkT) in Planck'

s law and plot Ix versus x and find A-max which corre-
sponds to the peak of the distribution, and hence derive Wien'

s law. Find the peak intensity wavelength
max for a 40 W light bulb given that its filament operates at roughly 2400 0C.

Diffraction by X-rays and an electron beam Diffraction studies on a polycrystalline Al sample using
X-rays gives the smallest diffraction angle (20) of 29.

5° corresponding to diffraction from the (111)
planes. The lattice parameter a of Al (FCC), is 0.405 nm. If we wish to obtain the same diffraction pat-
tern (same angle) using an electron beam, what should be the voltage needed to accelerate the electron
beam? Note that the interplanar separation d for planes (h,k,l) and the lattice parameter a for cubic
crystals are related by d = a/(h2 + k2 + i2)l/2.

Heisenberg's uncertainty principle Show that if the uncertainty in the position of a particle is on the
order of its de Broglie wavelength, then the uncertainty in its momentum is about the same as the mo-
mentum value itself.

Heisenberg's uncertainty principle An excited electron in an Na atom emits radiation at a wave-
length 589 nm and returns to the ground state. If the mean time for the transition is about 20 ns, calcu-
late the inherent width in the emission line. What is the length of the photon emitted?

Black body
photon energy
distribution
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3
.15 Tunneling

a. Consider the phenomenon of tunneling through a potential energy barrier of height V0 and width a,
as shown in Figure 3.16. What is the probability that the electron will be reflected? Given the
transmission coefficient T, can you find the reflection coefficient Rl What happens to R as a or V0
or both become very large?

b
. For a wide barrier (aa > 1), show that T0 can at most be 4 and that T0 = 4 when E = 5 V0.

3
.16 Electron impact excitation

a. A projectile electron of kinetic energy 12.2 eV collides with a hydrogen atom in a gas discharge
tube. Find the nth energy level to which the electron in the hydrogen atom gets excited.

b
. Calculate the possible wavelengths of radiation (in nm) that will be emitted from the excited H

atom in part (a) as the electron returns to its ground state. Which one of these wavelengths will be
in the visible spectrum?

c. In neon street lighting tubes, gaseous discharge in the Ne tube involves electrons accelerated by the
electric field impacting Ne atoms and exciting some of them to the 2p53pl states, as shown in Fig-
ure 3.42. What is the wavelength of emission? Can the Ne atom fall from the 2p53pl state to the

ground state by spontaneous emission?

3
.17 Line spectra of hydrogenic atoms Spectra of hydrogen-like atoms are classified in terms of electron

transitions to a common lower energy level.

a. All transitions from energy levels n = 2,3,...ton=l (the K shell) are labeled K lines and con-
stitute the Lyman series. The spectral line corresponding to the smallest energy difference (n = 2
ton = 1) is labeled the Ka line, next is labeled AT , and so on. The transition from n = 00 to n = 1
has the largest energy difference and defines the greatest photon energy (shortest wavelength) in
the K series; hence it is called the absorption edge Kae. What is the range of wavelengths for the
K lines? What is Kae? Where are these lines with respect to the visible spectrum?

b
. All transitions from energy levels n = 3,4,... to n = 2 (L shell) are labeled L lines and constitute

the Balmer series. What is the range of wavelengths for the L lines (i.e., La and Lag)? Are these
in the visible range?

c. All transitions from energy levels n = 4, 5,... to n = 3 (M shell) are labeled M lines and consti-
tute the Paschen series. What is the range of wavelengths for the M lines? Are these in the visible
range?

d
. How would you expect the spectral lines to depend on the atomic number Z?

3
.18 Ionization energy and effective Z

a. Consider the singly ionized Li ion, Li+, which has lost its 2s electron. If the energy required to ion-
ize one of the Is electrons in Li+ is 18.9 eV, calculate the effective nuclear charge seen by a Is elec-
tron, that is, Zeffective in the hydrogenic atom ionization energy expression in Equation 3.45;
El

,
n = (Zeffective/")2(13.6eV).

b
. The B atom has a total of five electrons, two in the 1 s orbital, two in the 2s, and one in the 2p. The

experimental ionization energy of B is 8.30 eV. Calculate Zeffective-
c. The experimental ionization energy of Na is 3.49 eV. Calculate the effective nuclear charge seen by

the 3s valence electron.

d
. The chemical tables typically list the first, second, and third ionization energies £1, E2, £3, re-

spectively, and so on. Consider Al. E\ represents the energy required to remove the first electron
from neutral Al; £2, the second electron from Al+; £3, the third electron from Al2"1" to generate
Al3+. For Al, experimentally, £1 = 6.0 eV, £2 = 18.8 eV, and £3 = 28.4 eV. For each case find
the Zeffective seen by the electron that is removed.

3
.19 Atomic and ionic radii The maximum in the radial probability distribution of an electron in a hydrogen-

like atom is given by Equation 3.38, that is, rmax = (n2a0)/Z, for i = n - 1. The average distance r of
an electron from the nucleus can be calculated by using the definition of an average and the probability
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distribution function Pn
,
t(r), that is,

poo
rPnAr) dr

aoti2 f 3
~

Y [2 2n2

in which the right-hand side represents the result of the integration (which has been done by physicists).
Calculate rmax and 7 for the 2p valence electron in the B atom. Which value is closer to the radius of the
B atom, 0.085 nm, given in the Period Table? Consider only the outermost electrons, and calculate

average for Li, Li+, Be2+, and B, and compare with the experimental values of the atomic or ionic sizes:
0
.
15 nm for Li, 0.070 nm for Li+, 0.035 nm for Be2+, and 0.085 nm for B.

*3
.20 X-rays and the Moseley relation X-rays are photons with wavelengths in the range 0.01-10 nm, with

typical energies in the range 100 eV to 100 keV. When an electron transition occurs in an atom from the
L to the K shell, the emitted radiation is generally in the X-ray spectrum. For all atoms with atomic
number Z > 2, the K shell is full. Suppose that one of the electrons in the K shell has been knocked out
by an energetic projectile electron impacting the atom (the projectile electron would have been acceler-
ated by a large voltage difference). The resulting vacancy in the K shell can then be filled by an electron
in the L shell transiting down and emitting a photon. The emission resulting from the L to K shell tran-
sition is labeled the Ka line. The table shows the Ka line data obtained for various materials.

Average distance
of electron from
nucleus

Material

Mg Al S Ca Cr Fe Cu Rb W

Z 12

 line (nm) 0.987

13 16 20

0
.
834     0.537 0.335

24 26 29 37 74

0
.
229     0.194     0.154     0.093 0.021

a. If v is the frequency of emission, plot v1/2 against the atomic number Z of the element.
b

. H. G. Moseley, while still a graduate student of E. Rutherford in 1913, found the empirical rela-
tionship

,1/2 B(Z - C)

where B and C are constants. What are B and C from the plot? Can you give a simple explanation
as to why Ka absorption should follow this relationship?

Moseley relation

f

if

i1

11

3*.

Henry G.J. Moseley (1887-1915), around 1910, carrying
out experiments at Balliol-Trinity Laboratory at Oxford.
I SOURCE: University of Oxford Museum of Science, courtesy
I AIP Emilio Segre Visual Archives.
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Spin magnetic
moment

Electron spin in
a magnetic field

3
.21 The He atom Suppose that for the He atom, zero energy is taken to be the two electrons stationary at

infinity (and infinitely apart) from the nucleus (He++). Estimate the energy (in eV) of the electrons in
the He atom by neglecting the electron-electron repulsion, that is, neglecting the potential energy due to
the mutual Coulombic repulsion between the electrons. How does this compare with the experimental
value of -79 eV? How strong is the electron-electron repulsion energy?

3
.22 Excitation energy of He In the HeNe laser, an energetic electron is accelerated by the applied field

impacts and excites the He from its ground state, Is2, to an excited state He*, Is12s1, which has one of
the electrons in the 2s orbital. The ground energy of the He atom is -79 eV with respect to both elec-
trons isolated at infinity, which defines the zero energy. Consider the \sl2sl state. If we neglect the
electron-electron interactions, we can calculate the energy of the Is and 2s electrons using the energy
for a hydrogenic atom, En = - (Z2//i2)(13.6 eV). We can then add the electron-electron interaction
energy by assuming that the Is and 2s electrons are effectively separated by 3a0, which is the difference,
4a0 - la0, between the Is and 2s Bohr radii. Calculate the overall energy of He* and hence the excita-
tion energy from He to He*. The experimental value is about 20.6 eV.

3
.23 Electron affinity The fluorine atom has the electronic configuration [¥le]2s2p5. The F atom can actu-

ally capture an electron to become a F
"

 ion, and release energy, which is listed as its electron affinity,
328 kJ mol-1. We will assume that the two Is electrons in the closed K shell (very close to the nucleus)
and the two electrons in the 2s orbitals will shield four positive charges and thereby expose
+9e - 4e = +5e for the 2p orbital. Suppose that we try to calculate the energy of the F~ ion by simply
assuming that the additional electron is attracted by an effective positive charge, +e(5 - Zip) or
-1-eZeffective, where Zip is the overall shielding effect of the five electrons in the 2p orbital, so that the
tenth electron we have added sees an effective charge of H-eZeffective- Calculate Zip and Zeffective- The F
atom does not enjoy losing an electron. The ionization energy of the F atom is 1681 kJ mol-1

.
 What is

the Zeffective that is experienced by a 2p electron? (Note: 1 kJ mol-1 = 0.01036 eV/atom.)

*3
.24    Electron spin resonance (ESR)   It is customary to write the spin magnetic moment of an electron as

Mspin" 2m.

where S is the spin angular momentum, and g is a numerical factor, called the g factor, which is 2 for a
free electron. Consider the interaction of an electron's spin with an external magnetic field. Show that
the additional potential energy Ess is given by

Ess = -P&isB

where P = efi/2me is called the Bohr magneton. Frequently electron spin resonance is used to exam-
ine various defects and impurities in semiconductors. A defect such as a dangling bond, for example,
will have a single unpaired electron in an orbital and thus will possess a spin magnetic moment. A strong
magnetic field is applied to the specimen to split the energy level E\ of the unpaired spin to two levels
£i - Ebs and Ei + Ebs* separated by AEbs- The electron occupies the lower level E\ - Ebs- Elec-
tromagnetic waves (usually in the microwave range) of known frequency v, and hence of known pho-
ton energy hv, are passed through the specimen. The magnetic field B is varied until the EM waves are
absorbed by the specimen, which corresponds to the excitation of the electron at each defect from
£i - Ebs to E\ + Ebs, that is, hv = AEbs at a certain field B. This maximum absorption condition is
called electron spin resonance, as the electron

's spin is made to resonate with the EM wave. If B = 2 T,
calculate the frequency of the EM waves needed for ESR, taking g = 2. Note: For many molecules, and
impurities and defects in crystals, g is not exactly 2, because the electron is in a different environment in
each case. The experimentally measured value of g can be used to characterize molecules, impurities,
and defects.

3
.25 Spin-orbit coupling An electron in an atom will experience an internal magnetic field 2?int because,

from the electron's reference frame, it is the positive nucleus that is orbiting the electron. The electron
will "see

" the nucleus, take as charge H-e, circling around it, which is equivalent to a current / = +ef
where / is the electron's frequency of rotation around the nucleus. The current / generates the internal
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3
.
26

3
.
27

magnetic field 2?jnt at the electron. From electromagnetism texts, 2?jnt is given by

n
 Vol

where r is the radius of the electron's orbit and /x0 is the absolute permeability. Show that

Bint
27tmer*

Consider the hydrogen atom with Z = 1, 2p orbital, n = 2, t = 1, and take r % n2a0. Calculate B t.
The electron's spin magnetic moment |xspin will couple with this internal field, which means that

the electron will now possess a magnetic potential energy Est that is due to the coupling of the spin with
the orbital motion, called spin-orbit coupling. E will be either negative or positive, with only two
values, depending on whether the electron'

s spin magnetic moment is along or opposite Bint, Take z
along 2?int so that Est = - mtMspm,

 z, where £iSpin,z is /xSpin along z, and then show that the energy E2
of the 2p orbital splits into two closely separated levels whose separation is

AEsl (£)»
Calculate A Est in eV and compare it with E2(n - 2) and the separation A£ = £2 - £1 . (The exact
calculation of Est is much more complicated, but the calculated value here is sufficiently close to be
useful.) What is the effect of Esl on the observed emission spectrum from the H-atom transition from 2p
to Is? What is the separation of the two wavelengths? The observation is called fine structure splitting.

Hund's rule For each of the following atoms and ions, sketch the electronic structure, using a box for
an orbital wavefunction, and an arrow (up or down for the spin) for an electron.

Aluminum, [Ne]35y /    Titanium, [Ar]3</24s2a.

b
.

c.

d
.

e.

Silicon, [Ne]3s2/>2

Phosphorus, [Ne]3s V

Sulfur, [Ne]3sy

Chlorine, [Ne]3sy

8-

h
.

L

J-

Vanadium, [Ar]3d34s2
Manganese, [Ar]3d54s2
Cobalt, [Ar]3J7452
Cu2+, [Ar]3rf9450

Hund's rule The carbon atom has the electronic structure 2s22p2 in its ground state. The ground state
and various possible excited states of C are shown in Figure 3.47. The following energies are known for
the states a to e in Figure 3.47, not in any particular order: 0, 7.3 eV, 4.1 eV, 7.9 eV, and 1.2 eV. Using
reasonable arguments match these energies to the states a toe. Use Hund'

s rule to establish the ground
state with 0 eV. If you have to flip a spin to go from the ground to another configuration, that would cost
energy. If you have to move an electron from a lower s to p or from p to a higher s, that would cost a
lot of energy. Two electrons in the same orbital (obviously with paired electrons) would have substantial
Coulombic repulsion energy.

Internal

magnetic field at
an electron in

an atom

Spin-orbit
coupling
potential energy

me -1

35

0 1

2p

2s

11 tt
t

NTH ITTT1 G
t

Figure 3.47
Some possible states of the
carbon atom, not in any
particular order.

a b c d e

3
.28     The HeNe laser  A particular HeNe laser operating at 632.8 nm has a tube that is 40 cm long. The op-

erating gas temperature is about 130 0C
.

a.   Calculate the Doppler-broadened linewidth AX in the output spectrum.
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b
. What are the n values that satisfy the resonant cavity condition? How many modes are therefore al-

lowed?

c. Calculate the frequency separation and the wavelength separation of the laser modes. How do these
change as the tube warms up during operation? Taking the linear expansion coefficient to be 10~6

K-1
, estimate the change in the mode frequency separation.

3
.29 Er3* -doped fiber amplifier When the Er3* ion in the Er3+-doped fiber amplifer (EDFA) is pumped

with 980 nm of radiation, the Er3"1" ions absorb energy from the pump signal and become excited to £3
(Figure 3.44). Later the Er3"1" ions at £2 are stimulated to add energy (coherent photons) to the signal
at 1550 nm. What is the wasted energy (in eV) from the pump to the signal at each photon amplifica-
tion step? (This energy is lost as heat in the glass medium.) An Er-doped fiber amplifier is 10 m long,
and the cross section of the core is 5 (im. The Er concentration in the core is 1018 cm

-3
.
 The nominal

power gain of the amplifier is 100 (or 20 dB). The pump wavelength is 980 nm, and the signal wavelength
is 1550 nm. If the output power from the amplifier is 100 mW and assuming the signal and pump are
confined to the core, what is the minimum intensity of the pump signal? How much power is wasted in
this EDFA? (The pump must provide enough photons to pump the Er3"1" ions needed to generate the ad-
ditional output photons over that of input photons. The concentration of Er3+ ions in the fiber is given
for information only.)

1       

TTTT

1

35

.5

iillill
1

m1

J
.

Wolfgan Pauli (1900-1958) won the Nobel prize in 1945 for his
contributions to quantum mechanics. His exclusion principle was
announced in 1925. "I don't mind your thinking slowly; I mind your
publishing faster than you think." (Translation from German. Attributed
to Pauli by H. Coblaus. From A. L. Mackay, A Dictionary of Scientific
Quotations, Bristol3. IOP Publishing, 1991, p. 191.)

I SOURCE: AIP Emilio Segre Visual Archives, Goudsmit Collection.

Arthur Holly Compton (1892-1962) won the Nobel prize in
physics in 1927 for his discovery of the Compton effect with
C

.
 T. R. Wilson in 1923.

SOURCE: King Features Syndicate, Inc., New York and
Argonne National Laboratory, courtesy AIP Emilio Segre
Visual Archives.
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Theodore Harold Maiman was born in 1927 in Los Angeles, son of an electrical
engineer. He studied engineering physics at Colorado University, while repairing
electrical appliances to pay for college, and then obtained a Ph.D. from Stanford.
Theodore Maiman constructed this first laser in 1960 while working at Hughes
Research Laboratories. There is a vertical chromium ion-doped ruby rod in the
center of a helical xenon flash tube. The ruby rod has mirrored ends. The xenon
flash provides optical pumping of the chromium ions in the ruby rod. The output is a
pulse of red laser light.
I SOURCE: Courtesy of HRL Laboratories, LLC, Malibu, California.
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The patent for the invention of the laser by Charles H. Townes and
Arthur L. Schawlow in 1960 (Courtesy of Bell Laboratories). The laser
patent was later bitterly disputed for almost three decades in "the

patent wars
" by Gordon Gould, an American physicist, and his

designated agents. Gordon Gould eventually received the U.S. patent
for optical pumping of the laser in 1977 since the original laser
patent did not detail such a pumping procedure. In 1987 he also
received a patent for the gas discharge laser, thereby winning his
30 year patent war. His original notebook even contained the word
laser.
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Motorola's prototype flat panel display based on the Fowler-Nordheim field emission principle. The
display is 14 cm in diagonal and 3.5 mm thick with a viewing angle 160°. Each pixel (325 /xm thick)
uses field emission of electrons from microscopic sharp point sources (icebergs). Emitted electrons
impinge on colored phosphors on a screen and cause light emission by cathodoluminescence. There
are millions of these microscopic field emitters to constitute the image.
I SOURCE: Courtesy of Dr. Babu Chalamala, Flat Panel Display Division, Motorola.

Left: A scanning electron microscope image of an array of electron field emitters (icebergs). Center:
One iceberg. Right: A cross section of a field emitter. Each iceberg is a source of electron emission
arising from Fowler-Nordheim field emission; for further information see B. Chalamala, et al., IEEE
Spectrum, April 1998, pp. 42-51.
I SOURCE: Courtesy of Dr. Babu Chalamala, Flat Panel Display Division, Motorola.
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Modern Theory of Solids

One of the great successes of modem physics has been the application of quantum
mechanics or the Schrodinger equation to the behavior of molecules and solids. For
example, quantum mechanics explains the nature of the bond between atoms, and its
consequences. How can carbon bond with four other carbon atoms? What determines
the direction and strength of a bond? An intuitively obvious outcome from quantum
mechanics is that the energy of the electron is still quantized in the molecule. In addi-
tion, the application of quantum mechanics to many atoms, as in a solid, leads to en-
ergy bands within which the electron energy levels are almost continuous. The electron
energy falls within possible values in a band of energies. It is nearly impossible to
comprehend the principles of operation of modem solid-state electronic devices with-
out a good grasp of the band theory of solids. Since we are dealing with a large num-
ber of electrons in the solid, we must consider a statistical way of describing their
behavior, just as we use the Maxwell distribution of velocities to explain the behavior
of gas atoms. An equally important question, therefore, is "What is the probability that
an electron is in a state with energy E within an energy band?

"

4
.1    HYDROGEN MOLECULE: MOLECULAR ORBITAL

THEORY OF BONDING

Consider what happens when two hydrogen atoms approach each other to form the
hydrogen molecule. This is the H-H (or H2) system. Let us examine the energy levels
of the H-H system as a function of the interatomic distance R. When the atoms are in-

finitely separated, each atom has its own set of energy levels, labeled Is, 2 , 2/?, etc.
The electron energy in each atom is -13.6 eV with respect to the "free" state (electron
infinitely separated from the parent nucleus). The energy of the two isolated hydrogen
atoms is twice -13.6 eV.

As the atoms approach closer, the electrons interact both with each other and with
the other nuclei. To obtain the wavefunctions and the new energy of the electrons, we

285
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need to find the new potential energy function PE for the electrons in this new envi-
ronment and then solve the Schrodinger equation with this new PE function. The new
energy is actually lower than twice -13.6 eV, which means that the H2 formation is
energetically favorable.

The bond formation between two H atoms can be easily explained by describing
the behavior of the electron within the molecule. We use a molecular orbital xjr, which
depends on the interaction of individual atomic wavefunctions and is regarded as an
electron wavefunction within the molecule.

In the H2 molecule, we cannot have two sets of identical atomic yj/\s orbitals, for
two reasons. First, this would violate the Pauli exclusion principle, which requires that,
in a given system of electrons (those within the H2 molecule), we cannot have two sets
of identical quantum numbers. When the atoms were separated, we did not have this
problem, because we had two isolated systems.

Second, as the two atoms approach each other, as shown in Figure 4.1, the atomic
\lf\s wavefunctions overlap. This overlap produces two new wavefunctions with differ-
ent energies and hence different quantum numbers. When the two atomic wavefunctions
interfere, they can overlap either in phase (both positive or both negative) or out of phase

-0
'

 QJi

A

Two hydrogen atoms
approaching each other.

r

R = oo B

1 1 Bonding molecular orbital i L dH

a

r

* = V>lj(>-A)-</>lj(rB)
Antibonding molecular orbital

Figure 4,1   Formation of molecular orbitals, bonding, and antibonding and
xjfo*) when two H atoms approach each other.
The two electrons pair their spins and occupy the bonding orbital V'W-
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(one positive and the other negative), as a result of which two molecular orbitals are
formed. These are conventionally labeled  and as illustrated in Figure 4.1. Thus,
two of the molecular orbitals in the H-H system are .

fa = f\s(rA) + Vi fi)

fa*
 = fuirA) - fis(rB)

[4.1]

[4.2]

where the two hydrogen atoms are labeled A and B, and rA and rB are the respective
distances of the electrons from their parent nucleus. In generating two separate molec-
ular orbitals fa and fa* from a linear combination of two identical atomic orbitals fiS9
we have used the linear combination of atomic orbitals (LCAO) method.

The first molecular orbital fa is symmetric and has considerable magnitude be-
tween the nuclei, whereas the second fa*, is antisymmetric and has a node between the
nuclei. The resulting electron probability distributions \fa\2 and \fa*\2 are shown in

Figure 4.2.
In an analogy to hydrogenic wavefunctions, since fa* has a node, we would

expect it to have a higher energy than the fa orbital and therefore a different energy
quantum number, which means that the Pauli exclusion principle is no longer violated.
We can also expect that because \fa\2 has an appreciable electron concentration be-
tween the two nuclei, the electrostatic PE, and hence the total energy for the wave-
function fa, will be lower than that for fa*, as well as those for the individual atomic
wavefunctions.

Of course, the true wavefunctions of the electrons in the H2 system must be deter-
mined by solving the Schrodinger equation, but an intelligent guess is that these must
look like fa and fa*. We can therefore use fa and fa* in the Schrodinger equation,
with the correct form of the PE term V, to evaluate the energies Ea and Ea* of fa and
fa*, respectively, as a function of R. The PE function V in the H-H system has
positive PE contributions arising from electron-electron repulsions and proton-proton

H H H H

2

(a) Electron probability distributions for bonding and antibonding orbitals,7/ and f *-

(b) Lines representing contours of constant probability (darker lines represent
greater relative probability).

Figure 4.2
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Half-fo«»   I dl'V/ \       f 41 1- /

nJ \J''
Funp

y
 1 !

F H-F

frgps-m       H bets one hoSem y #1«odrftoi.
F bos orts? hatfemply pK orbttal by? fwfS py and p2 orbfefe. Th© <3¥®rfcsp baiween j, and   produces a
bonding ejbisd end or ar bonding odbad. lis® s-*t5 eledrom BIS *e faondjng ©rbffef end Sheraby fewn o
covaienJ bond b vraen H and F.
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m

Energy Ban© Formation
4

When we bring three hydrogen atoms (labeled A, Bf MB.d C) together, we generate
three separate molecular orbital states, s#a,  and from ihree  atomic states,
Again, this occurs in three different ways, as illustrated in Figure

'

4
u
7t, As In the

case of the H-z molecule, each molecular orbital must be either xymmetrie, or anti-
symmetric with respect to center 

"atom B.1 The orb-isaJs thM satisfy even and odd
requirements are

 = u(A) - u{C)     * [4«
c = #!ff(A) - uC

.

 + 143d

where V'"(i»(A), and #;
,,(€) are tlie !.v atomic wavefunctions centered around

tihe atoms A, B* and C, respectively, as shown in Figure 4.7a. For example,
 the wave-

ction fu(A) represents '#!
.,(/>.), which is centered around A and has the form

(- r /fiQ, where is tlie distance from the nucleus of A, am! is the Bohr radius,
ice that is missing in Eqoaiiso 4t3b30  is aalisymmeliic.
The energies Ea, E  'knd Ec of fc,.      and -' m be calculated from the

finger equation by using the     fusction of this system (the PE also Inefcd
iton-protoB repalsioes),. It is clear that since fa>     and # are different, their
gies £«,     and Eh are also different Consequently, the is energy level splits into

separate levels, corresponding to the energies of fet     and     as depicted by
re 4.7b,. By analogy with the electron wavefunctions in the hydrogen atom, we can

ae that if the molecular wavefunduxi has more nodes, its mergy is higher. Thus, 4'a
i the lowest energy Ea,    has the nest higher energy     and    has the highest
ergy Ect m shown in Figure 4.7b. There are three electrons In die three-hydrogen
stem. The first two pair their spins and enter otirital    at energy Eav and die third
iters orbital.  at energy Et. Comparing F(g«re§ 4.7 and 4,3, we notice -that although

3 and H3 both have two eHecirons in the lowest energy level, 1% also has an extra elec-
s at the higher ene!g>r level      which tends to increase tie

'

net energy of the atom.
Ibis, the H3 molecule is much less stable than the H2 molscule.2

Now consider the formation of a solid. Take N LI (lithium) atoms from infinity
bring them together to form the Li metal. Lithium hf*; the electronic configuration

s22s
i
, which is somewhat like the hydrogen atom, since She K shell is closed and the

aid electron is alone In the 2s orbital.

W

Based on our previous discussions, we: assume that the atomic energy levels wiil
4

spill, into N separate energy levels. Since the 1 s subshell is fuai and is close to the nucleus
will not be affected much by the interatomic inteiscticn§;, consequently, she energ;

»! Vne reason is Ihot she molecule A-B-C, when A, 8, and C are kfsntlcai ctom. is symmetric with respect to 8. Thus
ItetKh wjwfurvcSoti im/ti havs odki or mm pariiy jChcpjer 2),
trSee G. Pimwite! and R, Spsoifey, IJndsnkmlsrtg Cherahtr/, Son Francisco: Holden-Day, Inc., J 972, pp. 682-687
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tim state wall experience only KsgEigiHe spliuing, if any. Simce the is etectrons will stay
close so their pmmt nuclei we will soil consider them during fotms&m of Ae solid,

In the system ©if N isolated LI atoms, we have Jtf elecfons in iV ©stltels at tihe
energy as- illustrated in Figure 4.8 (at inftnite intteratomic separation). Let us
assume that N is large (typically, ~ 1025). As i¥ atoms sire brought togetlher to form the
solid, the energy level at splits into N finely parated energy levels. 

'

The majdraasm

width of die energy splitting depends on the closest interatomic distance a in the solid,
as apparent In Bgore 43a. The atoms separated by a distance gseaSer tharj J? ~ a give

rise to a lesser amount of energy splitting. The interatounlc anieractkwns between
orbitals thus spread the N energy levels Ibetween the bottom and top levels, Eb and £y,
respectively, which are determined fey the closest interatomic distance a. Put differently,
Eb and £T atre determined by the distance between nearest neigMsors. It is obvious that
with N very large, the energy separation between two consecutive energy levels is very
small; indeed, it is almost infsnitesimal ami not as exaggerates, as in Figux 4.8.

Remember that each energy level E-, m the LI metal of Figure 4.8 is the energy of
an electron wavefanction feikiCO in the solid, where f mii) as one particular combi-
nation of the N atomic wavefunctions There are N different ways to comMne N
atomic wavefunctions a*. since each can be- added in phase or out of phase., as. is ap-
parent In Equations 4.3a to c (see also Figure 4.7a and b). For example, when all N $2*
are summed in phase, the resulting wavefiunctson itmsail) is Hike fa m Em&tim 4.3a,
and it has Che lowest energy. On the other hand, when N      are summed w:lh
alternating phases, H 1 , the resulting wavefunction ir» d(N) is lake i/rc, and it
ha9 the highest energy. Other ccsmbinations of give rise to different energy values
between Eg and Et.

The single 2s energy level E  therefore splits into N ( iO ) Sncly separated
energy levels, forming an emstgy feaiutf]  as illustraled in Figure 4.8. Consequently,
them are N separate energy levels, each, of which can take two electrons with opposite
spins. Hie N electrons fill all the levels up to and Including the [eve! at N/2. Tnere-
fore, the band is half fall. We do not mean literally that the hsM Is fcl to the half-
enetgy point The levels are not spread equally over the band from Eg to £>* which
means that the band cannot be MI to tie half-energy point Half filled simply means
half the states in the band are filled from the bottom up.

We have generated a half-filled band from a half-filled Isolated 2s energy level.
The energy band resulting from the splitting of the atomic 2s energy level is loosely
termed the 2s taML By the same token, the atomic I s levels are full, so say Is band that
forms from these Is states will also be fiii. We can get an Idea of the separation of en-
ergy levels in the 2s hand by noting that the maximum separation, Br - Eg, between
the top and bottom of the band is on the order of 10 eV, but there are some I023 atoms,
giving rise to 1023 energy levels between Eg and Er. Thus, the energy levels are finely
separated, forming, for all practical purposes, a continuum of energy levels.

The 2p energy level, as well as the higher levels at 3s and so on, also split into
finely separated energy levels, as shown in Figure 4,9. In fact, some of these energy
levels overlap the 2* band; hence, they provide further energy levels and "extend53 the
2s band into higher energy levels, as Indicated In Figitre 4J0t which shows how en-
ergy bands in metals are often represented!. The vertical axis is the electron energy. The
top of the 2s band, which is half full, overlaps the bottom of the 2p band, which itself
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Figor® -cf As U atoms are brought together
from infinity, the atomic orbftals overbp and
give rise to bands.
Outer orbitals own-lap first;. The 3s orbitols give
rise to the 3s hasxi, 2p omilais to the 2p bai
and so or. The various bands overlap to
produce a sfagb bond in whteh the- energy is
nearly continuous.
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is overlapped near the top by the 3s band* We therefore have a band of energies that
stretches from the bottom of the 2s band all the way to the v&cimm level, as depicted
in Figare 4,11. The reader may wonder what happened to the 3d, 4s, etc., bands. la tlw
solid, the energies of these bands (including the top portion of the 3s band) are above
the vacuum level, and the electron is free and far from the solid before it cars acqmte
those energies.

At a temperature of absolute zero, or nearly so, the thermal energy is Insuffjcient to
excite the electrons to higher energy leve!s;. so aJ! the electrons pair their spins and fill
each energy level from Eg up to an energy level Efo that we call the Fermi, level at 0 K,
as shown in Figure 4.1 L The eascgy value for the Fermi level depraids m where we take
the ref ence ©nergy. For examptes if we tafcs ttie vacuum level as tbe zero reference,, ther:
for the Li metal, Efq is at -2.5 eV. Th® Fermi level is noimally measured, with respect to
the bo om of the ted, in which case, it is simply termed the Fermi energy and denoted
Efo- For the U metal, Epo is 4.7 eV, which is with respect to the bottom of the ba»<t Hie
Feirtsi level has considerable significance, as we will discover later in this chapter.
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wMch become free m the cnystal and ttosfey form a Msd of<£edfenKa pus. It is this eleo-
am gas that fedids the metal ion® itsgetlbieir te tike srystaS stmcfefe asd ooffisdteifes fte
iseCaMc bond This initaMve icteipjetation is shown 3a Hgsire 43, When solid Li is
fbnoed fesm iV atoms, the N eleddroos fill all ithe lower eiaeirgy EeveLs uip to N/2, He
aieigy of the system of N Li atoms, acccading to Figore 4.9, is tteirefore rawdi less

toi that of iV iisolatedi O stoim by virtue of fee ekcteons taking up kmes vmrgy
kmiu. it must be emphadaed that te ©lecterns wilhfe a baad do nofi ibelcag to any

pedSc atom bat to lie whole solid. Wis cannot identify a given eJectoon in else bmd
with a cercam LI atom. At! tike 2? electrons esseatiaUy form an etecttOK gas and have
siiisipes thM fall within the enengy basid. TTfiese electtosis aire constantly aaoving
n nd in Sus metal wMdi an tenra® of QaanteiKi mectemcs means tib.at tihdr wave-
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4 - ,2 '?Mw-£frnm or Elections m a Band

Since ifee efecfrons kride the me l crystal are considered to be 5*ffee,M ihmr m&gy Is
l££.. Tliese efectioas occupy all efoe ensfgy levels up to S>o as shown in t&e band dia-
gram of Figure 4 J 2a. The eneirgy £ of an electron in a snesaS incteases with its mo-

nuentum p as p2/2me* Figiers 412b shows the energy vorsKS momatittsra behavior of
the eleciroas in a. hypotheticaS OKe-diraeasionai ciystaJ. The energy kfcseases with mo-
mentum whether the eteclron « moving toward the left or right Eledtrofis lake on all
available tnomeatom values mtil their energy retctes E

'

o- Fca1 every cSecasa feat is
sriovirtg right (soc)t as a), *©re is mother (such as I?) with ihe saase eneigy but nKsvkg
Jell with the saane magnatyde erf racMnenttim,, Ihm, the avamge monemum is zoo and
there is no net current.

Consider what happens when an electric field 2* is sppSied in die -x direction.
The electeon a at the Fermi level and inc-viag along sn ?he -far diiecdon experiences a

force along tfm same direction. It tihersfofe accelerates and gabs m<wnaRt«m and
hence has tihe energy as shown m Figure 4.12c... (The scteal energy gained from the

field is very sm&K coospaisd with Sfo, so Figure 4J 2c is highly exaggerated.) The
electron a at Epo can move to higher energy levels because &ese adjaceat higher lev-
els are empty. The momentum slate vacated by a is fiifed by the electmn mjiifiedaafcly
below which now gains energy and moves up, and so on. Aa election that is moving in
the -x direction, however, is decelerated (its raomentam decreases) and hence loses
energy as indicated by b moving to b* m Figure 4 J2c. The electrons ttmt are moving
in the -f-Jf direction gam energy, and chose feat are movxag in the -x direction, iiose en-
srgy.. The whole electron momentum distiteiot! therefore shifts m tfie +x direction as
in Figure 4. J2c. Eventually the electron a, now at a", is scattered by a lattice vibration.

lempty states

mi. -

(a)

1 Latecs p
scattering ga'

p . - o

ft

v>0

(a) Energy band diagram of a metal.
}b| !n the absanc© of a field, ©re are as rnany dsdrom msmr j ffgftf as ttwre are moving iefi. iTiKe motions of two elecSroris
at each energy cancel each other as for a and fa.
(c| in the presence of a Bsfd in ihe - x direcfion, fit® electron s occefarotes and gains energy to */ tere 5t is soa5te*ed to m
empty s ote near fro by? moving in Jhe -x Predion. The average oral! momenra values f$ dbng the +x dirseffon and results
in a r,©t sfecTrk airrsrt?,



Topically lacice vibrations have small energks but sa tandal rnomenftim. The scat-
tered electron must find an unoccupied momentum stale with rotsghly the same energy..
and it mu : change its momentmn sudtetantcaUy. The electron at a' is therefore scattered

to an empty state around £>o but with a momentum in the opposite direcdon. Its rno-
mentiiiro h flipped as shown in Rgwre 4, C2c. The average momentum of the decftons
is 530 longer zero but finite in the +x dk&cum. Consequently there is a current flow
ki the -x direction, along the field, as deSermaned by this average momentum p„.
Notice that a moves mp to a' md b falls down lo h'. Under steady-state ctHiducHions lat-

tice scattering ssmpJy replenishes tSie ekctrons as ¥ from a". Notice that for enei es
below b', for every eBcctron moving rigM there Is anotiber moving left with the same
momentum magnitude that cancels it Thus» electrons below the b' energy level do not
contribute to conduction and are excluded fewn further cosnissderalion. Ncsice that elec-

trons above the b' level are only moving riglh! and Shear momenta are not canceled,
Thus, the conductivity is deieraimed by the electrons m iise energy range A £  from &'
to«' about the Femti level m gfeown in Bgure 4.8 2c. Further, as the eEergy change
(mm a to a'is orders of magnitude smaller than Ew, we caa summanze feat orrfduc-
tiyrs occurs by the drift of electrons at the Fermi level? (If we were to calculate AE for
a typical metal for typical currents, it would be MO"* eV wlftereas £>o Is [-10 eV, The
sfcifl in the distribution in Figure 4.12c is veiy small indeed; a' and b;f for all practical
purposes, are at the Fermi level)

Cosisduction can be explained very simply and intuitively in Jerms of a. hmd dia-
gram as shown in Figure 4,-13. Notice that the application of the electric field beads the
energy tend, because line electrostatic PB of fee electron is -eVix) where V{x) is the
voltage at position x. However, V&) changes Imeariy inrom 0 to V, by virtue of
dVjdx - -'£,. Since £ = -eV(x) adds to she energy of the el-edron, the energy band
must bend to account tor the additional] electrostatic energy. Since only the elections
near £>0 contribute to electrical conduction, we can represent this fey driving tiie elec-
trons at i?/ro down the potenfial MIL Althcwigh fuese electrons possess a very high mean
velocity (~106 mis""5), as determined by the Fermi energy, they drift very slowly
(10~2--lCr5 ms"1) with a velocity that is drift mobility x field.

When a metal Is illumiiniafed, provided the wavelength of die radiation is coinreci,
it will cause emission of electrons from the meta! as in the photoeleciric effect. Since
# is the "minimum energy" required to excite an electron imo Hhe vacuum Seven (out

from the metal), the longest wavelength radiation required is hcjk = <t».
Addition of heat to a metal can excite some of the electrons in the band to higher

energy levels. Thus heat am aim be absorbed by the oonductoon elections of a meati
We also know that the addition of heat increases fee amplitude of atomic vibrations..
We can therefore guess thai the heat capacity of a metal has two terras which are due
to energy absorption by the lattice vibndoas and energy absorption by conduction
electrons. It faros ml that at morn temperature the energy absorption by lattice vibra-
tions dominates the heat, capacity whereas at the lowest temperatures the eilectenic
contribution is important.

3 In some books (incliKling the first edttton of     texifeooSs) ft is staled (hot Ifta dstSTOns at Efo can gain energy from
fee fed ond contribute to conduction hv* no* feose deep in fee bond (below b'). Thh i$ o simplified statoment of fee
hcf fee* of a level below tfo feene H am ele&nm moving ak»tg in fee H-x dfoeoioB a«d gaining energy aid
anofeer oiw ot fee same energy be? moving obng in fee . -x direcfion ond losing energy so feat on average electron
ot feis level does not gain energy.
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which is. mstaiiic.
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Mokcukar hydmgea and

- Liquid mesailic hydrcsgen (mdi
helium)

'PossMe rocky core

Cloud fio  (the atmospheric layer is
comparatively feres compaaed with lupl

5 ii, .f The surface of Jupi
as visualized sdhenuuticaily sn Figure 4.14, mainly coBsfets of a mixture of mokcular foydso|
and He gases, IDeqp in the pSanei. howvsr, fee pressure is so trenteedous thai; tlw hyto eis i
lecular bond Sxresks, leaving a dense ocean of hyditogen mxm. Hydrogen has, only oae el
in the I* energy level When atoms arc denseiy packcds fJse Is- enogy level ftxtns an
hsmA, 'which Sa isea cniy half Sited. This is just lite the Li metal, which means we can feeat f
«sd hydrogen as a liquid kkskjI, with dsc»kai qporfiss scrainisceot of laquid ramary.
hydfogen can sutssain decaric ennsnis, which in turn can give rise to «tie magnetic fiefc
Jupiter. The origin of the efedric cuEtenl  are not known with eerlairdy, We do kssow, hov/e
that the core of the planet is hct and emanates heat, which causes convection currents. T
atois dWcrences can readily give .rise to electee ccansats, by virtue of tlsermoelecttic *
discussed in Section 4.8.2.



WM MMES & MTiiMf The Be ssxm has m elecSroaic slnicmre of Lf22ar2. Although Ehe Be
sscra has a full 2s energy teyeS| solid Bs is a metal. Why?

We will neglect the K shell (1j slate), which is full gaud very dose to the nucleus, and consider
only She higher enetgy steles. In she scjkl the 2s energy level splits Into /¥ levels, forming a 2s
band. With 2/¥ elecitmrss, each level is ocdbpied hy spin-paiir*ed etecSircais. The 2s &aad is (hare-
fore full. However, the empty 2/» band, ftom the empty 2/? eneagy levels, overlaps she 2j Band,

to efecsricall costdiactiouC Solid Ee k stoefsae a metaJ

llitfji SMliSi ©IF €mmKmM Ummm m k mm. In copper, the Fermi enecgy 001211101
of conduction elections is 7.0 eV. What is the speed of the conduction electrons around this
energy

Since the conduction electrons are net bound to any one atom, their PE must fee zero withm the
sold (but large outside), so sil their energy is kinetic. For conduction electrons around fee Fermi
energy Efo with a speed v v we have

-my;. = gjrg

so that

/2£e?     /2(L6 x HO"'9 J/eV)(7.0eV)
= J         = «' - ~-  ~ 1.6 x 5© m s

V        r9.1 x lt ? kg)

Althou i the FemM enetfgy depends on flhe-properi  of the energy band, to a good ap-
proximation it is only weakly temperature dependant, so vp will be relatively temperature cn-
saisitive, as we will show later on Section 4.7.

43 SEMXCONIDUCTOM

The Si atom has 14 el§ctron$, which distribute themseiives m the varices atomic energy
level -pj wn in IR are 4.15. The inner shells (m ~ I and n = 2) are foil and there-
for® "close!!.''' Since these shells are near the nucleus, when SI atoms come together to
form the solid, they aire not much affected and they stay around the parent Si atoms.
Ifeey can therefore be excluded Srom further discussion. Itm 3s and 3p subshells aire
farther away from the nucleus. When two Si atoms approach, tfeese electrotts strongly
Im ace wife each otksr. Therefom, in studying fee formation of bands in fee SI solid,
we will only consider fee 3s and 3j? lewis.

The first task is to exam||ie why Si actually bonds with four neighbors, since fee
'3s oMtai is foil and there &Te only two electooas in itm 3p osfaksHs. Tine fall 3s orbllE®]
should not overilap a aesglelbor and become L volved in bondnig. Since only two 3/>c?r-
b«fals are half full, bonds slhould be l&mned wife two neigifebori g Si aHoms. In reality,

5
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|<s| Si is in Group IV in the Periodic Table. An 3,?c-!ct®a Si atom has fwo alsd?<M»:« kj 3.?
.and two electrons in the 3p orbitols.

(b) VVJien SI is abcxit to band, ihe em 3s arbftai and tte three 3p otbfedb become
peirfefbed and mkod to form four h sHdbffld orbiksis,       wfed     orbtek, which aw
directed toward ihe owners of c Jrtmhedron. Hi©     osbiksl ha« a large mafor Icfe® and a
smdl back bbe. Each ifajk osfcato! feikes osi© of fhs few vaJonce a*advons.

the 3* and 3p energy levels art quite dose, and whea five Si atoms approseh eadb
other, s!he mssm&km sults b ise four orbitate #

.C3s), #C3px), (3|>>-)» aad irOpz)
mixing togefihes' to form fosif ssew fe lbrid uarfeMsj which ane directed in Setrafeedsal
dlrecJloBs; that k, each one is ismsd as far away fewm tibe chiefs as possiMe, as Uhas-
trai d in Pigare 4.16. We cull tills priest p3 hybsMteaffim, sane© esse « orbM and
three /? orbiials are mixed. (Tbs ssjpersciipl 3 on p has nothir  te do wsflh tfse number
of electrons; it refets $o tibe sTamber of p orlcsitails ased oate hytoddizatkm.)

Hie four ffp3 hybrid orbitsus, each have one e3ec*KKi, so they are half occu-
pied. TMs oieans that fmr Si atoms can ktve tfesir orfiltals overlap io tbicn feorsds
with one Si atom, which is what actually happens; thus, one Sii stem bonds with fear
otfier SI atoms in tetrahediml di ctlons.
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In the same way, one Si atom bonds with four H atoms to form the important gas
SiR*, known as silane, which is widely used in the semiconductor technology to fabri-
cate Si devices. In SiR*, four hybridized orbitals of the Si atom overlap with the Is
orbitals of four H atoms. In exactly the same way, one carbon atom bonds with four
hydrogen atoms to form methane, CH4.

There are two ways in which the hybrid orbital Vhyb can overlap with that of the
neighboring Si atom to form two molecular orbitals. They can add in phase (both pos-
itive or both negative) or out of phase (one positive and the other negative) to produce
a bonding or an antibonding molecular orbital x/zb and i a, respectively, with energies
Eb and EA. Each Si-Si bond thus corresponds to two paired electrons in a bonding
molecular orbital Vfl. In the solid, there are Af(~5 x 1022

cm
~3) Si atoms, and there

are nearly as many such bonds. The interactions between the x/zb orbitals (Le., the
Si-Si bonds) lead to the splitting of the Eb energy level to N levels, thereby forming
an energy band labeled the valence band (VB) by virtue of the valence electrons it
contains. Since the energy level Eb is full, so is the valence band. Figure 4.17 illus-
trates the formation of the VB from Eb-

In the solid, the interactions between the TV number of xlrA orbitals result in the
splitting of the energy level EA to TV levels and the formation of an energy band that is

(a) (b) (c)

Si atom

hyb

v, oOOohyb

°<D
v

.A

i1 i

1
 

1

V,B

c<n>
t

(d)

Conduction band

Energy gap, Eg

<&SSSSSSSSSSSS
    jpfx    /m-.,    tm  m*. m-.

H
-
-
*
-
*
-?5------ =

Valence band

Figure 4.17  (a) Formation of energy bands in the Si crystal first involves hybridization
of 3s and 3p orbitals to four identical t/ hyb orbitals, which are at 109.5° to each other as

shown in (b). (c) t/rhyb orbitals on two neighboring Si atoms can overlap to form     or Voa-
The first is bonding orbital (full) and the second is an antibonding orbital (empty). In the
crystal,     overlap to give the valence band (full) and t/  overlap to give the conduction
band (empty) (d). Si crystal
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completely empty and separated from the full valence band by a definite energy gap Eg.
In this energy region, there are no states; therefore, the electron cannot have energy
with a value within Eg. The energy band formed from A a orbitals is a conduction
band (CB), as also indicated in Figure 4.17.

The electronic states in the VB (and also in the CB) extend throughout the whole
solid, because they result from Nx/zb orbitals interfering and overlapping each other.
As before Nx/zb, orbitals can overlap in N different ways to produce N distinct wave-
functions vb that extend throughout the solid. We cannot relate a particular electron to
a particular bond or site because the wavefunctions V vb corresponding to the VB ener-
gies are not concentrated at a single location. The electrical properties of solids are
based on the fact that in solids, such as semiconductors and insulators, there are certain

bands of allowed energies for the electrons, and these bands are separated by energy
gaps, that is, bandgaps. The valence and conduction bands for the ideal Si crystal
shown in Figure 4.17 are separated by an energy gap, or a bandgap, Eg, in which
there are no allowed electron energy levels.

At temperatures above absolute zero, the atoms in a solid vibrate due to their
thermal energy. Some of the atoms can acquire a sufficiently high energy from thermal
fluctuations to strain and rupture their bonds. Physically, there is a possibility that the
atomic vibration will impart sufficient energy to the electron for it to surmount the
bonding energy and leave the bond. The electron must then enter a higher energy state.
In the case of Si, this means entering a state in the CB, as shown in Figure 4.18. If there
is an applied electric field in the +x direction, then the excited electron will be
acted on by a force - e'Ex and it will try to move in the -x direction. For it to do so,
there must be empty higher energy levels, so that as the electron accelerates and gains
energy, it moves up in the band. When an electron collides with a lattice vibration, it
loses the energy acquired from the field and drops down within the CB. Again, it
should be emphasized that states in an energy band are extended; that is, the electron
is not localized to any one atom.

Note also that the thermal generation of an electron from the VB to the CB leaves
behind a VB state with a missing electron. This unoccupied electron state has an
apparent positive charge, because this crystal region was neutral prior to the removal
of the electron. The VB state with the missing electron is called a hole and is denoted
h+. The hole can "move" in the direction of the field by exchanging places with a

Figure 4.18   Energy band diagram of a
semiconductor.

CB is the conduction band and VB is the
valence band. At 0 K, the VB is full with all the
valence electrons.
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neighboring valence electron hence it contributes to conduction, as will be discussed
in Chapter 5.

CUTOFF WAVELENGTH OF A Si PHOTODETECTOR What wavelengths of light can be absorbed
by a Si photodetector given Eg = 1.1 eV? Can such a photodetector be used in fiber-optic com-
munications at light wavelengths of 1.31 fim and 1.55 fiml

SOLUTION

The energy bandgap Eg of Si is 1.1 eV. A photon must have at least this much energy to excite
an electron from the VB to the CB, where the electron can drift. Excitation corresponds to the
breaking of a Si-Si bond. A photon of less energy does not get absorbed, because its energy will
put the electron in the bandgap where there are no states. Thus, hc/k > Eg gives

(6.6 x lO"34 Js)(3 x K ms"1)

EXAMPLE 4.5

he
k < -

(l.leV)(1.6 x 10-19 J/eV)

1
.13 x 10"6m      or      1.1 fim

Since optical communications networks use wavelengths of 1.3 and 1.55 m, these light waves
will not be absorbed by Si and thus cannot be detected by a Si photodetector.

4
.
4 ELECTRON EFFECTIVE MASS

When an electric field is applied to a metal, an electron near the Fermi level can gain
energy from the field and move to higher energy levels, as shown in Figure 4.12. The
external force FeXt = eT,* is in the x direction, and it drives the electron along x. The
acceleration of the electron is still given by a = Fext/me, where me is the mass of the
electron in vacuum.

The law Fext = rnea cannot strictly be valid for the electron inside a solid, because
the electron interacts with the host ions and experiences internal forces Fint as it moves
around, as depicted in Figure 4.19. The electron therefore has a PE that varies with dis-
tance. Recall that we interpret mass as inertial resistance against acceleration per unit

X

e
F

ext
a

m
eF

ext

Vacuum

(a) An external force F
ext

 applied to an
electron in a vacuum results in an acceler-

ation avac = Fext/ fne.

X

© ® Gys,,! ©
-> x

(b) An external force F
ext

 applied to an elec-
tron in a crystal results in an acceleration
0cryst= Fext

/me*'

Figure 4.19
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applied force. When an external force Fext is applied to an electron in the vacuum level,
as in Figure 4.19a, the electron will accelerate by an amount

tfvac =   [4.4]

as determined by its mass me in vacuum.
When the same force FeXt is applied to the electron inside a crystal, the accelera-

tion of the electron will be different, because it will also experience internal forces, as
shown in Figure 4.19b. Its acceleration in the crystal will be

ext + int
tfcryst =   l4-5]

me

where Fint is the sum of all the internal forces acting on the electron, which is quite dif-
ferent than Equation 4.4. To the outside agent applying the force Fext, the electron will I
appear to be exhibiting a different inertial mass, since its acceleration will be different.
It would be most useful for the external agent if the effect of the internal forces in Fint
could be accounted for in a simple way, and if the acceleration could be calculated from
the external force Fext alone, through something like Equation 4.4. This is indeed
possible.

In a crystalline solid, the atoms are arranged periodically, and the variation of Fint,
and hence the PE, or V (jc), of the electron with distance along x, is also periodic. In
principle, then, the effect on the electron motion can be predicted and accounted for.
When we solve the Schrodinger equation with the periodic PEy or V (jc), we essentially
obtain the effect of these internal forces on the electron motion. It has been found that

when the electron is in a band that is not full, we can still use Equation 4.4, but instead
of the mass in vacuum me, we must use the effective mass m* of the electron in that >

particular crystal. The effective mass is a quantum mechanical quantity that behaves in -i
the same way as the inertial mass in classical mechanics. The acceleration of the elec- lj
tron in the crystal is then simply

Fat "i

m
tfcryst =   W.6J ;

i

e i

The effects of all internal forces are incorporated into m*. It should be emphasized
that m*9 is obtained theoretically from the solution of the Schrodinger equation for the
electron in a particular crystal, a task that is by no means trivial. However, the effec- ,
tive mass can be readily measured. For some of the familiar metals, m* is very close
to me. For example, in copper, m* = me for all practical purposes, whereas in lithium
m

* = 1
,28m*, as shown in Table 4.2. On the other hand, m* for many metals and

S

Table 4.2   Effective mass m* of electrons in some metals

Metal        Ag Au Bi Cu K Li        Na       Ni       Pt Zn
m

*

0
.
99       1.10       0.047       1.01       1.12       1.28       1.2       28       13 0.85
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semiconductors is appreciably different than the electron mass in vacuum and can even
be negative, (m* depends on the properties of the band that contains the electron. This
is further discussed in Section 5.11.)

4
.5    DENSITY OF STATES IN AN ENERGY BAND

Although we know there are many energy levels (perhaps ~1023) in a given band, we
have not yet considered how many states (or electron wavefunctions) there are per unit
energy per unit volume in that band. Consider the following intuitive argument. The
crystal will have Af atoms and there will be Af electron wavefunctions x/ri, V2, . . . > Vov
that represent the electron within the whole crystal. These wavefunctions are con-
structed from Af different combinations of atomic wavefunctions, i/sa, b, i/sc, > - as
schematically illustrated in Figure 4.20a,4 starting with

all the way to alternating signs

VOV =        - B +        - H 

N

e -®

©- 9 9

e -® -9 9

--®-®-9- -e e 9--

E

A

9(E)

(a)

Energy band

(b) (c)

Figure 4.20
(a) In the solid there are N atoms and N extended electron wavefunctions from Vn all the way to
V n- There are many wavefunctions, states, that have energies that fall in the central regions of the
energy band.
(b) The distribution of states in the energy band; darker regions have a higher number of states.
(c) Schematic representation of the density of states g(E) versus energy E.

4 This intuitive argument, as schematically depicted in Figure 4.20a, is obviously highly simplified because the solid is
three-dimensional (3-D) and we should combine the atomic wavefunctions not on a linear chain but on a 3-D lattice.
In the 3-D case there are large numbers of wavefunctions with energies that fall in the central regions of the band.
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and there are Af(~1023) combinations. The lowest-energy wavefunction will be V i con-
structed by adding all atomic wavefunctions (all in phase), and the highest-energy
wavefunction will be irN from alternating the signs of the atomic wavefunctions, which
will have the highest number of nodes. Between these two extremes, especially around
N/2, there will be many combinations that will have comparable energies and fall near
the middle of the band. (By analogy, if we arrange Af = 10 coins by heads and tails,
there will be many combinations of coins in which there are 5 heads and 5 tails, and
only one combination in which there are 10 heads or 10 tails.) We therefore expect the
number of energy levels, each corresponding to an electron wavefunction in the crystal,
in the central regions of the band to be very large as depicted in Figure 4.20b and c.

Figure 4.20c illustrates schematically how the energy and volume density of elec-
tronic states change across an energy band. We define the density of states g(E) such
that g(E) dE is the number of states (/.e., wavefunctions) in the energy interval E to
{E + dE) per unit volume of the sample. Thus, the number of states per unit volume
up to some energy E' is

W)= /   g{E)dE [4.7]

which is called the total number of states per unit volume with energies less than E'
.

This is denoted £„(£').
To determine the density of states function g(E),v/e must first determine the num-

ber of states with energies less than Ef in a given band. This is tantamount to calculat-
ing SV(E') in Equation 4.7. Instead, we will improvise and use the energy levels for an
electron in a three-dimensional potential well. Recall that the energy of an electron in
a cubic PE well of size L is given by

E = M+nl+n2J 
where aii, 2* and AZ3 are integers 1, 2, 3,... . The spatial dimension L of the well now
refers to the size of the entire solid, as the electron is confined to be somewhere inside

that solid. Thus, L is very large compared to atomic dimensions, which means that the
separation between the energy levels is very small. We will use Equation 4.8 to de-
scribe the energies of free electrons inside the solid (as in a metal).

Each combination of Aii,Ai2> and n3 is one electron orbital state. For example,
xl/ni n2 n3 = j 2 is one possible orbital state. Suppose that in Equation 4.8 E is given
as E'

. We need to determine how many combinations of ni, n2, (i.e., how many x//)
have energies less than E\ as given by Equation 4.8. Assume that (n\ + n\ + n\) = n'2.
The object is to enumerate all possible choices of integers for n\, ni, and that sat-
isfy n\ + n\ + n] < n'2.

The two-dimensional case is easy to solve. Consider n\ + n\ < n'2 and the two-
dimensional n-space where the axes are n\ and az2, as shown in Figure 4.21. The two-
dimensional space is divided by lines drawn at n\ = 1, 2, 3,... and AZ2 = 1, 2, 3,...
into infinitely many boxes (squares), each of which has a unit area and represents a
possible state Vv - or example, the state ni = 1, W2 = 3 is shaded, as is that for
All = 2, AZ2 = 2.
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Figure 4.21 Each state, or electron wavefunction in
the crystal, can be represented by a box at ni, n2.
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Figure 4.22  In three dimensions, the volume defined
by a sphere of radius n' and the positive axes ni, ni,
and na, contains all the possible combinations of positive
ni, n2, and 03 values that satisfy    +    +    < n/2

.

Clearly, the area contained by n \, ni and the circle defined \)yn,2 = n\ + n\ (just like
r1 = x2 + y2) is the number of states that satisfy n\ + n2< ri2

. This area is \{jTn'2).
In the three-dimensional case, n\ + n\ + n] < ri2 is required, as indicated in Fig-

ure 4.22. This is the volume contained by the positive n\,n2, and n3 axes and the sur-
face of a sphere of radius n'. Each state has a unit volume, and within the sphere,
wi + n2 + ni 

-

 n'2 is satisfied. Therefore, the number of orbital states Sorbin') within
this volume is given by

1/4    .A 1
Sorbin ) = - ( -nn *J = -nn

/3

Each orbital state can take two electrons with opposite spins, which means that the
number of states, including spin, is given by

S(nf) = 2Sorb(AZ/) = nn*
We need this expression in terms of energy. Substituting n'2 = $meL2E'/ h2 from

Equation 4.8 in Sin'), we get

7TL3(SmeE
')3/2

S{E) = 3*3

Since L3 is the physical volume of the solid, the number of states per unit volume
SV(E') with energies E < E' is

7r(8m,£')3/2
[4.9]
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Furthermore, from Equation 4.7, dSv/dE = (?(£). By differentiating Equation 4.9
with respect to energy, we get

3/2
Density of
states

EXAMPLE 4.6

g(E) = (87r21/2)( J   El/2 [4.10]
Equation 4.10 shows that the density of states g(E) increases with energy as El/2

from the bottom of the band. As we approach the top of the band, according to our
understanding in Figure 4.20d, g(E) should decrease with energy as (Etop - £)1/2

,

where £top is the top of the band, so that as E £t0p, g(E) -> 0. The electron mass
me in Equation 4.10 should be the effective mass m* as in Equation 4.6. Further, Equa-
tion 4.10 strictly applies only to free electrons in a crystal. However, we will frequently
use it to approximate the true g(E) versus E behavior near the band edges for both
metals and semiconductors.

Having found the distribution of the electron energy states, Equation 4.10, we now
wish to determine the number of states that actually contain electrons; that is, the prob-
ability of finding an electron at an energy level E. This is given by the Fermi-Dirac
statistics.

As an example, one convenient way of calculating the population of a city is to
find the density of houses in that city (i.e., the number of houses per unit area), multi-
ply that by the probability of finding a human in a house, and finally, integrate the
result over the area of the city. The problem is working out the chances of actually
finding someone at home, using a mathematical formula. For those who like analogies,
if g(A) is the density of houses and /(A) is the probability that a house is occupied,
then the population of the city is

n = f   f(A)g(A) dA
.'City

where the integration is done over the entire area of the city. This equation can be used
to find the number of electrons per unit volume within a band. If E is the electron en-
ergy and f(E) is the probability that a state with energy E is occupied, then

n = f    f(E)g(E) dE
.'Band

where the integration is done over all the energies of the band.

X-RAY EMISSION AND THE DENSITY OF STATES IN A METAL Consider what happens when a
metal such as Al is bombarded with high-energy electrons. The inner atomic energy levels are
not disturbed in the solid, so these inner levels remain as distinct single levels, each one local-
ized to the parent atom. When an energetic electron hits an electron in one of the inner atomic
energy levels, it knocks out this electron from the metal leaving behind a vacancy in the inner
core as depicted in Figure 4.23a. An electron in the energy band of the solid can then fall down
to occupy this empty state and emit a photon in the process. The energy difference between the
energies in the band and the inner atomic level is in the X-ray range, so the emitted photon is an
X-ray photon. Since electrons occupy the band from the bottom EB to the Fermi level EF, the
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Figure 4.23
(a) High-energy electron bombardment knocks out an electron from the closed inner L shell leaving
an empty state. An electron from the energy band of the metal drops into the [ shell to fill the
vacancy and emits a soft X-ray photon in the process.
(b) The spectrum (intensity versus photon energy) of soft X-ray emission from a metal involves a
range of energies corresponding to transitions from the bottom of the band and from the Fermi
level to the L shell. The intensity increases with energy until around Ep where it drops sharply.
(c) and (d) contrast the emission spectra from a solid and vapor (isolated gas atoms).

emitted X-ray photons have a range of energies corresponding to transitions from EB and EF to
the inner atomic level as shown in Figure 4.23b. These energies are in the soft X-ray spectrum.
We assumed that the levels above EF are almost empty, though, undoubtedly, there is no sharp
transition from full to empty levels at EF. Further, since the density of states increases from EB
toward EF, there are more and more electrons that can fall down to the atomic level as we move
from EB toward EF. Therefore the intensity of the emitted X-ray radiation increases with en-
ergy until the energy reaches the Fermi level beyond which there are only a small number of
electrons available for the transit. Figure 4.23c and d contrasts the emission spectra from an alu-
minum crystal (solid) and its vapor. The line spectra from a vapor become an emission band in
the spectrum of the solid.

The X-ray intensity emitted from Al in Figure 4.23 starts to rise at around 60 eV and then
sharply falls around 72 eV. Thus the energy range is 12 eV, which represents approximately the
Fermi energy with respect to the bottom of the band, that is, EF  72 - 60 = 12 eV with re-
spect to EB.
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EXAMPLE 4.7 DENSITY OF STATES IN A BAND Given that the width of an energy band is typically MO eV,
calculate the following, in per cm3 and per eV units:

a. The density of states at the center of the band.
b

. The number of states per unit volume within a small energy range kT about the center.
c

. The density of states at kT above the bottom of the band.
d

. The number of states per unit volume within a small energy range of kT tolkT from the
bottom of the band.

SOLUTION

The density of states, or the number of states per unit energy range per unit volume (?(£), is
given by

3/2

which gives the number of states per cubic meter per Joule of energy. Substituting E = 5 eV, we
have

ftenler = ( 2' )[(6 2

1

6

X

x

1

1

0

0_

3

]4)2]
3/2 (5 x 1.6 x KT")"2 = 9.50 x 10* tiT3 J"'

Converting to cm"3 and eV-1, we get

Center = (9-50 x 1046 m-3 J~1)(10""6 m3 cm~3)(1.6 x KT19 JeV"1
)

= 1
.
52 x lO cm eV"1

If 8E is a small energy range (such as kT), then, by definition, g(E)8E is the number
of states per unit volume in 8E. To find the number of states per unit volume within kT at the
center of the band, we multiply 0center by kT or (1.52 x 1022 cm-3 eV"1)(0.026 eV) to get
3

.
9 x 1020 cm-3. This is not a small number!

At kT above the bottom of the band, at 300 K (kT = 0.026 eV), we have

*- - "i 6il%T<o-m"16 * lo"")"
= 6

.
84 x 1045 m-3 J"1

Converting to cm-3 and eV"1 we get

00.026 = (6.84 x 1045 m-3 J-1)(10-6m3cm-3)(1.6 x lO"19 JeV"1
)

= 1
.
10 x 1021 cm-3eV-1

Within kT, the volume density of states is

(1.10 x 1021 cm"3 eV XO  eV) = 2.8 x 1019 cm"3

This is very close to the bottom of the band and is still very large.
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TOTAL NUMBER OF STATES IN A BAND

a. Based on the overlap of atomic orbitals to form the electron wavefunction in the crystal,
how many states should there be in a band?

b
. Consider the density of states function

3/2

By integrating (?(£), estimate the total number of states in a band per unit volume, and com-
pare this with the atomic concentration for silver. For silver, we have EF0 = 5.5 eV and
<t> = 4

.5 eV. (Note that "state" means a distinct wavefunction, including spin.)

SOLUTION

a. We know that when N atoms come together to form a solid, N atomic orbitals can overlap
N different ways to produce Af orbitals or 2N states in the crystal, since each orbital has two
states, spin up and spin down. These states form the band.

b
. For silver, EFo = 5.5 eV and 4> = 4.5 eV, so the width of the energy band is 10 eV. To

estimate the total volume density of states, we assume that the density of states g(E)
reaches its maximum at the center of the band E = center = 5 eV. Integrating g(E) from
the bottom of the band, E = 0, to the center, E = center, yields the number of states per
unit volume up to the center of the band. This is half the total number of states in the whole
band, that is, 5band, where Sband s number of states per unit volume in the band and is
determined by

25ba"d=i
0
      9(E) dE= - cen,er

or

1 16 21/2r   9.1xl0-31kg   r/z iq -/2
2  = - [(6.626 xlO- lVj CeVxlrfxlO-J/eV)*

= 5
.
08 x 1028 m"3 = 5.08 x 1022 cm"3

Thus

Sband = 10.16 x 1022 states cm"3

We must now calculate the number of atoms per unit volume in silver. Given the
density d = 10.5 g cm-3 and the atomic mass Mat = 107.9 g mol-1 of silver, the atomic
concentration is

dNA „ ,
ziAg -  = 5.85 x 10   atoms cm

Mat

As expected, the density of states is almost twice the atomic concentration, even
though we used a crude approximation to estimate the density of states.

EXAMPLE 4.8
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46    STATISTICS: COLLECTIONS OF PARTICLES

4
.
6
.1    BOLTZMANN CLASSICAL STATISTICS

Boltzmann

probability
function

Boltzmann

statistics

Given a collection of particles in random motion and colliding with each other,5 we
need to determine the concentration of particles in the energy range E to (E + dE).
Consider the process shown in Figure 4.24, in which two electrons with energies E\
and #2 interact and then move off in different directions, with energies £3 and £4. Let
the probability of an electron having an energy E be P(E), where P(E) is the fraction
of electrons with an energy E. Assume there are no restrictions to the electron energies,
that is, we can ignore the Pauli exclusion principle. The probability of this event is then
P(Ei)P(E2). The probability of the reverse process, in which electrons with energies
£3 and £4 interact, is P(E3)P(E4). Since we have thermal equilibrium, that is, the
system is in equilibrium, the forward process must be just as likely as the reverse
process, so

P(El)P(E2) = P(E3)P(E4)

Furthermore, the energy in this collision must be conserved, so we also need

Ei + £2 = £3 + £4

[4.11]

[4.12]

We therefore need to find the P(E) that satisfies both Equations 4.11 and 4.12.
Based on our experience with the distribution of energies among gas molecules, we
can guess that the solution for Equations 4.11 and 4.12 would be

P(E) = Aexp (-£) [4.13]

where k is the Boltzmann constant, T is the temperature, and A is a constant. We
can show that Equation 4.13 is a solution to Equations 4.11 and 4.12 by a simple
substitution. Equation 4.13 is the Boltzmann probability function and is shown in
Figure 4.25. The probability of finding a particle at an energy £ therefore decreases
exponentially with energy. We assume, of course, that any number of particles may
have a given energy £. In other words, there is no restriction such as permitting
only one particle per state at an energy £, as in the Pauli exclusion principle. The
term kT appears in Equation 4.13 because the average energy as calculated
by using P(£) then agrees with experiments. (There is no kT in Equations 4.11
and 4.12.)

Suppose that we have Ni particles at energy level £1 and N2 particles at a higher
energy £2. Then, by Equation 4.13, we have

N2 
_

 / £2 - £1 \
-

 - exP  -J [4.14]

5 From Chapter 1, we can associate this with the kinetic theory of gases. The energies of the gas molecules, which
are moving around randomly, are distributed according to the Maxwell-Boltzmann statistics.

,

!



4.6 Statistics: Collections of Particles 313
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Figure 4.24  Two electrons with initial
wavefunctions     and 2 at E\ and E2 interact
and end up at different energies E3 and £4.
Their corresponding wavefunctions are 3
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Figure 4.25  The Boltzmann
energy distribution describes the
statistics of particles, such as electrons,
when there are many more available
states than the number of particles.

If £2 - E\ > JcT, then #2 can be orders of magnitude smaller than N\. As the
temperature increases, N2/N1 also increases. Therefore, increasing the temperature
populates the higher energy levels.

Classical particles obey the Boltzmann statistics. Whenever there are many
more states (by orders of magnitude) than the number of particles, the likelihood of
two particles having the same set of quantum numbers is negligible and we do not
have to worry about the Pauli exclusion principle. In these cases, we can use the
Boltzmann statistics. An important example is the statistics of electrons in the con-
duction band of a semiconductor where, in general, there are many more states than
electrons.

4
.
6

.2 Fermi-Dirac Statistics

Now consider the interaction for which no two electrons can be in the same quantum
state, which is essentially obedience to the Pauli exclusion principle, as shown in Fig-
ure 4.24. Ve assume that we can have only one electron in a particular quantum state
 (including spin) associated with the energy value £. We therefore need those states

that have energies £3 and £4 to be not occupied. Let /(£) be the probability that an
electron is in such a state, with energy E in this new interaction environment. The prob-
ability of the forward event in Figure 4.24 is

f(El)f(E2)[l - f(E3)][l - f(E4)]

The square brackets represent the probability that the states with energies £3 and £4
are empty. In thermal equilibrium, the reverse process, the electrons with £3 and £4
interacting to transfer to E\ and £2, has just as equal a likelihood as the forward process.
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Paul Adrien Maurice Dirac (1902-1984) received the 1933
Nobel prize for physics with Erwin Schrodinger. His first
degree was in electrical engineering from Bristol University.
He obtained his PhD in 1926 from Cambridge University
under Ralph Fowler.
I SOURCE: Courtesy of AIP Emilio Segre Visual Archives.
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Thus, f(E) must satisfy the equation

f(El)f(E2)[l - f(E3)][l - f(E4)] = f(E3)f(E4)[l - /( i)][l - f(E2)] [4.15]

In addition, for energy conservation, we must have

Ei + £2 = £3 + £4 [4.16]

By an "intelligent guess," the solution to Equations 4.15 and 4.16 is

1
f(E)

1 -f A exp (£)
[4.17]

where A is a constant. You can check that this is a solution by substituting Equation 4.17
into 4.15 and using Equation 4.16. The reason for the term k T in Equation 4.17 is not
obvious from Equations 4.15 and 4.16. It appears in Equation 4.17 so that the mean
properties of this system calculated by using f(E) agree with experiments. Letting
A = exp(-EF/kT)9 we can write Equation 4.17 as

/(£) =
1

1 4- exp
{E-EF\

[4.18]

kT

where EF is a constant called the Fermi energy. The probability of finding an electron
in a state with energy E is given by Equation 4.18, which is called the Fermi-Dirac
function.

The behavior of the Fermi-Dirac function is showlHn Figure 4.26. Note the effect
of temperature. As T increases, f(E) extends to higher energies. At energies of a few
kT (0.026 eV) above EF, f(E) behaves almost like the Bokzmann function

f(E) (E - EF) » kT [4.19]
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Figure 4.26

,  r,1?\    e Fermi-Dirac function f(E) describes the statistics of electrons in
I  J\ )    a solid. The electrons interact with each other and the environment,

obeying the Pauli exclusion principle.

Above absolute zero, at E = £>, f(EF) - \. We define the Fermi energy as that
energy for which the probability of occupancy /(£>) equals \. The approximation to
f(E) in Equation 4.19 at high energies is often referred to as the Boltzmann tail to the
Fermi-Dirac function.

4
.7    QUANTUM THEORY OF METALS

4
.
7
.

1   Free Electron Model6

We know that the number of states g(E) for an electron, per unit energy per unit vol-
ume, increases with energy as g(E) oc EXI1

. We have also calculated that the probabil-
ity of an electron being in a state with an energy E is the Fermi-Dirac function /(£).
Consider the energy band diagram for a metal and the density of states g(E) for that
band, as shown in Figure 4.27a and b, respectively.

At absolute zero, all the energy levels up to EF are full. At 0 K, /(£) has the step
form at EF (Figure 4.26). This clarifies why EF in /(£) is termed the Fermi energy.
At 0 K, /(£) = 1 for E < EF, and /(£) = 0 for E > £>, so at 0 K, EF separates the
empty and full energy levels. This explains why we restricted ourselves to 0 K or
thereabouts when we introduced EF in the band theory of metals.

At some finite temperature, f(E) is not zero beyond EF, as indicated in Fig-
ure 4.27c. This means that some of the electrons are excited to, and thereby occupy,
energy levels above £>. If we multiply g(E), by /(£), we obtain the number of elec-
trons per unit energy per unit volume, denoted nE. The distribution of electrons in the
energy levels is described by he = g(E) f(E). -

Since f{E) = 1 for E <£; £>, the states near the bottom of the band are all occu-
pied; thus, ue oc Exf2 initially. As E passes through EFlf(E) starts decreasing

f
6The free electron model of metals is also known as the Sommerfeld model.
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Figure 4.27
(a) Above 0 K, due to thermal excitation, some of the electrons are at energies above Ep.
(b) The density of states, g[E) versus E in the band.
(c) The probability of occupancy of a state at an energy E is f(E).
(d) The product g(E)f(E) is the number of electrons per unit energy per unit volume, or the electron
concentration per unit energy. The area under the curve on the energy axis is the concentration of
electrons in the band.

sharply. As a result, nE takes a turn and begins to decrease sharply as well, as depicted
in Figure 4.27d.

In the small energy range E to (E + dE), there are nE dE electrons per unit
volume. When we sum all nE dE from the bottom to the top of the band (E = 0 to
E = EF + <I>), we get the total number of valence electrons per unit volume, n, in the
metal, as follows:

Top of band

nEdE
Top of band

g(E)f(E)dE [4.20]

Since f(E) falls very sharply when E > EF, we can carry the integration to
E = oo, rather than to (EF + <£), because / 0 when E EF. Putting in the func-
tional forms of g{E) and f{E) (e.g., from Equations 4.10 and 4.18), we obtain

_

 87r21/2mg3/2 f
Jo

00 El/2dE
[4.21]

1 -f-ex

If we could integrate this, we would obtain an expression relating n and Ef. At
0 K, however, Ef = Efo and the integrand exists only for E < EfQ. If we integrate at
0 K, Equation 4.21 yields

Fermi energy
atT= OK

EFO (smj (tt )
2/3

[4.22]
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It may be thought that EF is temperature independent, since it was sketched that
way in Figure 4.26. However, in our derivation of the Fermi-Dirac statistics, there was
no restriction that demanded this. Indeed, since the number of electrons in a band is

fixed, EF at a temperature Tis implicitly determined by Equation 4.21, which can be
solved to express EF in terms of n and T. It turns out that at 0 K, EF is given by Equa-
tion 4.22, and it changes very little with temperature. In fact, by utilizing various math-
ematical approximations, it is not too difficult to integrate Equation 4.21 to obtain the
Fermi energy at a temperature T, as follows:

f1 12( 0)]Ef(T) = Efo  1 - - I [4.23]

av

which shows that EF(T) is only weakly temperature dependent, since EFo > kT.
The Fermi energy has an important significance in terms of the average energy E

of the conduction electrons in a metal. In the energy range E to (E + dE), there are
n e dE electrons with energy E. The average energy of an electron will therefore be

E
av

/ EngdE
fnEdE

[4.24]

If we substitute g(E) f (E) for ne and integrate, the result at 0 K is

3
£av(0) = ~ EFO

Above absolute zero, the average energy is approximately

[4.25]

E
av (r) = eFo [1+ 12 {eFo) ] [4.26]

Since EFo » kT, the second term in the square brackets is much smaller than
unity, and E {T) shows only a very weak temperature dependence. Furthermore, in
our model of the metal, the electrons are free to move around within the metal, where

their potential energy PE is zero, whereas outside the metal, it is EF + O (Figure 4.11).
Therefore, their energy is purely kinetic. Thus, Equation 4.26 gives the average KE of
the electrons in a metal

x     1     , 3
\~meve = £

av  -EFo

where ve is the root mean square (rms) speed of the electrons, which is simply called
the effective speed. The effective speed ve depends on the Fermi energy EFo and is
relatively insensitive to temperature. Compare this with the behavior of molecules in
an ideal gas. In that case, the average KE = | r, so mv2 = |fer. Clearly, the aver-
age speed of molecules in a gas increases with temperature.

The relationship jmvl « I Efo is an important conclusion that comes from the
application of quantum mechanical concepts, ideas that lead to g(E) and f(E) and so
on. It cannot be proved without invoking quantum mechanics. The fact that the aver-
age electronic speed is nearly constant is the only way to explain the observation that
the resistivity of a metal is proportional to T (and not r3/2), as we saw in Chapter 2.

Fermi energy
atT(K)

Average

energy per

electron at OK

Average

energy per

electron at
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4
.
7

.
2  Conduction in Metals

Conductivity
of Fermi-
level

electrons

We know from our energy band discussions that in metals only those electrons in a
small range AE around the Fermi energy EF contribute to electrical conduction as
shown in Figure 4.12c. The concentration nF of these electrons is approximately
g(EF) AE inasmuch as AE is very small. The electron a moves to a', as shown in
Figure 4.12b and c, and then it is scattered to an empty state above b'. In steady
conduction, all the electrons in the energy range AE that are moving to the right are
not canceled by any moving to the left and hence contribute to the current. An elec-
tron at the bottom of the AE range gains energy AE to move a' in a time interval At
that corresponds to the scattering time r. It gains a momentum Apx. Since Apx/At =
external force = we have Apx = r !Ex. The electron a has an energy
E = pl/(2m*) which we can differentiate to obtain AE when the momentum
changes by ApXi

AE = -Apx = L-£-Il(Te£x) = evFT<Ex
m* m*

The current Jx is due to all the electrons in the range A E which are moving toward
the right in Figure 4.12c,

J
x
 = enFvF = e[g(EF) AE]vF = e[g(EF)evFTiEx]vF = e2

v
2
FTg(EF)<Ex

The conductivity is therefore

a = e2
v

2
Frg(EF)

However, the numerical factor is wrong because Figure 4.12c considers only a hy-
pothetical one-dimensional crystal. In a three-dimensional crystal, the conductivity is
one-third of the conductivity value just determined:

a = e2
v

2
FTg(EF) [4.27]

This conductivity expression is in sharp contrast with the classical expression in
which all the electrons contribute to conduction. According to Equation 4.27, what is
important is the density of states at the Fermi energy g(EF). For example, Cu and Mg
are metals with valencies I and II. Classically, Cu and Mg atoms each contribute one
and two conduction electrons, respectively, into the crystal. Thus, we would expect Mg
to have higher conductivity. However, the Fermi level in Mg is where the top tail of the
3s band overlaps the bottom tail of the 3p band where the density of states is small. In
Cu, on the other hand, EF is nearly in the middle of the 4  band where the density of
states is high. Thus, Mg has a lower conductivity than Cu.

The scattering time r in Equation 4.27 assumes that the scattered electrons at EF
remain in the same energy band. In certain metals, there are two different energy
bands that overlap at EF. For example, in Ni (see Figure 4.61), 3d and 4  bands over-
lap at EF. An electron can be scattered from the 4$ to the 3d band, and vice versa.
Electrons in the 3d band have very low drift mobilities and effectively do not
contribute to conduction, so only g(EF) of the 4s band operates in Equation 4.27.
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Since 4  to 3d band scattering is an additional scattering mechanism, by virtue of
Matthiessen's rule, the scattering time r for the 4  band electrons is shortened. Thus,
Ni has poorer conductivity than Cu.

In deriving Equation 4.27 we did not assume a particular density of states
model. If we now apply the free electron model for g(EF) as in Equation 4.10, and
also relate EF to the total number of conduction electrons per unit volume n as in
Equation 4.22, we would find that the conductivity is the same as the Drude model,
that is,

a 14.28]
m e

Drude model

and free
electrons

MEAN SPEED OF CONDUCTION ELECTRONS IN A METAL Calculate the Fermi energy EFo at
0 K for copper and estimate the average speed of the conduction electrons in Cu. The density of
Cu is 8.96 g cm-3 and the relative atomic mass (atomic weight) is 63.5.

SOLUTION

Assuming each Cu atom donates one free electron, we can find the concentration of electrons,
from the density J, atomic mass M,iU and Avogadro's number NA, as follows:

8
.
96 x 6.02 x 1023

EXAMPLE 4.9

dN
n

A

Mat 63.5

8
.
5 x 1022 cm-3 or      8.5 x 1028 m-3

The Fermi energy at 0 K is given by Equation 4.22:

EFO (8m<?)(  )
2/3

Substituting n 8
.5 x 1028 m"'3 and the values for h and me, we obtain

£™ = 1.1 x lO"18 J      or 7eV

To estimate the mean speed of the electrons, we calculate the rms speed ve from
mevl = \EFo. The mean speed will be close to the rms speed. Thus, ve = (6EFo/5me)l/2.

Substituting for EFo and mei we find ve = 1.2 x 106 m s-1.

CONDUCTION IN SILVER Consider silver whose density of states g(E) was calculated in
Example 4.8, assuming a free electron model for g(E) as in Equation 4.10. For silver,
EF = 5.5 eV, so from Equation 4.10, the density of states at EF is g(EF) = 1.60 x 1028 m"3
eV-1

. The velocity of Fermi electrons, vF = (2EF/me)l/2 = 1.39 x 106 m s"1. The conduc-
tivity a of Ag at room temperature is 62.5 x 106 ft 1 m"1. Substituting for cr, g(EF), and vF
in Equation 4.27,

a = 62.5 x 10* = I,2,2 rg(EF) = 1(1.6 x 10-w)2(1.39 x lO r (\f 9)
we find r == 3.79 x 10"14 s. The mean free path I = vFz = 53 nm. The drift mobility of EF
electrons is/x = ex/me 67 cm2 V"1 s"1

EXAMPLE 4.10
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From Example 4.8, since Ag has a valency of I, the concentration of conduction electrons
is n = jiAg = 5.85 x 1028 m~3. Substituting for n and a in Equation 4.28 gives

,n6    e2nT     (1.6 x 10-19)2(5.85 x 1028)t
62.5 x 10 =  = 

. (9.1 x lO"31)m e

we find r = 3.79 x 10 14 s as expected because we have used the free electron model.

4
.8    FERMI ENERGY SIGNIFICANCE

4
.
8
.

1   Metal-Metal Contacts: Contact Potential

Suppose that two metals, platinum (Pt) with a work function 5.36 eV and molybdenum
(Mo) with a work function 4.20 eV, are brought together, as shown in Figure Sa. We
know that in metals, all the energy levels up to the Fermi level are full. Since the Fermi
level is higher in Mo (due to a smaller O), the electrons in Mo are more energetic.
They therefore immediately go over to the Pt surface (by tunneling), where there are
empty states at lower energies, which they can occupy. This electron transfer from Mo
to the Pt surface reduces the total energy of the electrons in the Pt-Mo system, but at
the same time, the Pt surface becomes negatively charged with respect to the Mo sur-
face. Consequently, a contact voltage (or a potential difference) develops at the junc-
tion between Pt and Mo, with the Mo side being positive.

The electron transfer from Mo to Pt continues until the contact potential is large
enough to prevent further electron transfer: the system reaches equilibrium. It should
be apparent that the transfer of energetic electrons from Mo to Pt continues until the
two Fermi levels are lined up, that is, until the Fermi level is uniform and the sanie in
both metals, so that no part of the system has more (or less) energetic electrons, as

>
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(a) Electrons are more energetic in Mo, so
they tunnel to the surface of Pt.
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(b) Equilibrium is reached when the Fermi
levels are lined up.

Figure 4.28   When two metals are brought together, there is a contact potential A V.



4.8 Fermi Energy Significance 321

1
.
1V

+

PtMo

0:=

+

Mo Pt
+

1
.
1V

s Figure 4.29  There is no current when a closed circuit is formed
by two different metals, even though there is a contact potential at
each contact.

The contact potentials oppose each other.

illustrated in Figure 4.28b. Otherwise, the energetic electrons in one part of the system
will flow toward a region with lower energy states. Under these conditions, the Pt-Mo
system is in equilibrium. The contact voltage A V is determined by the difference in
the work functions, that is,

e AV = O(Pt) - cD(Mo) = 5.36 eV - 4.20 eV = 1.16 eV

We should note that away from the junction on the Mo side, we must still provide
an energy of <t> = 4.20 eV to free an electron, whereas away from the junction on the
Pt side, we must provide O = 5.36 eV to free an electron. This means that the vacuum
energy level going from Mo to Pt has a step AO at the junction. Since we must do
work equivalent to A4) to get a free electron (e.g., on the metal surface) from the Mo
surface to the Pt surface, this represents a voltage of AO/e or 1.16 V.

From the second law of thermodynamics,7 this contact voltage cannot do work;
that is, it cannot drive current in an external circuit. To see this, we can close the

Pt metal-Mo metal circuit to form a ring, as depicted in Figure 4.29. As soon as we
close the circuit, we create another junction with a contact voltage that is equal and op-
posite to that of the first junction. Consequently, going around the circuit, the net volt-
age is zero and the current is therefore zero.

There is a deep significance to the Fermi energy EF, which should at least be men-
tioned. For a given metal the Fermi energy represents the free energy per electron
called the electrochemical potential /x. In other words, the Fermi energy is a measure
of the potential of an electron to do electrical work (e x V) or nonmechanical work,
through chemical or physical processes.8 In general, when two metals are brought into
contact, the Fermi level (with respect to a vacuum) in each will be different. This
difference means a difference in the chemical potential A/x, which in turn means that
the system will do external work, which is obviously not possible. Instead, electrons
are immediately transferred from one metal to the other, until the free energy per elec-
tron ii for the whole system is minimized and is uniform across the two metals, so that

7 By the way, the second law of thermodynamics simply says that you cannot extract heat from a system in thermal
equilibrium and do work [i.e., charge x voltage).
8 A change in any type of PE can, in principle, be used to do work, that is, A(PE) = work done. Chemical PE is the
potential to do nonmechanical work [e.g., electrical work) by virtue of physical or chemical processes. The chemical
PE per electron is Ep and AEp= electrical work per electron.



322 chapter 4 . Modern Theory of Solids

A/x = 0. We can guess that if the Fermi level in one metal could be maintained at a
higher level than the other, by using an external energy source (e.g., light or heat), for
example, then the difference could be used to do electrical work.

4
.
8

.
2  The Seebeck Effect and the Thermocouple

Thermo-

electric

power or

Seebeck

coefficient

Consider a conductor such as an aluminum rod that is heated at one end and cooled at

the other end as depicted in Figure 4.30. The electrons in the hot region are more en-
ergetic and therefore have greater velocities than those in the cold region.9

Consequently there is a net diffusion of electrons from the hot end toward the cold
end which leaves behind exposed positive metal ions in the hot region and accumu-
lates electrons in the cold region. This situation prevails until the electric field devel-
oped between the positive ions in the hot region and the excess electrons in the cold re-
gion prevents further electron motion from the hot to the cold end. A voltage therefore
develops between the hot and cold ends, with the hot end at positive potential. The
potential difference A V across a piece of metal due to a temperature difference AT is
called the Seebeck effect.10 To gauge the magnitude of this effect we introduce a
special coefficient which is defined as the potential difference developed per unit tem-
perature difference, or

S =
dV

dT
[4.29]

By convention, the sign of 5 represents the potential of the cold side with respect
to the hot side. If electrons diffuse from the hot end to the cold end as in Figure 4.30,
then the cold side is negative with respect to the hot side and the Seebeck coefficient is
negative (as for aluminum).

In some metals, such as copper, this intuitive explanation fails to explain why elec-
trons actually diffuse from the cold to the hot region, giving rise to positive Seebeck
coefficients; the polarity of the voltage in Figure 4.30 is actually reversed for copper.
The reason is that the net diffusion process depends on how the mean free path i and
the mean free time (due to scattering from lattice vibrations) change with the electron
energy, which can be quite complicated. Typical Seebeck coefficients for various se-
lected metals are listed in Table 4.3.

Consider two neighboring regions H (hot) and C (cold) with widths corresponding
to the mean free paths I and I' in H and C as depicted in Figure 4.31a. Half the electrons
in H would be moving in the -hx direction and the other half in the - x direction. Half of
the electrons in H therefore cross into C, and half in C cross into H. Suppose that, very
roughly, the electron concentration n in H and C is about the same. The number of elec-
trons crossing from H to C is n£, and the number crossing from C to H is nl'. Then,

Net diffusion from H to C a \n(i - t) [4.30]

9 The conduction electrons around the Fermi energy have a mean speed that has only a small temperature
dependence. This small change in the mean speed with temperature is, nonetheless, intuitively significant in
appreciating the thermoelectric effect. The actual effect, however, depends on the mean free path as discussed later.
10 Thomas Seebeck observed the thermoelectric effect in 1821 using two different metals as in the thermocouple,
which is the only way to observe the phenomenon. It was William Thomson (Lord Kelvin) who explained the
observed effect.
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Figure 4.30  The Seebeck effect.
A temperature gradient along a conductor gives rise to a potential difference.

Suppose that the scattering of electrons is such that i increases strongly with the
electron energy. Then electrons in H, which are more energetic, have a longer mean
free path, that is, I > i1 as shown in Figure 4.31a. This means that the net migration is
from H to C and 5 is negative, as in aluminum. In those metals such as copper in which
I decreases strongly with the energy, electrons in the cold region have a longer mean
free path, I1 > i as shown in Figure 4.31b. The net electron migration is then from C
to H and 5 is positive. Even this qualitative explanation is not quite correct because n is
not the same in H and C (diffusion changes ri) and, further, we neglected the change in
the mean scattering time with the electron energy.

The coefficient S is widely referred to as the thermoelectric power even though
this term is misleading, as it refers to a voltage difference rather than power. A more ap-
propriate recent term is the Seebeck coefficient. 5 is a material property that depends
on temperature, 5 = 5(7), and is tabulated for many materials as a function of

Table 4.3  Seebeck coefficients of selected metals (from various sources)

Metal

5at0oC

(pVK-1)
S at 27 0C

(MVK-1) £F(eV) x

Al

Au

Cu

K

Li

Mg
Na

Pd

Pt

-1
.
6

+1.79

+ L70

+14
-1

.
3

-9
.
00

-4
.
45

-1
.
8

+ 1.94

+ 1.84
-12.5

-5

-9
.
99

-5
.
28

11.6

5
.
5

7
.
0

2
.
0

4
.
7

7
.

1

3
.

1

2
.
78

-1
.
48

-1
.
79

3
.
8

-9
.
7

1
.
38

2
.
2
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Figure 4.31 Consider two neighboring regions H (hot) and C (cold) with widths corresponding to
the mean free paths I and i' in H and C.
Half the electrons in H would be moving in the +x direction and the other half in the -x direction.
Half of the electrons in H therefore cross into C, and half in C cross into H.

Mott and

Jones

thermo-

electric

power

temperature. Given the Seebeck coefficient S(T) for a material, Equation 4.29 yields
the voltage difference between two points where temperatures are T0 and Tas follows:

AV f SdT [4.31]

A proper explanation of the Seebeck effect has to consider how electrons around
the Fermi energy EF, which contribute to electrical conduction, are scattered by lattice
vibrations, impurities, and crystal defects. This scattering process controls the mean
free path and hence the Seebeck coefficient (Figure 4.31). The scattered electrons need
empty states, which in turn requires that we consider how the density of states changes
with the energy as well. Moreover, in certain metals such as Ni, there are overlapping
partially filled bands and the Fermi electron can be scattered from one electronic band
to another, for example from the 4  band to the 3d band, which must also be consid-
ered (see Question 4.25). The Seebeck coefficient for many metals is given by the
Mott and Jones equation,

S k x [4.32]
3eEFo

where x is a numerical constant that takes into account how various charge transport
parameters (such as i) depend on the electron energy. A few examples for x are given
in Table 4.3. The reason for the kT/EFo factor in Equation 4.32 is that only those
electrons about a kT around the Fermi level EFo are involved in the transport and scat-
tering processes. Equation 4.32 does not apply directly to transition metals (Ni, Pd, Pt)
that have overlapping bands. These metals have a negative Seebeck coefficient that is
proportional to temperature as in Equation 4.32, but the exact expression depends on
the band structure.
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Figure 4.32
(a) If Al wires are used to measure the Seebeck voltage across the Al rod, then the net emf
is zero.

(b) The Al and Ni have different Seebeck coefficients. There is therefore a net emf in the
Al-Ni circuit between the hot and cold ends that can be measured.

Suppose that we try to measure the voltage difference A V across the aluminum
rod by using aluminum connecting wires to a voltmeter as indicated in Figure 4.32a.
The same temperature difference now also exists across the aluminum connecting
wires; therefore an identical voltage also develops across the connecting wires, oppos-
ing that across the aluminum rod. Consequently no net voltage will be registered by the
voltmeter. It is, however, possible to read a net voltage difference, if the connecting
wires are of different material, that is, have a different Seebeck coefficient from that of

aluminum. Then the thermoelectric voltage across this material is different than that
across the aluminum rod, as in Figure 4.32b.

The Seebeck effect is fruitfully utilized in the thermocouple (TC), shown in Fig-
ure 4.32b, which uses two different metals with one junction maintained at a reference
temperature T0 and the other used to sense the temperature T. The voltage across each
metal element depends on its Seebeck coefficient. The potential difference between the
two wires will depend on SA - Sb> By virtue of Equation 4.31, the electromotive force
(emf) between the two wires, VAb = A VA - A Vs, is then given by

Vab f (SA - Sb) dT = f
JT

0 Jt0
Sab dT [4.33]

where Sab = - Sb is defined as the thermoelectric power for the thermocouple pair
A-B

. For the chromel-alumel (K-type) TC, for example, Sab * 40 fiW K-1 at 300 K.
The output voltage from a TC pair obviously depends on the two metals used. In-

stead of tabulating the emf from all possible pairs of materials in the world, which
would be a challenging task, engineers have tabulated the emfs available when a given
material is used with a reference metal which is chosen to be platinum. The reference
junction is kept at 0 0C (273.16 K) which corresponds to a mixture of ice and water.
Some typical materials and their emfs are listed in Table 4.4.

Using the expression for the Seebeck coefficient, Equation 4.32, in Equation 4.33,
and then integrating, leads to the familiar thermocouple equation,

Vab = a AT + b(AT)2 [4.34]

Thermo-

couple emf
between

metals A

and B

Thermo-

couple
equation
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Table 4.4  Thermoelectric emf for metals at 100 and 200 0C with

respect to Pt and the reference junction at 0 0C

Material

Copper, Cu
Aluminum, Al

Nickel, Ni

Palladium, Pd

Platinum, Pt

Silver, Ag
Alumel

Chromel

Constantan

Iron, Fe

90% Pt-10% Rh

(platinum-rhodium)

emf (mV)

At 100 0C At 2000C

0
.
76

0
.
42

-1
.
48

.0
.57

0

0
.
74

-1
.
29

2
.
81

.3
.
51

1
.
89

0
.
643

1
.
83

1
.
06

-3
.
10

-1
.
23

0

1
.
77

-2
.
17

5
.
96

-7
.
45

3
.
54

1
.
44

where a and b are the thermocouple coefficients and AT = T - T0 is the temperature
with respect to the reference temperature T0 (273.16 K). The inference from Equa-
tion 4.34 is that the emf output from the thermocouple wires does not depend linearly
on the temperature difference AT. Figure 4.33 shows the emf output versus tempera-
ture for various thermocouples. It should be immediately obvious that the voltages
are small, typically a few tens of a microvolt per degree temperature difference. At

Figure 4.33  Output emf versus
temperature (0C) for various
thermocouples between-0 to 1000 0C.
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0 0C, by definition, the TC emf is zero. The K-type thermocouple, the chromel-alumel
pair, is a widely employed general-purpose thermocouple sensor up to about 1200 0C.

THE THERMOCOUPLE EMF Consider a thermocouple pair from Al and Cu which have Fermi
energies and x as in Table 4.3. Estimate the emf available from this thermocouple if one junc-
tion is held at 0 0C and the other at 100 0C.

SOLUTION

We essentially have the arrangement shown in Figure 4.32b but with Cu replacing Ni and Cu
having the cold end positive (5 is positive). For each metal there will be a voltage across it,
given by integrating the Seebeck coefficient from T0 (at the low temperature end) to T. From the
Mott and Jones equation,

fT fT   x7r2k2T X7r2k2 
, 2 2XAV=/   SdT=      -- -dT = ---(T2-T02)

JT
o JTo     3eEFo 6eEFo

The available emf (VAB) is the difference in A V for the two metals (A and B), so

 = AVA - AVB = - " T?)
be LhpAo £<fboj

where in this example T = 373 K and T0 = 273 K.
For Al (A), EFAo = 11.6 eV, xA = 2.78, and for copper (£), EFBo = 7.0 eV, xB = -1.79.

Thus,

Vab = -189 |iV - (+201 juV) = -390 |iV

Thermocouple emf calculations that closely represent experimental observations require
thermocouple voltages for various metals listed against some reference metal. The reference is
usually Pt with the reference junction at 0 0C. From Table 4.4 we can read Al-Pt and Cu-Pt
emfs as Vai-pi = 0.42 mV and Vcu-pt = 0.76 mV at 100 0C with the experimental error being
around ±0.01 mV, so that for the Al-Cu pair,

Vm-cu = VAi_Pt - Vcu-Pt = 0.42 mV - 0.76 mV = -0.34 mV

There is a reasonable agreement with the calculation using the Mott and Jones equation.

EXAMPLE 4.11

THE THERMOCOUPLE EQUATION We know that we can only measure differences between
thermoelectric powers of materials. When two different metals A and B are connected to make
a thermocouple, as in Figure 4.32b, then the net emf is the voltage difference between the two
elements. From Example 4.11,

AVAB = AVA- AVB

 2k2

f (SA - SB) dT = (
JT

0 JT0

be L t FAO ZfboJ

S dT

FAO        FBO

= C{T2-T
02)

where C is a constant that is independent of Tbut dependent on the material properties (x, EFo
for the metals).

EXAMPLE 4.12
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We can now expand VAb about T0 by using Taylor's expansion

F(T) * F(T0) + AT (dF/dT)0 + i(Ar)2( 2F/ r2)0

where the function F = V b and AT = T - T0 and the derivatives are evaluated at T0. The
result is the thermocouple equation:

VtBiT) = a(AT) + b(AT)2

where the coefficients a and b are 2C ro and C, respectively.
It is clear that the magnitude of the emf produced depends on C or Sa - Sb , which we can

label as Sab . The greater the thermoelectric power difference Sab for the TC, the larger the emf
produced. For the copper constantan TC, Sab is about 43 /xV K"1

.

4
.9    THERMIONIC EMISSION AND VACUUM

TUBE DEVICES

4
.
9
.1  Thermionic Emission: Richardson-Dushman Equation

Even though most of us view vacuum tubes as electrical antiques, their basic principle of
operation (electrons emitted from a heated cathode) still finds application in cathode ray
and X-ray tubes and various RF microwave vacuum tubes, such as triodes, tetrodes,
klystrons, magnetrons, and traveling wave tubes and amplifiers. Therefore, it is useful to
examine how electrons are emitted when a metal is heated.

When a metal is heated, the electrons become more energetic as the Fermi-Dirac
function extends to higher temperatures. Some of the electrons have sufficiently large
energies to leave the metal and become free. This situation is self-limiting because as
the electrons accumulate outside the metal, they prevent more electrons from leaving
the metal. (Put differently, emitted electrons leave a net positive charge behind, which
pulls the electrons in.) Consequently, we need to replenish the "lost" electrons and col-

lect the emitted ones, which is done most conveniently using the vacuum tube arrange-
ment in a closed circuit, as shown in Figure 4.34a. The cathode, heated by a filament,
emits electrons. A battery connected between the cathode and the anode replenishes

v

i

Ml

\-\- Plate or anode
-Vacuum

-l\

Saturation current

H" Cathode

Filament

(a) Thermionic electron
emission in a vacuum tube.

> V

(b) Current-voltage characteristics of
a vacuum diode.

Figure 4.34
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the cathode electrons and provides a positive bias to the anode to collect the thermally
emitted electrons from the cathode. The vacuum inside the tube ensures that the elec-

trons do not collide with the air molecules and become dispersed, with some even
being returned to the cathode by collisions. Therefore, the vacuum is essential. The
current due to the flow of emitted electrons from the cathode to the anode depends on
the anode voltage as indicated in Figure 4.34b. The current increases with the anode
voltage until, at sufficiently high voltages, all the emitted electrons are collected by the
anode and the current saturates. The saturation current of the vacuum diode depends
on the rate of thermionic emission of electrons which we will derive below. The vac-

uum tube in Figure 4.34a acts as a rectifier because there is no current flow when the
anode voltage becomes negative; the anode then repels the electrons.

We know that only those electrons with energies greater than EF + $ (Fermi
energy + work function) which are moving toward the surface can leave the metal.
Their number depends on the temperature, by virtue of the Fermi-Dirac statistics. Fig-
ure 4.35 shows how the concentration of conduction electrons with energies above
EF + O increases with temperature. We know that conduction electrons behave as if
they are free within the metal. We can therefore take the PE to be zero within the metal,
but EF + O outside the metal. The energy E of the electron within the metal is then
purely kinetic, or

E = \rnevl + l ev] + ~m,uz

2
[4.35]

Suppose that the surface of the metal is perpendicular to the direction of emission,
say along x. For an electron to be emitted from the surface, its KE = \mvl along x
must be greater than the potential energy barrier EF + O, that is,

1
-mv

2
Y
 > Ef -f 0

2 *
[4.36]
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 Ti
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0   n(E) = g(E)f(E)
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per unit energy

Figure 4.35   Fermi-Dirac function
f[E) and the energy density of
electrons n[E] (electrons per unit
energy and per unit volume) at three
different temperatures.
The electron concentration extends

more and more to higher energies as
the temperature increases. Electrons
with energies in excess of Ep + 4>
can leave the metal (thermionic
emission).
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Left to right: Owen Williams Richardson, Robert
Andrews Millikan, and Arthur Holly Compton at an
international conference on nuclear physics, Rome,
1931. Richardson won the physics Nobel prize in 1928
for thermionic emission.

SOURCE: Amaldi Archives, Dipartimento di Fisica,
Universitd La Sapienza, Rome; courtesy of AIP Emilio
Segre Visual Archives.
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Let dn(vx) be the number of electrons moving along x with velocities in the range
i;* to (i;* + dvx), with vx satisfying emission in Equation 4.36. These electrons will
be emitted when they reach the surface. Their number dn(vx) can be determined from
the density of states and the Fermi-Dirac statistics, since energy and velocity are
related through Equation 4.35. Close to EF + <t>, the Fermi-Dirac function will ap-
proximate the Boltzmann distribution, /(£) = exp[-(2? - EF)/kT]. The number
dn(vx) is therefore at least proportional to this exponential energy factor.

The emission of dn(vx) electrons will give a thermionic current density
dJx = evxdn(vx). This must be integrated (summed) for all velocities satisfying
Equation 4.36 to obtain the total current density JX9 or simply /. Since dn(vx) includes
an exponential energy function, the integration also leads to an exponential. The final
result is

J [4.37]

where B0 = 47remek2/h3. Equation 4.37 is called the Richardson-Dushman equation,
and B0 is the Richardson-Dushman constant, whose value is 1.20 x 106 A m~2 K~2

.
 We

see from Equation 4.37 that the emitted current from a heated cathode varies exponen-
tially with temperature and is sensitive to the work function O of the cathode material.
Both factors are apparent in Equation 4.37.

The wave nature of electrons means that when an electron approaches the surface,
there is a probability that it may be reflected back into the metal, instead of being emitted
over the potential barrier. As the potential energy barrier becomes very large, O -> oo,
the electrons are totally reflected and there is no emission. Taking into account that waves
can be reflected, the thermionic emission equation is appropriately modified to

J = BeT2exp (4) [4.38]
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where Be = (1 - R)B0 is the emission constant and R is the reflection coefficient.
The value of R will depend on the material and the surface conditions. For most met-
als, Be is about half of B0, whereas for some oxide coatings on Ni cathodes used in
thermionic tubes, Be can be as low as 1 x 102 A m~2 K~2.

Equation 4.37 was derived by neglecting the effect of the applied field on the emis-
sion process. Since the anode is positively biased with respect to the cathode, the field
will not only collect the emitted electrons (by drifting them to the anode), but will also
enhance the process of thermal emission by lowering the potential energy barrier <t>.

There are many thermionic emission-based vacuum tubes that find applications in
which it is not possible or practical to use semiconductor devices, especially at high-
power and high-frequency operation at the same time, such as in radio and TV broad-
casting, radars, microwave communications; for example, a tetrode vacuum tube in
radio broadcasting equipment has to handle hundreds of kilowatts of power. X-ray tubes
operate on the thermionic emission principle in which electrons are thermally emitted,
and then accelerated and impacted on a metal target to generate X-ray photons.

VACUUM TUBES It is clear from the Richardson-Dushman equation that to obtain an efficient
thermionic cathode, we need high temperatures and low work functions. Metals such as tungsten
(W) and tantalum (Ta) have high melting temperatures but high work functions. For example, for
W

, the melting temperature Tm is 3680 0C and its work function is about 4.5 eV. Some metals
have low work functions, but also low melting temperatures, a typical example being Cs with
$ = 1.8 eV and Tm = 28.5 0C. If we use a thin film coating of a low 0 material, such as ThO or
BaO, on a high-melting-temperature base metal such as W, we can maintain the high melting
properties and obtain a lower O. For example, Th on W has a O = 2.6 eV and Tm = 1845 0C

.

Most vacuum tubes use indirectly heated cathodes that consist of the oxides of B, Sr, and Ca on
a base metal of Ni. The operating temperatures for these cathodes are typically 800 0C

.

A certain transmitter-type vacuum tube has a cylindrical Th-coated W (thoriated tung-
sten) cathode, which is 4 cm long and 2 mm in diameter. Estimate the saturation current if the
tube is operated at a temperature of 1600 0C, given that the emission constant is Be = 3.0 x 104
Am-2K-2forThonW.

EXAMPLE 4.13

SOLUTION

We apply the Richardson-Dushman equation with O = 2.6 eV, T = (1600 + 273) K = 1873 K,
and Be = 3.0 x 104 A m~2 K"2

, to find the maximum current density that can be obtained from
the cathode at 1873 K, as follows:

J
too of    (2.6 x 1.6 x lO"19) 1

= 1
.
08 x 104 Am"2

The emission surface area is

A = tt(diameter)(length) = 7t(2 x 10~3)(4 x lO-2) = 2.5 x 10"4 m2

so the saturation current, which is the maximum current obtainable (i.e., the thermionic cur-
rent), is

/ = J A = (1.08 x 104 A m-2)(2.5 x lO"4 m2) = 2.7 A
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Figure 4.36
(a) PE of the electron near the surface of a conductor.
(b) Electron PE due to an applied field, that is,
between cathode and anode.

(c) The overall PE is the sum. (a) (b)
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2 Schottky Effect and Field Emission

When a positive voltage is applied to the anode with respect to the cathode, the elec-
tric field at the cathode helps the thermionic emission process by lowering the PE bar-
rier <£. This is called the Schottky effect. Consider the PE of the electron just outside
the surface of the metal. The electron is pulled in by the effective positive charge left
in the metal. To represent this attractive PE we use the theorem of image charges in
electrostatics,11 which says that an electron at a distance x from the surface of a con-
ductor possesses a potential energy that is

PE [mage )
e

2

l67t60X
[4.391

where e0 is the absolute permittivity.
This equation is valid for x much greater than the atomic separation a; otherwise,

we must consider the interaction of the electron with the individual ions. Further,
Equation 4.39 has a reference level of zero PE at infinity (x = oo), but we defined
PE = 0 to be inside the metal. We must therefore modify Equation 4.39 to conform to
our definition of zero PE as a reference. Figure 4.36a shows how this "image PE"
varies with x in this system. In the region x < x0, we artificially bring Primage W to
zero at x = 0, so our definition PE = 0 within the metal is maintained. Far away from
the surface, the PE is expected to be (EF + <£) (and not zero, as in Equation 4.39), so
we modify Equation 4.39 to read

imageU) = (EF + *) -
e

2

l67t60X
[4.40]

The present model, which takes Primage(*) from 0 to (£> + <£) along Equation 4.40,
is in agreement with the thermionic emission analysis, since the electron must still
overcome a PE barrier of EF + O to escape.

11 An electron at a distance x from the surface of a conductor experiences a force as if there were a positive charge
of +e at a distance 2x from it. The force is e2/[4 'e0(2x)2] or e2/[16 '

e0x2]. The result is called the image charge
theorem. Integrating the force gives the potential energy in Equation 4.39.
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From the definition of potential, which is potential energy per unit charge, when a
voltage difference is applied between the anode and cathode, there is a PE gradient just
outside the surface of the metal, given by e V(jc), or

f appliedU) = -exT, [4.41]

where £ is the applied field and is assumed, for all practical purposes, to be uniform. The
variation of PEappiied (*) with x is depicted in Figure 4.36b. The total PE{x) of the electron
outside the metal is the sum of Equations 4.40 and 4.41, as sketched in Figure 4.36c,

PE{x)    (EF + <D)
I67te0x

ex'E [4.42]

Note that the PE(x) outside the metal no longer goes up to (EF + O), and the PE
barrier against thermal emission is effectively reduced to (EF + 4>eff), where Oeff is a
new effective work function that takes into account the effect of the applied field. The
new barrier (EF + Oeff) can be found by locating the maximum of PE(x), that is, by
differentiating Equation 4.42 and setting it to zero. The effective work function in the
presence of an applied field is therefore

eff
\4n£0 I

[4.43]

This lowering of the work function by the applied field, as predicted by Equa-
tion 4.43, is the Schottky effect. The current density is given by the Richardson-
Dushman equation, but with Oeff instead of O,

2   r (o-foE1/2)]
= B

eT exp _ J [4.44]

where fis = [e3/47t60]l/2 is the Schottky coefficient, whose value is 3.79 x 10 5

(eV/VVnT1).
When the field becomes very large, for example, £ > 107 V cm"1, the PE(x) out-

side the metal surface may bend sufficiently steeply to give rise to a narrow PE barrier.
In this case, there is a distinct probability that an electron at an energy EF will tunnel
through the barrier and escape into vacuum, as depicted in Figure 4.37. The likelihood
of tunneling depends on the effective height Oeff of the PE barrier above EF, as well
as the width xF of the barrier at energy level EF. Since tunneling is temperature inde-
pendent, the emission process is termed field emission. The tunneling probability P
was calculated in Chapter 3, and depends on <I>eff and xF through the equation12

p"expL » J
We can easily find xF by noting that when x = xFy PE(xF) is level with EF, as

shown in Figure 4.37. From Equation 4.42, when the field is very strong, then around

Field-assisted

thermionic

emission

12 In Chapter 3 we showed that the transmission probability T-T0 exp(-2aa) where a2 = 2m (W0
 - E)/ti2 and a is

the barrier width. The pre-exponential constant To can be taken to be ~1. Clearly V0 - E = <l>eff since electrons with
E = Ef are tunneling and a = xp.
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Figure 4.37
(a) Field emission is the tunneling of an electron at an energy Ef through the narrow PE barrier induced
by a large applied field.
(b) For simplicity, we take the barrier to be rectangular.
(c) A sharp point cathode has the maximum field at the tip where the field emission of electrons occurs.
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x xF the second term is negligible compared to the third, so putting x = xF and
PE{xF) = EF in Equation 4.42 yields O = e'Exf. Substituting xF = O/eE in Equa-
tion 4.45, we can obtain the tunneling probability P

P eXP[ Si J [4.45]

Equation 4.45 represents the probability P that an electron in the metal at EF will tun-
nel out from the metal, as in Figure 4.37a and b, and become field-emitted. In a more
rigorous analysis we have to consider that electrons not just at EF but at energies
below EF can also tunnel out (though with lower probability) and we have to abandon
the rough rectangular PE{x) approximation in Figure 4.37b.

To calculate the current density / we have to consider how many electrons are
moving toward the surface per second and per unit area, the electron flux, and then
multiply this flow by the probability that they will tunnel out. The final result of the
calculations is the Fowler-Nordheim equation, which still has the exponential field
dependence in Equation 4.45,

Jfield-emission CE [4.46a]

in which C and £«: are temperature-independent constants
'3 %n(2me&)x/2

C
&nh<t>

and £0 =
3eh

[4.46b]

m
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that depend on the work function O of the metal. Equation 4.46a can also be used for
field emission of electrons from a metal into an insulating material by using the elec-
tron PE barrier <PB from metal's EF into the insulator's conduction band (where the
electron is free) instead of O.

Notice that the field £ in Equation 4.46a has taken over the role of temperature in
thermionic emission in Equation 4.38. Since field-assisted emission depends exponen-
tially on the field via Equation 4.46a, it can be enhanced by shaping the cathode into a
cone with a sharp point where the field is maximum and the electron emission occurs
from the tip as depicted in Figure 4.37c. The field £ in Equation 4.46a is the effective

field at the tip of the cathode that emits the electrons.
A popular field-emission tip design is based on the Spindt tip cathode, named

after its originator. As shown in Figure 4.38a, the emission cathode is an iceberg-type
sharp cone and there is a positively biased gate above it with a hole to extract the emit-
ted electrons. A positively biased anode draws and accelerates the electrons passing
through the gate toward it, which impinge on a phosphor screen to generate light by
cathodoluminescence, a process in which light is emitted from a material when it is
bombarded with electrons. Arrays of such electron field-emitters are used in field
emission displays (FEDs) to generate bright images with vivid colors. Color is ob-
tained by using red, green, and blue phosphors. The field at the tip is controlled by the
potential difference between the gate and the cathode, the gate voltage VG, which
therefore controls field emission. Since £ <x Vg> Equation 4.46a can be written to ob-
tain the emission current or the anode current I a as

Ia aVl exP(-£) [4.47]

where a and b are constants that depend on the particular field-emitting structure and
cathode material. Figure 4.38b shows the dependence of IA on Vq. There is a very
sharp increase with the voltage once the threshold voltages (around ~45 V in Figure
4

.38b) are reached to start the electron emission. Once the emission is fully operating,

Fowler-

Nordheim

anode current

in a field
emission

device
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Figure 4.39
(a) A carbon nanotube (CNT) is a whisker-like, very thin and long carbon molecule with rounded ends, almost the
perfect shape to be an electron field-emitter.
(b) Multiple CNTs as electron emitters.
(c) A single CNT as an emitter.
I SOURCE: Courtesy of Professor W. I. Milne, University of Cambridge; G. Pirio ef a/., Nanotechnology, 13, 1, 2002.

IA versus VG follows the Fowler-Nordheim emission. A plot of ln(/ /Vj) versus
1/ VG is a straight line as shown in Figure 4.38c.

Field emission has a number of distinct advantages. It is much more power effi-
cient than thermionic emission which requires heating the cathode to high tempera-
tures. In principle, field emission can be operated at high frequencies (fast switching
times) by reducing various capacitances in the emission device or controlling the elec-
tron flow with a grid. Field emission has a number of important realized and potential
applications: field emission microscopy, microwave amplifiers (high power and wide
bandwidth), parallel electron beam microscopy, nanolithography, portable X-ray gen-
erators, and FEDs. For example, FEDs are thin flat displays (~2 mm thick), that have
a low power consumption, quick start, and most significantly, a wide viewing angle of
about 170°. Monochrome FEDs are already on the market, and color FEDs are ex-
pected to be commercialized soon, probably before the fourth edition of this text.

Typically molybdenum, tungsten, and hafnium have been used as the field-emission
tip materials. Micromachining (microfabrication) has lead to the use of Si emission
tips as well. Good electron emission characteristics have been also reported for
diamond-like carbon films. Recently there has been a particular interest in using car-
bon nanotubes as emitters. A carbon nanotube (CNT) is a very thin filament-like car-
bon molecule whose diameter is in the nanometer range but whose length can be quite
long, e.g., 10-100 microns, depending on how it is grown or prepared. A CNT is made
by rolling a graphite sheet into a tube and then capping the ends with hemispherical
buckminsterfullerene molecules (a half Buckyball) as shown in Figure 4.39a. De-
pending on how the graphite sheet is rolled up, the CNT may be a metal or a semi-
conductor13

. The high aspect ratio (length/diameter) of the CNT makes it an efficient

13 Carbon nanotubes can be single-walled or multiwalled (when the graphite sheets are wrapped more than once)
and can have quite complicated structures. There is no doubt that they possess some remarkable properties, so it is
likely that CNTs will eventually be used in various engineering applications. See, for example, M. Baxendale,
J. Mater. Sci.: Mater Electron, 14, 657, 2003.
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electron emitter. If one were to wonder what is the best shape for an efficient field
emission tip, one might guess that it should be a sharp cone with some suitable apex
angle. However, it turns out that the best emitter is actually a whisker-type thin fila-
ment with a rounded tip, much like a CNT. It is as if the CNT has been designed by na-
ture to be the best field emitter. Figure 4.39b and c shows SEM photographs of two
CNT Spindt-type emitters. Figure 4.39b has several CNTs, and Figure 4.39c just one
CNT for electron emission. (Which is more efficient?)

FIELD EMISSION Field emission displays operate on the principle that electrons can be readily
emitted from a microscopic sharp point source (cathode) that is biased negatively with respect
to a neighboring electrode (gate or grid) as depicted in Figure 4.38a. Emitted electrons impinge
on colored phosphors on a screen and cause light emission by cathodoluminescence. There are
millions of these microscopic field emitters to constitute the image. A particular field emission
cathode in a field-emission-type flat panel display gives a current of 61.0 (iA when the voltage
between the cathode and the grid is 50 V. The current is 279 jiA when the voltage is 58.2 V. What
is the current when the voltage is 56.2 V?

SOLUTION

Equation 4.47 related IA to VG,

where a and b are constants that can be determined from the two sets of data given. Thus,

61.0 jiA = a502exp -       and      279 jiA = a58.22 exp(- " )

EXAMPLE 4.14

Dividing the first by the second gives

61.0 502 exph( -i)]279     58.22

which can be solved to obtain b = 431.75 V and hence a = 137.25 |iA/V2
.
 At V = 58.2 V,

,
     /  431.75 \

/ = (137.25)(56.2)2exp  -   = 200 joA
\    56.2 /

The experimental value for this device was 202 jxA, which happens to be the device in Figure
4

.37b (close).

4
.10 PHONONS

4
.
10.1   Harmonic Oscillator and Lattice Waves

Quantum Harmonic Oscillator In the classical picture of a solid, the constituent
atoms are held together by bonds which can be represented by springs. According to
the kinetic molecular theory, the atoms in a solid are constantly vibrating about their
equilibrium positions by stretching and compressing their springs. The oscillations are
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Figure 4.40
(a) Harmonic vibrations of an atom about its equilibrium position assuming its neighbors are fixed.
(b) The PE curve V(x) versus displacement from equilibrium, x.
(c) The energy is quantized.
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assumed to be simple harmonic so that the average kinetic and potential energies are
the same. Figure 4.40a shows a one-dimensional independent simple harmonic oscil-
lator that represents an atom of mass M attached by springs to fixed neighbors. The
potential energy V(x) is a function of displacement x from equilibrium. For small
displacements, V(x) is parabolic in x, as indicated in Figure 4.40b, that is,

V(x) = ±0* 2
[4.48]

where £ is a spring constant. The instantaneous energy, in principle, can be of any
value. Equation 4.48 neglects the cubic term and is therefore symmetric about the
equilibrium position at x = 0. It is called a harmonic approximation to the PE
curve.

In modem physics, the energy of such a harmonic oscillator must be calculated
using the PE in Equation 4.48 in the Schrodinger equation so that

d2if 2M
+

dx2 ti 2 (e - 0 [4.49]

The solution of Equation 4.49 shows that the energy En of such a harmonic oscil-
lator is quantized,

fico [4.50]

where co is the angular frequency of the vibrations14 and n is a quantum number
0

, 1,2,3,  The oscillation frequency is determined by the spring constant £ and the
mass M through co - ( /M)1/2

. Figure 4.40c shows the allowed energies of the qu
turn mechanical harmonic oscillator.

an-

I 14 Henceforth frequency will imply co.
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Figure 4.41
(a) A chain of N atoms through a crystal in the absence of vibrations.
(b) Coupled atomic vibrations generate a traveling longitudinal (L) wave along x. Atomic displacements (ur) are
parallel to x.
(c) A transverse (T) wave traveling along x. Atomic displacements (ur) are perpendicular to the x axis, (b) and
(c) are snapshots at one instant.

It is apparent that the minimum energy of the oscillator can never be zero but must
be a finite value that is £o = This energy is called the zero-point energy. As the
temperature approaches 0 K, the harmonic oscillator would have an energy of £0 and
not zero. The energy levels are equally spaced by an amount fico, which represents the
amount of energy absorbed or emitted by the oscillator when it is excited and de-
excited to a neighboring energy level. The vibrational energies of a molecule due to its
atoms vibrating relative to each other, e.g., the vibrations of the CI2 molecule in which
the Cl-Cl bond is stretched and compressed, can also be described by Equation 4.50.

Phonons Atoms in a solid are coupled to each other by bonds. Atomic vibrations are
therefore also coupled. These coupled vibrations lead to waves that involve coopera-
tive vibrations of many atoms and cannot be represented by independent vibrations of
individual atoms. Figure 4.41a shows a chain of atoms in a crystal. As an atom vibrates
it transfers its energy to neighboring vibrating atoms and the coupled vibrations pro-
duce traveling wave-trains in the crystal.15 (Consider grabbing and strongly vibrating
the first atom in the atomic chain in Figure 4.41a. Your vibrations will be coupled and
transferred by the springs to neighboring atoms in the chain along x.) Two examples
are shown in Figure 4.41b and c. In the first, the atomic vibrations are parallel to the
direction of propagation x and the wave is a longitudinal wave. In the second, the
vibrations are transverse to the direction of propagation and the corresponding wave is
a transverse wave. Suppose that xr is the position of the rth atom in the absence of
vibrations, that is, xr = ra, where r is an integer from 0 to N, the number of atoms in
the chain, as indicated in Figure 4.41a. By writing the mechanical equations (Newton's

I 15 In the presence of coupling, the individual atoms do not execute simple harmonic motion.



340 chapter 4 . Modern Theory of Solids

Traveling-

wave-type
lattice

vibrations

Phonon

energy

Phonon

momentum

Dispersion
relation

second law) for the coupled atoms in Figure 4.41a, we can show that the displacement
ur from equilibrium at a location xr is given by a traveling-wave-like behavior,16

ur = A ex\)[j(Kxr - cot)] [4.51]

where A is the amplitude, K is a wavevector, and co is the angular frequency. Notice
that the Kxr term is very much like the usual kx phase term of a traveling wave prop-
agating in a continuous medium; the only difference is that Kxr exists at discrete xr
locations. The wave-train described by Equation 4.51 in the crystal is called a lattice
wave. Along the x direction it has a wavelength A = In/K over which the longitudi-
nal (or transverse) displacement ur repeats itself. The displacement ur repeats itself at
one location over a time period In/co. A wave traveling in the opposite direction to
Equation 4.51 is of course also possible. Indeed, two oppositely traveling waves of the
same frequency can interfere to set up a stationary wave which is also a lattice wave.

The lattice wave described by Equation 4.51 is a harmonic oscillation with a fre-
quency co that itself has no coupling to another lattice wave. The energy possessed by
this lattice vibration is quantized in much the same way as the energy of the quantized
harmonic oscillator in Equation 4.50. The energy of a lattice vibration therefore can
only be multiples of hco above the zero-point energy, hco. The quantum of energy hco
is therefore the smallest unit of lattice vibrational energy that can be added or sub-
tracted from a lattice wave. The quantum of lattice vibration fico is called a phonon in
analogy with the quantum of electromagnetic radiation, the photon. Whenever a lattice
vibration interacts with another lattice vibration, an electron or a photon, in the crystal,
it does so as if it had possessed a momentum offiK. Thus,

Ephonon flO) hv [4.52]

Pphonon = flK [4.53]

The frequency of vibrations co and the wavevector K of a lattice wave are related.
If we were to use Equation 4.51 in the mechanical equations that describe the coupled
atomic vibrations, we would find that

2(£rKW [4.54]

which relates co and K and is called the dispersion relation. Figure 4.42 shows how
the frequency co of the lattice waves increases with increasing wavevector AT, or de-
creasing wavelength A. From Equation 4.54, there can be no frequencies higher than
&>max = 2( / 01/2

, which is the lattice cut-off frequency. Both longitudinal and
transverse waves exhibit this type of dispersion relationship shown in Figure 4.42a
though their exact oo-K curves would be different depending on the nature of
interatomic bonding and the crystal structure. The dispersion relation in Equation 4.54
is periodic in K with a period 2n/a. Only values of K in the range - n/a < K < nja
are physically meaningful. A point A with KA is the same as a point B with KB because
we can shift A

'

by the period, In ja as shown in Figure 4.42a.

16 The exponential notation for a wave is convenient, but we have to consider only the real part to actually
represent the wave in the physical world.
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(a) Frequency co versus wavevector K relationship for lattice waves.
(b) Group velocity vg versus wavevector K.
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The velocity at which traveling waves carry energy is called the group velocity vg
of the wave.17 It depends on the slope dco/dK of the co-K dispersion curve, so for
lattice waves,

ve = - = I - )   a cos I - Ka.8    dK     \M) \2 )
[4.55]

which is shown in Figure 4.42b. Points A and B in Figure 4.42a have the same group
velocity and are equivalent.

The number of distinct or independent lattice waves, with different wavevectors,
in a crystal is not infinite but depends on the number of atoms N. Consider a linear
crystal as in Figure 4.43 with many atoms. We will take Af to be large and ignore the
difference between AT and N - 2. The lattice waves in this crystal would be standing
waves represented by two oppositely traveling Waves. The crystal length L = Na can
support multiples of the half-wavelength  A as indicated in Figure 4.43,

A
q- = L - NaH 2 q = 1,2,3,...

or
qn qn

K = - = -      q = 1,2, 3, ...
L Na

[4.56a]

[4.56b]

where q is an integer. Each particular K value Kq represents one distinct lattice
wave with a particular frequency as determined by the dispersion relation. Four ex-
amples are shown in Figure 4.43. Each of these Kq values defines a mode or state of
lattice vibration. Each mode is an independent lattice vibration. Its energy can be
increased or decreased only by a quantum amount of fico. Since Kq values outside the
range - n/a < K < n/a are the same as those in that range (A and B are the same

Group
velocity

Vibrational

modes

Vibrational

modes

17 For those readers who are not familiar with the group velocity concept, this is discussed in Chapter 9 without
prerequisite material.
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in Figure 4.42a), it is apparent that the maximum value of q is Af and thus the num-
ber of modes is also Af. Notice that as q increases, A decreases. The smallest A oc-
curs when alternating atoms in the crystal are moving in opposite directions which
corresponds to A = a, that is, q = N, a shown in Figure 4.43. In terms of the
wavevector, K = In/A = n/a. Smaller wavelengths or longer wavevectors are
meaningless and correspond to shifting K by a multiple of 2n/a. Since Af is large,
the co versus K curve in Figure 4.42a consists of very finely separated distinct
points, each corresponding to a particular q, analogous to the energy levels in an en-
ergy band.

The above ideas for the linear chain of atoms can be readily extended to a three-
dimensional crystal. If Lx, Ly, and Lz are the sides of the solid along the jc, y, and z
axes, with Nx, Ny9 and Nz number of atoms, respectively, then the wavevector compo-
nents along jc, y9 and z are

Kx Ky =
L

Kz =
y

L
[4.57]

z

where the integers qx, <yy, and qz run from 1 to Nx, Ny, and Nz, respectively. The total
number of permitted modes is NxNyNz or AT, the total number of atoms in the solid.
Vibrations however can be set up independently along the jc, y, and z directions so that
the actual number of independent modes is 3Af.

4
.10.2  Debye Heat Capacity

The heat capacity of a solid represents the increase in the internal energy of the crystal
per unit increase in the temperature. The increase in the internal energy is due to an
increase in the energy of lattice vibrations. This is generally true for all the solids ex-
cept metals at very low temperatures where the heat capacity is due to the electrons
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near the Fermi level becoming excited to higher energies. For most practical tempera-
ture ranges of interest, the heat capacity of solids is determined by the excitation of lat-
tice vibrations. The molar heat capacity Cm is the increase in the internal energy Um
of a crystal of NA atoms per unit increase in the temperature at constant volume,18 that

is, Cm = dUm/dT.
The simplest approach to calculating the average energy is first to assume that all

the lattice vibrational modes have the same frequency o). (We will account for differ-
ent modes having different frequencies later.) If En is the energy of a harmonic oscil-
lator such as a lattice vibration, then the average energy, by definition, is given by

oo

E EnP(En)
E =

00

E P(Ett)
n=0

[4.58]

where P(En) is the probability that the vibration has the energy En which is pro-
portional to the Boltzmann factor. Thus we can use P(En) oc exp(-En/kT) and
En = (n + j)fi(o in Equation 4.58. We can drop the zero-point energy as this does not
affect the heat capacity (which deals with energy changes). The substitution and cal-
culation of Equation 4.58 yields the vibrational mean energy at a frequency co9

E(co)

exp \kf) 
~

[4.59]
1

This energy increases with temperature. Each phonon has an energy of ha). Thus,
the phonon concentration in the crystal increases with temperature; increasing the
temperature creates more phonons. /

To find the internal energy due to at{ the lattice vibrations we must also consider
how many modes there are at various frequencies, that is, the distribution of the modes
over the possible frequencies, the spectrum of the vibrations. Suppose that g(co) is the
number of modes per unit frequency, that is, g(co) is the density of vibrational states
or modes. Then g(co) dco is the number of states in the range da*. The internal energy
Um

 of all lattice vibrations for 1 mole of solid is

U
m= f E(co)g(a)) dco [4.60]

The integration is up to a certain allowed maximum frequency a>max (Figure 4.42a).
The density of states g(a)) for the lattice vibrations can be found in a similar fashion to
the density of states for electrons in an energy band, and we will simply quote the result,

3V co2
g{co) - t-7 - [4.61]

2n2 v3

18 Constant volume in the definition means that the heat added to the system increases the internal energy without
doing mechanical work by changing the volume.
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Figure 4.44  Density of states for phonons in copper.
The solid curve is deduced from experiments on neutron
scattering. The broken curve is the three-dimensional Debye
approximation, scaled so that the areas under the two curves
are the same.

This requires that &>max  4.5 x 1013 rad s-1, or a Debye
characteristic temperature To = 344 K.
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where v is the mean velocity of longitudinal and transverse waves in the solid and Vis
the volume of the crystal. Figure 4.44 shows the spectrum g((o) for a real crystal such
as Cu and the expression in Equation 4.61. The maximum frequency is comax and is de-
termined by the fact that the total number of modes up to a;max must be 3 . It is called
the Debye frequency. Thus, integrating g((o) up to <ymax we find,

kv(67T2Na/V)1/3 [4.62]

This maximum frequency a>max corresponds to an energy ticoma* and to a tempera-
ture TD defined by,

fico
max

D
k

[4.63]

and is called the Debye temperature. Qualitatively, it represents the temperature
above which all vibrational frequencies are executed by the lattice waves.

Thus, by using Equations 4.59 to 4.63 in Equation 4.60 we can evaluate Um and
hence differentiate Um with respect to temperature to obtain the molar heat capacity at
constant volume,

/ T\3 fTD'T jcV
[4.64]

which is the Debye heat capacity expression.
Figure 4.45 represents the constant-volume molar heat capacity Cm of nearly

all crystals, Equation 4.64, as a function of temperature, normalized with respect
to the Debye temperature. The Dulong-Petit rule of Cm = 3/? is only obeyed
when T > TD. Notice that Cm at T = 0.5TD is 0.825(3/?) whereas at T = TD it
is 0.952(3/?). For most practical purposes, Cm is to within 6 percent of 3/? when
the temperature is at 0.9TD. For example, for copper TD = 315 K and above
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Figure 4.45   Debye constant-volume molar heat capacity curve.
The dependence of the molar heat capacity Cm on temperature with respect to the
Debye temperature: Cm versus T/Td- For Si, To = 625 K, so at room temperature
(300 K), r/rD = 0.48 and Cm is only 0.81 (3K).

about 0.9TD, that is, above 283 K (or 10 0C), Cm « 3/?, as borne out by experiments.19

Table 4.5 provides typical values for TD, and heat capacities for a few selected ele-
ments. It is left as an exercise to check the accuracy of Equation 4.64 for predicting the
heat capacity given the TD values. At the lowest temperatures when T TD, Equation
4

.64 predicts that Cm a T3, and this is indeed observed in low-temperature heat ca-
pacity experiments on a variety of crystals.20

It is useful to provide a physical picture of the Debye model inherent in Equa-
tion 4.64. As the temperature increases from near zero, the increase in the crystal's
vibrational energy is due to more phonons being created and higher frequencies being
excited. The phonon concentration increases as T3

, and the mean phonon energy
increases as T. Thus, the internal energy increases as T4. At temperatures above TD,
increasing the temperature creates more phonons but does not increase the mean
phonon energy and does not excite higher frequencies. All frequencies up to comSLX have
now been excited. The internal energy increases only due to more phonons being cre-
ated. The phonon concentration and hence the internal energy increase as T; the heat
capacity is constant as expected from Equation 4.64.

ii:

19 Sometimes it is stated that the Debye temperature is a characteristics temperature for each material at which all
the atoms are able to possess vibrational kinetic energies in accordance with the Maxwell equipartition of energy
principle; that is, the average vibrational kinetic energy will be ifcTper atom and average potential energy will
also be 2 kT. This means that the average energy per atom is 3kT, and hence the heat capacity is 3<cNa or 3R per
mole which is the Dulong-Petit rule.
20 Well-known exceptions are glasses, noncrystalline solids, whose heat capacity is proportional to ai7

"

+ 02T
"3

,

where 01 and 02 are constants.
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Table 4.5   Debye temperatures To, heat capacities, and thermal conductivities of selected elements

Crystal

Ag Be Cu Diamond Ge Hg Si W

To (K)* 215 1000 315 1860 360 100 625 310

Cm(JK-lmol-l)f 25.6 16.46 24.5 6.48 23.38 27.68 19.74 24.45

c5(JK
--1

g
-1)t 0.237 1.825 0.385 0.540 0.322 0.138 0.703 0.133

K(Wm
-lK-l)t 429 183 385 1000 60 8.

65 148 173

*7b is obtained by fitting the Debye curve to the experimental molar heat capacity data at the point Cm =  (3R).
tC

m, Cj, and k are at 25 0C
.

SOURCE: To data from J. De Launay, Solid State Physics, vol. 2, F. Seitz and D. Turnbull, eds., Academic Press,
New York, 1956.

It is apparent that, above the Debye temperature, the increase in temperature leads
to the creation of more phonons. In Chapters 1 and 2, using classical concepts only, we
had mentioned that increasing the tejmperature increases the magnitude of atomic vi-
brations. This simple and intuitive classical concept in terms of modem physics corre-
sponds to creating more phonons with temperature. We can use the photon analogy
from Chapter 3. When we increase the intensity of light of a given frequency, classi-
cally we simply increase the electric field (magnitude of the vibrations), but in modem
physics we have to increase the number of photons flowing per unit area.

EXAMPLE 4.15 SPECIFIC HEAT CAPACITY OF Si Find the specific heat capacity Cy of a silicon crystal at room
temperature given TD = 625 K for Si.

SOLUTION

At room temperature, T = 300 K, (T/TD) = 0.48, and, from Figure 4.45, the molar heat
capacity is

C
m
 = 0

.81(3/?) = 20.2 J K"1 mol"1

The specific heat capacity cs from the Debye curve is

 (0.81 x 25 J K~' mol"1) 
=       J 

Mat (28.09 gmor1)

The experimental value of 0.70 J K-1 g-1 is very close to the Debye value.

EXAMPLE 4.16 SPECIFIC HEAT CAPACITY OF GaAs Example 4.15 applied Equation 4.64, the Debye molar
heat capacity Cm, to the silicon crystal in which all atoms are of the same type. It was relatively
simple to calculate the specific heat capacity cs (what is really used in engineering) from the
molar heat capacity Cm by using cs = Cm / A/at where Mat is the atomic mass of the type of atom
(only one) in the crystal. When the crystal has two types of atoms, we must modify the specific
heat capacity derivation. We can still keep the symbol Cm to represent the Debye molar heat
capacity given in Equation 4.64. Consider a GaAs crystal that has NA units of GaAs, that is,
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1 mole of GaAs. There will be 1 mole (Na atoms) of Ga and 1 mole of As atoms. To a reason-
able approximation we can assume that each mole of Ga and As contributes a Cm amount of heat
capacity so that the total heat capacity of 1 mole GaAs will be Cm + Cm or 2Cm, a maximum of
50 J K"1 mol"1. The total mass of this 1 mole of GaAs is MGa + MAs. Thus, the specific heat
capacity of GaAs is

C
Cs

total 2Cm

M
total A*Ga + A*As       A Ga + A As

which can alternatively be written as

C
m

i(MGa + MAs)

C
m

_

M

where M = (MGa + AfAs)/2 is the average atomic mass of the constituent atoms. Although we
derived cs for GaAs, it can also be applied to other compounds by suitably calculating an aver-
age atomic mass M. GaAs has a Debye temperature TD = 344 K, so that at a room temperature
of 300 K, T/TD = 0.87, and from Figure 4.45, Cm/(3R) = 0.94. Therefore,

C. 
=

        (0.94)(25 J K-mol-)        
=        j 

Af      i(69.72gmor1+74.92 gmor1)

At -40 0C, T/TD = 0.68, aiKrC ((3/?) = 0.90, so the new cs = (0.90/0.94)(0.325) =
0

.311 J K~1 g~1, which is not a large change in cs.
The heat capacity per unit volume Cv can be found from Cv = csp, where p is the density.

Thus, at 300 K, Cv = (0.325 J K-1 g-1)(5.32 g cm"3) = 1.73 J K"1 cm"3. The calculated cs
match the reported experimental values very closely.

Specific heat
capacity of
GaAs

Specific heat
capacity of a
polyatomic
crystal

LATTICE WAVES AND SOUND VELOCITY Consider longitudinal waves in a linear crystal and
three atoms at r - 1, r, and r + 1 as in Figure 4.46. The displacement of each atom from equi-
librium in the +jc direction is wr_i, ur, and wr+1, respectively. Consider the rth atom. Its bond
with the left neighbor stretches by (wr - wr-i). Its bond with the right neighbor stretches by
(ur+i - Mr). The left spring exerts a force P(ur - wr_i), and the right spring exerts a force
P(ur+i - ur). The net force on the rth atom is mass x acceleration,

(f-Ur
IF

so

Net force = P(ur+i - ur) - P(ur - wr-i)

d2ur

M

M
dt2

PiUr+i - 2ur + Mr_i) [4.65]

This is the wave equation that describes the coupled longitudinal vibrations of the atoms
in the crystal. A similar expression can also be derived for transverse vibrations. We can substi-
tute Equation 4.51 in Equation 4.65 to show that Equation 4.51 is indeed a solution of the wave

EXAMPLE 4.17

Wave

equation

u
r-l

U
r

Ur+l Figure 4.46  Atoms executing
longitudinal vibrations parallel to x.

X

a
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equation. It is assumed that the crystal response is linear, that is, the net force is proportional to
net displacement.

The group velocity of lattice waves is given by Equation 4.55. For sufficiently small K, or
long wavelengths, such that Ka <3C 1,

2 / !       \        / 0 \ 1/2

a [4.66]

which is a constant. It is the slope of the straight-line region of co versus K curve for small K
values in Figure 4.42. Furthermore, the elastic modulus Y depends on the slope of the net force
versus displacement curve as derived in Example 1.5. From Equation 4.48 FN = dV/dx = fix
and hence Y = ft/a. Moreover, each atom occupies a volume of a3, so the density p is M/a3.
Substituting both of these results in Equation 4.66 yields

1/2

[4.67]

The relationship has to be modified for an actual crystal incorporating a small numerical
factor multiplying 7. Aluminum has a density of 2.7 g cm-3 and Y = 70 GPa, so the long-
wavelength longitudinal velocity from Equation 4.67 is 5092 m s

~1
. The sound velocity in Al is

5100 m s-1, whidti very close.
 

4
.10.3  Thermal Conductivity of Nonmetals

Thermal

conductivity
due to

phonons

In nonmetals the heat transfer involves lattice vibrations, that is, phonons. The heat ab-
sorbed in the hot region increases the amplitudes of the lattice vibrations, which is the
same as generating more phonons. These new phonons travel toward the cold regions
and thereby transport the lattice energy from the hot to cold end. The thermal
conductivity k measures the rate at which heat can be transported through a medium
per unit area per unit temperature gradient. It is proportional to the rate at which a
medium can absorb energy; that is, k is proportional to the heat capacity, k is also pro-
portional to the rate at which phonons are transported which is determined by their
mean velocity vph. In addition, of course, k is proportional to the mean free path that
a phonon has to travel before losing its momentum just as the electrical conductivity is
proportional to the electron

'

s mean free path. A rigorous classical treatment gives k as

[4.68]

where Cv is the heat capacity per unit volume. The mean free path depends on var-
ious processes that can scatter the phonons and hinder their propagation along the di-
rection of heat flow. Phonons collide with other phonons, crystal defects, impurities,
and crystal surfaces.

The mean phonon velocity is constant and approximately independent of tem-
perature. At temperatures above the Debye temperature, Cv is constant and, thus,
k a €ph. The mean free path of phonons at these temperatures is determined by
phonon-phonon collisions, that is, phonons interacting with other phonons as depicted
in Figure 4.47. Since the phonon concentration increases with temperature, a T,
the mean free path decreases as a \/T. Thus, k decreases with increasing tempera-
ture as observed for most crystals at sufficiently high temperatures.
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Figure 4.47 Phonons
Cold    generated in the hot region travel

toward the cold region and
thereby transport heat energy.
Phonon-phonon unharmonic
interaction generates a new
phonon whose momentum is
toward the hot region.

The phonon-phonon collisions that are responsible for limiting the thermal con-
ductivity, that is, scattering the phonon momentum in the opposite direction to the heat
flow, are due to the unharmonicity (asymmetry) of the interatomic potential energy
curve. Stated differently, the net force F acting on an atom is not simply fix but also has
an x2 term; it is nonlinear. The greater the asymmetry or nonlinearity, the larger is the
effect of such momentum flipping collisions. The same asymmetry that is responsible
for thermal expansion of solids is also responsible for determining the thermal conduc-
tivity. When two phonons 1 and 2 interact in a crystal region as in Figure 4.47, the non-
linear behavior and the periodicity of the lattice cause a new phonon 3 to be generated.
This new phonon 3 has the same energy as4he sum of 1 and 2, but it is traveling in the
wrong direction! (The frequency of 3 is the sun  of the frequencies of 1 and 2.)

At low temperatures there are two factors. The phonon concentration is too low for
phonon-phonon collisions to be significant. Instead, the mean free path £ph is deter-
mined by phonon collisions with crystal imperfections, most significantly, crystal
surfaces and grain boundaries. Thus, ph depends on the sample geometry and crys-
tallinity. Further, as we expect from the Debye model, Cv depends on T3, so k has the
same temperature dependence as Cv, that is, k a T3

. Between the two temperature
regimes k exhibits a peak as shown in Figure 4.48 for sapphire (crystalline AI2O3) and
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Figure 4.48 Thermal conductivity of sapphire
and MgO as a function of temperature.
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MgO crystals. Even though there are no conduction electrons in these two example
crystals, they nonetheless exhibit substantial thermal conductivity.

EXAMPLE 4.18 PHONONS IN GaAs Estimate the phonon mean free path in GaAs at room temperature 300 K
and at 20 K from its /c, Cv, and Uph, using Equation 4.68. At room temperature, semiconductor
data handbooks list the following for GaAs: k = 45 W m-1 K"1, elastic modulus Y = 85 GPa,
density p = 5.32 g cm-3, and specific heat capacity cs = 0.325 J K"1 g-1. At 20 K, k -
4000 W m-1 K-1 andc5 = 0.0052 J K-1 g"1. Y andp and hence do not change significantly
with temperature compared with the changes in k and Cv with temperature.

SOLUTION

The phonon velocity     from Equation 4.67 is approximately

/l- / 85 x
V P 

~~

 V 5.32 x
,
   _.    109Nm-2 .

Uph  J - = J r r = 4000 m s-1

P*      \\ M c „ 
„ 103 kg m-3

Heat capacity per unit volume Cv = csp = (325 J K"1 kg"1)(5320 kg m~3) = 1.73 x lO K"1
m

~3
. From Equation 4.68, k = C ph ph,

3k (3)(45Wm-1K-1) ,
iph =  = : = r = 2.0 x 10-8m      or      20 nm

p     Cvvph     (1
.73 x 106JK-1m-3)(4000ms-1)

We can easily repeat the calculation at 20 K, given k % 4000 W m~1 K~1 and cs = 5.2 J K-1
kg"1, so Cv = csp « (5.2 J K"1 kg -1)(5320 kg m"3) = 2.77 x 104 J K"1 m"3. Y and p and
hence vph 4000 m s-1), do not change significantly with temperature compared with k and Cv.
Thus,

3k              (3)(4 x 103 Wm"1 K 1)
iPh =   .

 

 

 

r- = 1
.

1 x 10-4m      or      0.011 cm=  I.I  X  I it 4
'

C ph     (2.77 x 104JK-1m-3)(4000ms-1)

For small specimens, the above phonon mean free path will be comparable to the sample size,
which means that £ph will actually be limited by the sample size. Consequently k will depend
on the sample dimensions, being smaller for smaller samples, similar to the dependence of the
electrical conductivity of thin films on the film thickness.

4
.
104 Electrical Conductivity

Except at low temperatures, the electrical conductivity of metals is primarily con-
trolled by scattering of electrons around EF by lattice vibrations, that is, phonons.
These electrons have a speed vF = (2EF/me)l/2 and a momentum of magnitude
mevF. We know that the electrical conductivity a is proportional to the mean collision
time r of the electrons, that is, a a r. This scattering time assumes that each scatter-
ing process is 100 percent efficient in randomizing the electron's momentum, that is,
destroying the momentum gained from the field, which may not be the case. If it takes
on average N collisions to randomize the electron's momentum, and r is the mean

time between the scattering events, then the effective scattering time is simply Nz and
a oc Nr. (l/N indicates the efficiency of each scattering process in randomizing the
velocity.)
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electron by a phonon.

Figure 4.49 shows an example in which an electron with an initial momentum p,
collides with a lattice vibration of momentum ftK. The result of the interaction is that

the electron's momentum is deflected through a small angle 0 to p/ which still has a
component along the original direction x. This is called a low-angle scattering process.
It will take many such collisions to reverse the electron's momentum which corre-
sponds to flipping the momentum along the +x direction to the -jc direction. Recall
that the momentum gained from the field is actually very small compared with the mo-
mentum of the electron which is meVF. A scattered electron must have an energy close
to Ep because lower energy states are filled. Thus, p, and p/ have approximately the
same magnitude pt = pf = meVF as shown in Figure 4.49.

At temperatures above the Debye temperature, we can assume that most of the
phonons are vibrating with the Debye frequency o)m  and the phonon concentration
flph increases as T. These phonons have sufficient energies and momenta to fully scat-
ter the electron on impact. Thus,

[4.69a]
1 1

a a r a - a -
"ph T

When T < TD, the phonon concentration follows nph a T3, and the mean phonon
energy Eph oc 7\ because, as the temperature is raised, higher frequencies are excited.
However, these phonons have low energy and small momenta, thus they only cause
small-angle scattering processes as in Figure 4.49. The average phonon momentum
fiK is also proportional to the temperature (recall that at low frequencies Figure 4.42a
shows that fico a tiK). It will take many such collisions, say A/, to flip the electron'

s

momentum by 2meVF from +meVF to -meVF. During each collision, a phonon of
momentum fiK is absorbed as shown in Figure 4.49. Thus, if all phonons deflected the
electron in the same angular direction, the collisions would sequentially add to 0 in
Figure 4.49, and we will need (2meVF)/(fiK) number of steps to flip the electron's mo-
mentum. The actual collisions add #'s randomly and the process is similar to particle
diffusion, random walk, in Example 1.12 (L2 = Afa2, where L = displaced distance
after N jumps and a = jump step). Thus,

N
(2meVF)2

(fiK)2

1

T2

The conductivity is therefore given by

A/ N 1a a Nr a - a - [4.69b]

Electrical

conductivity
T > TD

Electrical

conductivity
T < TD
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which is indeed observed for Cu in Figure 2.8 when T < TD over the range where
impurity scattering is negligible.

ADDITIONAL TOPICS

4
.11    BAND THEORY OF METALS: ELECTRON

DIFFRACTION IN CRYSTALS

A rigorous treatment of the band theory of solids involves extensive quantum mechan-
ical analysis and is beyond the scope of this book. However, we can attain a satisfac-
tory understanding through a semiquantitative treatment.

We know that the wavefunction of the electron moving freely along x in space is
a traveling wave of the spatial form t/ M = exp(j/:jc), where k is the wave vector
k = In/X of the electron and tik is its momentum. Here, t/ M represents a traveling
wave because it must be multiplied by exp(-jcot), where co = 2s/ft, to get the total
wavefunction vl>(jc, t) = Gxp[j(kx - cot)].

We will assume that an electron moving freely within the crystal and within a
given energy band should also have a traveling wave type of wavefunction,

\lfk(x) = Acxp(jkx) [4.70]

where k is the electron wavevector in the crystal and A is the amplitude. This is a rea-
sonable expectation, since, to a first order, we can take the PE of the electron inside a
solid as zero, V = 0. Yet, the PE must be large outside, so the electron is contained
within the crystal. When the PE is zero, Equation 4.70 is a solution to the Schrodinger
equation. The momentum of the electron described by the traveling wave Equation 4.70
is then fik and its energy is

(ft*)2
Ek = V-i- 14.71]

2m e

The electron, as a traveling wave, will freely propagate through the crystal. How-
ever, not all traveling waves, can propagate in the lattice. The electron cannot have any
k value in Equation 4.70 and still move through the crystal. Waves can be reflected and
diffracted, whether they are electron waves, X-rays, or visible light. Diffraction occurs
when reflected waves interfere constructively. Certain k values will cause the electron
wave to be diffracted, preventing the wave from propagating.

The simplest illustration that certain k values will result in the electron wave being
diffracted is shown in Figure 4.50 for a hypothetical linear lattice in which diffraction
is simply a reflection (what we call diffraction becomes Bragg reflection). The electron
is assumed to be propagating in the forward direction along x with a traveling wave
function of the type in Equation 4.70. At each atom, some of this wave will be re-
flected. At A, the reflected wave is Af and has a magnitude A'. If the reflected waves
A', B', and C will reinforce each other, a full reflected wave will be created, traveling
in the backward direction. The reflected waves A', 2?', C,... will reinforce each other
if the path difference between A', B\ C',... is nk, where X is the wavelength and
n = 1, 2, 3,... is an integer. When wave Bf reaches A'

,
 it has traveled an additional
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Figure 4.50 An electron wave propagation
through a linear lattice.

 X    For certain k values, the reflected waves at
successive atomic planes reinforce each other,
giving rise to a reflected wave traveling in the
backward direction. The electron cannot then

propagate through the crystal.

distance of 2a. The path difference between A' and B' is therefore 2a. For A' and B' to
reinforce each other, we need

2a = nk      n = 1, 2, 3,...

Substituting X = 2n/ky we obtain the condition in terms of k

a
n = 1, 2, 3,... [4.72]

Thus, whenever k is such that it satisfies the condition in Equation 4.72, all the re-
flected waves reinforce each other and produce a backward-traveling, reflected wave
of the following form (with a negative k value):

\lr-k(x) = Aexp(-jkx) [4.73]

This wave will also probably suffer a reflection, since its k satisfies Equation 4.72,
and the reflections will continue. The crystal will then contain waves traveling in the
forward and backward directions. These waves will interfere to give standing waves
inside the crystal. Hence, whenever the k value satisfies Equation 4.72, traveling
waves cannot propagate through the lattice. Instead, there can only be standing waves.
For k satisfying Equation 4.72, the electron wavefunction consists of waves and
\l/-k interfering in two possible ways to give two possible standing waves:

[4.74]
/ tlTTX \

\lfc(x) = Aexp(jkx) + Aexp(-jkx) = Accosl  I

/ n7Tx\
\lfs(x) = Atxpijkx) - Aexp(-jkx) = AjSinl          I [4.75]

The probability density distributions \ c(x)\2 and \\lrs(x)\2 for the two standing
waves are shown in Figure 4.51. The first standing wave xl/c(x) is at a maximum on the
ion cores, and the other V O) is at a maximum between the ion cores. Note also that
both the standing waves VcO) and \lrs(x) are solutions to the Schrodinger equation.

The closer the electron is to a positive nucleus, the lower is its electrostatic PE, by
virtue of -e2/4ne0r. The PE of the electron distribution in \l/c(x) is lower than that in
V O), because the maxima for \lsc(x) are nearer the positive ions. Therefore, the en-
ergy of the electron in xl/c(x) is lower than that of the electron in xl/s(x), or Ec < Es.
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k = ± n/a

Figure 4.51   Forward and backward AVy V 
waves in the crystal with k - ± tt/o give mtr \J

rise to two possible standing waves     and |  |2
Vrs. Their probability density distributions s              f\                      /\ / \
IV d2 and l sl2 have maxima either at the iCf      \pf                       iSf                 Energy = £
ions or between the ions, respectively. 15

It is not difficult to evaluate the energies Ec and Es. The kinetic energy of the elec-
tron is the same in both i/c(x) and irs(x), because these wavefunctions have the same
k value and KE is given by (fik)2/2me. However, there is an electrostatic PE arising
from the interaction of the electron with the ion cores, and this PE is different for

the two wavefunctions. Suppose that V(x) is the electrostatic PE of the electron at
position x. We then must find the average, using the probability density distribution.
Given that | xl/c (x) |2 dx is the probability of finding the electron at x in dx, the potential
energy Vc of the electron is simply V(x) averaged over the entire linear length L of the
crystal. Thus, the potential energy Vc for \l/c(x) is

'
-ifV
c
 = - I   V(jc)| c(jc)|2djc = -Vn [4.76]

o

where Vn is the numerical result of the integration, which depends on k = nn/a or n,
by virtue of Equation 4.74. The integration in Equation 4.76 is a negative number that
depends on n. We do not need to evaluate the integral, as we only need its final nu-
merical result.

Using \\lrs(x)\2, we can also find the PE associated with \l/s(x). The result is
that Vs is a positive quantity given by + Vn, where\yn is again the numerical result of
the integration in Equation 4.76, which depends on n. The energies of the wave-
functions    and \lss whenever k = nn/a are

(hk)2 nn
E

c
 = -- - V

n       k =   [4.77]
2me a

(hk)2 nn
E

s = + Vn      k = - [4.78]
2me a

Clearly, whenever k has the critical values nn/a, there are only two possible val-
ues for the energies Ec and Es as determined by Equations 4.77 and 4.78; no other
energies are allowed in between. These two energies are separated by 2Vn.

Away from the critical k values determined by k = nn/a, the electron simply
propagates as a traveling wave; the wave does not get reflected. The energy is then
given by the free-running wave solution to the Schrodinger equation, that is, Equation
4

.
71,

(fik)2 nn
Ek =   Away from k = - [4.79]

2me a
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Figure 4.52  The energy of the electron as a function of its wavevector k inside a one-dimensional
crystal.
There are discontinuities in the energy at k - ±nn/ a, where the waves suffer Bragg reflections in the
crystal. For example, there can be no energy value for the electron between Ec and Es. Therefore, Es - Ec
is an energy gap at k = zLtt/q. Away from the critical k values, the E-k behavior is like that of a free
electron, with E increasing with k as E= [tik)2/2me. In a solid, these energies fall within an energy band.

It seems that the energy of the electron increases parabolically with k along Equa-
tion 4.79 and then suddenly, at k = nn/a9 it suffersxa sharp discontinuity and increases
parabolically again. Although the discontinuities at the critical points k = nn/a are
expected, by virtue of the Bragg reflection of waves, reflection effects will still be
present to a certain extent, even within a small region around k = nn/a. The indivi-
dual reflections shown in Figure 4.50 do not occur exactly at the origins of the atoms
at x = a, 2a, 3a,  Rather, they occur over some distance, since the wave must
interact with the electrons in the ion cores to be reflected. We therefore expect E-k
behavior to deviate from Equation 4.79 in the neighborhood of the critical points, even
if k is not exactly nn/a. Figure 4.52 shows the E-k behavior we expect, based on
these arguments.

In Figure 4.52, we notice that there are certain energy ranges occurring at
k = ±(nn/a) in which there are no allowed energies for the electron. As we saw pre-
viously, the electron cannot possess an energy between Ec and Esatk = n/a. These
energy ranges form energy gaps at the critical points k = ±(nn/a).

The range of k values from zero to the first energy gap at k = ±(n/a) defines a
zone of k values called the first Brillouin zone. The zone between the first and second

energy gap defines the second Brillouin zone, and so on. The Brillouin zone bound-
aries therefore identify where the energy discontinuities, or gaps, occur along the k axis.
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Figure 4.53   Diffraction of the electron in a
two-dimensional crystal.
Diffraction occurs whenever k has a component
satisfying k] = ±n7r/ a,    = ±nn/a, or
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[10]Diffracted electron

k k [11]3
y2

[01]0

(01) Planesa

o45

m

.

.
-a

\/  (11) Planes
(10) Planes

Bragg
diffraction
condition

Electron motion in the three-dimensional crystal can be readily understood based
on the concepts described here. For simplicity, we consider an electron propagating in
a two-dimensional crystal, which is analogous, for example, to propagation in the xy
plane of a crystal, as depicted in Figure 4.53. For certain k values and in certain direc-
tions, the electron will suffer diffraction and will be unable to propagate in the crystal.

Suppose that the electron's k vector along x is ki. Whenever ki = ±nn/a9 the
electron will be diffracted by the planes perpendicular to x, that is, the (10) planes.21

Similarly, it will be diffracted by the (01) planes whenever its k vector along y is
k2 = ±nn/a. The electron can also be diffracted by the (11) planes, whose separation
is a/y/l. If the component of k perpendicular to the (11) plane is £3, then whenever
£3 = ±nn{\/2/a), the electron will experience diffraction. These diffraction condi-
tions can all be expressed through the Bragg diffraction condition 2d sin 0 = nX,or

nn

k sin 0 = -
d

[4.80]

where d is the interplanar separation and n is an integer; d = a for (10) planes, and
d = a/V2 for (11) planes.

When we plot the energy of the electron as a function of k, we must consider the
direction of k, since the diffraction behavior in Equation 4.80 depends on sin 0. Along
x, at 0 = 0, the energy gap occurs at k = ±(nn/a). Along 0 = 45°

,
 it is at

k = ±nn (V2/a), which is farther away. The E-k behavior for the electron in the two-
dimensional lattice is shown in Figure 4.54 for the [10] and [11] directions. The figure
shows that the first energy gap along x, in the [10] direction, is at k = n/a. Along the
[11] direction, which is at 45° to the x axis, the first gap is at k = nVl/a.

21 We use Miller indices in two dimensions by dropping the third digit but keeping the same interpretation. The
direction along x is [10] and the plane perpendicular to x is (10).
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Figure 4.54  The E-k behavior for the electron
along different directions in the two-dimensional
crystal.
The energy gap along [10] is at n/a whereas it
is at Vln/a along [11].

When we consider the overlap of the energy bands along [10] and [11], in the case
of a metal, there is no apparent energy gap. The electron can always find any energy
simply by changing its direction.

The effects of overlap between energy bands and of energy gaps in different di-
rections are illustrated in Figure 4.55. In the case of a semiconductor, the energy gap
along [10] overlaps that along [11], so there is an overall energy gap. The electron in
the semiconductor cannot have an energy that falls into this energy gap.

The first and second Brillouin zones for the two-dimensional lattice of Figure 4.53
are shown in Figure 4.56. The zone boundaries mark the occurrences of energy gaps in
k space (space defined by k axes along the x and y directions). When we look at the
E-k behavior

, we must consider the crystal directions. This is most conveniently done
by plotting energy contours in k space, as in Figure 4.57. Each contour connects all
those values of k that possess the same energy. A point such as P on an energy contour
gives the value of k for that energy along the direction OP. Initially, the energy con-
tours are circles, as the energy follows (tik)2/2me behavior

,
 whatever the direction of k.

However, near the critical values, that is, near the Brillouin zone boundaries, E in-

creases more slowly than the parabolic relationship, as is apparent in Figure 4.52.
Therefore, the circles begin to bulge as critical k values are approached. In Figure 4.57,
the high-energy contours are concentrated in the comers of the zone, simply because
the critical value is reached last along [11]. The energy contours do not continue
smoothly across the zone boundary, because of the energy discontinuity in the E-k re-
lationship at the boundary. Indeed, Figure 4.54 shows that the lowest energy in the sec-
ond Brillouin zone may be lower than the highest energy in the first Brillouin zone.

There are two cases of interest. In the first, there is no apparent energy gap, as in
Figure 4.57a, which corresponds to Figure 4.55a. The electron can have any energy
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value. In the second case, there is a range of energies that are not allowed, as shown in
Figure 4.57b, which corresponds to Figure 4.55b.

In three dimensions, the E-k energy contour in Figure 4.57 becomes a surface in
three-dimensional k space. To understand the use of such E-k contours or surfaces,
consider that an E-k contour (or a surface) is made of many finely separated indi-
vidual points, each representing a possible electron wavefunction \lrk with a possible
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Figure 4.57   Energy contours in k space (space defined by kXf ky).
Each contour represents the same energy value. Any point P on the contour gives the values of kx and ky for that energy in
that direction from O. For point P, E = 3 eV and OP along [11 ] is k.
(a) In a metal, the lowest energy in the second zone (5 eV) is lower than the highest energy (6 eV) in the first zone. There
is an overlap of energies between the Brillouin zones.
(b) In a semiconductor or an insulator, there is an energy gap between the highest energy coptour (6 eV) in the first zone
and the lowest energy contour (10 eV) in the second zone.

energy E. At absolute zero, all the energies up to the Fermi energy are taken by the
valence electrons. In k space, the energy surface, corresponding to the Fermi energy is
termed the Fermi surface. The shape of this Fermi surface provides a means of inter-
preting the electrical and magnetic properties of solids.

For example, Na has one 3s electron per atom. In the solid, the 3s band is half full.
The electrons take energies up to EF, which corresponds to a spherical Fermi surface
within the first Brillouin zone, as indicated in Figure 4.58a. We can then say that all the
valence electrons (or nearly all) in this alkali solid exhibit an E = (tik /lnie type of
behavior, as if they were free. When an external force is applied, such as an electric or
magnetic field, we can treat the electron behavior as if it were free inside the metal with
a constant mass. This is a desirable simplification for studying such metals. We can il-
lustrate this desirability with an example. The Hall coefficient Rh derived in Chapter 2
was based on treating the electron as if it were a free particle inside the metal, or

1
Rh =  

en

[4.81]

For Na, the experimental value of Rh is -2.50 x 10 10 m5 C    Using the density.3 n-\

(0.97 g cm 3) and atomic mass (23) of Na and one valence electron per atom, we can
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Figure 4.58   Schematic sketches of Fermi surfaces in two dimensions, representing various materials qualitatively.
(a) Monovalent group IA metals.
(b) Group IB metals.
(c) Be (Group IIA), Zn, and Cd (Group IIB).
(d) A semiconductor.

calculate n - 2.54 x 1028 m~3 and Rh = -2.46 x 10~10 m3 C"1
, which is very close

to the experimental value.
In the case of Cu, Ag, and Au (the IB metals in the Periodic Table), the Fermi sur-

face is inside the first Brillouin zone, but it is not spherical as depicted in Figtire 4.58b.
Also, it touches the centers of the zone boundaries. Some of those electrons near the

zone boundary behave quite differently than E = (tik)2/2me, although the majority of
the electrons in the sphere do exhibit this type of behavior. To an extent, we can expect
the free electron derivations to hold. The experimental value of RH for Cu is
-0

.55 x 10"10 m3 C-1, whereas the expected value, based on Equation 4.81 with one
electron per atom, is -0.73 x 10~10 m3 C-1

, which is noticeably greater than the ex-
perimental value.

The divalent metals Be, Mg, and Ca have closed outer s subshells and should have
a full s band in the solid. Recall that electrons in a full band cannot respond to an ap-
plied field and drift. We also know that there should be an overlap between the s and
p bands, forming one partially filled continuous energy band, so these metals are in-
deed conductors. In terms of Brillouin zones, their structure is based on Figure 4.55a,
which has the second zone overlapping the first Brillouin zone. The Fermi surface ex-
tends into the second zone and the comers of the first zone are empty, as depicted in
Figure 4.58c. Since there are empty energy levels next to the Fermi surface, the elec-
trons can gain energy and drift in response to an applied field. But the surface is not
spherical; indeed, near the comers of the first zone, it even has the wrong curvature.
Therefore, it is no longer possible to describe these electrons on the Fermi surface as
obeying E - (tik)2/2me. When a magnetic field is applied to a drifting electron to
bend its trajectory, its total behavior is different than that expected when it is acting as
a free particle. The external force changes the momentum tik and the corresponding
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change in the energy depends on the Fermi surface and can be quite complicated. To
finish the example on the Hall coefficient, we note that based on two valence electrons
per atom (Group IIA), the Hall coefficient for Be should be -0.25 x 10~10 m3 C"1

,

but the measured value is a positive coefficient of +2.44 x 10~10 m3 C"1. Equa-
tion 4.81 is therefore useless. It seems that the electrons moving at the Fermi surface
of Be are equivalent to the motion of positive charges (like holes), so the Hall effect
registers a positive coefficient.

The Fermi surface of a semiconductor is simply the boundary of the first Brillouin
zone, because there is an energy gap between the first and the second Brillouin zones,
as depicted in Figure 4.55b. In a semiconductor, all the energy levels up to the energy
gap are taken up by the valence electrons. The first Brillouin zone forms the valence
band and the second forms the conduction band.

4
.12    GRUNEISEN'S MODEL OF THERMAL EXPANSION

We considered thermal expansion in Section 1.4.2 where the principle is illustrated
in Figure 1.18, which shows the potential energy curve U(r) for two atoms sepa-
rated by a distance r in a crystal. At temperature Ti we know that the atoms will be
vibrating about their equilibrium positions between positions B and C, compress-
ing (B) and stretching (C) the bond between them. The line BC corresponds to the
total energy E of the pair of atoms. The average separation at Ti is at A, halfway be-
tween B and C. We also know that the PE curve U(r) is asymmetric, and it is thi
asymmetry that leads to the phenomenon of thermal expansion. When the temper
ture increases from Ti to T2, the atoms vibrate between B, and C" and the average
separation between the atoms also increases, from A to A\ which we identified as
thermal expansion. If the PE curve were symmetric, then there would be no ther-
mal expansion.

Since the linear expansion coefficient X is related to the shape of the PE curve,
U (r), it is also related to the elastic bulk modulus K that measures how difficult it is to
stretch or compress the bonds. K depends on U(r) in the same way that the elastic
modulus Y depends on U(r) as explained in Example 1.5.22 Further, X also depends on
the amount of increase from BC to B'C per degree of increase in the temperature. X
must therefore also depend on the heat capacity. When the temperature increases by a
small amount 67, the energy per atom increases by (C,; 8T)/N where Cv is the heat ca-
pacity per unit volume and N is the number of atoms per unit volume. If Cv 8T is large,
then the line B'C in Figure 1.18 will be higher up on the energy curve and the average
separation Af will therefore be larger. Thus, the larger is the heat capacity, the greater
is the interatomic separation, which means X oc Cv. Further, the average separation,
point A, depends on how much the bonds are stretched and compressed. For large

22 K is a measure of the elastic change in the volume of a body in response to an applied pressure; large K means
a small change in volume for a given pressure. Y is a measure of the elastic change in the length of the body in
response to an applied stress; large Y means a small change in length. Both involve stretching or compressing
bonds.
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amounts of displacement from equilibrium, the average A will be greater as more
asymmetry of the PE curve is used. Thus, the smaller is the elastic modulus AT, the
greater is X; we see that k oc Cv/K.

If we were to expand U{r) about its minimum value at r = r0, we would ob-
tain the Taylor expansion,

U(r) = t/nin + 02(r " ro)2 + a r - r0f + . . .

where «2 and are coefficients related to the second and third derivatives of U at r0.
The term (r - r0) is missing because we are expanding a series about where
dU jdr = 0. The Umn and the a2(r - r0)2 term give a parabola about Umin which is a
symmetric curve around r0 and therefore does not lead to thermal expansion. It is the

term that gives the expansion because it leads to asymmetry. Thus the amount of ex-
pansion X also depends on the amount of asymmetry with respect to symmetry, that is

fl3/<22- Thus,

A OC  

02 K

The ratio of 03 and 02 depends on the nature of the bond. A simplified analytical
treatment (beyond the scope of this book) gives A as

r K
[4.82]

where y is a "constant
" called the Griineisen parameter. The Grilneisen constant y is

approximately -(r0ai)l(2ai) where r0 is the equilibrium atomic separation, and thus
y represents the asymmetry of the energy curve. The approximate equamy simply em-
phasizes the number of assumptions that are typically made in derivingjEquation 4.82.
The Griineisen parameter y is of the order of unity for many materials; experimentally,
y - 0.1 - 1. We can also write the Griineisen law in terms of the molar heat capacity
Cm (heat capacity per mole) or the specific heat capacity cs (heat capacity per unit
mass). If p is the density, and Mat is the atomic mass of the constituent atoms of the
crystal, then

PC

MatK      ' K
[4.83]

We can calculate the Griineisen parameter y for materials that possess different
types of interatomic bonding and thereby obtain typical values for y. This would also
expose the extent of unharmonicity in the bonding. Given the experimental values for
k

, K, p and Cy, the Griineisen parameters have been calculated from Equation 4.83 and
are listed in Table 4.6. An interesting feature of the results is that the experimental y
values, within a factor of 2-3, are about the same, at least to an order of magnitude.
Equation 4.83 also indicates that the k versus T behavior should resemble the Cv ver-
sus T dependence, which is approximately the case if one compares Figure 1.20 with
Figure 4.45. (K does not change much with temperature.) There is one notable differ-
ence. At very low temperatures k can change sign and become negative for certain
crystals, whereas Cv cannot.
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Table 4.6  The Gruneisen parameter for some selected materials with different types of
interatomic bonding

Material p (g cur3)     X (xKT6 K-1)      K (GPa)      cs (J kg 1 K1) Y

Iron (metallic, BCC) 7.9

Copper (metallic, FCC) 8.96
Germanium (covalent) 5.32
Glass (covalent-ionic) 2.45
NaCl (ionic) 2.16
Tellurium (mixed) 6.24

Polystyrene (van der Waals) 1.05
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CD Selected Topics and Solved Problems

Selected Topics
Hall Effect

Thermal Conductivity
Thermoelectric Effects in Metals:

Thermocouples
Thermal Expansion (Grtineisen's Law)

Solved Prcblems

The Water VIolecule

DEFINING TERMS

Average energy Eav of an electron in a metal is deter-
mined by the Fermi-Dirac statistics and the density of
states. It increases with the Fermi energy and also with
the temperature.

Boltzmann statistics describes the behavior of a

collection of particles (e.g., gas atoms) in terms of
their energy distribution. It specifies the number of
particles N(E) with given energy, through N(E) a
exv(-E/kT), where k is the Boltzmann constant.
The description is nonquantum mechanical in that
there is no restriction on the number of particles that
can have the same state (the same wavefunction) with

an energy E. Also, it applies when there are only a
few particles compared to the number of possible
states, so the likelihood of two particles having the
same state becomes negligible. This is generally the
case for thermally excited electrons in the conduction
band of a semiconductor, where there are many more
states than electrons. The kinetic energy distribution

of gas molecules in a tank obeys the Boltzmann
statistics.

Cathode is a negative electrode. It emits electrons or
attracts positive charges, that is, cations.

Debye frequency is the maximum frequency of lat-
tice vibrations that can exist in a particular crystal. It is
the cut-off frequency for lattice vibrations.

Debye temperature is a characteristic temperature
of a particular crystal above which nearly all the
atoms are vibrating in accordance with the kinetic
molecular theory, that is, each atom has an average
energy (potential + kinetic) of 3k T due to atomic vi-
brations, and the heat capacity is determined by the
Dulong-Petit rule.

Density of states g(E) is the number of electron states
[e.g., wavefunctions, (n, £, mt, ms)] per unit energy
per unit volume. Thus, g(E)dE is the number of states
in the energy range E to (E + dE) per unit volume.
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Density of vibrational states is the number of lattice
vibrational modes per unit angular frequency range.

Dispersion relation relates the angular frequency o)
and the wavevector K of a wave. In a crystal lattice,
the coupling of atomic oscillations leads to a particular
relationship between o) and K which determines the
allowed lattice waves and their group velocities. The
dispersion relation is specific to the crystal structure,
that is, it depends on the lattice, basis, and bonding.

Effective electron mass represents the inertial re-
sistance of an electron inside a crystal against an accel-
eration imposed by an external force, such as the ap-
plied electric field. If Fext = eEx is the external
applied force due to the applied field then the
effective mass m* determines the acceleration a of the

electron by eEx - ml a. This takes into account the
effect of the internal fields on the motion of the elec-

tron. In vacuum where there are no internal fields, m*

is the mass in vacuum me.

Fermi-Dirac statistics determines the probability of
an electron occupying a state at an energy level E. This
takes into account that a collection of electrons must

obey the Pauli exclusion principle. The Fermi-Dirac
function quantifies this probability via f(E) = 1/{1 +
exp[(£ - EF)/kT]}, where EF is the Fermi energy.

Fermi energy is the maximum energy of the electrons
in a metal at 0 K.

Field emission is the tunneling of an electron from the
surface of a metal into vacuum, due to the application
of a strong electric field (typically £ > 109 V m-1

).

Group velocity is the velocity at which traveling
waves carry energy. If co is the angular frequency and
K is the wavevector of a wave, then the group velocity
vg = dco/dK.

Harmonic oscillator is an oscillating system, for ex-
ample, two masses joined by a spring, that can be de-
scribed by simple harmonic motion. In quantum me-
chanics, the energy of a harmonic oscillator is
quantized and can only increase or decrease by a dis-
crete amount fico. The minimum energy of a harmonic
oscillator is not zero but fico (see zero-point energy).
Lattice wave is a wave in a crystal due to coupled os-
cillations of the atoms. Lattice waves may be traveling
or stationary waves.

Linear combination of atomic orbitals (LCAO) is a

method for obtaining the electron wavefunction in the
molecule from a linear combination of individual

atomic wavefunctions. For example, when two H atoms
A and B come together, the electron wavefunctions,
based on LCAO, are

xlsa = Iris(A) + 1ru(B)

tb = is(A) - if\s(B)

where (A) and ty\s(B) are atomic wavefunctions
centered around the H atoms A and B, respectively. The

tya and \l/b represent molecular orbital wavefunctions
for the electron; they reflect the behavior of the elec-
tron, or its probability distribution, in the molecule.

Mode or state of lattice vibration is a distinct, inde-

pendent way in which a crystal lattice can vibrate with its
own particular frequency co and wavevector K. There are
only a finite number of vibrational modes in a crystal.

Molecular orbital wavefunction, or simply molecu-
lar orbital, is a wavefunction for an electron within a

system of two or more nuclei (e.g., molecule). A mo-
lecular orbital determines the probability distribution
of the electron within the molecule, just as the atomic
orbital determines the electron'

s probability distribu-
tion within the atom. A molecular orbital can take two

electrons with opposite spins.

Orbital is a region of space in an atom or molecule
where an electron with a given energy may be found.
An orbit, which is a well-defined path for a-electron,
cannot be used to describe the whereabouts of the elec-

tron in an atom or molecule because the electron has a

probability distribution. Orbitals are generally repre-
sented by a surface within which the total probability is
high, for example, 90 percent.

Orbital wavefunction, or simply orbital, describes
the spatial dependence of the electron. The orbital is
f(r,9,<l)), which depends on n, t, and mi, and the spin
dependence ms is excluded.

Phonon is a quantum of lattice vibrational energy of
magnitude ftw, where a) is the vibrational angular fre-
quency. A phonon has a momentum ft K where K is the
wavevector of the lattice wave.

Seebeck effect is the development of a built-in poten-
tial difference across a material as a result of a temper-
ature gradient. If dV is the built-in potential across a
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temperature difference dT', then the Seebeck coeffi- Thermionic emission is the emission of electrons
cient S is defined as S = dV/dT. The coefficient from the surface of a heated metal.

gauges the magnitude of the Seebeck effect. Only the Work function is the minimum energy needed to free
net Seebeck voltage difference between different met- m electron from the metal at a temperature of absolute
als can be measured. The principle of the thermocouple zero It is  energy separation of the Fermi level from
is based on the Seebeck effect. the vacuum level.

State is a possible wavefunction for the electron Zero-point energy is the minimum energy of a har-
that defines its spatial (orbital) and spin properties, monic oscillator \fia).

 Even at 0 K, an oscillator in

for example, \lf(n,t,me,ms) is a state of the elec- quantum mechanics will have a finite amount of en-
tron. From the Schrodinger equation, each state cor- ergy which is its zero-point energy. Heisenberg's un-
responds to a certain electron energy E. We thus certainty principle does not allow a harmonic oscillator
speak of a state with energy £, state of energy £, or to have zero energy because that would mean no un-
even an energy state. Generally there may be more certainty in the momentum and consequently an infi-
than one state V" with the same energy E. nite uncertainty in space (Ap* Ax > h).

QUESTIONS and problems
4
.1 Phase of an atomic orbital

a. What is the functional form of a Is wavefunction ir(r)l Sketch schematically the atomic wave-
function if\s(r) as a function of distance from the nucleus.

b
. What is the total wavefunction     (r, t)?

c. What is meant by two wavefunctions     (A) and     (B) that are out of phase?
d

. Sketch schematically the two wavefunctions     (A) and     (B) at one instant.

4
.2 Molecular orbitals and atomic orbitals Consider a linear chain of four identical atoms representing

a hypothetical molecule. Suppose that each atomic wavefunction is a Is wavefunction. This system of
identical atoms has a center of symmetry C with respect to the center of the molecule (midway between
the second and the third atom), and all molecular wavefunctions must be either symmetric or antisym-
metric about C.

a. Using the LCAO principle, sketch the possible molecular orbitals.
b

. Sketch the probability distributions |  12.
c. If more nodes in the wavefunction lead to greater energies, order the energies of the molecular orbitals.

Note: The electron wavefunctions, and the related probability distributions, in a simple potential energy
well that are shown in Figure 3.15 can be used as a rough guide toward finding the appropriate nj0leCT>
lar wavefunctions in the four-atom symmetric molecule. For example, if we were to smooth the electron
potential energy in the four-atom molecule into a constant potential energy, that is, generate a potential
energy well, we should be able to modify or distort, without flipping, the molecular orbitals to somewhat
resemble V i to 4 sketched in Figure 3.15. Consider also that the number of nodes increases from none
for    to three for 4 in Figure 3.15.

4
.3 Diamond and tin Germanium, silicon, and diamond have the same crystal structure, that of diamond.

Bonding in each case involves sp3 hybridization. The bonding energy decreases as we go from C to Si
to Ge, as noted in Table 4.7.

a. What would you expect for the bandgap of diamond? How does it compare with the experimental
value of 5.5 eV?

b
. Tin has a tetragonal crystal structure, which makes it different than its group members, diamond,

silicon, and germanium.
1

.
 Is it a metal or a semiconductor?

2
. What experiments do you think would expose its semiconductor properties?
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Table 4.7

Property Diamond Silicon Germanium Tin

Melting temperature, 0C 3800 1417 937 232
Covalent radius, nm 0.077 0.117 0.122 0.146

Bond energy, eV 3.60 1.84 1.7 1.2
First ionization energy, eV 11.26 8.15 7.88 7.33
Bandgap,eV ? 1.12 0.67 ?

4
.4 Compound III-V Semiconductors Indium as an element is a metal. It has a valency of III. Sb as an

element is a metal and has a valency of V. InSb is a semiconductor, with each atom bonding to four
neighbors, just like in silicon. Explain how this is possible and why InSb is a semiconductor and not a
metal alloy. (Consider the electronic structure and sp* hybridization for each atom.)

4
.5 Compound II-VI semiconductors CdTe is a semiconductor, with each atom bonding to four neigh-

bors, just like in silicon. In terms of covalent bonding and the positions of Cd and Te in the Periodic
Table, explain how this is possible. Would you expect the bonding in CdTe to have more ionic character
than that in III-V semiconductors?

*4
.6 Density of states for a two-dimensional electron gas Consider a two-dimensional electron gas in

which the electrons are restricted to move freely within a square area a1 in the xy plane. Following the
procedure in Section 4.5, show that the density of states g{E) is constant (independent of energy).

4
.7 Fermi energy of Cu The Fermi energy of electrons in copper at room temperature is 7.0 eV. The elec-

tron drift mobility in copper, from Hall effect measurements, is 33 cm2 V-1 s-1.
a. What is the speed vf of conduction electrons with energies around £> in copper? By how many

times is this larger than the average thermal speed thermal of electrons, if they behaved like an ideal
gas (Maxwell-Boltzmann statistics)? Why is vf much larger than thermal?

b
. What is the De Broglie wavelength of these electrons? Will the electrons get diffracted by the lat-

tice planes in copper, given that interplanar separation in Cu = 2.09 A? (Solution guide: Diffrac-
tion of waves occurs when 2d sin 0 = X, which is the Bragg condition. Find the relationship be-
tween X and d that results in sin0 > 1 and hence no diffraction.)

c. Calculate the mean free path of electrons at Ef and comment.

4
.8 Free electron model, Fermi energy, and density of states Na and Au both are valency I metals; that

is, each atom donates one electron to the sea of conduction electrons. Calculate the Fermi energy (in eV)
of each at 300 K and 0 K. Calculate the mean speed of all the conduction electrons and also the speed of
electrons at Ep for each metal. Calculate the density of states as states per eV cm-3 at the Fermi energy
and also at the center of the band, to be taken at (Ef + (J>)/2. (See Table 4.1 for <$>.)

4
.9 Fermi energy and electron concentration Consider the metals in Table 4.8 from Groups I, II, and III

in the Periodic Table. Calculate the Fermi energies at absolute zero, and compare the values with the ex-
perimental values. What is your conclusion?

Table 4.8

EHeV) EF(eV)
Metal Group Afat Density (g cm-3) [Calculated] [Experiment]

Cu I 63.55 8.96 - 6.5

Zn II 65.38 7.14 - 11.0

Al III 27 2.70 - 11.8
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4
.10 Temperature dependence of the Fermi energy

a. Given that the Fermi energy for Cu is 7.0 eV at absolute zero, calculate the Ep at 300 K. What is
the percentage change in £> and what is your conclusion?

b
. Given the Fermi energy for Cu at absolute zero, calculate the average energy and mean speed per

conduction electron at absolute zero and 300 K, and comment.

4
.11 X-ray emission spectrum from sodium Structure of the Na atom is [Ne]3,s1. Figure 4.59a shows the

formation of the 3  and 3p energy bands in Na as a function of intemuclear separation. Figure 4.59b
shows the X-ray emission spectrum (called the L-band) from crystalline sodium in the soft X-ray range
as explained in Example 4.6.

a. From Figure 4.59a, estimate the nearest neighbor equilibrium separation between Na atoms in the
crystal if some electrons in the 3  band spill over into the states in the 3p band.

b
. Explain the origin of the X-ray emission band in Figure 4.59b and the reason for calling it the

L-band
.

c. What is the Fermi energy of the electrons in Na from Figure 4.59b?
d

. Taking the valency of Na to be I, what is the expected Fermi energy and how does it compare with
that in part (c)?
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Figure 4.59
(a) Energy band formation in sodium.
(b) /.-emission band of X-rays from sodium.

I SOURCE: (b) Data extracted from W. M. Cadt and D. H. Tomboulian, Phys. Rev., 59, 1941, p. 381.

4
.12     Conductivity of metals in the free electron model   Consider the general expression for the conduc-

tivity of metals in terms of the density of states (?(£>) at EF given by

a = ±e2
v

2
FTg(EF)

Show that within the free electron theory, this reduces to cr = e2nT/me, the Drude expression.

Mean free path of conduction electrons in a metal Show that within the free electron theory, the
mean free path £ and conductivity a are related by

e
2

in1! 87 x ICT /i

Calculate t for Cu and Au, given each metal's resistivity of 17 nQ, m and 22 n£2 m, respectively, and that
each has a valency of I. We are used to seeing a oc n. Can you explain why a a n2  ?

Mean free path
and conductivity
in the free
electron model
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Heat capacity of
conduction

electrons

*4
.14 Low-temperature heat capacity of metals The heat capacity of conduction electrons in a metal is

proportional to the temperature. The overall heat capacity of a metal is determined by the lattice heat ca-
pacity, except at the lowest temperatures. If 8Et is the increase in the total energy of the conduction elec-
trons (per unit volume) and ST is the increase in the temperature of the metal as a result of heat addition,
Et has been calculated as follows:

00 -

where Et (0)is the total energy per unit volume at 0 K, n is the concentration of conduction electrons, and
Efo is the Fermi energy at 0 K. Show that the heat capacity per unit volume due to conduction electrons
in the free electron model of metals is

k1 ( n*1\
rr [4.84]

where y = {n2/2){nk2/Efo) - Calculate Ce for Cu, and then using the Debye equation for the lattice
heat capacity, find Cv for Cu at 10 K. Compare the two values and comment. What is the comparison at
room temperature? (Note: Cvoiume = Cmoiar(/o/A at), where p is the density in g cm-3

, Cyoiume is in
J K-1 cm-3, and Mat is the atomic mass in g mol-1.)

4
.15 Secondary emission and photomultiplier tubes When an energetic (high velocity) projectile elec-

tron collides with a material with a low work function, it can cause electron emission from the surface.

This phenomenon is called secondary emission. It is fruitfully utilized in photomultiplier tubes as il-
lustrated in Figure 4.60. The tube is evacuated and has a photocathode for receiving photons as a signal.
An incoming photon causes photoemission of an electron from the photocathode material. The electron
is then accelerated by a positive voltage applied to an electrode called a dynode which has a work func-
tion that easily allows secondary emission. When the accelerated electron strikes dynode D\, it can
release several electrons. All these electrons, the original and the secondary electrons, are then acceler-
ated by the more positive voltage applied to dynode D2. On impact with D2, further electrons are re-
leased by secondary emission. The secondary emission process continues at each dynode stage until the
final electrode, called the anode, is reached whereupon all the electrons are collected which results in a
signal. Typical applications for photomultiplier tubes are in X-ray and nuclear medical instruments

OS

Photon

Photocathode

Photomultiplier tubes.
I SOURCE: Courtesy of Hamamatsu.

Figure 4.60  The photomultiplier tube.
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(X-ray CT scanner, positron CT scanner, gamma camera, etc.), radiation measuring instruments (e.g.,
radon counter), X-ray diffractometers, and radiation measurement in high-energy physics research.

A particular photomultiplier tube has the following properties. The photocathode is made of a
semiconductor-type material with Eg « 1 eV, an electron affinity x of 0.4 eV, and a quantum efficiency
of 20 percent at 400 nm. Quantum efficiency is defined as the number of photoemitted electrons per
absorbed photon. The diameter of the photocathode is 18 mm. There are 10 dynode electrodes and an ap-
plied voltage of 1250 V between the photocathode and anode. Assume that this voltage is equally dis-
tributed among all the electrodes.

a. What is the longest threshold wavelength for the phototube?
b

. What is the maximum kinetic energy of the emitted electron if the photocathode is illuminated with
a 400 nm radiation?

c. What is the emission current from the photocathode at 400 nm illumination?
d

. What is the KE of the electron as it strikes the first dynode electrode?

e. It has been found that the tube has a gain of 106 electrons per incident photon. What is the average
number of secondary electrons released at each dynode?

4
.16 Thermoelectric effects and Ep Consider a thermocouple pair that consists of gold and aluminum.

One junction is at 100 0C and the other is at 0 0C. A voltmeter (with a very large input resistance) is in-
serted into the aluminum wire. Use the properties of Au and Al in Table 4.3 to estimate the emf regis-
tered by the voltmeter and identify the positive end.

4
.17 The thermocouple equation Although inputting the measured emf for V in the thermocouple equa-

tion V - a AT + b(AT)2 leads to a quadratic equation, which in principle can be solved for AT, in
general AT is related to the measured emf via

AT =a\V +a2V2 +03V3 + ...

with the coefficients a\, ai, etc., determined for each pair of TCs. By carrying out a Taylor
'

s expansion
of the TC equation, find the first two coefficients a\ and ai. Using an emf table for the K-type thermo-
couple or Figure 4.33, evaluate a\ and ai.

4
.18 Thermionic emission A vacuum tube is required to have a cathode operating at 800 0C and providing

an emission (saturation) current of 10 A. What should be the surface area of the cathode for the two ma-
terials in Table 4.9? What should be the operating temperature for the Th on W cathode, if it is to have
the same surface area as the oxide-coated cathode?

Table 4.9

Be (A m"2 K~2) <D(eV)

ThonW 3 X 104 2.6

Oxide coating 100 1

4
.19 Field-assisted emission in MOS devices Metal-oxide-semiconductor (MOS) transistors in micro-

electronics have a metal gate on an Si02 insulating layer on the surface of a doped Si crystal. Consider
this as a parallel plate capacitor. Suppose the gate is an Al electrode of area 50 fim x 50 fim and has a
voltage of 10 V with respect to the Si crystal. Consider two thicknesses for the Si02, (a) 100 A and (b)
40 A, where (1 A = 10"10 m). The work function of Al is 4.2 eV, but this refers to electron emission into
vacuum, whereas in this case, the electron is emitted into the oxide. The potential energy barrier <&b be-
tween Al and SiOi is about 3.1 eV, and the field-emission current density is given by Equation 4.46a and
b

. Calculate the field-emission current for the two cases. For simplicity, take me to be the electron mass
in free space. What is your conclusion?
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4
.20 CNTs and field emission The electric field at the tip of a sharp emitter is much greater than the "applied

field," 'E0. The applied field is simply defined as Vc/d where d is the distance from the cathode tip to the
gate or the grid; it represents the average nearly uniform field that would exist if the tip were replaced by a
flat surface so that the cathode and the gate would almost constitute a parallel plate capacitor. The tip ex-
periences an effective field £ that is much greater than 'E0, which is expressed by a field enhancement fac-
tor (5 that depends on the geometry of the cathode-gate emitter, and the shape of the emitter; £ = $!£0.
Further, we can take Iff® % (J>3/2 in Equation 4.46. The final expression for the field-emission current
density then becomes

emission current x       /      x r 0 /

[4.85]

where <I> is in eV. For a particular CNT emitter, <I> = 4.9 eV. Estimate the applied field required to
achieve a field-emission current density of 100 mA cm2 in the absence of field enhancement (p = 1)
and with a field enhancement of ft = 800 (typical value for a CNT emitter).

4
.21 Nordheim-Fowler field emission in an FED Table 4.10 shows the results of I-V measurements on a

Motorola FED microemitter. By a suitable plot show that the I-V follows the Nordheim-Fowler emis-
sion characteristics. Can you estimate <I>?

Table 4.10  Tests on a Motorola FED micro field emitter

Vg 40.0      42        44        46       48       50    52        53.8      56.2      58.2 60.4

/emission      0.40      2.14      9.40     20.4     34.1     61     93.8     142.5    202      279 367

4
.22 Lattice waves and heat capacity

a. Consider an aluminum sample. The nearest separation 2R (2 x atomic radius) between the Al-Al
atoms in the crystal is 0.286 nm. Taking a to be 2R, and given the sound velocity in Al as
5100 m s"1, calculate the force constant ft in Equation 4.66. Use the group velocity Vg from the
actual dispersion relation, Equation 4.55, to calculate the "sound velocity" at wavelengths of
A = 1mm, 1 fxm, and 1 nm. What is your conclusion?

b
. Aluminum has a Debye temperature of 394 K. Calculate its specific heat at 30 0C (Darwin,

Australia) and at -30 0C (January, Resolute Nunavut, Canada).

c. Calculate the specific heat capacity of a germanium crystal at 25 0C and compare it with the ex-
perimental value in Table 2.5.

4
.23 Specific heat capacity of GaAs and InSb

a. The Debye temperature To of GaAs is 344 K. Calculate its specific heat capacity at 300 K and at
30 0C.

b
. For InSb, 7b = 203 K. Calculate the room temperature specific heat capacity of InSb and compare

it with the value expected from the Dulong-Petit rule (T > Tp).

4
.24 Thermal conductivity

a. Given that silicon has a Young's modulus of about 110 GPa and a density of 2.3 g cm-3, calculate
the mean free path of phonons in Si at room temperature.

b
. Diamond has the same crystal structure as Si but has a very large thermal conductivity, about

1000 Wm_1 K_1 at room temperature. Given that diamond has a specific heat capacity of
0

.50 J K-1 g-1, Young's modulus Y of 830 GPa, and density p of 0.35 g cm-3, calculate the mean
free path of phonons in diamond.

c. GaAs has a thermal conductivity of 200 W m"1 K-1 at 100 K and 80 W m-1 K-1 at 200 K. Cal-
culate its thermal conductivity at 25 0C and compare with the experimental value of 44 W m_1

K-1
. (Hint: Take k a T~n in the temperature region of interest; see Figure 4.48.)
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*4
.25 Overlapping bands Consider Cu and Ni with their density of states as schematically sketched in Fig-

ure 4.61. Both have overlapping 3d and 4  bands, but the 3d band is very narrow compared to the 4
band. In the case of Cu the band is full, whereas in Ni, it is only partially filled.

In Cu, do the electrons in the 2>d band contribute to electrical conduction? Explain.

In Ni, do electrons in both bands contribute to conduction? Explain.

Do electrons have the same effective mass in the two bands? Explain.

Can an electron in the 4  band with energy around Ef become scattered into the 3d band as a re-
sult of a scattering process? Consider both metals.

Scattering of electrons from the 4  band to the ?>d band and vice versa can be viewed as an additional
scattering process. How would you expect the resistivity of Ni to compare with that of Cu, even
though Ni has two valence electrons and nearly the same density as Cu? In which case would you ex-
pect a stronger temperature dependence for the resistivity?

a.

b
.

c.

d
.

e.

Id

Cu

As

g(E)

* E

3d

Ni

4s

E
F

> E

Figure 4.61   Density of states and electron filling in Cu and Ni.

*4
.26 Overlapping bands at Ep and higher resistivity Figure 4.61 shows the density of states for Cu (or

Ag) and Ni (or Pd). The d band in Cu is filled, and only electrons at Ep in the s band make a contribu-
tion to the conductivity. In Ni, on the other hand, there are electrons at Ep both in the s and d bands. The
d band is narrow compared with the s band, and the electron's effective mass in this d band is large; for
simplicity, we will assume m* is "infinite" in this band. Consequently, the d-band electrons cannot be
accelerated by the field (infinite m*), have a negligible drift mobility, and make no contribution to the
conductivity. Electrons in the s band can become scattered by phonons into the d band, and hence be-
come relatively immobile until they are scattered back into the s band when they can drift again. Con-
sider Ni and one particular conduction electron at Ep starting in the s band. Sketch schematically the
magnitude of the velocity gained \vx - ux\ from the field Ex as a function of time for 10 scattering
events; vx and ux are the instantaneous and initial velocities, and \ vx - ux \ increases linearly with time,
as the electron accelerates in the s band and then drops to zero upon scattering. If rss is the mean time
for s to 5-band scattering, Tsd is for s-band to d-band scattering, ids is for d-band to s-band scattering,
assume the following sequence of 10 events in your sketch: tss, rss, r , r , tss, xsd, r , xss, Tsd, r .
What would a similar sketch look like for Cu? Suppose that we wish to apply Equation 4.27. What does
g(Ep) and r represent? What is the most important factor that makes Ni more resistive than Cu? Con-
sider Matthiessen's rule. (Note: There are also electron spin related effects on the resistivity of Ni, but
for simplicity these have been neglected.)

4
.27 Griineisen's law Al and Cu both have metallic bonding and the same crystal structure. Assuming that

the Griineisen's parameter y for Al is the same as that for Cu, y = 0.23, estimate the linear expansion
coefficient X of Al, given that its bulk modulus K = 75 GPa, cs = 900 J K

~1 kg
"1

, and p = 2.7 g cm-3.
Compare your estimate with the experimental value of 23.5 x 10~6 K-1.
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First point-contact transistor invented at Bell Labs.
I SOURCE: Courtesy of Bell Labs.
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The three inventors of the transistor: William Shockley (seated), John Bardeen (left), and Walter Brattain
(right) in 1948; the three inventors shared the Nobel prize in 1956.

I SOURCE: Courtesy of Bell Labs.
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CHAPTER

5

Semiconductors

In this chapter we develop a basic understanding of the properties of intrinsic and
extrinsic semiconductors. Although most of our discussions and examples will be
based on Si, the ideas are applicable to Ge and to the compound semiconductors such
as GaAs, InP, and others. By intrinsic Si we mean an ideal perfect crystal of Si that has
no impurities or crystal defects such as dislocations and grain boundaries. The crystal
thus consists of Si atoms perfectly bonded to each other in the diamond structure. At
temperatures above absolute zero, we know that the Si atoms in the crystal lattice will
be vibrating with a distribution of energies. Even though the average energy of the vi-
brations is at most ?>kT and incapable of breaking the Si-Si bond, a few of the lattice
vibrations in certain crystal regions may nonetheless be sufficiently energetic to "rup-
ture" a Si-Si bond. When a Si-Si bond is broken, a "free" electron is created that can

wander around the crystal and also contribute to electrical conduction in the presence
of an applied field. The broken bond has a missing electron that causes this region to
be positively charged. The vacancy left behind by the missing electron in the bonding
orbital is called a hole. An electron in a neighboring bond can readily tunnel into this
broken bond and fill it, thereby effectively causing the hole to be displaced to the orig-
inal position of the tunneling electron. By electron tunneling from a neighboring bond,
holes are therefore also free to wander around the crystal and also contribute to elec-
trical conduction in the presence of an applied field. In an intrinsic semiconductor, the
number of thermally generated electrons is equal to the number of holes (broken
bonds). In an extrinsic semiconductor, impurities are added to the semiconductor that
can contribute either excess electrons or excess holes. For example, when an impurity
such as arsenic is added to Si, each As atom acts as a donor and contributes a free elec-

tron to the crystal. Since these electrons do not come from broken bonds, the numbers
of electrons and holes are not equal in an extrinsic semiconductor, and the As-doped Si
in this example will have excess electrons. It will be an n-type Si since electrical con-
duction will be mainly due to the motion of electrons. It is also possible to obtain a
p-type Si crystal in which hole concentration is in excess of the electron concentration
due to, for example, boron doping.

373
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5.1    INTRINSIC SEMICONDUCTORS

5
.
1
.1  Silicon Crystal and Energy Band Diagram

The electronic configuration of an isolated Si atom is [Ne]3s2p2. However, in the
vicinity of other atoms, the 3s and 3p energy levels are so close that the interactions
result in the four orbitals V (3 ), y/r (3px), yfr (3 py), and yfr (3 pz) mixing together to form
four new hybrid orbitals (called Vhyb) that are symmetrically directed as far away from
each other as possible (toward the comers of a tetrahedron). In two dimensions, we can
simply view the orbitals pictorially as in Figure 5.1a. The four hybrid orbitals, hyb?
each have one electron so that they are half-occupied. Therefore, a V hyb orbital of one
Si atom can overlap a i hyb orbital of a neighboring Si atom to form a covalent bond
with two spin-paired electrons. In this manner one Si atom bonds with four other Si
atoms by overlapping the half-occupied hyb orbitals, as illustrated in Figure 5.1b.

hyb orbitals
Valence

electron

1

Si ion core (+4e)

(a)

-& .a a-

,

< 
,
 *

> \ i
:  ». f», :

. . «.

w-

Electron energy
A

" 0

Conduction band (CB)
Empty of electrons at 0 K.

A

Band gap = E

'mmm
Valence band (VB)
Full of electrons at OK.

(b) (c)

Figure 5.1

(a) A simplified two-dimensional illustration of a Si atom with four hybrid orbitals T/fyb. Each orbital
has one electron.

(b) A simplified two-dimensional view of a region of the Si crystal showing covalent bonds.
(c) The energy band diagram at absolute zero of temperature.
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Figure 5.2 A two-dimensional pictorial view of the Si
crystal showing covalent bonds as two lines where each
line is a valence electron.

Each Si-Si bond corresponds to a bonding orbital, Vs, obtained by overlapping two
neighboring V hyb orbitals. Each bonding orbital has two spin-paired electrons and
is therefore full. Neighboring Si atoms can also form covalent bonds with other Si
atoms, thus forming a three-dimensional network of Si atoms. The resulting structure
is the Si crystal in which each Si atom bonds with four Si atoms in a tetrahedral
arrangement. The crystal structure is that of a diamond, which was described in
Chapter L We can imagine the Si crystal in two dimensions as depicted in Figure 5.1b.
The electrons in the covalent bonds are the valence electrons.

The energy band diagram of the silicon crystal is shown in Figure 5.1c.1 The
vertical axis is the electron energy in the crystal. The valence band (VB) contains
those electronic states that correspond to the overlap of bonding orbitals ( ).
Since all the bonding orbitals (irB) are full with valence electrons in the crystal,
the VB is also full with these valence electrons at a temperature of absolute zero.
The conduction band (CB) contains electronic states that are at higher energies,
those corresponding to the overlap of antibonding orbitals. The CB is separated
from the VB by an energy gap Egy called the bandgap. The energy level Ev marks
the top of the VB and Ec marks the bottom of the CB. The energy distance from Ec
to the vacuum level, the width of the CB, is called the electron affinity x> The gen-
eral energy band diagram in Figure 5.1c applies to all crystalline semiconductors
with appropriate changes in the energies.

The electrons shown in the VB in Figure 5.1c are those in the covalent bonds be-
tween the Si atoms in Figure 5.1b. An electron in the VB, however, is not localized to
an atomic site but extends throughout the whole solid. Although the electrons appear
localized in Figure 5.lb, at the bonding orbitals between the Si atoms this is not, in fact,
true. In the crystal, the electrons can tunnel from one bond to another and exchange
places. If we were to work out the wavefunction of a valence electron in the Si crystal,
we would find that it extends throughout the whole solid. This means that the electrons
in the covalent bonds are indistinguishable. We cannot label an electron from the start
and say that the electron is in the covalent bond between these two atoms.

We can crudely represent the silicon crystal in two dimensions as shown in
Figure 5.2. Each covalent bond between Si atoms is represented by two lines corre-
sponding to two spin-paired electrons. Each line represents a valence electron.

I 1 The formation of energy bands in the silicon crystal was described in detail in Chapter 4.
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5
.
1
.
2 Electrons and Holes

The only empty electronic states in the silicon crystal are in the CB (Figure 5.1c). An
electron placed in the CB is free to move around the crystal and also respond to an
applied electric field because there are plenty of neighboring empty energy levels. An
electron in the CB can easily gain energy from the field and move to higher energy lev-
els because these states are empty. Generally we can treat an electron in the CB as if it
were free within the crystal with certain modifications to its mass, as explained later in
Section 5.1.3.

Since the only empty states are in the CB, the excitation of an electron from the
VB requires a minimum energy of Eg. Figure 5.3a shows what happens when a pho-
ton of energy hv > Eg is incident on an electron in the VB. This electron absorbs the
incident photon and gains sufficient energy to surmount the energy gap Eg and reach
the CB. Consequently, a free electron and a "hole," corresponding to a missing elec-
tron in the VB, are created. In some semiconductors such as Si and Ge, the photon ab-
sorption process also involves lattice vibrations (vibrations of the Si atoms), which we
have not shown in Figure 5.3b.

Although in this specific example a photon of energy h v > Eg creates an electron-
hole pair, this is not necessary. In fact, in the absence of radiation, there is an electron-
hole generation process going on in the sample as a result of thermal generation. Due
to thermal energy, the atoms in the crystal are constantly vibrating, which corresponds
to the bonds between the Si atoms being periodically deformed. In a certain region, the
atoms, at some instant, may be moving in such a way that a bond becomes over-
stretched, as pictorially depicted in Figure 5.4. This will result in the overstretched
bond rupturing and hence releasing an electron into the CB (the electron effectively
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(a) (b)

Figure 5.3

(a) A photon with an energy greater than Eg can excite an electron from the VB to the CB.
(b) When a photon breaks a Si-Si bond, a free electron and a hole in the Si-Si bond
are created.
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Figure 5.4 Thermal vibrations of atoms can break
bonds and thereby create electron-hole pairs.

becomes "free"). The empty electronic state of the missing electron in the bond is what
we call a hole in the valence band. The free electron, which is in the CB, can wander

around the crystal and contribute to the electrical conduction when an electric field is
applied. The region remaining around the hole in the VB is positively charged because
a charge of - e has been removed from an otherwise neutral region of the crystal. This
hole, denoted as can also wander around the crystal as if it were free. This is be-
cause an electron in a neighboring bond can "jump," that is, tunnel, into the hole to fill
the vacant electronic state at this site and thereby create a hole at its original position.
This is effectively equivalent to the hole being displaced in the opposite direction, as
illustrated in Figure 5.5a. This single step can reoccur, causing the hole to be further
displaced. As a result, the hole moves around the crystal as if it were a free positively
charged entity, as pictured in Figure 5.5a to d. Its motion is quite independent from that
of the original electron. When an electric field is applied, the hole will drift in the di-
rection of the field and hence contribute to electrical conduction. It is now apparent
that there are essentially two types of charge carriers in semiconductors: electrons and
holes, A hole is effectively an empty electronic state in the VB that behaves as if it were
a positively charged "particle

" free to respond to an applied electric field.
When a wandering electron in the CB meets a hole in the VB, the electron has

found an empty state of lower energy and therefore occupies the hole. The electron
falls from the CB to the VB to fill the hole, as depicted in Figure 5.5e and f. This is
called recombination and results in the annihilation of an electron in the CB and a

hole in the VB. The excess energy of the electron falling from CB to VB in certain
semiconductors such as GaAs and InP is emitted as a photon. In Si and Ge the excess
energy is lost as lattice vibrations (heat).

It must be emphasized that the illustrations in Figure 5.5 are pedagogical pictorial
visualizations of hole motion based on classical notions and cannot be taken too

seriously, as discussed in more advanced texts (see also Section 5.11). We should
remember that the electron has a wavefunction in the crystal that is extended and not
localized, as the pictures in Figure 5.5 imply. Further, the hole is a concept that corre-
sponds to an empty valence band wavefunction that normally has an electron. Again,
we cannot localize the hole to a particular site, as the pictures in Figure 5.5 imply.
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Figure 5.5 A pictorial illustration of a hole in the valence band wandering around the crystal due to the tunneling
of electrons from neighboring bonds.

5.
1

.3 Conduction in Semiconductors

When an electric field is applied across a semiconductor as shown in Figure 5.6, the
energy bands bend. The total electron energy E is KE + PE, but now there is an addi-
tional electrostatic PE contribution that is not constant in an applied electric field. A
uniform electric field implies a linearly decreasing potential V(x), by virtue of
(dV/dx) = that is, V = -Ax + B. This means that the PE, -eV(x)9 of the
electron is now eAx - eB, which increases linearly across the sample. All the energy
levels and hence the energy bands must therefore tilt up in the x direction, as shown in
Figure 5.6, in the presence of an applied field.

Under the action of the electron in the CB moves to the left and immediately
starts gaining energy from the field. When the electron collides with a thermal vibra-
tion of a Si atom, it loses some of this energy and thus "falls" down in energy in the
CB. After the collision, the electron starts to accelerate again, until the next collision,
and so on. We recognize this process as the drift of the electron in an applied field, as
illustrated in Figure 5.6. The drift velocity vde of the electron is iJietEx where fjLe is the
drift mobility of the electron. In a similar fashion, the holes in the VB also drift in an
applied field, but here the drift is along the field. Notice that when a hole gains energy,
it moves "down" in the VB because the potential energy of the hole is of opposite sign
to that of the electron.
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Figure 5.6  When an electric field is
applied, electrons in the CB and holes in the
VB can drift and contribute to the

conductivity.
(a) A simplified illustration of drift in 2;x.
(b) Applied field bends the energy bands
since the electrostatic PE of the electron is

-eV(x) and V[x) decreases in the direction of
'Ex, whereas PE increases.

Since both electrons and holes contribute to electrical conduction, we may write
the current density 7, from its definition, as

J = envde + epvdh [5.1]

where n is the electron concentration in the CB, p is the hole concentration in the VB,
and Vde and Vdh are the drift velocities of electrons and holes in response to an applied
electric field Thus,

Vde and Vdh = l*h'Ex [5.2]

where ixe and hh are the electron and hole drift mobilities. In Chapter 2 we derived the
drift mobility jie of the electrons in a conductor as

I1 e

eXe

me
[5.3]

where re is the mean free time between scattering events and me is the electronic mass.
The ideas on electron motion in metals can also be applied to the electron motion in the
CB of a semiconductor to rederive Equation 5.3. We must, however, use an effective
mass m* for the electron in the crystal rather than the mass me in free space. A "free"

electron in a crystal is not entirely free because as it moves it interacts with the potential
energy {PE) of the ions in the solid and therefore experiences various internal forces.
The effective mass m * accounts for these internal forces in such a way that we can relate
the acceleration a of the electron in the CB to an external force Fext (e.g., -e'Ex) by
Fext = m*a just as we do for the electron in vacuum by FeXt = mea. In applying the

Electron and

hole drift
velocities
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Conductivity
of a
semiconductor

Fgxt = m*a type of description to the motion of the electron, we are assuming, of course,
that the effective mass of the electron can be calculated or measured experimentally. It
is important to remark that the true behavior is governed by the solution of the
Schrodinger equation in a periodic lattice (crystal) from which it can be shown that we
can indeed describe the inertial resistance of the electron to acceleration in terms of an

effective mass m*. The effective mass depends on the interaction of the electron with its
environment within the crystal.

We can now speculate on whether the hole can also have a mass. As long as we
view mass as resistance to acceleration, that is, inertia, there is no reason why the hole
should not have a mass. Accelerating the hole means accelerating electrons tunneling
from bond to bond in the opposite direction. Therefore it is apparent that the hole will
have a nonzero finite inertial mass because otherwise the smallest external force will

impart an infinite acceleration to it. If we represent the effective mass of the hole in the
VB by m , then the hole drift mobility will be

h

[5.4]
m

where Th is the mean free time between scattering events for holes.
Taking Equation 5.1 for the current density further, we can write the conductivity

of a semiconductor as

a = enfjbe + epfjbh [5.5]

where n andp are the electron and hole concentrations in the CB and VB, respectively.
This is a general equation valid for all semiconductors.

5.
1

.4 Electron and Hole Concentrations

The general equation for the conductivity of a semiconductor, Equation 5.5, depends
on n, the electron concentration, and /?, the hole concentration. How do we determine
these quantities? We follow the procedure schematically shown in Figure 5.7a to d in
which the density of states is multiplied by the probability of a state being occupied
and integrated over the entire CB for n and over the entire VB for p.

We define gfcb(£) as the density of states in the CB, that is, the number of states
per unit energy per unit volume. The probability of finding an electron in a state with
energy E is given by the Fermi-Dirac function/(£), which is discussed in Chapter 4.
Then gc\)(E)f(E) is the actual number of electrons per unit energy per unit volume
n E) in the CB. Thus,

nE dE = gcb(E)f(E) dE

is the number of electrons in the energy range E to E + dE. Integrating this from the
bottom (Ec) to the top (Ec + x) of the CB gives the electron concentration n, number
of electrons per unit volume, in the CB. In other words,

n= I
JE

C

nE(E)dE
Je

c

gcb(E)f(E)dE
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Figure 5.7
(a) Energy band diagram.
(b) Density of states (number of states per unit energy per unit volume).
(c) Fermi-Dirac probability function (probability of occupancy of a state).
(d) The product of g(E) and f(E) is the energy density of electrons in the CB (number of electrons
per unit energy per unit volume). The area under nffE) versus E is the electron concentration.

We will assume that (Ec - EF) > kT {i.e., EF is at least a fewkT below Ec) so that

f(E) « exp[-(£ - EF)/kT]

We are thus replacing Fermi-Dirac statistics by Boltzmann statistics and thereby in-
herently assuming that the number of electrons in the CB is far less than the number of
states in this band.

Further, we will take the upper limit to be E = oo rather than Ec + x since f(E)
decays rapidly with energy so that gcb(E)f(E) -> 0 near the top of the band. Further-
more, since gcb(E)f(E) is significant only close to Ec, we can use

(7r8V2)m*3/2 W2
gcb(E) =  J -{E - Ec)

for an electron in a three-dimensional PE well without having to consider the exact
form of gcb(E) across the whole band. Thus

(7r8V2)mf/2
n &

h3

Density of
states in

conduction

band



382 chapter 5 . Semiconductors

which leads to

Electron
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inCB

Effective
density of
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CB edge

Hole
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Effective
density of
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VB edge

r (gc-gF)i
w = exp[ W

-

}
[5.6]

where

Nc

3/2

[5.7]

The result of the integration in Equation 5.6 seems to be simple, but it is an
approximation as it assumes that (Ec - EF) > kT. Ncis a temperature-dependent
constant, called the effective density of states at the CB edge. Equation 5.6 can be
interpreted as follows. If we take all the states in the conduction band and replace
them with an effective concentration Afc (number of states per unit volume) at Ec
and then multiply this simply by the Boltzmann probability function, f(Ec) =
exp[-(Ec - EF)/kT]9 we obtain the concentration of electrons at EC9 that is, in the
conduction band.    is thus an effective density of states at the CB band edge.

We can carry out a similar analysis for the concentration of holes in the VB. Mul-
tiplying the density of states gfvb(£) in the VB with the probability of occupancy by a
hole [1 - /(£)L that is, the probability that an electron is absent, gives /?£, the hole
concentration per unit energy. Integrating this over the VB gives the hole concentration

p = f 
V

 pEdE= f 
V

 srvb(£)[(l- f(E)]dE

With the assumption that EF is a few kT above EV9 the integration simplifies to

f (EF-EV)1
p = Nv expl - I [5.8]

where    is the effective density of states at the VB edge and is given by
3/2

[5.9]

We can now see the virtues of studying the density of states g(E) as a function of
energy E and the Fermi-Dirac function f(E). Both were central factors in deriving the
expressions for n and p. There are no specific assumptions in our derivations, except
for EF being a few kT away from the band edges, which means that Equations 5.6 and
5

.8 are generally valid.
The general equations that determine the free electron and hole concentrations are

thus given by Equations 5.6 and 5.8. It is interesting to consider the product np,

r (ec-ef)']      r (Ef-Ev)! r (ec-ev)~\
np = Nc exp|

_

 -J Nv exp|
_

 -J = NeNv exP|
_

 -J
or

np [5.10]
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where Eg = Ec - Ev is the bandgap energy. First, we note that this is a general ex-
pression in which the right-hand side, NCNV exp(-Eg/kT)9 is a constant that depends
on the temperature and the material properties, for example, Eg, and not on the posi-
tion of the Fermi level. In the special case of an intrinsic semiconductor, n = p, which
we can denote as n,-, the intrinsic concentration, so that NCNV exp(-Eg/kT) must be
n?. From Equation 5.10 we therefore have

np = nj = NCNV exp(-  [5.11]
This is a general equation that is valid as long as we have thermal equilibrium.

External excitation, such as photogeneration, is excluded. It states that the product np
is a temperature-dependent constant. If we somehow increase the electron concentra-
tion, then we inevitably reduce the hole concentration. The constanthas a special
significance because it represents the free electron and hole concentrations in the in-
trinsic material.

An intrinsic semiconductor is a pure semiconductor crystal in which the electron
and hole concentrations are equal. By pure we mean virtually no impurities in the
crystal. We should also exclude crystal defects that may capture carriers of one sign
and thus result in unequal electron and hole concentrations. Clearly in a pure semicon-
ductor, electrons and holes are generated in pairs by thermal excitation across the
bandgap. It must be emphasized that Equation 5.11 is generally valid and therefore
applies to both intrinsic and nonintrinsic (n  p) semiconductors.

When an electron and hole meet in the crystal, they "recombine." The electron
falls in energy and occupies the empty electronic state that the hole represents. Con-
sequently, the broken bond is "repaired," but we lose two free charge carriers.
Recombination of an electron and hole results in their annihilation. In a semiconduc-

tor we therefore have thermal generation of electron-hole pairs by thermal excitation
from the VB to the CB, and we also have recombination of electron-hole pairs that re-
moves them from their conduction and valence bands, respectively. The rate of re-
combination R will be proportional to the number of electrons and also to the number
of holes. Thus

R oc np

The rate of generation G will depend on how many electrons are available for ex-
citation at Ev, that is, A ; how many empty states are available at Ec, that is, A ; and
the probability that the electron will make the transition, that is, exp(- Eg/kT), so that

G oc NCNV exp (-£)
Since in thermal equilibrium we have no continuous increase in n or /?, we must

have the rate of generation equal to the rate of recombination, that is, G = This is
equivalent to Equation 5.11.

In sketching the diagrams in Figure 5.7a to d to illustrate the derivation of the ex-
pressions for n and p (in Equations 5.6 and 5.8), we assumed that the Fermi level EF
is somewhere around the middle of the energy bandgap. This was not an assumption in
the mathematical derivations but only in the sketches. From Equations 5.6 and 5.8 we

Mass action

law
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Fermi energy
in intrinsic

semiconductor

Fermi energy
in intrinsic

semiconductor

[5.12]

also note that the position of Fermi level is important in determining the electron and
hole concentrations. It serves as a "mathematical crank" to determine n and p.

We first consider an intrinsic semiconductor, n = p = h;. Setting /? = in Equa-
tion 5.8, we can solve for the Fermi energy in the intrinsic semiconductor. En, that is,

which leads to

Furthermore, substituting the proper expressions for Nc and Nv we get

It is apparent from these equations that if A c = Nv or m* = m£, then

1
En = Ev + -Eg

that is, EFi is right in the middle of the energy gap. Normally, however, the effective
masses will not be equal and the Fermi level will be slightly shifted down from midgap
by an amount kT ln(m*/mp, which is quite small compared with Eg. For Si and
Ge, the hole effective mass (for density of states) is slightly smaller than the electron
effective mass, so     is slightly below the midgap.

The condition np = nj means that if we can somehow increase the electron concen-
tration in the CB over the intrinsic value-for example, by adding impurities into the Si
crystal that donate additional electrons to the CB-we will then have n > p. The semi-
conductor is then called w-type. The Fermi level must be closer to Ec than Ev, so that

[5.13]

Ec - Ef < Ef - Ev

and Equations 5.6 and 5.8 yield n > /?. The np product always yields nf in thermal
equilibrium in the absence of external excitation, for example, illumination.

It is also possible to have an excess of holes in the VB over electrons in the CB,
for example, by adding impurities that remove electrons from the VB and thereby gen-
erate holes. In that case EF is closer to Ev than to Ec. A semiconductor in which p > n
is called a p-type semiconductor. The general band diagrams with the appropriate
Fermi levels for intrinsic, n-type, and/?-type semiconductors {e.g., /-Si, n-Si, and/?-Si,
respectively) are illustrated in Figure 5.8a to c.

It is apparent that if we know where E f is, then we have effectively determined n and
p by virtue of Equations 5.6 and 5.8. We can view EF as a material property that is related
to the concentration of charge carriers that contribute to electrical conduction. Its signifi-
cance, however, goes beyond n and /?. It also determines the energy needed to remove an
electron from the semiconductor. The energy difference between the vacuum level (where
the electron is free) and EF is the work function 4> of the semiconductor, the energy re-
quired to remove an electron even though there are no electrons at Ef in a semiconductor.
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Figure 5.8  Energy band diagrams for
(a) intrinsic, (b) n-type, and (c) p-type
semiconductors.

In all cases, np - rfi.

The Fermi level can also be interpreted in terms of the potential energy per electron
for electrical work similar to the interpretation of electrostatic PE. Just as e AV is the elec-
trical work involved in taking a charge e across a potential difference AV, any difference
in EF in going from one end of a material (or system) to another is available to do an
amount AEF of external work. A corollary to this is that if electrical work is done on the
material, for example, by passing a current through it, then the Fermi level is not uniform
in the material. A EF then represents the work done per electron. For a material in thermal
equilibrium and not subject to any external excitation such as illumination or connections
to a voltage supply, the Fermi level in the material must therefore be uniform, AEf = 0.

What is the average energy of an electron in the conduction band of a semiconduc-
tor? Also, what is the mean speed of an electron in the conduction band? We note that the
concentration of electrons with energies E to E + dE isnE(E) dE or gcb(E)f(E) dE.
Thus the average energy of electrons in the CB, by definition of the mean, is

Ecb=- f Egcb(E)f(E)dE
n Jcb

where the integration must be over the CB. Substituting the proper expressions for
gcb(E) and f(E) in the integrand and carrying out the integration from Ec to the top
of the band, we find the very simple result that

3
£cb = Ec + -kT [5.14]

Thus, an electron in the conduction band has an average energy of kT above Ec.
Since we know that an electron at Ec is "free" in the crystal, kT must be its average
kinetic energy.

This is just like the average kinetic energy of gas atoms (such as He atoms) in a tank
assuming that the atoms (or the "particles

") do not interact, that is, they are independent.
We know from the kinetic theory that the statistics of a collection of independent gas
atoms obeys the classical Maxwell-Boltzmann description with an average energy given
by IkT. We should also recall that the description of electron statistics in a metal involves
the Fermi-Dirac function, which is based on the Pauli exclusion principle. In a metal the
average energy of the conduction electron is |£V and, for all practical purposes, temper-
ature independent. We see that the collective electron behavior is completely different in
the two solids. We can explain the difference by noting that the conduction band in a

Average
electron

energy in CB
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Table 5.1   Selected typical properties of Ge, Si, and GaAs at 300 K

Eg      x Nc Nv Hi tit fxh
(eV)   (eV)      (cm*3)        (cm"3)       (cm-3)     (cm2 V"1 s"1)   (cm2 V"1 s™1)    ml/me m*h/me er

Ge      0.66   4.13   1.04 x 1019   6,0 x 1018   2.3 x 1013 3900 1900        Mia 0230 16
™"

0
.
56& 0.40

Si        1.10   4.01     2.8 x 1019   1.2 x lO1     1.0 x 1010 1350 450 0.26* 0.38a 11.9
1Mb 0.606

GaAs    1.42   4.07     4.7 x 1017     7 x lO18   2.1 x 106 8500 400 0.0674,* 0.40fl 13.1
0

.506

NOTE: Effective mass related to conductivity (labeled a) is different than that for density of states (labeled b). In numerous textbooks, n,- is
taken as 1.45 x 1010 cm-3 and is therefore the most widely used value of n/ for Si, though the correct value is actually 1.0 x 1010 crrr3.
(M. A. Green, J. Appl Phys., 67, 2944, 1990.)

semiconductor is only scarcely populated by electrons, which means that there are many
more electronic states than electrons and thus the likelihood of two electrons trying to oc-
cupy the same electronic state is practically nil. We can then neglect the Pauli exclusion
principle and use the Boltzmann statistics. This is not the case for metals where the num-
ber of conduction electrons and the number of states are comparable in magnitude.

Table 5.1 is a comparative table of some of the properties of the important semi-
conductors, Ge, Si, and GaAs.

EXAMPLE 5.1 INTRINSIC CONCENTRATION AND CONDUCTIVITY OF Si Given that the density of states
related effective masses of electrons and holes in Si are approximately 1.08me and 0.60me)
respectively, and the electron and hole drift mobilities at room temperature are 1350 and
450 cm2 V~1 s~1, respectively, calculate the intrinsic concentration and intrinsic resistivity of Si.

SOLUTION

We simply calculate the effective density of states A c and Nv by

/27rm*kT\y2 (27tm*hkT\vl

Thus

and

r2jr(1.08 x 9.1 x KT31 kg)(1.38 x IQ-23 J K"1) (300 K)"[3/2      L (6.63 x 10-34 Js)2 J
= 2

.
81 x 1025 nT3 or      2.81 x 1019 cm"3

_  2 (0.60x9.1 x 10-31kg)(1.38 x 10"23 J K~1)(30Q K)"j3/2N
v~2[ (6.63 x lO"34 Js)2 J

= 1
.
16 x 1025 nT3 or      1.16 x 1019 cm""3

The intrinsic concentration is

nt = (NeNv)W exp(-J0
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so that

it, = [(2.81 x 1019 cm
-3)(1.16 x 1019 cm-3)]1 !

"

 

OlOeV)
 

 ]
L   2(300 K)(8.62 x lO"5 eVK"1)]

= 1
.
0 x 1010cm-3

The conductivity is

a = entie + epnh = eni(fie +

that is,

or = (1.6 x lO-19 C)(1.0 x 1010 cm-3)(1350 + 450 cm2 V"1 s"1)

= 2
.
9 x 10"d cm"*1

The resistivity is

p = i = 3.5 x 105 Q cm
a

Although we calculated    = 1.0 X 1010 cm-3, the most widely used    value in the literature
has been 1.45 x 1010 cm"3. The difference arises from a number of factors but, most impor-
tantly, from what exact value of the effective hole mass should be used in calculating
Henceforth we will simply use2 nt = 1.0 x 1010 cm-3, which seems to be the "true" value.

MEAN SPEED OF ELECTRONS IN THE CB Estimate the mean speed of electrons in the con-
duction band of Si at 300 K. If a is the magnitude of lattice vibrations, then the kinetic theory
predicts a2 oc T; or stated differently, the mean energy associated with lattice vibrations (pro-
portional to a2) increases with kT. Given the temperature dependence of the mean speed of
electrons in the CB, what should be the temperature dependence of the drift mobility? The
effective mass of an electron in the conduction band is 0.26me.

SOLUTION

The fact that the average KE, m* v], of an electron in the CB of a semiconductor is \kT means
that the effective mean speed ve must be '

/ 3*r \1/2    f (3 x 1.38 x lO"23 x 300) 11/2 , .
ve =   = --      = 2.3 x 105 m s"1

\ m* }        L   (0.26 x 9.1 x lO"31) J

The effective mean speed ve is called the thermal velocity    of the electron.
The mean free time r of the electron between scattering events due to thermal vibrations of

the atoms is inversely proportional to both the mean speed ve of the electron and the scattering
cross section of the thermal vibrations, that is,

1
r a

EXAMPLE 5.2

ve (na2)

where a is the amplitude of the atomic thermal vibrations. But, ve oc Tl/2 and (na2) oc kT, so

that r a 7"3/2 and consequently iJLe oc T~3/2.
Experimentally /i€ is not exactly proportional to r~3/2 but to T-2,4, a higher power index.

The effective mass used in the density of states calculations is actually different than that used
in transport calculations such as the mean speed, drift mobility, and so on.

2 The correct value appears to be 1.0 x 1010 crrT3 as discussed by M. A. Green (J. Appl. Phys., 67, 2944, 1990)
and A. B. Sproul and M. A. Green (J. Appl. Phys., 70, 846, 1991).
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5
.2    EXTRINSIC SEMICONDUCTORS

By introducing small amounts of impurities into an otherwise pure Si crystal, it is possi-
ble to obtain a semiconductor in which the concentration of carriers of one polarity is
much in excess of the other type. Such semiconductors are referred to as extrinsic semi-
conductors vis- -vis the intrinsic case of a pure and perfect crystal. For example, by
adding pentavalent impurities, such as arsenic, which have a valency of more than four,
we can obtain a semiconductor in which the electron concentration is much larger than
the hole concentration. In this case we will have an rc-type semiconductor. If we add
trivalent impurities, such as boron, which have a valency of less than four, then we find
that we have an excess of holes over electrons. We now have a p-type semiconductor.
How do impurities change the concentrations of holes and electrons in a semiconductor?

5.
2
.1  w-Type Doping

Consider what happens when small amounts of a pentavalent (valency of 5) element
from Group V in the Periodic Table, such as As, P, Sb, are introduced into a pure Si
crystal. We only add small amounts (e.g., one impurity atom for every million host
atoms) because we wish to surround each impurity atom by millions of Si atoms,
thereby forcing the impurity atoms to bond with Si atoms in the same diamond crystal
structure. Arsenic has five valence electrons, whereas Si has four. Thus when an As

atom bonds with four Si atoms, it has one electron left unbonded. It cannot find a bond

to go into, so it is left orbiting around the As atom, as illustrated in Figure 5.9. The As+
ionic center with an electron e~ orbiting it is just like a hydrogen atom in a silicon en-
vironment. We can easily calculate how much energy is required to free this electron
away from the As site, thereby ionizing the As impurity. Had this been a hydrogen
atom in free space, the energy required to remove the electron from its ground state
(at n = 1) to far away from the positive center would have been given by -En with
n = 1. The binding energy of the electron in the H atom is thus

4

£» = -£' = 8# = 13-
6eV

Figure 5.9  Arsenic-doped Si crystal.
The four valence electrons of As allow it to bond just
like Si, but the fifth electron is left orbiting the As site.
The energy required to release the free fifth electron
into the CB is very small.

As

e
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If we wish to apply this to the electron around an As"1" core in the Si crystal envi-
ronment, we must use ers0 instead of e0, where er is the relative permittivity of silicon,
and also the effective mass of the electron m* in the silicon crystal. Thus, the binding
energy of the electron to the As+ site in the Si crystal is

tb - = (13.6 eV) [5.15]

With sr = 11.9 and m*  \me for silicon, we find Ef = 0.032 eV, which is com-
parable with the average thermal energy of atomic vibrations at room temperature,
~3/:r (~0.07 eV). Thus, the fifth valence electron can be readily freed by thermal
vibrations of the Si lattice. The electron will then be "free" in the semiconductor, or, in

other words, it will be in the CB. The energy required to excite the electron to the CB
is therefore 0.032 eV. The addition of As atoms introduces localized electronic states

at the As sites because the fifth electron has a localized wavefunction, of the hydro-
genic type, around As+. The energy Ed of these states is 0.032 eV below Ec because
this is how much energy is required to take the electron away into the CB. Thermal ex-
citation by the lattice vibrations at room temperature is sufficient to ionize the As atom,
that is, excite the electron from Ed into the CB. This process creates free electrons but
immobile As+ ions, as shown in the energy band diagram of an n-type semiconductor
in Figure 5.10. Because the As atom donates an electron into the CB, it is called a
donor atom. Ed is the electron energy around the donor atom. Ed is close to £c, so the
spare fifth electron from the dopant can be readily donated to the CB. If Nd is the donor
atom concentration in the crystal, then provided that Nd >nj9at room temperature the
electron concentration in the CB will be nearly equal to Nd9 that is n  Nd. The hole
concentration will be p = nj/Nd, which is less than the intrinsic concentration be-
cause a few of the large number of electrons in the CB recombine with holes in the VB
so as to maintain np = n?. The conductivity will then be

a = eNd/ji-(£> eNdfjLe [5.16]

At low temperatures, however, not all the donors will be ionized and we need to
know the probability, denoted as fd(Ed), of finding an electron in a state with energy

Electron

binding
energy at a
donor

n-type

conductivity

S-4

I

-0
.03 eV j£

E

CB

Figure 5*10  Energy band diagram for an
n-type Si doped with 1 ppm As.

There are donor energy levels just below Ec
around As+ sites.

As+ As+ As+ As+

As atom sites every 106 Si atoms

x Distance into

crystal
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Occupation
probability at
a donor

Ed at a donor. This probability function is similar to the Fermi-Dirac function /(Ej)
except that it has a factor of 5 multiplying the exponential term,

fd(Ed) =
1

1 [(Eg-EF)]
2 [-kT

-\
[5.17]

1 +

The factor 5 is due to the fact that the electron state at the donor can take an elec-
tron with spin either up or down but not both3 (once the donor has been occupied, a
second electron cannot enter this site). Thus, the number of ionized donors at a tem-
perature T is given by

Nj = Nj x (probability of not finding an electron at Ej)

= Nd[l - fd(Ed)]

Nd

1 + 2 exp

[5.18]

5.
2

.2 p-Type Doping

We saw that introducing a pentavalent atom into a Si crystal results in n-type doping be-
cause the fifth electron cannot go into a bond and escapes from the donor into the CB by
thermal excitation. By similar arguments, we should anticipate that doping a Si crystal
with a trivalent atom (valency of 3) such as B, Al, Ga, or In will result in a/>type Si crys-
tal. We consider doping Si with small amounts of B as shown in Figure 5.11a. Because
B has only three valence electrons, when it shares them with four neighboring Si atoms,
one of the bonds has a missing electron, which of course is a hole. A nearby electron can
tunnel into this hole and displace the hole further away from the boron atom. As the hole
moves away, it gets attracted by the negative charge left behind on the boron atom and
therefore takes an orbit around the B~ ion, as shown in Figure 5.11b. The binding energy
of this hole to the B

"

 ion can be calculated using the hydrogenic atom analogy as in the
n-type Si case. This binding energy turns out to be very small, ~0.05 eV, so at room
temperature the thermal vibrations of the lattice can free the hole away from the B~ site.
A free hole, we recall, exists in the VB. The escape of the hole from the B~ site involves
the B atom accepting an electron from a neighboring Si-Si bond (from the VB), which
effectively results in the hole being displaced away and its eventual escape to freedom in
the VB. The B atom introduced into the Si crystal therefore acts as an electron acceptor
and, because of this, it is called an acceptor impurity. The electron accepted by the
B atom comes from a nearby bond. On the energy band diagram, an electron leaves the
VB and gets accepted by a B atom, which becomes negatively charged. This process
leaves a hole in the VB that is free to wander away, as illustrated in Figure 5.12.

It is apparent that doping a silicon crystal with a trivalent impurity results in a
/7-type material. We have many more holes than electrons for electrical conduction

I 3 The proof can be found in advanced solid-state physics texts.
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1

t Free

la) (b)

Figure 5.11   Boron-doped Si crystal.
B has only three valence electrons. When it substitutes for a Si atom, one of its bonds
has an electron missing and therefore a hole, as shown in (a). The hole orbits around
the B_ site by the tunneling of electrons from neighboring bonds, as shown in (b).
Eventually, thermally vibrating Si atoms provide enough energy to free the hole from
the B~ site into the VB

,
 as shown.

Electron energy

B atom sites every 106 Si atoms

,
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into crystal
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ii-
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+
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X
.X.

X.I-0
.
05 eV

VB

Figure 5*12  Energy band
diagram for a f>type Si doped with
1 ppm B.
There are acceptor energy levels Ea
just above Ev around B" sites. These
acceptor levels accept electrons from
the VB and therefore create holes in
the VB.

since the negatively charged B atoms are immobile and hence cannot contribute to the
conductivity. If the concentration of acceptor impurities Na in the crystal is much
greater than the intrinsic concentration nh then at room temperature all the acceptors
would have been ionized and thus p & Na. The electron concentration is then deter-
mined by the mass action law, n = nf/Na, which is much smaller than p, and conse-
quently the conductivity is simply given by a = eNa h.

Typical ionization energies for donor and acceptor atoms in the silicon crystal are
summarized in Table 52. /
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Table 5.2   Examples of donor and acceptor ionization energies (eV) in Si

Donors Acceptors

P As Sb B Al Ga

0
.
045 0.054 0.039 0.045 0.057 0.072

5.
2

.
3 Compensation Doping

What happens when a semiconductor contains both donors and acceptors? Com-
pensation doping is a term used to describe the doping of a semiconductor with both
donors and acceptors to control the properties. For example, a p-type semiconductor
doped with Na acceptors can be converted to an n-type semiconductor by simply
adding donors until the concentration Nj exceeds Na. The effect of donors compen-
sates for the effect of acceptors and vice versa. The electron concentration is then
given by Nj - Na provided the latter is larger than m. When both acceptors and
donors are present, what essentially happens is that electrons from donors recombine
with the holes from the acceptors so that the mass action law np = n? is obeyed. Re-
member that we cannot simultaneously increase the electron and hole concentrations
because that leads to an increase in the recombination rate that returns the electron

and hole concentrations to satisfy np = nj. When an acceptor atom accepts a valence
band electron, a hole is created in the VB. This hole then recombines with an elec-

tron from the CB. Suppose that we have more donors than acceptors. If we take the
initial electron concentration as n = A , then the recombination between the elec-
trons from the donors and Na holes generated by Na acceptors results in the electron
concentration reduced by Na to n - - Na. By a similar argument, if we have
more acceptors than donors, the hole concentration becomes p - Na - Nj, with
electrons from donors recombining with holes from Na acceptors. Thus there are
two compensation effects:

1
. More donors:    Nd - Na » n = (Nd - Na)   and   p - --i--

Compensation (Nd - Na)
doping rt?

2
. More acceptors: Na - Nd » nz      p = (Na - Nd)   and   n =   

(Na - Nd)

These arguments assume that the temperature is sufficiently high for donors and
acceptors to have been ionized. This will be the case at room temperature. At low tem-
peratures, we have to consider donor and acceptor statistics and the charge neutrality
of the whole crystal, as in Example 5.8.

EXAMPLE 5.3 RESISTIVITY OF INTRINSIC AND DOPED Si Find the resistance of a 1 cm3 pure silicon crystal.
What is the resistance when the crystal is doped with arsenic if the doping is 1 in 109, that is,
1 part per billion (ppb) (note that this doping corresponds to one foreigner living in China)?
Given data: Atomic concentration in silicon is 5 x 1022 cm"3, n,- = 1.0 x 1010 cm"3,
lie = 1350 cm2 V"1 s

"1
, and fih = 450 cm2 V1 s"1.
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SOLUTION

For the intrinsic case, we apply

a = enfJLe + epiJLh - en(ixe + iih)

so or = (1.6 x l(r19C)(1.0 x 1010cm"3)(1350 +450cm2V 1s-1)

= 2
.
88 x lO ST'cnT1

Since L = 1 cm and A = 1 cm2, the resistance is

= - = I = 3.47 x 105 £2      or      347 kfl
crA cr

When the crystal is doped with 1 in 109, then

Nsi     5 x 1022 ~ 
'

*=i#= -5x10 cm
At room temperature all the donors are ionized, so

n = Nd=5x 10B cm
3

The hole concentration is

n?     (1.0 x lO10)2     , ,

       (5 x 1013)

Therefore,

a = en   (1.6 x 10"19C)(5 x 1013 cm )(1350 cm2 V 1 s"1)

= 1.
08 x lO G cnT1

Further, - = - = 92.6 Q
a A a

Notice the drastic fall in the resistance when the crystal is doped with only 1 in 109 atoms.
Doping the silicon crystal with boron instead of arsenic, but still in amounts of 1 in 109,

means that Na = 5 x 1013 cm
"3

, which results in a conductivity of

a = epfih = (1.6 x 10-l9C)(5 x 1013 cm"3)(450cm2 V"1 s~l)

= 3
.
6 x lO Q cm"1

L 1
Therefore, R = - = - = 278 Si

a A a

The reason for a higher resistance with /?-type doping compared with the same amount of rc-type
doping is that fjLh < iLe.

COMPENSATION DOPING An n-type Si semiconductor containing 1016 phosphorus (donor)
atoms cm-3 has been doped with 1017 boron (acceptor) atoms cm""3

.
 Calculate the electron and

hole concentrations in this semiconductor.

SOLUTION

This semiconductor has been compensation doped with excess acceptors over donors, so

N
a
-Nd = 1017 - 1016 = 9 x 1016 cnT3

EXAMPLE 5.4
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This is much larger than the intrinsic concentration n, = 1,0 x 1010 cm"3 at room tempera-
ture, so

p = Na-Nd = 9x 1016 cm
"3

The electron concentration

n?     (1.0 x 1010
cnr3)2

n 1
.

1 x 103cm-3

EXAMPLE 5.5

p       (9 x 1016 cm"3)

Clearly, the electron concentration and hence its contribution to electrical conduction is
completely negligible compared with the hole concentration. Thus, by excessive boron doping,
the n-type semiconductor has been converted to a p-type semiconductor.

THE FERMI LEVEL IN n- AND p-TYPE Si An n-type Si wafer has been doped uniformly with
1016 antimony (Sb) atoms cm-3. Calculate the position of the Fermi energy with respect to the
Fermi energy EFi in intrinsic Si. The above n-type Si sample is further doped with 2 x 1017
boron atoms cm-3. Calculate the position of the Fermi energy with respect to the Fermi energy
EFi in intrinsic Si. (Assume that T = 300 K, and kT = 0.0259 eV.)

SOLUTION

Sb gives n-type doping with Nd = 1016 cm-3, and since Nd » m (= 1.0 x 1010 cm-3), we have
n = Nd = 1016 cm

"3

For intrinsic Si,

r (Ec-EFi)-\
nt = Nccxpy - J

whereas for doped Si,

n = ArcexP|
_

 = Nd

where EFi and EFn are the Fermi energies in the intrinsic and n-type Si. Dividing the two ex-
pressions,

nt     eXPL      kT J
so that

1016 \(Nd\ ( 10]
kT In -   = (0.0259 eV) In  

\1.0x
EFn - EFi = kT ln( - ) = (0.0259 eV)ln( ~-= 0.36eV

When the wafer is further doped with boron, the acceptor concentration is
N
a
=2x 1017

cm
-3 > Nd = 1016

cm
-3

The semiconductor is compensation doped and compensation converts the semiconductor to
p-type Si.

 Thus

p = Na - Nd = (2 x 1017 - 1016) = 1.9 x 1017 cm-3
For intrinsic Si,

r (EFi - ev)~\
Hi = expl - J

whereas for doped Si,
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where EFi and Epp are the Fermi energies in the intrinsic and p-type Si, respectively. Dividing
the two expressions,

-EPiy

so that

(p\ /1.9xl017\EFP - Efi = -*rin(  = -(0.0259eV).„(rf-i )
-0

.
43 eV

ENERGY BAND DIAGRAM OF AN n-TYPE SEMICONDUCTOR CONNECTED TO A VOLTAGE

SUPPLY Consider the energy band diagram for an rc-type semiconductor that is connected to a
voltage supply of V and is carrying a current. The applied voltage drops uniformly along the
semiconductor, so the electrons in the semiconductor now also have an imposed electrostatic
potential energy that decreases toward the positive terminal, as depicted in Figure 5.13. The
whole band structure, the CB and the VB, therefore tilts. When an electron drifts from A toward

EXAMPLE 5.6

* x

Electrostatic PE(x) = -eV

<EX 

G
O

3

E
d

" E

E
Fi

A

B
n-type semiconductor

V
I

Figure 5.13 Energy band diagram of an
n-type semiconductor connected to a voltage
supply of V volts.
The whole energy diagram tilts because the
electron now also has an electrostatic potential
energy.



396 chapter 5 . Semiconductors

B
, its PE decreases because it is approaching the positive terminal. The Fermi level £> is above

that for the intrinsic case, En.

We should remember that an important property of the Fermi level is that a change in EF
within a system is available externally to do electrical work. As a corollary we note that when
electrical work is done on the system, for example, when a battery is connected to a semicon-
ductor, then EF is not uniform throughout the whole system. A change in EF within a system
A£f is equivalent to electrical work per electron or eV. EF therefore follows the electrostatic
PE behavior, and the change in EF from one end to the other, EF{A) - EF(B), is just eV', the
energy expended in taking an electron through the semiconductor, as shown in Figure 5.13.
Electron concentration in the semiconductor is uniform, so Ec - EF must be constant from one
end to the other. Thus the CB, VB, and EF all bend by the same amount.

5
.3    TEMPERATURE DEPENDENCE OF CONDUCTIVITY

So far we have been calculating conductivities and resistivities of doped semiconduc-
tors at room temperature by simply assuming that n  Nd for /i-type and p & Na for
/7-type doping, with the proviso that the concentration of dopants is much greater than
the intrinsic concentration . To obtain the conductivity at other temperatures we have
to consider two factors: the temperature dependence of the carrier concentration and
the drift mobility.

5.
3
.1 Carrier Concentration Temperature Dependence

Consider an n-type semiconductor doped with Na donors per unit volume where
Nd > rii. We take the semiconductor down to very low temperatures until its con-
ductivity is practically nil. At this temperature, the donors will not be ionized be-
cause the thermal vibrational energy is insufficiently small. As the temperature is
increased, some of the donors become ionized and donate their electrons to the CB,
as shown in Figure 5.14a. The Si-Si bond breaking, that is, thermal excitation from
E

v to Ec, is unlikely because it takes too much energy. Since the donor ionization
energy AE = Ec - Ed is very small (<&Eg), thermal generation involves exciting
electrons from Ed to Ec. The electron concentration at low temperatures is given by
the expression

1/2

n=( NcNd)    exp(-M) l5.19]

similar to the intrinsic case, that is,

n = (NcNv)V2exV(- j [5.20]
Equation 5.20 is valid when thermal generation occurs across the bandgap Eg

from Ev to Ec. Equation 5.19 is the counterpart of Equation 5.20 taking into account
that at low temperatures the excitation is from Ed to Ec (across AE) and that instead
of Nv, we have Nd as the number of available electrons. The numerical factor 5 in
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Figure 5.14
(a) Below Ts, the electron concentration is controlled by the ionization of the donors.
(b) Between 7s and T„ the electron concentration is equal to the concentration of donors
since they would all have ionized.
(c) At high temperatures, thermally generated electrons from the VB exceed the number
of electrons from ionized donors and the semiconductor behaves as if intrinsic.

Equation 5.19 arises because donor occupation statistics is different by this factor from
the usual Fermi-Dirac function, as mentioned earlier.

As the temperature is increased further, eventually all the donors become ion-
ized and the electron concentration is equal to the donor concentration, that is,
n = Nd, as depicted in Figure 5.14b. This state of affairs remains unchanged until
very high temperatures are reached, when thermal generation across the bandgap be-
gins to dominate. At very high temperatures, thermal vibrations of the atoms will be
so strong that many Si-Si bonds will be broken and thermal generation across Eg
will dominate. The electron concentration in the CB will then be mainly due to ther-
mal excitation from the VB to the CB, as illustrated in Figure 5.14c. But this process
also generates an equal concentration of holes in the VB. Accordingly, the semicon-
ductor behaves as if it were intrinsic. The electron concentration at these tempera-
tures will therefore be equal to the intrinsic concentration w,-, which is given by
Equation 5.20.

The dependence of the electron concentration on temperature thus has three
regions:

1
. Low-temperature range (T < Ts). The increase in temperature at these low

temperatures ionizes more and more donors. The donor ionization continues until we
reach a temperature Ts, called the saturation temperature, when all donors have been
ionized and we have saturation in the concentration of ionized donors. The electron

concentration is given by Equation 5.19. This temperature range is often referred to as
the ionization range.

2. Medium-temperature range (Ts < T < 7/). Since nearly all the donors
have been ionized in this range, n = Nd. This condition remains unchanged until
T = 7}, when     which is temperature dependent, becomes equal to Nd. It is this
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temperature range Ts < T < 7} that utilizes the n-type doping properties of the semi-
conductor in pn junction device applications. This temperature range is often referred
to as the extrinsic range.

3. High-temperature range (T > Ti). The concentration of electrons gener-
ated by thermal excitation across the bandgap tti is now much larger than Nd* so the
electron concentration n = n/(r). Furthermore, as excitation occurs from the VB to
the CB, the hole concentration p = n. This temperature range is referred to as the
intrinsic range.

Figure 5.15 shows the behavior of the electron concentration with temperature in
an n-type semiconductor. By convention we plot ln(n) versus the reciprocal tempera-
ture T-1. At low temperatures, ln(n) versus T~l is almost a straight line with a slope
-(AE/2k), since the temperature dependence of Arj/2(oc r3/4) is negligible com-
pared with the exp(- kE/lkT) part in Equation 5.19. In the high-temperature range,
however, the slope is quite steep and almost -Eg/2k since Equation 5,20 implies
that

n ex r3/2exp(    '
V 2kTj

and the exponential part again dominates over the T3/2 part. In the intermediate range,
n is equal to Nj and practically independent of the temperature.

ln(n)
A

- -r

Intrinsic

slope = -Eg
/Ik

Ionization
Extrinsic slope = -AE/2k

+ \!T
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Figure 5-15 The temperature dependence of the electron Figure 5.16 The temperature dependence of the intrinsic
concentration in an n-type semiconductor. concentration.
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Figure 5.16 displays the temperature dependence of the intrinsic concentration in
Ge, Si, and GaAs as log(n/) versus l/T where the slope of the lines is, of course, a
measure of the bandgap energy Eg. The log(rt/) versus 1 / T graphs can be used to find,
for example, whether the dopant concentration at a given temperature is more than the
intrinsic concentration. As we will find out in Chapter 6, the reverse saturation current
in a injunction diode depends on n?, so Figure 5.16 also indicates how this saturation
current varies with temperature.

SATURATION AND INTRINSIC TEMPERATURES An rc-type Si sample has been doped with 1015
phosphorus atoms cm-3

. The donor energy level for Pin Si is 0.045 eV below the conduction
band edge energy.

a. Estimate the temperature above which the sample behaves as if intrinsic,
b

. Estimate the lowest temperature above which most of the donors are ionized.

SOLUTION

Remember that , (7) is highly temperature dependent, as shown in Figure 5.16 so that as T
increases, eventually at T  rls m becomes comparable to Nd. Beyond Ti.rtiiT > 7J) » Nj.
Thus we need to solve

(7,) = Nd = 1015 cm"3

From the logfo) versus \&/T graph for Si in Figure 5.16, when n( = 1015 cm"*3, (lO3/ ) «
1
.85, giving 7} « 541 K or 268 0C.

We will assume that most of the donors are ionized, say at T T5, where the extrinsic and
the extrapolated ionization lines intersect in Figure 5.15;

1/2

EXAMPLE 5.7

This is the temperature at which the ionization behavior intersects the extrinsic region. In the
above equation, Nd = 1015 cm"3

, AE = 0.045 eV, and Nc oc T3/2, that is,

NC(TS) = NA300K)[ J
3/2

Clearly, then, the equation can only be solved numerically. Similar equations occur in a wide
range of physical problems where one term has the strongest temperature dependence. Here,
expi-AE/kTs) has the strongest temperature dependence. First assume Nc is that at 300 K,
Nc = 2.8 x 1019 cnr3, and evaluate T*,

AE
 

0
.
045 eV
 

.

=

t j £.)
=

9M xlo-itvK-)j,2
-
8xio:;m

-,

3
i

=

 
\2NdJ     v [2(1.0 x 1015cm-3)J

At T = 54.7 K,

/54 7\3/2
iVc(54.7K) = iVc(300K)( -J    = 2.18 x 1018cm-3
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With this new Nc at a lower temperature, the improved Ts is 74.6 K. Since we only need an
estimate of T$, the extrinsic range of this semiconductor is therefore from about 75 to 541 K or
-198 to about 268 0C.

EXAMPLE 5.8

Electron

concentration

in the

ionization

region

TEMPERATURE DEPENDENCE OF THE ELECTRON CONCENTRATION By considering the mass
action law, charge neutrality within the crystal, and occupation statistics of electronic states, we
can show that at the lowest temperatures the electron concentration in an «-type semiconductor
is given by

„ = (i .)"2 exP(-M)
where AE = Ec - Ej. Furthermore, at the lowest temperatures, the Fermi energy is midway
between Ej and Ec.

There are only a few physical principles that must be considered to arrive at the effect of
doping on the electron and hole concentrations. For an n-type semiconductor, these are

1
. Charge carrier statistics.

n = exP[ jy-j ID

2
.
 Mass action law.

np = n? (2)

3
. Electrical neutrality of the crystal. We must have the same number of positive and neg-

ative charges:

p + N+ = n (3)

where     is the concentration of ionized donors.

4
. Statistics of ionization of the dopants.

Nj = ty/x (probability of not finding an electron at Ed) = Nd[\ - fd(Ed)]

1 + 2 exppg|r-grf)j
14)

Solving Equations 1 to 4 for n will give the dependence of n on T and Nd. For example,
from the mass action law, Equation 2, and the charge neutrality condition. Equation 3, we get

.
2

n

n

This is a quadratic equation in n. Solving this equation gives
1/2

Clearly, this equation should give the behavior of n as a function of Tand Nd when we also
consider the statistics in Equation 4. In the low-temperature region (T < Ts)9 n] is negligible in
the expression for n and we have

n "1
1 + 2exp
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But the statistical description in Equation 1 is generally valid, so multiplying the low-
temperature region equation by Equation 1 and taking the square root eliminates EF from the
expression, giving

-(W-HV]
To find the location of the Fermi energy, consider the general expression

n = cexp[ _j
which must now correspond to n at low temperatures. Equating the two and rearranging to obtain
Ef we find

Ec + Ed    1  1
 / Nd \

EF =  -- + -kT In --
2 2 \2Nj

which puts the Fermi energy near the middle of AE = Ee
 ~ Ed at low temperatures.

5.3.2 Drift Mobility: Temperature and Impurity Dependence

The temperature dependence of the drift mobility follows two distinctly different tem-
perature variations. In the high-temperature region, it is observed that the drift mobility
is limited by scattering from lattice vibrations. As the magnitude of atomic vibrations
increases with temperature, the drift mobility decreases in the fashion /Lt a r~3/2.
However, at low temperatures the lattice vibrations are not sufficiently strong to be the
major limitation to the mobility of the electrons. It is observed that at low temperatures
the scattering of electrons by ionized impurities is the major mobility limiting mecha-
nism and   a T*12

,
 as we will show below.

We recall from Chapter 2 that the electron drift mobility ii depends on the mean
free time x between scattering events via

li= - 15.21]

in which

t = -- [5.22]
SvfoNs

where S is the cross-sectional area of the scatterer; is the mean speed of the elec-
trons, called the thermal velocity; and Ns is the number of scatterers per unit volume.
If a is the amplitude o£the atomic vibrations about the equilibrium, then S = no2. As
the temperature increases, so does the amplitude a of the lattice vibrations following
a2 ocT behavior, as shown in Chapter 2. An electron in the CB is free to wander
around and therefore has only KE. We also know that the mean kinetic energy per elec-
tron in the CB is |ifer, just as if the kinetic molecular theory could be applied to all
those electrons in die CB. Therefore,
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e   KE = my

Figure 5.17  Scattering of electrons by an ionized
impurity.
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so that Uth a T111
. Thus the mean time tt between scattering events from lattice vibra-

tions is

1 1
XL oc oc T

-3/2

which leads to a lattice vibration scattering limited mobility, denoted as/if
,,

 of the form

[5 23]

At low temperatures, scattering of electrons by thermal vibrations of the lattice
will not be as strong as the electron scattering brought about by ionized donor impuri-
ties. As an electron passes by an ionized donor As"1", it is attracted and thus deflected
from its straight path, as schematically shown in Figure 5.17. This type of scattering of
an electron is what limits the drift mobility at low temperatures.

The PE of an electron at a distance r from an As+ ion is due to the Coulombic

attraction, and its magnitude is given by

e
2

\PE\ = 
4ne0err

If the KE of the electron approaching an As+ ion is larger than its PE at distance r
from As*, then the electron will essentially continue without feeling the PE and therefore
without being deflected, and we can say that it has not been scattered. Effectively, due
to its high KE, the electron does not feel the Coulombic pull of the donor. On the other
hand, if the KE of the electron is less than its PE at r from As+, then the PE of the

Coulombic interaction will be so strong that the electron will be strongly deflected. This
is illustrated in Figure 5.17. The critical radius rc corresponds to tfte case when the elec-
tron is just scattered, which is when KE  \PE(rc)\. But average KE = kT,soatr = rc

3
~kT = \PE(rc)\ = 
2 4ne0srrc

from which rc = e2/(67te0erkT). As the temperature increases, the scattering radius
decreases. The scattering cross section S = nr2 is thus given by

,
4

s
Tie

(67tS0€rkT)2
oc T

~~2

:m
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Incorporating vth oc T1/2 as well, the temperature dependence of the mean scattering
time t/ between impurities, from Equation 5.22, must be

1 1 r3/2
T/ = a

NiSv Nj (T' iT N!

where Nj is the concentration of ionized impurities (all ionized impurities including
donors and acceptors). Consequently, the ionized impurity scattering limited mobility
from Equation 5,21 is

T3/2
M/ OC -- [5.24]

Note also that ju/ decreases with increasing ionized dopant concentration Nj,
which itself may be temperature dependent. Indeed, at the lowest temperatures, below
the saturation temperature TSy Nj will be strongly temperature dependent because not
all the donors would have been fully ionized.

The overall temperature dependence of the drift mobility is then, simply, the recip-
rocal additions of the /x/ and fjLL by virtue of Matthiessen's rule, that is,

1 
_

 1

V<i V>L
[5.25]

so the scattering process having the lowest mobility determines the overall (effective)
drift mobility.

The experimental temperature dependence of the electron drift mobility in both
Ge and Si is shown in Figure 5.18 as a log-log plot for various donor concentrations.
The slope on this plot corresponds to the index n in fj,e oc Tn. The simple theoretical
sketches in the insets show how /jll and /x/ from Equations 5.23 and 5.24 depend on
the temperature. For Ge, at low doping concentrations (e.g., Nd = 1013cm~3), the
experiments indicate a fie <x T~l 5 type of behavior, which is in agreement with fig
determined by /xL in Equation 5.23. Curves for Si at low-level doping (fij negligible)
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Figure 5.18  Log-tog plot of drift mobility versus
temperature for n-type Ge and n-type Si samples.
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at high temperatures, however, exhibit a fi€ oc T~2
.
* type of behavior rather than T"1,5,

which can be accounted for in a more rigorous theory. As the donor concentration
increases, the drift mobility decreases by virtue of / getting smaller. At the highest
doping concentrations and at low temperatures, the electron drift mobility in Si
exhibits almost a fie oc T3/2 type of behavior. Similar arguments can be extended to the
temperature dependence of the hole drift mobility.

The dependences of the room temperature electron and hole drift mobilities on the
dopant concentration for Si are shown in Figure 5.19 where, as expected, past a certain
amount of impurity addition, the drift mobility is overwhelmingly controlled by jjlj in
Equation 5.25.

Electron

concentration

in ionization

region

5.3*3 Conductivity Temperature Dependence

The conductivity of an extrinsic semiconductor doped with donors depends on the
electron concentration and the drift mobility, both of which have been determined
above. At the lowest temperatures in the ionization range, the electron concentration
depends exponentially on the temperature by virtue of

v 1/2

which then also dominates the temperature dependence of the conductivity. In the
intrinsic range at the highest temperatures, the conductivity is dominated by the
temperature dependence of since

/
entitle + Hh)

slndni is an exponential function of temperature in contrast to /a, oc T ~3/2
.
 In the extrinsic

temperature range, n = Nd and is constant, so the conductivity follows the temperature
dependence of the drift mobility. Figure 5.20 shows schematically the semilogarithmic
plot of the conductivity against the reciprocal temperature where through the extrinsic
range a exhibits a broad "S" due to the temperature dependence of the drift mobility.
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COMPENSATION-DOPED Si

a. A Si sample has been doped with 1017 arsenic atoms cnT3. Calculate the conductivity of
the sample at 27 0C (300 K) and at 127 0C (400 K),

b
. The above «-type Si sample is further doped with 9 x 1016 boron atoms cm"3. Calculate

the conductivity of the sample at 27 0C and 127 0C.

SOLUTION

a. The arsenic dopant concentration, Nd = 1017 cm"3, is much larger than the intrinsic con-
centration rti, which means that n = Nd and p = (n?/A ) <§; n and can be neglected. Thus
n = 1017 cm

"3 and the electron drift mobility at Nd
the drift mobility versus dopant concentration graph in Figure 5.19, so

b
.

1017 cmr3 is 800 cm2 V 1 s"1 from

or

12.8 ft
-1 ™-l

cm

At TV

enfie + ep(jLh = €Nd/Jie

= (1.6 x lO"19 C)(1017 cm
"3)(800 cm2 V 1 s 1)

127 0C = 400 K,

H€ » 420 cm2 V""1 s
-1

(from the /jie versus T graph in Figure 5.18). Thus

a = eNdtJie = 6.72 Q"1 cm
-"1

With further doping we have Na = 9 x 1016 cm-3, so from the compensation effect

Nd - Na = 1 x 1017 - 9 x 1016 = 1016 cm
-3

Since Nd - Na » »*. we have an n-type material with n = Nd - Na = 1016 cm"3. But the
drift mobility now is about ~ 600 cm2 V"1 s"1 because, even though Nd - Na is now
1016 cm"3 and not 1017 cm-3, all the donors and acceptors are still ionized and hence still
scatter the charge carriers. The recombination of electrons from the donors and holes from
the acceptors does not alter the fact that at room temperature all the dopants will be ionized.

EXAMPLE 5.9
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Effectively, the compensation effect is as if all electrons from the donors were being
accepted by the acceptors. Although with compensation doping the net electron concentra-

tion is n = Nd - Na, the drift mobility scattering is determined by (Nd + Na), which in
this case is 1017 + 9 x 1016 cm-3 == 1.9 x 1017 cm-3, which gives an electron drift mo-
bility of-600 cm2 V"1 s"1 at 300 K and ~400 cm2 V"1 s"1 at 400 K. Then, neglecting the
hole concentration p = n]/(Nd - Na), we have
At 300 K,      or = e(Nd - Na)(xe * (1.6 x lO 19 C)(1016 cm-3)(600 cm2 V"1 s 1)

= 0
.
96 cm"1

At 400 K,      a = e(Nd -Na)fxe * (1.6 x lO"19 C)(1016 cm-3)(400 cm2 V  s"1)

= 0
.
64 Q-1 cm-1

5
.
3

.
4 Degenerate and Nondegenerate Semiconductors

The general exponential expression for the concentration of electron in the CB,

n * Nc exp [- (£c
-

~

/i0] 15.26]

is based on replacing Fermi-Dirac statistics with Boltzmann statistics, which is only
valid when Ec is several kT above EF. In other words, we assumed that the number of
states in the CB far exceeds the number of electrons there, so the likelihood of two

electrons trying to occupy the same state is almost nil. This means that the Pauli
exclusion principle can be neglected and the electron statistics can be described by the
Boltzmann statistics. Nc is a measure of the density of states in the CB. The Boltzmann
expression for n is valid only when n Nc. Those semiconductors for which n Nc
and p Nv are termed nondegenerate semiconductors. They essentially follow all
the discussions above and exhibit all the normal semiconductor properties outlined
above.

When the semiconductor has been excessively doped with donors, then n may be so
large, typically 1019-1020 cm"3, that it may be comparable to or greater than Nc. In that
case the Pauli exclusion principle becomes important in the electron statistics and we
have to use the Fermi-Dirac statistics. Equation 5.26 for n is then no longer valid. Such
a semiconductor exhibits properties that are more metal-like than semiconductor-like;
for example, the resistivity follows p oc T. Semiconductors that have n > Nc or
p > Nv are called degenerate semiconductors.

The large carrier concentration in a degenerate semiconductor is due to its
heavy doping. For example, as the donor concentration in an n-type semiconductor
is increased, at sufficiently high doping levels, the donor atoms become so close to
each other that theirdrbHals overlap to form a narrow energy band that overlaps and
becomes part of the conduction band. Ec is therefore slightly shifted down and Eg
becomes slightly narrower. The valence electrons from the donors fill the band
from Ec. This situation is reminiscent of the valence electrons filling overlapping
energy bands in a metal. In a degenerate n-type semiconductor, the Fermi level is
therefore within the CB, or above Ec just like EF is within the band in a metal. The
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Figure 5.21
(a) Degenerate r>type semiconductor. Large number of donors form a band that overlaps
the CB.

(b) Degenerate p-type semiconductor

majority of the states between Ec and EF are full of electrons as indicated in Figure
5

.2L In the case of a p-type degenerate semiconductor, the Fermi level lies in the
VB below Ev. It should be emphasized that one cannot simply assume that n = Nj
or p = Na in a degenerate semiconductor because the dopant concentration is so
large that they interact with each other. Not all dopants are able to become ionized,
and the carrier concentration eventually reaches a saturation typically around
-1020 cm

~3
4 Furthermore, the mass action law np = is not valid for degenerate

semiconductors.

Degenerate semiconductors have many important uses. For example, they are used
in laser diodes, zener diodes, and ohmic contacts in ICs, and as metal gates in many
microelectronic MOS devices.

5
.4   RECOMBINATION AND MINORITY

CARRIER INJECTION

5 A. 1 Direct and Indirect Recombination

Above absolute zero of temperature, the thermal excitation of electrons from the VB
to the CB continuously generates free electron-hole pairs. It should be apparent that
in equilibrium there should be some annihilation mechanism that returns the electron
from the CB down to an empty statfe (a hole) in the VB. When a free electron, wan-
dering around in the CB of a crystal, "meets" a hole, it falls into this low-energy
empty electronic state and fills it. This process is called recombination* Intuitively,
recombination corresponds to the free electron finding an incomplete bond with a
missing electron. The electron then enters and completes this bond. The free electron
in the CB and the free hole in the VB are consequently annihilated. On the energy
band diagram, the recombination process is represented by returning the electron
from the CB (where it is free) into a hole in the VB (where it is in a bond). Figure 5.22
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Figure 5.22  Direct recombination in GaAs.
/ccb = /cvb so that momentum conservation is
satisfied.
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shows a direct recombination mechanism, for example, as it occurs in GaAs, in which
a free electron recombines with a free hole when they meet at one location in the crys-
tal. The excess energy of the electron is lost as a photon of energy hv = EgAn fact, it
is this type of recombination that results in the emitted light from light emitting
diodes (LEDs).

The recombination process between an electron and a hole, like every other
process in nature, must obey the momentum conservation law. The wavefunction of an
electron in the CB, Vcbt&cb), will have a certain momentum fik  associated with the
wavevector kcb and, similarly, the electron wavefunction Vvb vb) in the VB will have
a momentum tikwb associated with the wavevector kvb. Conservation of linear mo-
mentum during recombination requires that when the electron drops from the CB to
the VB, its wavevector should remain the same, kvb = fccb. For the elemental semicon-
ductors, Si and Ge, the electronic states V'vbt&vb) with k  = are right in the middle
of the VB and are therefore fully occupied. Consequently, there are no empty states in
the VB that can satisfy fcyb = £cb> and so direct recombination in Si and Ge is next to
impossible. For some compound semiconductors, such as GaAs and InSb, for exam-
ple, the states with k  = kcb are right at the top of the valence band, so they are essen-
tially empty (contain holes). Consequently, an electron in the CB of GaAs can drop
down to an empty electronic state at the top of the VB and maintain kyb = kc\y. Thus
direct recombination is highly probable in GaAs, and it is this very reason that makes
GaAs an LED material.

In elemental semiconductor crystals, for example, in Si and Ge, electrons and
holes usually recombine through recombination centers. A recombination center
increases thesorobability of recombination because it can "take up" any momentum
difference between a hole and electron. The process essentially involves a third body,
which may be an impurity atom or a crystal defect. The electron is captured by the
recombination center and thus becomes localized at this site. It is "held" at the center

until some hole arrives and recombines with it. In the energy band diagram picture
shown in Figure 5.23a, the recombination center provides a localized electronic state
below Ec in the bandgap, which is at a certain location in the crystal. When an electron
approaches the center, it is captured. The electron is then localized and bound to this
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Figure 5.23  Recombination and trapping.
(a) Recombination in Si via a recombination center
that has a localized energy level at Er in the bandgap,
usually near the middle.
(b) Trapping and detrapping of electrons by trapping
centers. A trapping center has a localized energy
level in the bandgap.

center and "waits" there for a hole with which it can recombine. In this recombination

process, the energy of the electron is usually lost to lattice vibrations (as "sound") via
the "recoiling" of the third body. Emitted lattice vibrations are called phonons. A
phonon is a quantum of energy associated with atomic vibrations in the crystal analo-
gous to the photon.

Typical recombination centers, besides the donor and acceptor impurities, might
be metallic impurities and crystal defects such as dislocations, vacancies, or intersti-
tials. Each has its own peculiar behavior in aiding recombination, which will not be
described here.

It is instructive to mention briefly the phenomenon of charge carrier trapping
since in many devices this can be the main limiting factor on the performance. An
electron in the conduction band can be captured by a localized state, just like a recom-
bination center, located in the bandgap, as shown in Figure 5.23b. The electron falls
into the trapping center at Et and becomes temporarily removed from the CB. At a
later time, due to an incident energetic lattice vibration, it becomes excited back into
the CB and is available for conduction again. Thus trapping involves the temporary re-
moval of the electron from the CB, whereas in the case of recombination, the electron

is permanently removed from the CB since the capture is followed by recombination
with a hole. We can view a trap as essentially being a flaw in the crystal that results in
the creation of a localized electronic state, around the flaw site, with an energy in the
bandgap. A charge carrier passing by the flaw can be captured and lose its freedom. The

flaw can be an impurity or a crystal imperfection in the same way as a recombination
center. The only difference is that when a charge carrier is captured at a recombination
site, it has no possibility of escaping again because the center aids recombination.
Although Figure 5.23b illustrates an electron trap, similar arguments also apply to
hole traps, which are normally closer to Ev. In general, flaws and defects that give lo-
calized states near the middle of the bandgap tend to act as recombination centers.
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5.
4

.
2 Minority Carrier Lifetime

Consider what happens when an n-type semiconductor, doped with 5 x 1016 cm"3
donors, is uniformly illuminated with appropriate wavelength light to photogenerate
electron-hole pairs (EHPs), as shown in Figure 5.24. We will now define thermal equi-
librium majority and minority carrier concentrations in an extrinsic semiconductor. In
general, the subscript n or p is used to denote the type of semiconductor, and o to refer
to thermal equilibrium in the dark.

In an n-type semiconductor, electrons are the majority carriers and holes are the
minority carriers

nno is defined as the majority carrier concentration (electron concentration
in an rc-type semiconductor) in thermal equilibrium in the dark. These electrons,
constituting the majority carriers, are thermally ionized from the donors.

pno is termed the minority carrier concentration (hole concentration in an
n-type semiconductor) in thermal equilibrium in the dark.

 These holes that

constitute the minority carriers are thermally generated across the bandgap.

In both cases the subscript no refers to an H-type semiconductor and thermal equi-
librium conditions, respectively. Thermal equilibrium means that the mass action law
is obeyed and nnopno = n?.

When we illuminate the semiconductor, we create excess EHPs by photogen-
eration. Suppose that the electron and hole concentrations at any instant are denoted by
nn and pn9 which are defined as the instantaneous majority (electron) and minority
(hole) concentrations, respectively. At any instant and at any location in the semi-
conductor, we define the departure from the equilibrium by excess concentrations as
follows:

Ann is the excess electron (majority carrier) concentration: Ann = nn - nno

Apn is the excess hole (minority carrier) concentration: Apn = pn - pno

Under illumination, at any instant, therefore

nn = nno + Ann      and      pn = pno + Apn

Figure 5.24 Low-level photoinjection into an n-type
semiconductor in which Ann < nno.
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Photoexcitation creates EHPs or an equal number of electrons and holes, as shown
in Figure 5.24, which means that

kpn = Ann

and obviously the mass action law is not obeyed: nnpn  nj.lt is worth remember-
ing that

dnn dAnn

dt dt
and

dpn d&pn
dt dt

since nno and pno depend only on temperature.
Let us assume that we have "weak" illumination, which causes, say, only a 10 percent

change in nno, that is,

An„ = 0Anno = 0.5 x 1016cm"3

Then

-3A/?n = An,, = 0.5 x 1016cm"

Figure 5.25 shows a single-axis plot of the majority (nn) and minority (/?„) concentra-
tions in the dark and in light. The scale is logarithmic to allow large orders of magni-
tude changes to be recorded. Under illumination, the minority carrier concentration is

pn = pno + kpn = 2.0 x 103 + 0.5 x 1016 % 0.5 x 1016 = Apn

That is, pn « A/7„, which shows that although nn changes by only 10 percent, pn
changes drastically, that is, by a factor of ~1012

.

Figure 5.26 shows a pictorial view of what is happening inside an n-type semi-
conductor when light is switched on at a certain time and then later switched off again.
Obviously when the light is switched off, the condition pn = Apn (state B in Fig-
ure 5.26) must eventually revert back to the dark case (state A) where pn = pno. In
other words, the excess minority carriers Apn and excess majority carriers Ann must

§
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Figure 5.26 Illumination of an n-type semiconductor results in excess
electron and hole concentrations.

After the illumination, the recombination process restores equilibrium; the
excess electrons and holes simply recombine.

Excess

minority
carrier

concentration

be removed. This removal occurs by recombination. Excess holes recombine with the
electrons available and disappear. This, however, takes time because the electrons and
holes have to find each other. In order to describe the rate of recombination, we intro-

duce a temporal quantity, denoted by Th and called the minority carrier lifetime
(mean recombination time), which is defined as follows: th is the average time a hole
exists in the VB from its generation to its recombination, that is, the mean time the hole
is free before recombining with an electron. An alternative and equivalent definition is
that 1 /th is the average probability per unit time that a hole will recombine with an
electron. We must remember that the recombination process occurs through recombi-
nation centers, so the recombination time Th will depend on the concentration of these
centers and their effectiveness in capturing the minority carriers. Once a minority
carrier has been captured by a recombination center, there are many majority carriers
available to recombine with it, so th in an indirect process is independent of the ma-
jority carrier concentration. This is the reason for defining the recombination time as a
minority carrier lifetime.

If the minority carrier recombination time is, say, 10 s, and if there are some 1000
excess holes, then it is clear that these excess holes will be disappearing at a rate of
1000/10 s = 100 per second. The rate of recombination of excess minority carriers is
simply Apn/Th.At any instant, therefore,

Rate of increase in excess =        Rate of       - Rate of recombination

hole concentration photogeneration      of excess holes

If Gph is the rate of photogeneration, then clearly the net rate of change of Apn is

dApn
dt

[5.27]
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This is a general expression that describes the time evolution of the excess minor-
ity carrier concentration given the photogeneration rate Gph, the minority carrier life-
time th, and the initial condition at t = 0. The only assumption is weak injection
(Apn < nno).

We should note that the recombination time th depends on the semiconductor
material, impurities, crystal defects, temperature, and so forth, and there is no typical
value to quote. It can be anywhere from nanoseconds to seconds. Later it will be shown
that certain applications require a short r*, as in fast switching of pn junctions,
whereas others require a long r/,, for example, persistent luminescence.

PHOTORESPONSE TIME Sketch the hole concentration when a step illumination is applied to
an H-type semiconductor at time t = 0 and switched off at time t = foffO

SOLUTION

We use Equation 5.27 with Gph = constant in 0 < t < t0ff. Since Equation 5.27 is a first-order
differential equation, integrating it we simply find

+ c i

where C\ is the integration constant. At t = 0, Apn = 0, so C\ = In Gph. Therefore the solu-
tion is

Ap„(0 = r Gph l - exp --  j       0 < t < to{{ [5.28]

We see that as soon as the illumination is turned on, the minority carrier concentration
rises exponentially toward its steady-state value Apn(oo) = ThGph. This is reached after a time
t > Th.

At the instant the illumination is switched off, we assume that foff  Th so that from Equa-
tion 5.28,

Ap„(foff) = Gph

We can define t' to be the time measured from t = foff»that is, t' = t - t0ff. Then

Apn(f' = 0) = r,Gph

Solving Equation 5.27 with Gph = 0 in t > t0ff or t' > 0, we get

n(0) exp(-~-)Apn(f,) = Ap

where Apn (0) is actually an integration constant that is equivalent to the boundary condition on
Apn at t' = 0. Putting t' = 0 and Apn = it, Gph gives

Apn(t') = r.Gph exp(-~) l5-29!
We see that the excess minority carrier concentration decays exponentially from the

instant the light is switched off with a time constant equal to the minority carrier recom-
bination time. The time evolution of the minority carrier concentration is sketched in
Figure 5.27.

EXAMPLE 5.10



414 chapter 5 . Semiconductors

Gandp r)
A

Pno+bPni00)

Illumination

G
ph

P
no

0 t
off

\Apll(O = AP«(0) expH'/r*)

> Time
,
 /

Light

L

D

V I
ph

I

Figure 5.27  Illumination is switched on at time /= 0 and then off at
t = 'off-

The excess minority carrier concentration Apn(f) rises exponentially to its
steady-state value with a time constant xy,. From f0ff, the excess minority
carrier concentration decays exponentially to its equilibrium value.

Figure 5.28  A semiconductor
slab of length i, width W, and depth
D is illuminated with light of
wavelength k. Ipu is the steady-state
photocurrent.

EXAMPLE 5.11

Steady-state
photo-
conductivity

PHOTOCONDUCTIVITY Suppose that a direct bandgap semiconductor with no traps is illu-
minated with light of intensity I(k) and wavelength k that will cause photogeneration as shown
in Figure 5.28. The area of illumination is A = (L x W), and the thickness (depth) of the
semiconductor is D. If rj is the quantum efficiency (number of free HHPs generated per ab-
sorbed photon) and r is the recombination lifetime of the photogenerated carriers, show that the
steady-state photoconductivity, defined as

Act = cr(in light) - cr(m dark)

is given by

er]IkT(fie + iih)

hcD
[5.301

A photoconductive cell has a CdS crystal 1 mm long, 1 mm wide, and 0.1 mm thick with
electrical contacts at the end, so the receiving area of radiation is 1 mm2

,
 whereas the area of

each contact is 0.1 mm2
. The cell is illuminated with a blue radiation of wavelength 450 nm and

intensity 1 mW/cm2. For unity quantum efficiency and an electron recombination time of 1 ms,
calculate

a
. The number of HHPs generated per second

b
. The photoconductivity of the sample

c. The photocurrent produced if 50 V is applied to the sample

Note that a CdS photoconductor is a direct bandgap semiconductor with an energy gap
£

,

 = 2
.6eV, electron mobility fie = 0.034 m2 V"1 s"1, and hole mobility tih = 0.0018

m2 V-1 s
"1

.

SOLUTION

If Fph is the number of photons arriving per unit area per unit second (the photon flux), then
Tph = i/hv where I is the light intensity (energy flowing per unit area per second) and hv
is the energy per photon. The quantum efficiency t] is defined as the number of free HHPs
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generated per absorbed photon. Thus, the number of HHPs generated per unit volume per
second, the photogeneration rate per unit volume Gph is given by

In the steady state,

so

But, by definition,

ph      AD D hcD

dAn An
-7r = G*-v = 0

Act = eijLe An 4- e/Xh Ap = e An(iie + /Z/,)

since electrons and holes are generated in pairs, An = Ap. Thus, substituting for An in the Ao
expression, we get Equation 5.30:

er]I},T(iAe + }xh)
Ao =  

hcD

a. The photogeneration rate per unit time is not Gph, which is per unit time per unit volume.
We define EHPPh as the total number of HHPs photogenerated per unit time in the whole
volume (AD). Thus

EHPph = Total photogeneration rate

rilk     An Ik
= (AZ>)Gph = (AD)j-- = -f-

hcD he

= [(KT3 x 10-3
m

2)(l)(10-3 x 104Js-1m~2)(450 x 10"9m)]

-r [(6.63 x lO-34 Js)(3 x Herns'"1
)]

= 2
.
26 x lO EHPs"1

b
. From Equation 5.30,

eriI\T(ixe + fih)
Act =  

hcD

That is

(1.6 x 10-19C)(1)(10-3 x 104Js-1m-2)(450 x 10-9m)(l x 10~3 s)(0.0358 m2 V"1 s"1)
Act

(6.63 x 10-34Js)(3 x lO s"1) .! x lO"3 m)

1
.
30 Q-inT1

| c.   Photocurrent density will be
A7 = E Act = (1.30 Q'1 m-1)(50 V/IO-3 m) = 6.50 x 104Am~2
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Thus the photocurrent

A/ = A A J = (lO-3 x 0.1 x l(r3m2)(6.50 x 104Am-2)

= 6
.
5xl0~3A   or   6.5 mA

We assumed that all the incident radiation is absorbed.

Definition of
particle flux

Definition
of current
density

5
.5   DIFFUSION AND CONDUCTION EQUATIONS,

AND RANDOM MOTION

It is well known that, by virtue of their random motion, gas particles diffuse from high-
concentration regions to low-concentration regions. When a perfume bottle is opened
at one end of a room, the molecules diffuse out from the bottle and, after a while, can

be smelled at the other end of the room. Whenever there is a concentration gradient of
particles, there is a net diffusional motion of particles in the direction of decreasing
concentration. The origin of diffusion lies in the random motion of particles. To quan-
tify particle flow, we define the particle flux r just like current, as the number of par-
ticles (not charges) crossing unit area per unit time. Thus if A N particles cross an area
A in time At, then, by definition, the particle flux is

r =
AN

A At
[5.31]

Clearly if the particles are charged with a charge Q (-e for electrons and +e for
holes), then the electric current density /, which is basically a charge flux, is related to
the particle flux F by

J = QV [5.32]

Suppose that the electron concentration at some time Mn a semiconductor de-
creases in the x direction and has the profile n(xt t) shown in Figure 5.29a. This may
have been achieved, for example, by photogeneration at one end of a semiconductor.
We will assume that the electron concentration changes only in the jc direction so that
the diffusion of electrons can be simplified to a one-dimensional problem as depicted
in Figure 5.29a. We know that in the absence of an electric field, the electron motion is
random and involves scattering from lattice vibrations and impurities. Suppose that £
is the mean free path in the x direction and r is the mean free time between the scat-
tering events. The electron moves a mean distance I in the +x or - x direction and then
it is scattered and changes direction. Its mean speed along x is vx = l/r. Let us evalu-
ate the flow of electrons in the +jc and - x directions through the plane at x0 and hence
find the net flow in the +x direction.

We can divide the x axis into hypothetical segments of length I so that each segment
corresponds to a mean free path. Going across a segment, the electron experiences one
scattering process. Consider what happens during one mean free time, the time it takes
for the electrons to move across a segment toward the left or right. Half of the electrons
in (x0 - i) would be moving toward x0 and the other half away from x09 and in time r
half of them will reach x0 and cross as shown in Figure 5.29b. If n\ is the concentra-
tion of electrons at x0 - jf, then the number of electrons moving toward the right to
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Figure 5.29
(a) Arbitrary electron concentration n(x, f) profile in a semiconductor. There is a net diffusion
(flux) of electrons from higher to lower concentrations.
(b) Expanded view of two adjacent sections at x0. There are more electrons crossing x0 coming
from the left (x0 - I) than coming from the right (x0 -I-1).

cross x0 is i Al where A is the cross-sectional area and hence Al is the volume of the
segment. Similarly half of the electrons in (x0 + I) would be moving toward the left
and in time r would reach x0. Their number is njAt where n2 is the concentration at
x0 + j . The net number of electrons crossing x0 per unit time per unit area in the +jc
direction is the electron flux re,

that is,

_

 ±niAl - \n2Al
At

t
[5.33]

As far as calculus of variations is concerned, the mean free path t is small, so we
can calculate 2 -    from the concentration gradient using

(dn\ {dn\

We can now write the flux in Equation 5.33 in terms of the concentration gradient as

2r\dxJ

or

dn
r

e
 = -D

e
-

dx
[5.34]

Pick's first
law
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diffusion
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where the quantity (t2/2x) has been defined as the diffusion coefficient of electrons
and denoted by De, Thus, the net electron flux re at a position x is proportional to the
concentration gradient and the diffusion coefficient. The steeper this gradient, the
larger the flux Te. In fact, we can view the concentration gradient dn/dx as the driving
force for the diffusion flux, just like the electric field -(dV/dx) is the driving force
for the electric current: J = a'E = -a(dV/dx).

Equation 5.34 is called Pick's first law and represents the relationship between
the net particle flux and the driving force, which is the concentration gradient. It is the
counterpart of Ohm's law for diffusion. De has the dimensions of m2 s-1 and is a mea-

sure of how readily the particles (in this case, electrons) diffuse in the medium. Note
that Equation 5.34 gives the electron flux re at a position x where the electron con-
centration gradient is dn/dx. Since from Figure 5.29, the slope dn/dx is a negative
number, re in Equation 5.34 comes out positive, which indicates that the flux is in the
positive x direction. The electric current (conventional current) due to the diffusion of
electrons to the right will be in the negative direction by virtue of Equation 5.32. Rep-
resenting this electric current density due to diffusion as Jo

.e
 we can write

dn
Jo

.
e = -ere = eDe -

dx
[5.35]

In the case of a hole concentration gradient, as shown in Figure 5.30,
 the hole flux

FaC*) is given by

dx

where Dh is the hole diffusion coefficient. Putting in a negative number for the slope
dp/dx, as shown in Figure 5.30, results in a positive hole flux (in the positive x direc-
tion), which in turn implies a diffusion current density toward the right.

 The current

density due to hole diffusion is given by

dp
JD

,
h =      = -eDh -

dx
[5.36]

Figure 5.30 Arbitrary hole concentration pfx, t) profile
in a semiconductor.

There is a net diffusion (flux) of holes from higher to lower
concentrations. There are more holes crossing x0 coming
from the left (x0 - i) than coming from the right (x0 + i).
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Figure 5.31   When there is an electric
field and also a concentration gradient,
charge carriers move both by diffusion and
drift.

Suppose that there is also a positive electric field acting along +x in Figures 5.29
and 5.30. A practical example is shown in Figure 5.31 in which a semiconductor is
sandwiched between two electrodes, the left one semitransparent. By connecting a bat-
tery to the electrodes, an applied field of is set up in the semiconductor along +x.
The left electrode is continuously illuminated, so excess EHPs are generated at this
surface that give rise to concentration gradients in n and p. The applied field imposes
an electrical force on the charges, which then try to drift. Holes drift toward the right
and electrons toward the left. Charge motion then involves both drift and diffusion.
The total current density due to the electrons drifting, driven by and also diffusing,
driven by dn/dx, is then given by adding Equation 5.35 to the usual electron drift
current density,

dn
J

e
 = enixe

'Ex + eDe -
dx

[5.37]

We note that as is along jc, so is the drift current (first term), but the diffusion
current (second term) is actually in the opposite direction by virtue of a negative dn/dx.

Similarly, the hole current due to holes drifting and diffusing, Equation 5.36, is
given by

dp
Jh = ep h'Ex - eDh -

dx
[5.38]

In this case the drift and diffusion currents are in the same direction.

We mentioned that the diffusion coefficient is a measure of the ease with which the

diffusing charge carriers move in the medium. But drift mobility is also a measure of
the ease with which the charge carriers move in the medium. The two quantities are
related through the Einstein relation,

e iih e
[5.39]

e

In other words, the diffusion coefficient is proportional to the temperature and
mobility. This is a reasonable expectation since increasing the temperature will

Total electron

current due to

drift and
diffusion

Total hole

current due to

drift and
diffusion

Einstein

relation
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increase the mean speed and thus accelerate diffusion. The randomizing effect against
diffusion in one particular direction is introduced by the scattering of the carriers from
lattice vibrations, impurities, and so forth, so that the longer the mean free path
between scattering events, the larger the diffusion coefficient. This is examined in
Example 5.12.

We equated the diffusion coefficient D to £2/2r in Equation 5.34. Our analysis, as
represented in Figure 5.29, is oversimplified because we simply assumed that all elec-
trons move a distance t before scattering and all are free for a time r. We essentially as-
sumed that all those at a distance t from x0 and moving toward x0 cross the plane exactly
in time r. This assumption is not entirely true because scattering is a stochastic process
and consequently not all electrons moving toward x0 will cross it even in the segment
of thickness 1. A rigorous statistical analysis shows that the diffusion coefficient is
given by

Diffusion      * 
„
     i2 r ,

~ .   
,
    j ' D = - 5.40

coefficient T

EXAMPLE 5.12 THE EINSTEIN RELATION Using the relation between the drift mobility and the mean free time
r between scattering events and the expression for the diffusion coefficient D = £2/t, derive
the Einstein relation for electrons.

SOLUTION

In one dimension, for example, along jc, the diffusion coefficient for electrons is given by
D

e
 = 12/t where £ is the mean free path along x and r is the mean free time between scatter-

ing events for electrons. The mean free path £ = vxTy where vx is the mean (or effective) speed
of the electrons along x. Thus,

De = vjx

In the conduction band and in one dimension, the mean KE of electrons is jkT.so jkT =
\m

*

e
v

2

x where m* is the effective mass of the electron in the CB. This gives

2
 kT

v
x
 - -

* K

Substituting for vx in the De equation, we get,

D - - - kT (ex\
m*       e \m*J

Further, we know from Chapter 2 that the electron drift mobility /xe is related to the mean
free time r via ixe = er/m*, so we can substitute for r to obtain

kT

e

which is the Einstein relation. We assumed that Boltzmann statistics, that is, v2

x
 = kT/m*

is applicable, which, of course, is true for the conduction band electrons in a semiconductor
but not for the conduction electrons in a metal. Thus, the Einstein relation is only valid for
electrons and holes in a nondegenerate semiconductor and certainly not valid for electrons in
a metal.



s. 5 Diffusion and Conduction Equations, and Random Motion 421

DIFFUSION COEFFICIENT OF ELECTRONS IN Si Calculate the diffusion coefficient of electrons
at 27 0C in rc-type Si doped with 1015 As atoms cm-3

.

SOLUTION

From the ixe versus dopant concentration graph, the electron drift mobility ne with 1015 cm"3
of dopants is about 1300 cm2 V"1 s-1

,
 so

liekT
(1300 cm2 V"1 s-1)(0.0259 V) = 33.7 cmz s2 

„

-l

e

EXAMPLE 5.13

BUILT-IN POTENTIAL DUE TO DOPING VARIATION Suppose that due to a variation in the
amount of donor doping in a semiconductor, the electron concentration is nonuniform across the
semiconductor, that is, n = n(x). What will be the potential difference between two points in
the semiconductors where the electron concentrations are ni and n2? If the donor profile in an

rt-type semiconductor is N(jt) = N0 exp(-x/b), where b is a characteristic of the exponential
doping profile, evaluate the built-in field    . What is your conclusion?

SOLUTION

Consider a nonuniformly doped rc-type semiconductor in which immediately after doping the
donor concentration, and hence the electron concentration, decreases toward the right. Ini-
tially, the sample is neutral everywhere. The electrons will immediately diffuse from higher- to
lower-concentration regions. But this diffusion accumulates excess electrons in the right re-
gion and exposes the positively charged donors in the left region, as depicted in Figure 5.32.
The electric field between the accumulated negative charges and the exposed donors prevents
further accumulation. Equilibrium is reached when the diffusion toward the right is just bal-
anced by the drift of electrons toward the left. The total current in the sample must be zero (it
is an open circuit),

dn
J

e
 = en/jie

'Ex + eDe- = 0
dx

But the field is related to the potential difference by    = -(dV/dx), so

dV dn
-enfjie- h eDe- = 0

dx dx

EXAMPLE 5.14
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Figure 5.32  Nonuniform doping profile results in
electron diffusion toward the less concentrated

regions.

This exposes positively charged donors and sets up a
built-in field £x. In the steady state, the diffusion of
electrons toward the right is balanced by their drift
toward the left.
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We can now use the Einstein relation De/fie = kT/e to eliminate De and tig and then can-
cel dx and integrate the equation,

>V2r2 kT fn2 dn/   dV = - -
Jvi e Jnx n

Integrating, we obtain the potential difference between points 1 and 2,

kT (n2\
Vi- Vi = - In -

e     \ni /
[5.41]

To find the built-in field, we will assume that (and this is a reasonable assumption) the dif-
fusion of electrons toward the right has not drastically upset the original n(x) = Nd(x) varia-
tion because the field builds up quickly to establish equilibrium. Thus

n(x) * Nd(x) = N0cxp(- j
Substituting into the equation for Je = 0, and again using the Einstein relation, we obtain Zx as

[5.42]
kT

= -
be

Note: As a result of the fabrication process, the base region of a bipolar transistor has
nonuniform doping, which can be approximated by an exponential Nd(x). The resulting electric
field in Equation 5.42 acts to drift minority carriers faster and therefore speeds up the tran-
sistor operation as discussed in Chapter 6.

5
.6   CONTINUITY EQUATION4

5
.
6.1 Time-Dependent Continuity Equation

Many semiconductor devices operate on the principle that excess charge carriers are
injected into a semiconductor by external means such as illumination or an applied
voltage. The injection of carriers upsets the equilibrium concentration. To determine
the carrier concentration at any point at any instant we need to solve the continuity
equation, which is based on accounting for the total charge at that location in the semi-
conductor. Consider an n-type semiconductor slab as shown in Figure 5.33 in which
the hole concentration has been upset along the x axis from its equilibrium value pno
by some external means.

Consider an infinitesimally thin elemental volume A 8x as in Figure 5.33 in which
the hole concentration is pn (x, t). The current density at x due to holes flowing into the
volume is Jh and that due to holes flowing out at x + Sx is Jh + 8 Jh. There is a change
in the hole current density Jh \ that is, Jh(x, t) is not uniform along jc. (Recall that the
total current will also have a component due to electrons.) We assume that Jhixj) and
pn(x, t) do not change across the cross section along the y or z directions. If SJh is

4 This section may be skipped without loss of continuity. (No pun intended.)
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Figure 5.33  Consider an
elemental volume A Sx in which the

hole concentration is p(x, t).

negative, then the current leaving the volume is less than that entering the volume,
which leads to an increase in the hole concentration in A 8x. Thus,

1   / -A

A 8x \ e
= Rate of increase in hole concentration

due to the change in Jh
[5.43]

The negative sign ensures that negative 8Jh leads to an increase in pn. Recombination
taking place in A 8x removes holes from this volume. In addition, there may also be
photogeneration at x at time t. Thus,

The net rate of increase in the hole concentration pn in A 8x
= Rate of increase due to decrease in Jh - Rate of recombination + Rate of

photogeneration

Bp
.dpn \fdJh\       Pn-Pno   

,
 ~

[5.44]

where Xh is the hole recombination time (lifetime), Gph is the photogeneration rate at x
at time t, and we used dJh/dx for 8Jh/8x since Jh depends on x and t.

Equation 5.44 is called the continuity equation for holes. The current density Jh is
given by diffusion and drift components in Equations 5.37 and 5.38. There is a similar
expression for electrons as well, but the negative sign multiplying dJe/dx is changed to
positive (the charge e is negative for electrons).

The solutions of the continuity equation depend on the initial and boundary condi-
tions. Many device scientists and engineers have solved Equation 5.44 for various
semiconductor problems to characterize the behavior of devices. In most cases numer-
ical solutions are necessary as analytical solutions are not mathematically tractable. As
a simple example, consider uniform illumination of the surface of a semiconductor with
suitable electrodes at its end as in Figure 5.28. Photogeneration and current density do
not vary with distance along the sample length, so dJh/dx = 0. If Apn is the excess
concentration, Apn = pn - pno, then the time derivative of pn in Equation 5.44 is the
same as Apn. Thus, the continuity equation becomes

3 A/?,,

dt

&Pn
+ G ph [5.45]

which is identical to the semiquantitatively derived Equation 5.27 from which photo-
conductivity was calculated in Example 5.11.

Continuity
equation for
holes

Continuity
equation with
uniform
photo-
generation
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Steady-state
continuity
equation for
holes

Steady-state
continuity
equation with
£ = 0

5.6.2 Steady-State Continuity Equation

For certain problems, the continuity equation can be further simplified. Consider, for ex-
ample, the continuous illumination of one end of an n-type semiconductor slab by light
that is absorbed in a very small thickness x0 at the surface as depicted in Figure 5.34a.
There is no bulk photogeneration, so Gph = 0. Suppose we are interested in the steady-
state behavior; then the time derivative would be zero in Equation 5.44 to give,

e\dx J Th [5.46]

The hole current density //, would have diffusion and drift components. If we
assume that the electric field is very small, we can use Equation 5.38 with £  0 in
Equation 5.46. Further, since the excess concentration Apn(x) = pn(x) - pno, we
obtain,

d2&pn Apn
dx2 L 2

h

[5.47]

where, by definition, Lh = yfDhJh and is called the diffusion length of holes. Equa-
tion 5.47 describes the steady-state behavior of minority carrier concentration in a
semiconductor under time-invariant excitation. When the appropriate boundary condi-
tions are also included, its solution gives the spatial dependence of the excess minor-
ity carrier concentration A/?n(;c).

In Figure 5.34a, both excess electrons and holes are photogenerated at the surface,
but the percentage increase in the concentration of holes is much more dramatic since

rt-type semiconductor

ught   n± + - Currents (mA)
A   Diffusion

 Drift
4-

DMExcess concentration

drifU

0-'

An
.

 0 Diffusion
n

-4
0 4020 60 80 *(M<m)

x

a (b)

Figure 5.34

(a) Steady-state excess carrier concentration profiles in an n-type semiconductor that is continuously illuminated at
one end.

(b) Majority and minority carrier current components in open circuit. Total current is zero.
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Pm "no. We will assume weak injection, that is, Apn < Suppose that illumi-
nation is such that it causes the excess hole concentration at x = 0 to be A/7M(0). As
holes diffuse toward the right, they meet electrons and recombine as a result of which
the hole concentration pn(x) decays with distance into the semiconductor. If the bar is
very long, then far away from the injection end we would expect pn to be equal to the
thermal equilibrium concentration pno. The solution of Equation 5.47 with these
boundary conditions shows that Apn(x) decays exponentially as

&Pn(x) = A/?n(0)exp [5.48]

This decay in the hole concentration results in a hole diffusion current lD
,
h(x) that

has the same spatial dependence. Thus, if A is the cross-sectional area, the hole current is

/d
,
a = -AeDh = A/p„(0) exp ( - - ) [5.49]

dx H)
We find A/?n(0) as follows. Under steady state, the holes generated per unit time

in x0 must be removed by the hole current (at x = 0) at the same rate. Thus,

Ax0Gph = -IdAO) = -ApniO)
e Lh

or

A/?n(0)
1/2

[5.50]

Similarly, electrons photogenerated in x0 diffuse toward the bulk, but their diffu-
sion coefficient De and length Le are larger than those for holes. The excess electron
concentration Ann decays as

AnM(jc) = AnM(0)exp [5.51]

where Le = y/DeTh and &nn(x) decays more slowly than &pn(x) as Le > Lh. (Note
that Te = T/j.) The electron diffusion current ID

,e
 is

lo e = AeDe

dnn{x)

dx

AeDe ( x\
 AnM(0)exp -- I [5.52]

The field at the surface is zero. Under steady state, the electrons generated per unit
time in x0 must be removed by the electron current at the same rate. Thus, similarly to
Equation 5.50,

1/2

[5.53]AMM(0) = Gph
so that

An

nfltt 
=
 /M

1,(0) \Dh)

1/2

[5.54]

Minority
carrier

concentration,

long bar

Hole

diffusion
current

Majority
carrier

concentration,

long bar

Electron

diffusion
current

which is greater than unity for Si.
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Table 5.3  Currents in an infinite slab illuminated at one end for weak injection near the surface

Currents at

Minority
Diffusion

lD
y
h (mA)

Minority Drift
/drifts (mA)

Majority
Diffusion

lDte (mA)
Majority Drift
/drifts (mA)

Field £

(V cm1)

* = ()

x = Le

3
.
94

0
.
70

0

0
.
0022

-3
.
94

-1
.
45

0

0
.
75

0

0
.
035

Electron drift
current

Electric field

Hole drift
current

It is apparent that the hole and electron diffusion currents are in opposite direc-
tions. At the surface, the electron and hole diffusion currents are equal and opposite, so
the total current is zero. As apparent from Equations 5.49 and 5.52, the hole diffusion
current decays more rapidly than the electron diffusion current, so there must be some
electron drift to keep the total current zero. The electrons are majority carriers which
means that even a small field can cause a marked majority carrier drift current. If
is the electron drift current, then in an open circuit the total current / =      + ID

,
e +

/drift
,
* = 0, SO

/drift
,*
 = -/d

,
/i - /*>,<? [5.55]

The electron drift current increases with distance, so the total current / at every
location is zero. It must be emphasized that there must be some field £ in the sample,
however small, to provide the necessary drift to balance the currents to zero. The field
can be found from /drift

,* % A nMO/xe!E, inasmuch as nno does not change significantly
(weak injection),

£ =
/drift

,
*

The hole drift current due to this field is

/drift
,
* =Aefihpn(x)tE

[5.56]

[5.57]

and it will be negligibly small as pn nno.
We can use actual values to gauge magnitudes. Suppose that A = 1 mm2 and

Nd = 1016 cm"3 so that nno = Nd = 1016 cm"3 and pno = nj/Nd = 1 x 104 cm"3.
The light intensity is adjusted to yield Apn(0) = 0.05nno = 5 x 1014 cm"3: weak
injection. Typical values at 300 K for the material properties in this Nd -doped rc-type
Si would be rh = 480ns,/  = 1350 cm2 V"1 s"1,  = 34.9cm2 s"1,  = 0.0041 cm =
41 pm, fih = 450 cm2 V"1 s"1, Dh = 11.6 cm2 s"1, Lh == 0.0024 cm = 24 pm. We
can now calculate each current term using the Equations 5.49, 5.52, 5.55 and 5.57
above as shown in Figure 5.34b. The actual values at two locations, x - 0 and
x = Le = 41 pm, are shown in Table 5.3.5

5 The reader may have observed that the currents in Table 5.3 do not add exactly to zero. The analysis here is only
approximate and, further, it was based on neglecting the hole drift current and taking the field as nearly zero to use
Equation 5.47 in deriving the carrier concentration profiles. Note that hole drift current is much smaller than the
other current components.
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i

INFINITELY LONG SEMICONDUCTOR ILLUMINATED AT ONE END Find the minority carrier
concentration profile pn(x) in an infinite rc-type semiconductor that is illuminated continuously
at one end as in Figure 5.34. Assume that photogeneration occurs near the surface. Show that
the mean distance diffused by the minority carriers before recombination is L/,.

SOLUTION

Continuous illumination means that we have steady-state conditions and thus Equation 5.47 can
be used. The general solution of this second-order differential equation is

Apn(x) = Aexp -- -  + flexp j [5.58]
where A and B are constants that have to be found from the boundary conditions. For an infinite
bar, atx = oo, Apn(oo) = 0 gives B = 0.Atx = 0, Apn - Apn(0) so A = Apn(0). Thus, the
excess (photoinjected) hole concentration at position x is

EXAMPLE 5.15

A/ C*) = Apn(0)exp(-£-) [5.591
which is shown in Figure 5.34a. To find the mean position of the photoinjected holes, we use the
definition of the "mean," that is,

.00

_
 
_

 f0 xApn(x)dx
/q

00 Apn(x)dx

Substituting for Apn (x) from Equation 5.59 and carrying out the integration gives x = Lh.
We conclude that the diffusion length Lh is the average distance diffused by the minority car-
riers before recombination. As a corollary, we should infer that \/Lh is the mean probability per
unit distance that the hole recombines with an electron.

57   OPTICAL ABSORPTION

We have already seen that a photon of energy hv greater than Eg can be absorbed in
a semiconductor, resulting in the excitation of an electron from the valence band to
the conduction band, as illustrated in Figure 5.35. The average energy of electrons
in the conduction band is kT above Ec (average kinetic energy is ffcT), which
means that the electrons are very close to Ec. If the photon energy is much larger
than the bandgap energy Eg, then the excited electron is not near Ec and has to lose
the extra energy hv - Eg to reach thermal equilibrium. The excess energy hv - Eg
is lost to lattice vibrations as heat as the electron is scattered from one atomic vi-

bration to another. This process is called thermalization. If, on the other hand, the
photon energy hv is less than the bandgap energy, the photon will not be absorbed
and we can say that the semiconductor is transparent to wavelengths longer than
he/Eg provided that there are no energy states in the bandgap. There, of course, will
be reflections occurring at the air/semiconductor surface due to the change in the
refractive index.
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Figure 5.35  Optical absorption generates
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Suppose that I0 is the intensity of a beam of photons incident on a semiconductor
material. Thus, I0 is the energy incident per unit area per unit time. If Tph is the photon
flux, then

When the photon energy is greater than Eg, photons from the incident radiation will be
absorbed by the semiconductor. The absorption of photons requires the excitation of
valence band electrons, and there are only so many of them with the right energy per
unit volume. Consequently, absorption depends on the thickness of the semiconductor.
Suppose that I(jc) is the light intensity at x and 61 is the change in the light intensity
in the small elemental volume of thickness Sx at x due to photon absorption, as illus-
trated in Figure 5.36. Then Si will depend on the number of photons arriving at this
volume I(jc) and the thickness Sx. Thus

Si = -alSx

where a is a proportionality constant that depends on the photon energy and hence
wavelength, that is, a = a (A.). The negative sign ensures that 81 is a reduction. The
constant a as defined by this equation is called the absorption coefficient of the semi-
conductor. It is therefore defined by

81
a =

I8x
[5.60]

which has the dimensions of length"1 (m-1).

When we integrate Equation 5.60 for illumination with constant wavelength light,
we get the Beer-Lambert law, the transmitted intensity decreases exponentially with
the thickness,

I(x) = I0exp(-ax) [5.611
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Figure 5.37  The absorption coefficient a depends on the photon energy hv and hence on the wavelength.
Density of states increases from band edges and usually exhibits peaks and troughs. Generally a increases with the photon
energy greater than Eg because more energetic photons can excite electrons from populated regions of the VB to numerous
available states deep in the CB.

As apparent from Equation 5.61, over a distance x = 1 /a, the light intensity falls
to a value 0.37lo; that is, it decreases by 63 percent. This distance over which 67 per-
cent of the photons are absorbed is called the penetration depth, denoted by
8= 1/a.

The absorption coefficient depends on the photon absorption processes occurring
in the semiconductor. In the case of band-to-band (interband) absorption, a
increases rapidly with the photon energy hv above Eg as shown for Si (Eg =1.1 eV)
and GaAs (Eg = 1.42 eV) in Figure 5.37. Notice that a is plotted on a logarithmic
scale. The general trend of the a versus hv behavior can be intuitively understood from
the density of states diagram also shown in the same figure.

Density of states g(E) represents the number of states per unit energy per unit vol-
ume. We assume that the VB states are filled and the CB states are empty since the
number of electrons in the CB is much smaller than the number of states in this band

(n Nc). The photon absorption process increases when there are more VB states
available as more electrons can be excited. We also need available CB states into

which the electrons can be excited, otherwise the electrons cannot find empty states to
fill. The probability of photon absorption depends on both the density of VB states and
the density of CB states. For photons of energy hvA = Eg9 the absorption can only
occur from Ev to Ec where the VB and CB densities of states are low and thus the
absorption coefficient is small, which is illustrated as A in Figure 5.37. For photon
energies hvB, which can take electrons from very roughly the middle region of the VB
to the middle of the CB, the densities of states are large and a is also large as indicated
by B in Figure 5.37. Furthermore, there are more choices of excitation for the hvB
photon as illustrated by the three arrows in the figure. At even higher photon energies,
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photon absorption can of course excite electrons from the VB into vacuum. In reality,
the density of states g(E) of a real crystalline semiconductor is much more compli-
cated with various sharp peaks and troughs on the density of states function, shown as
dashed curves in g(E) in Figure 5.37, particularly away from the band edges. In addi-
tion, the absorption process has to satisfy the conservation of momentum and quantum
mechanical transition rules which means that certain transitions from the CB to the VB

will be more favorable than others. For example, GaAs is a direct bandgap semicon-
ductor, so photon absorption can lead directly to the excitation of an electron from the
CB to the VB for photon energies just above Eg just as direct recombination of an elec-
tron and hole results in photon emission. Si is an indirect bandgap semiconductor.
Just as direct electron and hole recombination is not possible in silicon, the electron
excitation from states near Ev to states near Ec must be accompanied by the emission
or absorption of lattice vibrations, and hence the absorption is less efficient; a versus
hv for GaAs rises more sharply than that for Si above Eg as apparent in Figure 5.37.
At sufficiently high photon energies, it is possible to excite electrons directly from the
VB to the CB in Si and this gives the sharp rise in a versus hv before B in Figure 5.37.
(Band-to-band absorption is further discussed in Chapter 9.)

EXAMPLE 5.16 PHOTOCONDUCTIVITY OF A THIN SLAB Modify the photoconductivity expression

erfI0XT(fMe + iMh)

hcD

derived for a direct bandgap semiconductor in Figure 5.28 to take into account that some of the
light intensity is transmitted through the material.

SOLUTION

If we assume that all the photons are absorbed (there is no transmitted light intensity), then the
photoconductivity expression is

erjI0XT(fxe +

hcD

But, in reality, l0 exp(-aD) is the transmitted intensity through the specimen with thickness £),
so absorption is determined by the intensity lost in the material I0[l - exp(-aD)], which
means that Act must be accordingly scaled down to

Acr
gqljl - exp(-aD)]Xr(jLtg + ixh)

hcD

EXAMPLE 5.17 PHOTOGENERATION IN GaAs AND THERMALIZATION Suppose that a GaAs sample is illu-
minated with a 50 mW HeNe laser beam (wavelength 632.8 nm) on its surface. Calculate how
much power is dissipated as heat in the sample during thermalization. Give your answer as mW.
The energy bandgap Eg of GaAs is 1.42 eV.

SOLUTION

Suppose Pi is the power in the laser beam; then PL = IA, where I is the intensity of the
beam and A is the area of incidence. The photon flux, photons arriving per unit area per unit
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time, is

r = 1 = Pl

ph    hv Ahv

so the number of HHPs generated per unit time is

dN PL
- = Fph A = -
dt hv

These carriers thermalize-lose their excess energy as lattice vibrations (heat) via colli-
sions with the lattice-so eventually their average kinetic energy becomes \kT above Eg as de-
picted in Figure 5.35. Remember that we assume that electrons in the CB are nearly free, so they
must obey the kinetic theory and hence have an average kinetic energy of \kT. The average en-
ergy of the electron is then Eg + \kT % 1.46 eV. The excess energy

A£ = hv -(*.+!«.)
is lost to the lattice as heat, that is, lattice vibrations. Since each electron loses an amount of

energy A E as heat, the heat power generated is

PH = ( ) AE = (£) (AE)
The incoming photon has an energy hv = hc/X = 1.96 eV, so

(50mW)(1.96eV - 1.46 eV)

Notice that in this example, and also in Figure 5.35, we have assigned the excess energy
AE = hv - Eg - | rtothe electron rather than share it between the electron and the hole that
is photogenerated. This assumption depends on the ratio of the electron and hole effective
masses, and hence depends on the semiconductor material. It is approximately true in GaAs be-
cause the electron is much lighter than the hole, almost 10 times, and consequently the absorbed
photon is able to "impart" a much higher kinetic energy to the electron than to the hole; hv - Eg
is used in the photogeneration, and the remainder goes to impart kinetic energy to the photo-
generated electron hole pair.

5.8 PlEZORESISTIVITY

When a mechanical stress is applied to a semiconductor sample, as shown in Figure
5

.38a, it is found that the resistivity of the semiconductor changes by an amount that
depends on the stress.6 Piezoresistivity is the change in the resistivity of a semicon-
ductor (indeed, any material), due to an applied stress. Elastoresistivity refers to the
change in the resistivity due to an induced strain in the substance. Since the applica-
tion of stress invariably leads to strain, piezoresistivity and elastoresistivity refer to

6 Mechanical stress is defined as the applied force per unit area, crm = F/A, and the resulting strain em is the
fractional change in the length of a sample caused by am; sm = 8L/L, where L is the sample length. The two are
related through the elastic modulus Y; am = Yem. Subscript m is used to distinguish the stress am and strain em from
the conductivity a and permittivity s.
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Figure 5.38   Piezoresistivity and its applications.
(a) Stress <Tm along the current (longitudinal) direction changes the resistivity by 8p.
(b) Stresses <jl and 07 cause a resistivity change.
(c) A force applied to a cantilever bends it. A piezoresistor at the support end (where the
stress is large) measures the stress, which is proportional to the force.
(d) A pressure sensor has four piezoresistors £1, R2, R3, R4 embedded in a diaphragm. The
pressure bends the diaphragm, which generates stresses that are sensed by the four
piezoresistors.

the same phenomenon. Piezoresistivity is fruitfully utilized in a variety of useful
sensor applications such as force, pressure and strain gauges, accelerometers, and
microphones.

The change in the resistivity may be due to a change in the concentration of
carriers or due to a change in the drift mobility of the carriers,

 both of which can be

modified by a strain in the crystal. Typically, in an extrinsic or doped semiconductor,

the concentration of carriers does not change as significantly as the drift mobility; the
piezoresistivity is then associated with the change in the mobility. For example, in an
n-type Si, the change in the electron mobility /xe with mechanical strain em, dfjie/dsm9
is of the order of 105 cm2 V-1 s"1, so that a strain of 0.015 percent will result in a
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change in the mobility that is about 1 percent, and a similar change in the resistivity,
which is readily measurable. In this case, the change in the mobility fjLe is due to the
induced strain changing the effective mass m* which then modifies fjLe. (Recall that
lie = er/m*

, where r is the mean scattering time.)
The change in the resistivity 8p has been shown to be proportional to the induced

strain in the crystal and hence proportional to the applied stress crm. The fractional
change Sp/p can be written as

8p

P
= TTCTm [5.62]

where n is a constant called the piezoresistive coefficient; tt has the units of 1/stress,
e.g., m2/N or 1/Pa. The piezoresistive coefficient tt depends on the type of doping,
p-or n-type; the dopant concentration; the temperature; and the crystallographic direc-
tion. A stress along a certain direction in a crystal, for example, along the length of a
semiconductor crystal, will change the resistivity not only in the same direction but also
in transverse directions. We know from elementary mechanics that a strain in one di-
rection is accompanied by a transverse strain, as implied by the Poisson ratio, so it is not
unexpected that a stress in one direction will also modify the resistivity in a transverse
direction. Thus, the change in the resistivity of a semiconductor in a "longitudinal"
direction, taken as the direction of current flow, is due to stresses in the longitudinal and
transverse directions. If aL is the stress along a longitudinal direction, the direction of
current flow, and (jT is the stress along a transverse direction, as in Figure 5.38b, then,
generally, the fractional change in the resistivity along the current flow direction (lon-
gitudinal direction) is given by

p
[5.63]

where 7iL is the piezoresistive coefficient along a longitudinal direction (different for
/?- and n-type Si), and ttj is the piezoresistive coefficient in the transverse direction.

The piezoresistive effect is actually more complicated than what we have implied.
In reality, we have to consider six types of stresses, three uniaxial stresses along the jc,
y, and z directions {e.g., trying to pull the crystal along in three independent directions)
and three shear stresses {e.g., trying to shear the crystal in three independent ways). In
very simple terms, a change in the resistivity {8p/p)i along a particular direction i (an
arbitrary direction) can be induced by a stress oy along another direction j (which may
or may not be identical to i). The two, {8p/p)i and a), are then related through a
piezoresistivity coefficient denoted by tt  . Consequently, the full description of piezore-
sistivity involves tensors, and the piezoresistivity coefficients tt  form the elements of
this tensor; a treatment beyond the scope of this book. Nonetheless, it is useful to be
able to calculate tul and tut from various tabulated piezoresistivity coefficients tt,,,
without having to learn tensors. It turns out that it is sufficient to identify three princi-
pal piezoresistive coefficients to describe the piezoresistive effect in cubic crystals,
which are denoted as tth, tt , and 7T44. From the latter set we can easily calculate 7tL
and ttt for a crystallographic direction of interest; the relevant equations can be found
in advanced textbooks.

Piezoresis-

tivity

Piezoresis-

tivity
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Advances in silicon fabrication technologies and micromachining (ability to fab-
ricate micromechanical structures) have now enabled various piezoresistive silicon
microsensors to be developed that have a wide range of useful applications. Figure
5

.38c shows a very simple Si microcantilever in which an applied force F to the free
end bends the cantilever; the tip of the cantilever is deflected by a distance h.
According to elementary mechanics, this deflection induces a maximum stress am that
is at the surface, at the support end, of the cantilever. A properly placed piezoresistor at
this end can be used to measure this stress am, and hence the deflection or the force.
The piezoresistor is implanted by selectively diffusing dopants into the Si cantilever at
the support end. Obviously, we need to relate the deflection h of the cantilever tip
to the stress am, which is well described in mechanics. In addition, h is proportional to
the applied force F through a factor that depends on the elastic modulus and the geom-
etry of the cantilever. Thus, we can measure both the displacement (h) and force (F).

Another useful application is in pressure sensors, which are commercially available.
Again, the structure is fabricated from Si. A very thin elastic membrane, called a di-
aphragm, has four piezoresistors embedded, by appropriate dopant diffusion, on its sur-
face as shown in Figure 5.38d. Under pressure, the Si diaphragm deforms elastically, and
the stresses that are generated by this deformation cause the resistance of the piezoresistors
to change. There are four piezoresistors because the four are connected in a Wheatstone
bridge arrangement for better signal detection. The diaphragm area is typically 1 mm x
1 mm, and the thickness is 20 (am. There is no doubt that recent advances in microma-
chining have made piezoresistivity an important topic for a variety of sensor applications.

EXAMPLE 5.18

Semi-

conductor

strain gauge

PIEZORESISTIVE STRAIN GAUGE Suppose that we apply a stress aL along the length, taken
along the [110] direction, of a p-type silicon crystal sample. We will measure the resistivity
along this direction by passing a current along the length and measuring the voltage drop be-
tween two fixed points as in Figure 5.38a. The stress aL along the length will result in a strain
el along the same length given by eL = aL/Yy where Y is the elastic modulus. From Equation
5

.63 the change in the resistivity is

  = 7ZL<TL + TTy (Tj = 711YEl
P

where we have ignored the presence of any transverse stresses; aT & 0. These transverse
stresses depend on how the piezoresistor is used, that is, whether it is allowed to contract later-
ally. If the resistor cannot contract, it must be experiencing a transverse stress. In any event, for
the particular direction of interest, [110], the Poisson ratio is very small (less than 0.1), and we
can simply neglect any aT. Clearly, we can find the strain 6L from the measurement of Ap/p,
which is die principle of the strain gauge. The gauge factor G of a strain gauge measures the
sensitivity of the gauge in terms of the fractional change in the resistance per unit strain,

.
MM

Y7TL

where we have assumed that A/? is dominated by Ap, since the effects from geometric changes
in the sample shape can be ignored compared with the piezoresistive effect in semiconductors.
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Using typical values for a p-type Si piezoresistor which has a length along [110], Y 170 GPa,
ttl % 72 x lO-11 Pa

-1
, we find G « 122. This is much greater than G « 1.7 for metal

resistor-based strain gauges. In most metals, the fractional change in the resistance AR/R is
due to the geometric effect, the sample becoming elongated and narrower, whereas in semicon-
ductors it is due to the piezoresistive effect.

5.9    SCHOTTKY JUNCTION

5.
9
.

1 Schottky Diode

We consider what happens when a metal and an rc-type semiconductor are brought into
contact. In practice, this process is frequently carried out by the evaporation of a metal
onto the surface of a semiconductor crystal in vacuum.

The energy band diagrams for the metal and the semiconductor are shown in
Figure 5.39. The work function, denoted as O, is the energy difference between the
vacuum level and the Fermi level. The vacuum level defines the energy where the elec-
tron is free from that particular solid and where the electron has zero KE.

For the metal, the work function <J>m is the minimum energy required to remove an
electron from the solid. In the metal there are electrons at the Fermi level EFm, but in the

m m

'immm

I*

J I

A

4=

a?
V

John Bardeen, Walter Schottky, and Walter Brattain. Walter H.
Schottky (1886-1976) obtained his PhD from the University of Berlin
in 1912. He made many distinct contributions to physical electronics.
He invented the screen grid vacuum tube in 1915, and the tetrode
vacuum tube in 1919 while at Siemens. The Schottky junction theory
was formulated in 1938. He also made distinct contributions to
thermal and shot noise in devices. His book Thermodynamik was
published in 1929 and included an explanation of the Schottky
defect (Chapter 1).
I SOURCE: AIP Emilio Segre Visual Archives, Brattain Collection.
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Figure 5.39  Formation of a Schottky junction between a metal and an n-type semiconductor when Om > <!>„.

semiconductor there are none at Epn. Nonetheless, the semiconductor work function <&n
still represents the energy required to remove an electron from the semiconductor. It
may be thought that the minimum energy required to remove an electron from the semi-
conductor is simply the electron affinity x > but this is not so. Thermal equilibrium re-
quires that only a certain fraction of all the electrons in the semiconductor should be in
the CB at a given temperature. When an electron is removed from the conduction band,
then thermal equilibrium can be maintained only if an electron is excited from the VB
to CB, which involves absorbing heat (energy) from the environment; thus it takes more
energy than simply /. We will not derive the effective thermal energy required to re-
move an electron but state that, as for a metal, this is equal to <I>n, even though there are
no electrons at EFn. In fact, the thermionic emission of electrons from a heated semi-
conductor is also described by the Richardson-Dushman expression in Equation 4.37
but with $ representing the work function of the semiconductor, <&n in the present
rc-type case. (In contrast, the minimum photon energy required to remove an electron
from a semiconductor above absolute zero would be the electron affinity.)

We assume that <£>m > <I>n, the work function of the metal is greater than that of the
semiconductor. When the two solids come into contact, the more energetic electrons in
the CB of the semiconductor can readily tunnel into the metal in search of lower empty
energy levels (just above EFm) and accumulate near the surface of the metal, as illus-
trated in Figure 5.39. Electrons tunneling from the semiconductor leave behind an
electron-depleted region of width W in which there are exposed positively charged



5.9 SchottkyJunction 437

donors, in other words, net positive space charge. The contact potential, called the
built-in potential W0, therefore develops between the metal and the semiconductor.
There is obviously also a built-in electric field £0 from the positive charges to the neg-
ative charges on the metal surface. Eventually this built-in potential reaches a value
that prevents further accumulation of electrons at the metal surface and an equilibrium
is reached. The value ofthe built-in voltage W0 is the same as that in the metal-metal
junction case in Chapter 4, namely, (<I>m - $>n)/e- The depletion region has been de-
pleted of free carriers (electrons) and hence contains the exposed positive donors. This
region thus constitutes a space charge layer (SCL) in which there is a nonuniform
internal field directed from the semiconductor to the metal surface. The maximum

value of this built-in field is denoted as £<, and occurs right at the metal-semiconductor
junction (this is where there are a maximum number of field lines from positive to neg-
ative charges).

The Fermi level throughout the whole solid, the metal and semiconductor in con-
tact, must be uniform in equilibrium. Otherwise, a change in the Fermi level A EF going
from one end to the other end will be available to do external (electrical) work. Thus,
EFm and EFn line up. The W region, however, has been depleted of electrons, so in this
region Ec - EFn must increase so that n decreases. The bands must bend to increase
E

c
 - EFn toward the junction, as depicted in Figure 5.39. Far away from the junction,

we, of course, still have an n-type semiconductor. The bending is just enough for the
vacuum level to be continuous and changing by <I>m - <I>n from the semiconductor to
the metal, as this much energy is needed to take an electron across from the semicon-
ductor to the metal. The PE barrier for electrons moving from the metal to the semicon-
ductor is called the Schottky barrier height O , which is given by

®b = <*>m - X = eV0 + (Ec - EFn) [5.64]

which is greater than eV0.
Under open circuit conditions, there is no net current flowing through the

metal-semiconductor junction. The number of electrons thermally emitted over the PE
barrier <&B from the metal to the semiconductor is equal to the number of electrons
thermally emitted over eV0 from the semiconductor to the metal. Emission probability
depends on the PE barrier for emission through the Boltzmann factor. There are two
current components due to electrons flowing through the junction. The current due to
electrons being thermally emitted from the metal to the CB of the semiconductor is

A kT/ dexpl-  [5.65]
where Ci is some constant, whereas the current due to electrons being thermally
emitted from the CB of the semiconductor to the metal is

72 = C2exp( --  ) [5.66]

where C2 is some constant different than Ci.
In equilibrium, that is, open circuit conditions in the dark, the currents are equal

but in the reverse directions:

Jopen circuit  Jl     .A  0

Schottky
barrier
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Under forward bias conditions, the semiconductor side is connected to the nega-
tive terminal, as depicted schematically in Figure 5.40a. Since the depletion region W
has a much larger resistance than the neutral n-region (outside W) and the metal side,
nearly all the voltage drop is across the depletion region. The applied bias is in the
opposite direction to the built-in voltage V0. Thus V0 is reduced to V0 - V.&b remains
unchanged. The semiconductor band diagram outside the depletion region has been
effectively shifted up with respect to the metal side by an amount eV because

PE= Charge x Voltage

V
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V

e(V0-V) CB

ft
E

c

E
V11!

VB' "

liBliiMI

r

i

B

m

e(V0+Vr)
 

ft ft .

CB

E
c

E
V

VB

(a) Forward-biased Schottlcy
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Figure 5.40  The Schottlcy junction.
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The charge is negative but so is the voltage connected to the semiconductor, as shown
in Figure 5.40a.

The PE barrier for thermal emission of electrons from the semiconductor to the

metal is now e(V0 - V). The electrons in the CB can now readily overcome the PE
barrier to the metal.

The current J , due to the electron emission from the semiconductor to the metal,
is now

Since 0 b is the same, Ji remains unchanged. The net current is then

y = y--,,=C!exp[-fM]-C2exp(- )

[5.67]

.
 >  V

or  
.

{

giving

J =4exp(£H [5.68]

where J0 is a constant that depends on the material and surface properties of the
two solids. In fact, examination of the above steps shows that J0 is also Ji in Equa-
tion 5.65.

When the Schottky junction is reverse biased, then the positive terminal is con-
nected to the semiconductor, as illustrated in Figure 5.40b. The applied voltage Vr
drops across the depletion region since this region has very few carriers and is highly
resistive. The built-in voltage V0 thus increases to V0 + Vr. Effectively, the semicon-
ductor band diagram is shifted down with respect to the metal side because the charge
is negative but the voltage is positive and PE = Charge x Voltage. The PE barrier for
thermal emission of electrons from the CB to the metal becomes e(V0 + Vr), which
means that the corresponding current component becomes

y2rev = C2 exp « Ji [5.69]

Since generally V0 is typically a fraction of a volt and the reverse bias is more than
a few volts, 72rev Ji and the reverse bias current is essentially limited by Ji only and
is very small. Thus, under reverse bias conditions, the current is primarily due to the
thermal emission of electrons over the barrier <t> B from the metal to the CB of the
semiconductor as determined by Equation 5.65. Figure 5.40c illustrates the I-V char-
acteristics of a typical Schottky junction. The I-V characteristics exhibit rectifying
properties, and the device is called a Schottky diode.

Equation 5.68, which is derived for forward bias conditions, is also valid under
reverse bias by making V negative, that is, V = - Vr. Furthermore, it turns out to be

Schottky
junction
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Schottky
junction
forward bias

applicable not only to Schottky-type metal-semiconductor junctions but also to junc-
tions between a p-type and an rc-type semiconductor, pn junctions, as we will show in
Chapter 6. Under a forward bias V/, which is greater than 25 mV at room temperature,
the forward current is simply

Jf
(eVf\ kT

Vf> -
e

[5.70]

It should be mentioned that it is also possible to obtain a Schottky junction
between a metal and a p-type semiconductor. This arises when <I>m < Op, where <PP is
the work function for the /?-type semiconductor.

5.9.2 Schottky Junction Solar Cell

The built-in field in the depletion region of the Schottky junction allows this type of
device to function as a photovoltaic device and also as a photodetector. We consider a
Schottky device that has a thin metal film (usually Au) deposited onto an n-type semi-
conductor. The energy band diagram is shown in Figure 5.41. The metal is sufficiently
thin (~ 10 nm) to allow light to reach the semiconductor.

For photon energies greater than Eg, HHPs are generated in the depletion region in
the semiconductor, as indicated in Figure 5.41. The field in this region separates the
EHPs and drifts the electrons toward the semiconductor and holes toward the metal.

When an electron reaches the neutral n-region, there is now one extra electron there and
therefore an additional negative charge. This end therefore becomes more negative with
respect to the situation in the dark or the equilibrium situation. When a hole reaches the
metal, it recombines with an electron and reduces the effective charge there by one elec-
tron, thus making it more positive relative to its dark state. Under open circuit condi-
tions, therefore, a voltage develops across the Schottky junction device with the metal
end positive and semiconductor end negative.
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Figure 5.41   The principle of the Schottky junction solar cell.
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The photovoltaic explanation in terms of the energy band diagram is simple. At the
point of photogeneration, the electron finds itself at a PE slope as Ec is decreasing
toward the semiconductor, as shown in Figure 5.41. It has no option but to roll down
the slope just as a ball that is let go on a slope would roll down the slope to decrease its
gravitational PE. Recall that there are many more empty states in the CB than elec-
trons, so there is nothing to prevent the electron from rolling down the CB in search of
lower energy. When the electron reaches the neutral region (flat Ec region), it upsets
the equilibrium there. There is now an additional electron in the CB and this side ac-
quires a negative charge. If we remember that hole energy increases downward on the
energy band diagram, then similar arguments also apply to the photogenerated hole in
the VB, which rolls down its own PE slope to reach the surface of the metal and re-
combine with an electron there.

If the device is connected to an external load, then the extra electron in the neutral

n-region is conducted through the external leads, through the load, toward the metal
side, where it replenishes the lost electron in the metal. As long as photons are gener-
ating EHPs, the flow of electrons around the external circuit will continue and there
will be photon energy to electrical energy conversion. Sometimes it is useful to think
of the neutral rc-type semiconductor region as a "conductor," an extension of the

external wire (except that the rc-type semiconductor has a higher resistivity). As soon
as the photogenerated electron crosses the depletion region, it reaches a conductor and
is conducted around the external circuit to the metal side to replenish the lost electron
there.

For photon energies less than Eg, the device can still respond, providing that the
hv can excite an electron from EFm in the metal over the PE barrier <I>B into the CB,
from where the electron will roll down toward the neutral rc-region. In this case, hv
must only be greater than <!>#.

If the Schottky junction diode is reverse-biased, as shown in Figure 5.42, then
the reverse bias Vr increases the built-in potential V0 to V0 + Vr (Vr » V0). The in-
ternal field increases to substantially high values. This has the advantage of increas-
ing the drift velocity of the EHPs (vd = /x !E) in the depletion region and therefore

hv>E V +v
8 o r
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Figure 5.42 Reverse-biased
Schottky photodiodes are
frequently used as fast
photodetectors.
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shortening the transit time required to cross the depletion width. The device re-
sponds faster and is useful as a fast photodetector. The photocurrent iphoto in the ex-
ternal circuit is due to the drift of photogenerated carriers in the depletion region and
can be readily measured.

EXAMPLE 5.19

Reverse

saturation

current in

Schottky jjv
junction

THE SCHOTTKY DIODE The reverse saturation current J0 in the Schottky junction, as ex-
pressed in Equation 5.68, is the same current that is given by the Richardson-Dushman
equation for thermionic emission over a potential barrier <£(= &B) derived in Chapter 4. J0 is
given by

/
0
 = £,r2exp(- )

where Be is the effective Richardson constant that depends on the characteristics of the
metal-semiconductor junction. Be for metal-semiconductor junctions, among other factors, de-
pends on the density of states related effective mass of the thermally emitted carriers in the
semiconductor. For example, for a metal to n-Si junction, Be is about 110 A cm"2 K~2

,
 and for

a metal to p-Si junction, which involves holes, Be is about 30 A cm-2 K"2
.

Consider a Schottky junction diode between W (tungsten) and n-Si, doped with 1016
donors cm-3. The cross-sectional area is 1 mm2. Given that the electron affinity x of Si is
4

.01 eV and the work function of W is 4.55 eV, what is the theoretical barrier height ®b
from the metal to the semiconductor?

a.

b
.

c.

What is the built-in voltage V0 with no applied bias?

Given that the experimental barrier height $ B is about 0.66 eV, what is the reverse satura-
tion current and the current when there is a forward bias of 0.2 V across the diode?

SOLUTION

a.   From Figure 5.39, it is clear that the barrier height <I>fl is

4>B = cD , - x = 4.55 eV - 4.01 eV 0
.
54 eV

The experimental value is around 0.66 eV, which is greater than the theoretical value due to
various effects at the metal-semiconductor interface arising from dangling bonds, defects,
and so forth. For example, dangling bonds give rise to what are called surface states within
the bandgap of the semiconductor that can capture electrons and modify the Schottky energy
band diagram. (The energy band diagram in Figure 5.39 represents an ideal junction with no
surface states.) Further, in some cases, such as Pt on n-Si, the experimental value can be
lower than the theoretical value.

b
.   We can find Ec - EFn in Figure 5.39 from

„ = AWcexP(- )
1016cm-3 = (2.8 x l019cm-3)exPf- - )y\   0.026 eV/

E
c
 - EFn = 0.206eV. Thus, the built-in potential V0 can be foundwhich gives A£

from

e

E
c
 - EFn

0
.
54 V - 0.206 V = 0.33 V

e
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c.   If A is the cross-sectional area, 0.01 cm2, taking Be to be 110 A K"2 cm-2, and using the
experimental value for the barrier height <PBi the saturation current is

I0 = ABeT2 exp - -) = (0.01)(110)(3002)exp(-
= 9

.
36 x lO-7 A or

When the applied voltage is V), the forward current // is

0
.
66 eV \

0
.026 eV/

0
.94 jliA

/ 4xp( ) -i]=(o-94 A)[exp( ) -i]=2-omA

5
.10   OHMIC CONTACTS AND

THERMOELECTRIC COOLERS

An ohmic contact is a junction between a metal and a semiconductor that does not
limit the current flow. The current is essentially limited by the resistance of the semi-
conductor outside the contact region rather than the thermal emission rate of carriers
across a potential barrier at the contact. In the Schottky diode, the I-V characteristics
were determined by the thermal emission rate of carriers across the contact. It should
be mentioned that, contrary to intuition, when we talk about an ohmic contact, we do
not generally infer a linear I-V characteristic for the ohmic contact itself. We only
imply that the contact does not limit the current flow.

Figure 5.43 shows the formation of an ohmic contact between a metal and an
n-type semiconductor. The work function of the metal <J>m is smaller than the work
function 4>n of the semiconductor. There are more energetic electrons in the metal than
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Figure 5.43 When a metal with a smaller work function than an n-type semiconductor is put into contact
with the n-type semiconductor, the resulting junction is an ohmic contact in the sense that it does not limit the
current flow.
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in the CB, which means that the electrons (around EFm) tunnel into the semiconductor
in search of lower energy levels, which they find around £c, as indicated in Fig-
ure 5.43. Consequently, many electrons pile in the CB of the semiconductor near the
junction. Equilibrium is reached when the accumulated electrons in the CB of the
semiconductor prevent further electrons tunneling from the metal. Put more rigor-
ously, equilibrium is reached when the Fermi level is uniform across the whole system
from one end to the other.

The semiconductor region near the junction in which there are excess electrons is
called the accumulation region. To show the increase in n, we draw the semiconduc-
tor energy bands bending downward to decrease Ec- EFn, which increases n. Going
from the far end of the metal to the far end of the semiconductor, there are always con-
duction electrons. In sharp contrast, the depletion region of the Schottky junction
separates the conduction electrons in the metal from those in the semiconductor. It can
be seen from the contact in Figure 5.43 that the conduction electrons immediately on
either side of the junction (at EFm and Ec) have about the same energy and therefore
there is no barrier involved when they cross the junction in either direction under the
influence of an applied field.

It is clear that the excess electrons in the accumulation region increase the
conductivity of the semiconductor in this region. When a voltage is applied to the
structure, the voltage drops across the higher resistance region, which is the bulk semi-
conductor region. Both the metal and the accumulation region have comparatively
high concentrations of electrons compared with the bulk of the semiconductor. The
current is therefore determined by the resistance of the bulk region. The current den-
sity is then simply J = oT, where a is the conductivity of the semiconductor in the
bulk and £ is the applied field in this region.

One of the interesting and important applications of semiconductors is in thermo-
electric, or Peltier, devices, which enable small volumes to be cooled by direct
currents. Whenever a dc current flows through a contact between two dissimilar materi-
als, heat is either released or absorbed in the contact region, depending on the direction
of the current. Suppose that there is a dc current flowing from an n-type semiconduc-
tor to a metal through an ohmic contact, as depicted in Figure 5.44a. Then electrons are
flowing from the metal to the CB of the semiconductor. We only consider the contact
region where the Peltier effect occurs. Current is carried by electrons near the Fermi
level EFm in the metal. These electrons then cross over into the CB of the semicon-
ductor and when they reach the end of the contact region, their energy is Ec plus aver-
age KE (which is ffcT). There is therefore an increase in the average energy
(PE + KE) per electron in the contact region. The electron must therefore absorb heat
from the environment (lattice vibrations) to gain this energy as it drifts through the
junction. Thus, the passage of an electron from the metal to the CB of an n-type semi-
conductor involves the absorption of heat at the junction.

When the current direction is from the metal to the n-type semiconductor, the elec-
trons flow from the CB of the semiconductor to the Fermi level of the metal as they
pass through the contact. Since EFm is lower than EC9 the passing electron has to lose
energy, which it does to lattice vibrations as heat. Thus, the passage of a CB electron
from the n-type semiconductor to the metal involves the release of heat at the junction,
as indicated in Figure 5.44b.
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Figure 5.44
(a) Current from an n-type semiconductor to the metal results in heat absorption at
the junction.
(b) Current from the metal to an n-type semiconductor results in heat release at the
junction.

It is apparent that depending on the direction of the current flow through a junc-
tion between a metal and an n-type semiconductor, heat is either absorbed or released
at the junction. Although we considered current flow between a metal and an n-type
semiconductor through an ohmic contact, this thermoelectric effect is a general phe-
nomenon that occurs at a junction between any two dissimilar materials. It is called the
Peltier effect after its discoverer. In the case of metal-p-type semiconductor junctions,
heat is absorbed for current flowing from the metal to the p-type semiconductor and
heat is released in the other direction. Thermoelectric effects occurring at metal-
semiconductor junctions are summarized in Figure 5.45. It is important not to confuse
the Peltier effect with the Joule heating of the semiconductor and the metal. Joule heat-
ing, which we simply call I2R (or J2p) heating, arises from the finite resistivity of the
material. It is due to the conduction electrons losing their energy gained from the field
to lattice vibrations when they become scattered by such vibrations, as discussed in
Chapter 2.

It is self-evident that when a current flows through a semiconductor sample with
metal contacts at its ends, as depicted in Figure 5.45, one of the contacts will always
absorb heat and the other will always release heat. The contact where heat is absorbed
will be cooled and is called the cold junction, whereas the other contact, where heat is
released, will warm up and is called the hot junction. One can use the cold junction to
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Figure 5.46  Cross section of a typical thermoelectric cooler.

cool another body, providing that the heat generated at the hot junction can be removed
from the semiconductor sufficiently quickly to reduce its conduction through the semi-
conductor to the cold junction. Furthermore, there will always be the Joule heating
(/2/?) of the whole semiconductor sample since the bulk will always have a finite
resistance.

A simplified schematic diagram of a practical single-element thermoelectric
cooling device is shown in Figure 5.46. It uses two semiconductors, one rc-type and
the other p-type, each with ohmic contacts. The current direction therefore has oppo-
site thermoelectric effects. On one side, the semiconductors share the same metal



s.io Ohmic Contacts and Thermoelectric Coolers 447

Heat absorbed (cold side)

Electrical insulator (ceramic)

p-type semiconductor

n-type semiconductor

Electrical conductor (copper)

Negative (-)

Heat rejected (hot side)

Figure 5.47  Typical structure of a commercial thermoelectric cooler.
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electrode. Effectively, the structure is an n-type and a p-type semiconductor con-
nected in series through a common metal electrode. Typically, either Bi2Te3, Bi2Se3,
or SbiTes is used as the semiconductor material with copper usually as the metal
electrode.

The current flowing through the n-type semiconductor to the common metal elec-
trode causes heat absorption, which cools this junction and hence the metal. The same
current then enters the p-type semiconductor and causes heat absorption at this junc-
tion, which cools the same metal electrode. Thus the common metal electrode is

cooled at both ends. The other ends of the semiconductors are hot junctions. They are
connected to a large heat sink to remove the heat and thus prevent heat conduction
through the semiconductors toward the cold junctions. The other face of the common
metal electrode is in contact, through a thin ceramic plate (electrical insulator but ther-
mal conductor), with the body to be cooled. In commercial Peltier devices, many of
these elements are connected in series, as illustrated in Figure 5.47, to increase the
cooling efficiency.

THE PELTIER COEFFICIENT Consider the motion of electrons across an ohmic contact between

metal and an n-type semiconductor and hence show that the rate of heat generation Q' at the

contact is approximately

Q' = ±n/

where n, called the Peltier coefficient between the two materials, is given by

EXAMPLE 5.20

n = l
- [(Ec - EFn) + |jkrj
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where Ec - EFn is the energy separation of Ec from the Fermi level in the n-type semiconduc-
tor. The sign depends on the convention used for heat liberation or absorption.

SOLUTION

We consider Figure 5.44a, which shows only the ohmic contact region between a metal and an
n-type semiconductor when a current is passing through it. The majority of the applied voltage
drops across the bulk of the semiconductor because the contact region, or the accumulation re-
gion, has an accumulation of electrons in the CB. The current is limited by the bulk resistance
of the semiconductor. Thus, in the contact region we can take the Fermi level to be almost undis-
turbed and hence uniform, EFm % £>„. In the bulk of the metal, a conduction electron is at
around EFm (same as EFn\ whereas just at the end of the contact region in the semiconductor
it is at Ec plus an average KE of \kT. The energy difference is the heat absorbed per electron
going through the contact region. Since I/e is the rate at which electrons are flowing through
the contact,

Rate of energy absorption = | £c-|- *~ F j
or

Q
/

ss j"(£c-£Fn) + ffcrj
so the Peltier coefficient is approximately given by the term in the square brackets. A more rig-
orous analysis gives n as

n = -{{Ec-EFn) + 2kT]
e

ADDITIONAL TOPICS

5
.
11    DIRECT AND INDIRECT BANDGAP

SEMICONDUCTORS

E-k Diagrams We know from quantum mechanics that when the electron is within
a potential well of size L, its energy is quantized and given by

(M„)2
En = - 

2m e

where the wavevector kn is essentially a quantum number determined by

nn
*
- = T

where n = 1, 2, 3,... The energy increases parabolically with the wavevector kn.
We also know that the electron momentum is given by tikn. This description can be
used to represent the behavior of electrons in a metal within which their average
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potential energy can be taken to be roughly zero. In other words, we take V(x) = 0
within the metal crystal and V (x) to be large [e.g., V (x) = V0] outside so that the elec-
tron is contained within the metal. This is the nearly free electron model of a metal
that has been quite successful in interpreting many of the properties. Indeed, we were
able to calculate the density of states g(E) based on the three-dimensional potential
well problem. It is quite obvious that this model is too simple since it does not take into
account the actual variation of the electron potential energy in the crystal.

The potential energy of the electron depends on its location within the crystal and
is periodic due to the regular arrangement of the atoms. How does a periodic potential
energy affect the relationship between E and kl It will no longer simply be En =
(hknr/2me.

To find the energy of the electron in a crystal, we need to solve the Schrodinger
equation for a periodic potential energy function in three dimensions. We first con-
sider the hypothetical one-dimensional crystal shown in Figure 5.48. The electron
potential energy functions for each atom add to give an overall potential energy
function V(x), which is clearly periodic in x with the periodicity of the crystal a.
Thus,

V(x) = V(x + a) = V(x + 2a) = [5.71]

Periodic

potential
energy

PE(r)
A

r

PE of the electron around an isolated
atom.

V(x)

  (I>>r(I>-x >:-0->r(I>-x-(D -
\    *     \     *     \    *     \    »     v    *     \ »
\ *      \   '      » '      %  '      \ *     \ '

i * i ; i i i \ t
11 * i .. » . . i i
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electron PE functions.
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 X

x = 0

Surface Crystal Surface

Figure 5.48 The electron potential energy (PE), V(x), inside the crystal is periodic with the same periodicity a as
that of the crystal. Far away outside the crystal, by choice, V= 0 (the electron is free and PE= 0).
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Schrddinger
equation

Periodic

potential

Block

wavefunction

and so on. Our task is therefore to solve the Schrodinger equation

+ - [E-V{x)]xlr
dx2 ti 2

0

subject to the condition that the potential energy V(x) is periodic in a, that is,

V(x) = V(x + ma)      m = 1, 2, 3,...

[5.72]

[5.731

The solution of Equation 5.72 will give the electron wavefunction in the crystal
and hence the electron energy. Since V{x) is periodic, we should expect, by intuition
at least, the solution ir(x) to be periodic. It turns out that the solutions to Equa-
tion 5.72, which are called Bloch wavef unctions, are of the form

irk(x) = Uk(x) Qxp(jkx) [5.741

where is a periodic function that depends on V(x) and has the same periodicity
a as V(x). The term exp(jkx), of course, represents a traveling wave. We should
remember that we have to multiply this by exp(-jEt/h), where E is the energy, to get
the overall wavefunction *I>(jc, t). Thus the electron wavefunction in the crystal is a
traveling wave that is modulated by Uk(x).

There are many such Bloch wavefunction solutions to the one-dimensional crys-
tal, each identified with a particular k value, say kn, which acts as a kind of quantum
number. Each V U) solution corresponds to a particular kn and represents a state with
an energy Ek. The dependence of the energy Ek on the wavevector k is what we call
the E-k diagram. Figure 5.49 shows a typical E-k diagram for the hypothetical one-
dimensional solid for k values in the range - n/a to +7r/a. Just as hk is the momen-
tum of a free electron, hk for the Bloch electron is the momentum involved in its

interaction with external fields, for example, those involved in the photon absorption
process. Indeed, the rate of change of tik is the externally applied force FeXt on the
electron such as that due to an electric field (FeXt = e'E). Thus, for the electron within

Figure 5.49 The E-k diagram of a direct
bandgap semiconductor such as GaAs.
The E-k curve consists of many discrete
points, each corresponding to a possible
state, wavefunction V'fcM/      's allowed to
exist in the crystal. The points are so close
that we normally draw the E-k relationship
as a continuous curve. In the energy range
E

v to ECf there are no points [V'fcM
solutions].
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the crystal,

d(hk)
-"       = ext

dt

and consequently we call fik the crystal momentum of the electron.7

Inasmuch as the momentum of the electron in the x direction in the crystal is given
by M, the E-k diagram is an energy versus crystal momentum plot. The states
fk(x) in the lower E-k curve constitute the wavefunctions for the valence electrons
and thus correspond to the states in the VB. Those in the upper E-k curve, on the other
hand, correspond to the states in the conduction band (CB) since they have higher en-
ergies. All the valence electrons at absolute zero of temperature therefore fill the states,
particular kn values, in the lower E-k diagram.

It should be emphasized that an E-k curve consists of many discrete points, each
corresponding to a possible state, wavefunction tykix), that is allowed to exist in the
crystal. The points are so close that we draw the E-k relationship as a continuous
curve. It is clear from the E-k diagram that there is a range of energies, from Ev to EC9
for which there are no solutions to the Schrodinger equation and hence there are no
VokC*) with energies in Ev to Ec. Furthermore, we also note that the E-k behavior is not
a simple parabolic relationship except near the bottom of the CB and the top of the VB.

Above absolute zero of temperature, due to thermal excitation, however, some of
the electrons from the top of the valence band will be excited to the bottom of the con-
duction band. According to the E-k diagram in Figure 5.49, when an electron and hole
recombine, the electron simply drops from the bottom of the CB to the top of the VB
without any change in its k value, so this transition is quite acceptable in terms of
momentum conservation. We should recall that the momentum of the emitted photon
is negligible compared with the momentum of the electron. The E-k diagram in Fig-
ure 5.49 is therefore for a direct bandgap semiconductor.

The simple E-k diagram sketched in Figure 5.49 is for the hypothetical one-
dimensional crystal in which each atom simply bonds with two neighbors. In real
crystals, we have a three-dimensional arrangement of atoms with V(jc, y, z) showing
periodicity in more than one direction. The E-k curves are then not as simple as that in
Figure 5.49 and often show unusual features. The E-k diagram for GaAs, which is shown
in Figure 5.50a, as it turns out, has main features that are quite similar to that sketched in
Figure 5.49. GaAs is therefore a direct bandgap semiconductor in which electron-hole
pairs can recombine directly and emit a photon. It is quite apparent that light emitting
devices use direct bandgap semiconductors to make use of direct recombination.

7 The actual momentum of the electron, however, is not fik because

-    t1 'external "t" 'infernal
at

where Fextemal + internal are all forces acting on the electron. The true momentum pe satisfies

-

J
" = Fexternal "I" internal

at

However, as we are interested in interactions with external forces such as an applied field, we treat tik as if it were
the momentum of the electron in the crystal and use the name crystal momentum.
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In the case of Si, the diamond crystal structure leads to an E-k diagram that has the
essential features depicted in Figure 5.50b. We notice that the minimum of the CB is
not directly above the maximum of the VB. An electron at the bottom of the CB there-
fore cannot recombine directly with a hole at the top of the VB because, for the electron
to fall down to the top of the VB, its momentum must change from kch to kvb9 which is
not allowed by the law of conservation of momentum. Thus direct electron-hole
recombination does not take place in Si and Ge. The recombination process in these
elemental semiconductors occurs via a recombination center at an energy level Er.
The electron is captured by the defect at Er, from where it can fall down into the top of
the VB. The indirect recombination process is illustrated in Figure 5.50c. The energy
of the electron is lost by the emission of phonons, that is, lattice vibrations. The E-k
diagram in Figure 5.50b for Si is an example of an indirect bandgap semiconductor.

In some indirect bandgap semiconductors such as GaP, the recombination of the
electron with a hole at certain recombination centers results in photon emission. The
E-k diagram is similar to that shown in Figure 5.50c except that the recombination
centers at Er are generated by the purposeful addition of nitrogen impurities to GaP.
The electron transition from Er to Ev involves photon emission.

Electron Motion and Drift We can understand the response of a conduction band
electron to an applied external force, for example, an applied field, by examining the
E-k diagram. Again, for simplicity, we consider the one-dimensional crystal. The
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Figure 5.51
(a) In the absence of a field, over a long time, the average of all k values is zero; there is no net
momentum in any one particular direction.
(b) In the presence of a field in the -x direction, the electron accelerates in the +x direction increasing
its lvalue along x until it is scattered to a random k value. Over a long time, the average of all k values
is along the +x direction. Thus the electron drifts along +x.

electron is wandering around the crystal quite randomly due to scattering from lattice
vibrations. Thus the electron moves with a certain k value in the +x direction, say
as illustrated in the E-k diagram of Figure 5.51a. When it is scattered by a lattice
vibration, its k value changes, perhaps to which is also shown in Figure 5.51a. This
process of k changing randomly from one scattering to another scattering process con-
tinues all the time, so over a long time the average value of k is zero; that is, average
fc-j. is the same as average

When an electric field is applied, say in the -x direction, then the electron gains
momentum in the +jc direction from the force of the field With time, while the

electron is not scattered, it moves up in the E-k diagram from k\+ to £2+ to £3+ and so
on until a lattice vibration randomly scatters the electron to say k\- (or to some other
random k value) as shown in Figure 5.5 lb. Over a long time, the average of all k+ is no
longer equal to the average of all k- and there is a net momentum in the direction,
which is tantamount to a drift in the same direction.

Effective Mass The usual definition of inertial mass of a particle in classical
physics is based on

Force = Mass x Acceleration

F = ma

When we treat the electron as a wave within the semiconductor crystal, we have to
determine whether we can still, in some way, use the convenient classical F = ma
relation to describe the motion of an electron under an applied force such as eEx and,
if so, what the apparent mass of the electron in the crystal should be.
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We will evaluate the velocity and acceleration of the electron in the CB in
response to an electric field "Ex along - x that imposes an external force Fext = eEx in
the +jc direction, as shown in Figure 5.51b. Our treatment will make use of the quan-
tum mechanical E-k diagram.

Since we are treating the electron as a wave, we have to evaluate the group veloc-
ity vg, which, by definition, is vg = do/dk. We know that the time dependence of the
wavefunction is exp(- jEt/ti) where the energy E = tico (co is an "angular frequency"

associated with the wave motion of the electron). Both E and co depend on k. Thus, the
group velocity is

_

 1 dE

V8 ~ ti~dk
[5.75]

Thus the group velocity is determined by the gradient of the E-k curve. In the
presence of an electric field, the electron experiences a force Fext = e'Ex from which it
gains energy and moves up in the E-k diagram until, later on, it collides with a lattice
vibration, as shown in Figure 5.51b. During a small time interval 8t between colli-
sions, the electron moves a distance vg 8t and hence gains energy 8E, which is

8E = FextVg8t [5.76]

To find the acceleration of the electron and the effective mass, we somehow have

to put this equation into a form that looks like Fext = mea, where a is the acceleration.
From Equation 5.76, the relationship between the external force and energy is

1 dE dk
Fext = = ti -

Vg dt dt
[5.77]

where we used Equation 5.75 for vg in Equation 5.76. Equation 5.77 is the reason for
interpreting fik as the crystal momentum inasmuch as the rate of change of fik is the
externally applied force.

The acceleration a is defined as dvg/dt. We can use Equation 5.75,

dv
a =

8 lfidk\ Id2 Edk

dt dt ti dk2 dt
[5.78]

From Equation 5.78, we can substitute for dk/dt in Equation 5.77, which is then
a relationship between FeXt and a of the form

Fen = - 
-,-~

a [5.79]

[-1
We know that the response of a free electron to the external force is FQia = mea,

where me is its mass in vacuum. Therefore it is quite clear from Equation 5.79 that the
effective mass of the electron in the crystal is

m ; = rr i -- I [5.80]
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Thus, the electron responds to an external force and moves as if its mass were given
by Equation 5.80. The effective mass obviously depends on the E-k relationship, which in
turn depends on the crystal symmetry and the nature of bonding between the atoms. Its
value is different for electrons in the CB and for those in the VB, and moreover, it depends
on the energy of the electron since it is related to the curvature of the E-k behavior
(d2E/dk2). Further, it is clear from Equation 5.80 that the effective mass is a quantum
mechanical quantity inasmuch as the E-k behavior is a direct consequence of the applica-
tion of quantum mechanics (the Schrodinger equation) to the electron in the crystal.

It is interesting that, according to Equation 5.80, when the E-k curve is a down-
ward concave as at the top of a band (e.g.. Figure 5.49), the effective mass of an elec-
tron at these energies in a band is then negative. What does a negative effective mass
mean? When the electron moves up on the E-k curve by gaining energy from the field,
it actually decelerates, that is, moves more slowly. Its acceleration is therefore in the
opposite direction to an electron at the bottom of the band. Electrons in the CB are at
the bottom of a band, so their effective masses are positive quantities. At the top of a
valence band, however, we have plenty of electrons. These electrons have negative
effective masses and under the action of a field, they decelerate. Put differently, they
accelerate in the opposite direction to the applied external force FeXt. It turns out that
we can describe the collective motion of these electrons near the top of a band by con-
sidering the motion of a few holes with positive masses.

It should be mentioned that Equation 5.80 defines the meaning of the effective
mass in quantum mechanical terms. Its usefulness as a concept lies in the fact that we
can measure it experimentally, for example, by cyclotron resonance experiments, and
have actual values for it. This means we can simply replace me by m* in equations that
describe the effect of an external force on electron transport in semiconductors.

Holes To understand the concept of a hole, we consider the E-k curve corresponding
to energies in the VB, as shown in Figure 5.52a. If all the states are filled, then there
are no empty states for the electrons to move into and consequently an electron cannot
gain energy from the field. For each electron moving in the positive x direction with a
momentum tik+, there is a corresponding electron with an equal and opposite momen-
tum M_, so there is no net motion. For example, the electron at b is moving toward the
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Figure 5.52
(a) In a full valence band, there is no net contribution to the
current. There are equal numbers of electrons (e.g., at b
and bf) with opposite momenta.
(b) If there is an empty state (ho/e) at b at the top of the band,
then the electron at b' contributes to the current.
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CURRENT DUE TO A MISSING ELECTRON IN THE VB First, let us consider a completely full va-
lence band that contains, say, Af electrons. N/2 of these are moving with momentum in the +jc,
and N/2 in the - x direction. Suppose that the crystal is unit volume. An electron with charge - e
moving with a group velocity ygi contributes to the current by an amount - e\gi. We can deter-
mine the current density    due to the motion of all the electrons (N of them) in the band,

N

EXAMPLE 5.22

J AT = -e        y8i = 0
/=1

is zero because for each value of vgI , there is a corresponding velocity equal in magni-
tude but opposite in direction (b and bf in Figure 5.52a). Our conclusion from this is that the
contribution to the current density from a full valence band is nil, as we expect.

Suppose now that the yth electron is missing (b in Figure 5.52b). The net current density is
due to N - 1 electrons in the band, so

N

= -e        vgi [5.81]

where the summation is for i = 1 to N and i  j (jth electron is missing). We can write the sum
as summation to N including the jth electron and minus the missing yth electron contribution,

N

/=i

that is,

JN_l = +eYgj [5.821

where we used = 0. We see that when there is a missing electron, there is a net current due
to that empty state (yth). The current appears as the motion of a charge +e with a velocity vgj,
where \gj is the group velocity of the missing electron. In other words, the current is due to the
motion of a positive charge +e at the site of the missing electron at kj, which is what we call a
hole. One should note that Equation 5.81 describes the current by considering the motions of all
the N - 1 electrons, whereas Equation 5.82 describes the same current by simply considering
the missing electron as if it were a positively charged particle (-be) moving with a velocity equal
to that of the missing electron. Equation 5.82 is the convenient description universally adopted
for a valence band containing missing electrons.

5.
12   INDIRECT RECOMBINATION

We consider the recombination of minority carriers in an extrinsic indirect bandgap
semiconductor such as Si or Ge. As an example, we consider the recombination of
electrons in a p-type semiconductor. In an indirect bandgap semiconductor, the recom-
bination mechanism involves a recombination center, a third body that may be a crys-
tal defect or an impurity, in the recombination process to satisfy the requirements of
conservation of momentum. We can view the recombination process as follows. Re-
combination occurs when an electron is captured by the recombination center at the
energy level Er. As soon as the electron is captured, it will recombine with a hole
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because holes are abundant in a p-type semiconductor. In other words, since there are
many majority carriers, the limitation on the rate of recombination is the actual capture
of the minority carrier by the center. Thus, if xe is the electron recombination time,
since the electrons will have to be captured by the centers, re is given by

xe = -
i
- 15.83]

where Sr is the capture (or recombination) cross section of the center, Afr is the con-
centration of centers, and vth is the mean speed of the electron that you may take as its
effective thermal velocity.

Equation 5.83 is valid under small injection conditions, that is, ppo » np. There is
a more general treatment of indirect recombination called the Shockley-Read statistics
of indirect recombination and generation, which is treated in more advanced semicon-
ductor physics textbooks. That theory eventually arrives at Equation 5.83 for low-level
injection conditions. We derived Equation 5.83 from a purely physical reasoning.

Gold is frequently added to silicon to aid recombination. It is found that the
minority carrier recombination time is inversely proportional to the gold concentra-
tion, following Equation 5.83.

5
.13    AMORPHOUS SEMICONDUCTORS

Up to now we have been dealing with crystalline semiconductors, those crystals that
have perfect periodicity and are practically flawless unless purposefully doped for use
in device applications. They are used in numerous solid-state devices including large-
area solar cells. Today

's microprocessor uses a single crystal of silicon that contains
millions of transistors; indeed, we are heading for the 1-billion-transistor chip. There
are, however, various applications in electronics that require inexpensive large-area
devices to be fabricated and hence require a semiconductor material that can be pre-
pared in a large area. In other applications, the semiconductor material is required to
be deposited as a film on a flexible substrate for use as a sensor. Best known examples
of large-area devices are flat panel displays based on thin-film transistors (TFTs), in-
expensive solar cells, photoconductor drums (for printing and photocopying), image
sensors, and newly developed X-ray image detectors. Many of these applications typ-
ically use hydrogenated amorphous silicon, a-Si:H.

A distinctive property of an electron in a crystalline solid is that its wavefunction
is a traveling wave, a Bloch wave, as in Equation 5.74. The Bloch wavefunction
is a consequence of the periodicity of an electron's potential energy PE, V(x), within
the crystal. One can view the electron's motion as tunneling through the periodic po-
tential energy hills. The wavefunctions form extended states because they extend
throughout the whole crystal. The electron belongs to the whole crystal, and there is an
equal probability of finding an electron in any unit cell. The wavevector k in this trav-
eling wave \j/k acts as a quantum number. There are many discrete kn values, which
form a nearly continuous set of k values (see Figure 5.49). We can describe the inter-
action of the electron with an external force, or with photons and phonons, by assign-
ing a momentum hk to the electron, which is called the electron's crystal momentum.
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The electron's wavefunction is frequently scattered by lattice vibrations (or by de-
fects or impurities) from one k-value to another, e.g., from  to V . The scattering of
the wavefunction imposes a mean free path t on the electron's motion, that is, a mean
distance over which a wave can travel without being scattering. Over the distance €,
the wavefunction is coherent, that is, well defined and predictable as a traveling Bloch
wave; I is also known as the coherence length of the wavefunction. The mobility is de-
termined by the mean free path which at room temperature is typically of the order
of several hundreds of mean interatomic separations. The crystal periodicity and the
unit cell atomic structure control the types of Bloch wave solutions one can obtain to
the Schrodinger equation. The solutions allow the electron energy E to be examined as
a function of k (or momentum ftk) and these E - k diagrams categorize crystalline
semiconductors into two classes: direct bandgap (GaAs type) and indirect bandgap (Si
type) semiconductors.

Hydrogenated amorphous silicon (a-Si:H) is the noncrystalline form of silicon
in which the structure has no long-range order but only short-range order; that is, we
can only identify the nearest neighbors of a given atom. Each Si atom has four neigh-
bors as in the crystal, but there is no periodicity or long-range order as illustrated in
Figure 1.59. Without the hydrogen, pure a-Si would have dangling bonds. In such a
structure sometimes a Si atom would not be able to find a fourth neighboring Si atom
to bond with and will be left with a dangling bond as in Figure 1.59b. The hydrogen in
the structure (~10 percent) passivates {i.e., neutralizes) the unsatisfied ("dangling")
bonds inherent in a noncrystalline structure and so reduces the density of dangling bonds
or defects. a-Si:H belongs to a class of solids called amorphous semiconductors that
do not follow typical crystalline concepts such as Bloch wavefunctions. First, due to
the lack of periodicity, we cannot describe the electron as a Bloch wave. Consequently,
we cannot use a wavevector k, and hence fik, to describe the electron's motion. These

semiconductors however do have a short-range order and also possess an energy
bandgap that separates a conduction band and a valence band. A window glass has a
noncrystalline structure but also has a bandgap, which makes it transparent. Photons
with energies less than the bandgap energy can pass through the window glass.

The examination of the structure of a-Si:H in Figure 1.59c should make it appar-
ent that the potential energy V(x) of the electron in this noncrystalline structure fluc-
tuates randomly from site to site. In some cases, the local changes in V(x) can be
quite strong, forming effective local PE wells (obviously finite wells). Such fluctua-
tions in the PE within the solid can capture or trap electrons, that is, localize elec-
trons at certain spatial locations. A localized electron will have a wavefunction that
resembles the wavefunction in the hydrogen atom, so the probability of finding the
electron is localized to the site. Such locations that can trap electrons, give them
localized wavefunctions, are called localized states. The amorphous structure also
has electrons that possess extended wavefunctions; that is, they belong to the whole
solid. These extended wavefunctions are distinctly different than those in the crystal
because they have very short coherence lengths due to the random potential fluctua-
tions; the electron is scattered from site to site and hence the mean free path is of the
order of a few atomic spacings. The extended wavefunction has random phase fluc-
tuations. Figure 5.53 compares localized and extended wavefunctions in an amor-
phous semiconductor.
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Figure 5.53   Schematic representation of the density of states g(E) versus energy E for an amorphous
semiconductor and the associated electron wavefunctions for an electron in the extended and localized states.

Electronic properties of all amorphous semiconductors can be explained in terms
of the energy distribution of their density of states (DOS) function, g{E). The DOS
function has well-defined energies Ev and Ec that separate extended states from local-
ized states as in Figure 5.53. There is a distribution of localized states, called tail states
below Ec and above Ev. The usual bandgap Ec-Ev is called the mobility gap. The
reason is that there is a change in the character of charge transport, and hence in the
carrier mobility, in going from extended states above Ec to localized states below Ec.

Electron transport above Ec in the conduction band is dominated by scattering
from random potential fluctuations arising from the disordered nature of the structure.
The electrons are scattered so frequently that their effective mobility is much less than
what it is in crystalline Si: iJLe in a-Si:H is typically 5-10 cm2 V-1 s-1 whereas it is

1400 cm2 V-1 s-1 in a single crystal Si. Electron transport below Ec, on the other hand,
requires an electron to jump, or hop, from one localized state to another, aided by
thermal vibrations of the lattice, in an analogous way to the diffusion of an interstitial
impurity in a crystal. We know from Chapter 1 that the jump or diffusion of the impu-
rity is a thermally activated process because it relies on the thermal vibrations of all the
crystal atoms to occasionally give the impurity enough energy to make that jump. The
electron's mobility associated with this type of hopping motion among localized states
is thermally activated, and its value is small. Thus, there is a change in the electron
mobility across £c, which is called the conduction band mobility edge.

The localized states (frequently simply called traps) between Ev and Ec have a pro-
found effect on the overall electronic properties. The tail localized states are a direct
result of the structural disorder that is inherent in noncrystalline solids, variations in the
bond angles and length. Various prominent peaks and features in the DOS within the
mobility gap have been associated with possible structural defects, such as under- and
overcoordinated atoms in the structure, dangling bonds, and dopants. Electrons that
drift in the conduction band can fall into localized states and become immobilized

(trapped) for a while. Thus, electron transport in a-Si:H occurs by multiple trapping in



Defining Terms 461

shallow localized states. The effective electron drift mobility in a-Si:H is therefore re-
duced to ~1 cm2 V"1 s"1. Low drift mobilities obviously prevent the use of amorphous
semiconductor materials in high-speed or high-gain electronic applications. Nonetheless,
low-speed electronics is just as important as high-speed electronics in the electronics
market in such applications as flat panel displays, solar cells, and image sensors. A low-
speed flat panel display made from hydrogenated amorphous silicon (a-Si:H) TFTs costs
very roughly the same as a high-speed crystalline Si microchip that runs the CPU.
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DEFINING TERMS

Acceptor atoms are dopants that have one less valency
than the host atom. They therefore accept electrons

from the VB and thereby create holes in the VB, which
leads to a p > n and hence to a p-type semiconductor.

Average energy of an electron in the CB is T as if the
electrons were obeying Maxwell-Boltzmann statistics.
This is only true for a nondegenerate semiconductor.

Bloch wave refers to an electron wavefunction of the

form = Uk(x) expijkx), which is a traveling wave
that is modulated by a function Uk(x) that has the peri-
odicity of the crystal. The Bloch wavefunction is a
consequence of the periodicity of an electron

'

s poten-
tial energy within the crystal.

Compensated semiconductor contains both donors
and acceptors in the same crystal region that compen-
sate for each other's effects. For example, if there are
more donors than acceptors, Nd > Na, then some of
the electrons released by donors are captured by accep-
tors and the net effect is that Nd - Na number of elec-

trons per unit volume are left in the CB.

Conduction band (CB) is a band of energies for the
electron in a semiconductor where it can gain energy

from an applied field and drift and thereby contribute to
electrical conduction. The electron in the CB behaves

as if it were a "free" particle with an effective mass m*.

Degenerate semiconductor has so many dopants that
the electron concentration in the CB, or hole concentra-

tion in the VB, is comparable with the density of states
in the band. Consequently, the Pauli exclusion princi-
ple is significant and Fermi-Dirac statistics must be
used. The Fermi level is either in the CB for a «+

-type

degenerate or in the VB for a /?+-type degenerate semi-
conductor. The superscript + indicates a heavily doped
semiconductor.

Diffusion is a random process by which particles move
from high-concentration regions to low-concentration
regions.

Donor atoms are dopants that have a valency one more
than the host atom. They therefore donate electrons to
the CB and thereby create electrons in the CB, which
leads to n > p and hence to an n-type semiconductor.

Effective density of states (Nc) at the CB edge is a
quantity that represents all the states in the CB per unit
volume as if they were all at Ec. Similarly, Nv at the
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VB edge is quantity that represents all the states in the
VB per unit volume as if they were all at Ev.

Effective mass (m*) of an electron is a quantum me-
chanical quantity that behaves like the inertial mass in
classical mechanics, F = ma, in that it measures the

object's inertial resistance to acceleration. It relates the

acceleration a of an electron in a crystal to the applied
external force Fext by Fext = m* a. The external force

is most commonly the force of an electric field e!E and
excludes all internal forces within the crystal.

Einstein relation relates the diffusion coefficient D

and the drift mobility /x of a given species of charge
carriers through (D/fi) = (kT/e).

Electron affinity (x) is the energy required to remove
an electron from Ec to the vacuum level.

Energy of the electron in the crystal, whether in the
CB or VB, depends on its momentum hk through the
E-k behavior determined by the Schrodinger equation.

E-k behavior is most conveniently represented graphi-
cally through E-k diagrams. For example, for an elec-
tron at the bottom of the CB, E increases as (tik)2/m*
where tikis the momentum and m* is the effective mass

of the electron, which is determined from the E-k

behavior.

Excess carrier concentration is the excess concen-

tration above the thermal equilibrium value. Excess
carriers are generated by an external excitation such as
photogeneration.

Extended state refers to an electron wavefunction irk

whose magnitude does not decay with distance; that is,
it is extended in the crystal. An extended wavefunction
of an electron in a crystal is a Bloch wave, that is,

fa - Uk(x) exp(jkx), which is a traveling wave that is
modulated by a function Uk(x) that has the periodicity
of the crystal. There is an equal probability of finding
an electron in any unit cell of the crystal. Scattering of
an electron in the crystal by lattice vibrations or impu-
rities, etc., corresponds to the electron being scattered
from one fa to another fa', i.e. a change in the
wave vector from k to k'

.
 Valence and conduction

bands in a crystal have extended states.

Extrinsic semiconductor is a semiconductor that has

been doped so that the concentration of one type of
charge carrier far exceeds that of the other. Adding

donor impurities releases electrons into the CB and n
far exceeds /?; thus, the semiconductor becomes H-type.

Fermi energy or level (EF) may be defined in several
equivalent ways. The Fermi level is the energy level cor-
responding to the energy required to remove an electron
from the semiconductor; there need not be any actual
electrons at this energy level. The energy needed to re-
move an electron defines the work function 4). We can

define the Fermi level to be O below the vacuum level.

EF can also be defined as that energy value below
which all states are full and above which all states are

empty at absolute zero of temperature. EF can also be
defined through a difference. A difference in the Fermi
energy AEF in a system is the external electrical work
done per electron either on the system or by the system
such as electrical work done when a charge e moves
through an electrostatic PE difference is eA V. It can be
viewed as a fundamental material property.

Intrinsic carrier concentration (w,) is the electron
concentration in the CB of an intrinsic semiconductor.

The hole concentration in the VB is equal to the electron
concentration.

Intrinsic semiconductor has an equal number of
electrons and holes due to thermal generation across
the bandgap Eg. It corresponds to a pure semiconduc-
tor crystal in which there are no impurities or crystal
defects.

Ionization energy is the energy required to ionize an
atom, for example, to remove an electron.

Ionized impurity scattering limited mobility is the
mobility of the electrons when their motion is limited
by scattering from the ionized impurities in the semi-
conductor (e.g., donors and acceptors).

k is the wavevector of the electron's wavefunction. In a

crystal the electron wavefunction, fa(x) is a modulated \
traveling wave of the form

fa(x) = Uk(x) exp(jkx)

where k is the wavevector and Uk (x) is a periodic func-
tion that depends on the PE of interaction between the
electron and the lattice atoms, k identifies all possible
states itO) that are allowed to exist in the crystal, fik
is called the crystal momentum of the electron as its
rate of change is the externally applied force to the
electron, d(fik)/dt = Fcxtenai.
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Lattice-scattering-limited mobility is the mobility of
the electrons when their motion is limited by scattering
from thermal vibrations of the lattice atoms.

Localized state refers to an electron wavefunction

localized whose magnitude, or the envelope of the
wavefunction, decays with distance, which localizes
the electron to a spatial region in the semiconductor.
For example, a 1 s-type wavefunction of the form
localized o< exp(-ar), where r is the distance measured
from some center at r = 0, and a is a positive constant,
would represent a localized state centered at r = 0.

Majority carriers are electrons in an n-type and holes
in a p-type semiconductor.

Mass action law in semiconductor science refers to

the law np - n2n which is valid under thermal equilib-
rium conditions and in the absence of external biases

and illumination.

Minority carrier diffusion length (L) is the mean
distance a minority carrier diffuses before recombina-
tion, L = VDr, where D is the diffusion coefficient

and t is the minority carrier lifetime.

Minority carrier lifetime (r) is the mean time for a
minority carrier to disappear by recombination. 1/r is
the mean probability per unit time that a minority carrier
recombines with a majority carrier.

Minority carriers are electrons in a p-type and holes
in an rt-type semiconductor.

Nondegenerate semiconductor has electrons in the

I   CB and holes in the VB that obey Boltzmann statistics.
Put differently, the electron concentration n in the CB
is much less than the effective density of states iVc and
similarly p < Nv. It refers to a semiconductor that has
not been heavily doped so that these conditions are
maintained; typically, doping concentrations are less
than 1018 cm-3.

Ohmic contact is a contact that can supply charge car-
riers to a semiconductor at a rate determined by charge
transport through the semiconductor and not by the
contact properties itself. Thus the current is limited by
the conductivity of the semiconductor and not by the
contact.

Peltier effect is the phenomenon of heat absorption or
liberation at the contact between two dissimilar mate-

rials as a result of a dc current passing through the
junction. The rate of heat generation Q' is proportional
to the dc current / passing through the contact so that
Q' = +n/,

 where n is called the Peltier coefficient

and the sign depends on whether heat is absorbed or
released.

Phonon is a quantum of energy associated with the
vibrations of the atoms in the crystal, analogous to
the photon. A phonon has an energy fio) where a) is the
frequency of the lattice vibration.

Photoconductivity is the change in the conductivity
from dark to light, 0  - ordark.

Photogeneration is the excitation of an electron into
the CB by the absorption of a photon. If the photon is
absorbed by an electron in the VB, then its excitation to
the CB will generate an EHP.

Photoinjection is the photogeneration of carriers in the
semiconductor by illumination. Photogeneration may
be VB to CB excitation, in which case electrons and

holes are generated in pairs.

Piezoresistivity is the change in the resistivity of a
semiconductor due to an applied mechanical stress om.
Elastoresistivity refers to the change in the resistivity
due to an induced strain in the substance. Application of
stress normally leads to strain, so piezoresistivity and
elastoresistivity refer to the same phenomenon. In sim-
ple terms, the change in the resistivity may be due to a
change in the concentration of carriers or due to a
change in the drift mobihty of the carriers. The fractional
change in the resistivity 5/o/p is proportional to the ap-
plied stress om, and the proportionality constant is called
the piezoresistive coefficient n (1/Pa units), which is a
tensor quantity because a stress in one direption in a
crystal can alter the resistivity in another direction.

Recombination of an electron-hole pair involves an
electron in the CB falling down in energy into an
empty state (hole) in the VB to occupy it. The result is
the annihilation of an EHP. Recombination is direct

when the electron falls directly down into an empty
state in the VB as in GaAs. Recombination is indirect

if the electron is first captured locally by a defect or an
impurity, called a recombination center, and from there
it falls down into an empty state (hole) in the VB as in
Si and Ge.



464 chapter 5 . Semiconductors

Schottky junction is a contact between a metal and a
semiconductor that has rectifying properties. For a
metal/n-type semiconductor junction, electrons on the
metal side have to overcome a potential energy barrier
<J> b to enter the conduction band of the semiconductor,

whereas the conduction electrons in the semiconductor

have to overcome a smaller barrier e V0 to enter the metal.

Forward bias decreases e V0 and thereby greatly encour-
ages electron emissions over the barrier e(V0- V).
Under reverse bias, electrons have to overcome <& b and

the current is very small.

Thermal equilibrium carrier concentrations are
those electron and hole concentrations that are solely
determined by the statistics of the carriers and the den-
sity of states in the band. Thermal equilibrium concen-
trations obey the mass action law, np „

2

Thermal velocity (v ) of an electron in the CB is its
mean (or effective) speed in the semiconductor as it
moves around in the crystal. For a nondegenerate semi-

conductor, it can be obtained simply from jm*  =
IkT
Vacuum level is the energy level where the PE of the
electron and the KE of the electron are both zero. It

defines the energy level where the electron is just free
from the solid.

Valence band (VB) is a band of energies for the elec-
trons in bonds in a semiconductor. The valence band is

made of all those states (wavefunctions) that constitute

the bonding between the atoms in the crystal. At ab-
solute zero of temperature, the VB is full of all the bond-
ing electrons of the atoms. When an electron is excited
to the CB, this leaves behind an empty state, which is
called a hole. It carries a positive charge and behaves as
if it were a "free" positively charged entity with an ef-
fective mass of ml. It moves around the VB by having a
neighboring electron tunnel into the unoccupied state.

Work function (<J>) is the energy required to remove
an electron from the solid to the vacuum level.

QUESTIONS AND PROBLEMS
5
.1     Bandgap and photodetection

a.    Determine the maximum value of the energy gap that a semiconductor, used as a photoconductor,
can have if it is to be sensitive to yellow light (600 nm).

5
.
3

5
.
4

5
.
5

5
.
6

b
.

c.

d
.

A photodetector whose area is 5 x 10~2 cm2 is irradiated with yellow light whose intensity is
2 mW cm-2. Assuming that each photon generates one electron-hole pair, calculate the number of
pairs generated per second.

From the known energy gap of the semiconductor GaAs = 1.42 eV), calculate the primary
wavelength of photons emitted from this crystal as a result of electron-hole recombination.

Is the above wavelength visible?

Will a silicon photodetector be sensitive to the radiation from a GaAs laser? Why?

5
.2 Intrinsic Ge Using the values of the density of states effective masses m* and in Table 5.1, cal-

culate the intrinsic concentration in Ge. What is ni if you use Wc and Nv from Table 5.1? Calculate the
intrinsic resistivity of Ge at 300 K.

Fermi level in intrinsic semiconductors Using the values of the density of states effective masses w*
and in Table 5.1, find the position of the Fermi energy in intrinsic Si, Ge, and GaAs with respect to
the middle of the bandgap {Egl2).

Extrinsic Si A Si crystal has been doped with P. The donor concentration is 1015 cm"3. Find the con-
ductivity and resistivity of the crystal.

Extrinsic Si Find the concentration of acceptors required for an n-Si crystal to have a resistivity of
1 ft cm.

Minimum conductivity

a.    Consider the conductivity of a semiconductor, o
conductivity?

eniie + epiih . Will doping always increase the
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5
.
7

5
.
8

5.9

Show that the minimum conductivity for Si is obtained when it is p-type doped such that the hole
concentration is

V Mi

and the corresponding minimum conductivity (maximum resistivity) is

tfmin = leriiy/llellh

c.    Calculate pm and amin for Si and compare with intrinsic values.

Extrinsic p-S\ A Si crystal is to be doped p-type with B acceptors. The hole drift mobility /i/, depends
on the total concentration of ionized dopants A dopant, in this case acceptors only, as

tih « 54.3 +
407

1 + 3.745 X 10-18 dopant
cm2 V-1 s

-1

where Ndopant is in cm 5
. Find the required concentration of B doping for the resistivity to be 0.1 Q. cm.

Thermal velocity and mean free path in GaAs Given that the electron effective mass m* for the
GaAs is 0.067me, calculate the thermal velocity of the conduction band (CB) electrons. The electron
drift mobility ixe depends on the mean free time xe between electron scattering events (between elec-
trons and lattice vibrations). Given iie = exe/m*ey and tie = 8500 cm2 V-1 s_1 for GaAs, calculate tc,
and hence the mean free path i of CB electrons. How many unit cells is i if the lattice constant a of
GaAs is 0.565 nm? Calculate the drift velocity = iJLetE of the CB electrons in an applied field £ of
104 V m-1. What is your conclusion?

Compensation doping in Si

a. A Si wafer has been doped rc-type with 1017 As atoms cm"3.
1

. Calculate the conductivity of the sample at 27 0C.

2
. Where is the Fermi level in this sample at 27 0C with respect to the Fermi level (£>,) in

intrinsic Si?

3
. Calculate the conductivity of the sample at 127 0C.

b
. The above n-type Si sample is further doped with 9 x 1016 boron atoms (p-type dopant) per cen-

timeter cubed.

1
. Calculate the conductivity of the sample at 27 0C.

2
. Where is the Fermi level in this sample with respect to the Fermi level in the sample in {a) at

27 0C? Is this an rc-type or p-type Si?

5
.10    Temperature dependence of conductivity  An rc-type Si sample has been doped with 1015 phosphorus

atoms cm-3
. The donor energy level for P in Si is 0.045 eV below the conduction band edge energy.

Calculate the room temperature conductivity of the sample.

Estimate the temperature above which the sample behaves as if intrinsic.

Estimate to within 20 percent the lowest temperature above which all the donors are ionized.

Sketch schematically the dependence of the electron concentration in the conduction band on the
temperature as login) versus 1 /T, and mark the various important regions and critical temperatures.
For each region draw an energy band diagram that clearly shows from where the electrons are
excited into the conduction band.

Sketch schematically the dependence of the conductivity on the temperature as log(or) versus 1/7
and mark the various critical temperatures and other relevant information.

a.

b
.

c.

d
.

e.

* 5.
11 Ionization at low temperatures in doped semiconductors Consider an n-type semiconductor. The

probability that a donor level Ed is occupied by an electron is

fd
i

,     1 (Ed-EF )
[5.84]

Probability of
donor

occupancy
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Electron

concentration

in extrinsic

semiconductors

5
.
12

Electron drift
mobility

Hole drift
mobility

where k is the Boltzmann constant, T is the temperature, Ep is the Fermi energy, and g is a constant
called the degeneracy factor; in Si, g - 2 for donors, and for the occupation statistics of acceptors
g = 4. Show that

k2 +
nNc NdNc

*eXP(w) *eXP( )
0 [5.85]

where n is the electron concentration in the conduction band, Afc is the effective density of states at the
conduction band edge, is the donor concentration, and A£ = Ec - Ed is the ionization energy of the
donors. Show that Equation 5.85 at low temperatures is equivalent to Equation 5.19. Consider a p-type
Si sample that has been doped with 1015 gallium (Ga) atoms cm-3. The acceptor energy level for Ga in
Si is 0.065 eV above the valence band edge energy, Ev. Estimate the lowest temperature (0C) above
which 90 percent of the acceptors are ionized by assuming that the acceptor degeneracy factor g - 4.

Compensation doping in w-type Si An rc-type Si sample has been doped with 1 x 1017 phosphorus (P)
atoms cm-3

. The drift mobilities of holes and electrons in Si at 300 K depend on the total concentration
of dopants Afdopant (cm-3) as follows:

tie & 88 +
1252

and
1 +6.984 X 10-l8 dopant

tJLh % 54.3 +
407

cm2 V-1 s"1

cm2 V-1 s-1

1 + 3.745 x 10-18Ardopant
a. Calculate the room temperature conductivity of the sample.
b

. Calculate the necessary acceptor doping (i.e., Na) that is required to make this sample p-type with
approximately the same conductivity.

5
.13 GaAs Ga has a valency of III and As has V. When Ga and As atoms are brought together to form the

GaAs crystal, as depicted in Figure 5.54, the three valence electrons in each Ga and the five valence
electrons in each As are all shared to form four covalent bonds per atom. In the GaAs crystal with some
1023 or so equal numbers of Ga and As atoms, we have an average of four valence electrons per atom,
whether Ga or As, so we would expect the bonding to be similar to that in the Si crystal: four bonds per
atom. The crystal structure, however, is not that of diamond but rather that of zinc blende (Chapter 1).

a. What is the average number of valence electrons per atom for a pair of Ga and As atoms and in the
GaAs crystal?

b
. What will happen if Se or Te, from Group VI, are substituted for an As atom in the GaAs crystal?

c. What will happen if Zn or Cd, from Group II, are substituted for a Ga atom in the GaAs crystal?
d

. What will happen if Si, from Group IV, is substituted for an As atom in the GaAs crystal?

e. What will happen if Si, from Group IV, is substituted for a Ga atom in the GaAs crystal? What do
you think amphoteric dopant means?

/.    Based on the discussion of GaAs, what do you think the crystal structures of the III-V compound
semiconductors AlAs, GaP, InAs, InP, and InSb will be?

Figure 5.54 The GaAs crystal
structure in two dimensions.

Average number of valence
electrons per atom is four. Each
Ga atom covalently bonds with
four neighboring As atoms and
vice versa.

Ga

Ga atom (Valency III) As atom (Valency V)

Ga

GaAs

As Ga
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5
.
14

5
.
15

5
.
16

5
.
17

Doped GaAs   Consider the GaAs crystal at 300 K.

Calculate the intrinsic conductivity and resistivity.

In a sample containing only 1015 cm-3 ionized donors, where is the Fermi level? What is the con-
ductivity of the sample?

In a sample containing 1015 cm-3 ionized donors and 9 x 1014 cm-3 ionized acceptors, what is the
free hole concentration?

a.

b
.

Varshni equation and the change in the bandgap with temperature The Varshni equation de-
scribes the change in the energy bandgap Eg of a semiconductor with temperature T in terms of

AT1
E

8 Ego    B + T

where Ego is the bandgap at T = 0 K, and A and B are material-specific constants. For example, for
GaAs, Ego = 1.519 eV, A = 5.405 x lO"4 eV K_1, B = 204 K, so that at T = 300 K, E8 = 1.42 eV.
Show that

dEg 
_

 AT(T + 2B)
dT 

"

      (B + T)2
(Eg0 - Eg) /T + 2B\

T       \ T + B )
What is dEg/dT for GaAs? The Varshni equation can be used to calculate the shift in the peak emission
wavelength of a light emitting diode (LED) with temperature or the cutoff wavelength of a detector. If
the emitted photon energy from an electron and hole recombination is hv & Eg + kT, find the shift in
the emitted wavelength from 27 0C down to -30 0C from a GaAs LED.

Degenerate semiconductor Consider the general exponential expression for the concentration of
electrons in the CB,

f (Ec-EfT]n = Nc exp I - 

and the mass action law, np = nf. What happens when the doping level is such that n approaches Nc and
exceeds it? Can you still use the above expressions for n and p?

Consider an rc-type Si that has been heavily doped and the electron concentration in the CB is
1020 cm-3. Where is the Fermi level? Can you use np = nf to find the hole concentration? What is its
resistivity? How does this compare with a typical metal? What use is such a semiconductor?

Photoconductivity and speed Consider two p-type Si samples both doped with 1015 B atoms cm-3. Both
have identical dimensions of length L (1 mm), width W (1 mm), and depth (thickness) D (0.1 mm). One sam-
ple, labeled A, has an electron lifetime of 1 /xs whereas the other, labeled B, has an electron lifetime of 5 /is.

At time t = 0, a laser light of wavelength 750 nm is switched on to illuminate the surface (L x W)
of both the samples. The incident laser light intensity on both samples is 10 mW cm-2

.
 At time

t - 50 /is, the laser is switched off. Sketch the time evolution of the minority carrier concentration
for both samples on the same axes.

What is the photocurrent (current due to illumination alone) if each sample is connected to a 1 V
battery?

a.

b
.

*5.
18 Hall effect in semiconductors The Hall effect in a semiconductor sample involves not only the elec-

tron and hole concentrations n and p, respectively, but also the electron and hole drift mobilities iie and
lih. The Hall coefficient of a semiconductor is (see Chapter 2)

p-nb2

Rh
e(p + nb)1

[5.86]

where b = fie/l h-

a. Given the mass action law np = n2y find n for maximum \Rh I (negative and positive /?#). Assume
that the drift mobilities remain relatively unaffected as n changes (due to doping). Given the electron
and hole drift mobilities ixe = 1350 cm2 V"1 s-1 and/ift = 450 cm2 V"1 s-1 for silicon, determine

n for maximum \Rh I in terms of

Varshni

equation

Bandgap shift
with temperature

Hall coefficient
of a semi-
conductor
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b
. Taking b = 3, plot Rh as a function of electron concentration n/ni from 0.01 to 10.

c. Show that, when = - l/en and when n    rii, Rh = +l/ep.

5
.19 Hall effect in semiconductors Most Hall-effect high-sensitivity sensors typically use III-V semicon-

ductors, such as GaAs, In As, InSb. Hall-effect integrated circuits with integrated amplifiers, on the other
hand, use Si. Consider nearly intrinsic samples in which n & p & ni, and calculate Rh for each using
the data in Table 5.4. What is your conclusion? Which sensor would exhibit the worst temperature drift?
(Consider the bandgap, and drift in «,.)

Table 5.4  Hall effect in selected semiconductors

Es(eV)     wKcm-3)     fie (cm2 V"1 s" *) ma (cm2 V"1 s" b Rh (m3 A-1 s-1)

Si            1.10        1 x 1010              1,350                    450 3 -312
GaAs       1.42       2 x 106               8,500                    400 ? ?
InAs        0.36        1 x 1015            33,000                    460 ? ?
InSb        0.17        2 x 1016            78,000                    850 ? ?

*5
.20 Compound semiconductor devices Silicon and germanium crystalline semiconductors are what

are called elemental Group IV semiconductors. It is possible to have compound semiconductors
from atoms in Groups III and V. For example, GaAs is a compound semiconductor that has Ga from
Group III and As from Group V, so in the crystalline structure we have an "effective" or "mean" va-
lency of IV per atom and the solid behaves like a semiconductor. Similarly GaSb (gallium anti-
monide) would be a III-V type semiconductor. Provided we have a stoichiometric compound, the
semiconductor will be ideally intrinsic. If, however, there is an excess of Sb atoms in the solid
GaSb, then we will have nonstoichiometry and the semiconductor will be extrinsic. In this case, ex-
cess Sb atoms will act as donors in the GaSb structure. There are many useful compound semicon-
ductors, the most important of which is GaAs. Some can be doped both n- and p-type, but many are
one type only. For example, ZnO is a II-VI compound semiconductor with a direct bandgap of
3

.2 eV, but unfortunately, due to the presence of excess Zn, it is naturally rc-type and cannot be
doped to /?-type.

a. GaSb (gallium antimonide) is an interesting direct bandgap semiconductor with an energy bandgap
Eg = 0.67 eV, almost equal to that of germanium. It can be used as an light emitting diode (LED)
or laser diode material. What would be the wavelength of emission from a GaSb LED? Will this be
visible?

b
. Calculate the intrinsic conductivity of GaSb at 300 K taking A c = 2.3 x 1019cm~3, Nv =

6
.1 x 1019 cm-3, iie = 5000 cm2 V-1 s"1, and Hh = 1000 cm2 V1 s*1. Compare with the

intrinsic conductivity of Ge.

c. Excess Sb atoms will make gallium antimonide nonstoichiometric, that is, GaSbi+s, which will
result in an extrinsic semiconductor. Given that the density of GaSb is 5.4 gem-3

,
 calculate

8 (excess Sb) that will result in GaSb having a conductivity of 100 Q~l cm-1. Will this be an n-
or p-type semiconductor? You may assume that the drift mobilities are relatively unaffected by the
doping.

5
.21 Excess minority carrier concentration Consider an rc-type semiconductor and weak injection condi-

tions. Assume that the minority carrier recombination time Th is constant (independent of injection-
hence the weak injection assumption). The rate of change of the instantaneous hole concentration
dpn/dt due to recombination is given by

Recombination V 
„

rate - =  15.87J
dt Th
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The net rate of increase (change) in pn is the sum of the total generation rate G and the rate of
change due to recombination, that is,

dpn
dt

[5.88]

By separating the generation term G into thermal generation G0 and photogeneration Gph and con-
sidering the dark condition as one possible solution, show that

dt
Gph [5.89]

How does your derivation compare with Equation 5.27? What are the assumptions inherent in
Equation 5.89?

*5
.22 Direct recombination and GaAs Consider recombination in a direct bandgap p-type semiconductor,

e.g., GaAs doped with an acceptor concentration Na. The recombination involves a direct meeting of an
electron-hole pair as depicted in Figure 5.22. Suppose that excess electrons and holes have been injected
{e,g., by photoexcitation), and that A/tp is the excess electron concentration and App is the excess hole
concentration. Assume A/ip is controlled by recombination and thermal generation only; that is, recombi-
nation is the equilibrium storing mechanism. The recombination rate will be proportional to nppp, and the
thermal generation rate will be proportional to npoPpo- In the dark, in equilibrium, thermal generation rate
is equal to the recombination rate. The latter is proportional to nnopp0. The rate of change of Arip is

i

3 An
p

dt
-B[nppp - ripoPpo] [5.90]

where B is a proportionality constant, called the direct recombination capture coefficient. The
recombination lifetime rr is defined by

p An
p

a.

b
.

dt Xr

Show that for low-level injection, np0 <$C An  <$C Ppo,    is constant and given by

1 1
TV

Bpp0 BNa

[5.91]

[5.92]

Show that under high-level injection, An  » ppo,

3 An

dt
2
- % -BApp Arip = -B(Anp)2

so that the recombination lifetime rr is now given by

1 1

BApp BAnp
[5.94]

c.

that is, the lifetime rr is inversely proportional to the injected carrier concentration.

Consider what happens in the presence of photogeneration at a rate Gph (electron-hole pairs per
unit volume per unit time). Steady state will be reached when the photogeneration rate and recom-
bination rate become equal. That is,

Gph = (   - P ) = B[nppp - np0ppO]
\ / recombination

A photoconductive film of n-type GaAs doped with 1013 cm"3 donors is 2 mm long (L), 1 mm
wide (W), and 5 |im thick (D). The sample has electrodes attached to its ends (electrode area is
therefore 1 mm x 5 jim) which are connected to a 1 V supply through an ammeter. The GaAs
photoconductor isiuniformly illuminated over the surface area 2 mm x 1 mm with a 1 mW laser

Excess carries

under uniform
photogeneration
and recombi-

nation

Recombination

rate

Definition of
recombination

lifetime

Low injection
recombination

time

[5.93]     High injection

High-injection
recombination

time

Steady-state
photogeneration
rate
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radiation of wavelength A = 840 nm (infrared). The recombination coefficient B for GaAs is
7

.21 x lO-16 m3 s_J. At A = 840 nm, the absorption coefficient is about 5 x 103 cm-1. Calculate
the photocurrent /photo and the electrical power dissipated as Joule heating in the sample. What will
be the power dissipated as heat in the sample in an open circuit, where 7=0?

5
.23 Piezoresistivity application to deflection and force measurement Consider the cantilever in Figure

5
.38c. Suppose we apply a force F to the free end, which results in a deflection h of the tip of the can-

tilever from its horizontal equilibrium position. The maximum stress om is induced at the support end
of the cantilever, at its surface where the piezoresistor is embedded to measure the stress. When the
cantilever is bent, there is a tensile or longitudinal stress gl on the surface because the top surface is
extended and the bottom surface is contracted. If L, W, and D are respectively the length, width, and
thickness of the cantilever, then the relationships between the force F and deflection /i, and the maxi-
mum stress ol are

'hYDh WD3y
Cantilever <TL(max) = -ry       and      F - -rj -h
equations  4

where Y is the elastic (Young's) modulus. A particular Si cantilever has a length (L) of 500 pm, width
(W0 of 100 ym, and thickness (D) of 10 pm. Given Y = 170 GPa, and that the piezoresistor embedded
in the cantilever is along the [110] direction with ttl  72 x 10"11 Pa-1, find the percentage change in
the resistance, AR/R, of the piezoresistor when the deflection is 0.1 pm. What is the force that would
give this deflection? (Neglect the transverse stresses on the piezoresistor.) How does the design choice
for the length L of the cantilever depend on whether one is interested in measuring the deflection h or
the force F? (Note: gl depends on the distance x from the support end; it decreases with x. Assume that
the length of the piezoresistor is very short compared with L so that gl does not change significantly
along its length.)

5
.24 Schottky junction

a. Consider a Schottky junction diode between Au and rc-Si, doped with 1016 donors cm" 3. The cross-
sectional area is 1 mm2

.
 Given the work function of Au as 5.1 eV, what is the theoretical barrier

height <I>fl from the metal to the semiconductor?
b

. Given that the experimental barrier height Q>b is about 0.8 eV, what is the reverse saturation cur-
rent and the current when there is a forward bias of 0.3 V across the diode? (Use Equation 4.37.)

5
.25 Schottky junction Consider a Schottky junction diode between Al and n-Si, doped with 5 x 1016

donors cm-3. The cross-sectional area is 1 mm2. Given that the electron affinity x of Si is 4.01 eV and
the work function of Al is 4.28 eV, what is the theoretical barrier height <Pb from the metal to the semi-
conductor? What is the built-in voltage? If the experimental barrier height Q>b is about 0.6 eV, what is
the reverse saturation current and the current when there is a forward bias of 0.2 V across the diode?

Take Be = 110 A cm"2 K"2.

5
.26 Schottky and ohmic contacts Consider an rc-type Si sample doped with 1016 donors cm-3. The length

L is 100 /-tm; the cross-sectional area A is 10 pm x 10 pm. The two ends of the sample are labeled as B
and C. The electron affinity (x) of Si is 4.01 eV and the work functions <I> of four potential metals for con-
tacts at B and C are listed in Table 5.5.

Table 5.5  Work functions in eV

Cs Li Al Au

1
.
8 2.5 4.25 5.0

a. Ideally, which metals will result in a Schottky contact?

b
. Ideally, which metals will result in an ohmic contact?
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c. Sketch the I-V characteristics when both B and C are ohmic contacts. What is the relationship be-
tween/and V?

d
. Sketch the I-V characteristics when B is ohmic and C is a Schottky junction. What is the relation-

ship between / and V?

e. Sketch the I-V characteristics when both B and C are Schottky contacts. What is the relationship
between / and V?

5
.27 Peltier effect and electrical contacts Consider the Schottky junction and the ohmic contact shown in

Figures 5.39 and 5.43 between a metal and rc-type semiconductor.

a.
 Is the Peltier effect similar in both contacts?

b
. Is the sign in Q' = ±n/ the same for both contacts?

c. Which junction would you choose for a thermoelectric cooler? Give reasons.

*5.28 Peltier coolers and figure of merit (FOM) Consider the thermoelectric effect shown in Figure 5.45
in which a semiconductor has two contacts at its ends and is conducting an electric current /. We assume
that the cold junction is at a temperature Tc and the hot junction is at Th and that there is a temperature
difference of AT = Th - Tc between the two ends of the semiconductor. The current / flowing through

the cold junction absorbs Peltier heat at a rate Q'p, given by

Q
'p = n/ [5.95]

where fl is the Peltier coefficient for the junction between the metal and semiconductor. The current /
flowing through the semiconductor generates heat due to the Joule heating of the semiconductor. The
rate of Joule heat generated through the bulk of the semiconductor is

M )/2 [5-96]
We assume that half of this heat flows to the cold junction.

In addition there is heat flow from the hot to the cold junction through the semiconductor, given by
the thermal conduction equation

Qtc = (x) Ar l5-971
The net rate of heat absorption (cooling rate) at the cold junction is then

Q
'

kuoo Q
'

p-Iq'

j-Q
'

tc 15.98]

By substituting from Equations 5.95 to 5.97 into Equation 5.98, obtain the net cooling rate in terms
of the current /. Then by differentiating Qf

netcoo\ with respect to current, show that maximum cooling is

A commercial thermoelectric cooler (by Melcor); an example of the Reltier effect. The
device area is 5.5 cm x 5.5 cm (approximately 2.2 inches x 2.2 incrtesfrlts maximum
current is 14 A; maximum heat pump ability is 67 W; maximum temperature difference
between the hot and cold surfaces is 67 0C.
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1

Table 5.6

Material p {Q, m) (Wm
-1 1) FOM

p-Bi2 Te3
Cu

W

6
.
0 x lO"2

7
.
0 x 10-2

5
.
5 x lO"4

3
.
3 x lO"4

lO"5
lO"5

1
.
7 x lO"8

5
.
5 x lO"8

1
.
70

1
.
45

390

167

Maximum

cooling rate

Maximum

temperature

difference

obtained when the current is

and the maximum cooling rate is

m (1)n<7 [5.99]

[5.100]

Under steady-state operating conditions, the temperature difference AT reaches a steady-state value
and the net cooling rate at the junction is then zero (AT is constant). From Equation 5.100 show that the
maximum temperature difference achievable is

ATtmax

i n2<7

2
~ [5.101]

The quantity n2er//c is defined as the figure of merit (FOM) for the semiconductor as it deter-
mines the maximum AT achievable. The same expression also applies to metals, though we will not de-
rive it here.

Use Table 5.6 to determine the FOM for various materials listed therein and discuss the significance
of your calculations. Would you recommend a thermoelectric cooler based on a metal-to-metal junction?

*5
.29 Seebeck coefficient of semiconductors and thermal drift in semiconductor devices Consider an n-type

semiconductor that has a temperature gradient across it. The right end is hot and the left end is cold, as de-
picted in Figure 5.55. There are more energetic electrons in the hot region than in the cold region. Conse-
quently, electron diffusion occurs from hot to cold regions, which immediately exposes negatively charged
donors in the hot region and therefore builds up an internal field and a built-in voltage, as shown in Figure
5

.55. Eventually an equilibrium is reached when the diffusion of electrons is balanced by their drift driven by
the built-in field. The net current must be zero. The Seebeck coefficient (or thermoelectric power) S measures

Figure 5.55   In the presence of a
temperature gradient, there is an internal field
and a voltage difference.
The Seebeck coefficient is defined as dV/dT,
the potential difference per unit temperature
difference.

Electron diffusion

 Electron drift

Cold Hot

Exposed
As+ donor

(

dV
T
A

dx
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this effect in terms of the voltage developed as a result of an applied temperature gradient as

dT
[5.102]

a.

b
.

How is the Seebeck effect in a p-type semiconductor different than that for an n-type semiconduc-
tor when both are placed in the same temperature gradient in Figure 5.55? Recall that the sign of
the Seebeck coefficient is the polarity of the voltage at the cold end with respect to the hot end (see
Section 4.8.2).

Given that for an rc-type semiconductor,

[5.103]

what are typical magnitudes for Sn in Si doped with 1014 and 1016 donors cm 3? What is the sig-
nificance of Sn at the semiconductor device level?

c. Consider a pn junction Si device that has the p-side doped with 1018 acceptors cm-3 and the n-side
doped with 1014 donors cm-3. Suppose that this pn junction forms the input stage of an op amp
with a large gain, say 100. What will be the output signal if a small thermal fluctuation gives rise to
a 1 0C temperature difference across the pn junction?

5
.30 Photogeneration and carrier kinetic energies Figure 5.35 shows what happens when a photon with

energy hv > Eg is absorbed in GaAs to photogenerate an electron and a hole. The figure shows that the
electron has a higher kinetic energy (KE), which is the excess energy above £c, than the hole, since the
hole is almost at Ev. The reason is that the electron effective mass in GaAs is almost 10 times less than
the hole effective mass, so the photogenerated electron has a much higher KE. When an electron and
hole are photogenerated in a direct bandgap semiconductor, they have the same k vector. Energy con-
servation requires that the photon energy hv divides according to

hv
m2 m2
2m* 2ml

where k is the wavevector of the electron and hole and m* and mjj are the effective masses of the elec-
tron and hole, respectively.

a. What is the ratio of the electron to hole KEs right after photogeneration?
b

. If the incoming photon has an energy of 2.0 eV, and Eg = 1.42 eV for GaAs, calculate the £Es of
the electron and the hole in eV, and calculate to which energy levels they have been excited with re-
spect to their band edges.

c. Explain why the electron and hole wavevector k should be approximately the same right after pho-
togeneration. Consider fcphoton for the photon, and the momentum conservation.

Seebeck

coefficient
n-type
semiconductor

Photogeneration

William Shockley and his group celebrate Shockley's Nobel
prize in 1956. First left, sitting, is G. E. Moore (chairman
emeritus of Intel), standing fourth from right is R. N. Noyce,
inventor of the integrated circuit, and standing at the
extreme right is J. T. Last.

SOURCE: P. K. Bondyopadhyay, //W = Shockley, the
Transistor Pioneer-Portrait of an Inventive Genius,"
Proceedings IEEE, vol. 86, no. 1, January 1998, p. 202,
figure 16 (Courtesy of IEEE.)
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The first monolithic integrated circuit, about the size of a fingertip, was documented and developed at Texas Instruments by Jack Kilby in
1958; he won the 2000 Nobel prize in physics for his contribution to the development of the first integrated circuit. The IC was a chip of a
single Ge crystal containing one transistor, one capacitor, and one resistor. Left: Jack Kilby holding his IC (photo, 1998). Right. The photo of
the chip.
I SOURCE: Courtesy of Texas Instruments.

Robert Noyce and Jean Hoerni
(a Swiss pnysicist) were
responsible for the invention of
the first planar IC at Fairchild
(1961). The planar fabrication
process was the key to the
success of their IC. The

photograph is that of the first
logic chip at Fairchild.
I SOURCE: Courtesy of Fairchild
I Semiconductor.

1

*

v.

Left to right: Andrew Grove, Robert Noyce (1927-1990), and
Gordon Moore, who founded Intel in 1968. Andrew Grove's

book Physics and Technology of Semiconductor Devices (Wiley,
1967) was one of the classic texts on devices in the sixties and
seventies. "Moore's law" that started as a rough rule in 1965
states that the number of transistors in a chip will double every
18 months; Moore updated it in 1995 to every couple of years.

I SOURCE: Courtesy of Intel.
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Semiconductor Devices

Most diodes are essentially pn junctions fabricated by forming a contact between a
p-type and an n-type semiconductor. The junction possesses rectifying properties in
that a current in one direction can flow quite easily whereas in the other direction it is
limited by a leakage current that is generally very small. A transistor is a three-terminal
solid-state device in which a current flowing between two electrodes is controlled by
the voltage between the third and one of the other terminals. Transistors are capable of
providing current and voltage gains thereby enabling weak signals to be amplified.
Transistors can also be used as switches just like electromagnetic relays. Indeed, the
whole microcomputer industry is based on transistor switches. The majority of the tran-
sistors in microelectronics are of essentially two types: bipolar junction transistors
(BJTs) and field effect transistors (FETs). The appreciation of the underlying princi-
ples of the pn junction is essential to understanding the operation of not only the bipo-
lar transistor but also a variety of related devices. The central fundamental concept is
the minority carrier injection as purported by William Shockley in his explanations
of the transistor operation. Field effect transistors operate on a totally different princi-
ple than BJTs. Their characteristics arise from the effect of the applied field on a con-
ducting channel between two terminals. The last two decades have seen enormous ad-
vances and developments in optoelectronic and photonic devices which we now take
for granted, the best examples being light emitting diodes (LEDs), semiconductor
lasers, photodetectors, and solar cells. Nearly all these devices are based on /injunc-
tion principles. The present chapter takes the semiconductor concepts developed in
Chapter 5 to device level applications, from the basic pn junction to heterojunction
laser diodes.
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6
.1    IDEAL pn JUNCTION

6
.
1
.

1  No Applied Bias : Open Circuit

Consider what happens when one side of a sample of Si is doped n-type and the other
p-type, as shown in Figure 6.1a. We assume that there is an abrupt discontinuity
between the p- and n-regions, which we call the metallurgical junction and label as
M in Figure 6.1a, where the fixed (immobile) ionized donors and the free electrons (in
the conduction band, CB) in the n-region and fixed ionized acceptors and holes (in the
valence band, VB) in the /7-region are also shown.

Due to the hole concentration gradient from the /7-side, where p = ppo, to the H-side,
where p = pno, holes diffuse toward the right. Similarly the electron concentration
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Figure 6.1   Properties of the pn junction.
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gradient drives the electrons by diffusion toward the left. Holes diffusing and entering
the rt-side recombine with the electrons in the rt-side near the junction. Similarly, elec-
trons diffusing and entering the p-side recombine with holes in the p-side near the
junction. The junction region consequently becomes depleted of free carriers in com-
parison with the bulk p- and n-regions far away from the junction. Note that we must,
under equilibrium conditions {e.g., no applied bias or photoexcitation), have pn = nj
everywhere. Electrons leaving the n-side near the junction M leave behind exposed
positively charged donor ions, say As+, of concentration Nd. Similarly, holes leaving
thep-region near M expose negatively charged acceptor ions, say B~, of concentration
N

a. There is therefore a space charge layer (SCL) around M. Figure 6.1b shows the
depletion region, or the space charge layer, around M, whereas Figure 6.1c illustrates
the hole and electron concentration profiles in which the vertical concentration scale is
logarithmic. The depletion region is also called the transition region.

It is clear that there is an internal electric field !E0 from positive ions to negative
ions, that is, in the - x direction, that tries to drift the holes back into the p-region and
electrons back into the -region. This field drives the holes in the opposite direction
to their diffusion. As shown in Figure 6.1b, £0 imposes a drift force on holes in the
-x direction, whereas the hole diffusion flux is in the +jc direction. A similar situa-

tion also applies for electrons with the electric field attempting to drift the electrons
against diffusion from the n-region to the p-region. It is apparent that as more and
more holes diffuse toward the right, and electrons toward the left, the internal field
around M will increase until eventually an "equilibrium" is reached when the rate of

holes diffusing toward the right is just balanced by holes drifting back to the left, dri-
ven by the field £0. The electron diffusion and drift fluxes will also be balanced in
equilibrium.

For uniformly doped p- and n-regions, the net space charge density PnetM across
the semiconductor will be as shown in Figure 6.Id. (Why are the edges rounded?) The
net space charge density pnet is negative and equal to-eNa in the SCL from x = - Wp

to x = 0 (where we take M to be) and then positive and equal to +eNd from x = 0
to Wn. The total charge on the left-hand side must be equal to that on the right-hand
side for overall charge neutrality, so

N
a

W
p
 = NdWn [6.1]

In Figure 6.1, we arbitrarily assumed that the donor concentration is less than the
acceptor concentration, Nd < Na. From Equation 6.1 this implies that Wn > Wp; that
is, the depletion region penetrates the H-side, the lightly doped side, more than the
/?-side, the heavily doped side. Indeed, if Na » Nd, then the depletion region is almost
entirely on the H-side. We generally indicate heavily doped regions with the plus sign
as a superscript, that is, /?+.

The electric field £(*) and the net space charge density PnetOO at a point are
related in electrostatics1 by

d<£ AietOO

Depletion
widths

s

Field and net

space charge
density

1 This is called Gauss's law in point form and comes from Gauss's law in electrostatics. Gauss's law is discussed in
Section 7.5.
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Field in

depletion
region

Built-in field

Built-in

voltage

where e = e0er is the permittivity of the medium and e0 and sr are the absolute per-
mittivity and relative permittivity of the semiconductor material. We can thus integrate
PnetM across the diode and thus determine the electric field £(jc), that is,

-7
*

PnetOO dx [6.2]

The variation of the electric field across the junction is shown in Figure 6. le. The
negative field means that it is in the -x direction. Note that £(;c) reaches a maximum
value £0 at the metallurgical junction M.

The potential V(x) at any point x can be found by integrating the electric field since
by definition £ = -d V/dx. Taking the potential on the /7-side far away from M as zero
(we have no applied voltage), which is an arbitrary reference level, then V(x) increases
in the depletion region toward the H-side, as indicated in Figure 6.If. Its functional
form can be determined by integrating Equation 6.2, which is, of course, a parabola.
Notice that on the n-side the potential reaches V0, which is called the built-in
potential.

The fact that we are considering an abrupt pn junction means that PnetM can sim-
ply be described by step functions, as displayed in Figure 6.Id. Using the step form of
PnetU) in Figure 6. Id in the integration of Equation 6.2 gives the electric field at M as

eNdWn eNQWp
s £

[6.3]

where s = e0sr. We can integrate the expression for 'E(x) in Figure 6.1e to evaluate
the potential V(x) and thus find Vo by putting in x = Wn. The graphical representation
of this integration is the step from Figure 6.1e to f. The result is

v -Ay w - eN"NdWZ
[6.4]

where W0 = Wn + Wp is the total width of the depletion region under a zero applied
voltage. If we know Woy then Wn or Wp follows readily from Equation 6.1. Equation 6.4
is a relationship between the built-in voltage V0 and the depletion region width W0. If
we know V0, we can calculate W0.

The simplest way to relate V0 to the doping parameters is to make use of the fact
that in the system consisting of p- and H-type semiconductors joined together, in equi-
librium, Boltzmann statistics2 demands that the concentrations n \ and n2 of carriers at
potential energies E\ and £2 are related by

m       \ (£2-£i)l

where E = q V, where q is the charge of the carrier. Considering electrons {q = -e),
we see from Figure 6.1g that E = 0 on thep-side far away from M where n = n , and

2 We use Boltzmann statistics, that is, n(E) a expf-E/Zcf), because the concentration of electrons in the conduction
band, whether on the n-side or p-side, is never so large that the Pauli exclusion principle becomes important. As
long as the carrier concentration in the conduction band is much smaller than NC/ we can use Boltzmann statistics.
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E = - e V0 on the n-side away from M where n = nno. Thus

!v=exp(_lM
nm \   kT)

[6.5a]

This shows that V0 depends on nm and and hence on Nd and Na. The corre-
sponding equation for hole concentrations is clearly

[6.5b]
Pm 

_

      ( eVo\
"exp

\

Thus, rearranging Equations 6.5a and b we obtain

V.-  !.(!!=) and
We can now write Ppo and z?  in terms of the dopant concentrations inasmuch as

Vpo = Na and

n
2 2

so becomes

Pm? =   = -
. nm Nd

kT (NaNd\ [6.6]

Clearly V0 has been conveniently related to the dopant and material properties via
Nai Nd, and nj. The built-in voltage (V0) is the voltage across a pn junction, going
from p- to H-type semiconductor, in an open circuit. It is not the voltage across the
diode, which is made up of V0 as well as the contact potentials at the metal-to-
semiconductor junctions at the electrodes. If we add V0 and the contact potentials at the
electroded ends, we will find zero.

Once we know the built-in potential from Equation 6.6, we can then calculate the
width of the depletion region from Equation 6.4, namely

W0 =
r2e(Na + Nd)V0l
L      eNaNd J

1/2

[6.7]

Notice that the depletion width W0 oc V0

1/2
. This results in the capacitance of the

depletion region being voltage dependent, as we will see in Section 6.3.

Boltzmann

statistics for
electrons

Built-in

voltage

Depletion
region width

THE BUILT-IN POTENTIALS FOR Ge, Si, AND GaAs pn JUNCTIONS A pn junction diode has a
concentration of 1016 acceptor atoms cm-3 on the p-side and a concentration of 1017 donor

atoms cm-3 on the n-side. What will be the built-in potential for the semiconductor materials
Ge, Si, and GaAs?

SOLUTION

The built-in potential is given by Equation 6.6, which requires the knowledge of the intrin-
sic concentration for each semiconductor. From Chapter 5 we can tabulate the following

EXAMPLE 6.1
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at 300 K:

EXAMPLE 6.2

Semiconductor (eV)  (cm-3) V0 (V)
Ge                       0.7 2.40 x 1013 0.37
Si                         1.1 1.0 xlO10 0.78
GaAs                    1.4 2.1 x 106 1.21

Using

""(")-(*£)
for Si with Nd = 1017 cm"3 and Na = 1016 cm"3, kT/e = 0.0259 V at 300 K, and = 1.0 x
1010 cm-3, we obtain

f (1017)(1016) 1

The results for all three semiconductors are summarized in the last column of the table in

this example.

THE p+n JUNCTION Consider a p+n junction, which has a heavily doped /7-side relative to the
fl-side, that is, Na > Nd. Since the amount of charge Q on both sides of the metallurgical junc-
tion must be the same (so that the junction is overall neutral)

Q = eNaWp = eNdWn

it is clear that the depletion region essentially extends into the n-side. According to Equation 6.7,
when Nd     Na, the width is

11/2
i       v „ i

What is the depletion width for apn junction Si diode that has been doped with 1018 acceptor
atoms cm-3 on the p-side and 1016 donor atoms cm-3 on the w-side?

SOLUTION

To apply the above equation for W0, we need the built-in potential, which is

HtM )-< [S£]-"*v
Then with Nd = 1016 cm-3, that is, 1022 m-3, V0 = 0.835 V, and sr = 11.9 in the equation

for W0

- r l1'2    J"2(11.9)(8.85 x 10-12)(0.835)"[1/2
"L J (1.6 x 10-19)(1022) J

= 3
.32 x 10~7m      or      0.33 jum

Nearly all of this region (99 percent of it) is on the n-side.
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BUILT-IN VOLTAGE There is a rigorous derivation of the built-in voltage across a pn junction.
Inasmuch as in equilibrium there is no net current through the junction,

 drift of holes due to
the built-in field £(.*) must be just balanced by their diffusion due to the concentration gradient
dp/dx. We can thus set the total electron and hole current densities (drift + diffusion) through
the depletion region to zero. Considering holes alone, from Equation 5.38,

Jhoie(x) = ep(x)iJLhtE{x) - eDh  = 0
ax

The electric field is defined by £ = -dV/dx, so substituting we find,

-epiJLh dV - eDh dp = 0

We can now use the Einstein relation Dh/fih = kT/e to get
-epdV -kTdp = 0

We can integrate this equation. According to Figure 6.
1

, in the p-side, p = ppo, V = 0, and in
the w-side, p = pno, V = V0, thus,

EXAMPLE 6.3

I    dV + - /      - = 0
e JPdo pPpo

kT
that is, V0 + - [Inipn) - ln(ppo)] = 0

e

giving V0 = - iJEfl) s

which is the same as Equation 6.5t> and hence leads to Equation 6.
6

.

, ,        .  j

6
.
1.

2 Forward Bias: Diffusion Current

Consider what happens when a battery is connected across a pn junction so that the
positive terminal of the battery is attached to the /7-side and the negative terminal to the
n-side

. Suppose that the applied voltage is V. It is apparent that the negative polarity of
the supply will reduce the potential barrier V0 by V, as shown in Figure 6.2a. The rea-
son for this is that the bulk regions outside the depletion width have high conductivities
due to plenty of majority carriers in the bulk, in comparison with the depletion region
in which there are mainly immobile ions. Thus, the applied voltage drops mostly
across the depletion width W. Consequently, V directly opposes V0 and the potential
barrier against diffusion is reduced to (V0 - V), as depicted in Figure 6.2b. This has
drastic consequences because the probability that a hole will surmount this potential
barrier and diffuse to the right now becomes proportional to exp[-e(V0 - V)/kT]. In
other words, the applied voltage effectively reduces the built-in potential and hence the
built-in field, which acts against diffusion. Consequently many holes can now diffuse
across the depletion region and enter the n-side. This results in the injection of excess
minority carriers, holes, into the n-region. Similarly, excess electrons can now
diffuse toward the p-side and enter this region and thereby become injected minority
carriers.
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Figure 6.2   Forward-biased pn junction and the injection of minority carriers.
(a) Carrier concentration profiles across the device under forward bias.
(b) The hole potential energy with and without an applied bias. W is the width of the SCL with forward bias.

Law of the
junction

The hole concentration

PniO) = Pnix' = 0)

just outside the depletion region at xr = 0 (x' is measured from Wn) is due to the ex-
cess of holes diffusing as a result of the reduction in the built-in potential barrier. This
concentration /?n(0) is determined by the probability of surmounting the new potential 1
energy barrier e{V0 - V),

r g(r»-y)i
P»(0) = />exp| - [6.8]

This follows directly from the Boltzmann equation, by virtue of the hole potential
energy rising by e{ V0 - V) from x = - Wp to x = Wn,SiS indicated in Figure 6.2b, and
at the same time the hole concentration falling from ppo to Pn(0). By dividing Equa-
tion 6.8 by Equation 6.5b, we obtain the effect of the applied voltage directly, which
shows how the voltage V determines the amount of excess holes diffusing and arriving
at the n-region. Equation 6.8 divided by Equation 6.5b is

Pn(0) = Pno CXp [6.9]

which is called the law of the junction. Equation 6.9 is an important equation that we
will use again in dealing with pn junction devices. It describes the effect of the applied
voltage V on the injected minority carrier concentration just outside the depletion
region /?„(()). Obviously, with no applied voltage, V = 0 and /?„(()) = p , which is
exactly what we expect.
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Injected holes diffuse in the n-region and eventually recombine with electrons in
this region as there are many electrons in the n-side. Those electrons lost by recombi-
nation are readily replenished by the negative terminal of the battery connected to this
side. The current due to holes diffusing in the -region can be sustained because more
holes can be supplied by the /7-region, which itself can be replenished by the positive
terminal of the battery.

Electrons are similarly injected from the n-side to the p-side. The electron concen-
tration np(0) just outside the depletion region at x = -Wp is given by the equivalent
of Equation 6.9 for electrons, that is,

np(0) = ripo exp Jrp) [6.10]

In the /7-region, the injected electrons diffuse toward the positive terminal looking
to be collected. As they diffuse they recombine with some of the many holes in this re-
gion. Those holes lost by recombination can be readily replenished by the positive ter-
minal of the battery connected to this side. The current due to the diffusion of electrons
in the /j-side can be maintained by the supply of electrons from the H-side, which itself
can be replenished by the negative terminal of the battery. It is apparent that an electric
current can be maintained through a pn junction under forward bias, and that the cur-
rent flow, surprisingly, seems to be due to the diffusion of minority carriers. There is,
however, some drift of majority carriers as well.

If the lengths of the /?- and n-regions are longer than the minority carrier diffusion
lengths, then we will be justified to expect the hole concentration Pn(x') on the n-side
to fall exponentially toward the thermal equilibrium value pm, that is,

ApaC*') = Apn(0) exp -- -) [6.11]

where

7 noApn(xf) = pn(x') - pn

i is the excess carrier distribution and Lh is the hole diffusion length, defined by
Lh = \/DhTh in which xh is the mean hole recombination lifetime (minority carrier
lifetime) in the n-region. We base Equation 6.11 on our experience with the minority
carrier injection in Chapter 5.3

The hole diffusion current density J hoie is therefore

 dpn{x') dApn(x')
JD

,
ho\e = -eDh-7-7- = -eDh

dx dx'

It

that is,

D
,hole = (" L) AP»(0) eXP("7~)

3 This is simply the solution of the continuity equation in the absence of an electric field, which is discussed in
Chapter 5. Equation 6.11 is identical to Equation 5.48.

Law of the
junction

Excess

minority
carrier

profile

Excess

minority
carrier

concentration



484 chapter 6 . Semiconductor Devices
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Although this equation shows that the hole diffusion current depends on location, the
total current at any location is the sum of hole and electron contributions, which is inde-
pendent of x, as indicated in Figure 6.3. The decrease in the minority carrier diffusion
current with xf is made up by the increase in the current due to the drift of the majority car-
riers, as schematically shown in Figure 6.3. The field in the neutral region is not totally
zero but a small value, just sufficient to drift the huge number of majority carriers there.

At xf = 0, just outside the depletion region, the hole diffusion current is

D
,hole = { J~  APn (0)

We can now use the law of the junction to substitute for Apn(0) in terms of the
applied voltage V. Writing

Ap„(0) = Pn(0) - Pno = Pno p( ~  " lj
and substituting in JoMoie, we get

./-=(£Tf)[exp( )-1]
Thermal equilibrium hole concentration     is related to the donor concentration by

Pno =   = -
"no Nd

Thus,

There is a similar expression for the electron diffusion current density /D
,
eiec in the

p-region. We will assume (quite reasonably) that the electron and hole currents do not
change across the depletion region because, in general, the width of this region is narrow
(reality is not quite like the schematic sketches in Figures 6.2 and 6.3). The electron
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current at x = - Wp is the same as that at x = Wn. The total current density is then sim-
ply given by /D,hole + 7DfCkc, that is,

J =
/ eDh      eDe \ S    (eV\ 1

or

This is the familiar diode equation with

[6.12]

-[(ana*
It is frequently called the Shockley equation. The constant Jso depends not only on
the doping, Nd and Na, but also on the material via n,-, Dh, De, Lh, and Le. It is known
as the reverse saturation current density, as explained below. Writing

n? = ( u)exp(- )
where Vg = Eg/e is the bandgap energy expressed in volts, we can write Equa-
tion 6.12 as

\LhNd

that is,

J = J\ exp

or

\e(V - V.) ] for      - » 1
kT

[6.13]

where

/ eDA      eDe \

is a new constant.

The significance of Equation 6.13 is that it reflects the dependence of I-V characteris-
tics on the bandgap (via Vg), as displayed in Figure 6.4 for die three important semicon-
ductors, Ge, Si, and GaAs. Notice that the voltage across the junction for an appreciable
current of say ~ 0.1 mA is about 0.2 V for Ge, 0.6 V for Si, and 0.9 V for GaAs.

The diode equation, Equation 6.12, was derived by assuming that the lengths of the
p and n regions outside the depletion region are long in comparison with the diffusion
lengths Lh and Le. Suppose that ip is the length of the p-side outside the depletion region

Ideal diode

(Shockley)
equation

Reverse

saturation

current

Intrinsic

concentration

Diode current

and bandgap
energy
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Figure 6.4  Schematic sketch of the \-V
characteristics of Ge, Si, and GaAs pn junctions.
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Figure 6.5 Minority carrier injection and
diffusion in a short diode.

and in is that of the n-side outside the depletion region. If lp and ln are shorter than the
diffusion lengths Le and Lh, respectively, then we have what is called a short diode and
consequently the minority carrier distribution profiles fall almost linearly with distance

from the depletion region, as depicted in Figure 6.5. This can be readily proved by solving
the continuity equation, but an intuitive explanation makes it clear. At xf = 0, the minority
carrier concentration is determined by the law of the junction, whereas at the battery termi-
nal there can be no excess carriers as the battery will simply collect these. Since the length
of the neutral region is shorter than the diffusion length, there are practically no holes lost
by recombination, and therefore the hole flow is expected to be uniform across ln. This can
be so only if the driving force for diffusion, the concentration gradient, is linear.

The excess minority carrier gradient is

dApn(xf)       [pn(0) - pno]
dx r

The current density /D
,
hoie due to the injection and diffusion of holes in the n-region

as a result of forward bias is

d/ipnix') [PnW)-Pno\
Jdmo\q = -eDh -- = eDh

dx i
n

We can now use the law of the junction

(eV\
Pn(0) = Pno expl - I

for pn(0) in the above equation and also obtain a similar equation for electrons diffus-
ing in the / -region and then sum the two for the total current 7,

Short diode J
\tHNd    lpNa) 'L  V\kT) J

[6.14]
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It is clear that this expression is identical to that of a long diode, that is, Equa-
tion 6.12, if in the latter we replace the diffusion lengths Lh and Le by the lengths in and
ip of the n- and p-regions outside the SCL.

6.
1
.3 Forward Bias: Recombination and Total Current

So far we have assumed that, under a forward bias, the minority carriers diffusing and
recombining in the neutral regions are supplied by the external current. However,
some of the minority carriers will recombine in the depletion region. The external cur-
rent must therefore also supply the carriers lost in the recombination process in the
SCL. Consider for simplicity a symmetrical /w junction as in Figure 6.6 under forward
bias. At the metallurgical junction at the center C, the hole and electron concentrations
are pm and hm and are equal. We can find the SCL recombination current by consider-
ing electrons recombining in the /?-side in Wp and holes recombining in the n-side in
W

n as shown by the shaded areas ABC and BCD, respectively, in Figure 6.6. Suppose
that the mean hole recombination time in Wn is xh and mean electron recom-
bination time in Wp is xe. The rate at which the electrons in ABC are recombining is
the area ABC (nearly all injected electrons) divided by xe. The electrons are replen-
ished by the diode current. Similarly, the rate at which holes in BCD are recombining
is the area BCD divided by xh. Thus, the recombination current density is

_

 eABC eBCD
Jrecom - I"

X
le

1
We can evaluate the areas ABC and BCD by taking them as triangles, ABC

WptiM, etc., so that

recom

e\WpnM e\WnpM
x

,e

Under steady-state and equilibrium conditions, assuming a nondegenerate semi-
conductor, we can use Boltzmann statistics to relate these concentrations to the potential
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Figure 6.6  Forward-biased pn
junction and the injection of carriers
and their recombination in SCL.
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Recombina-

tion current

Recombina-

tion current

Total diode

current -

diffusion +
recombination

The diode

equation

energy. At A, the potential is zero and at M it is     V0 - V), so

Pm [ e(V0-V)l

Since V0 depends on dopant concentrations and n,- as in Equation 6.6 and further
Ppo = Na, we can simplify this equation to

pM = rii exp
\2kTj

This means that the recombination current for V > kT/e is given by

en, {Wp     Wn\      ( eV \
[6.15]

From a better quantitative analysis, the expression for the recombination current
can be shown to be4

recom
= /ro[exp(eV/2kT) - 1] [6.16]

where Jw is the preexponential constant in Equation 6.15.
Equation 6.15 is the current that supplies the carriers that recombine in the deple-

tion region. The total current into the diode will supply carriers for minority carrier dif-
fusion in the neutral regions and recombination in the space charge layer, so it will be
the sum of Equations 6.12 and 6.15.

(eV\ ( eV \       ( kT
7 = y-expUJ + 7-expWJ   v>-

This expression is often lumped into a single exponential as

1 = 1't**{%r) (v>t)

)

[6.17]

where J0 is a new constant and r) is an ideality factor, which is 1 when the current is
due to minority carrier diffusion in the neutral regions and 2 when it is due to recom-
bination in the space charge layer. Figure 6.7 shows typical expected I-V characteris-
tics of pn junction Ge, Si, and GaAs diodes. At the highest currents, invariably, the
bulk resistances of the neutral regions limit the current (why?). For Ge diodes, typi-
cally rj = 1 and the overall I-V characteristics are due to minority carrier diffusion. In
the case of GaAs, rj « 2 and the current is limited by recombination in the space
charge layer. For Si, typically, rj changes from 2 to 1 as the current increases, indicat-
ing that both processes play an important role. In the case of heavily doped Si diodes,
heavy doping leads to short minority carrier recombination times and the current is
controlled by recombination in the space charge layer so that the rj = 2 region extends
all the way to the onset of bulk resistance limitation.

I 4 This is generally proved in advanced texts.
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6
.
M Reverse Bias

When a junction is reverse-biased, as shown in Figure 6.8a, the applied voltage, as
before, drops mainly across the depletion region, that is, the space charge layer (SCL),
which becomes wider. The negative terminal will attract the holes in the p-side to
move away from the SCL, which results in more exposed negative acceptor ions and
thus a wider SCL. Similarly, the positive terminal will attract electrons away from the
SCL, which exposes more positively charged donors. The depletion width on the n-side
also widens. The movement of electrons in the n-region toward the positive battery
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EHP thermal

generation
in SCL

terminal cannot be sustained because there is no electron supply to this n-side. The
p-side cannot supply electrons to the n-side because it has almost none.

 However, there

is a small reverse current due to two causes.

The applied voltage increases the built-in potential barrier, as depicted in Fig-
ure 6.8b. The electric field in the SCL is larger than the built-in internal field The
small number of holes on the n-side near the SCL become extracted and swept by the

field across the SCL over to the p-side. This small current can be maintained by the dif-
fusion of holes from the n-side bulk to the SCL boundary.

Assume that the reverse bias Vr > kT/e = 25 mV. The hole concentration
pn(0) just outside the SCL is nearly zero by the law of the junction, Equation 6.9,
whereas the hole concentration in the bulk (or near the negative terminal) is the
equilibrium concentration pno, which is small. There is therefore a small concen-
tration gradient and hence a small hole diffusion current toward the SCL as shown
in Figure 6.8a. Similarly, there is a small electron diffusion current from bulk p-sidt
to the SCL. Within the SCL, these carriers are drifted by the field. This minority
carrier diffusion current is essentially the Shockley model. The reverse current is
given by Equation 6.12 with a negative voltage which leads to a diode current
density of - Jso called the reverse saturation current density. The value of Jso
depends only on the material via nz, fihj fie, dopant concentrations, but not on the
voltage (Vr > kT/e). Furthermore, as Jso depends on n?, it is strongly temperature
dependent. In some books it is stated that the causes of reverse current are the ther-
mal generation of minority carriers in the neutral region within a diffusion length
to the SCL, the diffusion of these carriers to the SCL, and their subsequent drift
through the SCL. This description, in essence, is identical to the Shockley model
we just described.

The thermal generation of electron-hole pairs (EHPs) in the SCL, as shown in Fig-
ure 6.8a, can also contribute to the observed reverse current since the internal field in

this layer will separate the electron and hole and drift them toward the neutral regions, j
This drift will result in an external current in addition to the reverse current due to the

diffusion of minority carriers. The theoretical evaluation of SCL generation current
involves an in-depth knowledge of the charge carrier generation processes via recom-
bination centers, which is discussed in advanced texts. Suppose that xg is the mean
time to generate an electron-hole pair by virtue of the thermal vibrations of the lat-
tice; zg is also called the mean thermal generation time. Given rg, the rate of thermal .
generation per unit volume must be n,-/r  because it takes on average Tg seconds to
create n,- number of EHPs per unit volume. Furthermore, since WA, where A is the
cross-sectional area, is the volume of the depletion region, the rate of EHP, or charge
carrier, generation is (AWnfi/Tg. Both holes and electrons drift in the SCL each con-
tributing equally to the current. The observed current density must be e(Wni)/Xg.
Therefore the reverse current density component due to thermal generation of EHPs
within the SCL should be given by

J gen -
eWiti

x
[6.18]

8

The reverse bias widens the width W of the depletion layer and hence increases
/gen- The total reverse current density     is the sum of the diffusion and generation
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(a) Forward and reverse \-V characteristics of a pn junction (the positive and negative current axes have different scales
and hence the discontinuity at the origin).
(b) Reverse diode current in a Ge pn junction as a function of temperature in a ln(/rev) versus 1/7 plot. Above 238 K,
/
rev is controlled by n2-, and below 238 K, it is controlled by n(

. The vertical axis is a logarithmic scale with actual
current values.

I SOURCE: (b) From D. Scansen and S. O. Kasap, Cnd. J. Physics, 70, 1070, 1992.

components,

/ eDh eDe \ 2 eWrii
\LhNd     LeNaJ Tg

[6.19]

which is shown schematically in Figure 6.9a. The thermal generation component /gen
in Equation 6.18 increases with reverse bias Vr because the SCL width W increases
with Vr.

The terms in the reverse current in Equation 6.19 are predominantly controlled
by nf and n, . Their relative importance depends not only on the semiconductor prop-
erties but also on the temperature since n, a exp(-Eg/2kT). Figure 6.9b shows the re-
verse current /rev in dark in a Ge pn junction (a photodiode) plotted as ln(/rev) versus
l/T to highlight the two different processes in Equation 6.19. The measurements in
Figure 6.9b show that above 238 K, /rev is controlled by n? because the slope of ln(/rev)
versus l/T yields an Eg of approximately 0.63 eV, close to the expected Eg of about
0

.66 eV in Ge. Below 238 K, ITqV is controlled by n,- because the slope of ln(/rev) versus
l/T is equivalent to Eg/2 of approximately 0.33 eV. In this range, the reverse current
is due to EHP generation in the SCL via defects and impurities (recombination
centers).

Total reverse

current
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EXAMPLE 6.4 FORWARD- AND REVERSE-BIASED Si DIODE An abrupt Si p+n junction diode has a cross-
sectional area of 1 mm2

, an acceptor concentration of 5 x 1018 boron atoms cm-3 on the
p-sidc

,
 and a donor concentration of 1016 arsenic atoms cm"3 on the n-side. The lifetime of

holes in the n-region is 417 ns, whereas that of electrons in the p-region is 5 ns due to a
greater concentration of impurities (recombination centers) on that side. Mean thermal gen-
eration lifetime (t ) is about 1 jis. The lengths of the p- and n-regions are 5 and 100 microns,
respectively.

a. Calculate the minority diffusion lengths and determine what type of a diode this is.
b

. What is the built-in potential across the junction?
c.
 What is the current when there is a forward bias of 0.6 V across the diode at 27 0C? Assume

that the current is by minority carrier diffusion.
d

. Estimate the forward current at 100 0C when the voltage across the diode remains at 0.6 V.
Assume that the temperature dependence of n, dominates over those of D, L, and /x.

e. What is the reverse current when the diode is reverse-biased by a voltage Vr = 5 V?

SOLUTION

The general expression for the diffusion length is L = VDr where D is the diffusion coefficient
and r is the carrier lifetime. D is related to the carrier mobility /x via the Einstein relationship
D/fA = kT/e. We therefore need to know /x to calculate D and hence L. Electrons diffuse in the
p-region and holes in the n-region, so we need fjLe in the presence of Na acceptors and /xA in the
presence of Afo donors. From the drift mobility, /z versus dopant concentration in Figure 5.19,
we have the following:

With Na = 5 x 1018 cm"3      /xg % 120 cm2 V"1 s-1

With Nd = 1016 cm"3 fxh * 440 cm2 V"1 s-1

Thus

kT a
D

e
 = --  (0.0259 V)(120 cm2 V-1 s-1) = 3.10 cm2 s"1

e

Oh = % (0.0259 V)(440 cm2 V"1 s"1) = 11.39 cm2 s"1
e

Diffusion lengths are

L
e
 = jDeTe = y[(3.10cm2 s-1)(5 x lO"9 s)]

= 1
.2 x 10"4 cm      or      1.2 jmn < 5 jim

Lh = VDhTh = v/[(11.39cm2 s-l)(417 x lO"9 s)]

= 21
.8 x 10-4 cm      or      21.8 fim < 100 |um

We therefore have a long diode. The built-in potential is

nT\    /<NdNa\ [(5 x 1018 x 1016)1v-= (t) ln(if) = (0 0259 V) 4 aoxio  J = 0-877 v
To calculate the forward current when V = 0.6 V, we need to evaluate both the diffusion

and recombination components to the current. It is likely that the diffusion component will
exceed the recombination component at this forward bias (this can be easily verified). Assuming
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that the forward current is due to minority carrier diffusion in neutral regions,

/ = /„ [exp( p) " l] % Iso exp( )       for v » 7"      (= 0-0259 v)
where

Aen Dh

as Na  Nd. In other words, the current is mainly due to the diffusion of holes in the n-region.
Thus,

_

 (0.01 cm2)(1.6x HT19 C)(1.0 x 1010 cm-3)2(lL39 cm -1)
(21.8 x lO"4 cm)(1016 cm"3)

= 8
.36 x lO-14 A      or      0.084 pA

Then the diode current is

/ % /,0exp( - ) = (8.36 x 10-14A)expl   (Q'6 V) 1
y\kTj )   VV (0.0259 V) J

= 0
.
96 x lO-3 A      or      0.96 mA

We note that when a forward bias of 0.6 V is applied, the built-in potential is reduced from
0

.877 V to 0.256 V, which encourages minority carrier injection, that is, diffusion of holes from
/?- to n-side and electrons from n- to p-side. To find the current at 100 0C

,
 first we assume that

U0 a n]. Then at T = 273 + 100 = 373 K, «, % 1.0 x 1012 cm-3 (approximately from m ver-
sus 1/r graph in Figure 5.16), so

7,(373 K) ~ 7,(300

/I 0 x 10l2\2
(8.36 x lO"14) =8.36xl0-10A      or      0.836 nA

Vl.O x 1010/

At 100 0C, the forward current with 0.6 V across the diode is

(eV\ 10 f   (0.6V)(300 K) 1/ = /,0exp(-   =(8.36x lO"10 A) exp - -   =0.10 Av\kT) FL(0.0259 V)(373 K) J

When a reverse bias of Vr is applied, the potential difference across the depletion region
becomes V0 + Vr and the width W of the depletion region is

_

 r2g(yoH-K)11/2 
_

 r2(11.9)(8.85 x 10-12)(0.877 + 5) 11/2
~L     eNd     J    ~L (1.6 x 10-19)(1022) J

0
.88 x lO-6 m      or      0.88 fim

The thermal generation current with Vr = 5 V is

eAWrii     (1.6 x lO"19 C)(0.01 cm2)(0.88 x 10-4cm)(1.0 x 1010cm-3)
Jgen

Tg (lO"6 S)
= 1

.
41 x 10-9A      or      1.4 nA

This thermal generation current is much greater than the reverse saturation current
Iso(= 0

.084 pA). The reverse current is therefore dominated by /gen and it is 1.4 nA.
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6
.2   pn JUNCTION BAND DIAGRAM

6
.
2
.

1  Open Circuit

Figure 6.10a shows the energy band diagrams for a p-type and an n-type semicon-
ductor of the same material (same Eg) when the semiconductors are isolated from each
other. In the p-type material the Fermi level EfP is ®p below the vacuum level and is
close to Ev. In the n-type material the Fermi level EFn is Ow below the vacuum level
and is close to Ec. The separation Ec - EFn determines the electron concentration nno
in the n-type and EfP - Ev determines the hole concentration z? , in the p-type semi-
conductor under thermal equilibrium conditions.

An important property of the Fermi energy £> is that in a system in equilibrium,
the Fermi level must be spatially continuous. A difference in Fermi levels AEF is
equivalent to electrical work eV, which is either done on the system or extracted from
the system. When the two semiconductors are brought together, as in Figure 6.10b, the
Fermi level must be uniform through the two materials and the junction at M, which
marks the position of the metallurgical junction. Far away from M, in the bulk of the
n-type semiconductor, we should still have an n-type semiconductor and Ec - EFn
should be the same as before. Similarly, EFp - Ev far away from M inside the p-type
material should also be the same as before. These features are sketched in Figure
6
.10b keeping EFp and EFn the same through the whole system and, of course, keeping

the bandgap Ec - Ev the same. Clearly, to draw the energy band diagram, we have to
bend the bands Ec and Ev around the junction at M because Ec on the n-side is close to
EFn whereas on the p-side it is far away from EFp. How do bands bend and what does
it mean?

p-type semiconductor n-type semiconductor
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n

P
E E

tc E c

FnE
8
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E --t Fp E0 U U 0 0 u o
V v
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E
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* <  Bulk >

a

(b)

Figure 6.10
(a) Two isolated p- and n-type semiconductors (same material).
(b) A pn junction band diagram when the two semiconductors are in contact. The Fermi level must be uniform in
equilibrium. The metallurgical junction is at M. The region around M contains the space charge layer (SCL). On the
n-side of M

, SCL has the exposed positively charged donors, whereas on the p-side it has the exposed negatively
charged acceptors.
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As soon as the two semiconductors are brought together to form the junction,
electrons diffuse from the n-side to the /?-side and as they do so they deplete the n-side
near the junction. Thus Ec must move away from toward M, which is exactly what
is sketched in Figure 6.10b. Holes diffuse from the /?-side to the n-side and the loss of
holes in the p-type material near the junction means that Ev moves away from EFp
toward M, which is also in the figure.

Furthermore, as electrons and holes diffuse toward each other, most of them

recombine and disappear around M, which leads to the formation of a depletion region
or the space charge layer, as we saw in Figure 6.1. The electrostatic potential energy
(PE) of the electron decreases from 0 inside the p-region to -eV0 inside the n-region,
as shown in Figure 6.1g. The total energy of the electron must therefore decrease going
from the p- to the n-region by an amount eV0. In other words, the electron in the n-side
at Ec must overcome a PE barrier to go over to Ec in the /?-side. This PE barrier is eV09
where V0 is the built-in potential that we evaluated in Section 6.1. Band bending
around M therefore accounts not only for the variation of electron and hole concentra-
tions in this region but also for the effect of the built-in potential (and hence the built-in
field as the two are related).

In Figure 6.10b we have also schematically sketched in the positive donor (at Ed)
and the negative acceptor (at Ea) charges in the SCL around M to emphasize that there
are exposed charges near M. These charges are, of course, immobile and, generally,
they are not shown in band diagrams. It should be noted that in the SCL region, marked
as W0, the Fermi level is close to neither Ec nor Ev, compared with the bulk semicon-
ductor regions. This means that both n and p in this zone are much less than their bulk
values nno and pp0. The metallurgical junction zone has been depleted of carriers
compared with the bulk. Any applied voltage must therefore drop across the SCL.

6
.
2

.
2 Forward and Reverse Bias

The energy band diagram of the pn junction under open circuit conditions is shown
in Figure 6.11a. There is no net current, so the diffusion current of electrons from the
n- to p-side is balanced by the electron drift current from the p- to n-side driven by the
built-in field Similar arguments apply to holes. The probability that an electron dif-
fuses from Ec in the n-side to Ec in the p-sidt determines the diffusion current density
/diff- The probability of overcoming the PE barrier is proportional to exp(-eV0/kT).
Therefore, under zero bias,

/diff(0) = £exp(-  [6.201
/net(0) = /diff(0) + /drift(O) = 0 [6.211

where B is a proportionality constant and /drift(O) is the current due to the drift of
electrons by to. Clearly /drift (0) = - diff (0); that is, drift is in the opposite direction to
diffusion.

When the junction is forward-biased, the majority of the applied voltage drops
across the depletion region, so the applied voltage is in opposition to the built-in
potential V0. Figure 6.11b shows the effect of forward bias, which is to reduce the PE
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Figure 6.11   Energy band diagrams for a pn junction: (a) open circuit, (b) forward bias, (c) reverse bias
conditions, (d) thermal generation of electron-hole pairs in the depletion region results in a small reverse
current.

barrier from eV0 to e(V0 - V). The electrons at Ec in the n-side can now readily
overcome the PE barrier and diffuse to the /?-side. The diffusing electrons from the
n-side can be replenished easily by the negative terminal of the battery connected to
this side. Similarly holes can now diffuse from the p- to n-side. The positive terminal
of the battery can replenish those holes diffusing away from the /?-side. There is there-
fore a current flow through the junction and around the circuit.

The probability that an electron at Ec in the n-side overcomes the new PE barrier
and diffuses to Ec in the/7-side is now proportional to exp[-e(V0 - V)/kT]. The latter
increases enormously even for small forward voltages. The new diffusion current due
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to electrons diffusing from the n- to /7-side is

f e(V0-V)'}
/diff(V) = Bexp| -      ;j

There is still a drift current due to electrons being drifted by the new field 'E0 - <E
(£ is the applied field) in the SCL. This drift current now has the value /driftW. The
net current is the diode current under forward bias

j = ydiff(V) + ydrift(V)

drift( ) is difficult to evaluate. As a first approximation we can assume that
although "Eq has decreased to - £, there is, however, an increase in the electron con-
centration in the SCL due to diffusion so that we can approximately take Jtnft(V) to re-
main the same as ./drift(O). Thus

J * Jm(V) + /drift(O) = Bexp - j - £exp(- )
Factoring leads to

J

We should also add to this the hole contribution, which has a similar form with a

different constant B. The diode current-voltage relationship then becomes the familiar
diode equation,

J = y.[exp( )~l]
where J0 is a temperature-dependent constant.5

When a reverse bias, V = - Vr, is applied to the pn junction, the voltage again
drops across the SCL. In this case, however, Vr adds to the built-in potential V0, so the
PE barrier becomes e{ V0 + Vr), as shown in Figure 6.11c. The field in the SCL at M
increases to £0 + £, where £ is the applied field.

The diffusion current due to electrons diffusing from Ec in the n-side to Ec in the
/7-side is now almost negligible because it is proportional to exp[-e(V0 + Vr)/kT},
which rapidly becomes very small with Vr. There is, however, a small reverse current
arising from the drift component. When an electron-hole pair (EHP) is thermally gen-
erated in the SCL, as shown in Figure 6.lid, the field here separates the pair. The elec-
tron falls down the PE hill, down to Ec, in the rc-side to be collected by the battery. Sim-
ilarly the hole falls down its own PE hill (energy increases downward for holes) to
make it to the /7-side. The process of falling down a PE hill is the same process as being
driven by a field, in this case by !E0 + £. Under reverse bias conditions, there is there-
fore a small reverse current that depends on the rate of thermal generation of EHPs in
the SCL. An electron in the /7-side that is thermally generated within a diffusion length

pn Junction
I-V charac-

teristics

I 5 The derivation is similar to that for the Schottky diode, but there were more assumptions here.
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L
e to the SCL can diffuse to the SCL and consequently can become drifted by the field,

that is, roll down the PE hill in Figure 6.lid. Such minority carrier thermal generation
in neutral regions can also give rise to a small reverse current.

EXAMPLE 6.5

Built-in

voltage

THE BUILT-IN VOLTAGE V0 FROM THE ENERGY BAND DIAGRAM The energy band treatment
allows a simple way to calculate V0. When the junction is formed in Figure 6.10 from a to b, Epp
and Efn must shift and line up. Using the energy band diagrams in this figure and semiconduc-
tor equations for n and /?, derive an expression for the built-in voltage V0 in terms of the mate-
rial and doping properties Nd, Na, and n,-.

SOLUTION

The shift in Epp and Epn to line up is clearly <&p - <!>„, the work function difference. Thus the
PE barrier eV0 is <PP - <Pn. From Figure 6.10, we have

eV0 = <t>p-<t>n = (Ec - EFp) - (Ec - EFn)

But on the /?- and n-sides, the electron concentrations in thermal equilibrium are given by

n
po Afc exp  

kT

r (Ec-EFn)-]
nno = Ncexp\ - 

From these equations, we can now substitute for (Ec - Epp) and (Ec - Efn) in the expres-
sion for eV0. The Nc cancel and we obtain

eV0
\npoJ

Since npo = n /Na and nno = Nd, we readily obtain the built-in potential V0,

Depletion
region width

6
.
3    DEPLETION LAYER CAPACITANCE

OF THE pn JUNCTION

It is apparent that the depletion region of a pn junction has positive and negative
charges separated over a distance W similar to a parallel plate capacitor. The stored
charge in the depletion region, however, unlike the case of a parallel plate capacitor,
does not depend linearly on the voltage. It is useful to define an incremental capaci-
tance that relates the incremental charge stored to an incremental voltage change
across the pn junction.

The width of the depletion region is given by

wj2eiNa + Nd),V0-V)Y [6>22]
L eNaNd J

where, for forward bias, V is positive, which reduces V0, and, for reverse bias, V is
negative, so V0 is increased. We are interested in obtaining the capacitance of the
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Figure 6.12  The depletion region behaves like a capacitor.
(a) The charge in the depletion region depends on the applied voltage just as in a capacitor. A reverse bias example
is shown.

(b) The incremental capacitance of the depletion region increases with forward bias and decreases with reverse bias. Its
value is typically in the range of picofarads per mm2 of device area.

depletion region under dynamic conditions, that is, when Vis a function of time. When
the applied voltage V changes by dV, to V + dV, then W also changes via Equa-
tion 6.22, and as a result, the amount of charge in the depletion region becomes
Q + dQ, as shown in Figure 6.12a for the reverse bias case, that is, V = -Vr and
dV = - dVr. The depletion layer capacitance Cdep is defined by

Cdep -
dQ

dV
[6.23]

where the amount of charge (on any one side of the depletion layer) is

\Q\ = eNdWnA = eNaWpA

and W = Wn + Wp.We can therefore substitute for Win Equation 6.22 in terms of Q and
then differentiate it to obtain dQ/dV. The final result for the depletion capacitance is

ilM Lf [6
.24]CdeP ~ ~w ~~

A r
.

eei

We should note that Cdep is given by the same expression as that for the parallel
plate capacitor, e A/ W, but with W being voltage dependent by virtue of Equation 6.22.
The Cdep - V behavior is sketched in Figure 6.12b. Notice that Cdep decreases with in-
creasing reverse bias, which is expected since the separation of the charges increases
via W oc (V0 + Vr)1/2

. The capacitance Cdep is present under both forward and reverse
bias conditions.

The voltage dependence of the depletion capacitance is utilized in varactor
diodes (varicaps), which are employed as voltage-dependent capacitors in tuning cir-
cuits. A varactor diode is reverse biased to prevent conduction, and its depletion
capacitance is varied by the magnitude of the reverse bias.

Definition of
depletion
layer
capacitance

Depletion
capacitance
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Injected
minority
carrier

charge

Diffusion
capacitance

Dynamic/
incremental

resistance

6
.4    DIFFUSION (STORAGE) CAPACITANCE

AND DYNAMIC RESISTANCE

The diffusion or storage capacitance arises under forward bias only. As shown in
Figure 6.2a, when the p+n junction is forward biased, we have stored a positive
charge on the n-side by the continuous injection and diffusion of minority carriers.
Similarly, a negative charge has been stored on the /?+-side by electron injection, but
the magnitude of this negative charge is small for the p+n junction. When the
applied voltage is increased from Vto V + dV, as shown in Figure 6.13, then /?w(0)
changes from /?w(0) to / (0). If d Q is the additional minority carrier charge injected
into the n-side, as a result of a small increase d V in V, then the incremental storage
or diffusion capacitance Cdiff is defined as Cdiff = dQ/dV. At voltage V, the in-
jected positive charge Q on the rc-side is disappearing by recombination at a rate
Q/th, where is the minority carrier lifetime. The diode current lis therefore Q/Th,
from which

Q = ThI = ThI0 exp 0 - lj [6.25]

Thus,

Cdiff =
d Q     Thel ThI(mA)

dV kT 25
[6.26]

where we used e/kT & 1/0.025 at room temperature. Generally the value of the dif-
fusion capacitance, typically in the nanofarads range, far exceeds that of the depletion
layer capacitance.

Suppose that the voltage V across the diode is increased by an infmitesimally small j
amount dV9 as shown in an exaggerated way in Figure 6.14. This gives rise to a small j
increase d I in the diode current. We define the dynamic or incremental resistance rd \
of the diode as d V/d I, so

rd =
dV 

_

 kT
_

 
_

 25
~

dl 
~

 
~

el 
"

 /(mA)
[6.27]

Figure 6.13  Consider the injection of holes into the
n-side during forward bias.

Storage or diffusion capacitance arises because when the
diode voltage increases from Vto V+ dV, more minority
carriers are injected and more minority carrier charge is
stored in the n-region.

SCL Neutral n-region

pJO) when V+dV
.pn(0) when V

I

Q
pno

X
'

I

Vto V+dV
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>Voltage    Figure 6.14  The dynamic resistance of the
diode is defined as dV/dl, which is the inverse of
the tangent at /.

The dynamic resistance is therefore the inverse of the slope of the I-V characteris-
tics at a point and hence depends on the current /. It relates the changes in the diode
current and voltage arising from the diode action alone, by which we mean the mod-
ulation of the rate of minority carrier diffusion by the diode voltage. We could have
equivalently defined a dynamic conductance by

- 
-

 - 1gd~~
dv

~

7d

From Equations 6.26 and 6.27 we have

fd Cdiff = th [6.28]

The dynamic resistance and diffusion capacitance Cdiff of a diode determine
its response to small ac signals under forward bias conditions. By small we usually
mean voltages smaller than the thermal voltage kT/e or 25 mV at room temperature.
For small ac signals we can simply represent a forward-biased diode as a resistance rd
in parallel with a capacitance Cdiff.

Dynamic
conductance

INCREMENTAL RESISTANCE AND CAPACITANCE An abrupt Si p+n junction diode of cross-
sectional area (A) 1 mm2 with an acceptor concentration of 5 x lO18 boron atoms cm-3 on the

p-side and a donor concentration of 1016 arsenic atoms cm-3 on the n-side is forward-biased to

carry a current of 5 mA. The lifetime of holes in the n-region is 417 ns, whereas that of electrons
in the p-region is 5 ns. What are the small-signal ac resistance, incremental storage, and deple-
tion capacitances of the diode?

SOLUTION

This is the same diode we considered in Example 6.4 for which the built-in potential was
0

.877 V and Iso = 0.0836 pA. The current through the diode is 5 mA. Thus
1-3

/ = Iso exp or V (T)ln(£) = (0 0259)ln(o.0836 x010-.0 0
.
643 V

EXAMPLE 6.6
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The dynamic diode resistance is given by

25 25
rd =  = - = 5 ft

/(mA) 5

The depletion capacitance per unit area with Afa » Nd is

F       gg(Arfl )       11/2 
_

    F   gg  11/2
dep       L2(iVa + )(V<,- V)J    " L2(V<,-V)J

At V = 0.643 V, with V0 = 0.877 V, Nd = 1022 m"3, er = 11.9, and A = lO"6 m2, the
above equation gives

r    _ in-6 [V* x 10-19)(11.9)(8.85 x 10-12)(1022)11/2
Cdep"AU   [ 2(0.877 -0.643) J

= 6
.0 x 10"10 F      or      600 pF

The incremental diffusion capacitance Cdiff due to holes injected and stored in the rc-region is

tfc/ftnA)     (417 x 10-»)(5)    
Q_ in_8Cdiff =  =  = 8.3 x 10   F      or      83 nF

25 25

Clearly the diffusion capacitance (83 nF) that arises during forward bias completely over-
whelms the depletion capacitance (600 pF).

We note that there is also a diffusion capacitance due to electrons injected and stored in the
p-region. However, electron lifetime in the p-region is very short (here 5 ns), so the value of
this capacitance is much smaller than that due to holes in the n-region. In calculating the diffu-
sion capacitance, we normally consider the minority carriers that have the longest recombina-
tion lifetime, here Th. These are the carriers that take a long time to disappear by recombination
when the bias is suddenly switched off.

6
.
5    REVERSE BREAKDOWN: AVALANCHE

AND ZENER BREAKDOWN

The reverse voltage across a injunction cannot be increased without limit. Eventually
the pn junction breaks down either by the Avalanche or Zener breakdown mechanisms,
which lead to large reverse currents, as shown in Figure 6.15. In the V = - region,
the reverse current increases dramatically with the reverse bias. If unlimited, the large

Figure 6.15 Reverse l-V, characteristics of y I
a pn junction. |

br M
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reverse current will increase the power dissipated, which in turn raises the temperature
of the device, which leads to a further increase in the reverse current and so on. If the

temperature does not bum out the device, for example, by melting the contacts, then
the breakdown is recoverable. If the current is limited by an external resistance to a
value within the power dissipation specifications, then there is no reason why the
device cannot operate under breakdown conditions.

6.5.1 Avalanche Breakdown

As the reverse bias increases, the field in the SCL can become so large that an electron
drifting in this region can gain sufficient kinetic energy to impact on a Si atom and ion-
ize it, or break a Si-Si bond. The phenomenon by which a drifting electron gains suf-

ficient energy from the field to ionize a host crystal atom by bombardment is termed
impact ionization. The accelerated electron must gain at least an energy equal to Eg
as impact ionization breaks a Si-Si bond, which is tantamount to exciting an electron
from the valence band to the conduction band. Thus an additional electron-hole pair is
created by this process.

Consider what happens when a thermally generated electron just inside the SCL in
the p-side is accelerated by the field. The electron accelerates and gains sufficient
energy to collide with a host Si atom and release an EHP by impact ionization, as
depicted in Figure 6.16. It will lose at least Eg amount of energy, but it can accelerate
and head for another ionizing collision further along the depletion region until it
reaches the neutral n-region. The HHPs generated by impact ionization themselves can
now be accelerated by the field and will themselves give rise to further HHPs by ion-
izing collisions and so on, leading to an avalanche effect. One initial carrier can thus
create many carriers in the SCL through an avalanche of impact ionizations.

If the reverse current in the SCL in the absence of impact ionization is I09 then due
to the avalanche of ionizing collisions in the SCL, the reverse current becomes
MI0 where M is the multiplication. It is the net number of carriers generated by
the avalanche effect per carrier in the SCL. Impact ionization depends strongly on the
electric field. Small increases in the reverse bias can lead to dramatic increases in the

P h+ n

-w-

Depletion region (SCL)

Figure 6.16 Avalanche breakdown
by impact ionization.

V
r
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multiplication process. Typically

M =
1

-(£)*
[6.29]

1

where Vr is the reverse bias, Vbr is the breakdown voltage, and n is an index in the
range 3 to 5. It is clear that the reverse current MI0 increases sharply with Vr near Vbr,
as depicted in Figure 6.15. Indeed, the voltage across a diode under reverse breakdown
remains around V  for very large current variations (several orders of magnitude). If
the reverse current under breakdown is limited by an appropriate external resistor R, as
shown in Figure 6.17, to prevent destructive power dissipation in the diode, then the
voltage across the diode remains approximately at Vbr. Thus, as long as Vr > Vbr, the
diode clamps the voltage between A and B to approximately V . The reverse current in
the circuit is then (Vr - VbT)/R.

Since the electric field in the SCL depends on the width of the depletion region W,
which in turn depends on the doping parameters, V  also depends on the doping, as
discussed in Example 6.7.

6
.
5

.2   Zener Breakdown

Heavily doped junctions have narrow depletion widths, which lead to large electric
fields within this region. When a reverse bias is applied to a pn junction, the energy
band diagram of the n-side can be viewed as being lowered with respect to the p-side,
as depicted in Figure 6.18. For a sufficient reverse bias (typically less than 10 V), Ec
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i
V,br
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r
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Figure 6.17  If the reverse breakdown current when
V

r > Vbr is limited by an external resistance R to prevent
destructive power dissipation, then the diode can be used
to clamp the voltage between A and B to remain
approximately Vbr-

Figure 6.18  Zener breakdown involves electrons
tunneling from the VB of p-side to the CB of n-side when
the reverse bias reduces Ec to line up with Ev.
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Figure 6.19  The breakdown field !Ebr in the
depletion layer for the onset of reverse breakdown
versus doping concentration Nd in the lightly doped
region in a one-sided (p+n or pn+) abrupt pn
junction.

Avalanche and tunneling mechanisms are
separated by the arrow.
I SOURCE: Data extracted from M. Sze and G. Gibbons,
I So//'d State Electronics, 9, no. 831,1966.

on the n-side may be lowered to be below Ev on the p-side. This means that electrons
at the top of the VB in the p-side are now at the same energy level as the empty states
in the CB in the n-side. As the separation between the VB and CB narrows, shown as
a (< W), the electrons easily tunnel from the VB in the /?-side to the CB in the n-side,
which leads to a current. This process is called the Zener effect. As there are many
electrons in the VB and many empty states in the CB, the tunneling current can be sub-
stantial. The reverse voltage Vr, which starts the tunneling current and hence the Zener
breakdown, is clearly that which lowers Ec on the n-side to be below Ev on the p-side
and thereby gives a separation that encourages tunneling. In nonquantum mechanical
terms, one may intuitively view the Zener effect as the strong electric field in the
depletion region ripping out some of those electrons in the Si-Si bonds and thereby
releasing them for conduction.

Figure 6.19 shows the dependence of the breakdown field £br in the depletion
region for the onset of avalanche or Zener breakdown in a one-sided {p+n or pn+)
abrupt junction on the dopant concentration Nd in the lightly doped side. At high

fields, the tunneling becomes the dominant reverse breakdown mechanism.

AVALANCHE BREAKDOWN Consider a uniformly doped abrupt p+w junction (Na » Nd)
reverse biased by V = - Vr.

a. What is the relationship between the depletion width W and the potential difference
(Yo + Vr) across Wl

b
. If avalanche breakdown occurs when the maximum field in the depletion region £;0 reaches

the breakdown field 'Ehx, show that the breakdown voltage Vbr (» V0) is then given by

br
br

2eNd

c. An abrupt Si p+n junction has boron doping of 1019 cm"3 on the p-side and phosphorus
doping of 1016 cm-3 on the n-side. The dependence of the avalanche breakdown field on
the impurity concentration is shown in Figure 6.19.
1

. What is the reverse breakdown voltage of this Si diode?
2

. Calculate the reverse breakdown voltage when the phosphorus doping is increased to
1017cm-3.

EXAMPLE 6.7
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Maximum

field and
reverse bias

Breakdown

voltage and
doping

SOLUTION

One can assume that all the applied reverse bias drops across the depletion layer so that the
new voltage across Wis now V0 + Vr. We have to integrate dX/dx = Pnet/s as before across

W to find the maximum field. The most important fact to remember here is that the pn junc-
tion equations relating W, 'E0iV0, N0, Nd, and so on remain the same but with V0 replaced
with V0 + Vr since the applied reverse bias of Vr increases V0 to V0 + Vr. Then from Equa-
tion 6.4,

W
2    2s(V0 + Vr)(N  + N-1)     2e(V0 + Vr)

e d

since Na  Nd. The maximum field that corresponds to the breakdown field     is given by

2(V0 + Vr)
to

Thus, from these two equations we can eliminate W and obtain Vbr
 = V

r
 as

Vbr
br

2eNtd

Given Na » Nd we have a p+n junction with Nd = 1016 cm-3. The depletion region
extends into the n-region, so the maximum field actually occurs in the n-region. Here the
breakdown field Ebr depends on the doping level as given in the graph of the critical field
at breakdown 2;br versus doping concentration Nd in Figure 6.19. Taking Ebr  40 V//xm
or 4.0 x 105 V cm

-1 at Nd = 1016 cm
"3 and using the above equation for V , we get

Vbr = 53 V.

When Nd = 1017 cm-3, £br from the graph is about 6 x 105 V cm"1,
 which leads to

Vbr = 11.8 V.

6
.6   BIPOLAR TRANSISTOR (BJT)

6
.
6
.1 Common Base (CB) dc Charactewstics

As an example, we will consider the pnp bipolar junction transistor (BJT) whose basic
structure is shown in Figure 6.20a. The pnp transistor has three differently doped
semiconductor regions. These regions of different doping occur within the same single
crystal by the variation of acceptor and donor concentrations resulting from the fabri-
cation process. The most heavily doped p-region (/?+) is called the emitter. In contact
with this region is the lightly doped n-region, which is called the base. The next region
is the p-type doped collector. The base region has the most narrow width for reasons
discussed below. Although the three regions in Figure 6.20a have identical cross-
sectional areas, in practice, due to the fabrication process, the cross-sectional area
increases from the emitter to the collector and the collector region has an extended
width. For simplicity, we will assume that the cross-sectional area is uniform, as in
Figure 6.20a.

The pnp BJT connected as shown in Figure 6.20b is said to be operating under
normal and active conditions, which means that the base-emitter (BE) junction is for-
ward biased and the base-collector (BC) junction is reverse biased. The circuit in
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Figure 6.20
(a) A schematic illustration of the pnp bipolar transistor with three differently doped regions.
(b) The pnp bipolar operated under normal and active conditions.
(c) The CB configuration with input and output circuits identified.
(d) The illustration of various current components under normal and active conditions.

Figure 6.20b, in which the base is common to both the collector and emitter bias volt-
ages, is known as the common base (CB) configuration.6 Figure 6.20c shows the CB
transistor circuit with the BJT represented by its circuit symbol. The arrow identifies
the emitter junction and points in the direction of current flow when the EB junction
is forward biased. Figure 6.20c also identifies the emitter circuit, where Veb is con-
nected, as the input circuit. The collector circuit, where Vcb is connected, is the out-
put circuit.

The base-emitter junction is simply called the emitter junction and the base-
collector junction is called the collector junction. As the emitter is heavily doped, the
base-emitter depletion region Web extends almost entirely into the base. Generally, the
base and collector regions have comparable doping, so the base-collector depletion
region Wbc extends to both sides. The width of the neutral base region outside the
depletion regions is labeled as Wb- All these parameters are shown and defined in
Figure 6.20b.

6 CB should not be confused with the conduction band abbreviation.
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We should note that all the applied voltages drop across the depletion widths. The
applied collector-base voltage Vcb reverse biases the BC junction and hence increases
the field in the depletion region at the collector junction.

Since the EB junction is forward-biased, minority carriers are then injected into
the emitter and base exactly as they are in the forward-biased diode. Holes are injected
into the base and electrons into the emitter, as depicted in Figure 6.20d. Hole injection
into the base, however, far exceeds the electron injection into the emitter because the
emitter is heavily doped. We can then assume that the emitter current is almost entirely
due to holes injected from the emitter into the base. Thus, when forward biased, the
emitter "emits," that is, injects holes into the base.

Injected holes into the base must diffuse toward the collector junction because
there is a hole concentration gradient in the base. Hole concentration / (Wb) just out-
side the depletion region at the collector junction is negligibly small because the in-
creased field sweeps nearly all the holes here across the junction into the collector (the
collector junction is reverse biased).

The hole concentration /?n(0) in the base just outside the emitter junction de-
pletion region is given by the law of the junction. Measuring x from this point (Fig-
ure 6.20b),

Pn (0) = Pno exp ( -j r J [6.30]
whereas at the collector end, x = Wb, PniWs)  0.

If no holes are lost by recombination in the base, then all the injected holes diffuse
to the collector junction. There is no field in the base to drift the holes. Their motion is
by diffusion. When they reach the collector junction, they are quickly swept across into
the collector by the internal field £ in Wbc- It is apparent that all the injected holes
from the emitter become collected by the collector. The collector current is then the
same as the emitter current. The only difference is that the emitter current flows across
a smaller voltage difference Veb, whereas the collector current flows through a larger
voltage difference Vcb - This means a net gain in power from the emitter circuit to the
collector circuit.

Since the current in the base is by diffusion, to evaluate the emitter and collec-
tor currents we must know the hole concentration gradient at x = 0 and x = Wb
and therefore we must know the hole concentration profile Pn(x) across the base.7

In the first instance, we can approximate the /?„(jc) profile in the base as a straight
line from /?n(0) to PniWs) = 0, as shown in Figure 6.20b. This is only true in the
absence of any recombination in the base as in the short diode case. The emitter cur-
rent is then

V dx /x=0 WB

7 The actual concentration profile can be calculated by solving the steady-state continuity equation, which can be
found in more advanced texts.
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We can substitute for pn(0) from Equation 6.30 to obtain
'

eVEB\

kT J
eADhpno

h = -- exp
WB

[6.31]

It is apparent that is determined by Veb, the forward bias applied across the EB
junction, and the base width Wb- In the absence of recombination, the collector current
is the same as the emitter current, Ic = h- The control of the collector current Ic in
the output (collector) circuit by Veb in the input (emitter) circuit is what constitutes the
transistor action. The common base circuit has a power gain because Ic in the out-
put in Figure 6.20c flows around a larger voltage difference Vcb compared with IE in
the input, which flows across Veb (about 0.6 V).

The ratio of the collector current Ic to the emitter current Ie is defined as the CB
current gain or current transfer ratio a of the transistor,

a =
Ic

h
[6.32]

Typically, a is less than unity, in the range 0.99-0.999, due to two reasons. First is
the limitation due to the emitter injection efficiency. When the BE junction is forward-
biased, holes are injected from the emitter into the base, giving an emitter current
JE(hoie), and electrons are injected from the base into the emitter, giving an emitter cur-
rent / (electron). The total emitter current is, therefore,

Ie = /£(hole) + (electron)

Only the holes injected into the base are useful in giving a collector current because
only they can reach the collector. The emitter injection efficiency is defined as

Y =
E(hole) 1

E(hole) + (electron) Ie (electron)
[6.33]

1 +
j£(hole)

Consequently, the collector current, which depends on / (hoie) only, is less than the
emitter current. We would like / to be as close to unity as possible; / (hoie) > (electron) .
y can be readily calculated for the forward-biased pn junction current equations as
shown in Example 6.9.

Secondly, a small number of the diffusing holes in the narrow base inevitably be-
come lost by recombination with the large number of electrons present in this region
as depicted in Figure 6.20d. Thus, a fraction of / (hoie) is lost in the base due to recom-
bination, which further reduces the collector current. We define the base transport
factor aT as

Emitter

current

Definition of
CB current

gain

Total emitter

current

Emitter

injection
efficiency

Ic Ic

(hole) ylE
[6.34]

Base

transport

factor

If the emitter were a perfect injector, IE = h ), then the current gain a would
be oiT. If Th is the hole (minority carrier) lifetime in the base, then \/xh is the proba-
bility per unit time that a hole will recombine and disappear. We also know that in
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Base minority
carrier

transit time

Base

transport

factor

CB current

gain

Base current

Base-to-

collector

current gain

time t, a particle diffuses a distance jc, given by x = JlDt where D is the diffusion
coefficient. The time r, it takes for a hole to diffuse across     is then given by

*t =
2D

[6.35]

This diffusion time is called the transit time of the minority carriers across the base.
The probability of recombination in time xt is then tf/r/,. The probability of not

recombining and therefore diffusing across is (1 - iv/r/t). Since / hoie) represents the
holes entering the base per unit time, /£:(hoie)(l - A/t) represents the number of
holes leaving the base per unit time (without recombining) which is the collector
current /c- Substituting for /c and / (hoie) in Equation 6.34 gives the base transport
factor ar,

lc
= 1- [6.36]

(hole) *h

Using Equations 6.32, 6.34, and 6.36 we can find the total CB current gain a\

a = oltY Y [6.37]

The recombination of holes with electrons in the base means that the base must be

replenished with electrons, which are supplied by the external battery in the form of a
small base current as shown in Figure 6.20d. In addition, the base current also has
to supply the electrons injected from the base into the emitter, that is, / (electron)* and
shown as electron diffusion in the emitter in Figure 6.20d. The number of holes enter-
ing the base per unit time is represented by / (hoie), and the number recombining per
unit time is then lE(ho\e)(*t/'Ch)* Thus, IB is

h = I - I /E(hole) + /ECelectron) = Y - h + (1 - Y)h
\xh/ th

[6.38]

which further simplifies to IE - Ic ; the difference between the emitter current and the
collector current is the base current. (This is exactly what we expect from Kirchoff's
current law.)

The ratio of the collector current to the base current is defined as the current gain
P of the transistor.8 By using Equations 6.32, 6.37, and 6.38, we can relate   to a:

IB     I - a r,
[6.39]

The base-collector junction in Figure 6.20b is reverse biased, which leads to a leak-
age current into the collector terminal even in the absence of an emitter current. This
leakage current is due to thermally generated electron-hole pairs in the depletion region
Wbc being drifted by the internal field, as schematically illustrated in Figure 6.20d.

8£ is a useful parameter when the transistor is used in what is called the common emitter (CE) configuration, in
which the input current is made to flow into the base of the transistor, and the collector current is made to flow in
the output circuit.
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Figure 6.21   DC l-V
characteristics of the pnp bipolar
transistor (exaggerated to
highlight various effects).

Suppose that we open circuit the emitter (IE = 0). Then the collector current is simply
the leakage current, denoted by Icbo- The base current is then -Icbo (flowing out from
the base terminal). In the presence of an emitter current IE,

 we have

Ic = (xIe + Icbo

IB = (1 - a)IE - Icbo

[6.40]

[6.41]

Equations 6.40 and 6.41 give the collector and base currents in terms of the input
current /£, which in turn depends on Veb- They only hold when the collector junction
is reverse biased and the emitter junction is forward biased,

 which is defined as the

active region of the BJT. It should be emphasized that what constitutes the transistor
action is the control of Ie, and hence /c, by Veb-

The dc characteristics of the CB-connected BJT as in Figure 6.20b are normally
represented by plotting the collector current Ic as a function of Vcb for various fixed
values of the emitter current. A typical example of such dc characteristics for a pnp
transistor is illustrated in Figure 6.21. The following characteristics are apparent. The
colleclur uuirent when Ie = 0 is the CB junction leakage current Icbo* typically a frac-
tion of a microampere. As long as the collector is negatively biased with respect to the
base, the CB junction is reverse biased and the collector current is given by
Ic = ctiE + icBO, which is close to the emitter current when Ie » Icbo- When the
polarity of Vcb is changed, the CB junction becomes forward biased. The collector
junction is then like a forward biased diode and the collector current is the difference
between the forward biased CB junction current and the forward biased EB junction
current. As they are in opposite directions, they subtract.

We note that Ic increases slightly with the magnitude of Vcb even when Ie is
constant. In our treatment Ic did not directly depend on Vcb, which simply reverse biased
the collector junction to collect the diffusing holes. In our discussions we assumed that
the base width Wb does not depend on the applied voltages. This is only approximately
true. Suppose that we increase the reverse bias Vcb (for example, from -5 to -10 V).
Then the base-collector depletion width Wbc also increases, as schematically depicted
in Figure 6.22. Consequently the base width Wb gets slightly narrower, which leads to a
slightly shorter base transit time r,. The base transport factor ar in Equation 6.36 and

Active region
collector

current

Active region
base current
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Figure 6.22  The Early effect.
When the BC reverse bias increases, the

depletion width Wbc increases to W'bc,
which reduces the base width Wb to Wb.
As pn(0) is constant (constant Veb), the
minority carrier concentration gradient
becomes steeper and the collector current,
lc increases.
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hence a are then slightly larger, which leads to a small increase in /c. The modulation
of the base width Wb by Vcb is not very strong, which means that the slopes of the
Ic - Vcb lines at a fixed are very small in Figure 6.21. The base width modulation
by Vcb is called the Early effect.

EXAMPLE 6.8 A pnp TRANSISTOR Consider a pnp Si BJT that has the following properties. The emitter re-
gion mean acceptor doping is 2 x 1018 cm

-3
, the base region mean donor doping is

1 x 1016 cm-3, and the collector region mean acceptor doping is 1 x 1016 cm-3. The hole
drift mobility in the base is 400 cm2 V-1 s-1, and the electron drift mobility in the emitter is
200 cm2 V-1 s~l. The transistor emitter and base neutral region widths are about 2 \xm each
when the transistor is under normal operating conditions, that is, when the EB junction is
forward-biased and the BC junction is reverse-biased. The effective cross-sectional area of the
device is 0.02 mm2. The hole lifetime in the base is approximately 400 ns. Assume that the
emitter has 100 percent injection efficiency, y = 1. Calculate the CB current transfer ratio a
and the current gain £. What is the emitter-base voltage if the emitter current is 1 mA?

SOLUTION

The hole drift mobility iih = 400 cm2 V"1 s"1
relationship we can easily find the diffusion coefficient of holes,

400 cm2 V 1 s 1 (minority carriers in the base). From the Einstein

(kT\
Da = - (0.0259 V)(400 cm2 V1 s-1) 10.36 cm2 s-1

1
.
93 x 10"9 s

The minority carrier transit time r, across the base is

W2B 
_

  (2 x IQ-4 cm)2
IDy, 

~

 2(10.36 cm2 s"1)

The base transport factor and hence the CB current gain is

1
.
93 x IQ"9

Xh 400 x 10"9 s

or 1
.
93 ns

yoib
s

0
.
99517
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The current gain   of the transistor is

a 0.99517
/3 =  =  = 206.2

1 - a     1 - 0.99517

The emitter current is due to holes diffusing in the base (y = 1),

h = ho exp( )
where

eADhpno eADhn]
l FD -   -  

WB NdWB

(1.6 x IQ-19 C)(0.02 x IQ-2 cm2)(10.36 cm s Xl.O x 1010 cm-3)2
"

 (1 x 1016 cm-3)(2 x lO"4 cm)
= 1

.
66 x lO"14 A

Thus,

kT     ( lE \ (   1 x lO"3 A \
VEB = - In   -   = (0.0259 V) In  -   = 0.64 Ve      Kho) V1.66 x lO"14 A/

The major assumption is y = 1, which is generally not true, as shown in Example 6.9. The
actual a and hence & will be smaller due to less than 100 percent emitter injection. Note also
that Wb is the neutral region width, that is, the region of base outside the depletion regions. It is
not difficult to calculate the depletion layer widths within the base, which are about 0.2 jam on
the emitter side and roughly about 0.7 jam on the collector side, so that the total base width junc-
tion to junction is 2 + 0.2 + 0.7 = 2.9 jmn.

The transit time of minority carriers across the base is r,. If the input signal changes be-
fore the minority carriers have diffused across the base, then the collector current cannot re-
spond to the changes in the input. Thus, if the frequency of the input signal is greater than
1/r,, the minority carriers will not have time to transit the base and the collector current will
remain unmodulated by the input signal. One can set the upper frequency limit at ~l/r,
which is 518 MHz.

EMITTER INJECTION EFFICIENCY y

a.   Consider a pnp transistor with the parameters as defined in Figure 6.20. Show that the
injection efficiency of the emitter, defined as

Emitter current due to minority carriers injected into the base
y =  

Total emitter current

1      is given by

I 1
Y = "

j _  Nd Wfl/ (emitter)

b
. How would you modify the CB current gain a to include the emitter injection efficiency?

c. Calculate the emitter injection efficiency for the pnp transistor in Example 6.8, which has
an acceptor doping of 2 x 1018 cm

-3 in the emitter, donor doping of 1 x 1016 cm
-3 in the

EXAMPLE 6.9
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base, emitter and base neutral region widths of 2 jum, and a minority carrier lifetime of
400 ns in the base. What are its a and   taking into account the emitter injection efficiency?

SOLUTION

When the BE junction is forward biased, holes are injected into the base, giving an emitter cur-
rent /E(hoie)» and electrons are injected into the emitter, giving an emitter current / (electron). The
total emitter current is therefore

/E I£;(hole) £ (electron)

Only the holes injected into the base are useful in giving a collector current because only
they can reach the collector. Injection efficiency is defined as

/
Y

E(hole) 1

/£(hole) E (electron) i +
/E (electron)

/Ethole)

But, provided that WE and Wb are shorter than minority carrier diffusion lengths,

eAD/Kbaae)/!?        /e VEB \
/E(hole) =  ZT T,

 eXP\
~

kT
~ )

eA£>e(emitter)1,2        fe VEb \
IE (electron) =  ZTlTr eXP I )NdWB       r\ kT ) NaWE

When we substitute into the definition of y and use D - iikTje, we obtain

1
Y

1 +
A Wg/Memitter)
N

aWs/X base)

The hole component of the emitter current is given as ylE. Of this, a fraction ar =
(1 - xtlxh) will give a collector current. Thus, the emitter-to-collector current transfer ratio or,
taking into account the emitter injection efficiency, is

OL aTyK)
In the emitter, Nai tter) = 2 x 1018 cm-3 and A6e(emitter) = 200 cm2 V-1 s , and in the

base, A (base) = 1 x 1016 cm"3 and / (base) = 400 cm2 V-1 s-1. The emitter injection effi-
ciency is

1
Y

(1 x 1016)(2)(200)
0

.
99751

1 +
(2 x 1018)(2)(400)

The transit time r, = Wl/2Dh = 1.93 x 10"9 s (as before), so the overall a is
/ 1.93xl0"9\

a = 0.99751   1  = 0.99269
V      400 x lO"9 /

and the overall is

a

(1-a)
135.8

The same transistor with 100 percent emitter injection in Example 6.8 had a of 206. It
is clear that the emitter injection efficiency y and the base transport factor aT have compara-
ble impacts in controlling the overall gain in the example. We neglected the recombination of
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electrons and holes in the EB depletion region. In fact, if we were to also consider this recom-
bination component of the emitter current, hihoie) would have to be even smaller compared with
the total /£, which would make y and hence   even lower.

6.6.2 Common Base Amplifier

According to Equation 6.31 the emitter current depends exponentially on Veb
'

eVEB\
kT )h = ho exp 0 [6.42]

It is therefore apparent that small changes in Veb lead to large changes in Ie- Since
Jc  h> we see that small variations in Veb cause large changes in lc in the collector
circuit. This can be fruitfully used to obtain voltage amplification as shown in Fig-
ure 6.23. The battery Vcc, through Rc, provides a reverse bias for the base-collector
junction. The dc voltage Vee forward biases the EB junction, which means that it pro-
vides a dc current Ie- The input signal is the ac voltage applied in series with the dc
bias voltage Vee to the EB junction. The applied signal veb modulates the total voltage
Veb across the EB junction and hence, by virtue of Equation 6.30, modulates the
injected hole concentration pn(0) up and down about the dc value determined by Vee
as depicted in Figure 6.23. This variation in Pn(0) alters the concentration gradient and
therefore gives rise to a change in /£, and hence a nearly identical change in /c. The
change in the collector current can be converted to a voltage change by using a resistor
Rc in the collector circuit as shown in Figure 6.23. However, the output is commonly
taken between the collector, and the base and this voltage Vcb is

Vcb = - Vcc H~ c c

BE C

+ n PP

OutputPSO)
n

PS*)Input n
\\\E

R
c

X
v,(r)

cb
V
ccV BEE

BTlb

Figure 6.23  A pnp transistor operated in the active region in the common base
amplifier configuration.
The applied (input) signal veb modulates the dc voltage across the EB junction and
hence modulates the injected hole concentration up and down about the dc value
pn(0). The solid line shows pn(x) when only the dc bias Vff is present. The dashed lines
show how pn(x) is modulated up and down by the signal vefe superimposed on Vjee.
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Input
resistance

CB voltage
gain

Increasing the emitter-base voltage Veb (by increasing veb) increases /c, which
increases Vca- Since we are interested in ac signals, that voltage variation across CB is
tapped out through a dc blocking capacitor in Figure 6.23.

For simplicity we will assume that changes <5 Veb and 81e in the dc values of Veb
and Ie are small, which means that & Veb and 81 e can be related by differentiating
Equation 6.42. We are hence tacitly assuming an operation under small signals. Further,
we will take the changes to represent the ac signal magnitudes, veb = & Veb, ie = SIe,
ic = <5/c  <57e  ie, Veb = SVcb-

The output signal voltage Vd, corresponds to the change in Vcb*

Veb = 5 Vcb = Rc Sic - Rc

The variation in the emitter current 8Ie depends on the variation SVeb in Veb,
which can be determined by differentiating Equation 6.42,

Sh 
=

 e

SVeb     kT E

By definition, SVeb is the input signal veb. The change SIe in Ie is the input signal
current (ie) flowing into the emitter as a result of SVeb- Therefore the quantity
SVeb/SIe represents an input resistance re seen by the source veb.

re =
SVeb

SIe

kT 25

The output signal is then

eh /eOxiA)

Veb

[6.43]

Veb =        &Ie = Rc 
re

so the voltage amplification is

Veb Rc
[6.44]

Veb re

To obtain a voltage gain we obviously need Rc > re, which is invariably the case by the
appropriate choice of Ie, hence re, and Rc. For example, when the BJT is biased so
that Ie is 10 mA and re is 2.5 Q, and if Rc is chosen to be50 Q, then the gain is 20.

EXAMPLE 6.10 A COMMON BASE AMPLIFIER Consider apnp Si BJT that has been connected as in Figure 6.23.
The BJT has a = 135 and has been biased to operate with a 5 mA collector current. What is the
small-signal input resistance? What is the required Rc that will provide a voltage gain of 20? What
is the base current? What should be the Vcc in Figure 6.23? Suppose Vcc = -6 V, what is the
largest swing in the output voltage Vcb in Figure 6.23 as the input signal is increased and de-
creased about the bias point VEE, taken as 0.65 V?

SOLUTION

The emitter and collector currents are approximately the same. From Equation 6.43,

25
re

h (mA)

25
- = 5 Q
5
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The voltage gain A v from Equation 6.44 is

Rc Rc
= -      or      20= -

re 5 0:

so a gain of 20 requires Rc = 100 £2.

Ic     5 mA
Base current/« = - =  = 0.037 mA      or      37 u A

£       135 H

There is a dc voltage across Rc given by /c/?c = (0.005 A)(100 Q) = 0.5 V. Vcc has to
provide the latter voltage across Rc and also a sufficient voltage to keep the BC junction reverse
biased at all times under normal operation. Let us set Vcc = - 6 V. Thus, in the absence of any
input signal veb, Vcb is set to -6 V + 0.5 V = -5.5 V. As we increase the signal veh, VEB and
hence Ic increase until the point C becomes nearly zero,9 that is, Vcb = 0, which occurs when
Ic is maximum at /cmax = \Vcc\/Rc or 60 mA. As veb decreases, so does VEB and hence Ic-
Eventually Ic will simply become zero, and point C will be at -6 V, so Vcb = Vcc - Thus, Vcb
can only swing from -5.5 V to 0 V (for increasing input until Ic = /cmaxX or from -5.5 to -6
V (for decreasing input until Ic = 0).

6
.
6

.3 Common Emitter (CE) dc Characteristics

An npn bipolar transistor when connected in the common emitter (CE) configuration
has the emitter common to both the input and output circuits, as shown in Figure 6.24a.
The dc voltage VBe forward biases the BE junction and thereby injects electrons as
minority carriers into the base. These electrons diffuse to the collector junction where
the field £ sweeps them into the collector to constitute the collector current Ic. Vbe
controls the current Ij? and hence h and /c. The advantage of the CE configuration is
that the input current is the current flowing between the ac source and the base, which
is the base current 7 . This current is much smaller than the emitter current by about a
factor of p. The output current is the current flowing between Vce and the collector,
which is /c- In the CE configuration, the dc voltage Vce must be greater than VBE to
reverse bias the collector junction and collect the diffusing electrons in the base.

The dc characteristics of the BJT in the CE configuration are normally given as Ic
versus Vce for various values of fixed base currents /g, as shown in Figure 6.24b. The
characteristics can be readily understood by Equations 6.40 and 6.41. We should
note that, in practice, we are essentially adjusting Vbe to obtain the desired because,
by Equation 6.41,

IB = (1 - ct)IE - Icbo

and Ie depends on Vbe via Equation 6.42.
Increasing requires increasing Vbe, which increases /c. Using Equations 6.40

and 6.41, we can obtain Ic in terms of h alone,

1
Ic = Ph + - r cfio

(1 - a)

9 Various saturation effects are ignored in this approximate discussion.
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Figure 6.24
(a) An npn transistor operated in the active region in the common emitter configuration. The input current is the current that
flows between Vbe and the base which is k.

(b) DC /-V characteristics of the npn bipolar transistor in the CE configuration. (Exaggerated to highlight various effects.)

Active region
collector

current

or

where

Ic = Ph + Iceo [6.45]

Iceo =
Icbo

(I-ex)
PICBO

is the leakage current into the collector when the base is open circuited. This is much
larger in the CE circuit than in the CB configuration.

Even when IB is kept constant, lc still exhibits a small increase with Vce, which,
according to Equation 6.45, indicates an increase in the current gain f$ with Vce- This
is due to the Early effect or modulation of the base width by Vcb> shown in Figure 6.22.
Increasing Vce increases Vcb<> which increases Wbc, reduces Wb, and hence shortens
r,. The resulting effect is a larger ft r/j/r,).

When Vce is less than Vbe, the collector junction becomes forward biased and
Equation 6.45 is not valid. The collector current is then the difference between forward
currents of emitter and collector junctions. The transistor operating in this region is
said to be saturated.

6
.6.4 Low-Frequency Small-Signal Model

The npn bipolar transistor in the CE (common emitter) amplifier configuration is
shown in Figure 6.25. The input circuit has a dc bias Vbb to forward bias the
base-emitter (BE) junction and the output circuit has a dc voltage Vce (larger than
VBb) to reverse bias the base-collector (BC) junction through a collector resistor c-
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Figure 6.25  An npn transistor operated
in the active region in the common emitter
amplifier configuration.
The applied signal vte modulates the
dc voltage across the BE junction and hence
modulates the injected electron concentration
up and down about the dc value np(0). The
solid line shows np(x) when only the dc bias Vbb
is present. The dashed line shows how np(x) is
modulated up by a positive small signal vbe
superimposed on Vbb-

The actual reverse bias voltage across the BC junction is Vce - Vbe, where Vce is

Vce - Vce ~ IcRc

An input signal in the form of a small ac signal Vbe is applied in series with the bias
voltage Vbb and modulates the voltage Vbe across the BE junction about its dc value
Vbb- The varying voltage across the BE modulates (0) up and down about its dc
value, which leads to a varying emitter current and hence to an almost identically vary-
ing collector current in the output circuit. The variation in the collector current is con-
verted to an output voltage signal by the collector resistance Re - Note that increasing
Vbe increases /c, which leads to a decrease in Vce- Thus, the output voltage is 180° out
of phase with the input voltage.

Since the BE junction is forward-biased, the relationship between Ie and Vbe is
exponential,

eVBE\
kT )h = ho exp 0 [6.46]

where Ieo is a constant. We can differentiate this expression to relate small variations
in Ie and Vbe as in the presence of small signals superimposed on dc values. For small
signals, we have = SVW, h = 81b, ie = SIe, ic = 81c- Then from Equation 6.45
we see that 81c = P 81b, so ic =      Since a « 1, ie  ic.

What is the advantage of the CE circuit over the common base (CB) configuration?
First, the input current is the base current, which is about a factor of £ smaller than the
emitter current. The ac input resistance of the CE circuit is therefore a factor of
higher than that of the CB circuit. This means that the amplifier does not load the ac
source; the input resistance of the amplifier is much greater than the internal (or output)
resistance of the ac source at the input. The small-signal input resistance is

vi*     WB£      8VB£ pkT JiTS
rbe = - =   6 =   

h      Sh        SIe      eIE /c(mA)
[6.47]

where we differentiated Equation 6.46.

Emitter

current and

Vbe

Input
resistance
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Voltage gain

Transconduc-

tance

Voltage gain

The output ac signal develops across the CE and is tapped out through a ca-
pacitor. Since Vqe = cc - IcRc* as Ic increases, Vce decreases. Thus,

Vce = $ Vce = -Rc&Ic = -Rcic

The voltage amplification is

v
A   - -- -

Vbe

/?c/c(mA)

25
[6.48]

which is the same as that in the CB configuration. However, in the CE configuration
the output to input current ratio ic/ib = P, whereas this is almost unity in the CB con-

figuration. Consequently, the CE configuration provides a greater power amplifica-
tion, which is the second advantage of the CE circuit.

The input signal Vbe gives rise to an output current ic. This input voltage to out-
put current conversion is defined in a parameter called the mutual conductance, or
transconductance, gm.

ic
9m = -

Vbe     &Vbe

Z/KmA) 
_

 !
_

25     
~

 re

The voltage amplification of the CE amplifier is then

Av = -gmRc

[6.49]

[6.50]

We generally find it convenient to use a small-signal equivalent circuit for the
low-frequency behavior of a BJT in the CE configuration. Between the base and
emitter, the applied ac source voltage vs sees only an input resistance of r , as
shown in Figure 6.26. To underline the importance of the transistor input resistance,

the output (or the internal) resistance Rs of the ac source is also shown. In the out-
put circuit there is a voltage-controlled current source ic which generates a current
of gmVbe' The current ic passes through the load (or collector) resistance Rc across
which the voltage signal develops. As we are only interested in ac signals, the bat-
teries are taken as a short-circuit path for the ac current, which means that the in-
ternal resistances of the batteries are taken as zero. This model, of course, is valid

only under normal and active operating conditions and small signals about dc val-
ues, and at low frequencies.

Figure 6.26  Low-frequency small-signal
simplified equivalent circuit of the bipolar transistor
in the CE configuration with a load resistor ftc in
the collector circuit.
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*
11

i
Hi

1*>

si:::??::;

Left: The first commercial Si transistor from Texas Instruments (1954). Right: The first transistor pocket radio (1954).
It had four Ge npn transistors.
I SOURCE: Courtesy of Texas Instruments.

The bipolar transistor general dc current equation Ic = Ph, where ft % r/j/r, is a
material-dependent constant, implies that the ac small-signal collector current is

8Ic = P8IB or ic = Ph

Thus the CE dc and ac small-signal current gains are the same. This is a reason-
able approximation in the low-frequency range, typically at frequencies below l/zh. It
is useful to have a relationship between P, gm, and rbe. Using Equations 6.47 and 6.49,
we have

P = gmrbe [6.51]

In transistor data books, the dc current gain Ic/h is denoted as hFE whereas the
small-signal ac current gain ic/it is denoted as hfe. Except at high frequencies,
hfe hFE.

P at low

frequencies

CE LOW-FREQUENCY SMALL-SIGNAL EQUIVALENT CIRCUIT Consider a BJT with a 0 of 100,
used in a CE amplifier in which the collector current is 2.5 mA and Rc is 1 kft. If the ac source
has an rms voltage of 1 mV and an output resistance Rs of 50 Q, what is the rms output voltage?
What is the input and output power and the overall power amplification?

SOLUTION

As the collector current is 2.5 mA, the input resistance and the transconductance are

£25 (100)(25)

/c(mA) 2
.
5

1000 ft

and

/c(mA) 2.5
gm

 = -        = - = 0.1 A/V
        25 25

EXAMPLE 6.11
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The magnitude of the voltage gain of the BJT small-signal equivalent circuit is

Av = - = gmRc = (0.1)(1000) = 100
Vbe

When the ac source is connected to the B and E terminals (Figure 6.26), the input resistance
rhe of the BJT loads the ac source, so     across BE is

rbe 1000 Q
vbe = vs = (1 mV) = 0.952 mV

{ru + Rs) (1000  + 50 )

The output voltage (rms) is, therefore,

vct = Avvbe = 100(0.952 mV) = 95.2 mV

The loading effect makes the output less than 100 mV. To reduce the loading of the ac
source, we need to increase r , i.e., reduce the collector current, but that also reduces the gain. So
to keep the gain the same, we need to reduce Ic and increase Rc. However, 7?c cannot be increased
indefinitely because Rc itself is loaded by the input of the next stage and, in addition, there is an
incremental resistance between the collector and emitter terminals (typically MOOkft) that
shunts Rc (not shown in Figure 6.26).

The power amplification of the CE BJT itself is

Ap =        = fiAv = (100)(100) = 10,000
IbVbe

The input power into the BE terminals is

vi     (0.952 x lO"3 V)2 10Pin = vbeib = - =  = 9.06 x lO'10 W      or      0.906 nW
rbe 1000 ft

The output power is

out = PinAp = (9.06 x 10"10)(10,000) = 9.06 x 10"6 W      or      9.06/xW

6
.7    JUNCTION FIELD EFFECT TRANSISTOR (JFET)

6
.
7
.

1   General Principles

The basic structure of the junction field effect transistor (JFET) with an n-type channel
(n-channel) is depicted in Figure 6.27a. An n-typt semiconductor slab is provided with
contacts at its ends to pass current through it. These terminals are called source (5)
and drain (D). Two of the opposite faces of the rc-type semiconductor are heavily
p-type doped to some small depth so that an rc-type channel is formed between the
source and drain terminals, as shown in Figure 6.27a. The two p+ regions are normally
electrically connected and are called the gate (G). As the gate is heavily doped, the de-
pletion layers extend almost entirely into the rc-channel, as shown in Figure 6.27. For
simplicity we will assume that the two gate regions are identical (both p+ type) and that ,
the doping in the n-type semiconductor is uniform. We will define the n-channel to be 
the region of conducting rc-type material contained between the two depletion layers.

The basic and idealized symmetric structure in Figure 6.27a is useful in
explaining the principle of operation as discussed later but does not truly represent ]
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[1      Figure 6.27
S D     (a) The basic structure of the junction field effect transistor PFET) with an

n-channel
. The two p+ regions are electrically connected and form the gate.

(a) (b) A simplified sketch of the cross section of a more practical n-channel JFET.

the structure of a typical practical device. A simplified schematic sketch of the cross
section of a more practical device (as, for example, fabricated by the planar technol-
ogy) is shown in Figure 6.27b where it is apparent that the two gate regions do not
have identical doping and that, except for one of the gates, all contacts are on one
surface.

We first consider the behavior of the JFET with the gate and source shorted
(VGs = 0), as shown in Figure 6.28a. The resistance between 5 and D is essentially
the resistance of the conducting -channel between A and B, Rab- When a positive
voltage is applied to D with respect to S (Vds > 0), then a current flows from D to
5

, which is called the drain current Id- There is a voltage drop along the channel,
between A and B, as indicated in Figure 6.28a. The voltage in the -channel is zero
at A and Vds at B. As the voltage along the n-channel is positive, the p+n junctions
between the gates and the n-channel become progressively more reverse-biased
from A to B. Consequently the depletion layers extend more into the channel and
thereby decrease the thickness of the conducting channel from A to B.

Increasing Vds increases the widths of the depletion layers, which penetrate more
into the channel and hence result in more channel narrowing toward the drain. The re-
sistance of the n-channel Rab therefore increases with Vds- The drain current therefore
does not increase linearly with Vds but falls below it because

Vds

Rab
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Figure 6.28
(a) The gate and source are shorted (Vgs = 0) and Vbs is small.
(b) Vos has increased to a value that allows the two depletion layers to just touch, when Vbs = Vp(= 5 V) and
the p+n junction voltage at the drain end, Vqd = - Vbs = - Vp = -5 V.

(c) Vos is large (Vos > Vp), so a short length of the channel is pinched off.

Figure 6.29  Typical \o versus
Vos characteristics of a JFET for
various fixed gate voltages Vgs-
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and Rab increases with VDs. Thus ID versus Vds exhibits a sublinear behavior, as shown
in the Vds < 5 V region in Figure 6.29.

As VDs increases further, the depletion layers extend more into the channel and
eventually, when VDs =Vp(=5 V), the two depletion layers around B meet at point P
at the drain end of the channel, as depicted in Figure 6.28b. The channel is then said to
be "pinched off" by the two depletion layers. The voltage Vp is called the pinch-off
voltage. It is equal to the magnitude of reverse bias needed across the p+n junctions to
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Figure 6.30  The pinched-off
channel and conduction for

Vds> Vp(=5 V).

make them just touch at the drain end. Since the actual bias voltage across the p+n
junctions at the drain end (E) is Vgd> the pinch-off occurs whenever

VGD = -VP [6.52]

In the present case, gate to source is shorted, Vqs = 0, so Vgd = - Vds and pinch-
off occurs when VDs = Vp (5 V). The drain current from pinch-off onwards, as shown
in Figure 6.29, does not increase significantly with Vos for reasons given below.
Beyond Vds = Vp, there is a short pinched-off channel of length ipo.

The pinched-off channel is a reverse-biased depletion region that separates the
drain from the n-channel, as depicted in Figure 6.30. There is a very strong electric
field £ in this pinched-off region in the D to S direction. This field is the vector sum of
the fields from positive donors to negative acceptors in the depletion regions of the
channel and the gate on the drain side. Electrons in the n-channel drift toward P, and
when they arrive at P, they are swept across the pinched-off channel by £. This process
is similar to minority carriers in the base of a BJT reaching the collector junction de-
pletion region, where the internal field there sweeps them across the depletion layer
into the collector. Consequently the drain current is actually determined by the resis-
tance of the conducting n-channel over LCh from A to P in Figure 6.30 and not by the
pinched-off channel.

As Vds increases, most of the additional voltage simply drops across tpo as this
region is depleted of carriers and hence highly resistive. Point P, where the depletion
layers first meet, moves slightly toward A, thereby slightly reducing the channel length
LCh. Point P must still be at a potential Vp because it is this potential that just makes
the depletion layers touch. Thus the voltage drop across LCh remains as Vp. Beyond
pinch-off then

Vp

R
{VDs > Vp)

AP

Pinch-off
condition

Since Rap is determined by LCh, wYrich decreases s\ight\y with Vds> Id increases
slightly with Vds- In many cases, ID is conveniently taken to be saturated at a value IDss
for Vds > Vp. Typical ID versus Vds behavior is shown in Figure 6.29.
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(a) The JFET with a negative Vbs
voltage has a narrower n-channel
at the start.

(b) Compared to the Vqs = 0 case,
the same Vqs gives less Id as the
channel is narrower.
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We now consider what happens when a negative voltage, say Vgs = - 2 V, is ap-
plied to the gate with respect to the source, as shown in Figure 6.31a with VDs = 0. The
p

+n junctions are now reverse-biased from the start, the channel is narrower, and the
channel resistance is now larger than in the Vgs = 0 case. The drain current that flows
when a small Vos is applied, as in Figure 6.31b, is now smaller than in the Vgs = 0 case
as apparent in Figure 6.29. The p+n junctions are now progressively more reverse-
biased from Vgs at the source end to Vgd = Vgs - Vos at the drain end. We therefore [
need a smaller Vos (= 3 V) to pinch off the channel, as shown in Figure 6.31c. When ;
VDs = 3 V, the GtoD voltage Vgd across the p+n junctions at the drain end is -5 V,
which is - Vp, so the channel becomes pinched off. Beyond pinch-off, Ip is nearly sat-
urated just as in the Vgs = 0 case, but its magnitude is obviously smaller as the thick-
ness of the channel at A is smaller; compare Figures 6.28 and 6.31. In the presence of |
Vgs, the pinch-off occurs at Vds = Vz)S(sat), and from Equation 6.52.

Vosissit) = Vp+ Vgs [6.53]

where Vgs is a negative voltage (reducing V/>). Beyond pinch-off when VDs > Vz)S(sat)>
the point P where the channel is just pinched still remains at potential V sat), given
by Equation 6.53.

For VDs > Vz)S(sat)> Id becomes nearly saturated at a value denoted as //)$, which is
indicated in Figure 6.29. When G and S are shorted (Vgs = 0), Ids is called Idss (which
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stands for IDs with shorted gate to source). Beyond pinch-off, with negative Vgs, hs is

Vds        Vp 4- Vgs
Id  Ids

Rap (Vgs)     Rap (Vgs)
Vds > VDs(sat)

where RAp (Vgs) is the effective resistance of the conducting w-channel from A to P
(Figure 6.31b), which depends on the channel thickness and hence on Vgs- The resis-
tance increases with more negative gate voltage as this increases the reverse bias
across the p+n junctions, which leads to the narrowing of the channel. For example,
when Vgs = -4 V, the channel thickness at A becomes narrower than in the case with
Vgs = ~2 V, thereby increasing the resistance, RAp9 of the conducting channel and
therefore decreasing IDs. Further, there is also a reduction in the drain current by virtue
of Vpsisat) decreasing with negative Vgs, as apparent in Equation 6.54. Figure 6.29
shows the effect of the gate voltage on the Id versus Vds behavior. The two effects, that
from VDS(sat) and that from RAp (Vgs) in Equation 6.54, lead to Ids almost decreasing
parabolically with - Vgs-

When the gate voltage is such that Vgs = - Vp (= -5 V) with the source and drain
shorted (Vds = 0), then the two depletion layers touch over the entire channel length
and the whole channel is closed, as illustrated in Figure 6.32. The channel is said to be
off. The only drain current that flows when a Vds is applied is due to the thermally gen-
erated carriers in the depletion layers. This current is very small.

Figure 6.29 summarizes the full Id versus Vds characteristics of the n-channel
JFET at various gate voltages Vgs- It is apparent that Ids is relatively independent of
VDs and that it is controlled by the gate voltage Vgs, as expected by Equation 6.54.
This is analogous to the BJT in which the collector current Ic is controlled by the
base-emitter bias voltage Vbe- Figure 6.33a shows the dependence of Ids on the gate
voltage Vgs- The transistor action is the control of the drain current Ids, in the
drain-source (output) circuit by the voltage Vgs in the gate-source (input circuit), as
shown in Figure 6.33b. This control is only possible if Vds > D5(sat). When Vgs = - Vp,
the drain current is nearly zero because the channel has been totally pinched off. This
gate-source voltage is denoted by Vcscoff) as the drain current has been switched off.
Furthermore, we should note that as Vgs reverse biases the p+n junction, the current
into the gate Ig is the reverse leakage current of these junctions. It is usually very small.
In some JFETs, Ig is as low as a fraction of a nanoampere. We should also note that the
circuit symbol for the JFET, as shown in Figure 6.27a, has an arrow to identify the gate
and the p/i junction direction.

:-5V
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Figure 6.32  When Vgs = -5 V, the depletion layers
close the whole channel from the start, at Vds = 0.

As Vds is increased, there is a very small drain current,
which is the small reverse leakage current due to thermal
generation of carriers in the depletion layers.
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Figure 6.33
(a) Typical Ids versus Vgs characteristics of a
JFET.

(b) The dc circuit where Vgs in the gate-source
circuit (input) controls the drain current Ids in
the drain-source (output) circuit in which Yds is
kept constant and large (Vbs > Vp).
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Is there a convenient relationship between IDs and Vgs*? If we calculate the effec-
tive resistance RAp of the -channel between A and P, we can obtain its dependence on
the channel thickness, and thus on the widths of the depletion layers and hence on V s-
We can then find Ids from Equation 6.54. It turns out that a simple parabolic depen-
dence seems to represent the data reasonably well,

Ids = /d Ti ~ ( 
t/

L       \ VGSioff) )]
2

[6.55]

where loss is the drain current when Vgs = 0 (Figure 6.33) and Vcscoff) is defined as
- Vp, that is, that gate-source voltage that just pinches off the channel. The pinch-off
voltage Vp here is a positive quantity because it was introduced through VDS(sat)- VGS(off)
however is negative, -Vp. We should note two important facts about the JFET. Its
name originates from the effect that modulating the electric field in the reverse-biased
depletion layers (by changing Vgs) varies the depletion layer penetration into the chan-
nel and hence the resistance of the channel. The transistor action hence can be thought
of as being based on a field effect. Since there is a p+n junction between the gate and
the channel, the name has become JFET. This junction in reverse bias provides the iso-
lation between the gate and channel.

Secondly, the region beyond pinch-off, where Equations 6.54 and 6.55 hold, is
commonly called the current saturation region, as well as constant current region
and pentode region. The term saturation should not be confused with similar terms
used for saturation effects in bipolar transistors. A saturated BJT cannot be used as an
amplifier, but JFETs are invariably used as amplifiers in the saturated current region.

6.7.2  JFET Amplifier

The transistor action in the JFET is the control of IDs by Vgs, as shown in Figure 6.33.
The input circuit is therefore the gate-source circuit containing Vgs and the output cir-
cuit is the drain-source circuit in which the drain current Ids flows. The JFET is almost
never used with thepn junction between the gate and channel forward-biased (Vgs > 0)
as this would lead to a very large gate current and near shorting of the gate to source
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Figure 6.34
(a) Common source (CS) ac amplifier using a JFET.
(b) Explanation of how   is modulated by the signal Vgs in series with the dc bias voltage Vgg-

voltage. With Vqs limited to negative voltages, the maximum current in the output cir-
cuit can only be Ibss  as shown in Figure 6.33a. The maximum input voltage Vgs should
therefore give an IDs less than loss-

Figure 6.34a shows a simplified illustration of a typical JFET voltage amplifier. As
the source is common to both the input and output circuits, this is called a common
source (CS) amplifier. The input signal is the ac source vgs connected in series with a
negative dc bias voltage Vqg of -1.5 V in the GS circuit. First we will find out what
happens when there is no ac signal in the circuit (vgs = 0). The dc supply (-1.5 V) in
the input provides a negative dc voltage to the gate and therefore gives a dc current IDs
in the output circuit (less than loss)- Figure 6.34b shows that when Vqs = - 1.5 V, point
Q on the IDs versus Vqs characteristics gives IDs = 4.9 mA. Point Q, which determines
the dc operation, is called the quiescent point.

The ac source vgs is connected in series with the negative dc bias voltage Vgs-
It therefore modulates Vgs up and down about -1.5 V with time, as shown in Fig-
ure 6.34b. Suppose that vgs varies sinusoidally between -0.5 V and +0.5 V. Then, as
shown in Figure 6.34b when vgs is -0.5 V (point A), Vgs = -2.0 V and the drain cur-
rent is given by point A on the Ids-Vgs curve and is about 3.6 mA. When vgs is +0.5 V
(point then Vgs = - 1.0 V and the drain current is given by point B on the Ids-Vgs
curve and is about 6.4 mA. The input variation from -0.5 V to +0.5 V has thus been
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Table 6.1   Voltage and current in the common source amplifier of Figure 6.34a

VgS VGs Ids id vds Voltage
(V) (V) (mA) (mA) VDs = VDD - IDsRd (V) Gain Comment

0 -1.5 4.9 0 8.2 0 dc conditions, point Q
-0

.5 -2.0 3.6 -1.3 10.8 +2.6 -5.2 Points

+0.5 -1.0 6.4 +1.5 5.2 -3.0 -6 Point B

I NOTE: VDD = 1 8 V and RD = 2000 a.

converted to a drain current variation from 3.6 mA to 6.4 mA as indicated in Fig-
ure 6.34b. We could have just as easily calculated the drain current from Equation 6.55.
Table 6.1 summarizes what happens to the drain current as the ac input voltage is var-
ied about zero.

The change in the drain current with respect to its dc value is the output signal cur-
rent denoted as ij. Thus at A,

id = 3.6 - 4.9 = -1.3 mA

and at B9

id = 6.4 - 4.9 = 1.5 mA

The variation in the output current is not quite symmetric as that in the input signal vgs
because the Ids-Vgs relationship, Equation 6.55, is not linear.

The drain current variations in the DS circuit are converted to voltage variations
by the resistance RD. The voltage across DS is

Vds = Vdd - Ids Rd [6.56]

where Vdd is the bias battery voltage in the DS circuit. Thus, variations in IDs result in
variations in VDs that are in the opposite direction or 180° out of phase. The ac output volt-
age between D and S is tapped out through a capacitor C, as shown in Figure 6.34a. The
capacitor C simply blocks the dc. Suppose that/?/) = 2000 £2 and Vdd = 18 V, then using
Equation 6.56 we can calculate the dc value of Vds and also the minimum and maximum
values of Vds, as shown in Table 6.1.

It is apparent that as vgs varies from -0.5 V, at A, to +0.5 V, at fi, Vds varies from
10.8 V to 5.2 V, respectively. The change in Vds with respect to dc is what constitutes
the output signal vds, as only the ac is tapped out. From Equation 6.56, the change in
Vds is related to the change in Ids by

VdS = -R-Did [6.57]

Thus the output, vds, changes from -3.0 V to 2.6 V. The peak-to-peak voltage ampli-
fication is

_

 AVqs 
_

 i (pk-pk)      -3V- (2.6 V) 
=
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The negative sign represents the fact that the output and input voltages are out of
phase by 180°

. This can also be seen from Table 6.1 where a negative vgs results in a
positive Vfa. Even though the ac input signal vgs is symmetric about zero, ±0.5 V, the
ac output signal vjs is not symmetric, which is due to the IDs versus V s curve being
nonlinear, and thus varies between -3.0 V and 2.6 V. If we were to calculate the volt-

age amplification for the most negative input signal, we would find -5.2, whereas for
the most positive input signal, it would be -6. The peak-to-peak voltage amplification,
which was -5.6, represents a mean gain taking both negative and positive input sig-
nals into account.

The amplification can of course be increased by increasing RD, but we must main-
tain Vds at all times above VDS(sat) (beyond pinch-off) to ensure that the drain current
Ids in the output circuit is only controlled by Vgs in the input circuit.

When the signals are small about dc values, we can use differentials to repre-
sent small signals. For example, vgs = 8Vgs, id = &Ids> vds = 8Vds> and so on. The
variation 8Ids due to 8Vgs about the dc value may be used to define a mutual
transconductance gm (sometimes denoted as gfs) for the JFET,

9m =
dlDS

dVcs

Sips

8V,GS

1±
V

This transconductance can be found by differentiating Equation 6.55,

dlDs        Hdss [\    /  Vgs Yl 2[IdssIds]1/2
9m =

dVcs Vcsiom [-&)]- Vcsiofo
[6.58]

The output signal current is

id = 9m
V

so using Equation 6.57, the small-signal voltage amplification is

Vds      -RDOmVgs) „ D [6.59]
v

gs
V

gs

Equation 6.59 is only valid under small-signal conditions in which the variations
about the dc values are small compared with the dc values themselves. The negative
sign indicates that vds and vgs are 180

° out of phase.

Definition of
JFET trans-

conductance

JFET trans-

conductance

Small-signal
voltage gain

THE JFET AMPLIFIER Consider the n-channel JFET common source amplifier shown in Fig-
ure 6.34a. The JFET has an IDss of 10 mA and a pinch-off voltage Vp of 5 V as in Figure 6.34b.
Suppose that the gate dc bias voltage supply Vgg = -1.5 V, the drain circuit supply VDd = 18 V,
and Rd = 2000 Q. What is the voltage amplification for small signals? How does this compare
with the peak-to-peak amplification of -5.6 found for an input signal that had a peak-to-peak
value of 1 V ?

EXAMPLE 6.12

SOLUTION

We first calculate the operating conditions at the bias point with no ac signals. This corresponds
to point Q in Figure 6.34b. The dc bias voltage Vgs across the gate to source is -1.5 V. The
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resulting dc drain current /ds can be calculated from Equation 6.55 with Vcsioff) = - Vp = - 5 V:

HiM- M )]
*

-"-Ids = loss 
,      » T/

vc75(off)

The transconductance at this dc current (at Q) is given by Equation 6.58,

2(Wds)1/2       2[(10 x 10-3)(4.9 x KT3)]1/2 3
9m =  7}
 = ; = 2.8 x 10 A/V

The voltage amplification of small signals about point Q is

Av = -gm
RD = -(2.8 x 10-3)(2000) = -5.6

This turns out to be the same as the peak-to-peak voltage amplification we calculated in
Table 6.1. When the input ac signal vgs varies between -0.5 and + 0.5 V, as in Table 6.1, the out-
put signal is not symmetric. It varies between -3 V and 2.8 V, so the voltage gain depends on
the input signal The amplifier is then said to exhibit nonlinearity.

6
.
8    METAL-OXIDE-SEMICONDUCTOR FIELD EFFECT

TRANSISTOR (MOSFET)

6
.
8
.1  Field Effect and Inversion

The metal-oxide-semiconductor field effect transistor is based on the effect of a field

penetrating into a semiconductor. Its operation can be understood by first considering
a parallel plate capacitor with metal electrodes and a vacuum as insulation in between,
as shown in Figure 6.35a. When a voltage Vis applied between the plates, charges +Q
and -Q (where Q = CV) appear on the plates and there is an electric field given by
£ = V/L. The origins of these charges are the conduction electrons for - Q and
exposed positively charged metal ions for +Q. Metallic bonding is based on all the
valence electrons forming a sea of conduction electrons and permeating the space
between metal ions that are fixed at crystal lattice sites. Since the electrons are mobile,
they are readily displaced by the field. Thus in the lower plate !£ displaces some of the
conduction electrons to the surface to form - Q. In the top plate £ displaces some
electrons from the surface into the bulk to expose positively charged metal ions to
form +Q.

Suppose that the plate area is 1 cm2 and spacing is 0.1 /xm and that we apply 2 V
across it. The capacitance C is 8.85 nF and the magnitude of charge Q on each plate
is 1.77 x 10~8 C, which corresponds to 1.1 x 1011 electrons. A typical metal such as
copper has something like 1.9 x 1015 atoms per cm2 on the surface. Thus, there will

be that number of positive metal ions and electrons on the surface (assuming one
conduction electron per atom). The charges +G and -Q can therefore be generated by
the electrons and metal ions at the surface alone. For example, if one in every 1.7 x
104 electrons on the surface moves one atomic spacing (~0.3 nm) into the bulk, then
the surface will have a charge of+(2 due to exposed positive metal ions. It is clear that,
for all practical purposes, the electric field does not penetrate into the metal and termi-
nates at the metal surface.



6.8 Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) 533

V

V

th

Conduction

electron

Fixed metal ions
x

A

Metal
+ (EH

C

-Q
Metal

Mobile electrons

(a)

Charge density

Metal

0

e

X

A

Vj Depletion
region -

+ G

Fixed acceptors    Charge density

p-type semiconductor

(b)
x

1) 

Inversion

- layer

fix

r»
.

i
.

 \
t

T

Depletion
region

2

Charge density

(c)

Figure 6.35  The field effect.
(a) In a metal-aif-metal capacitor, all the charges reside on the surface.
(b) Illustration of field penetration into a p-type semiconductor.
(c) As the field increases, eventually when V > \4, an inversion layer is created near the
surface in which there are conduction electrons.
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The same is not true when one of the electrodes is a semiconductor, as shown in

Figure 6.35b where the structure now is of the metal-insulator-semiconductor type.
Suppose that we replace the lower metal in Figure 6.35a with a /?-type semiconductor
with an acceptor concentration of 1015 cm

"3
. The number of acceptor atoms on the sur-

face10 is 1 x 1010 cm-2. We may assume that at room temperature all the acceptors are
ionized and thus negatively charged. It is immediately apparent that we do not have
a sufficient number of negative acceptors at the surface to generate the charge - Q.
We must therefore also expose negative acceptors in the bulk, which means that
the field must penetrate into the semiconductor. Holes in the surface region of the
semiconductor become repelled toward the bulk and thereby expose more negative
acceptors. We can estimate the width W into which the field penetrates since the total
negative charge exposed eA WNa must be Q. We find that W is of the order of 1 /xm,
which is something like 4000 atomic layers. Our conclusion is that the field penetrates
into a semiconductor by an amount that depends on the doping concentration.

The penetrating field into the semiconductor drifts away most of the holes in this
region and thereby exposes negatively charged acceptors to make up the charge - Q. i
The region into which the field penetrates has lost holes and is therefore depleted of
its equilibrium concentration of holes. We refer to this region as a depletion layer. As
long as p > n even though p Na, this still has /?-type characteristics as holes are in
the majority.

If the voltage increases further, -Q also increases, as the field becomes stronger
and penetrates more into the semiconductor but eventually it becomes more difficult to
make up the charge -Q by simply extending the depletion layer width W into the bulk.
It becomes possible (and more favorable) to attract conduction electrons into the de-
pletion layer and form a thin electron layer of width Wn near the surface. The charge
-<2 is now made up of the fixed negative charge of acceptors in Wa

 and of conduction

electrons in Wn, as shown in Figure 6.35c. Further increases in the voltage do not
change the width Wa of the depletion layer but simply increase the electron concentra-
tion in Wn. Where do these electrons come from as the semiconductor is doped p-type?
Some are attracted into the depletion layer from the bulk, where they were minority
carriers. But most are thermally generated by the breaking of Si-Si bonds {i.e., across
the bandgap) in the depleted layer. Thermal generation in the depletion layer generates
electron-hole pairs that become separated by the field. The holes are then drifted by
the field into the bulk and the electrons toward the surface. Recombination of the ther-

mally generated electrons and holes with other carriers is greatly reduced because the
depletion layer has so few carriers. Since the electron concentration in the electron
layer exceeds the hole concentration and this layer is within a normally /Mype semi-
conductor, we call this an inversion layer.

It is now apparent that increasing the field in the metal-insulator-semiconductor de-
vice first creates a depletion layer and then an inversion layer at the surface when the
voltage exceeds some threshold value Vth . This is the basic principle of the field effect
device. As long as V > Vth, any increase in the field and hence -Q leads to more electrons
in the inversion layer, whereas the width of the depletion layer Wa and hence the quantity

I 10 Surface concentration of atoms (atoms per unit area) can be found from nsurf % (nbuikP/3.
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symbol.

of fixed negative charge remain constant. The insulator between the metal and the semi-
conductor, that is, a vacuum in Figure 6.35, is typically Si02 in many devices.

6
.
8

.
2 Enhancement MOSFET

Figure 6.36 shows the basic structure of an enhancement n-channel MOSFET device
(NMOSFET). A metal-insulator-semiconductor structure is formed between a p-type
Si substrate and an aluminum electrode, which is called the gate (G). The insulator is
the Si02 oxide grown during fabrication. There are two n+ doped regions at the ends
of the MOS device that form the source (5) and drain (D). A metal contact is also made
to the p-type Si substrate (or the bulk), which in many devices is connected to the
source terminal as shown in Figure 6.36. Further, many MOSFETs have a degenerately
doped polycrystalline Si material as the gate that serves the same function as the metal
electrode.

With no voltage applied to the gate, 5 to D is an ntpnt structure that is always
reverse-biased whatever the polarity of the source to drain voltage. However, if the
substrate (bulk) is connected to the source, a negative VDs will forward bias the n+

p

junction between the drain and the substrate. As the n-channel MOSFET device is not
normally used with a negative V/ , we will not consider this polarity.

When a positive voltage less than Vth is applied to the gate, Vqs < Vth » as shown
in Figure 6.37a, the p-type semiconductor under the gate develops a depletion layer as
a result of the expulsion of holes into the bulk, just as in Figure 6.35b. Since 5 and D
are isolated by a low-conductivity p-doped region that has a depletion layer from 5 to
D

, no current can flow for any positive Yds-
With Vds = 0, as soon as VGs is increased beyond the threshold voltage Vth, an

rc-channel inversion layer is formed within the depletion layer under the gate and im-
mediately below the surface, as shown in Figure 6.37b. This n-channel links the two
n+ regions of source and drain. We then have a continuous n-type material with elec-
trons as mobile carriers between the source and drain. When a small VDs is applied, a
drain current Id flows that is limited by the resistance of the n-channel Rn-ch '

Id =
Vds

[6.60]
ch

Thus, ID initially increases with VDs almost linearly, as shown in Figure 6.37b.
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The voltage variation along the channel is from zero at A (source end) to Vds at B
(drain end). The gate to the n-channel voltage is then Vgs at A and Vgd = Vgs - Vds at B.
Thus point A depends only on Vgs and remains undisturbed by Vds- As Vds increases, the
voltage at B (Vgd ) decreases and thereby causes less inversion. This means that the chan-
nel gets narrower from A to B and its resistance /?n-ch» increases with VDs. Id versus Vds
then falls increasingly below the Id oc Vds line. Eventually when the gate to n-channel
voltage at B decreases to just below Vth, the inversion layer at B disappears and a deple-
tion layer is exposed, as illustrated in Figure 6.37c. The n-channel becomes pinched off at
this point P. This occurs when Vds = Voscsat)* satisfying

Vgd = VGS - VD5(sat) = Vth [6.61]

It is apparent that the whole process of the narrowing of the n-channel and its
eventual pinch-off is similar to the operation of the n-channel JFET. When the drift-
ing electrons in the n-channel reach P, the large electric field within the very nar-
row depletion layer at P sweeps the electrons across into the n+ drain. The current
is limited by the supply of electrons from the n-channel to the depletion layer at P,
which means that it is limited by the effective resistance of the n-channel between
A and P.

When Vds exceeds Vbs(sat)» the additional Vds drops mainly across the highly
resistive depletion layer at P, which extends slightly to F toward A, as shown in
Figure 6.37d. At P\ the gate to channel voltage must still be just Vth as this is the volt-
age required to just pinch off the channel and just eliminate inversion. The widening of
the depletion layer (from B to F) at the drain end with Vds, however, is small com-
pared with the channel length AB. The resistance of the channel from A to F does not
change significantly with increasing Vds, which means that the drain current is then
nearly saturated at Ids,

Id « Ids * Vds > Vz>s(sat) [6.62]
KAP'n-ch

As Vz)S(sat) depends on Vgs, so does Ids- The overall Ids versus Vds characteristics
for various fixed gate voltages Vgs of a typical enhancement MOSFET is shown in
Figure 6.38a. It can be seen that there is only a slight increase in Ids with Vds beyond
VDS(sat)- The Ids versus Vgs when Vds > VDSisat) characteristics are shown in Fig-
ure 6.38b. It is apparent that as long as Vds > Vbs(sat)» the saturated drain current Ids in
the source-drain (or output) circuit is almost totally controlled by the gate voltage Vgs
in the source-gate (or input) circuit. This is what constitutes the MOSFET action. Vari-
ations in Vgs then lead to variations in the drain current Ids (just as in the JFET), which
forms the basis of the MOSFET amplifier. The term enhancement refers to the fact that
a gate voltage exceeding V  is required to enhance a conducting channel between the
source and drain. This contrasts with the JFET where the gate voltage depletes the
channel and decreases the drain current.

The experimental relationship between IDs and Vgs (when Vds > Vds )) has been
found to be best described by a parabolic equation similar to that for the JFET, except
that now Vgs enhances the channel when Vgs > Vth so Ids exists only when Vgs > V , Enhancement

Ids = K(VGs- Vth)2 [6.63] NMOSFET
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where K is a constant. For an ideal MOSFET, it can be expressed as

K =
2Uox

where /x  is the electron drift mobility in the channel, L and Z are the length and width
of the gate controlling the channel, and s and fox are the permittivity (sr£0) and thick-
ness of the oxide insulation under the gate. According to Equation 6.63, Ids is
independent of Vds- The shallow slopes of the Id versus Vds lines beyond Vz)S(sat) in
Figure 6.38a can be accounted for by writing Equation 6.63 as

Enhancement

NMOSFET
IDs = K(VGs-V±)2(l+kVDs)

where A is a constant that is typically 0.01 V-1
. If we extend the Ids versus Vds lines,

they intersect the - Vds axis at 1/A, which is called the Early voltage. It should be
apparent that Idss> which is Ids with the gate and source shorted (Vgs = 0)» is zero and
is not a useful quantity in describing the behavior of the enhancement MOSFET.

THE ENHANCEMENT NMOSFET A particular enhancement NMOS transistor has a gate with a
width (Z) of 50 /xm, length (L) of 10 /xm, and Si02 thickness of 450 A. The relative permittiv-
ity of Si02 is 3.9. The p-type bulk is doped with 1016 acceptors cm"3. Its threshold voltage is
4 V. Estimate the drain current when Vgs = 8 V and Vps = 20 V, given X = 0.01. Due to the
strong scattering of electrons near the crystal surface assume that the electron drift mobility /xe
in the channel is half the drift mobility in the bulk.

SOLUTION

Since Vds > Vfo, we can assume that the drain current is saturated and we can use the Ids versus
Vgs relationship in Equation 6.64,

Ids = K(VGs-V±)2(1+WDs)
where

K

[6.64]

EXAMPLE 6.13

ZijLee

2Lt0X
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The electron mobility in the bulk when Na = 1016 cm"3 is 1300 cm2 V"1 s"1 (Chapter 5).
Thus

K
Zfieereo     (50 x lO"6) U x 1300 x lO"4) (3.9 x 8.85 x lO"12)

2Lt0X 2(10 x 10-6)(450 x lO"10)

When VGs = 8 V and VDs = 20 V, with X = 0.01, we have

Ids = 0.000125(8 - 4)2[1 + (0.01)(20)] = 0.0024 A or

0
.
000125

2
.
4 mA

6
.
8

.
3 Threshold Voltage

The threshold voltage is an important parameter in MOSFET devices. Its control in
device fabrication is therefore essential. Figure 6.39a shows an idealized MOS struc-
ture where all the electric field lines from the metal pass through the oxide and pene-
trate the /?-type semiconductor. The charge -Q is made up of fixed negative acceptors
in a surface region of Wa and of conduction electrons in the inversion layer at the sur-
face, as shown in Figure 6.39a. The voltage drop across the MOS structure, however,

V = V
1

f

ff)    ffi ft ff>

_

e
___

e
__

 ®__e__e
p-semiconductor

.
Metal

Oxide

Inversion

- layer

x

-0W
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\
Depletion
region

Charge density

a

A

V
1
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OX 'sc
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V = V.
i

ffi 0 ft ft ft ft ft

B»e3 .e.-»jil     «g»"* 6.39

Le-e-e...» .!?..e...e e

(b)

a) The threshold voltage and the ideal MOS structure.
(b) In practice, there are several charges in the oxide and at the
oxide-semiconductor interface that affect the threshold voltage:
Qmi = mobile ionic charge (e.g., Na"4"), Qot = trapped oxide
charge, Qf = fixed oxide charge, and Qt = charge trapped at
the interface.



540 CHAPTER 6   .   SEMICONDUCTOR DEVICES

is not uniform. As the field penetrates the semiconductor, there is a voltage drop Vsc
across the field penetration region of the semiconductor by virtue of £ = - d V/dx, as
shown in Figure 6.39a. The field terminates on both electrons in the inversion layer and
acceptors in Wa, so within the semiconductor £ is not uniform and therefore the volt-
age drop is not constant. But the field in the oxide is uniform, as we assumed there were
no charges inside the oxide. The voltage drop across the oxide is constant and is Vox* as
shown in Figure 6.39a. As the applied voltage is Vu we must have Vsc + Vox = Vi- The
actual voltage drop Vsc across the semiconductor determines the condition for inver-
sion. We can show this as follows. If the acceptor doping concentration is 1016 cm

-3
,

then the Fermi level £> in the bulk of the p-type semiconductor must be 0.347 eV
below Epi in intrinsic Si. To make the surface w-type we need to shift £> at the surface
to go just above EFi. Thus we need to shift EF from bulk to surface by at least 0.347 eV.
We have to bend the energy band by 0.347 eV at the surface. Since the voltage drop
across the semiconductor is Vsc and the corresponding electrostatic PE change is e Vsc,
this must be 0.347 eV or Vsc = 0.347 V. The gate voltage for the start of inversion will
then be VoX + 0.347 V. By inversion, however, we generally infer that the electron con-
centration at the surface is comparable to the hole concentration in the bulk. This
means that we actually have to shift £> above £>, by another 0.347 eV, so the gate
threshold voltage    must be VoX + 0.694 V.

In practice there are a number of other important effects that must be considered in
evaluating the threshold voltage. Invariably there are charges both within the oxide and at
the oxide-semiconductor interface that alter the field penetration into the semiconductor
and hence the threshold voltage needed at the gate to cause inversion. Some of these are
depicted in Figure 6.39b and can be qualitatively summarized as follows.

There may be some mobile ions within the SiC , such as alkaline ions (Na+, K+),
which are denoted as £?mi in Figure 6.39b. These may be introduced unintentionally, for
example, during cleaning and etching processes in the fabrication. In addition there
may be various trapped (immobile) charges within the oxide Qot due to structural
defects, for example, an interstitial Si+. Frequently these oxide trapped charges are cre-
ated as a result of radiation damage (irradiation by X-rays or other high-energy beams).
They can be reduced by annealing the device.

A significant number of fixed positive charges (Qf) exist in the oxide region close
to the interface. They are believed to originate from the nonstoichiometry of the oxide
near the oxide-semiconductor interface. They are generally attributed to positively
charged Si+ ions. During the oxidation process, a Si atom is removed from the Si sur-
face to react with the oxygen diffusing in through the oxide. When the oxidation
process is stopped suddenly, there are unfulfilled Si ions in this region. Qf depends on
the crystal orientation and on the oxidation and annealing processes. The semiconduc-
tor to oxide interface itself is a sudden change in the structure from crystalline Si to
amorphous oxide. The semiconductor surface itself will have various defects, as dis-
cussed in Chapter 1. There is some inevitable mismatch between the two structures at i
the interface, and consequently there are broken bonds, dangling bonds, point defects
such as vacancies and Si+, and other defects at this interface that trap charges (e.g.,
holes). All these interface charges are represented as Qn in Figure 6.39b. git depends «
not only on the crystal orientation but also on the chemical composition of the inter-
face. Both Qf and git overall represent a positive charge that effectively reduces the
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gate voltage needed for inversion. They are smaller for the (100) surface than the (111)
surface, so (100) is the preferred surface for the Si MOS device.

In addition to various charges in the oxide and at the interface shown in Figure 6.39b,
there will also be a voltage difference, denoted as VV , between the semiconductor
surface and the metal surface, even in the absence of an applied voltage. V>b arises
from the work function difference between the metal and the p-type semiconductor, as
discussed in Chapter 4. The metal work function is generally smaller than the semi-
conductor work function, which means that the semiconductor surface will have an ac-

cumulation of electrons and the metal surface will have positive charges (exposed
metal ions). The gate voltage needed for inversion will therefore also depend on Vfb-
Since Vfb is normally positive and Qf and git are also positive, there may already be
an inversion layer formed at the semiconductor surface even without a positive gate
voltage. The fabrication of an enhancement MOSFET then requires special fabrication
procedures, such as ion implantation, to obtain a positive and predictable V .

The simplest way to control the threshold gate voltage is to provide a separate
electrode to the bulk of an enhancement MOSFET, as shown in Figure 6.36, and to
apply a bias voltage to the bulk with respect to the source to obtain the desired Vth
between the gate and source. This technique has the disadvantage of requiring an ad-
ditional bias supply for the bulk and also adjusting the bulk to source voltage almost
individually for each MOSFET.

6.8.4 Ion Implanted MOS Transistors and Poly-Si Gates

The most accurate method of controlling the threshold voltage is by ion implantation, as
the number of ions that are implanted into a device and their location can be closely con-
trolled. Furthermore, ion implantation can also provide a self-alignment of the edges of
the gate electrode with the source and drain regions. In the case of an n-channel
enhancement MOSFET, it is generally desirable to keep the p-type doping in the bulk
low to avoid small VDs for reverse breakdown between the drain and the bulk (see Fig-
ure 6.36). Consequently, the surface, in practice, already has an inversion layer (without
any gate voltage) due to various fixed positive charges residing in the oxide and at the
interface, as shown in Figure 6.39b (positive Qf and git and Vfb)- It then becomes
necessary to implant the surface region under the gate with boron acceptors to remove
the electrons and restore this region to a p-type behavior.

The ion implantation process is carried out in a vacuum where the required impurity
ions are generated and then accelerated toward the device. The energy of the arriving
ions and hence their penetration into the device can be readily controlled. Typically,
the device is implanted with B acceptors under the gate oxide, as shown in Figure 6.40.
The distribution of implanted acceptors as a function of distance into the device from
the surface of the oxide is also shown in the figure. The position of the peak depends
on the energy of the ions and hence on the accelerating voltage. The peak of the con-
centration of implanted acceptors is made to occur just below the surface of the
semiconductor. Since ion implantation involves the impact of energetic ions with the
crystal structure, it results in the inevitable generation of various defects within the im-
planted region. The defects are almost totally eliminated by annealing the device at an
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Figure 6.40 Schematic illustration of ion
implantation for the control of Vth-
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Figure 6.41
(a) There is an overlap of the gate electrode with
the source and drain regions and hence
additional capacitance between the gate and
drain.

(b) n+-type ion implantation extends the drain
and source to line up with the gate.
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elevated temperature. Annealing also broadens the acceptor implanted region as a re-
sult of increased diffusion of implanted acceptors.

Ion implantation also has the advantage of providing self-alignment of the drain
and source with the edges of the gate electrode. In a MOS transistor, it is important that
the gate electrode extends all the way from the source to the drain regions so that the
channel formed under the gate can link the two regions; otherwise, an incomplete
channel will be formed. To avoid the possibility of forming an incomplete channel, it
is necessary to allow for some overlap, as shown in Figure 6.41a, between the gate and
source and drain regions because of various tolerances and variations involved in the
fabrication of a MOSFET by conventional masking and diffusional techniques. The
overlap, however, results in additional capacitances between the gate and source and
the gate and drain and adversely affects the high-frequency (or transient) response
of the device. It is therefore desirable to align the edges of the gate electrode with
the source and drain regions. Suppose that the gate electrode is made narrower so that
it does not extend all the way between the source and drain regions, as shown in Fig-
ure 6.41b. If the device is now ion implanted with donors, then donor ions passing
through the thin oxide will extend the n+ regions up to the edges of the gate and
thereby align the drain and source with the edges of the gate. The thick metal gate is
practically impervious to the arriving donor ions.

Another method of controlling Vth is to use silicon instead of Al for the gate elec-
trode. This technique is called silicon gate technology. Typically, the silicon for the
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Figure 6.42  The poly-Si gate technology.
(a) Poly-Si is deposited onto the oxide, and the areas outside the gate dimensions are etched away.
(b) The poly-Si gate acts as a mask during ion implantation of donors to form the n+ source and drain regions.
(c) A simplified schematic sketch of the final poly-Si MOS transistor.

gate is vacuum deposited {e,g., by chemical vapor deposition using silane gas) onto the
oxide, as shown in Figure 6.42. As the oxide is noncrystalline, the Si gate is polycrys-
talline (rather than a single crystal) and is therefore called a poly-Si gate. Normally it
is heavily doped to ensure that it has sufficiently low resistivity to avoid RC time con-
stant limitations in charging and discharging the gate capacitance during transient or ac
operations. The advantage of the poly-Si gate is that its work function depends on the
doping (type and concentration) and can be controlled so that Vfb and hence Vth can
also be controlled. There are also additional advantages in using the poly-Si gate. For
example, it can be raised to high temperatures (Al melts at 660 0C). It can be used as a
mask over the gate region of the semiconductor during the formation of the source and
drain regions, If ion implantation is used to deposit donors into the semiconductor, then
the n+ source and drain regions are self-aligned with the poly-Si gate, as shown in
Figure 6.42.

6
.9    LIGHT EMITTING DIODES (LED)

6
.9.

1  LED Principles

A light emitting diode (LED) is essentially a pn junction diode typically made from a
direct bandgap semiconductor, for example, GaAs, in which the electron-hole pair
(EHP) recombination results in the emission of a photon. The emitted photon energy
hv is approximately equal to the bandgap energy Eg. Figure 6.43a shows the energy
band diagram of an unbiased pnt junction device in which the n-side is more heavily
doped than the p-side. The Fermi level £> is uniform through the device, which is a
requirement of equilibrium with no applied bias. The depletion region extends mainly
into the p-side. There is a PE barrier eV0 from Ec on the n-side to Ec on the p-side
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Figure 6.43   Energy band diagram of a pn (heavily n-type doped) junction.
(a) No bias voltage.
(b) With forward bias V. Recombination around the junction and within the diffusion length of the electrons in the
p-side leads to photon emission.

where V0 is the built-in voltage. The PE barrier eV0 prevents the diffusion of electrons
from the n-side to the /?-side.

When a forward bias V is applied, the built-in potential V0 is reduced to V0 - V,
which then allows the electrons from the 7i+-side to diffuse, that is, become injected,
into the /?-side as depicted in Figure 6.43b. The hole injection component from p into
the n+-side is much smaller than the electron injection component from the 7i+-side to
the /?-side. The recombination of injected electrons in the depletion region and within
a volume extending over the electron diffusion length Le in the p-side leads to photon
emission. The phenomenon of light emission from the EHP recombination as a result
of minority carrier injection is called injection electroluminescence. Due to the sta-
tistical nature of the recombination process between electrons and holes, the emitted
photons are in random directions; they result from spontaneous emission processes.
The LED structure has to be such that the emitted photons can escape the device with-
out being reabsorbed by the semiconductor material. This means the /?-side has to be
sufficiently narrow or we have to use heterostructure devices as discussed below.

One very simple LED structure is shown in Figure 6.44. First a doped semi-
conductor layer is grown on a suitable substrate (GaAs or GaP). The growth is done
epitaxially; that is, the crystal of the new layer is grown to follow the structure of the
substrate crystal. The substrate is essentially a sufficiently thick crystal that serves as a
mechanical support for the pn junction device (the doped layers) and can be of dif-
ferent crystal. The pn+junction is formed by growing another epitaxial layer but doped
/?-type. Those photons that are emitted toward the w-side become either absorbed or
reflected back at the substrate interface depending on the substrate thickness and the
exact structure of the LED. If the epitaxial layer and the substrate crystals have different



6.9 Light Emitting Diodes (LED) 545

Light output

+

AP
+

n

+
n

Substrate

- Epitaxial layers

Figure 6.44  A schematic illustration of
one possible LED device structure. First an
n+ layer is epitaxially grown on a substrate.
A thin p layer is then epitaxially grown on
the first layer.

crystal lattice parameters, then there is a lattice mismatch between the two crystal struc-
tures. This causes lattice strain in the LED layer and hence leads to crystal defects. Such
crystal defects encourage radiationless EHP recombinations. That is, a defect acts as a
recombination center. Such defects are reduced by lattice matching the LED epitaxial
layer to the substrate crystal. It is therefore important to lattice match the LED layer to
the substrate crystal. For example, one of the AlGaAs alloys is a direct bandgap semi-
conductor that has a bandgap in the red-emission region. It can be grown on GaAs sub-
strates with excellent lattice match which results in high-efficiency LED devices.

There are various direct bandgap semiconductor materials that can be readily
doped to make commercial pn junction LEDs which emit radiation in the red and
infrared range of wavelengths. An important class of commercial semiconductor ma-
terials that covers the visible spectrum is the III-V ternary alloys based on alloying
GaAs and GaP and denoted as GaAsi- P . In this compound, As and P atoms from
Group V are distributed randomly at normal As sites in the GaAs crystal structure.
When y < 0.45, the alloy GaAsi- P  is a direct bandgap semiconductor and hence the
EHP recombination process is direct as depicted in Figure 6.45a. The rate of recombi-
nation is directly proportional to the product of electron and hole concentrations. The
emitted wavelengths range from about 630 nm, red, for y = 0.45 (GaAso

.

55Po.45) to
870 nm for y = 0 (GaAs).

GaAsi-yPy alloys (which include GaP) with y > 0.45 are indirect bandgap
semiconductors. The EHP recombination processes occur through recombination cen-
ters and involve lattice vibrations rather than photon emission. However, if we add

 E
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|a) GaAs!.yPy (/ < 0.45)        (b) N doped GaP

Figure 6.45
(a) Photon emission in a direct bandgap
semiconductor.

(b) GaP is an indirect bandgap
semiconductor. When it is doped with
nitrogen, there is an electron
recombination center at E . Direct
recombination between a captured
electron at En and a hole emits a photon.
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Table 6.2  Selected LED semiconductor materials

Semiconductor Active Layer   Structure   Dor I    k (nm)     External (%) Comments

GaAs DH D 870-900 10

A\xG2l[-.x As (0 < x < 0.4) DH D 640-870 3-20

Ini-jGajAsyPi-y DH D 1-1.6 juim >10
(>? 2.20jc,0<jc <0.47)

Ino AljcGao
.
si-xP DH D 590-630 >10

InGaN/GaN quantum well QW D 450-530 5-20
GaAsi-yPy (y < 0.45) HJ D 630-870 < 1
GaAsi- Py (y > 0.45) HJ I 560-700 < 1

(N or Zn, O doping)
SiC HJ I 460-470 0.02

GaP(Zn) HJ I 700 2-3

GaP(N) HJ I 565 <1

Infrared (IR)
Red to IR

LEDs in communications

Amber, green, red; high
luminous intensity

Blue to green
Red to IR

Red, orange, yellow

Blue, low efficiency
Red

Green

NOTE: Optical communication channels are at 850 nm (local network) and at 1.3 and 1.55 />tm (long distance).
D = direct bandgap, I = indirect bandgap. external is typical and may vary substantially depending on the device
structure. DH = double heterostructure, HJ = homojunction, QW = quantum well.

External

efficiency

isoelectronic impurities such as nitrogen (in the same Group V as P) into the
semiconductor crystal, then some of these N atoms substitute for P atoms. Since N and
P have the same valency, N atoms substituting for P atoms form the same number of
bonds and do not act as donors or acceptors. The electronic cores of N and P, however,
are different. The positive nucleus of N is less shielded by electrons compared with
that of the P atom. This means that a conduction electron in the neighborhood of a N
atom will be attracted and may become captured at this site. N atoms therefore intro-
duce localized energy levels, or electron traps, EN near the conduction band (CB) edge
as depicted in Figure 6.45b. When a conduction electron is captured at EN, it can at-
tract a hole (in the valence band) in its vicinity by Coulombic attraction and eventually
recombine with it directly and emit a photon. The emitted photon energy is only
slightly less than Eg as EN is typically close to Ec. As the recombination process
depends on N doping, it is not as efficient as direct recombination. Thus, the efficiency
of LEDs from N doped indirect bandgap GaAsi- P  semiconductors is less than those
from direct bandgap semiconductors. Nitrogen doped indirect bandgap GaAs P
alloys are widely used in inexpensive green, yellow, and orange LEDs.

The external efficiency external of an LED quantifies the efficiency of conversion of
electric energy into an emitted external optical energy. It incorporates the internal effi-
ciency of the radiative recombination process and the subsequent efficiency of photon
extraction from the device. The input of electric power into an LED is simply the diode cur-
rent and diode voltage product (/ V). If Pout is the optical power emitted by the device, then

Pout(optical)
external =  -  X 100% [6.65]

and some typical values are listed in Table 6.2. For indirect bandgap semiconductors,
?7extemai are generally less than 1 percent, whereas for direct bandgap semiconductors
with the right device structure, external can be substantial.
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.2 Heterojunction High-Intensity LEDs

A pn junction between two differently doped semiconductors that are of the same
material, that is, the same bandgap Eg9 is called a homojunction. A junction between
two different bandgap semiconductors is called a heterojunction. A semiconductor
device structure that has junctions between different bandgap materials is called a
heterostructure device.

LED constructions for increasing the intensity of the output light make use of the
double heterostructure. Figure 6.46a shows a double-heterostructure (DH) device
based on two junctions between different semiconductor materials with different
bandgaps. In this case the semiconductors are AlGaAs with Eg » 2 eV and GaAs with
Eg « 1.4 eV. The double heterostructure in Figure 6.46a has an n+p heterojunction be-
tween w+-AlGaAs and /?-GaAs. There is another heterojunction between /?-GaAs and
p-AlGaAs

. The /?-GaAs region,is a thin layer, typically a fraction of a micron, and it
is lightly doped.

n+ P P
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Figure 6.46
(a) A double heterostructure diode has two
junctions which are between two different
bandgap semiconductors (GaAs and
AlGaAs).
(b) A simplified energy band diagram with
exaggerated features. Ep must be uniform.
(c) Forward-biased simplified energy band
diagram.
(d) Forward-biased LED. Schematic
illustration of photons escaping reabsorption
in the AlGaAs layer and being emitted from
the device.
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The simplified energy band diagram for the whole device in the absence of an ap-
plied voltage is shown in Figure 6.46b. The Fermi level EF is continuous throughout
the whole structure. There is a potential energy barrier eV0 for electrons in the CB of
/2

+-AlGaAs against diffusion into /?-GaAs. There is a bandgap change at the junction
between /?-GaAs and /?-AlGaAs which results in a step change A£c in Ec between the
two conduction bands of /7-GaAs and /?-AlGaAs. This A£c is effectively a potential
energy barrier that prevents any electrons in the CB in /?-GaAs passing to the CB of
/?-AlGaAs. (There is also a step change A Ev in Ev, but this is small and is not shown.)

When a forward bias is applied, most of this voltage drops between the n+-
AlGaAs and /?-GaAs and reduces the potential energy barrier eV0, just as in the nor-
mal pn junction. This allows electrons in the CB of n+'AlGaAs to be injected into
/?-GaAs as shown in Figure 6.46c. These electrons, however, are confined to the CB of
/?-GaAs since there is a barrier A£c between /?-GaAs and /?-AlGaAs. The wide
bandgap AlGaAs layers therefore act as confining layers that restrict injected elec-
trons to the /?-GaAs layer. The recombination of injected electrons and the holes
already present in this /?-GaAs layer results in spontaneous photon emission. Since the
bandgap Eg of AlGaAs is greater than GaAs, the emitted photons do not get reab-
sorbed as they escape the active region and can reach the surface of the device as de-
picted in Figure 6.46d. Since light is also not absorbed in /?-AlGaAs, it can be reflected
to increase the light output.

6
.
9

.
3 LED Characteristics

The energy of an emitted photon from an LED is not simply equal to the bandgap en-
ergy Eg because electrons in the conduction band are distributed in energy and so are
the holes in the valence band (VB). Figure 6.47a and b illustrate the energy band dia-
gram and the energy distributions of electrons and holes in the CB and VB, respec-
tively. The electron concentration as a function of energy in the CB is given by
g(E)f(E) where g(E) is the density of states and f(E) is the Fermi-Dirac function
(probability of finding an electron in a state with energy E). The product g(E)f(E)
represents the electron concentration per unit energy or the concentration in energy
and is plotted along the horizontal axis in Figure 6.47b. There is a similar energy dis-
tribution for holes in the VB.

The electron concentration in the CB as a function of energy is asymmetrical and J
has a peak at kT above Ec. The energy spread of these electrons is typically ~2kT j
from Ec as shown in Figure 6.47b. The hole concentration is similarly spread from
E

v in the valence band. Recall the rate of direct recombination is proportional to both j
the electron and hole concentrations at the energies involved. The transition which is
identified as 1 in Figure 6.47a involves the direct recombination of an electron at Ec
and a hole at Ev. But the carrier concentrations near the band edges are very small
and hence this type of recombination does not occur frequently. The relative intensity
of light at this photon energy hvi is small as shown in Figure 6.47c. The transitions
that involve the largest electron and hole concentrations occur most frequently. For
example, the transition 2 in Figure 6.47a has the maximum probability as both elec-
tron and hole concentrations are largest at these energies as shown in Figure 6.47b.
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Figure 6.47
(a) Energy band diagram with possible recombination paths.
(b) Energy distribution of electrons in the CB and holes in the VB. The highest electron concentration is jkT above Ec.
(c) The relative light intensity as a function of photon energy based on (b).
(d) Relative intensity as a function of wavelength in the output spectrum based on (b) and (c).

The relative intensity of light corresponding to this transition energy hv2 is then max-
imum, or close to maximum, as indicated in Figure 6.47c.11 The transitions marked as
3 in Figure 6.47a that emit relatively high energy photons hv  involve energetic elec-
trons and holes whose concentrations are small as apparent in Figure 6.47b. Thus, the
light intensity at these relatively high photon energies is small. The fall in light inten-
sity with photon energy is shown in Figure 6.47c. The relative light intensity versus
photon energy characteristic of the output spectrum is shown in Figure 6.47c and rep-
resents an important LED characteristic. Given the spectrum in Figure 6.47c we can
also obtain the relative light intensity versus wavelength characteristic as shown in
Figure 6.47d since X = c/v. The linewidth of the output spectrum, Av or AX, is de-
fined as the width between half-intensity points as shown in Figure 6.47c and d.

The wavelength for the peak intensity and the linewidth AX of the emitted spec-
trum are obviously related to the energy distributions of the electrons and holes in the
conduction and valence bands and therefore to the density of states in these bands. The
photon energy for the peak emission is roughly Eg + kT inasmuch as it corresponds to
peak-to-peak transitions in the energy distributions of the electrons and holes in Figure
6

.47b. The linewidth A(hv) of the output radiation between the half intensity points is
approximately 3kT as shown in Figure 6.47c. It is relatively straightforward to calcu-
/ate the corresponding spectral linewidth AX in terms of wavelength as explained in
Example 6.14.

1 11 The intensity is not necessarily maximum when both the electron and hole concentrations are maximum, but it will
|   I be close.
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Figure 6.48
(a) A typical output spectrum from a red GaAsP LED.
(b) Typical output light power versus forward current.
(c) Typical /-V characteristics of a red LED. The turn-on voltage is around 1.5 V.

EXAMPLE 6.14

LED spectral
linewidth

The output spectrum, or the relative intensity versus wavelength characteristics,
from an LED depends not only on the semiconductor material but also on the structure
of the pn junction diode, including the dopant concentration levels. The spectrum in
Figure 6.47d represents an idealized spectrum without including the effects of heavy
doping on the energy bands and the reabsorption of some of the photons.

Typical characteristics of a red LED (655 nm), as an example, are shown in Fig-
ure 6.48a to c. The output spectrum in Figure 6.48a exhibits less asymmetry than the
idealized spectrum in Figure 6.47d. The width of the spectrum is about 24 nm, which
corresponds to a width of about 2.7k T in the energy distribution of the emitted photons.
As the LED current increases so does the injected minority carrier concentration, and
thus the rate of recombination and hence the output light intensity. The increase in the
output light power is not however linear with the LED current as apparent in Figure
6

.48b. At high current levels, a strong injection of minority carriers leads to the recom-
bination time depending on the injected carrier concentration and hence on the current
itself; this leads to a nonlinear recombination rate with current. Typical current-voltage
characteristics are shown in Figure 6.48c where it can be seen that the turn-on, or
cut-in, voltage is about 1.5 V from which point the current increases very steeply with
voltage. The turn-on voltage depends on the semiconductor and generally increases with
the energy bandgap Eg. For example, typically, for a blue LED it is about 3.5-4.5 V,
for a yellow LED it is about 2 V, and for a GaAs infrared LED it is around 1 V.

SPECTRAL LINEWIDTH OF LEDS We know that a spread in the output wavelengths is related to
a spread in the emitted photon energies as depicted in Figure 6.47. The emitted photon energy
Eph = hc/X and the spread in the photon energies AEph = A(/iy) « ?>kT between the half-
intensity points as shown in Figure 6.47c. Show that the corresponding linewidth A A. between
the half-intensity points in the output spectrum is

A A. A 2
?>kT

[6.66]
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What is the spectral linewidth of an optical communications LED operating at 1550 nm and at
300 K?

SOLUTION

First consider the relationship between the photon frequency v and A,

    c he

v hv

in which hv is the photon energy. We can differentiate this,

dX   
_

     he   
_

 X2

d(hv) 
~

 
~

 (hv)2 ~ ~h~c

The negative sign implies that increasing the photon energy decreases the wavelength. We are
only interested in changes or spreads; thus AX/A(hv) % \dX/d(hv)\,

X2 X2
AX = -A(hv) = -3kT

he he

where we used A(hv) = SkT, and obtained Equation 6.66. We can substitute X = 1550nm and
T = 300 K to calculate the linewidth of the 1550 nm LED:

73kT q 2   3(1.38 x 10-23)(300)AX = X2 = (1550 x lO"9)2 i - -
he (6.626 x 10-34)(3 x 108)

= 1
.
50 x 10"7m      or      150 nm

The spectral linewidth of an LED output is due to the spread in the photon energies, which is
fundamentally about 3kT. The only option for decreasing A A at a given wavelength is to reduce
the temperature. The output spectrum of a laser, on the other hand, has a much narrower
linewidth. A single-mode laser can have an output linewidth less than 1 nm.

6
.
10    SOLAR CELLS

6
.10.1  Photovoltaic Device Principles

A simplified schematic diagram of a typical solar cell is shown in Figure 6.49. Con-
sider a pn junction with a very narrow and more heavily doped n -region. The illumi-
nation is through the thin n-side. The depletion region (W) or the space charge layer
(SCL) extends primarily into the p-side. There is a built-in field £0 in this depletion
layer. The electrodes attached to the n-side must allow illumination to enter the device
and at the same time result in a small series resistance. They are deposited on the
n-side to form an array of finger electrodes on the surface as depicted in Figure 6.

50.

A thin antireflection coating on the surface (not shown in the figure) reduces reflec-
tions and allows more light to enter the device.

As the n-side is very narrow, most of the photons are absorbed within the deple-
tion region (W) and within the neutral /?-side (lp) and photogenerate EHPs in these
regions. EHPs photogenerated in the depletion region are immediately separated by
the built-in field £0 which drifts them apart. The electron drifts and reaches the neutral
n

+-side whereupon it makes this region negative by an amount of charge -e. Similarly,
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the hole drifts and reaches the neutral p-side and thereby makes this side positive. Con-
sequently an open circuit voltage develops between the terminals of the device with
the p-side positive with respect to the n-side. If an external load is connected, then the
excess electron in the n-side can travel around the external circuit, do work, and reach

the p-side to recombine with the excess hole there. It is important to realize that with-
out the internal field !E0 it is not possible to drift apart the photogenerated HHPs and
accumulate excess electrons on the n-side and excess holes on thep-side.

The EHPs photogenerated by long-wavelength photons that are absorbed in the
neutral p-side diffuse around in this region as there is no electric field. If the recombi-
nation lifetime of the electron is re, it diffuses a mean distance Le = \j2Dexe where De
is its diffusion coefficient in the p-side. Those electrons within a distance Le to the de-
pletion region can readily diffuse and reach this region whereupon they become drifted
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Figure 6.51   Photogenerated carriers
within the volume I/, + W+    give rise to a
photocurrent /ph.
The variation in the photogenerated EHP
concentration with distance is also shown

where a is the absorption coefficient at the
wavelength of interest.

by to the n-side as shown in Figure 6.49. Consequently only those EHPs photogen-
erated within the minority carrier diffusion length Le to the depletion layer can
contribute to the photovoltaic effect. Again the importance of the built-in field !E0 is
apparent. Once an electron diffuses to the depletion region, it is swept over to the
n-side by £<> to give an additional negative charge there. Holes left behind in the p-side
contribute a net positive charge to this region. Those photogenerated EHPs further
away from the depletion region than Le are lost by recombination. It is therefore im-
portant to have the minority carrier diffusion length Le be as long as possible. This is
the reason for choosing this side of a Si pn junction to be /?-type which makes
electrons the minority carriers; the electron diffusion length in Si is longer than the
hole diffusion length. The same ideas also apply to EHPs photogenerated by short-
wavelength photons absorbed in the n-side. Those holes photogenerated within a dif-
fusion length Lh can reach the depletion layer and become swept across to the /?-side.
The photogeneration of EHPs that contributes to the photovoltaic effect therefore
occurs in a volume covering Lh + W + Le. If the terminals of the device are shorted,
as in Figure 6.51, then the excess electron in the n-side can flow through the external
circuit to neutralize the excess hole in the /?-side. This current due to the flow of the
photogenerated carriers is called the photocurrent.

Under a steady-state operation, there can be no net current through an open circuit
solar cell. This means the photocurrent inside the device due to the flow of photogen-
erated carriers must be exactly balanced by a flow of carriers in the opposite direction.
The latter carriers are minority carriers that become injected by the appearance of the
photovoltaic voltage across the pn junction as in a normal diode. This is not shown in
Figure 6.49.

EHPs photogenerated by energetic photons absorbed in the n-side near the surface
region or outside the diffusion length Lh to the depletion layer are lost by recombina-
tion as the lifetime in the n-side is generally very short (due to heavy doping). The
n-side is therefore made very thin, typically less than 0.2 |im. Indeed, the length in of
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Solar cell inventors at Bell Labs (left to right): Gerald Pearson, Daryl Chapin,
and Calvin Fuller. They are checking a Si solar cell sample for the amount
of voltage produced (1954).
I SOURCE: Courtesy of Bell Labs, Lucent Technologies.

Helios is a solar cell-powered airplane that is
remotely piloted. It has been able to fly as high
as about 30 km during the day. Its wingspan is
9 m. It has fuel cells to fly at night.
I SOURCE: Courtesy of NASA, Dryden Flight
I Center.

pn Junction Si solar cells at work. Honda's two-seated

Dream car is powered by photovoltaics. The Honda
Dream was first to finish 3,010 km in four days in the
1996 World Solar Challenge.

SOURCE: Courtesy of Centre for Photovoltaic
Engineering, University of New South Wales, Sydney,
Australia.
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the n-side may be shorter than the hole diffusion length Lh. The HHPs photogenerated
very near the surface of the /i-side, however, disappear by recombination due to vari-
ous surface defects acting as recombination centers as discussed below.

At long wavelengths, around 1-1.2 jum, the absorption coefficient a of Si is small
and the absorption depth (1 /ot) is typically greater than 100 jum. To capture these long-
wavelength photons, we therefore need a thick p-side and at the same time a long mi-
nority carrier diffusion length Le. Typically the p-side is 200-500 jum and Le tends to
be shorter than this.

Crystalline silicon has a bandgap of 1.1 eV which corresponds to a threshold
wavelength of 1.1 jum. The incident energy in the wavelength region greater than
1
.1 |Lim is then wasted; this is not a negligible amount (~25 percent). The worst part

of the efficiency limitation however comes from the high-energy photons becoming
absorbed near the crystal surface and being lost by recombination in the surface re-
gion. Crystal surfaces and interfaces contain a high concentration of recombination
centers which facilitate the recombination of photogenerated HHPs near the surface.
Losses due to EHP recombinations near or at the surface can be as high as 40 percent.
These combined effects bring the efficiency down to about 45 percent. In addition,
the antireflection coating is not perfect, which reduces the total collected photons by
a factor of about 0.8-0.9. When we also include the limitations of the photovoltaic
action itself (discussed below), the upper limit to a photovoltaic device that uses a
single crystal of Si is about 24-26 percent at room temperature.

Consider an ideal pn junction photovoltaic device connected to a resistive load
R as shown in Figure 6.52a. Note that / and V in the figure define the convention for
the direction of positive current and positive voltage. If the load is a short circuit,
then the only current in the circuit is that generated by the incident light. This is the
photocurrent /ph shown in Figure 6.52b which depends on the number of HHPs photo-
generated within the volume enclosing the depletion region (W) and the diffusion
lengths to the depletion region (Figure 6.51). The greater is the light intensity, the

I

V

R

y 'sc=-/
I

ph

vi3

Q (b)

I

ph

R

(c)

Figure 6.52
(a) The solar cell connected to an external load R and the convention for the definitions of positive voltage and
positive current.

(b) The solar cell in short circuit. The current is the photocurrent /ph.
(c) The solar cell driving an external load R. There is a voltage Vand current / in the circuit.
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Solar cell I-V

higher is the photogeneration rate and the larger is /ph. If I is the light intensity, then
the short circuit current is

he = -Inh = -Klph [6.67]

where K is a constant that depends on the particular device. The photocurrent does not
depend on the voltage across the pn junction because there is always some internal
field to drift the photogenerated EHP. We exclude the secondary effect of the voltage
modulating the width of the depletion region. The photocurrent /ph therefore flows
even when there is not a voltage across the device.

If R is not a short circuit, then a positive voltage V appears across the pn junction as
a result of the current passing through it as shown in Figure 6.52c. This voltage reduces
the built-in potential of the pn junction and hence leads to minority carrier injection and
diffusion just as it would in a normal diode. Thus, in addition to /Ph there is also a forward
diode current Id in the circuit as shown in Figure 6.52c which arises from the voltage de-
veloped across R. Since Id is due to the normal pn junction behavior, it is given by the
diode characteristics,

where I0 is the "reverse saturation current" and r) is the ideality factor {q = 1 - 2). In an
open circuit, the net current is zero. This means that the photocurrent /Ph develops just
enough photovoltaic voltage Vqc to generate a diode current Id = /ph.

Thus the total current through the solar cell, as shown in Figure 6.52c, is

/ = -'*+'.[«p( ) -»] [6.68]

The overall I-V characteristics of a typical Si solar cell are shown in Figure 6.53.
It can be seen that it corresponds to the normal dark characteristics being shifted down

Figure 6.53 Typical I-V characteristics of
a Si solar cell.

The short circuit current is /ph and the open
circuit voltage is Vqc- The I-V curves for
positive current require an external bias
voltage. Photovoltaic operation is always in
the negative current region.
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Figure 6.54
(a) When a solar cell drives a load /?, R has the same voltage as the solar cell but the current through it is in the
opposite direction to the convention that current flows from high to low potential.
(b) The current /' and voltage V in the circuit of (a) can be found from a load line construction. Point P is the
operating point (/', V"). The load line is for R - 3 £2.

by the photocurrent /ph, which depends on the light intensity J. The open circuit out-
put voltage Vqc, of the solar cell is given by the point where the I-V curve cuts the
V axis (/ = 0). It is apparent that although it depends on the light intensity, its value
typically lies in the range 0.5-0.7 V.

Equation 6.68 gives the I-V characteristics of the solar cell. When the solar cell is
connected to a load as in Figure 6.54a, the load has the same voltage as the solar cell and
carries the same current. But the current / through R is now in the opposite direction to
the convention that current flows from high to low potential. Thus, as shown in Fig-
ure 6.54a,

V
[6.69]     The load line

The actual current /' and voltage V in the circuit must satisfy both the I-V char-
acteristics of the solar cell, Equation 6.68, and that of the load, Equation 6.69. We can
find /' and V by solving these two equations simultaneously or using a graphical
solution. /' and V in the solar cell circuit are most easily found by using a load line
construction. The I-V characteristics of the load in Equation 6.69 is a straight line
with a negative slope -1//?. This is called the load line and is shown in Figure 6.54b
along with the I-V characteristics of the solar cell under a given intensity of illumina-
tion. The load line cuts the solar cell characteristic at P where the load and the solar

cell have the same current and voltage /' and V. Point P therefore satisfies both

Equations 6.68 and 6.69 and thus represents the operating point of the circuit.
The power delivered to the load is Pout = I'V\ which is the area of the rectangle

bound by the / and V axes and the dashed lines shown in Figure 6.54b. Maximum
power is delivered to the load when this rectangular area is maximized (by changing R
or the intensity of illumination), when /' = I

m and V = Vm. Since the maximum



558 chapter 6 . Semiconductor Devices

Definition of
fill factor

possible current is /sc and the maximum possible voltage is Vqc, hcVoc represents the
desirable goal in power delivery for a given solar cell. Therefore it makes sense to
compare the maximum power output ImVm with ISCV0C. The fill factor FF, which is a
figure of merit for the solar cell, is defined as

FF =
I
m

V
,m r m

[6.70]
sc y oc

The FF is a measure of the closeness of the solar cell I-V curve to the rectangular
shape (the ideal shape). It is clearly advantageous to have the FF as close to unity as
possible, but the exponential pn junction properties prevent this. Typically FF values
are in the range 70-85 percent and depend on the device material and structure.

EXAMPLE 6.15 A SOLAR CELL DRIVING A RESISTIVE LOAD Consider the solar cell in Figure 6.54 that is
driving a load of 3 Q,. This cell has an area of 3 cm x 3 cm and is illuminated with light of
intensity 700 W m-2. Find the current and voltage in the circuit. Find the power delivered to the
load, the efficiency of the solar cell in this circuit, and the fill factor of the solar cell.

SOLUTION

The I-V characteristic of the load in Figure 6.54a, is the load line in Equation 6.69; that is,
/ = - V/(3 £1). The line is drawn in Figure 6.54b with a slope 1 /(3 Q). It cuts the I-V charac-
teristics of the solar cell at /' = 157 mA and V - 0.475 V as apparent in Figure 6.54b, which
are the current and voltage, respectively, in the photovoltaic circuit of Figure 6.54a. The power
delivered to the load is

Pout = I'V' = (157 x 10-3)(0.475 V) = 0.0746 W or 74.6 mW

The input of sunlight power is

Pin = (Light intensity)(Surface area) = (700 W nr2)(0.03 m)2 = 0.63 W

The efficiency is

(0.0746 W)
photovoltaic = (100%)-  = (100%) 11.8%

This will increase if the load is adjusted to extract the maximum power from the solar cell,
but the increase will be small as the rectangular area I'V in Figure 6.54b is already quite close
to the maximum.

The fill factor can also be calculated since point P in Figure 6.54b is close to the optimum
operation, maximum output power, in which the rectangular area I'V is maximum:

FF
I
m

Vm 
_

 I'V      (157 mA)(0.475 V)

(178 mA)(0.58 V)hrVsc v oc
/ V

0
.
722 or 72%

sc ''oc

EXAMPLE 6.16 OPEN CIRCUIT VOLTAGE AND ILLUMINATION A solar cell under an illumination of 500 W m 2

has a short circuit current /sc of 150 mA and an open circuit output voltage Voc of 0.530 V. What
are the short circuit current and open circuit voltage when the light intensity is doubled? Assume
r) = 1.5, a typical value for various Si p/i junctions.
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SOLUTION

The general I-V characteristic under illumination is given by Equation 6.68. Setting / = 0 for
open circuit,

/ = -/ph + /,

Assuming that Voc » r)kT/e, rearranging the above equation we can find Voc,

nkT //ph\

The photocurrent /ph depends on the light intensity I via /ph = Kl, where £ is a constant.
Thus, at a given temperature, the change in Voc is

e     V/phi/       e KlJphi

The short circuit current is the photocurrent, so at double the intensity this is

/sc2 = = (150 mA)(2) = 300 mA

Assuming rj = 1.5, the new open circuit voltage is

Voc2 = K>cl + ~~ (r") = 0,530 V + (1-5)(0-026)ln(2) = 0'557 V

This is a 5 percent increase compared with the 100 percent increase in illumination and the short
circuit current.

Open circuit
condition

Open circuit
output

voltage

Open circuit
voltage and
light intensity

6
.10.2 Series and Shunt Resistance

Practical solar cells can deviate substantially from the ideal pn junction solar cell be-
havior depicted in Figure 6.53 due to a number of reasons. Consider an illuminated pn
junction driving a load resistance RL and assume that photogeneration takes place in
the depletion region. As shown in Figure 6.55, the photogenerated electrons have to
traverse a surface semiconductor region to reach the nearest finger electrode. All these
electron paths in the n -layer surface region to finger electrodes introduce an effective
series resistance Rs into the photovoltaic circuit. If the finger electrodes are thin, then
the resistance of the electrodes themselves will further increase Rs. There is also a se-
ries resistance due to the neutral p -region, but this is generally small compared with
the resistance of the electron paths to the finger electrodes.

Figure 6.56a shows the equivalent circuit of an ideal pn junction solar cell. The
photogeneration process is represented by a constant current generator /ph, which gen-
erates a current that is proportional to the light intensity. The flow of photogenerated
carriers across the junction gives rise to a photovoltaic voltage difference V across the
junction, and this voltage leads to the normal diode current Id = /o[exp0 VfakT) - 1].
This diode current Id is represented by an ideal pn junction diode in the circuit as
shown in Figure 6.56a. As apparent, /ph and Id are in opposite directions (/ph is "up"
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Figure 6.56  The equivalent circuit of a solar cell.
(a) Ideal pn junction solar cell.
(b) Parallel and series resistances Ks and Kp.

and Id is "down"), so in an open circuit the photovoltaic voltage is such that /ph and Id
have the same magnitude and cancel each other. By convention, positive current / at
the output terminal is normally taken to flow into the terminal and is given by Equa-
tion 6.68. (In reality, of course, the solar cell current is negative, as in Figure 6.53,
which represents a current that is flowing out into the load.)

Figure 6.56b shows the equivalent circuit of a more practical solar cell. The series
resistance Rs in Figure 6.56b gives rise to a voltage drop and therefore prevents the
ideal photovoltaic voltage from developing at the output between A and B when a
current is drawn. A fraction (usually small) of the photogenerated carriers can also

flow through the crystal surfaces (edges of the device) or through grain boundaries in
polycrystalline devices instead of flowing though the external load RL. These effects
that prevent photogenerated carriers from flowing in the external circuit can be repre-
sented by an effective internal shunt or parallel resistance Rp that diverts the pho-
tocurrent away from the load Ri. Typically Rp is less important than Rs in overall
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device behavior, unless the device is highly polycrystalline and the current component
flowing through grain boundaries is not negligible.

The series resistance Rs can significantly deteriorate the solar cell performance
as illustrated in Figure 6.57 where Rs = 0 is the best solar cell case. It is apparent that
the available maximum output power decreases with the series resistance which
therefore reduces the cell efficiency. Notice also that when Rs is sufficiently large, it
limits the short circuit current. Similarly, low shunt resistance values, due to exten-
sive defects in the material, also reduce the efficiency. The difference is that although
R

s does not affect the open circuit voltage Vqo low Rp leads to a reduced Voc.

6
.10.3 Solar Cell Materials, Devices, and Efficiencies

Most solar cells use crystalline silicon because silicon-based semiconductor fabrication
is now a mature technology that enables cost-effective devices to be manufactured.
Typical Si-based solar cell efficiencies range from about 18 percent for polycrystalline
to 22-24 percent in high-efficiency single-crystal devices that have special structures
to absorb as many of the incident photons as possible. Solar cells fabricated by making
a pn junction in the same crystal are called homojunctions. The best Si homojunction
solar cell efficiencies are about 24 percent for expensive single-crystal passivated
emitter rear locally diffused (PERL) cells.12 The PERL and similar cells have a tex-

tured surface that is an array of "inverted pyramids" etched into the surface to capture
as much of the incoming light as possible as depicted in Figure 6.58. Normal reflec-
tions from a flat crystal surface lead to a loss of light, whereas reflections inside the
pyramid allow a second or even a third chance for absorption. Further, after refraction,
photons would be entering the semiconductor at oblique angles which means that they
will be absorbed in the useful photogeneration volume, that is, within the electron dif-
fusion length of the depletion layer as shown in Figure 6.58.

12 Much of the pioneering work for high-efficiency PERL solar cells was done by Martin Green and coworkers at the
University of New South Wales.
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Figure 6.58  An inverted pyramid textured
surface substantially reduces reflection losses and
increases absorption probability in the device.
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Table 6.3 summarizes some typical characteristics of various solar cells.
 GaAs and

Si solar cells have comparable efficiencies though theoretically GaAs with a higher
bandgap is supposed to have a better efficiency. The largest factors reducing the effi-
ciency of a Si solar cell are the unabsorbed photons with hv <Eg and short wavelength
photons absorbed near the surface. Both these factors are improved if tandem cell
structures or heterojunctions are used.

There are a number of III-V semiconductor alloys that can be prepared with differ-
ent bandgaps but with the same lattice constant. Heterojunctions (junctions between dif-
ferent materials) from these semiconductors have negligible interface defects.

 AlGaAs

has a wider bandgap than GaAs and would allow most solar photons to pass through.
 If

we use a thin AlGaAs layer on a GaAs pn junction, as shown in Figure 6.59, then this
layer passivates the surface defects normally present in a homojunction GaAs cell. The
AlGaAs window layer therefore overcomes the surface recombination limitation and
improves the cell efficiency (such cells have efficiencies of about 24 percent).

Table 6.3  Typical characteristics of various solar cells at room temperature under AMI .5 illumination of 1000 W m 2

Semiconductor (eV)      Voc(V) JscimAcm2) FF >?(%) Comments

Si, single crystal
Si, polycrystalline
Amorphous Si:Ge:H film

GaAs, single crystal
GaAlAs/GaAs, tandem

GalnP/GaAs, tandem

CdTe, thin film

InP, single crystal
CuInSe2
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1
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1
.
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1
.
5

1
.
34

1
.
0

0
.
5-0

.
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0
.
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.
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1
.
02

1
.
03

2
.
5

0
.
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0
.
87
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38
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27.9
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0
.
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.
8

0
.
7-0

.
8

0
.
85

0
.
864

0
.
86

0
.
75

0
.
85

16-24

12-19

8-13

24-25

24.8
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NOTE: AMI .5 refers to a solar illumination of "Air Mass 1.5," which represents solar radiation falling on the Earth's surface with a total

intensity (or irradiance) of 1000 W m
-2

. AMI .5 is widely used for comparing solar cells.
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Figure 6.59  AlGaAs window layer on GaAs
passivates the surface states and thereby increases
the photogeneration efficiency.
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Figure 6.60 A heterojunction solar cell between two
different bandgap semiconductors (GaAs and AlGaAs).

Heterojunctions between different bandgap III-V semiconductors that are lat-
tice matched offer the potential of developing high-efficiency solar cells. The sim-
plest single heterojunction example, shown in Figure 6.60, consists of a pn junction
using a wider bandgap n-AlGaAs with p-GaAs. Energetic photons (A v > 2 eV) are
absorbed in AlGaAs, whereas those with energies less than 2 eV but greater than
1

.4 eV are absorbed in the GaAs layer. In more sophisticated cells, the bandgap
of AlGaAs is graded slowly from the surface by varying the composition of the
AlGaAs layer.

Tandem or cascaded cells use two or more cells in tandem or in cascade to in-

crease the absorbed photons from the incident light as illustrated in Figure 6.61. The
first cell is made from a wider bandgap (Egi) material and only absorbs photons with
hv > Egi. The second cell with bandgap Eg2 absorbs photons that pass the first cell
and have hv > Eg2. The whole structure can be grown within a single crystal by using
lattice-matched crystalline layers leading to a monolithic tandem cell. If, in addition,
light concentrators are also used, the efficiency can be further increased. For exam-
ple, a GaAs-GaSb tandem cell operating under a 100-sun condition, that is, 100 times
that of ordinary sunlight, have exhibited an efficiency of about 34 percent. Tandem
cells have been used in thin-film a-Si:H (hydrogenated amorphous Si) pin (p-type,
intrinsic, and n-type structure) solar cells to obtain efficiencies up to about 12 percent.
These tandem cells have a-Si:H and a-Si:Ge:H cells and are easily fabricated in large
areas.

vv->

n P iP jiii
Figure 6.61   A tandem cell.
Cell 1 has a wider bandgap and absorbs energetic
photons with hv > Eg]. Cell 2 absorbs photons that
pass through cell 1 and have hv > Eg2.

CeU !(£:
,,) Cell2(Eg2<Egl)
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ADDITIONAL TOPICS

6.11    pin DIODES, PHOTODIODES, AND SOLAR CELLS
The pin Si diode is a device that has a structure with three distinct layers: a heavily
doped thin /?+-type layer, a relatively thick intrinsic (/-Si) layer, and a heavily doped
thin /2+-type layer, as shown in Figure 6.62a. For simplicity we will assume that the
i -layer is truly intrinsic, or at least doped so lightly compared with p+ and n+ layers that
it behaves almost as if intrinsic. The intrinsic layer is much wider than the p+ and n+
regions, typically 5-50 ixm depending on the particular application. When the structure
is first formed, holes diffuse from the /?+-side and electrons from the /2+-side into the i-
Si layer where they recombine and disappear. This leaves behind a thin layer of exposed
negatively charged acceptor ions in the /?+-side and a thin layer of exposed positively
charged donor ions in the /2+-side as shown in Figure 6.22b. The two charges are sepa-
rated by the /-Si layer of thickness W. There is a uniform built-in field £0 in the /-Si
layer from the exposed positive ions to the exposed negative ions as illustrated in Fig-
ure 6.22c. (Since there is no net space charge in the /-layer, from d'E/dx - p/E0er = 0,
the field must be uniform.) In contrast, the built-in field in the depletion layer of a pn
junction is not uniform. With no applied bias, the equilibrium is maintained by the built-
in field "Eo which prevents further diffusion of majority carriers from the p+ and n+ lay-
ers into the /-Si layer. A hole that manages to diffuse from the /?+-side into the /-layer
is drifted back by £0, so the net current is zero. As in the pn junction, there is also a
built-in potential V0 from the edge of the /?+-side depletion region to the edge of the n+-
side depletion region. V0 (like £0) provides a potential barrier against further net diffu-
sion of holes and electrons into the / -layer and maintains the equilibrium in the open cir-
cuit (net current being zero) as in the pn junction. It is apparent from Figure 6.62c that,
in the absence of an applied voltage, £0 = V0/ W.

One of the distinct advantages of pin diodes is that the depletion layer capacitance
is very small and independent of the voltage. The separation of two very thin layers of
negative and positive charges by a fixed distance, width W of the / -Si layer, is the same
as that in a parallel plate capacitor. The junction or depletion layer capacitance of
the pin diode is simply given by

Cdep -
£0£rA

w
[6.70]

where A is the cross-sectional area and s0sr is the permittivity of the semiconductor
(Si), respectively. Further, since the width W of the / -Si layer is fixed by the structure,
the junction capacitance does not depend on the applied voltage in contrast to that of
the pn junction. Cdep is typically of the order of a picofarad in fast pin photodiodes, so
with a 50  resistor, the i?Cdep time constant is about 50 ps.

When a reverse bias voltage Vr is applied across the pin device, it drops almost en-
tirely across the width of the / -Si layer. The depletion layer widths of the thin sheets of
acceptor and donor charges in the /?+ and n+ sides are negligible compared with W.
The reverse bias Vr increases the built-in voltage to V0 + Vr as shown in Figure 6.62d.
The field £ in the / -Si layer is still uniform and increases to

V V
% = <E0 + - % -      {Vr » V0)

w w
[6.71]
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I     Figure 6.62
out   (a) The schematic structure of an idealized pin photodiode.

(b) The net space charge density across the photodiode.
(c) The built-in field across the diode.
(d) The pin photodiode in photodetection is reverse-biased.

Since the width of the / -layer in a pin device is typically much larger than the depletion
layer width in an ordinary pn junction, the pin devices usually have higher breakdown
voltages, which makes them useful where high breakdown voltages are required.

In pin photodetectors, the pin structure is designed so that photon absorption occurs
primarily over the /-Si layer. The photogenerated electron-hole pairs (EHPs) in the
/-Si layer are then separated by the field £ and drifted toward the n+ and p+ sides,



566 chapter 6 . Semiconductor Devices

respectively, as illustrated in Figure 6.62d. While the photogenerated earners are drifting
through the i-Si layer, they give rise to an external photocuirent which is easily detected as
a voltage across a small sampling resistor R in Figure 6.62d (or detected by a current-to-
voltage converter). The response time of the pin photodiode is determined by the transit
times of the photogenerated carriers across the width W of the /-Si layer. Increasing W al-
lows more photons to be absorbed, which increases the output signal per input light inten-
sity, but it slows down the speed of response because carrier transit times become longer.

The simple pn junction photodiode has two major drawbacks. Its junction or de-
pletion layer capacitance is not sufficiently small to allow photodetection at high mod-

ttta&iT xft u\arc\i ?. TMf if jar> J?£7 jtitne rnturtatit AitmJjaHnn Secondly, its depletion
layer is at most a few microns. This means that at long wavelengths where the pene-
tration depth is greater than the depletion layer width, the majority of photons are ab-
sorbed outside the depletion layer where there is no field to separate the HHPs and drift
them. The photodetector efficiency is correspondingly low at these long wavelengths.
These problems are substantially reduced in the pin photodiode.13 The pin photo-
voltaic devices, such as a-Si:H solar cells, are designed to have the photogeneration
occur in the / -layer as in the case of photodetectors. Obviously, there is no external ap-
plied bias, and the built-in field !£0 separates the HHPs and drives the photocuirent.

6
.
12    SEMICONDUCTOR OPTICAL AMPLIFIERS

AND LASERS

All practical semiconductor laser diodes are double heterostructures (DH) whose
energy band diagrams are similar to the LED diagram in Figure 6.46. The energy
band diagram of a forward biased DH laser diode is shown in Figure 6.63a and b.

Izuo Hayashi and Morton Panish at Bell Labs
(1971) were able to design the first semicon-
ductor laser that operatea continuously at room
temperature. (Notice the similarity of the energy
band diagram on the chalkboard with that in
Figure 6.63.)
I SOURCE: Courtesy of Bell Labs, Lucent
I Technologies.

u

r

V

13 The pin photodiode was invented by J. Nishizawa and his research group in Japan in 1950.
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Figure 6.63
(a) A double heterostructure diode has two
junctions which are between two different
bandgap semiconductors (GaAs and AlGaAs).
(b) Simplified energy band diagram under a large
forward bias. Losing recombination takes place in
the p-GaAs layer, the active layer.
(c) The density of states and energy distribution of
electrons and holes in the conduction and valence

bands in the active layer.

In this case the semiconductors are AlGaAs with Eg  2 eV and GaAs with Eg
1

.4 eV. The /7-GaAs region is a thin layer, typically 0.1-0.2 fim, and constitutes
the active layer in which stimulated emissions take place. Both /7-GaAs and
p-AlGaAs are heavily /?-type doped and are degenerate with the Fermi level EFp in
the valence band. When a sufficiently large forward bias is applied, Ec of n-AlGaAs
moves very close to the Ec of p-GaAs which leads to a large injection of electrons
in the CB of n-AlGaAs into p-GaAs as shown in Figure 6.63b. In fact, with a
sufficient large forward bias, Ec of AlGaAs can be moved above the Ec of GaAs,
which causes an enormous electron injection from /z-AlGaAs into the CB of
p-GaAs

. These injected electrons, however, are confined to the CB of p-GaAs
since there is a barrier AEC between p-GaAs and p-AlGaAs due to the change in
the bandgap.

The p-GaAs layer is degenerately doped. Thus, the top of its valence band (VB)
is full of holes, or it has all the electronic states empty above the Fermi level EFp
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Figure 6.64  Semiconductor lasers have an optical cavity to build up the required electromagnetic oscillations.
In this example, one end of the cavity has a Bragg distributed reflector, a reflection grating, that reflects only certain
wavelengths back into the cavity.

in this layer. The large forward bias injects a very large concentration of electrons
from rc-AlGaAs into the conduction band of p-GaAs. Consequently, as shown in
Figure 6.63c, there is a large concentration of electrons in the CB and totally empty
states at the top of the VB, which means that there is a population inversion. An in-
coming photon with an energy hv0 just above Eg can stimulate a conduction electron
in the p-GaAs layer to fall down from the CB to the VB and emit a photon by stimu-
lated emission as depicted in Figure 6.63c. Such a transition is a photon-stimulated
electron-hole recombination, or a lasing recombination. Thus, an avalanche of stimu-
lated emissions in the active layer provides an optical amplification of photons with
hv0 in this layer. The amplification depends on the extent of population inversion and
hence on the diode forward current. The device operates as a semiconductor optical
amplifier which amplifies an optical signal that is passed through the active layer.
There is a threshold current below which there is no stimulated emission and no

optical amplification.
To construct a semiconductor laser with a self-sustained lasing emission we

have to incorporate the active layer into an optical cavity just as in the case of the
HeNe laser in Chapter 3. The optical cavity with reflecting ends, reflects the coher-
ent photons back and forward and encourages their constructive interference within
the cavity as depicted in Figure 6.64. This leads to a buildup of high-energy electro-
magnetic oscillations in the cavity. Some of this electromagnetic energy in the
cavity is tapped out as output radiation by having one end of the cavity as partially
reflecting. For example, one type of optical cavity, as shown in Figure 6.64, has a
special reflector, called a Bragg distributed reflector (BDR), at one end to reflect
only certain wavelengths back into the cavity.14 A BDR is a periodic corrugated

14 Partial reflections of waves from the corrugations in the DBR can interfere constructively and constitute a reflected
wave only for certain wavelengths, called Bragg wavelengths, that are related to the periodicity of the corrugations.
A DBR acts like a reflection grating in optics.
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(a) Typical optical power output versus
forward current for a laser diode and
an LED.

(b) Comparison of spectral output
characteristics.

structure, like a reflection grating, etched in a semiconductor that reflects only certain
wavelengths that are related to the corrugation periodicity. This Bragg reflector has a
corrugation periodicity such that it reflects only one desirable wavelength that falls
within the optical gain of the active region. This wavelength selective reflection leads
to only one possible electromagnetic radiation mode existing in the cavity, which
leads to a very narrow output spectrum: a single-mode output, that is, only one peak
in the output spectrum shown in Figure 3.43. Semiconductor lasers that operate with
only one mode in the radiation output are called single-mode or single-frequency
lasers; the spectral linewidth of a single-mode laser output is typically ~0.1 nm,
which should be compared with an LED spectral width of 150 nm operating at a 1550 nm
emission.

The double heterostructure has further advantages. Wider bandgap semiconduc-
tors generally have lower refractive indices, which means AlGaAs has a lower refrac-
tive index than that of GaAs. The change in the refractive index defines an optical
dielectric waveguide that confines the photons to the active region of the optical cav-
ity and thereby reduces photon losses and increases the photon concentration. This in-
crease in the photon concentration increases the rate of stimulated emissions and the
efficiency of the laser.

To achieve the necessary stimulated emissions from a laser diode and build up
the necessary optical oscillations in the cavity (to overcome all the optical losses) the
current must exceed a certain threshold current as shown in Figure 6.65a.
The optical power output at a current / is then very roughly proportional to / - 7 .
There is still some weak optical power output below 7 , but this is simply due to
spontaneous recombinations of injected electrons and holes in the active layer; the
laser diode behaves like a "poor" LED below 7th. The output light from an LED
however increases almost in proportion to the diode current. Figure 6.65b compares
the output spectrum from the two devices. Remember that the output light from the
laser diode is coherent radiation, whereas that from an LED is a stream of incoher-

ent photons.
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DEFINING TERMS

Accumulation occurs when an applied voltage to the
gate (or metal electrode) of a MOS device causes the
semiconductor under the oxide to have a greater num-
ber of majority carriers than the equilibrium value. Ma-
jority carriers have been accumulated at the surface of
the semiconductor under the oxide.

Active device is a device that exhibits gain (current or
voltage, or both) and has a directional electronic func-
tion. Transistors are active devices, whereas resistors,

capacitors, and inductors are passive devices.

Antireflection coating reduces light reflection from a
surface.

Avalanche breakdown is the enormous increase in

the reverse current in a pn junction when the applied
reverse field is sufficiently high to cause the generation
of electron-hole pairs by impact ionization in the space
charge layer.

Base width modulation (the Early effect) is the
modulation of the base width by the voltage appearing
across the base-collector junction. An increase in the
base to collector voltage increases the collector junc-
tion depletion layer width, which results in the narrow-
ing of the base width.

Bipolar junction transistor (BJT) is a transistor
whose normal operation is based on the injection of
carriers from the emitter into the base region, where
they become minority carriers, and their subsequent
diffusion to the collector, where they give rise to a col-
lector current. The voltage between the base and the
emitter controls the collector current.

Built-in field is the internal electric field in the deple-
tion region of a pn junction that is maximum at the
metallurgical junction. It is due to exposed negative
acceptors on the p-side and positive donors on the
H-side of the junction.

Built-in voltage (V ) is the voltage across a pn junc-
tion, going from a p- to n-type semiconductor, in an
open circuit.

Channel is the conducting strip between the source
and drain regions of a MOSFET.

Chip is a piece (or a volume) of a semiconductor crys-
tal that contains many integrated active and passive
components to implement a circuit.

Collector junction is the metallurgical junction
between the base and the collector of a bipolar
transistor.
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Critical electric field is the field in the space charge
(or depletion) region at reverse breakdown (avalanche
or Zener).

Depletion layer (or space charge layer, SCL) is a
region around the metallurgical junction where recombi-
nation of electrons and holes has depleted this region
of its large number of equilibrium majority carriers.

Depletion (space charge) layer capacitance is the in-
cremental capacitance {dQ/dV) due to the change in the
exposed dopant charges in the depletion layer as a result
of the change in the voltage across the /?«junction.

Diffusion is the flow of particles of a given species
from high- to low-concentration regions by virtue of
their random thermal motions.

Diffusion (storage) capacitance is the pn junction ca-
pacitance due to the diffusion and storage of minority
carriers in the neutral regions when a forward bias is
applied.

Dynamic (incremental) resistance of a diode is
the change in the voltage across the diode per unit
change in the current through the diode rd = d V /dl. It
is the low-frequency ac resistance of the diode. Dy-
namic conductance gd is the reciprocal dynamic resis-
tance: gd = l/rd.

Emitter junction is the metallurgical junction between
the emitter and the base.

Enhancement MOSFET is a MOSFET device that

needs a gate to source voltage above the threshold volt-
age to form a conducting channel between the source
and the drain. In the absence of a gate voltage, there is
no conduction between the source and drain. In its

usual mode of operation, the gate voltage enhances the
conductance of the source to drain inversion layer and
increases the drain current.

Epitaxial layer is a thin layer of crystal that has been
grown on the surface of another crystal which is usu-
ally a substrate, a mechanical support for the new crys-
tal layer. The atoms of the new layer bond to follow the
crystal pattern of the substrate, so the crystal structure
of the epitaxial layer is matched with the crystal struc-
ture of the substrate.

External quantum efficiency is the optical power
emitted from a light emitting device per unit electric
input power.

Field effect transistor (FET) is a transistor whose

normal operation is based on controlling the conduc-
tance of a channel between two electrodes by the
application of an external field. The effect of the
applied field is to control the current flow. The cur-
rent is due to majority carrier drift from the source
to the drain and is controlled by the voltage applied to
the gate.

Fill factor (FF) is a figure of merit for a solar cell that
represents, as a percentage, the maximum power Im Vm
available to an external load as a fraction of the ideal

theoretical power determined by the product of the
short circuit current Isc and the open circuit voltage
V0C:FF = (/mVm)/(/scV0C).

Forward bias is the application of an external voltage
to a pn junction such that the positive terminal is con-
nected to the p-side and the negative to the «-side. The
applied voltage reduces the built-in potential.

Heterojunction is a junction between different semi-
conductor materials, for example, between GaAs and
AlGaAs ternary alloy. There may or may not be a change
in the doping.

Homojunction is a junction between differently doped
regions of the same semiconducting material, for ex-
ample, a pn junction in the same silicon crystal; there is
no change in the bandgap energy Eg.

Impact ionization is the process by which a high
electric field accelerates a free charge carrier (electron
in the CB), which then impacts with a Si-Si bond to
generate a free electron-hole pair. The impact excites
an electron from Ev to Ec.

Integrated circuit (IC) is a chip of a semiconductor
crystal in which many active and passive components
have been miniaturized and integrated together to form
a sophisticated circuit.

Inversion occurs when an applied voltage to the gate
(or metal electrode) of a MOS device causes the

semiconductor under the oxide to develop a conducting
layer (or a channel) at the surface of the semiconductor.
The conducting layer has opposite polarity carriers to
the bulk semiconductor and hence is termed an inver-

sion layer.

Ion implantation is a process that is used to bombard
a sample in a vacuum with ions of a given species of
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atom. First the dopant atoms are ionized in a vacuum
and then accelerated by applying voltage differences
to impinge on a sample to be doped. The sample is
grounded to neutralize the implanted ions.

Isoelectronic impurity atom has the same valency as
the host atom.

Law of the junction relates the injected minority car-
rier concentration just outside the depletion layer to the
applied voltage. For holes in the n-side, it is

Pn(0) = p„oexp

where pn(0) is the hole concentration just outside the
depletion layer.

Linewidth is the width of the intensity versus wave-
length spectrum, usually between the half-intensity
points, emitted from a light emitting device.

Long diode is a pn junction with neutral regions
longer than the minority carrier diffusion lengths.

Metallurgical junction is where there is an effective
junction between the p-type and H-type doped re-
gions in the crystal. It is where the donor and acceptor
concentrations are equal or where there is a transition
from n- to p-type doping.

Metal-oxide-semiconductor transistor (MOST) is
a field effect transistor in which the conductance

between the source and drain is controlled by the volt-
age supplied to the gate electrode, which is insulated
from the channel by an oxide layer.

Minority carrier injection is the flow of electrons
into the p-side and holes into the H-side of a pn junction
when a voltage is applied to reduce the built-in voltage
across the junction.

MOS is short for a metal-insulator-semiconductor

structure in which the insulator is typically silicon
oxide. It can also be a different type of dielectric; for
example, it can be the nitride SisN

NMOS is an enhancement type n-channel MOSFET.

Passive device or component is a device that exhibits
no gain and no directional function. Resistors, capaci-
tors, and inductors are passive components.

Photocurrent is the current generated by a light-
receiving device when it is illuminated.

Pinch-off voltage is the gate to source voltage needed
to just pinch off the conducting channel between the
source and drain with no source to drain voltage
applied. It is also the source to drain voltage that just
pinches off the channel when the gate and source are
shorted. Beyond pinch-off, the drain current is almost
constant and controlled by Vgs .

PMOS is an enhancement type p-channel MOSFET.

Poly-Si gate is short for a polycrystalline and highly
doped Si gate.

Recombination current flows under forward bias to

replenish the carriers recombining in the space charge \
(depletion) layer. Typically, it is described by / =
Iro[exp(eV/2kT) - 1].

Reverse bias is the application of an external voltage
to a pn junction such that the positive terminal is con-
nected to the n-side and the negative to the p-side. The
applied voltage increases the built-in potential.

Reverse saturation current is the reverse current that

would flow in a reverse-biased ideal pn junction obey-
ing the Shockley equation.

Shockley diode equation relates the diode current to
the diode voltage through / = I0[exp(eV/JcT) - 1]. It
is based on the injection and diffusion of injected
minority carriers by the application of a forward bias.

Short diode is a pn junction in which the neutral
regions are shorter than the minority carrier diffusion
lengths.

Small-signal equivalent circuit of a transistor re- 1
places the transistor with an equivalent circuit that
consists of resistances, capacitances, and dependent
sources (current or voltage). The equivalent circuit rep-
resents the transistor behavior under small-signal ac
conditions. The batteries are replaced with short cir-
cuits (or their internal resistances). Small signals imply
small variations about dc values.

Substrate is a single mechanical support that carries
active and passive devices. For example, in integrated
circuit technology, typically, many integrated circuits
are fabricated on a single silicon crystal wafer that I
serves as the substrate. ]

Thermal generation current is the current that flows in
a reverse-biased pn junction as a result of the thermal
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generation of electron-hole pairs in the depletion layer current. The turn-on voltage of a Si diode is about
that become separated and swept across by the built-in 0.6 V whereas it is about 1 V for a GaAs LED. The
field. turn-on voltage of a pn junction diode depends on

Threshold voltage is the gate voltage needed to the bandgaP of the semiconductor and the device
establish a conducting channel between the source structure.

and drain of an enhancement MOST (metal-oxide- Zener breakdown is the enormous increase in the re-

semiconductor transistor). verse current in a pn junction when the applied voltage
Transistor is a three-terminal solid-state device in is sufficient to cause the tunneling of electrons from
which a current flowing between two electrodes is con- e valence band in the p-side to the conduction band

trolled by the voltage between the third and one of the in the n'side' Zener breakdown occurs in pn junctions
other terminals or by a current flowing into the third  heavily doped on both sides so that the deple-
terminal. on *ayer width is narrow.

Ttorn-on, or cut-in, voltage of a diode is the voltage
beyond which there is a substantial increase in the

QUESTIONS AND PROBLEMS
6.1 The pn junction Consider an abrupt Si pn+ junction that has lO15 acceptors cm-3 on the p-side and

1019 donors on the n-side. The minority carrier recombination times are Te = 490 ns for electrons in the
p-side and r/, = 2.5 ns for holes in the /i-side. The cross-sectional area is 1 mm2

. Assuming a long diode,
calculate the current / through the diode at room temperature when the voltage V across it is 0.6 V. What
are V/I and the incremental resistance (r ) of the diode and why are they different?

*6
.2 The Si pn junction Consider a long pn junction diode with an acceptor doping Na of 1018 cm-3 on the

p-side and donor concentration of Nj on the n-side. The diode is forward-biased and has a voltage of
0

.6 V across it. The diode cross-sectional area is 1 mm2. The minority carrier recombination time r de-
pends on the dopant concentration NdopantCcm-3) through the following approximate relation

_

 5 x IQ-7
T~ (1+2X lO"" Ndopant)

a. Suppose that Na = 1015 cm-3. Then the depletion layer extends essentially into the n-side and we
have to consider minority carrier recombination time th in this region. Calculate the diffusion and
recombination contributions to the total diode current. What is your conclusion?

b
. Suppose that Nj = Na = 1018 cm-3. Then Wextends equally to both sides and, further, Te - r/,.

Calculate the diffusion and recombination contributions to the diode current. What is your con-
clusion?

6
.3 Junction capacitance of a pn junction The capacitance (C) of a reverse-biased abrupt Si p+n junc-

tion has been measured as a function of the reverse bias voltage Vr as listed in Table 6.4. The pn junc-
tion cross-sectional area is 500 ixm X 500 jxm. By plotting 1/C2 versus Vr, obtain the built-in potential
V

0 and the donor concentration Nd in the n-region. What is Na?

Table 6.4  Capacitance at various values of reverse bias (Vr)

Vr(V) 1 2 3 5 10 15 20
C(pF) 38.3 30.7 26.4 21.3 15.6 12.9 11.3
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6
.4      Temperature dependence of diode properties

a.   Consider the reverse current in a pn junction. Show that

/rev  
~

 Wt) T

where rj = 2 for Si and GaAs, in which thermal generation in the depletion layer dominates the re-
verse current, and rj = 1 for Ge, in which the reverse current is due to minority carrier diffusion to
the depletion layer. It is assumed that Eg » kT at room temperature. Order the semiconductors Ge,

/t ; Si, and GaAs according to the sensitivity of the reverse current to temperature.
i
  ." i.-

ir f -f £ b. Consider a forward-biased pn junction carrying a constant current /. Show that the change in the
;.,r. /?   r>! voltage across the pn junction per unit change in the temperature is given by

dT       \    T )

where Vg = Eg/e is the energy gap expressed in volts. Calculate typical values for dV/dT for
Ge, Si, and GaAs assuming that, typically, V = 0.2 V for Ge, 0.6 V for Si, and 0.9 V for GaAs.
What is your conclusion? Can one assume that, typically, dV/dT « -2mV0C~1 for these
diodes?

6
.5 Avalanche breakdown Consider a Si p+n junction diode that is required to have an avalanche break-

down voltage of 25 V. Given the breakdown field Ebr in Figure 6.19, what should be the donor doping
concentration?

6
.6 Design of a pn junction diode Design an abrupt Si pn+ junction that has a reverse breakdown voltage

of 100 V and provides a current of 10 mA when the voltage across it is 0.6 V. Assume that, if Ndopam is
in cm-3, the minority carrier recombination time is given by

_

 5 x IP"7
r~

 (1 +2 X lO"17 dopant)
Mention any assumptions made.

6
.7 Minority carrier profiles (the hyperbolic functions) Consider a pnp BJT under normal operating

conditions in which the EB junction is forward-biased and the BC junction is reverse-biased. The field
in the neutral base region outside the depletion layers can be assumed to be negligibly small. The conti-
nuity equation for holes pn(x) in the n-type base region is

Dh Pn
_

Pn
_

Pr!o=0 [6J
dx2 Th

where pn(x) is the hole concentration at x from just outside the depletion region and pno and r/, are [the
equilibrium hole concentration and hole recombination lifetime in the base.

a. What are the boundary conditions at x = 0 and x = Wb , just outside the collector region depletion
layer? (Consider the law of the junction.)

b
. Show that the following expression for pn(x) is a solution of the continuity equation

*w" H[Hi) J+

T
~=(g)] 14721

where V = Veb and L/, = V /i tft .

c.    Show that Equation 6.72 satisfies the boundary conditions.

*6
.8 The pnp bipolar transistor Consider a pnp transistor in a common base configuration and under

normal operating conditions. The emitter-base junction is forward-biased and the base-collector
junction is reverse-biased. The emitter, base, and collector dopant concentrations are Na(E), Nd(B)>
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and A/ o, respectively, where Na(E) > d(B) > a(C). For simplicity, assume uniform doping in all
the regions. The base and emitter widths are Wb and We, respectively,

 both much shorter than the mi-

nority carrier diffusion lengths, L/, and Le. The minority carrier lifetime in the base is the hole recom-
bination time tfj. The minority carrier mobility in the base and emitter are denoted by fih and fjLe, re-
spectively.

The minority carrier concentration profile in the base can be represented by Equation 6.72.

Assuming that the emitter injection efficiency is unity show thata.

b
.

1
.  h LhNd(B) y\ kT J

eADhnj cosochl )
\ kT J

3
.
  a  sechm

4
.

where
2Dh

is the base transit time.

Consider the total emitter current Ie through the EB junction, which has diffusion and recombina-
tion components as follows:

Ie

Only the hole component of the diffusion current (first term) can contribute to the collector
current. Show that when Na(E) > d(B), the emitter injection efficiency y is given by

hire)      ( eVEBXY1

How does y < 1 modify the expressions derived in part (a)? What is your conclusion (con-
sider small and large emitter currents, or Veb - 0.4 and 0.7 V)?

6
.9 Characteristics of an npn Si BJT Consider an idealized silicon npn bipolar transistor with the prop-

erties in Table 6.5. Assume uniform doping in each region. The emitter and base widths are between
metallurgical junctions (not neutral regions). The cross-sectional area is 100 |xm X 100 |xm. The tran-
sistor is biased to operate in the normal active mode. The base-emitter forward bias voltage is 0.6 V and
the reverse bias base-collector voltage is 18 V. (

Table 6.5   Properties of an npn BJT

Emitter

Width

Emitter

Doping

Hole

Lifetime

in Emitter

Base

Width Base Doping

Electron

Lifetime

in Base

Collector

Doping

10 juum 1 x 1018 cm"3 10 ns 5 jjim 1 x 1016cm-3 200 ns 1 x lO16 cm"3

a. Calculate the depletion layer width extending from the collector into the base and also from the
emitter into the base. What is the width of the neutral base region?

b
. Calculate 01 and hence   for this transistor, assuming unity emitter injection efficiency. How do a

and   change with Vcb?



576 chapter 6 . Semiconductor Devices

Bandgap
narrowing

Bandgap
narrowing

Mass action law

with bandgap
narrowing

c.

d
.

e.

What is the emitter injection efficiency and what are a and taking into account that the emitter
injection efficiency is not unity?

What are the emitter, collector, and base currents?

What is the collector current when Vcb = 19 V but Veb = 0.6 V? What is the incremental collec-

tor output resistance defined as A Vcb / A/c?

*6
.
10

6
.
11

Bandgap narrowing and emitter injection efficiency Heavy doping in semiconductors leads to what
is called bandgap narrowing which is an effective narrowing of the bandgap Eg. If AEg is the reduc-
tion in the bandgap, then for an w-type semiconductor, according to Lanyon and Tuft (1979),

y/2

AEs(meV) = 22.5(T£5;
where n (in cm-3) is the concentration of majority carriers which is equal to the dopant concentration if
they are all ionized (for example, at room temperature). The new effective intrinsic concentration n/eff
due to the reduced bandgap is given by

4fr = eKp[- 2]= exp( )
where n, is the intrinsic concentration in the absence of emitter bandgap narrowing.

The equilibrium electron and hole concentrations nno and pno, respectively, obey

nnoPno "?eff

where nno = Nj since nearly all donors would be ionized at room temperature.
Consider a Si npn bipolar transistor operating under normal active conditions with the base-emitter

forward biased, and the base-collector reverse biased. The transistor has narrow emitter and base

regions. The emitter neutral region width We is 1 urn, and the donor doping is 1019 cm
-3

.
 The width

Wb of the neutral base region is 1 \im, and the acceptor doping is 1017 cm-3. Assume that We and Wb
are less than the minority carrier diffusion lengths in the emitter and the base.

Obtain an expression for the emitter injection efficiency taking into account the emitter bandgap
narrowing effect above.

Calculate the emitter injection efficiency with and without the emitter bandgap narrowing.

Calculate the common emitter current gain    with and without the emitter bandgap narrowing
effect given a perfect base transport factor (ar = 1).

a.

b
.

The JFET pinch-off voltage Consider the symmetric n-channel JFET shown in Figure 6.66. The
width of each depletion region extending into the -channel is W The thickness, or depth, of the chan-
nel, defined between the two metallurgical junctions, is 2a. Assuming an abrupt pn junction and
Vds = 0, show that when the gate to source voltage is -Vp the channel is pinched off where

a
2eNd

2ep
- Vo

Figure 6.66  A symmetric JFET.
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6
.
12

6
.
13

6
.
14

where V0 is the built-in potential between p+n junction and Nd is the donor concentration of the
channel.

Calculate the pinch-off voltage of a JFET that has an acceptor concentration of 1019 cm-3 in the p+
gate, a channel donor doping of 1016 cm

-3
, and a channel thickness (depth) 2a of 2 jam.

The JFET Consider an n-channel JFET that has a symmetric p+n gate-channel structure as shown in
Figures 6.27a and 6.66. Let L be the gate length, Z the gate width, and 2a the channel thickness. The
pinch-off voltage is given by Question 6.11. The drain saturation current luss is the drain current when
Wqs - 0. This occurs when Vds - VDS(sat) = Vp (Figure 6.29), so lDss = pGch, where Gch is the

conductance of the channel between the source and the pinched-off point (Figure 6.30). Taking into ac-
count the shape of the channel at pinch-off, if GCh is about one-third of the conductance of the free or
unmodulated (rectangular) channel, show that

[1 ie Ng]
[3 L

AW(2a)Zj
A particular -channel JFET with a symmetric p+n gate-channel structure has a pinch-off voltage

of 3.9 V and an luss of 5.5 mA. If the gate and channel dopant concentrations are Na = 1019 cm
-3 and

Nd - 1015 cm-3, respectively, find the channel thickness 2a and Z/L. If L = 10 jxm, what is Z? What
is the gate-source capacitance when the JFET has no voltage supplies connected to it?

The JFET amplifier Consider an n-channel JFET that has a pinch-off voltage (Vp) of 5 V and
Idss - 10 mA. It is used in a common source configuration as in Figure 6.34a in which the gate to
source bias voltage (Vgs) is -1.5 V. Suppose that V d = 25 V.

If a small-signal voltage gain of 10 is needed, what should be the drain resistance (/?£>)? What is

If an ac signal of 3 V peak-to-peak is applied to the gate in series with the dc bias voltage, what will
be the ac output voltage peak-to-peak? What is the voltage gain for positive and negative input sig-
nals? What is your conclusion?

a.

The enhancement NMOSFET amplifier Consider an n-channel Si enhancement NMOS transis-
tor that has a gate width (Z) of 150 jxm, channel length (L) of 10 |xm, and oxide thickness (fox) of
500 A. The channel has fie = 700 cm2 V-1 s-1 and the threshold voltage (Vth) is 2 V (er = 3.9 for
Si02).

a. Calculate the drain current when Vgs = 5 V and Vds = 5 V and assuming k = 0.01.
b

. What is'the small-signal voltage gain if the NMOSFET is connected as a common source amplifier,
as shown rn Figure 6.67, with a drain resistance Rp of 2.2 kft, the gate biased at 5 V with respect to

c

t
G    J'eikT V

ds

(V) vcxs      - v°°

Output
signal

Figure 6,67  NMOSFET amplifier.

v

A

ds

Input
signal
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6
.16

c.

d
.

source (Vgg = 5 V) and Vdd is such that V s = 5 V? What is VddI What will happen if the drain
supply is smaller?

Estimate the most positive and negative input signal voltages that can be amplified if Vdd is fixed
at the above value in part (&).

What factors will lead to a higher voltage amplification?

*6
.15   Ultimate limits to device performance

a. Consider the speed of operation of an n-channel FET-type device. The time required for an electron
to transit from the source to the drain is Tt = L/vd> where L is the channel length and is the drift
velocity. This transit time can be shortened by shortening L and increasing Vd. As the field increase,
the drift velocity eventually saturates at about t sat = 105 m s-1 when the field in the channel is
equal to 2:c % 106 V m-1

. A short tt requires a field that is at least Ec-
1

. What is the change in the PE of an electron when it traverses the channel length L from source
to drain if the voltage difference is Vps?

2
. This energy must be greater than the energy due to thermal fluctuations, which is of the order

oikT. Otherwise, electrons would be brought in and out of the drain due to thermal fluctua-
tions. Given the minimum field and V s, what is the minimum channel length and hence the
minimum transit time?

b
. Heisenberg's uncertainty principle relates the energy and the time duration in which that energy is

possessed through a relationship of the form (Chapter 3) A£ Af > fi. Given that during the transit
of the electron from the source to the drain its energy changes by cVds, what is the shortest transit
time x satisfying Heisenberg's uncertainty principle? How does it compare with your calculation in
part (a)?

c. How does electron tunneling limit the thickness of the gate oxide and the channel length in a
MOSFET? What would be typical distances for tunneling to be effective? (Consider Exam-
ple 3.10.)

a.

Energy distribution of electrons in the conduction band of a semiconductor and LED emission
spectrum

Consider the energy distribution of electrons «#(£) in the conduction band (CB). Assuming
that the density of state g E) (X (E - Ec)1/2  using Boltzmann statistics f(E) %
exp[-(E - Ef )/fcr], show that the energy distribution of the electrons in the CB can be
written as

nx(x) = Cjc1/2exp(-jc)

where x = (E - Ec)/kT is electron energy in terms of kT measured from Ec, and C is a temper-
ature-dependent constant (independent of E).

Setting arbitrarily C = 1, plot nx versus jc. Where is the maximum, and what is the full width at
half maximum (FWHM), i.e., between half maximum points?

Show that the average electron energy in the CB is jkT, by using the definition of the average,

b
.

c.

00

/ xtix dx
average

0

oo

fnx dx
o

d
.

e.

where the integration is from jc = 0 (Ec) to say jc = 10 (far away from Ec where nx 0). You
need to use a numerical integration.

Show that the maximum in the energy distribution is at jc = 5 or at Emax = jkT above Ec.
Consider the recombination of electrons and holes in GaAs. The recombination involves the

emission of a photon. Given that both electron and hole concentrations have energy distribu-
tions in the conduction and valence bands, respectively, sketch schematically the expected light
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intensity emitted from electron and hole recombinations against the photon energy. What is
your conclusion?

LED output spectrum Given that the width of the relative light intensity between half-intensity points
versus photon energy spectrum of an LED is typically ~3/c7; what is the linewidth A A. in the output spec-
trum in terms of the peak emission wavelength? Calculate the spectral linewidth AA. of the output radiation
from a green LED emitting at 570 nm at 300 K.

LED output wavelength variations Show that the change in the emitted wavelength A with temper-
ature T from an LED is approximately given by

dT 
*

   E] \ dT )
where Eg is the bandgap. Consider a GaAs LED. The bandgap of GaAs at 300 K is 1.42 eV which
changes (decreases) with temperature as dEg/dT = -4.5 x 10~4 eV K-1

. What is the change in the
emitted wavelength if the temperature change is 10 0C?

Linewidth of direct recombination LEDs Experiments carried out on various direct bandgap semi-
conductor LEDs give the output spectral linewidth (between half-intensity points) listed in Table 6.6.
Since wavelength A = hc/Eph, where Eph = hv is the photon energy, we know that the spread in the
wavelength is related to a spread in the photon energy,

he
AA% -

2
-A£ph

hc/k and AEph = A(hv) % nkT where n is a numerical constant.Suppose that we write £ph
Show that,

AA
nkT 2

and by appropriately plotting the data in Table 6.6 find n.

Table 6.6 Linewidth AA1/2 between half-points in the output spectrum (intensity versus wavelength)

of GaAs ah AlGaAs LEDs
Peak wavelength of emission A (nm)

650 810 820 890 950 1150 1270 1500

AAi tnm) 22 36 40 50       55       90 110 150
Material (direct Eg)   AlGaAs   AlGaAs   AlGaAs   GaAs   GaAs   InGaAsP   InGaAsP InGaAsP

6
.20     AlGaAs LED emitter   An AlGaAs LED emitter for use in a local optical fiber network has the output

spectrum shown in Figure 6.68. It is designed for peak emission at 820 nm at 25 0C
.

a. What is the linewidth AA between half power points at temperatures -40 0C, 25 0C, and 85 0C?
Given these three temperatures, plot AA and T (in K) and find the empirical relationship between
A A and T. How does this compare with A(hv)  2.5k T to SAT?

b
. Why does the peak emission wavelength increase with temperature?

c. What is the bandgap of AlGaAs in this LED?
d

. The bandgap Eg of the ternary alloys AlxGai_x As follows the empirical expression

(eV) = 1.424 + 1.266* + 0266x2

LED output
spectrum
linewidth

What is the composition of the AlGaAs in this LED?



580 chapter 6 . Semiconductor Devices

Relative spectral output power

-40oC
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Figure 6.68  The output spectrum from an AIGaAs 
LED. 740
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6
.21 Solar cell driving a load

a. A Si solar cell of area 2.5 cm X 2.5 cm is connected to drive a load R as in Figure 6.54a. It has the
I-Vcharacteristics in Figure 6.53. Suppose that the load is 2 Q and it is used under a light intensity
of 800 W m-2

. What are the current and voltage in the curcuit? What is the power delivered to the
load? What is the efficiency of the solar cell in this circuit?

b
. What should the load be to obtain maximum power transfer from the solar cell to the load at

800 W m"2 illumination? What is this load at 500 W m"2?

c. Consider using a number of such solar cells to drive a calculator that needs a minimum of 3 V and
draws 50 mA at 3-4 V. It is tckbe used at a light intensity of about 400 W m~2. How many solar cells
would you need and how would you connect them?

6
.22 Open circuit voltage A solar cell umjer an illumination of 1000 W m~2 has a short circuit current /Sc

of 50 mA and an open circuit output voltage Voc of 0.65 V. What are the short circuit current and open
circuit voltages when the light intensity is halved?

6.23 Maximum power from a solar cell Suppose that the power delivered by a solar cell, P = / V,
 is max-

imum when I = Im and V = Vm. Suppose that we define normalized voltage and current for maximum
power as

v
Vm

t]Vt
and

I,sc

where rj is the ideality factor, Vt = kT/e is called the thermal voltage (0.026 V at 300 K), and
/sc = - /ph. Suppose that Uoc = Voc/(iiVt) is the normalized open circuit voltage. Under illumination
with the solar cell delivering power with V > tjVt,

/> = /V = [-/ph + /0exp(JL)]v
One can differentiate P - IV with respect to V, set it to zero for maximum power, and find expressions
for Im and Vm for maximum power. One can then use the open circuit condition (/ = 0) to relate Vqc to
I0. Show that maximum power occurs when

v Voc - ln(u + 1) and i = 1 - exp [-Ooc - v)]

Consider a solar cell with r] = 1.5, Vqc = 0.60 V, and /ph = 35 mA, with an area of 1 cm2. Find i and v,
and hence the current Im and voltage Vm for maximum power. (Note: Solve the first equation numeri-
cally or graphically to find v % 12.76.) What is the fill factor?



Questions and Problems 581

6
.
24 Series resistance The series resistance causes a voltage drop when a current is drawn from a solar cell.

By convention, the positive current is taken to flow into the device. (If calculations yield a negative
value, it means that, physically, the current is flowing out, which is the actual case under illumination.)
If Vis the actual voltage across the solar cell output (accessed by the user), then the voltage across the
diode is V - IRs.The solar cell equation becomes

/ = -/ph + Id = -/ph + lo exp
/e(V-IRs)\
V     rjkT )

Plot / versus V for a Si solar cell that has t] = 1.5 and /0 = 3 x 10 6 mA, for an illumination such that
/ph = 10 mA for Rs = 0, 20 and 50 £2. What is your conclusion?

6
.25 Shunt resistance Consider the shunt resistance Rp of a solar cell. Whenever there is a voltage V at the

terminals of the solar cell, the shunt resistance draws a current V/Rp. Thus, the total current as seen at
the terminals (and flowing in by convention) is

V / eV \ V
/ = -/ph + /,+ =-/ph + /0exp -j + -=0

Plot / versus V for a polycrystalline Si solar cell that has r) = 1.5 and /0 = 3 x 10~6 mA, for an illu-
mination such that /ph = 10 mA. Use Rp - oo, 1000, 100 £2. What is your conclusion?

*6
.26 Series connected solar cells Consider two identical solar cells connected in series. There are two Rs

in series and two pn junctions in series. If / is the total current through the devices, then the voltage
across one pn junction is Vd - \[V - I(2RS)] so that the current / flowing into the combined solar
cells is

/ %
.

   
, ,       {V-I{2RS)1 (kT\

where VV = kT/e is the thermal voltage. Rearranging, for two cells in series,

V = 2„V7-ln( - )+2/?J/
whereas for one cell,

V ijVt In + RsI

Suppose that the cells have the properties I0 = 25 x 10-6 mA, r) = 1.5, Rs = 20 £2, and both are sub-
jected to the same illumination so that /ph = 10 mA. Plot the individual I-V characteristics and the I-V
characteristics of the two cells in series. Find the maximum power that can be delivered by one cell and
two cells in series. Find the corresponding voltage and current at the maximum power point.

6
.27     A solar cell used in Eskimo Point  The intensity of light arriving at a point on Earth, where the solar

latitude is a can be approximated by the Meinel and Meinel equation:

I = 1.353(0.7)(coseca)0'678 kWrn"2

where cosec a - l/(sin a). The solar latitude a is the angle between the sun's rays and the horizon.
Around September 23 and March 22, the sun's rays arrive parallel to the plane of the equator. What is
the maximum power available for a photovoltaic device panel of area 1 m2 if its efficiency of conver-
sion is 10 percent?

A manufacturer's characterization tests on a particular Si pn junction solar cell at 27 0C specifies
an open circuit output voltage of 0.45 V and a short circuit current of 400 mA when illuminated directly
with a light of intensity 1 kW m-2

.
 The fill factor for the solar cell is 0.73. This solar cell is to be used

in a portable equipment application near Eskimo Point (Canada) at a geographical latitude (0) of 63°.
Calculate the open circuit output voltage and the maximum available power when the solar cell is used
at noon on September 23 when the temperature is around -10 0C

.
 What is the maximum current this

solar cell can supply to an electronic equipment? What is your conclusion? (Note: a +<p = 7r/2)

Solar cell with

series resistance

Solar cell with

shunt resistance

Two solar

cells in series

Two solar

cells in series

One solar cell
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CHAPTER

7

Dielectric Materials and Insulation

The familiar parallel plate capacitor equation with free space as an insulator is given by

£0A
C =

d

where e0 is the absolute permittivity, A is the plate area, and d is the separation between
the plates. If there is a material medium between the plates, then the capacitance, the
charge storage ability per unit voltage, increases by a factor of £r, where er is called
the dielectric constant of the medium or its relative permittivity. The increase in the
capacitance is due to the polarization of the medium in which positive and negative
charges are displaced with respect to their equilibrium positions. The opposite surfaces
of the dielectric medium acquire opposite surface charge densities that are related to the
amount of polarization in the material. An important concept in dielectric theory is that
of an electric dipole moment p, which is a measure of the electrostatic effects of a pair
of opposite charges + Q and - Q separated by a finite distance a, and so is defined by

p=Qa

Although the net charge is zero, this entity still gives rise to an electric field in space
and also interacts with an electric field from other sources. The relative permittivity is
a material property that is frequency dependent. Some capacitors are designed to work
at low frequencies, whereas others have a wide frequency range. Furthermore, even
though they are regarded as energy storage devices, all practical capacitors exhibit
some losses when used in an electric circuit. These losses are no different than PR

losses in a resistor carrying a current. The power dissipation in a practical capacitor
depends on the frequency, and for some applications it can be an important factor. A
defining property of a dielectric medium is not only its ability to increase capacitance
but also, and equally important, its insulating behavior or low conductivity so that
the charges are not conducted from one plate of the capacitor to the other through the
dielectric. Dielectric materials often serve to insulate current-carrying conductors or

\   conductors at different voltages. Why can we not simply use air as insulation between

583
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Definition of
capacitance

high-voltage conductors? When the electric field inside an insulator exceeds a critical
field called the dielectric strength, the medium suffers dielectric breakdown and a
large discharge current flows through the dielectric. Some 40 percent of utility gener-
ator failures are linked to insulation failures in the generator. Dielectric breakdown is
probably one of the oldest electrical engineering problems and that which has been
most widely studied and never fully explained.

7
.1    MATTER POLARIZATION AND RELATIVE

PERMITTIVITY

7
.
1
.

1 Relative Permittivity: Definition

We first consider a parallel plate capacitor with vacuum as the dielectric medium
between the plates, as shown in Figure 7.1a. The plates are connected to a constant volt-
age supply V. Let Q0 be the charge on the plates. This charge can be easily measured.
The capacitance C0 of the parallel plate capacitor in free space, as in Figure 7.1a, is
defined by

c
0
 = 

V
[7.1]

The electric field, directed from high to low potential, is defined by the gradient of
the potential £ = -dV/dx. Thus, the electric field £ between the plates is just V jd
where d is the separation of the plates.

Dielectric
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Figure 7.1
(a) Parallel plate capacitor with free space between the plates.
(b) As a slab of insulating material is inserted between the plates, there is an external current
flow indicating that more charge is stored on the plates.
(c) The capacitance has been increased due to the insertion of a medium between the plates.
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Consider now what happens when a dielectric slab (a slab of any nonconducting
material) is inserted into this parallel plate capacitor, as shown in Figure 7.1b and c
with Vkept the same. During the insertion of the dielectric slab, there is an external
current flow that indicates that there is additional charge being stored on the plates.
The charge on the electrodes increases from Q0 to Q. We can easily measure the
extra charge Q - Q0 flowing from the battery to the plates by integrating the ob-
served current in the circuit during the process of insertion, as shown in Figure 7.1b.
Because there is now a greater amount of charge stored on the plates, the capacitance
of the system in Figure 7.1c is larger than that in Figure 7.1a by the ratio Q to Q0.
The relative permittivity (or the dielectric constant) sr is defined to reflect this in-
crease in the capacitance or the charge storage ability by virtue of having a dielectric
medium. If C is the capacitance with the dielectric medium as in Figure 7.1c, then by
definition

Sr =
Qo

C
_ [7.2]

The increase in the stored charge is due to the polarization of the dielectric by the
applied field, as explained below. It is important to remember that when the dielectric
medium is inserted, the electric field remains unchanged, provided that the insulator
fills the whole space between the plates as shown in Figure 7.1c. The voltage V
remains the same and therefore so does the gradient V/d, which means that £ remains
constant.

7
.
1
.2 Dipole Moment and Electronic Polarization

Definition
of relative
permittivity

An electrical dipole moment is simply a separation between a negative and positive
charge of equal magnitude Q as shown in Figure 7.2. If a is the vector from the nega-
tive to the positive charge, the electric dipole moment is defined as a vector by

P = Ga [7.3]

The region that contains the +Q and -Q charges has zero net charge. Unless the
two charge centers coincide, this region will nonetheless, by virtue of the definition in
Equation 7.3, contain a dipole moment.

The net charge within a neutral atom is zero. Furthermore, on average, the center
of negative charge of the electrons coincides with the positive nuclear charge, which
means that the atom has no net dipole moment, as indicated in Figure 7.3a. However,
when this atom is placed in an external electric field, it will develop an induced dipole
moment. The electrons, being much lighter than the positive nucleus, become easily
displaced by the field, which results in the separation of the negative charge center

Definition
of dipole
moment

Q 0
-Q +Q net

0 p
a

Figure 7,2 The definition of electric
dipole moment.
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Figure 7,3 The origin of electronic
polarization.
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induced

a) A neutral atom in £ = 0        (b) Induced dipole moment in a field

Definition of
polarizability

Restoring
force

3

from the positive charge center, as shown in Figure 7.3b. This separation of negative
and positive charges and the resulting induced dipole moment are termed polarization.
An atom is said to be polarized if it possesses an effective dipole moment, that is, if
there is a separation between the centers of negative and positive charge distributions.

The induced dipole moment depends on the electric field causing it. We define a
quantity called the polarizability a to relate the induced dipole moment / induced to the

field £ causing it,

P induced - [7.4]

where a is a coefficient called the polarizability of the atom. It depends on the polar-
ization mechanism. Since the polarization of a neutral atom involves the displacement
of electrons, a is called electronic polarization and denoted as cie. Inasmuch as the
electrons in an atom are not rigidly fixed, all atoms possess a certain amount of elec-
tronic polarizability.

In the absence of an electric field, the center of mass of the orbital motions of the

electrons coincides with the positively charged nucleus and the electronic dipole
moment is zero. Suppose that the atom has Z number of electrons orbiting the nucleus
and all the electrons are contained within a certain spherical region. When an electric

field *£ is applied, the light electrons become displaced in the opposite direction to £,
so their center of mass C is shifted by some distance x with respect to the nucleus 0,
which we take to be the origin, as shown in Figure 7.3b. As the electrons are "pushed"

away by the applied field, the Coulombic attraction between the electrons and nuclear
charge "pulls in" the electrons. The force on the electrons, due to £, trying to separate
them away from the nuclear charge is ZeX. The restoring force Fr, which is the
Coulombic attractive force between the electrons and the nucleus, can be taken to be

proportional to the displacement x, provided that the latter is small.1 The restoring
force Fr is obviously zero when C coincides with 0{x = 0). We can write

Fr = -fix

1 It may be noticed that even if Fr is a complicated function of x, it can still be expanded in a series in terms of
powers of x, that is, x, x2

, x3
, and so on, and for small x only the x term is significant, Fr = -/Jx.
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where  is a constant and the negative sign indicates that Fr is always directed toward
the nucleus O (Figure 7.3b). In equilibrium, the net force on the negative charge is
zero or

Ze<L = fix

from which x is known. Therefore the magnitude of the induced electronic dipole
moment pe is given by

/ZV\
pe = (Ze)x =   -- £ [7.5]

Electronic

polarization

As expected, pe is proportional to the applied field. The electronic dipole moment
in Equation 7.5 is valid under static conditions, that is, when the electric field is a dc

field. Suppose that we suddenly remove the applied electric field polarizing the atom.

There is then only the restoring force which always acts to pull the electrons
toward the nucleus O. The equation of motion of the negative charge center is then
(from force = mass x acceleration)

-fix= Zme

<fx
_

dc2

Thus the displacement at any time is

where

0)0 (zm3
1/2

[7.6]

is the oscillation frequency of the center of mass of the electron cloud about the
nucleus and x0 is the displacement before the removal of the field. After the removal
of the field, the electronic charge cloud executes simple harmonic motion about the
nucleus with a natural frequency determined by Equation 7.6; q)0 is called the elec-
tronic polarization resonance frequency.2 It is analogous to a mass on a spring being
pulled and let go. The system then executes simple harmonic motion. The oscillations
of course die out with time. In the atomic case, a sinusoidal displacement implies that
the electronic charge cloud has an acceleration

d2x
= -x0(olcos(co0t)

dt2

It is well known from classical electromagnetism that an accelerating charge radiates
electromagnetic energy just like a radio antenna. Consequently the oscillating charge

Equation for
simple
harmonic

motion

Electronic

polarization
resonance

frequency

2 The term natural frequency refers to a system's characteristic frequency of oscillation when it is excited. A mass
attached to a spring and then let go will execute simple harmonic motion with a certain natural frequency a)0. If we
then decide to oscillate this mass with an applied force, the maximum energy transfer will occur when the applied
force has the same frequency as (o0; the system will be put in resonance. a)0 is also a resonant frequency. Strictly,
a) = 2nf is the angular frequency and / is the frequency. It is quite common to simply refer to w as a frequency
because the literature is dominated by ct>; the meaning should be obvious within context.
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Static

electronic

polarizability

cloud loses energy, and thus its amplitude of oscillation decreases. (Recall that the
average energy is proportional to the square of the amplitude of the displacement.)

From the expression derived for pe in Equation 7.5, we can find the electronic
polarizability ae from Equation 7.4,

Ze 2

Ote =
meQ)z

0

[7.7]

EXAMPLE 7.1 ELECTRONIC POLARIZABILITY Consider the electronic polarizability of inert gas atoms. These
atoms have closed shells. Their electronic polarizabilities are listed in Table 7.1. For each type
of atom calculate the electronic polarization resonant frequency f0 = co0/27T, and plot ae and f0
against the number of electrons Z in the atom. What is your conclusion?

SOLUTION

We can use Equation 7.7 to calculate the resonant frequency f0 = 0)o/2n. Taking Ar,

(Zel\        f     (18)(L6 x 10-19)2     T inl6 .
(jo0 =   = -      = 5.46 x 10 rad

\oteme)        [(1.7 x lO- XQ.l x 10-31)J
s
-i

Table 7.1   Electronic polarizability a© dependence on Zfor the inert element atoms

Atom

He

I *Rn (radon) gas is radioactive.

Ne Ar Kr Xe Rn*

Z 2 10 18 36 56

ae x lO- CFm2) 0.
18 0.45 1.7 2.7 4.4 5.9

f0 x 1015 (Hz) 8.90 12.6 8.69 9.76 9.36 10.2

30

10-

/* =

xlO15 Hz

1-

ae :

xlO
- Fm

2:

Figure 7.4   Electronic polarizability and its
resonance frequency versus the number of electrons
in the atom (Z).
The dashed line is the best-fit line.
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so that

f0
 = - = 8

.
69 x 1015 Hz

which is listed in Table 7.1, among other f0 calculations for the other atoms. Such frequencies
correspond to the field oscillations in UV light, that is, at optical frequencies. For all practical
purposes, electronic polarization occurs very rapidly, that is, on a time scale \ /f0 or 10~15 s, and

we can take the static polarizability ae to remain the same up to optical frequencies.3

Figure 7.4 shows the dependence of ae and f0 on the number of electrons Z. It is apparent
that ae is nearly linearly proportional to Z, whereas f0 is very roughly constant. It is left as an ex-
ercise to show that increases with Z, which is reasonable since the restoring force was defined
as the total force between all the electrons and the nucleus when the electrons are displaced.

7
.
1
.3 Polarization Vector P

When a material is placed in an electric field, the atoms and the molecules of the
material become polarized, so we have a distribution of dipole moments in the mate-
rial. We can visualize this effect with the insertion of the dielectric slab into the par-
allel plate capacitor, as depicted in Figure 7.5a. The placement of the dielectric slab
into an electric field polarizes the molecules in the material. The induced dipole mo-
ments all point in the direction of the field. Consider the polarized medium alone, as
shown in Figure 7.5b. In the bulk of the material, the dipoles are aligned head to tail.
Every positive charge has a negative charge next to it and vice versa. There is there-
fore no net charge within the bulk. But the positive charges of the dipoles appearing
at the right-hand face are not canceled by negative charges of any dipoles at this face.
There is therefore a surface charge +Qp on the right-hand face that results from the
polarization of the medium. Similarly, there is a negative charge - Qp with the same
magnitude appearing on the left-hand face due to the negative charges of the dipoles
at this face. We see that charges -H2/> and - Qp appear on the opposite surfaces of a
material when it becomes polarized in an electric field, as shown in Figure 7.5c. These
charges are bound and are a direct result of the polarization of the molecules. They
are termed surface polarization charges. Figure 7.5c emphasizes this aspect of di-
electric behavior in an electric field by showing the dielectric and its polarization
charges only.

We represent the polarization of a medium by a quantity called polarization P,
which is defined as the total dipole moment per unit volume,

P =
Volume

[Pi + P2 + . . ' + Ptf] [7.8a]

where pi, P2,..., pyv are the dipole moments induced at Nmolecules in the volume.
If pav is the average dipole moment per molecule, then an equivalent definition of P is

P= Afpav [7.8b]

3 Electronic polarization at optical frequencies controls the optical properties such as the refractive index, as will be
covered in Chapter 9.

Definition of
polarization
vector

Definition of
polarization
vector
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Figure 7.5
(a) When a dielectric is placed in an electric field, bound polarization charges appear on the
opposite surfaces.
(b) The origin of these polarization charges is the polarization of the molecules of the medium.
(c) We can represent the whole dielectric in terms of its surface polarization charges +Qp
and - Qp.

Polarization

and bound

surface
charge
density

where N is the number of molecules per unit volume. There is an important relation-
ship, given below, between P and the polarization charges Qp on the surfaces of the
dielectric. It should be emphasized for future discussions that if polarization arises
from the effect of the applied field, as shown in Figure 7.5a, which is usually the case,
pav must be the average dipole moment per atom in the direction of the applied field.
In that case we often also denote pav as the induced average dipole moment per mole-
cule Pinduced.

To calculate the polarization P for the polarized dielectric in Figure 7.5b, we need
to sum all the dipoles in the medium and divide by the volume Ad, as in Equation
7

.8a. However, the polarized medium can be simply represented as in Figure 7.5c in
terms of surface charge H-Qp and -Qp, which are separated by the thickness dis-
tance d. We can view this arrangement as one big dipole moment ptotai from - Qp to
-H2/>.Thus

Ptotal = Qpd

Since the polarization is defined as the total dipole moment per unit volume, the mag-
nitude of P is

P =
Ptotal Qpd

AVolume Ad

But Qp/A is the surface polarization charge density a/>, so

P = a
p

[7.9a
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Figure 7,6  Polarization charge density on the surface of a
polarized medium is related to the normal component of the
polarization vector.

Polarization is a vector and Equation 7.9a only gives its magnitude. For the rec-
tangular slab in Figure 7.5c, the direction of P is normal to the surface. For +op
(right face), it comes out from the surface and for -op (left face), it is directed into the
surface. Although Equation 7.9a is derived for one specific geometry, the rectangular
slab, it can be generalized as follows. The charge per unit area appearing on the sur-
face of a polarized medium is equal to the component of the polarization vector nor-
mal to this surface. If Pnormai is the component of P normal to the surface where the
polarization charge density is op, as shown in Figure 7.6, then,

normal = Op [7.9b]

The polarization P induced in a dielectric medium when it is placed in an electric
field depends on the field itself. The induced dipole moment per molecule within the
medium depends on the electric field by virtue of Equation 7.4. To express the depen-
dence of P on the field £, we define a quantity called the electric susceptibility Xe by

P = x o [7.10]

Equation 7.10 shows an effect P due to a cause £ and the quantity Xe relates the
effect to its cause. Put differently, Xe acts as a proportionality constant. It may depend
on the field itself, in which case the effect is nonlinearly related to the cause. Further,
electronic polarizability is defined by

P induced -

SO

P = induced = Na/E

where Wis the number of molecules per unit volume. Then from Equation 7.10, Xe and
0Le are related by

1
Xe = -Note

Co
[7.11]

Polarization

and bound

surface
charge
density

Definition of
electric

susceptibility
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and

polarization
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It is important to recognize the difference between free and polarization (or bound)
charges. The charges stored on the metal plates in Figure 7.5a are free because they
result from the motion of free electrons in the metal. For example both Q0 and £), be-
fore and after the dielectric insertion in Figure 7.1, are free charges that arrive on the
plates from the battery. The polarization charges +Q p and -Q />, on the other hand, are
bound to the molecules. They cannot move within the dielectric or on its surface.

The field £ before the dielectric was inserted (Figure 7.1a) is given by

V
<£ = - =

d C0d

Qo Qo Vo
[7.12]

where a0 = Qo/A is the free surface charge density without any dielectric medium
between the plates, as in Figure 7.1a.

After the insertion of the dielectric, this field remains the same V/d, but the free
charges on the plates are different. The free surface charge on the plates is now Q. In ad-
dition there are bound polarization charges on the dielectric surfaces next to the plates,
as shown in Figure 7.5a. It is apparent that the flow of current during the insertion of the
dielectric, Figure 7.1b, is due to the additional free charges Q - Qo needed on the ca-
pacitor plates to neutralize the opposite polarity polarization charges Qp appearing on
the dielectric surfaces. The total charge (see Figure 7.5a) due to that on the plate plus that
appearing on the dielectric surface, Q - Qp, must be the same as before, Q0, so that the
field, as given by Equation 7.12, does not change inside the dielectric, that is,

or
Q - Qp = Qo

Q = Qo + Qp

Dividing by A, defining a = Q/A as the free surface charge density on the plates
with the dielectric inserted, and using Equation 7.12, we obtain

a = £0£ + ap

Since ap = P and P = Xe o'E, Equations 7.9 and 7.10, we can eliminate ap to
obtain

<* = Ml + Xe)£

From the definition of the relative permittivity in Equation 7.2 we have

Sr = 2- = -
Qo Go

so substituting for a and using Equation 7.12 we obtain

Zr = 1 + Xe [7.13]

In terms of electronic polarization, from Equation 7.11, this is

Nae
Sr = 1 + [7.14]

o

The significance of Equation 7.14 is that it relates the microscopic polarization
mechanism that determines ae to the macroscopic property er.
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Figure 7.7 The electric field inside a polarized
dielectric at the atomic scale is not uniform.

The local field is the actual field that acts on a

molecule. It can be calculated by removing that
molecule and evaluating the field at that point from
the charges on the plates and the dipoles
surrounding the point.

7
.
1
.4 Local Field Eioc and Clausius-Mossotti Equation

Equation 7.14, which relates er to electronic polarizability ae is only approximate
because it assumes that the field acting on an individual atom or molecule is the field
£

,
 which is assumed to be uniform within the dielectric. In other words, the induced

polarization, Pinduced oc £. However, the induced polarization depends on the actual
field experienced by the molecule. It is apparent from Figure 7.5a that there are polar-
ized molecules within the dielectric with their negative and positive charges separated
so that the field is not constant on the atomic scale as we move through the dielectric.
This is depicted in Figure 7.7. The field experienced by an individual molecule is
actually different than £, which represents the average field in the dielectric. As soon
as the dielectric becomes polarized, the field at some arbitrary point depends not only
on the charges on the plates (Q) but also on the orientations of all the other dipoles
around this point in the dielectric. When averaged over some distance, say a few thou-
sand molecules, this field becomes £, as shown in Figure 7.7.

The actual field experienced by a molecule in a dielectric is defined as the local
field and denoted by 'E\OQ. It depends not only on the free charges on the plates but also
on the arrangement of all the polarized molecules around this point. In evaluating Eioc
we simply remove the molecule from this point and calculate the field at this point
coming from all sources, including neighboring polarized molecules, as visualized in
Figure 7.7. £ioc will depend on the amount of polarization the material has experi-
enced. The greater the polarization, the greater is the local field because there are big-
ger dipoles around this point. 'E\OQ depends on the arrangement of polarized molecules
around the point of interest and hence depends on the crystal structure. In the simplest
case of a material with a cubic crystal structure, or a liquid (no crystal structure), the
local field !Eioc acting on a molecule increases with polarization as4

1
£100 = £+- P

3£0 
(

[7.15]

Lorentz local

field in
dielectrics

4 This field is called the Lorentz field and the proof, though not difficult, is not necessary for the present introductory
treatment of dielectrics. This local field expression does not apply to dipolar dielectrics discussed in Section 7.3.2.
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Clausius-

Mossotti

equation

Equation 7.15 is called the Lorentz field. The induced polarization in the mole-
cule now depends on this local field Cioc rather than the average field £. Thus

Pinduced  e loc

The fundamental definition of electric susceptibility by the equation

P = XeZoZ

is unchanged, which means that €r = 1 + x<m Equation 7.13, remains intact. The
polarization is defined by P = Af/?induced, and induced can be related to !Eioc and hence to
£ and P. Then

P = (er - \)e0<E

can be used to eliminate £ and P and obtain a relationship between er and ae. This is
the Clausius-Mossotti equation,

er - 1 Noie

er + 2 3€0
[7.16]

This equation allows the calculation of the macroscopic property £r from micro-
scopic polarization phenomena, namely, ae.

EXAMPLE 7.2 ELECTRONIC POLARIZABILITY OF A VAN DER WAALS SOLID The electronic polarizability of
the Ar atom is 1.7 x 10-40 F m2. What is the static dielectric constant of solid Ar (below 84 K)
if its density is 1.8 g cm-3?

SOLUTION

To calculate £r we need the number of Ar atoms per unit volume N from the density d. If
Mat = 39.95 is the relative atomic mass of Ar and Na is Avogadro's number, then

N
NAd (6.02 x 1023 mor'Xl.Sgcm-3) 

_

 o  22 .3
_____ 

-
 

-   /1 x lu cm

Mat (39.95 gmol"1)

with N = 2.71 x 1028 m"3 and a, = 1.7 x lO"40 F m2
,
 we have

£r = 1 +
Nae (2.71 x 1028)(1.7 x 10-40)

1 +

-40 >

e0 (8.85 x 10-12)

If we use the Clausius-Mossotti equation, we get

2N<xe

= 1
.
63

1
.
52

1 +
3e0

1 -
Nae

3e0

The two values are different by about 7 percent. The simple relationship in Equation 7.14
underestimates the relative permittivity.

i
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7
.
2   ELECTRONIC POLARIZATION:

COVALENT SOLIDS

When a field is applied to a solid substance, the constituent atoms or molecules
become polarized, as we visualized in Figure 7.5a. The electron clouds within each
atom become shifted by the field, and this gives rise to electronic polarization. This
type of electronic polarization within an atom, however, is quite small compared with
the polarization due to the valence electrons in the covalent bonds within the solid.
For example, in crystalline silicon, there are electrons shared with neighboring Si
atoms in covalent bonds, as shown in Figure 7.8a. These valence electrons form
bonds (i.e., become shared) between the Si atoms because they are already loosely
bound to their parent atoms. If this were not the case, the solid would be a van der
Waals solid with atoms held together by secondary bonds (e.g., solid Ar below 83.8 K).
In the covalent solid, the valence electrons therefore are not rigidly tied to the ionic
cores left in the Si atoms. Although intuitively we often view these valence electrons
as living in covalent bonds between the ionic Si cores, they nonetheless belong to the
whole crystal because they can tunnel from bond to bond and exchange places with
each other. We refer to their wavefunctions as delocalized, that is, not localized to any
particular Si atom. When an electric field is applied, the negative charge distribution
associated with these valence electrons becomes readily shifted with respect to the
positive charges of the ionic Si cores, as depicted in Figure 7.8b and the crystal ex-
hibits polarization, or develops a polarization vector. One can appreciate the greater
flexibility of electrons in covalent bonds compared with those in individual ionic
cores by comparing the energy involved in freeing each. It takes perhaps 1-2 eV to
break a covalent bond to free the valence electron, but it takes more than 10 eV to free

an electron from an individual ionic Si core. Thus, the valence electrons in the bonds

readily respond to an applied field and become displaced. This type of electronic po-
larization, due to the displacement of electrons in covalent bonds, is responsible for
the large dielectric constants of covalent crystals. For example er = 11.9 for the Si
crystal and €r = 16 for the Ge crystal.

Si ionic core

e e

0e e

e e

ee e

Negative charge cloud of valence
electrons

P

Figure 7.8
(a) Valence electrons in covalent bonds in the
absence of an applied field.
(b) When an electric field is applied to a
covalent solid, the valence electrons in the

covalent bonds are shifted very easily with
respect to the positive ionic cores. The whole
solid becomes polarized due to the collective
shift in the negative charge distribution of
the valence electrons.

a (b)
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EXAMPLE 7.3 ELECTRONIC POLARIZABILITY OF COVALENT SOLIDS Consider a pure Si crystal that has
er = 11.9.

a. What is the electronic polarizability due to valence electrons per Si atom (if one could por-
tion the observed crystal polarization to individual atoms)?

b
. Suppose that a Si crystal sample is electroded on opposite faces and has a voltage applied

across it. By how much is the local field greater than the applied field?
c. What is the resonant frequency f0 corresponding to (o0l

From the density of the Si crystal, the number of Si atoms per unit volume, Af, is given as
5 x 1028m-3.

SOLUTION

a
. Given the number of Si atoms, we can apply the Clausius-Mossotti equation to find oie

3g0 er - 1     3(8.85 x HT12) 11.9-1  2
ote = = = 4.17 x 10 Fm

N er + 2        (5 x 1028)    11.9 + 2

This is larger, for example, than the electronic polarizability of an isolated Ar atom, which
has more electrons. If we were to take the inner electrons in each Si atom as very roughly
representing Ne, we would expect their contribution to the overall electronic polarizability
to be roughly the same as the Ne atom, which is 0.45 x lO-40 F m2.

b
.
 The local field is

£ioc =2: + -P

But, by definition,

Substituting for P,

P = XeSo'E = (er - 1)£0£

so the local field with respect to the applied field is

= V+2) = 4.63

The local field is a factor of 4.63 greater than the applied field.

c.   Since polarization is due to valence electrons and there are four per Si atom, we can use
Equation 7.7,

fZe2\l/2    T        4(1.6 x lO"19)2        11/2 16
-=UJ    = [(9.1 xl0-3i)(4.17x 10-40) J «1

-
«*10'W'

The corresponding resonant frequency is (o0/27t or 2.6 x 1015 Hz, which is typically asso-
ciated with electromagnetic waves of wavelength in the ultraviolet region.
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7
.3   POLARIZATION MECHANISMS

In addition to electronic polarization, we can identify a number of other polarization
mechanisms that may also contribute to the relative permittivity.

7
.
3
.1 Ionic Polarization

This type of polarization occurs in ionic crystals such as NaCl, KCl, and LiBr. The
ionic crystal has distinctly identifiable ions, for example, Na4" and Cl~, located at well-
defined lattice sites, so each pair of oppositely charged neighboring ions has a dipole
moment. As an example, we consider the one-dimensional NaCl crystal depicted as a
chain of alternating Na+ and Cl~ ions in Figure 7.9a. In the absence of an applied field,
the solid has no net polarization because the dipole moments of equal magnitude are
lined up head to head and tail to tail so that the net dipole moment is zero. The dipole
moment /?+ in the positive x direction has the same magnitude as p- in the negative jc
direction, so the net dipole moment

Pnet = P+ - P- = 0

In the presence of a field £ along the x direction, however, the Cl~ ions are pushed
in the - x direction and the Na+ ions in the +x direction about their equilibrium
positions. Consequently, the dipole moment /?+ in the +x direction increases to p+
and the dipole moment /?_ decreases to //

_, as shown in Figure 7.9b. The net di-
pole moment is now no longer zero. The net dipole moment, or the average dipole
moment, per ion pair is now (pf

+
 - pi), which depends on the electric field £.

Thus the induced average dipole moment per ion pair paw depends on the field £.
The ionic polarizability a,- is defined in terms of the local field experienced by the
ions,

loc [7.17]

The larger the a,-, the greater the induced dipole moment. Generally, a,- is larger
than the electronic polarizability ae by a factor of 10 or more, which leads to ionic
solids having large dielectric constants. The polarization P exhibited by the ionic solid

Ionic

polarizability

Na+cr

(b)

I

I

I"

I

i

I

I

Figure 7.9
(a) A NaCl chain in the NaCl crystal without an

>x    applied field. Average or net dipole moment per ion
is zero.

(b) In the presence of an applied field, the ions
become slightly displaced, which leads to a net
average dipole moment per ion.
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Clausius-

Mossotti

equation for
ionic

polarization

.loc

is therefore given by

P = Nipw = Ntai'Eic

where A , is the number of ion pairs per unit volume. By relating the local field to £ and
using

P = (er- 1)6 0<E

we can again obtain the Clausius-Mossotti equation, but now due to ionic polarization,

-  = - -NiOLi
€r + 2 3s0

[7.18]

Each ion also has a core of electrons that become displaced in the presence of an
applied field with respect to their positive nuclei and therefore also contribute to the po-
larization of the solid. This electronic polarization simply adds to the ionic polarization.
Its magnitude is invariably much smaller than the ionic contribution in these solids.

7
.
3

.2 Orientational (Dipolar) Polarization

Certain molecules possess permanent dipole moments. For example, the HCl molecule
shown in Figure 7.10a has a permanent dipole moment p0 from the Cl

~ ion to the

H+ ion. In the liquid or gas phases, these molecules, in the absence of an electric field,
are randomly oriented as a result of thermal agitation, as shown in Figure 7.10b. When
an electric field £ is applied, £ tries to align the dipoles parallel to itself, as depicted
in Figure 7.10c. The Cl~ and H+ charges experience forces in opposite directions. But
the nearly rigid bond between Cl~ and H+ holds them together, which means that the

Figure 7.10
(a) A HCl molecule possesses a permanent dipole
moment p0.

(b) In the absence of a field, thermal agitation of the
molecules results in zero net average dipole moment per
molecule.

(c) A dipole such as HCl placed in a field experiences a
torque that tries to rotate it to align p0 with the field £.
(d) In the presence of an applied field, the dipoles try to
rotate to align with the field against thermal agitation.
There is now a net average dipole moment per molecule
along the field.
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molecule experiences a torque r about its center of mass.5 This torque acts to rotate the
molecule to align p0 with £. If all the molecules were to simply rotate and align with
the field, the polarization of the solid would be

P = Np0

where iV is the number of molecules per unit volume. However, due to their thermal
energy, the molecules move around randomly and collide with each other and with the
walls of the container. These collisions destroy the dipole alignments. Thus the thermal
energy tries to randomize the orientations of the dipole moments. A snapshot of the
dipoles in the material in the presence of a field can be pictured as in Figure 7.10d in
which the dipoles have different orientations. There is, nonetheless, a net average
dipole moment per molecule that is finite and directed along the field. Thus the
material exhibits net polarization, which leads to a dielectric constant that is deter-
mined by this orientational polarization.

To find the induced average dipole moment p  along £, we need to know the
average potential energy E$lv of a dipole placed in a field £ and how this compares with
the average thermal energy kT per molecule as in the present case of five degrees of
freedom. E&v represents the average external work done by the field in aligning the
dipoles with the field. If \kT is much greater than E&q, then the average thermal
energy of collisions will prevent any dipole alignment with the field. If, however,
is much greater than \kT, then the thermal energy is insufficient to destroy the dipole
alignments.

A dipole at an angle 0 to the field experiences a torque r that tries to rotate it, as
shown in Figure 7.10c. Work done dW by the field in rotating the dipole by dO is r dO
(as in F dx). This work dW represents a small change dE in the potential energy of
the dipole. No work is done if the dipole is already aligned with £, when 6 = 0, which
corresponds to the minimum in PE. On the other hand, maximum work is done when
the torque has to rotate the dipole from 0 = 180° to 6 = 0° (either clockwise or coun-
terclockwise, it doesn't matter). The torque experienced by the dipole, according to
Figure 7.10c, is given by

r = (F sin 6)a      or      "Epo sin 0

where

Po = aQ

If we take PE = 0 when 0 = 0, then the maximum PE is when 6 = 180°, or

£max = I Po £ sin 0 dO = IpoZ

The average dipole potential energy is then \Em2  orp0'E. For orientational polar-
ization to be effective, this energy must be greater than the average thermal energy.
The average dipole moment pav along £ is directly proportional to the magnitude of p0
itself and also proportional to the average dipole energy to average thermal energy

Torque on a
dipole

I 5 The oppositely directed forces also slightly stretch the CI -H+ bond, but we neglect this effect.
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ratio, that is,

Po
t

Pav oc p0

If we were to do the calculation properly using Boltzmann statistics for the distri-
bution of dipole energies among the molecules, that is, the probability that the dipole
has an energy E is proportional to exp(-E/kT), then we would find that when
p0E < kT (generally the case),

» -1P
*v " 3 kT

[7.19]

It turns out that the intuitively derived expression for is roughly the same as
Equation 7.19. Strictly, of course, we should use the local field acting on each mole-
cule, in which case £ is simply replaced by Eioc. From Equation 7.19 we can define a
dipolar orientational polarizability ad per molecule by

2

Old =  
3kT

[7.20]

It is apparent that, in contrast to the electronic and ionic polarization, dipolar
orientational polarization is strongly temperature dependent. ad decreases with tem-
perature, which means that the relative permittivity sr also decreases with temperature.
Dipolar orientational polarization is normally exhibited by polar liquids (e.g., water,
alcohol, acetone, and various electrolytes) and polar gases (e.g., gaseous HC1 and
steam). It can also occur in solids if there are permanent dipoles within the solid struc-
ture, even if dipolar rotation involves a discrete jump of an ion from one site to another,
such as in various glasses.

7
.
3

.
3   INTERFACIAL POLARIZATION

Interfacial polarization occurs whenever there is an accumulation of charge at an
interface between two materials or between two regions within a material. The simplest
example is interfacial polarization due to the accumulation of charges in the dielectric
near one of the electrodes, as depicted in Figure 7.1 la and b. Invariably materials, how-
ever perfect, contain crystal defects, impurities, and various mobile charge carriers such
as electrons (e.g., from donor-type impurities), holes, or ionized host or impurity ions.
In the particular example in Figure 7.1 la, the material has an equal number of positive
ions and negative ions, but the positive ions are assumed to be far more mobile. For ex-
ample, if present, the H+ ion (which is a proton) and the Li+ ion in ceramics and glasses
are more mobile than negative ions in the structure because they are relatively small.
Under the presence of an applied field, these positive ions migrate to the negative elec-
trode. The positive ions, however, cannot leave the dielectric and enter the crystal struc-
ture of the metal electrode. They therefore simply pile up at the interface and give rise
to a positive space charge near the electrode. These positive charges at the interface at-
tract more electrons to the negative electrode. This additional charge on the electrode,
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Figure 7.11
(a) A crystal with equal number of mobile positive ions and fixed negative ions. In the absence of a
field, there is no net separation between all the positive charges and all the negative charges.
(b) In the presence of an applied field, the mobile positive ions migrate toward the negative
electrode and accumulate there. There is now an overall separation between the negative charges
and positive charges in the dielectric. The dielectric therefore exhibits interfacial polarization.
(c) Grain boundaries and interfaces between different materials frequently give rise to interfacial
polarization.

of course, appears as an increase in the dielectric constant. The term interfacial polar-
ization arises because the positive charges accumulating at the interface and the re-
mainder of negative charges in the bulk together constitute dipole moments that appear
in the polarization vector P (P sums all the dipoles within the material per unit volume).

Another typical interfacial polarization mechanism is the trapping of electrons
or holes at defects at the crystal surface, at the interface between the crystal and the
electrode. In this case we can view the positive charges in Figure 7.11a as holes and
negative charges as immobile ionized acceptors. We assume that the contacts are
blocking and do not allow electrons or holes to be injected, that is, exchanged between
the electrodes and the dielectric. In the presence of a field, the holes drift to the nega-
tive electrode and become trapped in defects at the interface, as in Figure 7.11b.

Grain boundaries frequently lead to interfacial polarization as they can trap charges
migrating under the influence of an applied field, as indicated in Figure 7.11c. Dipoles
between the trapped charges increase the polarization vector. Interfaces also arise in
heterogeneous dielectric materials, for example, when there is a dispersed phase
within a continuous phase. The principle is then the same as schematically illustrated in
Figure 7.11c.

7.
3

.
4 Total Polamzation

In the presence of electronic, ionic, and dipolar polarization mechanisms, the average
induced dipole moment per molecule will be the sum of all the contributions in terms
of the local field,

Total induced

dipole
moment
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Table 7.2  Typical examples of polarization mechanisms

Example Polarization Static Sr Comment

Ar gas

Ar liquid {T < 87.3 K)

Si crystal

NaCl crystal

CsCl crystal
Water

Nitromethane (27 0C)

PVC (polyvinyl
chloride)

Electronic 1.0005

Electronic 1.53

Electronic polarization 11.9
due to valence electrons

Ionic 5.90

Ionic 7.20

Orientational 80

Orientational 34

Orientational 7

Small N in gases: sr « 1

van der Waals bonding
Covalent solid; bond

polarization

Ionic crystalline solid

Ionic crystalline solid

Dipolar liquid

Dipolar liquid

Dipole orientations partly
hindered in the solid

Clausius-

Mossotti

equation

Each effect adds linearly to the net dipole moment per molecule, a fact verified by j
experiments. Inteifacial polarization cannot be simply added to the above equation as i
otifiE\QC because it occurs at interfaces and cannot be put into an average polarization per
molecule in the bulk. Further, the fields are not well defined at the interfaces. In addition,
we cannot use the simple Lorentz local field approximation for dipolar materials. That is,
the Clausius-Mossotti equation does not work with dipolar dielectrics and the calcula-
tion of the local field is quite complicated. The dielectric constant er under electronic and ,
ionic polarizations, however, can be obtained from

er - 1 1
 - = -(Neae + Nidi)
er + 2 3e0

[7.21]

Table 7.2 summarizes the various polarization mechanisms and the corresponding
static (or very low frequency) dielectric constant. Typical examples where one mecha-
nism dominates over others are also listed.

EXAMPLE 7.4 IONIC AND ELECTRONIC POLARIZABILITY Consider the CsCl crystal which has one Cs+-Cr
pair per unit cell and a lattice parameter a of 0.412 nm. The electronic polarizability of Cs+ and

Cl~ ions is 3.35 x 10~40 F m2 and 3.40 x 10"40 F m2, respectively, and the mean ionic polariz-
ability per ion pair is 6 x 10_40 F m2

. What is the dielectric constant at low frequencies and that
at optical frequencies?

SOLUTION

The CsCl structure has one cation (Cs+) and one anion (Cl_) in the unit cell. Given the lattice pa-
rameter a = 0.412 x 10~9 m, the number of ion pairs per unit volume is \/a3 = 1 /(0.

412x

10~9m)3 = 1.43 x 1028 m~3.     is also the concentration of cations and anions individually.
From the Clausius-Mossotti equation,

e
-
L-  = -MMCs+) + A MCr) + Nta,]

er + 2 3e0
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That is,

sr - 1 
_

 (1.43 x 1028 m-3)(3.35 x IQ"40 + 3.40 x IP"40 + 6 x IP"40 F m2)
 + 2 

~

 3(8.85 x lO- Fm"1)

Solving for er, we find sr = 7.56.
At high frequencies-that is, near-optical frequencies-the ionic polarization is too slug-

gish to allow ionic polarization to contribute to sr. Thus, £rop, relative permittivity at optical fre-
quencies, is given by

f LZi = J_[a (Cs+) + iWCT)]

That is,

srop - 1 
_

 (1.43 x 1028 m-3)(3.35 x IP"40 + 3.40 x IP"40 F m2)

erop + 2 
"

       ' 3(8.85 x lO- Fm"1)

Solving for erop, we find srop = 2.71. Note that experimental values are sr = 7.20 at low fre-
quencies and erop = 2.62 at high frequencies, very close to calculated values.

7
.4   FREQUENCY DEPENDENCE: DIELECTRIC

CONSTANT AND DIELECTRIC LOSS

7
.
4
.

1 Dielectric Loss

The static dielectric constant is an effect of polarization under dc conditions. When
the applied field, or the voltage across a parallel plate capacitor, is a sinusoidal sig-
nal, then the polarization of the medium under these ac conditions leads to an ac di-
electric constant that is generally different than the static case. As an example we will
consider orientational polarization involving dipolar molecules. The sinusoidally
varying field changes magnitude and direction continuously, and it tries to line up the
dipoles one way and then the other way and so on. If the instantaneous induced dipole
moment p per molecule can instantaneously follow the field variations, then at any
instant

p = ctdT, [7.22]

and the polarizability aj has its expected maximum value from dc conditions, that is,

«</=Sf [7-231
There are two factors opposing the immediate alignment of the dipoles with the

field. First is that thermal agitation tries to randomize the dipole orientations. Colli-
sions in the gas phase, random jolting from lattice vibrations in the liquid and solid
phases, for example, aid the randomization of the dipole orientations. Second, the mol-
ecules rotate in a viscous medium by virtue of their interactions with neighbors, which
is particularly strong in the liquid and solid states and means that the dipoles cannot
respond instantaneously to the changes in the applied field. If the field changes too
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Figure 7.12 The applied dc field is suddenly
changed from !E0 to £ at time \ = 0.
The induced dipole moment p has to decrease
from a yLo to a final value of a L. The
decrease is achieved by random collisions of
molecules in the gas.
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rapidly, then the dipoles cannot follow the field and, as a consequence, remain ran-
domly oriented. At high frequencies, therefore, ad will be zero as the field cannot
induce a dipole moment. At low frequencies, of course, the dipoles can respond rapidly
to follow the field and ad has its maximum value. It is clear that ad changes from its
maximum value in Equation 7.23 to zero as the frequency of the field is increased. We
need to find the behavior of aj as a function of frequency co so that we can determine
the dielectric constant sr by the Clausius-Mossotti equation.

Suppose that after a prolonged application, corresponding to dc conditions, the
applied field across the dipolar gaseous medium is suddenly decreased from £<, to £
at a time we define as zero, as shown in Figure 7.12. The field £ is smaller than £0,
so the induced dc dipole moment per molecule should be smaller and given by aj(0)£
where aj(0) is ad atco = 0, dc conditions. Therefore, the induced dipole moment per
molecule has to decrease, or relax, from aj(0)£o to aj(0)£. In a gas medium the mol-
ecules would be moving around randomly and their collisions with each other and the
walls of the container randomize the induced dipole per molecule. Thus the decrease,
or the relaxation process, in the induced dipole moment is achieved by random col-
lisions. Assuming that r is the average time, called the relaxation time, between mol-
ecular collisions, then this is the mean time it takes per molecule to randomize the
induced dipole moment. If p is the instantaneous induced dipole moment, then
p - aj(0)£ is the excess dipole moment, which must eventually disappear to zero
through random collisions as t -> oo. It would take an average r seconds to eliminate
the excess dipole moment p - aj(0)£. The rate at which the induced dipole moment
is changing is then -[/? - aj(0)£]/r, where the negative sign represents a decrease.
Thus,

d/? 
_

 p - Qfj(0)£
dt 

~

 r
[7.24]

Although we did not derive Equation 7.24 rigorously, it is nonetheless a good
first-order description of the behavior of the induced dipole moment per molecule in

M
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a dipolar medium. Equation 7.24 can be used to obtain the dipolar polarizability
under ac conditions. For an ac field, we would write

£ = Tro sin(&>0

and solve Equation 7.24, but in engineering we prefer to use an exponential represen-
tation for the field

£ = !£oexp(; 0

as in ac voltages. In this case the impedance of a capacitor C and an inductor L become
\/j(oC and j(oL, where j represents a phase shift of 90°. With £ = expO' O in
Equation 7.24, we have

dp       p Qfj(0)

at        x x

Solving this we find the induced dipole moment as

p = otdico oexpijcDt)

where ctdico) is given by

[7.25]

MO)

1 + jcox
[7.26]

and represents the orientational polarizability under ac field conditions. Polarizabil-
ity ad(co) is a complex number that indicates that p and £ are out of phase.6 Put
differently, if N is the number of molecules per unit volume, P = Np and £ are out of
phase, as indicated in Figure 7.13a. At low frequencies, cox 1, ad(co) is nearly
ad(0), and p is in phase with £. The rate of relaxation 1/r is much faster than the fre-
quency of the field or the rate at which the polarization is being changed; p then closely
follows £. At very high frequencies, cox > 1, the rate of relaxation 1/r is much slower
than the frequency of the field and p can no longer follow the variations in the field.

We can easily obtain the dielectric constant sr from ad(co) by using Equation 7.14,
which then leads to a complex number for sr since ad itself is a complex number. By
convention, we generally write the complex dielectric constant as

Sr = S'

r - y< [7.27]

where is the real part and e" is the imaginary part, both being frequency dependent,
as shown in Figure 7.13b. The real part decreases from its maximum value £ (0), cor-
responding to MO), to 1 at high frequencies when ad = 0 as oo -» oo in Equation 7.26.
The imaginary part £"(&>) is zero at low and high frequencies but peaks when cox = I
or when co = 1 / r. The real part ef

r represents the relative permittivity that we would use
in calculating the capacitance, as for example in C = srs0A/d. The imaginary part
e
"((o) represents the energy lost in the dielectric medium as the dipoles are oriented

against random collisions one way and then the other way and so on by the field. Consider

Applied field

Dipole
relaxation

equation

Orientational

polarizability
andfrequency

Complex
relative

permittivity

6 The polarization P lags behind .£ by some angle <£, that is determined by Equation 7.26 as shown in Figure 7.13.
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Figure 7.13
(a) An ac field is applied to a dipolar medium. The polarization P (P= Np) is out of phase with
the ac field.

(b) The relative permittivity is a complex number with real (e'r) and imaginary [e"r\ parts that exhibit
relaxation at a> % 1/r. i

1

Figure 7.14 The dielectric medium behaves
like an ideal (lossless) capacitor of capacitance
C

, which is in parallel with a conductance Gp.
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the capacitor in Figure 7.14, which has this dielectric medium between the plates. Then
the admittance Y, i.e., the reciprocal of impedance of this capacitor, with sr given in
Equation 7.27 is

ja)Ae0er(a))     ja)A60efr((o) coAe0e ((o)
Y =        d        

"        d        + d
which can be written as

Y = jcoC + Gp [7.28]
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where

C =

and

Gp =

Ae0e'
r

d

cQAe0e"

d

[7.29]

[7.30]

is a real number just as if we had a conductive medium with some conductance Gp or
resistance l/Gp. The admittance of the dielectric medium according to Equation 7.28
is a parallel combination of an ideal, or lossless, capacitor C, with a relative permittiv-
ity e'r9 and a resistance of Rp = l/Gp as indicated in Figure 7.14. Thus the dielectric
medium behaves as if C0 and Rp were in parallel. There is no real electric power dissi-
pated in C, but there is indeed real power dissipated in Rp because

Input power = IV = Y V2 = jcoCV2 + -
Rp

and the second term is real. Thus the power dissipated in the dielectric medium is
related to e" and peaks when co = 1 /r. The rate of energy storage by the field is de-
termined by co whereas the rate of energy transfer to molecular collisions is
determined by 1/r. When co = 1/r, the two processes, energy storage by the field
and energy transfer to random collisions, are then occurring at the same rate, and
hence energy is being transferred to heat most efficiently. The peak in e" versus co
is called a relaxation peak, which is at a frequency when the dipole relaxations are
at the right rate for maximum power dissipation. This process is known as dielectric
resonance.

According to Equation 7.28, the magnitude of Gp and hence the energy loss is
determined by e". In engineering applications of dielectrics in capacitors, we would
like to minimize s" for a given We define the relative magnitude of e ' with respect
to ef

r through a quantity, tan 8, called the loss tangent (or loss factor), as

e
tan 6 = -

t

r

which is frequency dependent and peaks just beyond co = 1/r. The actual value of 1/r
depends on the material, but typically for liquid and solid media it is in the gigahertz
range, that is, microwave frequencies. We can easily find the energy per unit time-
power-dissipated as dielectric loss in the medium. The resistance Rp represents the
dielectric loss, so

Wvol =
Power loss

Volume

J
_

Rp X dA

V 2 1 V 2

d

Using Equation 7.31 and £ = V/d, we obtain

WVoi = cDT Soe'
r
 tan 8 [7.32]

Equivalent
ideal

capacitance

Equivalent
parallel
conductance

[7.31]    Loss tangent

Dielectric

loss per unit
volume
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Figure 7.15 The frequency dependence of the real and imaginary parts of the dielectric constant
in the presence of interfacial, orientational, ionic, and electronic polarization mechanisms.

Equation 7.32 represents the power dissipated per unit volume in the polarization
mechanism: energy lost per unit time to random molecular collisions as heat. It is clear
that dielectric loss is influenced by three factors: oo, £, and tan <$.

Although we considered only orientational polarization, in general a dielectric
medium will also exhibit other polarization mechanisms and certainly electronic
polarization since there will always be electron clouds around individual atoms, or
electrons in covalent bonds. If we were to consider the ionic polarizability in ionic
solids, we would also find a/ to be frequency dependent and a complex number. In this
case, lattice vibrations in the crystal, typically at frequencies in the infrared region
of the electromagnetic spectrum, will dissipate the energy stored in the induced dipole
moments just as energy was dissipated by molecular collisions in the gaseous dipolar
medium. Thus, the energy loss will be greatest when the frequency of the polarizing
field is the same as the lattice vibration frequency, u> = &>/, which tries to randomize
the polarization.

We can represent the general features of the frequency dependence of the real and
imaginary parts of the dielectric constant as in Figure 7.15. Although the figure shows
distinctive peaks in s" and transition features in 6 , in reality these peaks and various
features are broader. First, there is no single well-defined lattice vibration frequency
but instead an allowed range of frequencies just as in solids where there is an allowed
range of energies for the electron. Moreover, the polarization effects depend on the
crystal orientation. In the case of polycrystalline materials, various peaks in different
directions overlap to exhibit a broadened overall peak. At low frequencies the interfa-
cial or space charge polarization features are even broader because there can be a num-
ber of conduction mechanisms (different species of charge carriers and different
carrier mobilities) for the charges to accumulate at interfaces, each having its own
speed. Orientational polarization, especially in many liquid dielectrics at room tem-
perature, typically takes place at radio to microwave frequencies. In some polymeric
materials, this type of polarization involves a limited rotation of dipolar side groups
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Figure 7.16   Real and imaginary parts of the dielectric constant, s'r and e", versus frequency for (a) a
polymer, PET, at 115 0C and (b) an ionic crystal, KCI, at room temperature.
Both exhibit relaxation peaks but for different reasons.

SOURCE: Data for (a) from author's own experiments using a dielectric analyzer (DEA), (b) from C. Smart, G. R. Wilkinson,

A
. M. Karo, and J. R. Hardy, International Conference on Lattice Dynamics, Copenhagen, 1963, as quoted by D. H. Martin,

'The Study of the Vibration of Crystal Lattices by Far Infra-Red Spectroscopy," Advances in Physics, 14, no. 53-56, 1965,
pp. 39-100.

attached to the polymeric chain and can occur at much lower frequencies depending on
the temperature. Figure 7.16 shows two typical examples of dielectric behavior, and
e
" as a function of frequency, for a polymer (PET) and an ionic crystal (KCI). Both ex-

hibit loss peaks, peaks in s" versus frequency, but for different reasons. The particular
polymer, PET (a polyester), exhibits orientational polarization due to dipolar side
groups, whereas KCI exhibits ionic polarization due to the displacement of K+ and Cl~

ions. The frequency of the loss peak in the case of orientational polarization is highly
temperature dependent. For the PET example in Figure 7.16 at 115 0C, the peak occurs
at around 400 Hz, even below typical radio frequencies.

DIELECTRIC LOSS PER UNIT CAPACITANCE AND THE LOSS ANGLE S Obtain the dielectric loss

per unit capacitance in a capacitor in terms of the loss tangent. Obtain the phase difference
between the current through the capacitor and that through Rp. What is the significance of 81

SOLUTION

We consider the equivalent circuit in Figure 7.14. The power loss in the capacitor is due to Rp.
If V is the rms value of the voltage across the capacitor, then the power dissipated per unit
capacitance Wcap is

v\
:

 i 
_

v2<os0s
';a _

;
  d 

_
r2<

Rp    C d        e0e'
r
A ei

cap

r

EXAMPLE 7.5

or

Wcap = V2a)tm8
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Table 7.3  Dielectric properties of three insulators

EXAMPLE 7.6

/=60Hz /=lMHz

Material                                     tan 8 co tan 8 e'
r
 tan 8 co tan 8

Polycarbonate 3.17          9 x lO"4 0.34 2.96 1 x KT2 6.2 x 104
Silicone rubber 3.7        2.25 x KT2 8.48 3.4 4 x lO"3 2.5 x 104

Epoxy with mineral 5           4.7 x KT2 17.7 3.4 3 x KT2 18 x 104
filler

As tan 8 is frequency dependent and peaks at some frequency, so does the power dissipated
per unit capacitance. A clear design objective would be to keep Wcap as small as possible. Fur-
ther, for a given voltage, Wcap does not depend on the dielectric geometry. For a given voltage
and capacitance, we therefore cannot reduce the power dissipation by simply changing the
dimensions of the dielectric.

Consider the rms currents through Rp and C, I\0  and Icap respectively, and their ratio,7
1

/loss      V      jwC     a)e0e" A d
 = - x  =  :- x  = - j tan 8
/cap        Rp V d jCDSoB A

As expected, the two are 90° out of phase (-j) and the loss current (through Rp) is a factor,
tan 5, of the capacitive current (through C). The ratio of /cap and the total current, /totai =
/cap ~l~ /loss > is

/cap /cap 1 1

/total        /cap + /loss        j _j_ /loss        1 - j tan 8
/

cap

The phase angle between /cap and /total is determined by the negative of the phase of the
denominator term (1 - j tan 8). Thus the phase angle between /cap and /total is 8, where /cap leads
/total by 8. 8 is also called the loss angle. When the loss angle is zero, /cap and /total are equal and
there is no loss in the dielectric.

DIELECTRIC LOSS PER UNIT CAPACITANCE Consider the three dielectric materials listed in

Table 7.3 with their dielectric constant e'
r (usually simply stated as er) and loss factors tan 8. At

a given voltage, which dielectric will have the lowest power dissipation per unit capacitance at
60 Hz? Is this also true at 1 MHz?

SOLUTION

The power dissipated at a given voltage per unit capacitance depends only on co tan 8, so we do
not need to use e'  Calculating co tan 8 or (Inf) tan 5, we find the values listed in the table at
60 Hz and 1 MHz. At 60 Hz, polycarbonate has the lowest power dissipation per unit capaci-
tance, but at 1 MHz it is silicone rubber.

I 7 These currents are phasors, each with a rms magnitude and phase angle.
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Table 7.4   Dielectric loss per unit volume for two insulators (k is the thermal conductivity)

/=60Hz /=lMHz

Loss Loss k

Material        e'
r        tan 8       (mWcm-3) efr tan 8 (Wcnr3) (Wcm K1)

XLPE           2.3     3 x lO"4         0.230 2.3 4 x lO"4 5.12 0.005
Alumina        8.5     1 x lO"3         2.84 8.5 1 x lO"3 47.3 0.33

DIELECTRIC LOSS AND FREQUENCY Calculate the heat generated per second due to dielectric
loss per cm3 of cross-linked polyethylene, XLPE (typical power cable insulator), and alumina,
AI2O3 (typical substrate in thin- and thick-film electronics), at 60 Hz and 1 MHz at a field of
100 kV cm-1. Their properties are given in Table 7.4. What is your conclusion?

SOLUTION

The power dissipated per unit volume is

WVoi = (27r/)£2£0  tan 8

We can calculate Wyo\ by substituting the properties of individual dielectrics at the given
frequency /. For example, for XLPE at 60 Hz,

Wvol = (27r60 Hz)(100 x 103 x 102 V m-1)2  x 10~12 F m~1)(2.3)(3 x lO-4)

= 230 W m"3

We can convert this into per cm3 by
W

WL = --7- = 0.230 mW cm"3vol 106

which is shown in Table 7.4.

From similar calculations we can obtain the heat generated per second per cm3 as shown in
Table 7.4. The heats at 60 Hz are small. The thermal conductivity of the insulation and its con-
necting electrodes can remove the heat without substantially increasing the temperature of the in-
sulation. At 1 MHz, the heats generated are not trivial. One has to remove 5.12 W of heat from
1 cm3 of XLPE and 47.3 W from 1 cm3 of alumina. The thermal conductivity k of XLPE is about
0

.005 W cm"1 K"1, whereas that of alumina is almost 100 times larger, 0.33 W cm"1 K-1. The
poor thermal conductivity of polyethylene means that 5.12 W of heat cannot be conducted away
easily and it will raise the temperature of the insulation until dielectric breakdown ensues. In the
case of alumina, 47.3 W of heat will substantially increase the temperature. Dielectric loss is the
mechanism by which microwave ovens heat food. Dielectric heating at high frequencies is used
in industrial applications such as heating plastics and drying wood.

7
.
4

.2 Debye Equations, Cole-Cole Plots,
and Equivalent Series Circuit

Consider a dipolar dielectric in which there are both orientational and electronic
polarizations, ad and ae, respectively, contributing to the overall polarizability. Electronic
polarization ae will be independent of frequency over the typical frequency range of

EXAMPLE 7.7
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Dielectric

constant of a
dipolar
material

Dipolar
dielectric

constant

Debye
equations for
real and

imaginary

parts

Debye
equations for
real and

imaginary

parts

operation of a dipolar dielectric, well below optical frequencies. At high frequencies,
orientational polarization will be too sluggish too respond, ad = 0, and the sr will be
6roo. (The subscript "infinity', simply means high frequencies where orientational po-
larization is negligible.) The dielectric constant and polarizabilities are generally re-
lated through8

N       N N
sr = 1 H ote H OLd{(jL>) - £roo + -ad(a))

where we have combined 1 and ae terms to represent the high frequency sr as erOQ. Fur-
ther Nad(0)/so determines the contribution of orientational polarization to the static
dielectric constant srdc, so that Notd{0)/s0 is simply (srAc - er00). Substituting for the
frequency dependence of ctdico) from Equation 7.26, and writing sr in terms of real and
imaginary parts,

, 
_

 . „ 
_

       , N MO) ( rdc roo)

1 + jcot
[7.33]

We can eliminate the complex denominator by multiplying both the denominator
and numerator of the right-hand side by 1 - jcor and equate real and imaginary parts
to obtain what are known as Debye equations:

roo

+ (cot)2
[7.34a

and
(grdc - £ roo) (COT)

1 + ((OT)2
[7.34b]

Equations 7.34a and b reflect the behavior of s'r and s" as a function of frequency
shown in Figure 7.13b. The imaginary part s" that represents the dielectric loss ex- i
hibits a peak at co = 1 /r which is called a Debye loss peak. Many dipolar gases and ]
some liquids with dipolar molecules exhibit this type of behavior. In the case of solids
the peak is typically much broader because we cannot represent the losses in terms of
just one single well-defined relaxation time r; the relaxation in the solid is usually 1
represented by a distribution of relaxation times. Further, the simple relaxation
process that is described in Equation 7.25 assumes that the dipoles do not influence
each other either through their electric fields or through their interactions with the
lattice; that is, they are not coupled. In solids, the dipoles can also couple, which com-
plicates the relaxation process. Nonetheless, there are also many solids whose dielectric
relaxation can be approximated by a nearly Debye relaxation or by slightly modifying
Equation 7.33.

In dielectric studies of materials it is quite common to find a plot of the imaginary
part (s") versus the real part (s'r) as a function of frequency co. Such plots are called
Cole-Cole plots after their originators. The Debye equations 7.34a and b obviously

8 This simple relationship is used because the Lorentz local field equation does not apply in dipolar dielectrics and
the local field problem is particularly complicated in these dielectrics.
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Figure 7.17  Cole-Cole plot is a plot of e"
versus e'

r as a function of frequency co.
As the frequency is changed from low to high, the
plot traces out a semicircle.
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Figure 7.18  A capacitor with a
dipolar dielectric and its equivalent
circuit in terms of an ideal Debye
relaxation.

provide the necessary values for and e" to be plotted for the present simple dipolar
relaxation mechanism that has only a single relaxation time r. In fact, by simply
putting in r = 1 second, we can calculate and plot e" versus £f

r
 forco = 0 (dc) to

co -> oo as shown in Figure 7.17. The result is a semicircle. While for certain sub-
stances, such as gases and some liquids, the Cole-Cole plots do indeed generate a
semicircle, for many dielectrics, the curve is typically flattened and asymmetric, and
not a semicircle.9

The Debye equations lead to a particular RC circuit representation of a dielectric
material that is quite useful. Suppose that we have a resistance Rs in series with a ca-
pacitor Cy, both of which are in parallel with the capacitor Coo as in Figure 7.18. If we
were to write down the equivalent admittance of this circuit, we would find that it cor-
responds to Equation 7.33, that is, the Debye equation. (The circuit mathematics is
straightforward and is not reproduced here.) The reader may wonder why this circuit is
different than the general model shown in Figure 7.14. Any series Rs and Cy circuit can
be transformed to be equivalent to a parallel Rp and Cp (or Gp and C in Figure 7.14)
circuit as is well known in circuit theory; the relationships between the elements de-
pend on the frequency. Many electrolytic capacitors are frequently represented by an
equivalent series Rs and Cs circuit as in Figure 7.18. If A is the area and d is the thick-
ness of a parallel plate capacitor with a dipolar dielectric, then

Coc =
d

Cs =
d

and
r

Rs = -
C

s

[7.35]

Notice that in this circuit model, Rs, Cs, and Coo do not depend on the fre-
quency, which is only true for an ideal Debye dielectric, that with a single relax-
ation time r.

Equivalent
circuit of a
Debye
dielectric

9 The departure is simply due to the fact that a simple relaxation process with a single relaxation time cannot
describe the dielectric behavior accurately. (A good overview of non-Debye relaxations is given by Andrew Jonscher
\nJ.PhysD, 32, R57, 1999.)



614 chapter y . Dielectric Materials and Insulation

EXAMPLE 7.8 NEARLY DEBYE RELAXATION There are some dielectric solids that exhibit nearly Debye re-
laxation. One example is the Lao SrojMnOs ceramic whose relaxation peak and Cole-Cole
plots are similar to those shown in Figures 7.13b and 7.17,10 especially in the high-frequency
range past the resonance peak. Lao.7Sro.3Mn03's low frequency (srdc) and high frequency (£r00)
dielectric constants are 3.6 and 2.58, respectively, where low and high refer, respectively, to fre-
quencies far below and above the Debye relaxation peak, i.e., srdc and eroo. The Debye loss
peak occurs at 6 kHz. Calculate e'r and the dielectric loss factor tan 8 at 29 kHz.

SOLUTION

The loss peak occurs when a)0 = I/r, so that r = l/co0 = l/(27r6000) = 26.5 jus. We can now

calculate the real and imaginary parts of sr
 at 29 kHz,

3
.
6 - 2.58

2
.
62r - eroo "I"

and hence

 2 58 H 
1 + (cor)2      

'

       1 + [(2jr)(29 x 103)(26.5 x lO"6)]2
(grdc - grooXaiT) 

_

 (3.6 - 2.58)[(27r)(29 x 103)(26.5 x lO"6)] 
_

1 + [(27r)(29 x 103)(26.5 x lO'6)]2      
~ 0'2021 + (cot)2

e
'
'

tan 5 = -
0

.
202

2
.
62

0
.
077

which is close to the experimental value of 0.084.
This example was a special case of nearly Debye relaxation. Debye equations have been

modified over the years to account for the broad relaxation peaks that have been observed, par-
ticularly in polymeric dielectric, by writing the complex sr as

Non-Debye
relaxation

oo

[i + ucoxrv
[7.36]

where a and axe constants, typically less than unity (setting a = p = 1 generates the Debye
equations). Such equations are useful in engineering for predicting er at any frequency from a
few known values at various frequencies, as highlighted in this simple nearly Debye example.
Further, if r dependence on the temperature T is known (often r is thermally activated), then
we can predict sr at any co and T.

Gauss's law

7
.
5    GAUSS'S LAW AND BOUNDARY CONDITIONS

An important fundamental theorem in electrostatics is Gauss's law, which relates the inte-
gration of the electric field over a surface to the total charge enclosed. It can be derived
from Coulomb's law, or the latter can be derived from Gauss's law. Suppose !En is the elec-
tric field normal to a small surface area dA on a closed surface, as shown inFigure 7.19;
then summing    dA products over the whole surface gives total net chargeQtotai inside it,

i %ndA=Q
Surface

[7.37]

10 Z
. C. Xia ef a/., J. Phys. Cone/. Matter, 13, 4359, 2001. The origin of the dipolar activity in this ceramic is quite

complex and involves an electron hopping (jumping) from a Mn3+ to Mn4+ ion; we do not need the physical details
in the example.
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Charges inside
the surface

n

dA

Surface

Figure 7.19  Gauss's law.
The surface integral of the electric field normal to the surface is the
total charge enclosed. The field is positive if it is coming out,
negative if it is going into the surface.
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Figure 7.20
(a) The Gauss surface is a very thin rectangular surface just surrounding the positive electrode and enclosing the
positive charges Q0. The field cuts only the face just inside the capacitor.
(b) A solid dielectric occupies part of the distance between the plates. The vacuum (air)-dielectric boundary is
parallel to the plates and normal to the fields £i and £2.
(c) A thin rectangular Gauss surface at the boundary encloses the negative polarization charges.

where the circle on the integral sign represents integrating over the whole surface (any
shape) enclosing the charges constituting Qtotai as shown in Figure 7.19. The total
charge Qtotai includes all charges, both free charges and bound polarization charges.
Gauss's law is one of the most useful laws for calculating electric fields in electrostat-
ics, more so than the Coulomb law with whiclvtfiel ader is probably more familiar.
The surface can be of any shape as long as it contains the charges. We generally choose
convenient surfaces to simplify the integral in Equation 7.37, and these convenient sur-
faces are called Gauss surfaces. It should be noted from Figure 7.19 that the field is
coming out from the surface.

As an example, we can consider the field in the parallel plate capacitor in Fig-
ure 7.20a with no dielectric medium. We draw a thin rectangular Gauss surface (a hy-
pothetical surface) just enclosing the positive electrode that contains the free charges
+Q0 on the plate. The field £0 is normal to the inner face (area A) of the Gauss surface.
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Further, we can assume that £0 is uniform across the plate surface, which means that
the integral of dA in Equation 7.37 over the surface is simply £0A. There is no field
on the other faces of this rectangular Gauss surface. Then from Equation 7.37,

So

which gives

Go
£0 = - [7.38]

So

where

Qo

ao=~
A

is the free surface charge density. This is the same as the field we calculated using
£0 = V/d and Q0 = CV.

An important application of Gauss's law is determining what happens at boundaries
between dielectric materials. The simplest example is the insertion of a dielectric slab to
only partially fill the distance between the plates, as shown in Figure 7.20b. The applied
voltage remains the same, but the field is no longer uniform between the plates. There
is an air-dielectric boundary. The field is different in the air and dielectric regions.
Suppose that the field is £i in the air region and £2 in the dielectric region. Both these

fields are normal to the boundary by the choice of the dielectric shape (faces parallel to
the plates). As a result of polarization, bound surface charges +Acrp and - Acrp appear
on the surfaces of the dielectric slab, as shown in Figure 7.20b, where dp = P, the po-
larization in the dielectric. We draw a very narrow rectangular Gauss surface that en-
compasses the air-dielectric interface and hence the surface polarization charges - Aop
as shown in Figure 7.20c. The field coining in at the left face in air is £1 (taken as neg-
ative) and the field coining out at the right face in the dielectric is £2. The surface inte-
gral    dA and Gauss

's law become

So

or

P
£1 = £2 + -

£0

The polarization P andLthe field £2 in the dielectric are related by

/ P= SoXeltl
or

P = s0(er2 - 1)£2

where Xei is the electrical susceptibility and er2 is the relative permittivity of the
inserted dielectric. Then, substituting for P, we can relate £1 and £2,

£! = £2 + (8r2 - 1)£2
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Figure 7.21
(a) Boundary conditions
between dielectrics.

(b) The case for £/i = £,2.

or

Xi = er2<E2

The field in the air part is £1 and the relative permittivity is 1. The example in Fig-
ure 7.20b involved a boundary between air (vacuum) and a dielectric solid, and the
boundary was parallel to the plates and hence normal to the fields £1 and £2- A more
general expression can be shown to relate the normal components of the electric field,
shown as £ni and £n2 in Figure 7.21a, on either side of a boundary by

£rl£nl = £r2£n2 [7.39]

There is a second boundary condition that relates the tangential components of the
electric field, shown as £,1 and £,2 in Figure 7.21a, on either side of a boundary. These
tangential fields must be equal.

£,! = £,2 [7.40]

We can readily appreciate this boundary condition by examining the fields in a
parallel plate capacitor, which has two dielectrics longitudinally filling the space
between the plates but with a boundary parallel to the field, as shown in Figure 7.21b.
The field in each, £, 1 and £,2, is parallel to the boundary. The voltage across each lon-
gitudinal dielectric slab is the same, and since £ = dV/dx, the field in each is the
same, £,1 = £,2 = V/d.

The above boundary conditions are widely used in explaining dielectric behavior
when boundaries are involved. For example, consider a small disk-shaped cavity within
a solid dielectric between two electrodes, as depicted in Figure 7.22. The disk-shaped
cavity has its fate perpendicular to the electric field. Suppose that the dielectric length d
is 1 cm and the cavity size is on the scale of micrometers. The average field within the
dielectric will still be close to V/d because in integrating the field £(jc) to find the volt-
age across the dielectric, the contribution from a tiny distance of a few microns will be
negligible compared with contributions coming over the rest of the 1 cm. But the field
within the cavity will not be the same as the average field £1 in the dielectric. If £ri = 5
for the dielectric medium and the cavity has air, then at the cavity face we have

£r2£2 = Erxtx

General

boundary
condition

General

boundary
condition
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Figure 7.22 Field in the cavity is
higher than the field in the solid.

Small cavity has
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which gives

£2 -'(7)
Air insulation in a 100 micron (0.1 mm) thick cavity breaks down when £2 is typically
100 kV cm-1. From £2 = 5( V/d), a voltage of 20 kV will result in the breakdown of air
in the cavity and hence a discharge current. This is called a partial discharge as only a
partial breakdown of the insulation, that in the cavity, has occurred between the electrodes.
Under an ac voltage, the discharge in the cavity can often be sustained by the capacitive
current through the surrounding dielectric. Without this cavity, the dielectric would accept
a greater voltage across it, which in this case is typically greater than 100 kV.

EXAMPLE 7.9 FIELD INSIDE A THIN DIELECTRIC WITHIN A SECOND DIELECTRIC When the dielectric fills the

whole space between the plates of a capacitor, the net field within the dielectric is the same as
before, £ = V/d. Explain what happens when a dielectric slab of thickness t d is inserted in
the middle of the space between the plates, as shown in Figure 7.23. What is the field inside the
dielectric?

SOLUTION

The problem is illustrated in Figure 7.23 and has symmetry in that the field in air on either side
of the dielectric is the same and £1. The boundary conditions give

Figure 7.23 A thin slab of dielectric is placed in the middle of a
parallel plate capacitor.
The field inside the thin slab is £2.

-d
er\     £r2

' £rl

1 2 1

t

V \
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Further, the integral of the field from one plate to the other must be V because dV/dx = £.
Examining Figure 7.23, we see that the integration is

£,(</-0 + 2:2* = V

We now have to eliminate £1 between the previous two equations and obtain £2, which can
be done by algebraic manipulation,

£2
t

a

(7) [7.41]

Iff    d, then this approximates to

en\d)£2 and £1 G) (t « rf) [7.42]

Clearly in the air space remains the same as the applied field V/d. Since sr\ = 1 (air)
and er2 > 1» £2 in the thin dielectric slab is smaller than the applied field V/d. On the other
hand, if we have air space between two dielectric slabs, then the field in this air space will be
greater than the field inside the two dielectric slabs. Indeed, if the applied voltage is sufficiently
large, the field in the air gap can cause dielectric breakdown of this region.

GAUSS'S LAW WITHIN A DIELECTRIC AND FREE CHARGES Gauss's law in Equation 7.37
contains the total charge dotal» enclosed within the surface. Generally, these enclosed
charges are free charges Cfree, due to the free carriers on the electrode, and bound charges Qp,
due to polarization charges on the dielectric surface. Apply Gauss's law using a Gaussian rec-
tangular surface enclosing the left electrode and the dielectric surface in Figure 7.24. Show
that the electric field £ in the dielectric can be expressed in terms of free charges only, Q ,
through

./Si

dA
Q free

Surface 60£r
[7.43]

where sr is the relative permittivity of the dielectric medium.

EXAAAPLE 7.10

Free charges
and field in
a dielectric
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Figure 7.24  A convenient Gauss surface for calculating the
field inside the dielectric is a very thin rectangular surface
enclosing the surface of the dielectric.
The total charges enclosed are the free charges on the
electrodes and the polarization charges on the surface of the
dielectric.
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SOLUTION

We apply Gauss's law to a hypothetical rectangular surface enclosing the left electrode and the
dielectric surface. The field £ in the dielectric is normal and outwards at the Gauss surface in

Figure 7.24. Thus     = £ in the left-hand side of Equation 7.37.

£0A£ = 2total = Gfree - Qp = 2free - AP = Gfree " Ae0{er - 1)£

where we have used P = s0{Er - Rearranging,

£0£,.A£ = Gfree

Since AT, is effectively the surface integral of £„, the above corresponds to writing Gauss's
law in a dielectric in terms of free charges as

Gfree
TndA

'Surface £o£r

The above equation assumes that polarization P and £ are linearly related,

P = s0(sr - 1)£

We note that if we only use free charges in Gauss's law, then we simply multiply s0 by the
dielectric constant of the medium. The above proof is by no means a rigorous derivation.

7
.
6   DIELECTRIC STRENGTH AND

INSULATION BREAKDOWN

7
.
6
.

1 Dielectric Strength: Definition

A defining property of a dielectric medium is not only its ability to increase capacitance
but also, and equally important, its insulating behavior or low conductivity so that the
charges are not simply conducted from one plate of the capacitor to the other through
the dielectric. Dielectric materials are widely used as insulating media between conduc-
tors at different voltages to prevent the ionization of air and hence current flashovers be-
tween conductors. The voltage across a dielectric material and hence the field within it
cannot, however, be increased without limit. Eventually a voltage is reached that
causes a substantial current to flow between the electrodes, which appears as a short be-
tween the electrodes and leads to what is called dielectric breakdown. In gaseous and
many liquid dielectrics, the breakdown does not generally permanently damage the ma-
terial. This means that if the voltage causing breakdown is removed, then the dielectric
can again sustain voltages until the voltage is sufficiently high to cause breakdown
again. In solid dielectrics the breakdown process invariably leads to the formation of
a permanent conducting channel and hence to permanent damage. The dielectric
strength Ebr is the maximum field that can be applied to an insulating medium without
causing dielectric breakdown. Beyond £br> dielectric breakdown takes place. The di-
electric strength of solids depends on a number of factors besides simply the molecular
structure, such as the impurities in the material, microstructural defects (e.g., microvoids),
sample geometry, nature of the electrodes, temperature, and ambient conditions (e.g.,
humidity), as well as the duration and frequency of the applied field. Dielectric strength

i
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Table 7.5   Dielectric strength; typical values at room temperature and 1 atm

Dielectric Medium Dielectric Strength Comments

Atmosphere at 1 atm pressure      31.7 kV cm 1 at 60 Hz

SF6 gas

Polybutene

Transformer oil

Amorphous silicon dioxide
(S1O2) in MOS technology

Borosilicate glass

Polypropylene

79.3 kVcm-1 at 60 Hz

SkVcm-1 at 60 Hz

128 kV cm"1 at 60 Hz

lOMVcm"1 dc

10 MV cm""1 duration of 10 fxs
6 MV cm-1 duration of 30 s

295-314 kV cm"1

1 cm gap. Breakdown by electron
avalanche by impact ionization.

Used in high-voltage circuit
breakers to avoid discharges.

Liquid dielectric used as oil filler
and HV pipe cables.

Very thin oxide films without
defects. Intrinsic breakdown limit.

Intrinsic breakdown.

Thermal breakdown.

Likely to be thermal breakdown
or electrical treeing.

is different under dc and ac conditions. There are also aging effects that slowly degrade
the properties of the insulator and reduce the dielectric strength. For engineers involved
in insulation, the dielectric strength of solids is therefore one of the most difficult para-
meters to interpret and use. For example, the breakdown field also depends on the
thickness of the insulation because thicker insulators have more volume and hence a

greater probability of containing a microstructural defect (e.g., a microcavity) that can
initiate a dielectric breakdown. Table 7.5 shows some typical dielectric strengths for
various dielectrics used in electrical insulation. Unpressurized gases have lower break-
down strengths than liquids and solids.

7
.
6

.
2 Dielectric Breakdown and Partial Discharges: Gases

Due to cosmic radiation, there are always a few free electrons in a gas. If the field is
sufficiently large, then one of these electrons can be accelerated to sufficiently large
kinetic energies to impact ionize a neutral gas molecule and produce an additional free
electron and a positively charged gas ion. Both the first and liberated electrons are now
available to accelerate in the field again and further impact ionize more neutral gas
molecules, and so on. Thus, an avalanche of impact ionization processes creates many
free electrons and positive gas ions in the gas, which give rise to a discharge current be-
tween the electrodes. The process is similar to avalanche breakdown in a reverse-
biased prc junction. The breakdown in gases depends on the pressure. The concentration
of gas molecules is greater at higher pressures. This means that the mean separation be-
tween molecules, and, hence, the mean free path of a free electron, is shorter. Shorter
mean free paths inhibit the free electrons from accelerating to reach impact ionization en-
ergies unless the field is increased. Thus, generally, <Ebr increases with the gas pressure.
The 60 Hz breakdown field for an air gap of 1 cm at room temperature and at atmospheric
pressure is about 31.7 kV cm-1

. On the other hand, the gas sulfurhexafluoride, SF6, has
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High voltage conductor
Crack (or defect) at dielectric-

Void in dielectric      electrode interface

Gas

Ul
,
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(a) (b) (c)

Figure 7.25
(a) The field is greatest on the surface of the cylindrical conductor facing the ground. If the voltage
is sufficiently large, this field gives rise to a corona discharge.
(b) The field in a void within a solid can easily cause partial discharge.
(c) The field in the crack at the solid-metal interface can also lead to a partial discharge.

a dielectric strength of 79.3 kV cm"1 and an even higher strength when pressurized.
SF6 is therefore used instead of air in high-voltage circuit breakers.

A partial discharge occurs when only a local region of the dielectric is exhibiting
discharge, so the discharge does not directly connect the two electrodes. For example,
for the cylindrical conductor carrying a high voltage above a grounded plate, as in Fig-
ure 7.25a, the electric field is greatest on the surface of the conductor facing the ground.
This field initiates discharge locally in this region because the field is sufficiently high
to give rise to an electron avalanche effect. Away from the conductor, however, the
field is not sufficiently strong to continue the electron avalanche discharge. This type
of local discharge in high field regions is termed corona discharge. Voids and cracks
occurring within solid dielectrics and discontinuities at the dielectric-electrode inter-
face can also lead to partial discharges as the field in these voids is higher than the
average field in the dielectric, and, further, the dielectric strength in the gas (e.g., atmo-
sphere) in the void is less than that of the continuous solid insulation. Figure 7.25b and
c depict two examples of partial discharges occurring in voids, one inside the solid
(perhaps an air or gas bubble introduced during the processing of the dielectric) and the
other (perhaps in the form of a crack) at the solid-electrode interface. In practice, a
variety of factors can lead to microvoids and microcavities inside solids as well as at
interfaces. Partial discharges in these voids physically and chemically erode the sur-
rounding dielectric region and lead to an overall deterioration of the dielectric strength.
If uncontrolled, they can eventually give rise to a major breakdown.

7
.
6.3 Dielectric Breakdown: Liquids

The processes that lead to the breakdown of insulation in liquids are not as clear as
the electron avalanche effect in gases. In impure liquids with small conductive parti-
cles in suspension, it is believed that these impurities coalesce end to end to form a
conducting bridge between the electrodes and thereby give rise to discharge. In some
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liquids, the discharge initiates as partial discharges in gas bubbles entrapped in the liq-
uid. These partial discharges can locally raise the temperature and vaporize more of the
liquid and hence increase the size of the bubble. The eventual discharge can be a series
of partial discharges in entrapped gas bubbles. Moisture absorption and absorption of
gases from the ambient generally deteriorate the dielectric strength. Oxidation of cer-
tain liquids, such as oils, with time produces more acidic and hence higher conductiv-
ity inclusions or regions that eventually give discharge. In some liquids, the discharge
involves the emission of a large number of electrons from the electrode into the liquid
due to field emission at high fields. This is a discharge process by electrode injection.

7
.
6

.
4 Dielectric Breakdown: Solids

There are various major mechanisms that can lead to dielectric breakdown in solids.
The most likely mechanism depends on the dielectric material's condition and some-
times on extrinsic factors such as the ambient conditions, moisture absorption being a
typical example.

Intrinsic Breakdown or Electronic Breakdown The most common type of
electronic breakdown is an electron avalanche breakdown. A free electron in the

conduction band (CB) of a dielectric in the presence of a large field can be accelerated
to sufficiently large energies to collide with and ionize a host atom of the solid. The
electron gains an energy e(Ebvt when it moves a distance i under an applied field £br.
If this energy is greater than the bandgap energy Eg, then the electron, as a result of a
collision with the lattice vibrations, can excite an electron from the valence band to the

conduction band, that is, break a bond. Both the primary and the released electron can
further impact ionize other host atoms and thereby generate an electron avalanche
effect that leads to a substantial current. The initial conduction electrons for the

avalanche are either present in the CB or are injected from the metal into the CB as a
result of field-assisted thermal emission from the Fermi energy in the metal to the CB
in the dielectric. Taking typical values, Eg & 5 eV and t to be of the order of the mean
free path for lattice scattering, say ~50 nm, one finds £br % 1 MV cm"1. Obviously,
£br depends on the choice of t9 but its order of magnitude indicates voltages that are
quite large. This type of breakdown represents an upper theoretical limit that is proba-
bly approached by only certain dielectrics-those that have practically no defects.
Usually, microstructural defects lead to a lower dielectric strength than the limit indi-
cated by intrinsic breakdown. Silicon dioxide (Si02) films with practically no struc-
tural defects in present MOS (metal-oxide-semiconductor) capacitors (as in the gates
of MOSFETs) probably exhibit an intrinsic breakdown.

If dielectric breakdown does not occur by an electron avalanche effect (perhaps
due to short mean free paths in the insulator), then another insulation breakdown
mechanism is the enormous increase in the injection of electrons from the metal elec-
trode into the insulator at very high fields as a result of field-assisted emission.11 It has

11 The emission of electrons by tunneling from an electrode in the presence of a large field was treated in Chapter 4
as Fowler-Nordheim field emission.
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been proposed that insulation breakdown under short durations in some thin polymer
films is due to tunneling injection.

Thermal Breakdown Finite conductivity of the insulation means that there is Joule
heat a £2 being released within the solid. Further, at high frequencies, the dielectric loss,
V2q) tan 5, becomes especially significant. For example, the work done by the external
field in rotating the dipoles is transferred more frequently to random molecular colli-
sions as heat as the frequency of the field increases. Both conduction and dielectric
losses therefore generate heat within the dielectric. If this heat cannot be removed from
the solid sufficiently quickly by thermal conduction (or by other means), then the tem-
perature of the dielectric will increase. The increase in the temperature invariably in-
creases the conductivity of an insulator. The increase in the conductivity then leads to
more Joule heating and hence further rises in the temperature and so on. If the heat can-
not be conducted away to limit the temperature, then the result is a thermal runaway
condition in which the temperature and the current increase until a discharge occurs
through various sections of the solid. As a consequence of sample inhomogeneities, fre-
quently thermal runaway is severe in certain parts of the solid that become hot spots and
suffer local melting and physical and chemical erosion. Hot spots are those local regions
or inhomogeneities where a or e" is larger or where the thermal conductivity is too poor
to remove the heat generated. Local breakdown at various hot spots eventually leads to
a conducting channel connecting the opposite electrodes and hence to a dielectric
breakdown. Since it takes time to raise the temperature of the dielectric, due to the heat
capacity, this breakdown process has a marked thermal lag. The time to achieve thermal
breakdown depends on the heat generated, and hence on £2. Conversely, this means that
the dielectric strength (E\>V depends on the duration of application of the field. For exam-
ple, at 70 0C, pyrex has an £br of typically 9 MV cm-1 if the applied field duration is kept
short, not more than 1 ms or so. If the field is kept for 30 s, then the breakdown field is
only 2.5 MV cm"1

. Dielectric breakdown in various ceramics and glasses at high fre-
quencies has been attributed directly to thermal breakdown. A characteristic feature of
thermal breakdown is not only the thermal lag, the time dependence, but also the tem-
perature dependence. Thermal breakdown is facilitated by increasing the temperature of
the dielectric, which means that £br decreases with temperature.

Electromechanical Breakdown and Electrofracture A dielectric medium
between oppositely charged electrodes experiences compressional forces because
the opposite charges + Q and - Q on the plates attract each other, as depicted in Fig-
ure 7.26. As the voltage increases, so does the compressive load, and the dielectric
becomes squeezed, or the thickness d gets smaller. At each stage, the increase in the
compressive load is normally balanced by the elastic deformation of the insulation to
a new smaller thickness. However, if the elastic modulus is sufficiently small, then
compressive loads cannot be simply balanced by the elasticity of the solid, and there is
a mechanical runaway for the following reasons. The decrease in d9 due to the com- r
pressive load, leads to a higher field (£ = V/d) and also to more charges on the
electrodes (Q = CV, C = e0£rA/d). This in turn leads to a greater compressive
load, which further decreases d, and so on, until the shear stresses within the insula-

tion cause the insulation to flow plastically (for example, by viscous deformation). ,
Eventually, the insulation breaks down. In addition, the increase in £ as d gets >
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Figure 7.26  An exaggerated schematic illustration of a soft dielectric
medium experiencing strong compressive forces due to the applied
voltage.

smaller results in more Joule (<r£2) and dielectric-loss heating (&>£2 tan 5) in the di-
electric, which increases the temperature and hence lowers the elastic modulus and
viscosity, thereby further deteriorating the mechanical stability. It is also possible for
the field during the mechanical deformation of the dielectric to reach the thermal
breakdown field, in which case the dielectric failure is not truly a mechanical break-
down mechanism though initiated by mechanical deformations. Another possibility
is the initiation and growth of internal cracks (perhaps filamentary cracks) by inter-
nal stresses around inhomogeneous regions inside the dielectric. For example, an
imperfection or a tiny cavity experiences shear stresses and also large local electric
fields. Combined effects of both large shear stresses and large electric fields eventu-
ally lead to crack propagation and mechanical and, hence, dielectric failure. This
type of process is sometimes called electrofracture. It is generally believed that cer-
tain thermoplastic polymers suffer from electromechanical dielectric breakdown,
especially close to their softening temperatures. Polyethylene and polyisobutylene
have been cited as examples.

Internal Discharges These are partial discharges that take place in microstructural
voids, cracks, or pores within the dielectric where the gas atmosphere (usually air) has
lower dielectric strength. A porous ceramic, for example, would experience partial
discharges if the applied field is sufficiently large. The discharge current in a void,

w
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Electrical breakdown by treeing
(formation of discharge channels) in a
low-density polyethylene insulation
when a 50 Hz, 20 kV (rms) voltage is
applied for 200 minutes to an
electrode embedded in the insulation.

SOURCE: J. W. Billing and D. J.
Groves, Proceedings of the institution
of Electrical Engineers, 212, 1451,
1974.
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Figure 7.27
(a) A schematic illustration of electrical treeing breakdown in a high-voltage coaxial cable that was
initiated by a partial discharge in the void at the inner conductor-dielectric interface.
(b) A schematic diagram of a typical high-voltage coaxial cable with semiconducting polymer layers
around the inner conductor and around the outer surface of the dielectric.

such as those in Figure 7.25b and c, can be easily sustained under ac conditions, which
accounts for the severity of this type of breakdown mechanism under ac conditions.
Initially, the pore size (or the number of pores) may be small and the partial discharge
insignificant, but with time the partial discharge erodes the internal surfaces of the void.
Partial discharges can locally melt the insulator and can easily cause chemical transfor-
mations. Eventually, and usually, an electrical tree type of discharge develops from a
partial discharge that has been eroding the dielectric, as depicted in Figure 7.27a for a
high-voltage cable in which there is a tiny void at the interface between the dielectric
and the inner conductor (generated perhaps by the differential thermal expansion of the
electrode and polymeric insulation). The erosion of the dielectric by the partial dis-
charge propagates like a branching tree. The "tree branches" are erosion channels-

hollow filaments of various sizes-in which gaseous discharge takes place and forms '
a conducting channel during operation.

In the case of a coaxial high-voltage cable in Figure 7.27a, the dielectric is usually
a polymer, polyethylene (PE) being one of the most popular. The electric field is maxi-
mum at the surface of the inner conductor, which is the reason for the initiation of most

electrical trees near this surface. Electrical treeing is substantially controlled by having
semiconductive polymer layers or sheaths surrounding the inner conductor and the
outer surface of the insulator, as shown in Figure 7.27b. For flexibility, the inner con-
ductor is frequently multicored, or stranded, rather than solid. Due to the extrusion
process used to draw the insulation, the semiconductive polymer sheaths are bonded to
the insulation. There are therefore practically no microvoids at the interfaces between
the insulator and the semiconducting sheath. Further, these semiconducting polymer
sheaths are sufficiently conductive to become "part of the electrodes." Both the con-

ductor and the adjacent semiconductor are roughly at the same voltage, which means
that there is no breakdown in the semiconductor-conductor interfaces. There is nor-

mally an outer jacket (e.g., PVC) to protect the cable.
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Some typical water trees found in field aged cables.
Left: Trees in a cable with tape and graphite insulation.
Right: Trees in a cable with strippable insulation.

SOURCE: P. Werellius, P. Tharning, R. Eriksson,
B

. Holmgren. J. Gafvert, "Dielectric Spectroscopy for
Diagnosis of Water Tree Deterioration in XLPE
Cables," IEEE Transactions on Dielectrics and

Electrical Insulation, vol. 8, February 2001, p. 34,
figure 10(© IEEE, 2001).

Insulation Aging It is well recognized that during service, the properties of an
insulating material become degraded and eventually dielectric breakdown occurs at a
field below that predicted by experiments on fresh forms of the insulation. Aging is a
term used to describe, in a general sense, the deterioration in the properties of the in-
sulation. Aging therefore determines the useful life of the insulation. There are many
factors that either directly or indirectly affect the properties and performance of an in-
sulator in service. Even in the absence of an electric field, the insulation will experi-
ence physical and chemical aging whereby its physical and chemical properties change
considerably. An insulation that is subjected to temperature and mechanical stress vari-
ations can develop structural defects, such as microcracks, which are quite damaging
to the dielectric strength, as mentioned above. Irradiation by ionizing radiation such as
X-rays, exposure to severe ambient conditions such as excessive humidity, ozone, and
many other external conditions, through various chemical processes, deteriorate the
chemical structure and properties of an insulator. This is generally much more severe
for polymers than ceramics, but it is not practical to use a solid ceramic insulation in a
coaxial power cable. Oxidation of a polymeric insulation with time is another form of
chemical aging and is well-known to degrade the insulation performance. This is the rea-
son for adding various antioxidants into semicrystalline polymers for use in insulation.
The chemical aging processes are generally accelerated with temperature. In service,
the insulation also experiences electrical aging as a result of the effects of the field on
the properties of the insulation. For example, dc fields can disassociate and transport
various ions in the structure and thereby slowly change the structure and properties of
the insulation. Electrical trees develop as a result of electrical aging because, in ser-
vice, the ac field gives rise to continual partial discharges in an internal or surface mi-
crocavity, which then erodes the region around it and slowly grows like a branching
tree. In well-manufactured insulation systems, electrical treeing has been substantially
reduced or eliminated from microvoids. A form of electrical aging that is currently in
vogue is water treeing, which eventually leads to electrical treeing. The definition of
a water tree, as viewed under an optical microscope, is a diffused bushy (or broccoli)
type growth that consists of millions of microscopic voids (per mm3) containing water
or aqueous electrolyte. They invariably occur in moist environments and are relatively
nonconducting, which means that they do not themselves lead to a direct discharge.

External Discharges There are many examples where the surface of the insulation
becomes contaminated by ambient conditions such as excessive moisture, deposition
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Figure 7.28  Time to
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that causes the insulation
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and J. C. Fothergill, Electrical
Degradation and Breakdown in
Polymers, United Kingdom: Peter
Peregrinus Ltd. for IEE, 1992, p. 63.
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of pollutants, dirt, dust, and salt spraying. Eventually the contaminated surface de-
velops sufficient conductance to allow discharge between the electrodes at a field
below the normal breakdown strength of the insulator. This type of dielectric break-
down over the surface of the insulation is termed surface tracking.

It is apparent that there are a number of dielectric breakdown mechanisms and the
one that causes eventual breakdown depends not only on the properties and quality of the
material but also on the operating conditions, environmental factors being no less im-
portant. Figure 7.28 provides an illustrative diagram showing the relationship between
the breakdown field and the time to breakdown. An insulation that can withstand large
fields for a very short duration will break down at a lower field if the duration of the field
increases. The breakdown mechanism is also likely to change from being intrinsic to
being, perhaps, thermal. When insulation breakdown occurs in times beyond a few days,
it is generally attributed to the degradation of the insulation, which eventually leads to a
breakdown through, most probably, electrical treeing. It is also apparent that it is not pos-
sible to clearly identify a specific dielectric breakdown mechanism for a given material.

EXAMPLE 7.11 DIELECTRIC BREAKDOWN IN A COAXIAL CABLE Consider the coaxial cable in Figure 7.29
with a and b defining the radii of the inner and outer conductors.

a. Using Gauss's law, find the capacitance of the coaxial cable.
b

. What is the electric field at r from the center of the cable (r > a)l Where is the field
maximum?

c. Consider two candidate materials for the dielectric insulation: cross-linked polyethylene,
(XLPE) and silicone rubber. Suppose that the inner conductor diameter is 5 mm and the
insulation thickness is also 5 mm. What is the voltage that will cause dielectric breakdown
in each insulator?
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Figure 7.29  A schematic diagram for the calculation of the
capacitance of a coaxial cable and the field at point r from
the axis.

Consider an infinitesimally thin cylindrical shell of radius rand
thickness dr in the dielectric and concentrically around the
inner conductor. This surface is chosen as the Gauss surface.

The voltage across the dielectric thickness dr is dV. The field
£ = -dV/dr.

d
. What typical voltage will initiate a partial discharge in a small air pore (perhaps formed

during mechanical and thermal stressing) at the inner conductor-insulator interface?
Assume that the breakdown field for air at 1 atm and gap spacing around 0.1 mm is about
lOOkVcnr1.

SOLUTION

Consider a cylindrical shell of thickness dr of the dielectric as shown in Figure 7.29. Suppose
that the voltage across the shell thickness is dV. Then the field £ at r is - dV/dr (this is the de-
finition of £). Suppose that QirQC is the free charge on the inner conductor. We take a Gauss
surface that is a cylinder of radius r and concentric with the inner conductor as depicted in Fig-
ure 7.29. The surface area A of this cylinder is 2nrL where L is the length of the cable. The field
at the surface, at distance r, is £, which is normal to A and coining out of A. Then from Equa-
tion 7.43

(L(2nrL) =  
S08r

[7.44]

Thus

dV Q free

This can be integrated from r

dr E0er2nrL

a, where the voltage is V, to b, where V

,7
 Qfree     ,   / b

V =  In I -
E0Er2nL \a

O
.
Then

We can obtain the capacitance of the coaxial cable from C,

E0Er27lL

coax Qfree/V, Which is

C
coax '

b
ln( -

.
a

The capacitance per unit length can be calculated using a .

b = a + Thickness =7.5 mm

[7.45]

17.461

2
.
5 mm and

and the appropriate dielectric constants, £r = 2.3 for XLPE and 3.7 for silicone rubber. The val-
ues are around 100-200 pF per meter, as listed in the fourth column in Table 7.6.

Capacitance
of a coaxial
cable
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Breakdown
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Table 7.6   Dielectric insulation candidates for a coaxial cable

Dielectric (60 Hz)

Strength
(60 Hz)

(kV cm1)
C (60 Hz)

(pFra1)
Breakdown Voltage for Partial
Voltage (kV)    Discharge in a Microvoid (kV)

XLPE

Silicone rubber

2
.
3

3
.
7

217

158

116

187

59.6

43.4

11.9

7
.
4

i

The electric field £ follows directly when we substitute for Qfree from Equation 7.45 into
Equation 7.44,

i

v

.
a

[7.47]

Equation 7.47 is valid for r from a to b (there is no field within the conductors). The field
is maximum where r = a,

V
max

The breakdown voltage Vbr is reached when this maximum field £
strength or the breakdown field £br

max

[7.48]

reaches the dielectric

Vybr £brtf In -
b

[7.49]

The breakdown voltages calculated from Equation 7.49 are listed in the fifth column in
Table 7.6. Although the values are high, it must be remembered that, due to a number of
other factors such as insulation aging, one cannot expect the cable to withstand these volt-
ages forever.

If there is an air cavity or bubble at the inner conductor to dielectric surface, then the field
in this gaseous space will be T,  « £r£max> where 2:max is the field at r = a. Air breakdown
occurs when

air - air-br -

at 1 atm and 25 0C for a 0.1 mm gap. Then 'Emax
Equation 7.48 is

100 kV cm-1

% Eair-brAr- The corresponding voltage from

i

„  £air-br . / b
Vair-br   * In I -

er \a

The voltages for partial discharges for the two coaxial cables are shown in the sixth
column of Table 7.6. It should be noted that these voltages will only give partial discharges con-
tained within microvoids and will not normally lead to the immediate breakdown of the insu-
lation. The partial discharges erode the cavities and also release vapor from the polymer that
accumulates in the cavities. Thus, gaseous content and pressure in a cavity will change as the
partial discharge continues. For example, the pressure buildup will increase the breakdown
field and elevate the voltage for partial breakdown. Eventual degradation is likely to lead to
electrical treeing.
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We should also note that the actual field in the air cavity depends on the shape of the cavity,
and the above treatment is only valid for a thin disk-like cavity lying perpendicular to the field
(see Section 7.9, Additional Topics).

7
.7   CAPACITOR DIELECTRIC MATERIALS

7
.
7
.1 Typical Capacitor Constructions

The selection criteria of dielectric materials for capacitors depend on the capacitance
value, frequency of application, maximum tolerable loss, and maximum working volt-
age, with size and cost being additional external constraints. Requirements for high-
voltage power capacitors are distinctly different than those used in small integrated
circuits. Large capacitance values are more easily obtained at low frequencies because
low-frequency polarization mechanisms such as interfacial and dipolar polarization
make a substantial contribution to the dielectric constant. At high frequencies, it becomes
more difficult to achieve large capacitances and at the same time maintain acceptable
low dielectric loss, inasmuch as the dielectric loss per unit volume is SoE coT} tan 5.

The bar-chart diagrams in Figures 7.30 and 7.31 provide some typical examples of
dielectrics for a range of capacitance values and for a range of usable frequencies. For
example, electrolytic dielectrics characteristically provide capacitances between one
to thousands of microfarads, but their frequency response is typically limited to below

I;
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Solid electrolytic Al, Ta

Multilayer ceramic
Y

Single-layer ceramic
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Figure 7.30  Examples of dielectrics
that can be used for various capacitance
values.
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Figure 7.31 Examples of dielectrics that can
be used in various frequency ranges.
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Figure 7.32  Single- and multilayer dielectric       (a) Single-layer ceramic capacitor       (b) Multilayer ceramic capacitor
capacitors. [e.g., disk capacitors] (slacked ceramic layers)

10 kHz. On the other hand, polymeric film capacitors typically have values less than
10 fiF but a frequency response that is flat well into the gigahertz range.

We can understand the principles utilized in capacitor design from the capacitance
of a parallel plate capacitor,

i

c =
€0£r A

d
[7.50]

where er infers e'

r. Large capacitances can be achieved by using high er dielectrics,
thin dielectrics, and large areas. There are various commercial ceramics, usually a mix-
ture of various oxides or ferroelectric ceramics, that have high dielectric constants,
ranging up to several thousands. These are typically called high-AT (or high-zc), where
K (or k) stands for the relative permittivity. A ceramic dielectric with er - 10, d of
perhaps 10 /xm, and an area of 1 cm2 has a capacitance of 885 pF. Figure 7.32a shows
a typical single-layer ceramic capacitor. The thin ceramic disk or plate has suitable
metal electrodes, and the whole structure has been encapsulated in an epoxy by dip-
ping it in a thermosetting resin. The epoxy coating prevents moisture from degrading
the dielectric properties of the ceramic (increasing e" and the loss, tan 8). One way to
increase the capacitance is to connect N number of these in parallel, and this is done in
a space-efficient way by using the multilayer ceramic structure shown in Figure 7.32b.
In this case there are Nelectroded dielectric layers. Each ceramic has offset metal elec-
trodes that align with the opposite sides of the plate and make contact with the metal
terminations on these sides. The result is N number of parallel plate capacitors. There
is therefore an effective use of volume as the surface area of the component stays the
same but the height increases to at least Nd. By using multilayer ceramic structures,
capacitances up to a few hundred microfarads have been recently obtained.

Many wide-frequency-range capacitors utilize polymeric thin films for two reasons.
Although £r is typically 2 to 3 (less than those for many ceramics), it is constant over a
wide frequency range. The dielectric loss s0£ra)(E2 tan 8 becomes significant at high fre-
quencies and polymers have low tan 8 values. Low sr values mean that one has to find a
space-efficient way of constructing polymer film capacitors. One method is shown in
Figure 7.33a and b for constructing a metallized film polymer capacitor. Two polymeric
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Al metallization
Polymer film
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Figure 7.33  Two polymer tapes in (a), each with a metallized film electrode on the
surface (offset from each other), can be rolled together (like a Swiss roll) to obtain a
polymer film capacitor as in (b).
As the two separate metal films are lined at opposite edges, electroding is done over the
whole side surface.
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Figure 7.34 Aluminum
electrolytic capacitor.

tapes have metallized electrodes (typically vacuum deposited Al) on one surface, leaving
a margin on one side. These metal film electrodes have been offset in opposite directions
so that they line up with the opposite sides of the tapes. The two tapes together are rolled
up (like a Swiss-roll cake) and the opposite sides are electroded using suitable conducting
glues or other means. The concept is therefore similar to the multilayer ceramic capacitor
except that the layers are rolled up to form a circular cross section. It is also possible to
cut and stack the layers as in the multilayer ceramic construction.

Electrolytic capacitors provide large values of capacitance while maintaining a tol-
erable size. There are various types of electrolytic capacitors. In aluminum electrolytic
capacitors, the metal electrodes are two Al foils, typically 50-100 / m thick, that are sep-
arated by a porous paper medium soaked with a liquid electrolyte. The two foils together
are wound into a cylindrical form and held within a cylindrical case, as shown in Fig-
ure 7.34a. Contrary to intuition, the paper-soaked electrolyte is not the dielectric. The
dielectric medium is the thin alumina AI2O3 layer grown on the roughened surface of one
of the foils, as shown in Figure 7.34b. This foil is then called the anode (+ terminal).
Both Al foils are etched to obtain rough surfaces, which increases the surface area
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Figure 7.35   Solid electrolyte tantalum capacitor.
(a) A cross section without fine detail.
(b) An enlarged section through the Ta capacitor.
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compared with smooth surfaces. The capacitor is called electrolytic because the AI2O3
layer is grown electrolytically on one of the foils and is typically 0.1 |um in thickness.
This small thickness and the large surface area are responsible for the large capaci-
tance. The electrolyte is conducting and serves to heal local minor breakdowns in the
AI2O2 by an electrolytic reaction, provided that the anode has been positively biased.
The capacitive behavior is due to the Al/(Al203)/electrolyte structure. Furthermore,
AI/AI2O3 contact is like a metal to p-type semiconductor contact and has rectifying
properties. It must be reverse-biased to prevent charge injection into the AI2O3 and
hence conduction through the capacitor. Thus the Al must be connected to the positive
terminal, which makes it the anode. When the electrolytic Al capacitor in Figure 7.34b
is oppositely biased, it becomes conducting.

Electrolytic capacitors using liquid electrolytes tend to dry up over a long period,
which is a disadvantage. Solid electrolyte tantalum capacitors overcome the drying-
up problem by using a solid electrolyte. The structure of a typical solid Ta capacitor is
shown in Figure 7.35a and b. The anode (+ electrode) is a porous (sintered) Ta pellet
that has the surface anodized to obtain a thin surface layer of tantalum pentoxide, Ta205,
which is the dielectric medium (with ef

r
 = 28). The Ta pellet with Ta205 is then coated

with a thick solid electrolyte, in this case Mn02. Subsequently, graphite and silver paste
layers are applied. Leads are then attached and the whole construction is molded into a
resin chip. Solid tantalum capacitors are widely used in numerous electronics applica-
tions due to their small size, temperature and time stability, and high reliability.

Capacitance
per unit
volume

7
.
7.2 Dielectrics: Compamson

The capacitance per unit volume CVoi, which characterizes the volume efficiency of
a dielectric, can be obtained by dividing C by Ad,

0or

d2
[7.51]

It is clear that large capacitances require high dielectric constants and thin dielectrics.
We should note that d appears as d2, so the importance of d cannot be understated.
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Table 7.7  Comparison of dielectrics for capacitor applications

Capacitor Name

Polypropylene Polyester Mica

Aluminum,

Electrolytic

Tantalum,

Electrolytic,
Solid High-K Ceramic

Dielectric

«;

tan<5

Ebr (kV miTT1) dc
d (typical minimum) (jum)
Cvoi (MFcm~3)
rp = i/G„(kn)
for C = 1 fiF,
/ = 1 kHz

£voi (mJ cm-3)1
'

Polarization

Polymer film      Polymer film Mica

2
.
2-2

.
3

4 x KT4
100-350

3-4

2

400

10

Electronic

3
.
2-3

.
3

4 x lO"3
100-300

1

30

40

15

6
.
9

2 x lO"4
50-300

2-3

15

800

8

Electronic and Ionic

dipolar

Anodized

AI2O3 film
8

.
5

0
.
05-0.1

400-1000

0
.

1

7500*
1
.
5-3

1000

Ionic

Anodized

Ta205 film
27

0
.
01

300-600

0
.

1

24,000*
16

1200

Ionic

X7R

BaTi03 base
2000

0
.
01

10

10

180

16

100

Large ionic
displacement

* Proper volumetric calculations must also consider the volumes of electrodes and the electrolyte necessary for these dielectrics to work;
hence the number would have to be decreased.

tEvo| depends very sensitively on £br and the choice of    hence it can vary substantially.
NOTES: Values are typical. Assume r\ = 3. The table is for comparison purposes only. Breakdown fields are typical dc values and can
vary substantially, by at least an order of magnitude; !Ebr depends on the thickness, material quality, and the duration of the applied voltage.
Polyester is PET, or polyethylene terephthalate. Mica is potassium aluminosilicate, a muscovite crystal. X7R is the name of a particular
BaTiOa-based ceramic solid solution.

Although mica has a higher er than polymer films, the latter can be made quite thin, a
few microns, which leads to a greater capacitance per unit volume. The reason that
electrolytic aluminum capacitors can achieve large capacitance per unit volume is that
d can be made very thin over a large surface area by using the liquid electrolyte to heal
minor local dielectric breakdowns. Table 7.7 shows a selection of dielectric materials

for capacitor applications and compares the "volume efficiency" CVoi based on a typi-
cal minimum thickness that a convenient process can handle. It is apparent that, com-
pared with polymeric films, ceramics have substantial volume efficiency as a result of
large dielectric constants (high- T ceramics) in some cases and as a consequence of a
thin dielectric thickness in other cases (AI2O3).

Another engineering consideration in selecting a dielectric is the working voltage.
Although d can be decreased to obtain large capacitances per unit volume, this also
decreases the working voltage. The maximum voltage that can be applied to a capaci-
tor depends on the breakdown field of the dielectric medium £br, which itself is a
highly variable quantity. A safe working voltage must be some safety factor r) less than
the breakdown voltage "L d. Thus, if Wm is the maximum safe working voltage, then
the maximum energy that can be stored per unit volume is given by

2 Ad 2u3
[7.52]

Maximum

energy per

unit volume
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Dielectric

loss per unit
volume

It is clear that both e'
r and of the dielectric are significant in determining the

energy storage ability of the capacitor. Moreover, at the maximum working voltage,
the rate of dielectric loss per unit volume in the capacitor becomes

2

Wvoi = -%(D60e'rtan8 [7.53]

Those materials that have relatively higher tan 8 exhibit greater dielectric losses.
Although dielectric losses may be small at low frequencies, at high frequencies they
become quite significant. Table 7.7 compares the energy storage efficiency £voi and
tan 8 for various dielectrics. It seems that ceramics have a better energy storage effi-
ciency than polymers. High- T ceramics tend to have large tan 8 values and suffer from
greater dielectric loss. Polystyrene and polypropylene have particularly low tan 8 as
the polarization mechanism is due to electronic polarization and the dielectric losses
are the least. Indeed, polystyrene and polypropylene capacitors have found applica-
tions in high-quality audio electronics. Equations 7.52 and 7.53 should be used with
care, because the breakdown field Ebr can depend on the thickness d, among many
other factors, including the quality of the dielectric material. For example, for
polypropylene insulation, £br is typically quoted as roughly 50 kV mm-1 (500 kV
cm

-1), whereas for thin films {e.g., 25 |um), over short durations, Ebr can be as high as
200 kV mm-1. Further, in some cases, T,  is more suitably defined in terms of the max-
imum allowable leakage current, that is, a field at which the dielectric is sufficiently
conducting.

The temperature stability of a capacitor is determined by the temperature depen-
dences of s'

r and tan 8, which are controlled by the dominant polarization mechanism.
For example, polar polymers have permanent dipole groups attached to the polymer
chains as in polyethyleneterephthalate (PET). In the absence of an applied field, these
dipoles are randomly oriented and also restricted in their rotations by neighboring
chains, as depicted in Figure 7.36a. In the presence of an applied dc field, as in Fig-
ure 7.36b, some very limited rotation enables partial dipolar (orientational) polariza-
tion to take place. Typically, at room temperature, dipolar contribution to er under ac
conditions, however, is small because restricted and hindered rotation prevents the
dipoles to closely follow the ac field. Close to the softening temperature of the poly-
mer, the molecular motions become easier and, further, there is more volume between

chains for the dipoles to rotate. The dipolar side groups and polarized chains become
capable of responding to the field. They can align with the field and also follow the
field variations, as shown in Figure 7.36c. Dipolar contribution to £r is substantial even
at high frequencies. Both and tan 8 therefore increase with temperature. Thus, polar
polymers exhibit temperature dependent sr and tan 5, which reflect in the properties of
the capacitor.

On the other hand, in nonpolar polymers such as polystyrene and polypropylene, !
the polarization is due to electronic polarization and £r and tan 8 remain relatively
constant. Thus polystyrene and polypropylene capacitors are more stable compared
with PET (polyester) capacitors. The change in the capacitance with temperature is
measured by the temperature coefficient of capacitance (TCC), which is defined as
the fractional (or percentage) change in the capacitance per unit temperature change.
The temperature controls not only er but also the linear expansion of the dielectric,
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Dipolar side group Polymer chain

+

Polymer dielectric

+
,

\ Y

+

\ Y

a (b) (c)

Figure 7.36
(a) A polymer dielectric that has dipolar side groups attached to the polymer chains. With no
applied field, the dipoles are randomly oriented.
(b) In the presence of an applied field, some very limited rotation enables dipolar polarization to
take place.
(c) Near the softening temperature of the polymer, the molecular motions are rapid and there is
also sufficient volume between chains for the dipoles to align with the field. The dipolar
contribution to £r is substantial, even at high frequencies.

which changes the dimensions A and d. For example, polystyrene, polycarbonate, and
mica capacitors are particularly stable with small TCC values. Plastic capacitors are typ-
ically limited to operations well below their melting temperatures, which is one of their
main drawbacks. The specified operating temperature, for example, from -55 0C to
125 0C, for many of the ceramic capacitors is often a limitation of the epoxy coating of
the capacitor rather than the actual limitation of the ceramic material. In many capaci-
tors, the working voltage has to be derated for operation at high temperatures and high
frequencies because £br decreases with ambient temperature and the frequency of the
applied field. For example, a 1000 V dc polypropylene capacitor will have a substan-
tially lower ac working voltage, e.g., 100 V at 10 kHz.

DIELECTRIC LOSS AND EQUIVALENT CIRCUIT OF A POLYESTER CAPACITOR AT 1 kHz Fig-
ure 7.37 shows the temperature dependence of E'

r and tan 5 for a polyester film. Calculate the
equivalent circuit at 25 0C at 1 kHz for a 560 pF PET capacitor that uses a 0.5 micron thick poly-
ester film. What happens to these values at 100 0C?

SOLUTION

From Figure 7.37 at 25 0C, e'r = 2
.60 and tan 5  0.002. The capacitance C at 25 0C is given as

560 pF. The equivalent parallel conductance Gp, representing the dielectric loss, is given by

G?
oyAe0e'

r
 tan h

~

d
coC tan <5

EXAMPLE 7.12
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Figure 7.37  Real part of the dielectric
constant £f

r and loss tangent, tan 8, at
1 kHz versus temperature for PET.

SOURCE: Data obtained by Kasap and
Maeda (1995) using a dielectric analyzer
(DEA).
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Substituting

and tan 8 = 0.002, we get

i

CO = 271 f = 2000TT

Gp = (20007r)(560 x 10-12)(0.002) = 7.04 x 10"9-

This is equivalent to a resistance of 142 Mft. The equivalent circuit is an ideal (lossless) capaci-
tor of 560 pF in parallel with a 142 Mf2 resistance (this resistance value decreases with the
frequency).

At 100 0C,    = 2.69 and tan 8 % 0.01, so the new capacitance is

£r(100oC) 2.69
Cioo-c = C25oc = (560 pF) - = 579 pF

er(25 0C)

The equivalent parallel conductance at 100 0C is

2
.
60

-8Gp = (20007r)(579 x 10-12)(0.01) = 3.64 x lO"8-

This is equivalent to a resistance of 27.5 Mft. The equivalent circuit is an ideal (lossless)
capacitor of 579 pF in parallel with a 27.5 Mft resistance.

7
.8    PIEZOELECTRICITY, FERROELECTRICITY,

AND PYROELECTRICITY

7
.
8
.

1 Piezoelectricity

Certain crystals, for example, quartz (crystalline Si02) and BaTiOs, become polarized
when they are mechanically stressed. Charges appear on the surfaces of the crystal, as
depicted in Figure 7.38a and b. Appearance of surface charges leads to a voltage differ-
ence between the two surfaces of the crystal. The same crystals also exhibit mechanical
strain or distortion when they experience an electric field, as shown in Figure 7.38c and
d

. The direction of mechanical deformation (e.g., extension or compression) depends on
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Figure 7.38  The piezoelectric effect.
(a) A piezoelectric crystal with no applied stress or field.
(b) The crystal is strained by an applied force that induces polarization in the crystal and generates surface
charges.
(c) An applied field causes the crystal to become strained. In this case the field compresses the crystal.
(d) The strain changes direction with the applied field and now the crystal is extended.
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S

       " Figure 7.39  A NaCI-type cubic unit cell has a
center of symmetry.
(a) In the absence of an applied force, the centers of
mass for positive and negative ions coincide.
(b) This situation does not change when the crystal is
strained by an applied force.

the direction of the applied field, or the polarity of the applied voltage. The two effects
are complementary and define piezoelectricity.

Only certain crystals can exhibit piezoelectricity because the phenomenon requires
a special crystal structure-that which has no center of symmetry. Consider a NaCI-type
cubic unit cell in Figure 7.39a. We can describe the whole crystal behavior by examin-
ing the properties of the unit cell. This unit cell has a center of symmetry at O because
if we draw a vector from O to any charge and then draw the reverse vector, we will find
the same type of charge. Indeed, any point on any charge is a center of symmetry.
Many similar cubic crystals (not all) possess a center of symmetry. When unstressed,
the center of mass of the negative charges at the comers of the unit cell coincides with
the positive charge at the center, as shown in Figure 7.39a. There is therefore no net po-
larization in the unit cell and P = 0. Under stress, the unit cell becomes strained, as

shown in Figure 7.39b, but the center of mass of the negative charges still coincides
with the positive charge and the net polarization is still zero. Thus, the strained crystal
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Figure 7.40  A hexagonal unit cell has no center of symmetry.
(a) In the absence of an applied force, the centers of mass for positive and negative ions coincide.
(b) Under an applied force in the / direction, the centers of mass for positive and negative ions are shifted, which
results in a net dipole moment, P, along y.
(c) When the force is along a different direction, along x, there may not be a resulting net dipole moment in that
direction though there may be a net P along a different direction (y).

to

Piezoelectric

effect

still has P = 0. This result is generally true for all crystals that have a center of sym-
metry. The centers of mass of negative and positive charges in the unit cell remain
coincident when the crystal is strained.

Piezoelectric crystals have no center of symmetry. For example, the hexagonal
unit cell shown in Figure 7.40a exhibits no center of symmetry. If we draw a vector
from point O to any charge and then reverse the vector, we will find an opposite charge.
The unit cell is said to be honcentrosymmetric. When unstressed, as shown in Fig-
ure 7.40a, the center of mass of the negative charges coincides with the center of mass
of the positive charges, both at O. However, when the unit cell is stressed, as shown in
Figure 7.40b, the positive charge at A and the negative charge at B both become dis-
placed inwards to A' and B', respectively. The two centers of mass therefore become
shifted and there is now a net polarization P. Thus, an applied stress produces a net po-
larization P in the unit cell, and in this case P appears to be in the same direction as the
applied stress, along y.

The direction of the induced polarization depends on the direction of the applied
stress. When the same unit cell in Figure 7.40a is stressed along jc, as illustrated in
Figure 7.40c, there is no induced dipole moment along this direction because there
is no net displacement of the centers of mass in the x direction. However, the stress
causes the atoms A and B to be displaced outwards to A" and B", respectively, and
this results in the shift of the centers of mass away from each other along y. In this
case, an applied stress along x results in an induced polarization along y. Generally,
an applied stress in one direction can give rise to induced polarization in other crys-
tal directions. Suppose that 7} is the applied mechanical stress along some j direction
and Pi is the induced polarization along some / direction; then the two are linearly re-
lated by

Pi dijTj [7.54]
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Mechanical

vibrations

Piezoelectric

transducer
A

i0J
Oscillator

Elastic waves

in the solid

B

Oscilloscope

Figure 7.41   Piezoelectric transducers are widely used to generate
ultrasonic waves in solids and also to detect such mechanical waves.

The transducer on the left is excited from an ac source and vibrates

mechanically. These vibrations are coupled to the solid and generate
elastic waves. When the waves reach the other end, they mechanically
vibrate the transducer on the right, which converts the vibrations to an
electrical signal.

where djj are called the piezoelectric coefficients. Reversing the stress reverses the
polarization. Although we did not specifically consider shear stresses in Figure 7.40,
they, as well as tensile stresses, can also induce a net polarization, which means that T
in Equation 7.54 can also represent shear stresses. The converse piezoelectric effect is
that between an induced strain Sj along j and an applied electric field    along /,

Sj = dij-Zi [7.55]

The coefficients    in Equations 7.54 and 7.55 are the same.12
As apparent from the foregoing discussions and Figure 7.38, piezoelectric crys-

tals are essentially electromechanical transducers because they convert an electrical
signal, an electric field, to a mechanical signal, strain, and vice versa. They are used
in many engineering applications that involve electromechanical conversions,

 as in

ultrasonic transducers, microphones, accelerometers, and so forth. Piezoelectric trans-
ducers are widely used to generate ultrasonic waves in solids and also to detect such
mechanical waves, as illustrated in Figure 7.41. The transducer is simply a piezoelec-
tric crystal, for example, quartz, that is appropriately cut and electroded to generate
the desired types of mechanical vibrations (e.g., longitudinal or transverse vibrations).
The transducer on the left is attached to the surface A of the solid under examination

,

as shown in Figure 7.41. It is excited from an ac source,
 which means that it mechan-

ically vibrates. These vibrations are coupled to the solid by a proper coupling medium
(typically grease) and generate mechanical waves or elastic waves that propagate
away from A. They are called ultrasonic waves as their frequencies are typically
above the audible range. When the waves reach the other end, B, they mechanically
vibrate the transducer attached to B, which converts the vibrations to an electrical

signal that can readily be displayed on an oscilloscope. In this trivial example,
 one

can easily measure the time it takes for elastic waves to travel in the solid from A to
B and hence determine the ultrasonic velocity of the waves since the distance AB is

Converse

piezoelectric
effect

12 The equivalence of the coefficients in Equations 7.54 and 7.55 can be shown by using thermodynamics and is
not considered in this textbook. For rigorous piezoelectric definitions see IEEE Standard 176-1987 [IEEE Trans,

 on

Ultrasonics, Ferroelectrics and Frequency Control, September 1996).
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Electro-

mechanical

coupling
factor

Electro-

mechanical

coupling
factor

known. From the ultrasonic velocity one can determine the elastic constants (Young's
modulus) of the solid. Furthermore, if there are internal imperfections such as cracks
in the solid, then they reflect or scatter the ultrasonic waves. These reflections can
lead to echoes that can be detected by suitably located transducers. Such ultrasonic
testing methods are widely used for nondestructive evaluations of solids in mechani-
cal engineering.

It is clear that an important engineering factor in the use of piezoelectric transduc-
ers is the electromechanical coupling between electrical and mechanical energies. The
electromechanical coupling factor k is defined in terms of A2 by

k2 = Electrical energy converted to mechanical energy

Input of electrical energy
[7.56a]

or equivalently by

2    Mechanical energy converted to electrical energy

Input of mechanical energy
[7.56b]

Table 7.8 summarizes some typical piezoelectric materials with some applica-
tions. The so-called PZT ceramics are widely used in many piezoelectric applications.
PZT stands for lead zirconate titanate and the ceramic is a solid solution of lead zir-

conate, PbZrOs, and lead titanate, PbTiOs, so its composition is PbTii- Zr Os where x
is determined by the extent of the solid solution but typically is around 0.5. PZT piezo-
electric components are manufactured by sintering, which is a characteristic ceramic
manufacturing process in which PZT powders are placed in a mold and subjected to a
pressure at high temperatures. During sintering the ceramic powders are fused through j
interdiffusion. The final properties depend not only on the composition of the solid t
solution but also on the manufacturing process, which controls the average grain size !
or polycrystallinity. Electrodes are deposited onto the final ceramic component, which !
is then poled by the application of a temporary electric field to induce it to become j

i

Table 7.8   Piezoelectric materials and some typical values for d and k

Crystal d (m V"1) k Comment

Quartz (crystal SiOa)

Rochelle salt (NaKG Oe  4H2O)

Barium titanate (BaTiOa)

PZT, lead zirconate titanate

(PbTi Zr.Oa)

Polyvinylidene fluoride (PVDF)

2
.
3 x lO"12

350 x KT12

190 x lO"12

480 x lO"12

18 x 10-12

0
.

1

0
.
78

0
.
49

0
.
72

Crystal oscillators, ultrasonic
transducers, delay lines, filters

Accelerometers

Wide range of applications
including earphones, microphones,
spark generators (gas lighters,
car ignition), displacement
transducers, accelerometers

Must be poled; heated, put in an
electric field and then cooled.

Large area and inexpensive
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piezoelectric. Poling refers to the application of a temporary electric field, generally at
an elevated temperature, to align the polarizations of various grains and thereby de-
velop piezoelectric behavior.

PIEZOELECTRIC SPARK GENERATOR The piezoelectric spark generator, as used in various
applications such as lighters and car ignitions, operates by stressing a piezoelectric crystal to
generate a high voltage which is discharged through a spark gap in air as schematically shown
in Figure 7.42a. Consider a piezoelectric sample in the form of a cylinder as in Figure 7.42a.
Suppose that the piezoelectric coefficient d = 250 x 10"12 m V-1 and er = 1000. The piezo-
electric cylinder has a length of 10 mm and a diameter of 3 mm. The spark gap is in air and has
a breakdown voltage of about 3.5 kV. What is the force required to spark the gap? Is this a real-
istic force?

SOLUTION

We need to express the induced voltage in terms of the applied force. If the applied stress is 7,
then the induced polarization P is

F
P = dT =d -

A

Induced polarization P leads to induced surface polarization charges given by Q = AP. If
C is the capacitance, then the induced voltage is

EXAMPLE 7.13

v=

2 AP LP
L

dLF

C       I 60£rA\       S06r S06r 606rA
\   L J

Therefore, the required force is

s0srAV     (8.85 x lO"12 x 1000) (1.5 x 10-3)2(3500)
F

dL (250 x 10-12)(10 x 10-3)
87.6 N

This force can be applied by squeezing by hand an appropriate lever arrangement; it is the
weight of 9 kg. The force must be applied quickly because the piezoelectric charge generated

F

L

+   A +

Piezoelectric

F

F

+ +

Piezoelectric

Piezoelectric

F

Figure 7.42 The piezoelectric spark
generator.

a (b)
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Piezoelectric

voltage
coefficient

will leak away (or become neutralized) if the charge is generated too slowly; many spark ignit-
ers use mechanical impact. The energy in the spark depends on the amount of charge generated.
This can increase by using two piezoelectric crystals back to back as in Figure 7.42b, which is
a more practical arrangement for a spark generator. The induced voltage per unit force V/F is
proportional to d/(s0sr) which is called the piezoelectric voltage coefficient. In general, if an
applied stress T = F/A induces a field £ = V/L in a piezoelectric crystal, then the effect is
related to the cause by the piezoelectric voltage coefficient g,

[7.57]

It is left as an exercise to show that g 

£ = gT

d/(606r).

Mechanical

standing
waves

7
.8.2 Piezoelectricity: Quartz Oscillators and Filters

One of the most important applications of the piezoelectric quartz crystal in elec-
tronics is in the frequency control of oscillators and filters. Consider a suitably cut
thin plate of a quartz crystal that has thin gold electrodes on the opposite faces. Sup-
pose that we set up mechanical vibrations in the crystal by connecting the electrodes
to an ac source, as in Figure 7.43a. It is possible to set up a mechanical resonance, or
mechanical standing waves, in the crystal if the wavelength A of the waves and the
length i along which the waves are traveling satisfy the condition for standing
waves:

where n is an integer.

£ [7.58]

A

Quartz

< £

B

A

L

C
o

c

(b) B
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3 + (d)
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1

Figure 7.43 When a suitably cut quartz crystal with electrodes is excited by an ac voltage as in (a), it
behaves as if it has the equivalent circuit in (b).
(c) and (d) The magnitude of the impedance Zand reactance (both between A and B) versus frequency,
neglecting losses.
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The frequency of these mechanical vibrations fs is given by fs = v/k, where v is
the velocity of the waves in the medium and A is the wavelength. These mechanical
vibrations in quartz experience very small losses and therefore have a high-quality
factor Q, which means that resonance can only be set up if the frequency of the exci-
tation, the electrical frequency, is close \,ofs. Because of the coupling of energy between
the electrical excitation and mechanical vibrations through the piezoelectric effect, me-
chanical vibrations appear like a series LCR circuit to the ac source, as shown in Fig-
ure 7.43b. This LCR series circuit has an impedance that is minimum at the mechanical
resonant frequency/j, given by

1

InjLC
[7.59]

In this series LCR circuit, L represents the mass of the transducer, C the stiffness,
and R the losses or mechanical damping. Since the quartz crystal has electrodes at
opposite faces, there is, in addition, the parallel plate capacitance C0 between the
electrodes. Thus, the whole equivalent circuit is C0 in parallel with LCR, as in Fig-
ure 7.43b. As far as L is concerned, C0 and C are in series. There is a second higher res-
onant frequency fa, called the antiresonant frequency, that is due to L resonating with
C and C0 in series,

fa =
1

[7.60]

where

1      1 1

c7 
~    + c

The impedance between the terminals of the quartz crystal has the frequency de-
pendence shown in Figure 7.43c. The two frequencies  and/a are called the series and

Mechanical

resonant

frequency

Antiresonant

frequency

11 mm
mm.

1

~S5

I

IPl
1

1

J

Various quartz crystal "oscillators." Left
to right: Raltron 40 MHz; a natural
quartz crystal (South Dakota); Phillips
27 MHz; a cutaway view of a typical
crystal oscillator.
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parallel resonant frequencies, respectively. It is apparent that around fa, the crystal
behaves like a filter with a high Q value. If we were to examine the reactance of the
crystal, whether it is behaving capacitively or inductively, we would find the behavior
in Figure 7.43d, where positive reactance refers to an inductive and negative reactance
to a capacitive behavior. Between fs and/a the crystal behaves inductively, and capac-
itively outside this range. Indeed, between fs and/fl the response of the transducer is
controlled by the mass of the crystal. This property has been utilized by electrical
engineers in designing quartz oscillators.

In quartz oscillators, the crystal is invariably used in one of two modes. First, it
can be used at fs where it behaves as a resistance of R without any reactance. The cir-
cuit is designed so that oscillations can take place only when the crystal in the circuit
exhibits no reactance or phase change-in other words, at/ . Outside this frequency,
the crystal introduces reactance or phase changes that do not lead to sustained oscilla-
tions. In a different mode of operation, the oscillator circuit is designed to make use of
the inductance of the crystal just above fs. Oscillations are maintained close to fs
because even very large changes in the inductance result in small changes in the fre-
quency between fs and/a.

EXAMPLE 7.14 THE QUARTZ CRYSTAL AND ITS EQUIVALENT CIRCUIT From the following equivalent defini-
tion of the coupling coefficient,

2    Mechanical energy stored
- 
 

Total energy stored

show that

f2

J a

Given that typically for an X-cut quartz crystal, k = 0.1, what is/fl for fs = 1 MHz? What
is your conclusion?

SOLUTION

C represents the mechanical mass where the mechanical energy is stored, whereas Co is where
the electrical energy is stored. If V is the applied voltage, then

2    Mechanical energy stored C f2
Total energy stored     

~

 \CV2 + \C0V2 " C + C0 "   
~

 J2

Rearranging this equation, we find

/,
 1 MHz

fa
 =   

,

 J      =   
,
 = 1.005 MHz

Vl -k2     y/l - (OA)2

Thus, fa - fs is only 5 kHz. The two frequencies fs and fa in Figure 7.43d are very close.
An oscillator designed to oscillate at fs, that is, at 1 MHz, therefore, cannot drift far (for exam-
ple, a few kHz) because that would change the reactance enormously, which would upset the
oscillation conditions.
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QUARTZ CRYSTAL AND ITS INDUCTANCE A typical 1 MHz quartz crystal has the following
properties:

/,
 = 1 MHz      fa

 = 1
.0025 MHz      C0 = 5 pF      R = 20 Q

What are C and L in the equivalent circuit of the crystal? What is the quality factor Q of the
crystal, given that

1
Q

InfRC

SOLUTION

The expression for fs is

1
fs 2ns/LC

From the expression for/a, we have

1 1
fa

2  in,
V c + c0

Dividing fa by fs eliminates L, and we get

h
=

 Ic + c
fs   V c

0

so that C is

C = C„

Thus

.[(£H (5 pF)(1.00252 - 1) = 0.025 pF

1 1
L =  r = - = 1.01 H

Cilnf)1     0.025 x 10-12(27rl06)2

This is a substantial inductance, and the enormous increase in the inductive reactance

above fs is intuitively apparent. The quality factor

Q =  1 = 3.18 x 105
2nfsRC

is very large.

EXAMPLE 7.15

7.8.
3 Ferroelectric and Pyroelectric Crystals

Certain crystals are permanently polarized even in the absence of an applied field. The
crystal already possesses a finite polarization vector due to the separation of positive
and negative charges in the crystal. These crystals are called ferroelectric.13 Barium

13 In analogy with the ferromagnetic crystals that already possess magnetization.
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(a) BaTi03 cubic crystal structure
above 130 0C

(b) BaTi03 cubic structure
above 130 0C

(c) BaTi03 tetragonal structure
below 130 0C

Figure 7.44   BaTiOs has different crystal structures above and below 130 0C that lead to different dielectric
properties.

titanate (BaTiOs) is probably the best cited example. Above approximately 130 0C, the
crystal structure of BaTiOs has a cubic unit cell, as shown in Figure 7.44a. The centers
of mass of the negative charges (O2-) and the positive charges, Ba2+ and Ti4+,
coincide at the Ti4+ ion, as shown in Figure 7.44b. There is therefore no net polariza-
tion and P = 0. Above 130 0C, therefore, the barium titanate crystal exhibits no per-
manent polarization and is not ferroelectric. However, below 130 0C

,
 the structure of

barium titanate is tetragonal, as shown in Figure 7.44c, in which the Ti4+ atom is not
located at the center of mass of the negative charges. The crystal is therefore polarized
by the separation of the centers of mass of the negative and positive charges. The crys-
tal possesses a finite polarization vector P and is ferroelectric. The critical temperature
above which ferroelectric property is lost, in this case 130 0C

,
 is called the Curie

temperature (7c). Below the Curie temperature, the whole crystal becomes sponta-
neously polarized. The onset of spontaneous polarization is accompanied by the distor-
tion of the crystal structure, as shown by the change from Figure 7.44b to Figure 7.44c.
The spontaneous displacement of the Ti4+ ion below the Curie temperature elongates
the cubic structure, which becomes tetragonal. It is important to emphasize that we
have only described an observation and not the reasons for the spontaneous polar-
ization of the whole crystal. The development of the permanent dipole moment below
the Curie temperature involves long-range interactions between the ions outside the
simple unit cell pictured in Figure 7.44. The energy of the crystal is lower when the Ti4+

ion in each unit cell is slightly displaced along the c direction, as in Figure 7.44c,
which generates a dipole moment in each unit cell. The interaction energy of these
dipoles when all are aligned in the same direction lowers the energy of the whole
crystal. It should be mentioned that the distortion of the crystal that takes place when
spontaneous polarization occurs just below Tc is very small relative to the dimensions
of the unit cell. For BaTiOs, for example, c/a is 1.01 and the displacement of the Ti4+

ion from the center is only 0.012 nm, compared with a = 0.4 nm.
An important and technologically useful characteristic of a ferroelectric crystal is

its ability to be poled. Above 130 0C there is no permanent polarization in the crystal.
If we apply a temporary field £ and let the crystal cool to below 130 0C, we can induce
the spontaneous polarization P to develop along the field direction. In other words,
we would define the c axis by imposing a temporary external field. This process is
called poling. The c axis is the polar axis along which P develops. It is also called the
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Figure 7,45   Piezoelectric properties of BaTiOs below its Curie temperature.

ferroelectric axis. Since below the Curie temperature the ferroelectric crystal already
has a permanent polarization, it is not possible to use the expression

P = s0(sr - 1)£

to define a relative permittivity. Suppose that we use a ferroelectric crystal as a dielec-
tric medium between two parallel plates. Since any change AP normal to the plates
changes the stored charge, what is of significance to the observer is the change in the
polarization. We can appreciate this by noting that C = Q/ V is not a good definition
of capacitance if there are already charges on the plates, even in the absence of volt-
age.14 We then prefer a definition of C based on AQ/AV where AQ is the change in
stored charge due to a change A V in the voltage. Similarly, we define the relative per-
mittivity sr in this case in terms of the change AP in P induced by AE in the field £,

AP = £0(sr - 1) A!£

An applied field along the a axis can displace the Ti4+ ion more easily than that
along the c axis, and experiments show that er  4100 along a is much greater than
er  160 along c. Because of their large dielectric constants, ferroelectric ceramics are
used as high-K dielectrics in capacitors.

All ferroelectric crystals are also piezoelectric, but the reverse is not true: not all
piezoelectric crystals are ferroelectric. When a stress along y is applied to the BaTiOs
crystal in Figure 7.45a, the crystal is stretched along y, as a result of which the Ti4+

atom becomes displaced, as shown in Figure 7.45b. There is, however, no shift in
the center of mass of the negative charges, which means that there is a change A P
in the polarization vector along y. Thus, the applied stress induces a change in the
polarization, which is a piezoelectric effect. If the stress is along x, as illustrated in
Figure 7.45c, then the change in the polarization is along y. In both cases, AP is pro-
portional to the stress, which is a characteristic of the piezoelectric effect.

14 A finite Q on the plates of a capacitor when V= 0 implies an infinite capacitance, C= oo. However, C-dQ/dV
definition avoids this infinity.
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Temperature change = 8r

Heat

Figure 7.46  The heat absorbed by the crystal increases
the temperature by 8T, which induces a change <SP in the
polarization.
This is the pyroelectric effect. The change <$P gives rise to a
change 5 V in the voltage that can be measured.

+

sv5P

Pyroelectric
coefficient

The barium titanate crystal in Figure 7.44 is also said to be pyroelectric because
when the temperature increases, the crystal expands and the relative distances of ions
change. The Ti4+ ion becomes shifted, which results in a change in the polarization.
Thus, a temperature change 8T induces a change 8P in the polarization of the crystal.
This is called pyroelectricity, which is illustrated in Figure 7.46. The magnitude of
this effect is quantized by the pyroelectric coefficient /?, which is defined by

_

 dP
P ~ dT

[7.61]

A few typical pyroelectric crystals and their pyroelectric coefficients are listed in
Table 7.9. Very small temperature changes, even in thousandths of degrees, in the
material can develop voltages that can be readily measured. For example, for a PZT-type
pyroelectric ceramic in Table 7.9, taking &T = 10~3 K and p » 380 x 10~6

,
 we find

8P = 3.8 x lO"7 C m"2. From

8P = e0(er - 1) 8%

with £r - 290, we find

8% = 148 V m
-i

If the distance between the faces of the ceramic where the charges are developed is
0
.

1 mm, then

8V = 0.0148 V or 15 mV

Table 7.9  Some pyroelectric (and also ferroelectric) crystals and typical properties

Material tan 8

Pyroelectric
Coefficient

(xlO-6Cm-2 K"1)

Curie

Temperature
CO

BaTiCb

LiTaCb

PZT modified for

pyroelectric

PVDF, polymer

4100 ± polar
axis; 160//polar axis

47

290

12

7 x 10~3

5 x lO"3

2
.
7 x lO"3

0
.
01

20

230

380

27

130

610

230

80
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Figure 7,47  The pyroelectric detector.
Radiation is absorbed in the detecting element, A, which generates a pyroelectric voltage that is measured
by the amplifier. The second element, B, has a reflecting electrode and does not absorb the radiation. It is
a dummy element that compensates for the piezoelectric effects. Piezoelectric effects generate equal
voltages in both A and B, which cancel each other across a and b, the input of the amplifier.

which can be readily measured. Pyroelectric crystals are widely used as infrared
detectors. Any infrared radiation that can raise the temperature of the crystal even by a
thousandth of a degree can be detected. For example, many intruder alarms use pyro-
electric detectors because as the human or animal intruder passes by the view of
detector, the infrared radiation from the warm body raises the temperature of the pyro-
electric detector, which generates a voltage that actuates an alarm.

Figure 7.47 shows a simplified schematic circuit for a pyroelectric radiation de-
tector. The detecting element, labeled A, is actually a thin crystal or ceramic (or even a
polymer) of a pyroelectric material that has electrodes on opposite faces. Pyroelectric
materials are also piezoelectric and therefore also sensitive to stresses. Thus, pressure
fluctuations, for example, vibrations from the detector mount or sound waves, interfere
with the response of the detector to radiation alone. These can be compensated for by
having a second dummy detector B that has a reflecting coating and is subjected to the
same vibrations (air and mount), as depicted in Figure 7.47. Thus, there are two ele-
ments in the detector, one with an absorbing surface, detecting element A, and the
other with a reflecting surface, compensating element B. Stress fluctuations give rise
to the same piezoelectric voltage in both, which then cancel each other between a and
b at the input of the amplifier. When radiation is incident, then only the detecting ele-
ment absorbs the radiation, becomes warmer, and hence generates a pyroelectric volt-
age. This voltage appears directly across a and b. As the incident radiation warms the
detecting element and increases its temperature, the pyroelectric voltage increases
with time. Eventually the temperature reaches a steady-state value determined by heat
losses from the element. We therefore expect the pyroelectric voltage to reach a con-
stant value as well. However, the problem is that a constant pyroelectric voltage can-
not be sustained because the surface charges slowly become neutralized or leak away.
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The constant radiation is therefore normally chopped to subject the detector to periodic
bursts of radiation, as shown in Figure 7.47. The pyroelectric voltage is then a chang-
ing function of time, which is readily measured and related to the power in the incident
radiation.

Many pyroelectric applications refer to a pyroelectric current that is generated by
the temperature rise. There is another way to look at the pyroelectric phenomenon in-
stead of considering the induced pyroelectric voltage that is created across the crystal
(Figure 7.46). The induced polarization 8 P in a small time interval&t, due to the change
8T in the temperature, generates an induced polarization charge density 8P on the
crystal

's surfaces. This charge density 8 P flows in a time interval St, and hence gener-
ates an induced polarization current density Jp to flow, i.e.,

dP dT

Jp = -di = P [7.62]

Jp in Equation 7.62 is called the pyroelectric current density and depends on the rate
of change of the temperature dT/dt brought about by the absorption of radiation.

Most pyroelectric detectors are characterized by their current responsivity / de-
fined as the pyroelectric current generated per unit input radiation power,

Pyroelectric current generated Jp
Input radiation power I

[7.63]

where J is the radiation intensity (W m~2); !J(j is quoted in AW-1. If the pyroelectric
current generated by the crystal flows into the self-capacitance of the crystal itself (no
external resistors or capacitors connected, and the voltmeter is an ideal meter), it
charges the self-capacitance to generate the observed voltage 8 V in Figure 7.46. The
pyroelectric voltage responsivity H y is defined similarly to Equation 7.63 but con-
siders the voltage that is developed upon receiving the input radiation:

Pyroelectric output voltage generated

Input radiation power
[7.64]

The output voltage that is generated depends not only on the pyroelectric crystal's
dielectric properties, but also on the input impedance of the amplifier, and can be quite
complicated. A typical commercial LiTaOs pyroelectric detector has a current respon-
sivity of 0.1-1 |LiA/W. I

EXAMPLE 7.16 A PYROELECTRIC RADIATION DETECTOR Consider the radiation detector in Figure 7.47 but
with a single element A. Suppose that the radiation is chopped so that the radiation is passed
to the detector for a time At seconds every r seconds, where At <3C r. If At is sufficiently
small, then the temperature rise AT is small and hence the heat losses are negligible during At.
Using the heat capacity to find the temperature change during At, relate the magnitude of the
voltage A V to the incident radiation intensity I. What is your conclusion?

Consider a PZT-type pyroelectric material with a density of about 7 g cm-3 and a specific
heat capacity of about 380 J K-1 kg-1. If At = 0.2 s and the minimum voltage that can be
detected above the background noise is 1 mV, what is the minimum radiation intensity that can
be measured?
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SOLUTION

Suppose that the radiation of intensity I is received during a time interval Ar and delivers an
amount of energy AH to the pyroelectric detector. This energy A//, in the absence of any heat
losses, increases the temperature by A T. If c is the specific heat capacity (heat capacity per unit
mass) and p is the density,

A// = (ALp)c AT

where A is the surface area and L the thickness of the detector. The change in the polarization
AP is

AP pAT

The change in the surface charge A Q is

AG A AP

pAH

ALpc

pAH

Lpc

This change in the surface charge gives a voltage change A V across the electrodes of the
detector. If C = e0srA/L is the capacitance of the pyroelectric crystal,

AV
AG

C

pAH
x

L pAH

Lpc     e0erA Apce0er

The absorbed energy (heat) AH during At depends on the intensity of incident radiation.
Incident intensity I is the energy arriving per unit area per unit time. In time At, I delivers an
energy AH = IA At. Substituting for AH in the expression for A V, we find

AV
pi At

pcereo \pcere0/
[7.65]

The parameters in the parentheses are material properties and reflect the "goodness" of the
pyroelectric material for the application. We should emphasize that in deriving Equation 7.65
we did not consider any heat losses that will prevent the rise of the temperature indefinitely. If
A Ms short, then the temperature change will be small and heat losses negligible.

For a PZT-type pyroelectric, we can take p = 380 x 10"6 C m~2 K-1, er = 290, c =
380 J K-1 kg-1, and p = 1 x 103 kg nr3, and then from Equation 7.65 with 0.001 V
and At = 0.2 s, we have

/     D     y
-1 a t/      / iqc\  in-6  -1

I
XpCSoSr/       At \

380 x 10

x
 10-12)) 0

.
001

(7000)(380)(290)(8.85

0
.090 Wm"2      or 9|iWcm

0
.
2

-2

We have assumed that all the incident radiation I is absorbed by the pyroelectric crystal. In prac-
tice, only a fraction 77 (called the emissivity of the surface), that is, r} I, will be absorbed instead of
I

. We also assumed that the output voltage A V is developed totally across the pyroelectric element
capacitance; that is, the amplifier's input impedance (parallel combination of its input capacitance
and resistance) is negligible compared with that of the pyroelectric crystal. As stated, we also ne-
glected all heat losses from the pyroelectric crystal so that the absorbed radiation simply increases
the crystal's temperature. These simplifying assumptions lead to the maximum signal A V that can
be generated from a given input radiation signal I as stated in Equation 7.65. It is left as an exer-
cise to show that Equation 7.65 can also be easily derived by starting from Equation 7.62 for the py-
roelectric current density Jp, and have Jp charge up the capacitance C = e0er A/L of the crystal.

Pyroelectric
detector

output

voltage
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ADDITIONAL TOPICS

7
.
9   ELECTRIC DISPLACEMENT

AND DEPOLARIZATION FIELD

Electric Displacement (D) and Free Charges Consider a parallel plate cap-
acitor with free space between the plates, as shown in Figure 7.48a, which has been
charged to a voltage V0 by connecting it to a battery of voltage V0. The battery has been
suddenly removed, which has left the free positive and negative charges QfoQ on the
plates. These charges are free in the sense that they can be conducted away. An ideal
electrometer (with no leakage current) measures the total charge on the positive plate
(or voltage of the positive plate with respect to the negative plate). The voltage across
the plates is V0 and the capacitance is C0. The field in the free space between the plates is

Qfree

So 

Vo

d
[7.66]

where d is the separation of the plates.
When we insert a dielectric to fit between the plates, the field polarizes the dielec-

tric and polarization charges -Qp and +Qp appear on the left and right surfaces of the
dielectric, as shown in Figure 7.48b. As there is no battery to supply more free charges,
the net charge on the left plate (positive plate) becomes QfTee - Qp. Similarly the net
negative charge on the right plate becomes -Qfree + Qp. The field inside the dielectric
is no longer £0 but less because induced polarization charges have the opposite polar-
ity to the original free charges and the net charge on each plate has been reduced. The
new field can be found by applying Gauss

's law. Consider a Gauss surface just enclos-
ing the left plate and the surface region of the dielectric with its negative polarization
charges, as shown in Figure 7.49. Then Gauss

'

s law gives

f SoJ Surfece

4EdA= 2totai = Qfree " Qp [7.67]

where A is the plate area (same as dielectric surface area) and we take the field £ to be
normal to the surface area dA, as indicated in Figure 7.49. If the polarization charge is

Figure 7.48
(a) Parallel plate capacitor with free space
between plates that has been charged to a
voltage V0. There is no battery to maintain
the voltage constant across the capacitor.
The electrometer measures the voltage
difference across the plates and, in
principle, does not affect the measurement.
(b) After the insertion of the dielectric, the
voltage difference is V, less than V0, and the
field in the dielectric is £ less than tE0.

+Q
-Qfree

+

+

+ Vacuum

A C
o

free

Electrometer

a
,

\

+Qp-Qp+Q
-Qfree

free

+
+

+

+

+

V „ +
+

Dielectric

A c

'1(b)

Electrometer



7.9 Electric Displacement and Depolarization Field 655

+2,

-Qp Gauss surface
free

i

4-

+

+

+

+

t-

i

i

i dA

i

i

i

i

i

i

Dielectric Figure 7.49 A Gauss surface just around the left plate and within
the dielectric, encompassing both +Qfree and -Qp.

dQp over a small surface area dA of the dielectric, then the polarization charge den-
sity op at this point is defined as

Op =
dQp

dA

For uniform polarization, the charge distribution is Qp/A, as we have used previ-
ously. Since o> = P, where P is the polarization vector, we can write

and therefore express Qp as

Q p

P =
dQp

dA

PdA [7.68]
Surface

We can now substitute for Qp in Equation 7.67 and take this term to the left-hand
side to add the two surface integrals. The right-hand side is left with only Qfree- Thus,

(£0£ + P) dA = gfree [7.69]
Surface

What is important here is that the surface integration of the quantity £0£ + P is
always equal to the total free charges on the surface. Whatever the dielectric material,
this integral is always Qfree. It becomes convenient to define £0£ + P as a usable quan-
tity, called the electric displacement and denoted as D, that is,

D = £0!E + P [7.70]

Then, Gauss's law in terms of free charges alone in Equation 7.69 becomes

D dA = Qfree [7.71]
Surface

In Equation 7.71 we take D to be normal to the surface area dA as in the case of
£ in Gauss's law. Equation 7.71 provides a convenient way to calculate the electric
displacement D, from which one should be able to determine the field. We should

note that, in general, £ is a vector and so is P, so the definition in Equation 7.70 is

Definition of
electric

displacement

Gauss's law

for free
charges



656 chapter 7 . Dielectric Materials and Insulation

Electric

displacement
and the field

Gauss's law

for free
charges

Gauss's law

in an

isotropic
dielectric

strictly in terms of vectors. Inasmuch as the electric displacement depends only on
free charges, as a vector it starts at negative free charges and finishes on positive free
charges.

Equation 7.71 for D defines it in terms of <£ and P, but we can express D in terms
of the field £ in the dielectric alone. The polarization P and £ are related by the defin-
ition of the relative permittivity er,

P = e0{sr - 1)£

Substituting for P in Equation 7.70 and rearranging, we find that D is simply
given by

D = EoEr'E [7.72]

We should note that this simple equation applies in an isotropic medium where the
field along one direction, for example, x, does not generate polarization along a differ-
ent direction, for example, y. In those cases, Equation 7.72 takes a tensor form whose
mathematics is beyond the scope of this book.

We can now apply Equation 7.71 for a Gauss surface surrounding the left plate,

A
[7.731

where we used Equation 7.66 to replace Qivtt. Thus D does not change when we insert
the dielectric because the same free charges are still on the plates (they cannot be con-
ducted away anywhere). The new field £ between the plates after the insertion of the
dielectric is

1 1
£ =  D = -£0

S06r 8r
17.741

The original field is reduced by the polarization of the dielectric. We should recall
that the field does not change in the case where the parallel plate capacitor is con-
nected to a battery that keeps the voltage constant across the plates and supplies addi-
tional free charges (AQfree) to make up for the induced opposite-polarity polarization
charges.

Gauss's law in Equation 7.71 in terms of D and the enclosed free charges QfVte can
also be written in terms of the field £, but including the relative permittivity, because
D and £ are related by Equation 7.72. Using Equation 7.72, Equation 7.71 becomes

£<,£,.£ dA = Qfree
Surface

For an isotropic medium where sr is the same everywhere,

Gfree
(b 'EdA =

Surface £o£r
[7.75]

As before, £ in the surface integral is taken as normal to dA everywhere. Equa-
tion 7.75 is a convenient way of evaluating the field from the free charges alone, given
the dielectric constant of the medium.
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Figure 7.50  The field inside the dielectric can be
considered to be the sum of the field due to the free

charges (Qfree) and a field due to the polarization of the
dielectric, called the depolarization field.

The Depolarizing Field We can view the field £ as arising from two electric
fields: that due to the free charges £<, and that due to the polarization charges, denoted
as £dep. These two fields are indicated in Figure 7.50. £<, is called the applied field
as it is due to the free charges that have been put on the plates. It starts and ends at free
charges on the plates. The field due to polarization charges starts and ends at
these bound charges and is in the opposite direction to the £0. Although !E0 polarizes
the molecules of the medium, £dep, being in the opposite direction, tries to depolarize the
medium. It is called the depolarizing field (and hence the subscript). Thus the field
inside the medium is

 - 'E'o dep [7.76]

The depolarizing field depends on the amount of polarization since it is deter-
mined by + Qp and - Qp. For the dielectric plate in Figure 7.50, we know the field £
is £0/£r, 80 we can eliminate £0 in Equation 7.76 and relate Edep directly to £,

Edep = £(£r - 1)

However, the polarization P is related to the field £ by

P = e0(er - 1)£

which means that the depolarization field is

1
dep - P

So
[7.77]

As we expected, the depolarizing field is proportional to the polarization P. We
should emphasize that !£dep is in th opposite direction to £ and P and Equation 7.77 is
for magnitudes only. If we write it a a vector equation, then we must introduce a neg-
ative sign to give £dep a direction opposite to that of P. Moreover, the relationship in
Equation 7.77 is special to the dielectric plate geometry in Figure 7.50. In general, the
depolarizing field is still proportional to the polarization, as in Equation 7.77, but it is
given by

[7.78]
o

where A ep is a numerical factor called the depolarization factor. It takes into account
the shape of the dielectric and the variation in the polarization within the medium. For

Depolarizing
field in a
dielectric

plate

Depolarizing
field in a
dielectric
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Figure 7.51
(a) Polarization and the
depolarizing field in a spherical-
shaped dielectric placed in an
applied field.
(b) Depolarization field in a thin
rod placed in an applied field is
nearly zero.
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a dielectric plate placed perpendicularly to an external field, A dep = 1, as we found in
Equation 7.77. For the spherical dielectric medium as in Figure 7.51a, Afdep

 = |.
 For a

long thin dielectric rod placed with its axis along the applied field, as in Figure 7.51b,
Ndep % 0 and becomes exactly zero as the diameter shrinks to zero. Afdep is always
between 0 and 1. If we know Afdep, we can determine the field inside the dielectric, for
example, in a small spherical cavity within an insulation given the external field.

7
.10   LOCAL FIELD AND THE LORENTZ EQUATION

When a dielectric medium is placed in an electric field, it becomes polarized and there
is a macroscopic, or an average, field £ in the medium. The actual field at an atom,
called the local field !Eioc, however, is not the same as the average field as illustrated in
Figure 7.7.

Consider a dielectric plate polarized by placing it between the plates of a capaci-
tor as shown in Figure 7.52a. The macroscopic field £ in the dielectric is given by the
applied field "Eo due to the free charges on the plates, and the depolarization field
due to P, or polarization charges on the dielectric plate surfaces A. Since we have a plate

Figure 7.52
(a) The macroscopic field £ is
determined by the applied field
£0 and the depolarization field
due to P.

(b) Calculation of the local field
involves making a hypothetical
spherical cavity S inside the
dielectric. This produces
polarization surface charges on
the inside surface S of the cavity.
The effects of the dipoles inside
the cavity are treated individually.
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dielectric, the depolarization field is P/e0, so

1

So

Consider the field at some atomic site, point (9, but with the atom itself removed.
We evaluate the field at O coming from all the charges except the atom at O itself
since we are looking at the field experienced by this atom (the atom cannot become po-
larized by its own field). We then cut a (hypothetical) spherical cavity S centered at O
and consider the atomic polarizations individually within the spherical cavity. In other
words, the effects of the dipoles in the cavity are treated separately from the remaining
dielectric medium which is now left with a spherical cavity. This remaining dielectric
is considered as a continuous medium but with a spherical cavity. Its dielectric prop-
erty is represented by its polarization vector P. Because of the cavity, we must now put
polarization charges on the inner surface S of this cavity as illustrated in Figure 7.52b.
This may seem surprising, but we should remember that we are treating the effects of
the atomic dipoles within the cavity individually and separately by cutting out a spher-
ical cavity from the medium and thereby introducing a surface S.

The field at O comes from four sources:

1
. Free charges gfree on the electrodes, represented by (E0.

2
. Polarization charges on the plate surfaces A, represented by Edep.

3
. Polarization charges on the inner surface of the spherical cavity 5, represented

by £5.
4

. Individual dipoles within the cavity, represented by Edipoies-

Thus,

loc -       "I" dep "h       4" dipoles

Since the first two terms make up the macroscopic field, we can write this as

£loc = £ H"       + dipoles

The field from the individual dipoles surrounding O depends on the positions of
these atomic dipoles which depend on the crystal structure. For cubic crystals, amor-
phous solids (e.g., glasses), or liquids effects of these dipoles around O cancel each
other and £dipoies = 0. Thus,

£ioc = (L + (Ls [7.79]

We are then left with evaluating the field due to polarization charges on the inner
surface S of the cavity. This field comes from polarization charges on the surface S.
Consider a thin spherical shell on surface S as shown in Figure 7.53 which makes an
angle 0 with O. The radius of this shell is a sin 0, whereas its width (or thickness) is
a dO. The surface area dS is then (2na sin 0)(a dO). The polarization charge dQp on
this spherical shell surface is Pn dS where Pn is the polarization vector normal to the
surface dS. Thus,

Local field in
a crystal

Local field in
a cubic crystal
or a non-

crystalline
material

dQp = Pn dS = (P cos 0)(27Ta sin 0)(a dO)
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Figure 7.53   Calculation of the field due
to polarization charges on the inner
surface S of the spherical cavity.
Consider a spherical shell of radius a. The
surface area is dS = 2 o sin 0 (a do).

-b

a
a sm 6

O P
+

6

+
a

-> x

Spherical shell

add

Dielectric

But the field at O from dQp is given from electrostatics as

dQp       (P cos 0) (Ina sin 0) (a dO)

I

47ts0a2 47U60a2

To find the total field coming from the whole surface S we have to integrate dls \
from 9 = 0 to 0 = n,

(Pcos9) (sin 9)

2£0
d9

which integrates to

1

3so
[7.80]

The local field by Equation 7.79 is

1

3e0
[7.81]

Equation 7.81 is the Lorentz relation for the local field in terms of the polariza-
tion P of the medium and is valid for cubic crystals and noncrystalline materials, such
as glasses74tdoes not apply to dipolar dielectrics in which the local field can be quite
complicated.

7
.
11    DIPOLAR POLARIZATION

Consider a medium with molecules that have permanent dipole moments. Each per-
manent dipole moment is p0. In the presence of an electric field the dipoles try to align
perfectly with the field, but random thermal collisions, i.e., thermal agitation, act
against this perfect alignment. A molecule that manages to rotate and align with the
field finds itself later colliding with another molecule and losing its alignment. We are
interested in the mean dipole moment in the presence of an applied field taking into
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Figure 7.54  In the presence of an
applied field a dipole tries to rotate to
align with the field against thermal
agitation.
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Figure 7.55  The dipole is
pointing within a solid angle dSl.

account the thermal energies of the molecules and their random collisions. We will as-
sume that the probability that a molecule has an energy E is given by the Boltzmann
factor, exp(-£/fcr).

Consider an arbitrary dipolar molecule in an electric field as in Figure 7.54 with its
dipole moment p0 at an angle 0 with the field £. The torque experienced by the dipole
is given by r = (F sin 0)a or !E/?0 sin 0 where p0 = aQ. The potential energy E at
an angle 0 is given by integrating rdO,

E =  f Po
Jo

£ sin 0 dO = -/?<,£ cos 0 + Po'E

Inasmuch as the PE depends on the orientation, there is a certain probability of
finding a dipole oriented at this angle as determined by the Boltzmann distribution.
The fraction / of molecules oriented at 0 is proportional to exp(-E/kT)9

f Po'E cos 0\f a exp -J [7.82]

The initial orientation of the dipole should be considered in three dimensions and
not as in the two-dimensional illustration in Figure 7.54. In three dimensions we use
solid angles, and the fraction / then represents the fraction of molecules pointing in
a direction defined by a small solid angle dQ as shown in Figure 7.55. The whole
sphere around the dipole corresponds to a solid angle of 47T. Furthermore, we need to
find the average dipole moment along £ as this will be the induced net dipole moment
by the field. The dipole moment along £ is p0 cos 0. Then from the definition of the
average

/** (Pocose)fdn
Pav =

C fdQ
[7.83]

where / is the Boltzmann factor given in Equation 7.82 and depends on £ and 0. The
final result of this integration is a special function called the Langevin function which

Potential

energy of a
dipole at an
angle 0

Boltzmann

distribution
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Figure 7.56  The Langevin function.
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is denoted as L(x) where x is the argument of the function (not the x coordinate). The
integration of Equation 7.83 then gives

Paw = PoMx) and x =
kT

[7.84]

The behavior of the Langevin function is shown in Figure 7.56. At the highest
fields L(x) tends toward saturation at unity. Then, pav = p0, which corresponds to
nearly all the dipoles aligning with the field, so increasing the field cannot increase p
anymore. In the low field region, p  increases linearly with the field. In practice, the
applied fields are such that all dipolar polarizations fall into this linear behavior region
where the Langevin functionL(x) « |jt. Then Equation 7.84 becomes

Pry = -
3 kT

[7.85]

The dipolar or orientational polarizability is then simply

d 3kT
[7.86]

7
.

12   IONIC POLARIZATION AND

DIELECTRIC RESONANCE

In ionic polarization, as shown in Figure 7.9, the applied field displaces the positive
and negative ions in opposite directions, which results in a net dipole moment per ion,
called the induced dipole moment pt per ion. We can calculate the ionic polarizability
«/ and the ionic contribution to the relative permittivity as a function of frequency by
applying an ac field of the form £ = !E0 exp(jcot).

Consider two oppositely charged neighboring ions, e.g., Na+ and CI", which ex-
perience forces Q'E in opposite directions where Q is the magnitude of the ionic
charge of each ion as shown in Figure 7.57. The bond between the ions becomes
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Figure 7.57  Consider a pair of oppositely charged ions. In the presence of an applied field £ along x, the
Na+ and CI- ions are displaced from each other by a distance x. The net average (or induced) dipole moment
is p,.

stretched, and the two ions become displaced from the equilibrium separation r0 to a
new separation r0 + x as depicted in Figure 7.57. The force F = QT, of the applied
field is the polarizing force, which causes the relative displacement. We take F to be
along the jc direction. The applied force is resisted by a restoring force Fr that is due
to the stretching of the bond (Hooke's law) and is proportional to the amount of bond
stretching, i.e., Fr = -fix where ft is the spring constant associated with the ionic
bond (easily calculated from the potential energy curve of the bond), and the nega-
tive sign ensures that Fr is directed in the opposite direction to the applied force.
Thus, the net force acting on the ions is Q'E - fix. As the ions are oscillated by the
applied force, they couple some of the energy in the applied field to lattice vibrations
and this energy is then lost as heat (lattice vibrations) in the crystal. As in classical
mechanics, this type of energy loss through a coupling mechanism can be repre-
sented as a frictional force (force associated with losses) FioSS that acts against the
effect of the applied force. This frictional force is proportional to the velocity of the
ions or dx/dt, so it is written as Fioss = -y(dx/dt) where y is a proportionality
constant that depends on the exact mechanism for the energy loss from the field, and
the negative sign ensures that it is opposing the applied field. The total (net) force on
the ions is

dx
totai = F + Fr + Floss = Q'E - fix - y- Total force

at

Normally we would examine the equations of motion (Newton's second law)
under forced oscillation for each ion separately, and then we would use the results to
find the overall extension x. An equivalent procedure (as well known in mechanics) is
to keep one ion stationary and allow the other one to oscillate with a reduced mass
M

r, which is Mr = (Af+Af_)/(Af+ + Af_) where M+ and M_ are the masses of Na"1"
and Cl~ ions, respectively. For example, we can simply examine the oscillations of
the Na"1" -ion within the reference frame of the Cl~ -ion (kept "stationary") and attach
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a reduced mass Mr to Na"1" as depicted in Figure 7.57. Then Newton
's second law

gives

d1x
[7.87]

It is convenient to put Mr and   together into a new constant &>/ which represents j
the resonant or natural angular frequency of the ionic bond, or the natural oscilla-
tions when the applied force is removed. Defining coi = (P/Mr)l/2 and yi as y per
unit reduced mass, i.e., yi = y/Mr,we have

d2x       dx      2 Q
-j + yi- + cojx = -tE0t\p(jcot)
dt2        dt Mr

[7.88]

Equation 7.88 is a second-order differential equation for the induced displacement
jc of a pair of neighboring ions about the equilibrium separation as a result of an ap-
plied force QT,. It is called the forced oscillator equation and is well known in me-
chanics. (The same equation would describe the damped motion of a ball attached to a
spring in a viscous medium and oscillated by an applied force.) The solution to Equa-
tion 7.88 will give the displacement x = x0 exp(jcot), which will have the same time
dependence as £ but phase shifted; that is, x0 will be a complex number. The relative
displacement of the ions from the equilibrium gives rise to a net or induced polariza- !
tion pi = Qx. Thus Equation 7.88 can be multiplied by Q to represent the forced
oscillations of the induced dipole. Equation 7.88 is also called the Lorentz dipole
oscillator model.

The induced dipole /?, will also be phase shifted with respect to the applied force
Q'E

. When we divide pi by the applied field £, we get the ionic polarizability or,-,
given by

Pi
ai = - =

Q 2

M
r (coj - co2 + jyico)

[7.89]

It can be seen that the polarizability is also a complex number as we expect; there
is a phase shift between £ and induced /?, . It therefore has real a[ and imaginary a"
parts and can be written as a, = a- - ja"

. We note that, by convention, the imaginary
part is written with a minus sign to keep a" as a positive quantity. Further, when co = 0,
under dc conditions, the ionic polarizability a/(0) from Equation 7.89 is

ctiiQ) =
Q 2

MrCO
2

[7.90]

The dc polarizability is a real quantity as there can be no phase shift under dc con-
ditions. We can then write the ionic polarizability in Equation 7.89 in terms of the nor-
malized frequency (co/coi) as

(Xi(C0) =
<**(0)

[1    (
<*>/) +  (<w/) (<*>/)]

[7.91]
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Figure 7.58  A schematic
representation of the frequency
dependence of the real and
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The dependences of the real and imaginary parts of or, on the frequency of the field
are shown in Figure 7.58 in terms of the normalized frequency (co/ooi) for one
particular value of the loss factor, yi = O.lo)/. Note that a" peaks at a frequency very
close to the ionic bond resonant frequency coi (it is exactly <w/ when yj = 0). The sharp-
ness and magnitude of the a" peak depends on the loss factor yj. The peak is sharper and
higher for smaller y/. Notice that a- is nearly constant at frequencies lower than coj. In-
deed, in a dc field, or

,
- = a O). But, through co ct; shows a rapid change from positive

to negative values and then it tends toward zero for frequencies greater than coj.
Zero or negative should not be disconcerting since the actual magnitude of the

polarizability is la, ! = (a 2 + a-

/2)1/2, which is always positive through co/ and maxi-
mum at coj. The phase of a,- however changes through coj. The phase of a,-, and hence
the phase of the polarization with respect to the field, are zero at low frequencies
(co ooi). As the frequency increases, the polarization lags behind the field and the
phase of a,- becomes more negative. At co = ct>/, the polarization lags behind the field
by 90°. However, the rate of change of polarization is in phase with the field oscilla-
tions, which leads to a maximum energy transfer. At high frequencies, well above cot,
the ions cannot respond to the rapidly changing field and the coupling between the
field and the ions is negligible. The peak in the ct" versus co behavior around co = coj
is what is called the dielectric resonance peak, and in this particular case it is called
the ionic polarization relaxation peak and is due to the strong coupling of the applied

field with the natural vibrations of the ionic bond at co = coi.
The resulting relative permittivity sr can be found from the Clausius-Mossotti

equation. But we also have to consider the electronic polarizability ae of the two types
of ions since this type of polarization operates up to optical frequencies (co » co/),
which means that

er((o) - 1 Ni

er(co) + 2 3e0
[7.92]

Dielectric

constant of an
ionic solid
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where is the concentrations of negative and positive ion pairs (assuming an equal
number of positive and negative ions), and ae+ and ae_ are the electronic polarizabilities
of the negative and positive ion species, respectively. Inasmuch as a, is a complex
quantity, so is the relative permittivity er{(jo). We can express Equation 7.92 differently
by noting that at very high frequencies, co » al. = 0, and the relative permittivity
is then denoted as erov. Equation 7.92 then becomes

NtQ2sr(co) - 1 £rop 1 NiCti

Sr(co) + 2    £rop + 2      380      3e0Mr (coj - co2 4- jyico)
[7.931

This is called the dielectric dispersion relation between the relative permittivity,
due to ionic polarization, and the frequency of the electric field. Figure 7.16b shows the
behavior of sr(co) with frequency for KC1 where e" peaks at co = coj = 2jt(4.5 x 1012)
rad s"1 and e'

r exhibits sharp changes around this frequency. It is clear that as co gets
close to coi, there are rapid changes in er(co). The resonant frequencies (coi) for ionic
polarization relaxations are typically in the infrared frequency range, and the "applied

"

field in the crystal is then due to a propagating electromagnetic (EM) wave rather than
an ac applied field between two external electrodes placed on the crystal.15

It should be mentioned that electronic polarization can also be described by the
Lorentz oscillator model, and can also be represented by Equation 7.91 if we appro-
priately replace a, by ae and interpret coj and yj as the resonant frequency and loss
factor involved in electronic polarization.

EXAMPLE 7.17 IONIC POLARIZATION RESONANCE IN KCl Consider a KC1 crystal which has the FCC crystal
structure and the following properties. The optical dielectric constant is 2.19, the dc dielectric
constant is 4.84, and the lattice parameter a is 0.629 nm. Calculate the dc ionic polarizability
Qf/(0). Estimate the ionic resonance absorption frequency and compare the value with the ex-
perimentally observed resonance at 4.5 x 1012 Hz in Figure 7.16b. The atomic masses of K and
CI are 39.09 and 35.45 g mol-1, respectively.

SOLUTION

At optical frequencies the dielectric constant erop is determined by electronic polarization. At
low frequencies and under dc conditions, the dielectric constant erdc is determined by both elec-
tronic and ionic polarization. If Ni is the concentration of negative and positive ion pairs, then
equation 7.93 becomes

£rdc ~ 1        rop ~" 1 1    at /nx - = + -NtadO)
erdc -I- 2     6rop + 2 3S0

There are four negative and positive ion pairs per unit cell, and the cell dimension is a. The
concentration of negative and positive ion pairs Ni is

4
Ni = -

4

a 3     (0.629 x lO"9 m)3
1

.
61 x 1028 nT3

15 More rigorous theories of ionic polarization would consider the interactions of a propagating electromagnetic
wave with various phonon modes within the crystal, which is beyond the scope of this book.
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Substituting £rdc = 4.84 and er0p = 2.19 and Af, in Equation 7.93

a m) = - r dc ~ 1 _ g P - 11 = 3(8.85 x IQ-12) r4.84 - 1 _ 2.19-11
" Ni Lfirdc + 2    er0p + 2J "    1.61 x 1028    [4.84 + 2    2.19 + 2J

we find

a/(0) = 4.58 x lO-40 Fm
2

The relationship between a, (0) and the resonance absorption frequency involves the re-
duced mass Mr of the K+-Cr ion pair,

(39.09)(35.45)(10-3) 9fi
M

r
 = = = 3

.09 x lO"26 kg
M+ + M_     (39.09 + 35.45)(6.022 x 1023) 6

At co = 0, the polarizability is given by Equation 7.90, so the resonance absorption fre-
quency coi is

r  q2 I172  f      (1.6 xio-19)2 11/2

co! =   -  =   7  -

,
  = 4

.
26 x 1013 rad s"1

L ra/(0)J        [(3.09 x 10-26)(4.58 x lO"40) J

or f[ = - = 6.8 x 1012 Hz

This is about a factor of 1.5 greater than the observed resonance absorption frequency of
4

.5 x 1012 Hz. Typically one accounts for the difference by noting that the actual ionic charges
may not be exactly +e on K+ and - e on CI", but Q is effectively 0.76e. Taking Q = 0.76e
makes // = 5.15 x 1012 Hz, only 14 percent greater than the observed value. A closer agree-
ment can be obtained by refining the simple theory and considering how many effective dipoles
there are in the unit cell along the direction of the applied field.

7
.

13   DIELECTRIC MIXTURES AND
HETEROGENEOUS MEDIA

Many dielectrics are composite materials; that is, they are mixtures of two or more dif-
ferent types of dielectric materials with different relative permittivities and loss fac-
tors. The simplest example is a porous dielectric which has small air pores randomly
dispersed within the bulk of the material as shown in Figure 7.59a (analogous to a ran-
dom raisin pudding). Another example would be a dielectric material composed of two
distinctly different phases that are randomly mixed, as shown in Figure 7.59b, some-
what like a Swiss cheese that has air bubbles. We often need to find the overall or the

effective dielectric constant of the mixture, which is not a trivial problem.16 This

overall £reff can then be used to treat the mixture as if it were one dielectric substance
with this particular dielectric constant; for example, the capacitance can be calculated

16 The theories that try to represent a heterogeneous medium in terms of effective quantities are called effective
medium theories (or approximations). The theory of finding an effective dielectric constant of a mixture has intrigued
many famous scientists in the past. Over the years, many quite complicated mixture rules have been developed, and
there is no shortage of formulas in this field. Many engineers however still tend to use simple empirical rules to model
a composite dielectric. The primary reason is that many theoretical mixture rules depend on the exact knowledge of
the geometrical shapes, sizes, and distributions of the mixed phases.
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Figure 7.59   Heterogeneous dielectric media examples.
(a) Dispersed dielectric spheres in a dielectric matrix.
(b) A heterogeneous medium with two distinct phases I and II.
(c) Series mixture rule.
(d) Parallel mixture rule.
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from C = £0£reff A/d by simply using £reff. It should be emphasized that if mixing occurs
at the atomic level so that the material is essentially a solid solution, then, in principle,
the Clausius-Mossotti equation can be used in which we simply add the polarizabili-
ties of each species of atoms or ions weighted by their concentration. (We did this for
CsCl in Example 7.4.) The present problem examines heterogeneous materials, and
hence excludes such solid solutions.

The theoretical treatment of mixtures can be quite complicated since one has to
consider not only individual dielectric properties but also the geometrical shapes, sizes,
and distributions of the two (or more) phases present in the composite material. In many
cases, empirical rules that have been shown to work have been used to predict £reff.
Consider a heterogeneous dielectric that has two mixed phases I and II with dielec-
tric constants eri and £r2, and volume fractions vy and V2, respectively, (vi + V2 = 1) as
in Figure 7.59b. One simple and useful mixture rule is

e?eff = v rl + 2 [7.94]

where n is an index (a constant), usually determined empirically, that depends on the
type of mixture. If we have a parallel stack of plates of I and II in alternating (or in ran-
dom) sequence between the two electrodes, this would be like many series-connected
dielectrics and n would be -1. If the phases are in parallel as plates of I and II stacked
on top of each other, as shown in Figure 7.59d, then n is 1. As n approaches 0, Equa-
tion 7.94 can be shown to be equivalent to a logarithmic mixture rule:

In £reff = v2 In eri + V2 In er2 [7.95]

which is known as the Lichtenecker formula (1926). Although its scientific basis is
not strong, it has shown remarkable applicability to various heterogeneous media; per-
haps due to the fact that it is a kind of compromise between the two extreme limits of
series and parallel mixtures.
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There is one particular mixture rule for dispersed dielectric spheres (with er{),
such as air pores, in a continuous dielectric matrix (with er2), that works quite well for
volume fractions up to about 20 percent, called the Maxwell-Garnett formula

Sreff - gr2
= Vi

Sri + 2er2
[7.96]

The Maxwell-Garnett equation can predict the effective dielectric constant of
many different types of dielectrics that have dispersed pores. There are other mixture
rules, but the above are some of the common types.

LOW-k POROUS DIELECTRICS FOR MICROELEaRONICS It was mentioned in Chapter 2 that
today's high transistor density ICs have multilayers of metal interconnect lines that are separated
by an interlayer dielectric (ILD). The speed of the chip (as limited by the RC time constant)
depends on the overall interconnect capacitance, which depends on the relative permittivity
£riLD of the ILD. The traditional ILD material has been Si02 with sr = 3.9. There is much
research interest in finding suitable low-zc (also called low-/c) materials for such ILD applica-
tions, especially in ultralarge-scale integration (ULSI). What is the required porosity in Si02 if
its effective relative permittivity is to be 2.5?

SOLUTION

The Maxwell-Garnett equation is particularly useful for such porous media calculations. Sub-
stituting er2 = 3.9, sr\ = 1 (air pores), and setting ertfi = 2.5 in Equation 7.96 we have

2
.
5 - 3.9

2
.5 + 2(3.9)

and solving gives

vi = 0.412, or

1 - 3.9

1 + 2(3.9)

41% porosity

Such porosity is achievable but it may have side effects such as poorer mechanical properties and
lower breakdown voltage. Note that the Lichtenecker formula gives 32.6 percent porosity. As ap-
parent from this example, there is a distinct advantage in starting with a dielectric that has a low
initial eri and then using porosity to lower er further. For example, if we start with sr = 3, then
the same 41 percent porosity will yield sreff = 2.05. Many polymeric materials have er values

2
.5 and have been candidate materials for Iow-k ILD applications in microelectronics.

Maxwell-

Garnett

formula
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DEFINING TERMS

Boundary conditions relate the normal and tangen-
tial components of the electric field next to the bound-
ary. The tangential component must be continuous
through the boundary. Suppose that £„ i is the normal
component of the field in medium 1 at the boundary
and £ri is the relative permittivity in medium 1. Using
a similar notation for medium 2, then the boundary
condition is £ri£„i = e 'Eni-

Clausius-Mossotti equation relates the dielectric
constant (£r), a macroscopic property, to the polariz-
ability (a), a microscopic property.

Complex relative permittivity (e  + je") has a real
part {s'

r) that determines the charge storage ability and
an imaginary part (e ') that determines the energy
losses in the material as a result of the polarization
mechanism. The real part determines the capacitance
through C = eoS A/d and the imaginary part deter-
mines the electric power dissipation per unit volume as
heat by tfcoSoe".

Corona discharge is a local discharge in a gaseous
atmosphere where the field is sufficiently high to cause
dielectric breakdown, for example, by avalanche
ionization.

Curie temperature Tc is the temperature above
which ferroelectricity disappears, that is, the sponta-
neous polarization of the crystal is lost.

Debye equations attempt to describe the frequency
response of the complex relative permittivity + js"

of a dipolar medium through the use of a single relax-
ation time t to describe the sluggishness of the dipoles
driven by the external ac field.

Dielectric is a material in which energy can be stored
by the polarization of the molecules. It is a material
that increases the capacitance or charge storage ability
of a capacitor. Ideally, it is a nonconductor of electri-
cal charge so that an applied field does not cause a flow
of charge but instead relative displacement of opposite
charges and hence polarization of the medium.

Dielectric loss is the electrical energy lost as heat in
the polarization process in the presence of an applied
ac field. The energy is absorbed from the ac voltage
and converted to heat during the polarization of the

molecules. It should not be confused with conduction

lossaE2 or V2/R.

Dielectric strength is the maximum field (Ebr) that
can be sustained in a dielectric beyond which dielectric
breakdown ensues; that is, there is a large conduction
current through the dielectric shorting the plates.

Dipolar (orientational) polarization arises when ran-
domly oriented polar molecules in a dielectric are ro-
tated and aligned by the application of a field so as to
give rise to a net average dipole moment per molecule.
In the absence of the field, the dipoles (polar mole-
cules) are randomly oriented and there is no average
dipole moment per molecule. In the presence of the

field, the dipoles are rotated, some partially and some
fully, to align with the field and hence give rise to a net
dipole moment per molecule.

Dipolar relaxation equation describes the time re-
sponse of the induced dipole moment per molecule in a
dipolar material in the presence of a time-dependent
applied field. The response of the dipoles depends on
their relaxation time, which is the mean time required
to dissipate the stored electrostatic energy in the dipole
alignment to heat through lattice vibrations or molecu-
lar collisions.

Dipole relaxation (dielectric resonance) occurs
when the frequency of the applied ac field is such that
there is maximum energy transfer from the ac voltage
source to heat in the dielectric through the alternating
polarization and depolarization of the molecules by the
ac field. The stored electrostatic energy is dissipated
through molecular collisions and lattice vibrations (in
solids). The peak occurs when the angular frequency of
the ac field is the reciprocal of the relaxation time.

Electric dipole moment exists when a positive charge
+Q is separated from a negative charge -Q. Even
though the net charge is zero, there is nonetheless an
electric dipole moment p given by p = Qx where x is
the distance vector from - Q to +£?. Just as two

charges exert a Coulombic force on each other, two
dipoles also exert a force on each other that depends on
the magnitudes of the dipoles, their separation, and
orientation.

s
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Electric susceptibility (Xe) is a material quantity that
measures the extent of polarization in the material per
unit field. It relates the amount of polarization P at a
point in the dielectric to the field £ at that point via
P = xee0rL. If er is the relative permittivity, then
Xe - &r ~ 1 . Vacuum has no electric susceptibility.
Electromechanical breakdown and electrofracture

are breakdown processes that directly or indirectly in-
volve electric field-induced mechanical weakening,
for example, crack propagation, or mechanical defor-
mation that eventually lead to dielectric breakdown.

Electronic bond polarization is the displacement of
valence electrons in the bonds in covalent solids {e.g.,
Ge, Si). It is a collective displacement of the electrons
in the bonds with respect to the positive nuclei.

Electronic polarization is the displacement of the
electron cloud of an atom with respect to the positive
nucleus. Its contribution to the relative permittivity of
a solid is usually small.

External discharges are discharges or shorting cur-
rents over the surface of the insulator when the con-

ductance of the surface increases as a result of surface

contamination, for example, excessive moisture, depo-
sition of pollutants, dirt, dust, and salt spraying. Even-
tually the contaminated surface develops sufficient
conductance to allow discharge between the electrodes
at a field below the normal breakdown strength of the
insulator. Dielectric breakdown over the surface of an

insulation is termed surface tracking.

Ferroelectricity is the occurrence of spontaneous
polarization in certain crystals such as barium titanate
(BaTiOs). Ferroelectric crystals have a permanent
polarization P as a result of spontaneous polarization.
The direction of P can be defined by the application of
an external field.

Gauss's law is a fundamental law of physics that
relates the surface integral of the electric field over a
closed (hypothetical) surface to the sum of all the
charges enclosed within the surface. If £„ is the field
normal to a small surface area dA and Qtotai is the

enclosed total charge, then over the whole closed sur-
face E0 § £„ <M = <2totai.
Induced polarization is the polarization of a mole-
cule as a result of its placement in an electric field. The
induced polarization is along the direction of the field.

If the molecule is already polar, then induced polariza-
tion is the additional polarization that arises due to the
applied field alone and it is directed along the field.

Insulation aging is a term used to describe the physi-
cal and chemical deterioration in the properties of the
insulation so that its dielectric breakdown characteris-

tics worsen with time. Aging therefore determines the
useful life of the insulation.

Interfacial polarization occurs whenever there is an
accumulation of charge at an interface between two
materials or between two regions within a material.
Grain boundaries and electrodes are regions where
charges generally accumulate and give rise to this type
of polarization.

Internal discharges are partial discharges that take
place in microstructural voids, cracks, or pores within
the dielectric where the gas atmosphere (usually air)
has lower dielectric strength. A porous ceramic, for
example, would experience partial discharges if the
field is sufficiently large. Initially, the pore size (or the
number of pores) may be small and the partial dis-
charge insignificant, but with time the partial discharge
erodes the internal surfaces of the void. Eventually
(and usually) an electrical tree type of discharge devel-
ops from a partial discharge that has been eroding the
dielectric. The erosion of the dielectric by the partial
discharge propagates like a branching tree. The "tree
branches" are erosion channels, filaments of various

sizes, in which gaseous discharge takes place and
forms a conducting channel during operation.

Intrinsic breakdown or electronic breakdown com-

monly involves the avalanche multiplication of elec-
trons (and holes in solids) by impact ionization in the
presence of high electric fields. The large number of

free carriers generated by the avalanche of impact ion-
izations leads to a runaway current between the elec-
trodes and hence to insulation breakdown.

Ionic polarization is the relative displacement of
oppositely charged ions in an ionic crystal that results
in the polarization of the whole material. Typically,
ionic polarization is important in ionic crystals below
the infrared wavelengths.

Local field (£ioc) is the true field experienced by a
molecule in a dielectric that arises from the free

charges on the plates and all the induced dipoles
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surrounding the molecule. The true field at a molecule
is not simply the applied field (V/d) because of the
field of the neighboring induced dipoles.

Loss tangent or tan 3 is the ratio of the dielectric con-
stant

'

s imaginary part to the real part, s /s . The angle
5 is the phase angle between the capacitive current and
the total current. If there is no dielectric loss, then the

two currents are the same and 5 = 0.

Partial discharge occurs when only a local region of
the dielectric is exhibiting discharge, so the discharge
does not directly connect the two electrodes.

Piezoelectric material has a noncentrosymmetric
crystal structure that leads to the generation of a polar-
ization vector P, or charges on the crystal surfaces,
upon the application of a mechanical stress. When
strained, a piezoelectric crystal develops an internal
field and therefore exhibits a voltage difference
between two of its faces.

PLZT, lead lanthanum zirconate titanate, is a PZT-

type material with lanthanum occupying the Pb site.

Polarizability (a) is the ability of an atom or mole-
cule to become polarized in the presence of an electric
field. It is induced polarization in the molecule per unit
field along the field direction.

Polarization is the separation of positive and negative
charges in a system so that there is a net electric dipole
moment per unit volume.

Polarization vector (P) measures the extent of polar-
ization in a unit volume of dielectric matter. It is the

vector sum of dielectric dipoles per unit volume. If p is
the average dipole moment per molecule and n is the
number of molecules per unit volume, then P = np. In
a polarized dielectric matter {e.g., in an electric field),
the bound surface charge density gp due to polarization
is equal to the normal component of P at that point,
Gp - Pnormal .

Poling is the application of a temporary electric field
to a piezoelectric (or ferroelectric) material, generally
at an elevated temperature, to align the polarizations of
various grains and thereby develop piezoelectric
behavior.

Pyroelectric material is a polar dielectric (such as
barium titanate) in which a temperature change AT

induces a proportional change A P in the polarization,
that is, A P = p A T, where p is the pyroelectric coef-
ficient of the crystal.

PZT is a general acronym for the lead zirconate
titanate (PbZrOs-PbTiOs or PbTio

.
48Zro.52O3) family of

crystals.

Q-factor or quality factor for an impedance is the
ratio of its reactance to its resistance. The Q-factor of

a capacitor is Xc/Rp where Xc = \/coC and Rp is the
equivalent parallel resistance that represents the di-
electric and conduction losses. The Q-factor of a reso-
nant circuit measures the circuit's peak response at the
resonant frequency and also its bandwidth. The
greater the g, the higher the peak response and the
narrower the bandwidth. For a series RLC resonant

circuit,

Q
1

to0CR

where co0 is the resonant angular frequency, (o0 =
1 /VLC. The width of the resonant response curve be-
tween half-power points is Aco = (o0/Q.

Relative permittivity (sr) or dielectric constant of
a dielectric is the fractional increase in the stored

charge per unit voltage on the capacitor plates due to
the presence of the dielectric between the plates (the
whole space between the plates is assumed to be
filled). Alternatively, we can define it as the fractional
increase in the capacitance of a capacitor when the
insulation between the plates is changed from a vac-
uum to a dielectric material, keeping the geometry the
same.

Relaxation time (r) is a characteristic time that

determines the sluggishness of the dipole response to
an applied field. It is the mean time for the dipole to
lose its alignment with the field due to its random
interactions with the other molecules through molecu-
lar collisions, lattice vibrations, and so forth.

Surface tracking is an external dielectric breakdown
that occurs over the surface of the insulation.

Temperature coefficient of capacitance (TCC) is the
fractional change in the capacitance per unit tempera-
ture change.



Questions and Problems 673

Thermal breakdown is a breakdown process that thermal runaway ensues, followed by either a large
involves thermal runaway, which leads to a runaway shorting current or local thermal decomposition of the
current or discharge between the electrodes. If the heat insulation accompanied by a partial discharge in this
generated by dielectric loss, due to e", or Joule heat- region.

ing, due to finite a, cannot be removed sufficiently Transducer is a device that converts electrical energy
rapidly, then the temperature of the dielectric rises, int0 another form of usable energy or vice versa. For
which increases the conductivity and the dielectric example, piezoelectric transducers convert electrical
loss. The increases in e" and a lead to more heat energy to mechanical energy and vice versa.
generation and a further rise in the temperature, so

questions and problems
7
.1       Relative permittivity and polarizability

a.    Show that the local field is given by

£loc = £( -        ) Local field

b
. Amorphous selenium (a-Se) is a high-resistivity semiconductor that has a density of approximately

4
.3 g cm-3 and an atomic number and mass of 34 and 78.96, respectively. Its relative permittivity

at 1 kHz has been measured to be 6.7. Calculate the relative magnitude of the local field in a-Se.
Calculate the polarizability per Se atom in the structure. What type of polarization is this? How will
er depend on the frequency?

c. If the electronic polarizability of an isolated atom is given by

where r0 is the radius of the atom, then calculate the electronic polarizability of an isolated Se atom,
which has r0 =0.12 nm, and compare your result with that for an atom in a-Se. Why is there a dif-
ference?

7
.2 Electronic polarization and SF6 Because of its high dielectric strength, SF6 (sulfur hexafluoride) gas

is widely used as an insulator and a dielectric in HV applications such as HV transformers, switches, cir-
cuit breakers, transmission lines, and even HV capacitors. The SF6 gas at 1 atm and at room temperature
has a dielectric constant of 1.0015. The number of SF6 molecules per unit volume Af can be found by
the gas law, P = (N/Na)RT. Calculate the electronic polarizability ae of the SF6 molecule. How does
ae compare with the ae versus Z line in Figure 7.4? (Note: The SF6 molecule has no net dipole. Assume
that the overall polarizability of SF6 is due to electronic polarization.)

7
.3 Electronic polarization in liquid xenon Liquid xenon has been used in radiation detectors. The den-

sity of the liquid is 3.0 g cm-3
. What is the relative permittivity of liquid xenon given its electronic po-

larizability in Table 7.1? (The experimental er is 1.96.)

7
.4 Relative permittivity, bond strength, bandgap, and refractive index Diamond, silicon, and germanium

are
.covalent solids with the same crystal structure. Their relative permittivities are shown in Table 7.10.

a.    Explain why £r increases from diamond to germanium.

y      b.   Calculate the polarizability per atom in each crystal and then plot polarizability against the elastic
modulus Y (Young's modulus). Should there be a correlation?

c. Plot the polarizability from part (b) against the bandgap energy Eg. Is there a relationship?
d

. Show that the refractive index n is /e . When does this relationship hold and when does it fail?
e. Would your conclusions apply to ionic crystals such as NaCl?
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Table 7.10  Properties of diamond, Si, and Ge

Sr at

Density
(g cm"3) e

Y

(GPa) (eV) n

Diamond

Si

Ge

5
.
8

11.9

16

12

28.09

72.61

3
.
52

2
.
33

5
.
32

827

190

75.8

5
.
5

1
.
12

0
.
67

2
.
42

3
.
45

4
.
09

Net force on a
dipole

7
.5 Dipolar liquids Given the static dielectric constant of water as 80, its high-frequency dielectric con-

stant (due to electronic polarization) as 4, and its density as 1 g cm-3
, calculate the permanent dipole

moment p0 per water molecule assuming that it is the orientational and electronic polarization of indi-
vidual molecules that gives rise to the dielectric constant. Use both the simple relationship in Equation
7
.14 where the local field is the same as the macroscopic field and also the Clausius-Mossotti equation

and compare your results with the permanent dipole moment of the water molecule which is
6
.1 x 10~30 C m. What is your conclusion? What is er calculated from the Clausius-Mossotti equation

taking the true p0 (6.1 x 10~30 C m) of a water molecule? (Note: Static dielectric constant is due to both
orientational and electronic polarization. The Clausius-Mossotti equation does not apply to dipolar ma-
terials because the local field is not described by the Lorentz field.)

7
.6 Dielectric constant of water vapor or steam The isolated water molecule has a permanent dipole p0

of 6.1 x 10-30 C m. The electronic polarizability ae of the water molecule under dc conditions is about
4 x 10-40 C m. What is the dielectric constant of steam at a pressure of 10 atm (10 x 105 Pa) and at a
temperature of 400 0C? [Note: The number of water molecules per unit volume Af can be found from
the simple gas law, P = (N/Na)RT. The Clausius-Mossotti equation does not apply to orientational
polarization. Since N is small, use Equation 7.14.]

7
.7 Dipole moment in a nonuniform electric field Figure 7.60 shows an electric dipole moment p in a

nonuniform electric field. Suppose the gradient of the field is d'E/dx at the dipole p, and the dipole is
oriented to be along the direction of increasing £ as in Figure 7.60. Show that the net force acting on this
dipole is given by

F = PTX

Figure 7.60
Left: A dipole moment in a nonuniform field
experiences a net force F that depends on the
dipole moment p and the field gradient d'E/dx.
Right: When a charged comb (by combing hair)
is brought close to a water jet, the field from the
comb polarizes the liquid by orientational
fbolarization. The induced polarization vector P
and hence the liquid is attracted to the comb
where the field is higher.

P
F

11

i
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Which direction is the force? What happens to this net force when the dipole moment is facing the di-
rection of decreasing field? Given that a dipole normally also experiences a torque as described in Sec-
tion 7.3.2, explain qualitatively what happens to a randomly placed dipole in a nonuniform electric field.
Explain the experimental observation of bending a flow of water by a nonuniform field from a charged
comb as shown in the photograph in Figure 7.60? (Remember that a dielectric medium placed in a field
develops polarization P directed along the field.)

7
.8 Ionic and electronic polarization Consider a CsBr crystal that has the CsCl unit cell crystal structure

(one Cs+-Br_ pair per unit cell) with a lattice parameter {a) of 0.430 nm. The electronic polarizability
of Cs+ and Br~ ions are 3.35 x lO-40 F m2 and 4.5 x lO-40 F m2, respectively, and the mean ionic po-
larizability per ion pair is 5.8 x lO-40 F m2. What is the low-frequency dielectric constant and that at
optical frequencies?

7
.9 Electronic and ionic polarization in KC1 KC1 has the same crystal structure as NaCl. KCl's lattice

parameter is 0.629 nm. The ionic polarizability per ion pair (per K+-C1~ ion) is 4.58 x lO-40 F m2.
The electronic polarizability of K+ is 1.26 x lO"40 F m2 and that of CI" is 3.41 x lO"40 F m2. Calcu-
late the dielectric constant under dc operation and at optical frequencies. Experimental values are 4.84
and 2.19.

7
.10 Debye relaxation We will test the Debye equations for approximately calculating the real and imagi-

nary parts of the dielectric constant of water just above the freezing point at 0.2 0C
. Assume the following

values in the Debye equations for water: Erfc = 87.46 (dc), £r00 = 4.87 (at / = 300 GHz well beyond the
relaxation peak), and r = \/a)0 = (2 9.18 GHz)-1 =0

.017 ns. Calculate the real and imaginary, e'r
and e"

, parts of £r for water at frequencies in Table 7.11, and plot both the experimental values and your
calculations on a linear-log plot (frequency on the log axis). What is your conclusion? (Note: It is pos-
sible to obtain a better agreement by using two relaxation times or using more sophisticated models.)

Table 7.11   Dielectric properties of water at 0.2 0C

/(GHz)

03 0
.5 1 1.5 3 5 9

.18 10 20 40 70 100 300

e
'

r
 87.46 87.25 86.61 85.34 76.20 68.19 46.13 42.35 19.69 10.16 7.20 6.14 4.87

e
';    2.60    4.50    8.85   13.18   24.28   34.53   40.55   40.24   30.23   17.68 11.15   8.31 3.68

I SOURCE: Data extracted from R. Buchner et al., Chem. Phys. Letts, 306, 57, 1999.

*7
.11    Debye and non-Debye relaxation and Cole-Cole plots  Consider the Debye equation

Srdc ~ groo

1 + jo)T

and also the generalized dielectric relaxation equation, which "stretches" (broadens) the Debye
function,

grdc ~ Sroo

[l + Or)«

Take r = 1, er(ic = 5, eroo = 2, and a = 0.8, and ft = 1. Plot the real and imaginary parts of £r
versus frequency (on a log scale) for both functions from co = 0, 0.1/r, 1 /3r, 1 /r, 3/r, and lOr. For the
same co values, plot e" versus (Cole-Cole plot) for both functions using a graph in which the x and y
axes have the same divisions. What is your conclusion?

7.12 , Equivalent circuit of a polyester capacitor Consider a 1 nF polyester capacitor that has a polymer
(PET) film thickness of 1 jam. Calculate the equivalent circuit of this capacitor at 50 0C and at 120 0C
for operation at 1 kHz. What is your conclusion?

Debye
relaxation

Generalized

dielectric

relaxation
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7
.13 Student microwaves mashed potatoes A microwave oven uses electromagnetic waves at 2.48 GHz

to heat food by dielectric loss, that is, making use of of the food material, which normally has sub-
stantial water content. An undergraduate student microwaves 10 cm3 of mashed potatoes in 60 seconds.
The microwave generates an rms field of 'Eons of 200 V cm-1 in mashed potatoes. At 2.48 GHz, mashed
potatoes have e" = 21

. Calculate the average power dissipated per cm3, and also the total energy dissi-
pated heating the food. (Note: You can use 'Erms instead of E in Equation 7.32.)

7
.14 Dielectric loss per unit capacitance Consider the three dielectric materials listed in Table 7.12 with

the real and imaginary dielectric constants and e". At a given voltage, which dielectric will have the
lowest power dissipation per unit capacitance at 1 kHz and at an operating temperature of 50 0C? Is this
also true at 120 0C?

Table 7.12   Dielectric properties of three insulators at 1 kHz

r-so oc

Material

r=i20oc

4

Polycarbonate
PET

PEEK

2
.
47

2
.
58

2
.
24

0
.
003

0
.
003

0
.
003

2
.
535

2
.
75

2
.
25

0
.
003

0
.
027

0
.003

SOURCE: Data taken using a DEA by Kasap and Nomura (1995).

Equivalent
series resistance

and capacitance

Equivalent
series resistance

and capacitance

7
.15 Parallel and series equivalent circuits Figure 7.61 shows simplified parallel and series equivalent

circuits for a capacitor. The elements Rp and Cp in the parallel circuit and the elements Rs and C5 in the
series circuit are related. We can write down the impedance Zab between the terminals A and B for both
the circuits, and then equate Zab (parallel) = Zab (series). Show that

Rs
R

P and
1 + ((oRpCp)2

and similarly by considering the admittance (1/impedance),

c--c'[1 + (&e?\

and
p

Cs

1 + (cDfljC,)2

A 10 nF capacitor operating at 1 MHz has a parallel equivalent resistance of 100 k£2. What are
and Rs?

Figure 7.61   An equivalent parallel Rp
and Cp circuit is equivalent to a series #s
and Cs circuit. The elements Rp and Cp in
the parallel circuit are related to the
elements Rs and Cs in the series circuit.

A

£5
p

B

A

T

<r Rp

T
B

A

Cs

B

7
.16     Tantalum capacitors  Electrolytic capacitors tend to be modeled by a series Rs + ja>Cs equivalent

circuit. A nominal 22 jaF Ta capacitor (22 |iF at low frequencies) has the following properties at 10 kHz:
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E
'

r % 20 (at this frequency), tan (5  0.05, dielectric thickness d
Calculate Cp,Rp,Cs, and Rs.

0
.16 jLim, effective area A = 150 cm2.

7
.17 Tantalum versus niobium oxide capacitors Niobium oxide (Nb205) is a competing dielectric to

Ta205 (the dielectric in the tantalum capacitor). The dielectric constants are 41 for Nl Os and 27 for
Ta205. For operation at the same voltage, the Ta205 thickness is 0.17 jam, and that of Nb205 is 0.25 jum.
Explain why the niobium oxide capacitor is superior (or inferior) to the Ta capacitor. (Use a quantitative
argument, such as the capacitance per unit volume.) What other factors would you consider if you were
choosing between the two?

*7
.18   TCC of a polyester capacitor  Consider the parallel plate capacitor equation

C
eoerxy

z

where £r is the relative permittivity (or e ), x and y are the side lengths of the dielectric so that xy is the
area A, and z is the thickness of the dielectric. The quantities er, x, y, and z change with temperature. By
differentiating this equation with respect to temperature, show that the temperature coefficient of
capacitance (TCC) is

1 dC       1 dBr 
yTCC = -- = - -

C dT     Br dT

where X is the linear expansion coefficient defined by

_

 1 dL
L Ht

where L stands for any length of the material (x, y, or z). Assume that the dielectric is isotropic and A. is
the same in all directions. Using ej. versus T behavior in Figure 7.62 and taking X
a typical value for polymers, predict the TCC at room temperature and at 10 kHz.

50 x lO"* K-6 -1
as

Temperature
coefficient of
capacitance

2
.
60

PET,/= 10 kHz2
.
59-

C 2.58-
r

2
.
57-

2
.
56 -

i
-

1
-

r
"

1
-

i
-1-i

-

1
-

20     30     40     50     60 70

T

80 90

Temperature (0C)

Figure 7.62 Temperature
dependence of e'r at 10 kHz.
I SOURCE: Data taken by Kasap
I and Maeda (1995).

7
.19 Dielectric breakdown of gases and Paschen curves Dielectric breakdown in gases typically in-

volves the avalanche ionization of the gas molecules by energetic electrons accelerated by the applied
field. The mean free path between collisions must be sufficiently long to allow the electrons to gain suf-
ficient energy from the field to impact ionize the gas molecules. The breakdown voltage Vbr between two
electrodes depends on the distance d between the electrodes as well as the gas pressure P, as shown in
Figure 7.63. Vbr versus Pd plots are called Paschen curves. We consider gaseous insulation, air and SF6,
in an HV switch.

a. What is the breakdown voltage between two electrodes of a switch separated by a 5 mm gap with
air at 1 atm when the gaseous insulation is air and when it is SFe?

b
. What are the breakdown voltages in the two cases when the pressure is 10 times greater? What is

your conclusion?
c. At what pressure is the breakdown voltage a minimum?
d

. What air gap spacing d at 1 atm gives the minimum breakdown voltage?

e. What would be the reasons for preferring gaseous insulation over liquid or solid insulation?
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Figure 7.63  Breakdown voltage versus
(pressure x electrode spacing) (Paschen
curves).
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*7
.20   Capacitor design  Consider a nonpolarized 100 nF capacitor design at 60 Hz operation. Note that there

are three candidate dielectrics, as listed in Table 7.13.

Calculate the volume of the 100 nF capacitor for each dielectric, given that they are to be used
under low voltages and each dielectric has its minimum fabrication thickness. Which one has the
smallest volume?

How is the volume affected if the capacitor is to be used at a 500 V application and the maximum
field in the dielectric must be a factor of 2 less than the dielectric strength? Which one has the
smallest volume?

At a 500 V application, what is the power dissipated in each capacitor at 60 Hz operation? Which
one has the lowest dissipation?

a.

b
.

c.

Table 7.13  Comparison of dielectric properties at 60 Hz (typical values)

Polymer Film
PET

Ceramic

Ti02
High  Ceramic
(BaTiOs based)

Name

tan 8

EbrtkVcm"1)

Typical minimum thickness

Polyester

3
.
2

5 x IO"3

150

1-2 pm

Polycrystalline
titania

90

4 x IO"4

50

10 pm

X7R

1800

5 x IO"2

100

10 pm

*7
.21 Dielectric breakdown in a coaxial cable Consider a coaxial underwater high-voltage cable as in

Figure 7.64a. The current flowing through the inner conductor generates heat, which has to flow through
the dielectric insulation to the outer conductor where it will be carried away by conduction and convec-
tion. We will assume that steady state has been reached and the inner conductor is carrying a dc current /.
Heat generated per unit second Qf = d Q/dt by Joule heating of the inner conductor is

Rate of heat
generation

0! RI2 pLI

na

2

2
[7.97]

where p is the resistivity, a the radius of the conductor, and L the cable length.
This heat flows radially out from the inner conductor through the dielectric insulator to the outer

conductor, then to the ambient. This heat flow is by thermal conduction through the dielectric. The rate
of heat flow Qf depends on the temperature difference 7} - T0 between the inner and outer conductors;
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Figure 7.64
(a) The Joule heat generated in the
core conductor flows outward

radially through the dielectric
material.

(b) Typical temperature dependence
of the dielectric strength of a
polyethylene-based polymeric
insulation.

7
.
22

on the sample geometry (a, b, and L); and on the thermal conductivity k of the dielectric. From elemen-
tary thermal conduction theory, this is given by

Q' = {Ti - T0)
IttkL

[7.98]

The inner core temperature T, rises until, in the steady state, the rate of Joule heat generation by the
electric current in Equation 7.97 is just removed by the rate of thermal conduction through the dielectric
insulation, given by Equation 7.98.
a.    Show that the inner conductor temperature is

[7.99]

b
.   The breakdown occurs at the maximum field point, which is at r = a, just outside the inner con-

ductor and is given by (see Example 7.11).

V
max [7.100]

The dielectric breakdown occurs when !Emax reaches the dielectric strength £br- However the di-
electric strength £br for many polymeric insulation materials depends on the temperature, and gen-
erally it decreases with temperature, as shown for a typical example in Figure 7.64b. If the load
current / increases, then more heat Qf is generated per second and this leads to a higher inner core
temperature 7, by virtue of Equation 7.99. The increase in 7, with / eventually lowers Ebr so much
that it becomes equal to !Emax and the insulation breaks down (thermal breakdown). Suppose that a
certain coaxial cable has an aluminum inner conductor of diameter 10 mm and resistivity 27 n£2 m.
The insulation is 3 mm thick and is a polyethylene-based polymer whose long-term dc dielectric
strength is shown in Figure 7.64b. Suppose that the cable is carrying a voltage of 40 kV and the
outer shield temperature is the ambient temperature, 25 0C

. Given that the thermal conductivity of
the polymer is about 0.3 W K-1 m-1, at what dc current will the cable fail?
Rederive 7/ in Equation 7.99 by considering that p depends on the temperature as p = p0[\ +
a0(T - T0)] (Chapter 2). Recalculate the maximum current in b given that = 3.9 x 10~3 0C~1
at 25 0C

.

Piezoelectricity Consider a quartz crystal and a PZT ceramic filter both designed for operation at
fs
 = 1 MHz

. What is the bandwidth of each? Given Young's modulus (Y), density (p) for each, and that
the filter is a disk with electrodes and is oscillating radially, what is the diameter of the disk for each
material? For quartz, Y = 80 GPa and p = 2.65 g cm-3

. For PZT, Y = 10 GPa and p = 7.7 g m~3.

c.

Rate of heat
conduction

Steady-state
inner conductor

temperature

Maximum field
in a coaxial

cable
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Assume that the velocity of mechanical oscillations in the crystal is v
X = v/fs. Consider only the fundamental mode (n = 1).

*JYlp and the wavelength

Piezoelectric voltage coefficient The application of a stress T to a piezoelectric crystal leads to a
polarization P and hence to an electric field £ in the crystal such that

where Q is the piezoelectric voltage coefficient. If E0Er is the permittivity of the crystal, show that

9
d

So r

A BaTiOs sample, along a certain direction (called 3), has d = 190 pC N-1, and its er « 1900 along this
direction. What do you expect for its Q coefficient for this direction and how does this compare with the
measured value of approximately 0.013 m2 C_1 ?

Piezoelectricity and the piezoelectric bender

a. Consider using a piezoelectric material in an application as a mechanical positioner where the
displacements are expected to be small (as in a scanning tunneling microscope). For the piezo-
electric plate shown in Figure 7.65a, we will take L = 20 mm, W = 10 mm, and D (thickness) =
0

.25 mm. Under an applied voltage of V, the plate changes length, width, and thickness accord-
ing to the piezoelectric coefficients , relating the applied field along i to the resulting strain
along;.

Suppose we define direction 3 along the thickness D and direction 1 along the length L, as shown
in Figure 7.65a. Show that the changes in the thickness and length are

8D = dx V

b
.

8L (1)
Given J33 « 500 x 10~12 m V"1 and J31 % -250 x 10~12 m V"1, calculate the changes in the
length and thickness for an applied voltage of 100 V. What is your conclusion?

Consider two oppositely poled and joined ceramic plates, A and B, forming a bimorph, as shown
in Figure 7.65b. This piezoelectric bimorph is mounted as a cantilever; one end is fixed and the
other end is free to move. Oppositely poled means that the electric field elongates A and contracts
B

, and the two relative motions bend the plate. The displacement h of the tip of the cantilever is
given by

h V

What is the deflection of the cantilever for an applied voltage of 100 V? What is your conclusion?

Figure 7.65
(a) A mechanical positioner using a piezoelectric plate
under an applied voltage of V.
(b) A cantilever-type piezoelectric bender. An applied
voltage bends the cantilever.

w/2
D Piezoelectric)eiecinc /

1

1

v

3

I 2

V

.

*
B

0

a (b)
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7
.25     Piezoelectricity  The wavelength X of mechanical oscillations in a piezoelectric slab satisfies

L

where n is an integer, L is the length of the slab along which mechanical oscillations are set up, and the
wavelength X is determined by the frequency /and velocity v of the waves. The ultrasonic wave veloc-
ity v depends on Young's modulus Y as

1/2

.-(;)
where p is the density. For quartz, Y = 80GPa and p = 2.65 g cm 3

. Considering the fundamental
mode (n = 1), what are practical dimensions for crystal oscillators operating at 1 kHz and 1 MHz?

7
.26 Pyroelectric detectors Consider two different radiation detectors using PZT and PVDF as pyro-

electric materials whose properties are summarized in Table 7.14. The receiving area is 4 mm2
.
 The

thicknesses of the PZT ceramic and the PVDF polymer film are 0.1 mm and 0.005 mm, respectively.
In both cases the incident radiation is chopped periodically to allow the radiation to pass for a dura-
tion of 0.05 s.

a. Calculate the magnitude of the output voltage for each detector if both receive a radiation of inten-
sity 10 jaW cm"2

. What is the corresponding current in the circuit? In practice, what would limit
the magnitude of the output voltage?

b
. What is the minimum detectable radiation intensity if the minimum detectable signal voltage is 10 nV?

Table 7.14   Properties of PZT and PVDF

Pyroelectric
Coefficient Density Heat Capacity

s
f

r
              (xlO Cm K-1) (gem-3) (J K-1 g-1)

PZT              290                      380 7.7 0.3

PVDF              12                        27 1.76 1.3

7
.27 LiTaOa pyroelectric detector LiTaOs (lithium tantalate) detectors are available commercially.

LiTaOs has the following properties: pyroelectric coefficient p % 200 x 10-6 nC m~2 K-1, density
p = 7.5 g cm-3

, specific heat capacity cs = 0.43 J K~1 g-1. A particular detector has a cylindrical crys-
tal with a diameter of 10 mm and thickness of 0.2 mm. Suppose we chop the input radiation and allow
the radiation to fall on the detector for short periods of time. Each input radiation pulse has a duration of
Af = 10 ms. (The time between the radiation pulses is long, so consider only the response of the detec-
tor to a single pulse of radiation.) Suppose that all the incident radiation is absorbed. If the input radia-
tion has an intensity of 10 jaW cm-2, calculate the pyroelectric current, and the maximum possible output
voltage that can be generated assuming that the input impedance of the amplifier is sufficiently large to
be negligible. What is the current responsivity of this detector? What are the major assumptions in your
calculation of the voltage signal?

*7
.28 Pyroelectric detectors Consider a typical pyroelectric radiation detector circuit as shown in Fig-

ure 7.66. The FET circuit acts as a voltage follower (source follower). The resistance R\ represents the
input resistance of the FET in parallel with a bias resistance that is usually inserted between the gate and
source. Ci is the overall input capacitance of the FET including any stray capacitance but excluding the
capacitance of the pyroelectric detector. Suppose that the incident radiation intensity is constant and
equal to J. Emissivity r) of a surface characterizes what fraction of the incident radiation that is ab-
sorbed? t]I is the energy absorbed per unit area per unit time. Some of the absorbed energy will increase
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Radiation

Receiving
surface, A

Figure 7.66 A pyroelectric detector with
an FET voltage follower circuit.

FET

_
J

C
v(t)

ll 1

Detector

temperature

Pyroelectric
current

Pyroelectric
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the temperature of the detector and some of it will be lost to surroundings by thermal conduction and
convection. Let the detector receiving area be A, thickness be L, density be p, and specific heat capacity
(heat capacity per unit mass) be c. The heat losses will be proportional to the temperature difference be-
tween the detector temperature T and the ambient temperature T0, as well as the surface area A (much
greater than L). Energy balance requires that

Rate of increase in the internal energy (heat content) of the detector

= Rate of energy absorption - Rate of heat losses

that is,

dT
(ALp)c -

at
Arjl -KA(T-T0)

where K is a constant of proportionality that represents the heat losses and hence depends on the thermal
conductivity k. If the heat loss involves pure thermal conduction from the detector surface to the detec-
tor base (detector mount), then K = k/L. In practice, this is generally not the case and K = k/L is an
oversimplification.

a.    Show that the temperature of the detector rises exponentially as

'". £[-p (-£)]
where Tth is a thermal time constant defined by rth
this equation simplifies to

Lpc/K. Further show that for very small K,

T T0 + ,
Lpc

b
.    Show that temperature change d T in time dt leads to a pyroelectric current ip given by

.  dT     Apr)!     (   t \
ip = Ap- = - exp  p      y dt       Lpc     FV W

c.

where p is the pyroelectric coefficient. What is the initial current?

The voltage across the FET and hence the output voltage v(t) is given by

U(0 = V0[exp(-±)-exp(-i.)]
where V0 is a constant and rd is the electrical time constant given by RiQ, where Q, total capac-
itance, is (Ci + Cdet), where Cdet is the capacitance of the detector. Consider a particular PZT py-
roelectric detector with an area of 1 mm2 and a thickness of 0.05 mm. Suppose that this PZT has
6r - 250, p = 7.7 g cm"3

,
 c = 0.3 J K~1 g

"1
,
 and k = 1.5 W K~1 m~1. The detector is connected

to an FET circuit that has R\ = 10 M£2 and Ci = 3 pF. Taking the thermal conduction loss con-
stant K as k/L, and rj = 1, calculate and rci. Sketch schematically the output voltage. What is
your conclusion?
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7
.29 Spark generator design Design a PLZT piezoelectric spark generator using two back-to-back PLZT

crystals that provide a 60 joJ spark in an air gap of 0.5 mm from a force of 50 N. At 1 atm in an air gap
of 0.5 mm, the breakdown voltage is about 3000 V. The design will need to specify the dimensions of
the crystal and the dielectric constant. Assume that the piezoelectric voltage coefficient is 0.023 V m N"1.

7
.30 Ionic polarization resonance in CsCl Consider a CsCl crystal which has the following properties.

The optical dielectric constant is 2.62, the dc dielectric constant is 7.20, and the lattice parameter a is
0

.412 nm. There is only one ion pair (Cs+-Cl_) in the cubic-type unit cell. Calculate (estimate) the ionic
resonance absorption frequency and compare the value with the experimentally observed resonance at
3
.1 x 1012 Hz. What effective value of Q would bring the calculated value to within 10 percent of the

experimental value?

7
.31 Low-k porous dielectrics for microelectronics Interconnect technologies need lower er interlayer di-

electrics (ILDs) to minimize the interconnect capacitances. These materials are called Iow-k dielectrics.

a. Consider fluorinated silicon dioxide, also known as fluorosilicate glass (FSG). Its er is 3.2. What
would be the effective dielectric constant if the ELD is 40 percent porous?

b
. What should be the starting er if we need an effective er less than 2 and the porosity cannot exceed

40 percent?
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Tree and bush type electrical discharge structures, (a) Voltage V =
160 kV, gap spacing d = 0.06 m at various times, (b) Dense bush
discharge structure, V= 300 kV, c/= 0.06 m at various times.

SOURCE: V. Lopatin, M. D. Noskov, R. Badent, K. Kist, A. J. Swab,
"Positive Discharge Development in Insulating Oil: Optical
Observation and Simulation," IEEE Trans, on D/e/ec. and Elec.

Insulation, vol. 5, no. 2, 1998, p. 251, figure 2. (© IEEE, 1998)
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Coaxial cable connector with traces of corona discharge; electrical
treeing.

SOURCE: M. Mayer and G. H. Schroder, "Coaxial 30 kV
Connectors for the RG220/U Cable: 20 Years of Operational
Experience," IEEE Electrical Insulation Magazine, vol. 16, March/
April 2000, p. 11, figure 6. (© IEEE, 2000)
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This small neodymium-iron-boron permanent magnet (diameter
about the same as one-cent coin) is capable of lifting up to
10 pounds. Nd-Fe-B magnets typically have large (BH)max values
(200-275 kj m"3).
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In 1986 J. George Bednorz (right) and K. Alex Muller, at IBM
Research Laboratories in Zurich, discovered that a copper oxide
based ceramic-type compound (La-Ba-Cu-O) which normally has
high resistivity becomes superconducting when cooled below 35 K.
This Nobel prize winning discovery opened a new era of high-
temperature-superconductivity researcn; now there are various
ceramic compounds that are superconducting above the liquid
nitrogen (an inexpensive cryogen) temperature (77 K).
I SOURCE: IBM Zurich Research Laboratories.
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Magnetic Properties
and Superconductivity

Many electrical engineering devices such as inductors, transformers, rotating ma-
chines, and ferrite antennas are based on utilizing the magnetic properties of materi-
als. There are many instances where permanent magnets are also used either on their
own or as part of a device such as a rotating machine or a loud speaker. The majority
of engineering devices make use of the ferromagnetic and ferrimagnetic properties,
which are therefore treated in much more detail than other magnetic properties such
as tfiamagnetism and paramagnetism. Although superconductivity involves the van-
ishing of the resistivity of a conductor at low temperatures and is normally explained
within quantum mechanics, we treat the subject in this chapter because all supercon-
ductors are perfect diamagnets and, further, they have present or potential uses that
involve magnetic fields. The advent of high-rc superconductivity, discovered in 1986
by George Bednorz and Alex Muller at IBM Research Laboratories in Zurich, is un-
doubtedly one of the most significant discoveries over the last 50 years, as popular-
ized in various magazines. High-rc superconductors are already finding applications
in such devices as superconducting solenoids, sensitive magnetometers, and high-Q
microwave filters.

8
.1    MAGNETIZATION OF MATTER

8
.
1
.1 Magnetic Dipole Moment

Magnetic properties of materials involve concepts based on the magnetic dipole mo-
ment. Consider a current loop, as shown in Figure 8.1, where the circulating current is /.
This may, for example, be a coil carrying a current. For simplicity we will assume that
the current loop lies within a single plane. The area enclosed by the current is A. Sup-
pose that un is a unit vector coming out from the area A. The direction of un is such that

685
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Figure 8.1 Definition
of a magnetic dipole
moment.
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Figure 8.2  A magnetic dipole
moment in an external field

experiences a torque.
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m

Figure 8.3 A magnetic dipole moment creates a magnetic field just like a bar
magnet.

The field B depends on vm.

Definition of
magnetic
moment

looking along it, the current circulates clockwise. Then the magnetic dipole moment,
or simply the magnetic moment |xm, is defined by1

= IAun [8.1]

When a magnetic moment is placed in a magnetic field, it experiences a torque
that tries to rotate the magnetic moment to align its axis with the magnetic field, as de-
picted in Figure 8.2. Moreover, since a magnetic moment is a current loop, it gives rise
to a magnetic field B around it, as shown in Figure 8.3, which is similar to the mag-
netic field around a bar magnet. We can find the field B from the current / and its
geometry, which are treated in various physics textbooks. For example, the field B at a
point P at a distance r along the axis of the coil from the center, as shown in Figure 8.3,
is directly proportional to the magnitude of the magnetic moment but inversely pro-
portional to r3

, that is, B a |x
m/r3.

1 The symbol |x for the magnetic dipole moment should not be confused with the permeability. Absolute and relative
permeabilities will be denoted by /x0 and /xr.
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8
.
1

.
2 Atomic Magnetic Moments

An orbiting electron in an atom behaves much like a current loop and has a magnetic
dipole moment associated with it, called the orbital magnetic moment (/XorbX as il-
lustrated in Figure 8.4. If co is the angular frequency of the electron, then the current /
due to the orbiting electron is

.
  . e eco

I = Charge flowing per unit time = = 
Period In

If r is the radius of the orbit, then the magnetic dipole moment is

,
2

Morb = I(nr2) =
ecor
~~

2

But the velocity v of the electron is cor and its orbital angular momentum is

L = (mev)r = mecor

Using this in fjiorb, we get

e

2m e
L [8.2]

We see that the magnetic moment is proportional to the orbital angular momentum
through a factor that has the charge to mass ratio of the electron. The numerical factor,
in this case e/2me, relating the angular momentum to the magnetic moment, is called
the gyromagnetic ratio. The negative sign in Equation 8.2 indicates that ii0Yh is in the
opposite direction to L and is due to the negative charge of the electron.

The electron also has an intrinsic angular momentum 5, that is, spin. The spin of
the electron has a spin magnetic moment, denoted by Atspin, but the relationship be-
tween />6Spin and S is not the same as that in Equation 8.2. The gyromagnetic ratio is a
factor of 2 greater,

e

Mspin =  [8.3]

The overall magnetic moment of the electron consists of |ULorb and |ULspin appropri-
ately added. We cannot simply add them numerically as they are vector quantities.
Furthermore, the overall magnetic moment |ULatom of the atom itself depends on the

-€
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I

Figure 8.4  An orbiting electron is
equivalent to a magnetic dipole moment
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z

Figure 8.5 The spin magnetic moment processes about an
external magnetic field along z and has a value fiz along z.
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orbital motions and spins of all the electrons. Electrons in closed subshells, however,
do not contribute to the overall magnetic moment because for every electron with a
given L (or S), there is another one with an opposite L (or S). The reason is that
the direction of L is space quantized by me and all negative and positive values of me
are occupied in a closed shell. Similarly, there are as many electrons spinning up
as there are spinning down, so there is no net electron spin in a closed shell and no
net |xspin. Thus, only unfilled subshells contribute to the overall magnetic moment
of an atom.

Consider an atom that has closed inner shells and a single electron in an s orbital
(i = 0). This means that the orbital magnetic moment is zero and the atom has a mag-
netic moment due to the spin of the electron alone, |xatom = |xspin. In the presence of
an external magnetic field along the z direction, the magnetic moment cannot simply
rotate and align with the field because quantum mechanics requires the spin angular
momentum to be space quantized, that is, Sz (the component of S along z) must be
msti where ms = ±  is the spin magnetic quantum number. The torque experienced
by the spinning electron causes the spin magnetic moment to precess about the exter-
nal magnetic field, as shown in Figure 8.5. This precession is such that Sz = -\h and
leads to an average magnetic moment /xz along the field given by Equation 8.3 with Sz,
that is,

e e eh
HZ =  Sz =  (msh) = - = p

me me 2me
[8.41

The quantity /? = eh/2me is called the Bohr magneton and has the value 9.27 x
10-24Am2 or JT"1.

Thus, the spin of a single electron has a magnetic moment of one Bohr magneton
along the field.

8
.
1

.
3  Magnetization Vector M

Consider a tightly wound long solenoid, ideally infinitely long, with free space (or vac-
uum) as the medium inside the solenoid, as shown in Figure 8.6a. The magnetic field
inside the solenoid is denoted by B0 to specifically identify this field as in free space.
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a (b)

Figure 8.6
(a) Consider a long solenoid. With free space as the medium inside, the magnetic field is B
(b) A material medium inserted into the solenoid develops a magnetization M.

This field depends on the current / through the solenoid wire and the number of turns
per unit length n and is given by2

B0 = iJL0nI = ijl0I' [8.5]

where /' is the current per unit length of the solenoid, that is, I' = nl, and ijl0 is the ab-
solute permeability of free space in henries per meter, H m-1

.

If we now place a cylindrical material medium to fill the inside of this solenoid, as
in Figure 8.6b, we find that the magnetic field has changed. The new magnetic field in
the presence of a medium is denoted as B. We will take B  to be the applied magnetic

field into which the material medium is placed.
Each atom of the material responds to the applied field B0 and develops, or ac-

quires, a net magnetic moment fJLm along the applied field. We can view each magnetic
moment jjim as the result of the precession of each atomic magnetic moment about B0.
The medium therefore develops a net magnetic moment along the field and becomes
magnetized. The magnetic vector M describes the extent of magnetization of the
medium. M is defined as the magnetic dipole moment per unit volume. Suppose that
there are N atoms in a small volume AV and each atom / has a magnetic moment |xm/

(where i = 1 to N). Then M is defined by

1 N

A V   i = l

av
[8.6]

where nat is the number of atoms per unit volume and |xav is the average magnetic mo-
ment per atom. We can assume that each atom acquires a magnetic moment |xav along
B

o. Each of these magnetic moments along B0 can be viewed as an elementary current
loop at the atomic scale, as schematically depicted in Figure 8.6b. These elementary

Free space
field inside
solenoid

Magnetiza-
tion vector

2 The proof of this comes out from Ampere's law and can be found in any textbook of electromagnetism.
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Surface currents

Figure 8.7 Elementary current loops result in surface
currents.

There is no internal current, as adjacent currents on
neighboring loops are in opposite directions.
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current loops are due to electronic currents within the atom and arise from both orbital
and spin motions of the electrons. Each current loop has its current plane normal to B0.

Consider a cross section of the magnetized medium, as in Figure 8.7. All the
elementary current loops in this plane have the current circulation in the same direction
inasmuch as each atom acquires the same magnetic moment |xav. All neighboring loops in
the bulk have adjacent currents in opposite directions that cancel each other, as appar-
ent in Figure 8.7. Thus, there are no net bulk currents, or internal currents, within the bulk
of the material. However, the currents at the surface in the surface loops cannot be can-
celed and this leads to a net surface current, as depicted in Figure 8.7. The surface cur-
rents are induced by the magnetization of the medium by the applied magnetic field and
therefore depend on the magnetization M of the specimen.

From the definition of M, the total magnetic moment of the cylindrical specimen
is

Total magnetic moment = M (Volume) = MAI

Suppose that the magnetization current on the surface per unit length of the
specimen is Im. Then the total circulating surface current is Imt and the total magnetic
moment of the specimen, by definition, is

Total magnetic moment = (Total current) x (Cross-sectional area) = ImtA

Equating the two total magnetic moments, we find

M = L
m [8.7]

We derived this for a particular sample geometry, a cylindrical specimen, in which
M is along the axis of the cylindrical specimen and Im flows in a plane perpendicular
to M. The relationship, however, is more general, as derived in more advanced texts.
It should be emphasized that the magnetization current Im is not due to the flow of free
charge carriers, as in a current-carrying copper wire, but due to localized electronic
currents within the atoms of the solid at the surface. Equation 8.7 states that we can
represent the magnetization of a medium by a surface current per unit length Im that is
equal to M.
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8.1 A Magnetizing Field or Magnetic Field Intensity H

The magnetized specimen in Figure 8.6b placed inside the solenoid develops magneti-
zation currents on the surface. It therefore behaves like a solenoid. We can now regard
the solenoid with medium inside, as depicted in Figure 8.8. The magnetic field within
the medium now arises from not only the conduction current per unit length I' in the
solenoid wires but also from the magnetization current Im on the surface. The magnetic
field B inside the solenoid is now given by the usual solenoid expression but with a
current that includes both /' and /m, as shown in Figure 8.8:

B = il0(I' + Im) = B0 + /x0M

This relationship is generally valid and can be written in vector form as

B = B0 + ii0M [8.8]

The field at a point inside a magnetized material is the sum of the applied field B0
and a contribution from the magnetization M of the material. The magnetization arises
from the application of B0 due to the current of free carriers in the solenoid wires,
called the conduction current, which we can externally adjust. It becomes useful to
introduce a vector field that represents the effect of the external or conduction current
alone. In general, B - fi0M at a point is the contribution of the external currents alone
to the magnetic field at that point inside the material that we called B0. B - /z M rep-
resents a magnetizing field because it is the field of the external currents that magne-
tize the material. The magnetizing field H is defined as

H = -B - M [8.9]
Ho

H= -B
0

Ho

The magnetizing field is also known as the magnetic field intensity and is
measured in A m"1

. The reason for the division by n0 is that the resulting vector field
H becomes simply related to the external conduction currents (through Ampere's law).
Since in the solenoid B0 is        we see that the magnetizing field in a solenoid is

or

Magnetic
field in a
magnetized
medium

Definition
of the
magnetizing

field

Definition
of the

magnetizing
field

H = nl = Total conduction current per unit length [8.10]

1

M

m

Figure 8.8  The field B in the material
inside the solenoid is due to the conduction

current / through the wires and the
magnetization current lm on the surface of the
magnetized medium, or B = B0 + fi0tA.
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It is generally helpful to imagine H as the cause and B as the effect. The cause H
depends only on the external conduction currents, whereas the effect B depends on the
magnetization M of matter.

Definition of
magnetic
permeability

Definition of
relative

permeability

Definition of
magnetic

susceptibility

Relative

permeability
and

susceptibility

8
.
1
.
5 Magnetic Permeability and Magnetic Susceptibility

Suppose that at a point P in a material, the magnetic field is B and the magnetizing
field is H. We let B0 be the magnetic field at P in the absence of any material (/.e., in
free space). The magnetic permeability of the medium at P is defined as the magnetic
field per unit magnetizing field,

__

 B

M " 77 [8.11]

It relates the effect B to the cause H at the same point P inside a material. In sim-
ple qualitative terms, /x represents to what extent a medium is permeable by magnetic

fields. Relative permeability /zr of a medium is the fractional increase in the magnetic
field with respect to the field in free space when a material medium is introduced. For
example, suppose that the field in a solenoid with free space in it is B0 but with mate-
rial inserted it is B. Then /xr is defined by

B B

     B0 fx0H
[8.12]

From Equations 8.11 and 8.12, clearly,

The magnetization M produced in a material depends on the net magnetic field B.
It would be natural to proceed as in dielectrics by relating M to B analogously to re-
lating P (polarization) to £ (electric field). However, for historic reasons, M is related
to H, the magnetizing field. Suppose that the medium is isotropic (same properties in
all directions), then magnetic susceptibility Xm of the medium is defined simply by

M = XmH [8.13]

This relationship is not obeyed by all magnetic materials. For example, as we will
see later, ferromagnetic materials do not obey Equation 8.12. Since the magnetic field

B = fi0(H + M)

we have

and

B = /jl0H + /j,0M = /jL0H + /AoXmH = fl0(l + Xm)H

[8.14]Mr = 1 + X.

The presence of a magnetizable material is conveniently accounted for by using the
relative permeability /zr, or (1 + Xm)» to simply multiply ii0. Alternatively, one can
simply replace n0 with /x = Ai0/zr. For example, the inductance of the solenoid with a
magnetic medium inside increases by a factor of /zr.

Table 8.1 provides a summary of various important magnetic quantities, their def-
initions, and units.
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Table 8.1   Magnetic quantities and their units

Magnetic Quantity     Symbol Definition Units Comment

Magnetic field;
magnetic induction

Magnetic flux

Magnetic dipole
moment

Bohr magneton

Magnetization
vector

Magnetizing field;
magnetic field
intensity

Magnetic
susceptibility

Absolute

permeability

Relative

permeability

Magnetic
permeability

Inductance

Magnetostatic
energy density

B

m

M

H

Xm

L

F =     x B

fzm-IA

P P - efi/2me

Magnetic moment
per unit volume

H = B//x0 - M

IXo C = [Soflo]~l/2

fir = B/floH

L = <fr total//

£voi        dEv0\ = H dB

T = tesla =

webers m~2

A<t> = normal A      Wb = weber

2A m

Am2 or

JT"1

Am
-i

-iA m

None

Hm"1
Wb nr1 A~l

None

-iHm

H (henries)

J m
-3

Produced by moving charges
or currents, acts on moving
charges or currents.

AO is flux through A A and
normal is normal to AA.

Total flux through any
closed surface is zero.

Experiences a torque in
B and a net force in a

nonuniform B.

Magnetic moment due to the
spin of the electron.
p = 9.27 x lO"24 Am2

Net magnetic moment in a
material per unit volume.

H is due to external

conduction currents only
and is the cause of B in a

material.

Relates the magnetization of
a material to the

magnetizing field H.
A fundamental constant in

magnetism. In free space,
Ho = B/H.

Not to be confused with

magnetic moment.

Total flux threaded per unit
current.

dEvoi is the energy required
per unit volume
in changing B by dB.

AMPERE'S LAW AND THE INDUCTANCE OF A TOROIDAL COIL Ampere s law provides a
relationship between the conduction current / and the magnetic field intensity H threading this
current. The conduction current / is the current due to the flow of free charge carriers through a
conductor and not due to the magnetization of any medium. Consider an arbitrary closed path C
around a conductor carrying a current /, as shown in Figure 8.9. The tangential component of H
to the curve C at point P is Ht. If dl is an infinitesimally small path length of C at P, as shown
in Figure 8.9, then the summation of Ht dl around the path C gives the conduction current en-
closed within C. This is Ampere's law,

Htdl I

EXAMPLE 8.1

[8.15]    Ampere's law
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/
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dic

p

i

H

C

A

Figure 8.9  Ampere's circuital law.

Af turns

Figure 8.10  A toroidal coil with N turns.

Magnetic
field inside
toroidal coil

Inductance of
toroidal coil

Consider the toroidal coil with iV turns shown in Figure 8.10. First assume that the toroid
core is air (/xr « 1). Suppose that the current through the coils is /. By symmetry, the magnetic
field intensity H inside the toroidal core is the same everywhere and is directed along the cir-
cumference. Suppose that / is the length of the mean circumference C. The current is linked
N times by the circumference C, so Equation 8.15 is

Ht dl Hi NI

or

NI
H = -

I

The magnetic field B0 with air as core material is then simply

Bo = l o H
i

When the toroidal coil has a magnetic medium with a relative permeability /ir, the mag-
netic field intensity is still H because the conduction current / has not changed. But the magnetic
field B is now different than B0 and is given by

B = fAofArH
i

If A is the cross-sectional area of the toroid, then the total flux O through the core is B A or
ljL0fjirNAI/£. The current / in Figure 8.10 threads the flux N times. The inductance L of the
toroidal coil, by definition, is then

Total flux threaded     N<& (Ji0firN2A
L

Current /

Having a magnetic material as the toroid core increases the inductance by a factor of /xr in the
same way a dielectric material increases the capacitance by a factor of er.

EXAMPLE 8.2 MAGNETOSTATIC ENERGY PER UNIT VOLUME Consider a toroidal coil with N turns that is

energized from a voltage supply through a rheostat, as shown in Figure 8.11. The core of the
toroid may be any material. Suppose that by adjusting the rheostat we increase the current /
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B

v

Figure 8.11
toroidal coil.

Energy required to magnetize a

supplied to the coil. The current i produces magnetic flux O in the core, which is BA, where B
is the magnetic field and A is the cross-sectional area. We can now use Ampere's law for H to
relate the current i to H, as in Example 8.1. If i is the mean circumference, then

Hi Ni [8.16]

The changing current means that the flux is also changing (both increasing). We know from
Faraday's law that a changing flux that threads a circuit generates a voltage t; in that circuit
given by the rate of change of total threaded flux, or NO. Lenz's law makes the polarity of the
induced voltage oppose the applied voltage. Suppose that in a time interval 8t seconds, the mag-
netic field within the core changes by SB; then 50 = A8B and

8 (Total flux threaded)     N8 <D 8B
v =  =  = NA -

8t 8t 8t
[8.171

The battery has to supply the current i against this induced voltage v, which means that it
has to do electrical work it; every second. In other words, the battery has to do work iv 8t in a
time interval 8t to supply the necessary current to increase the magnetic field by 8B. The elec-
tric energy 8E that is input into the coil in time 8t is then, using Equations 8.16 and 8.17,

/ H £ \ (     8B \

8E = w8t = ( - jf NA- Ut = (At)H8B
This energy 8E is the work done in increasing the field in the core by 8B. The volume of

the toroid is At. Therefore, the total energy or work required per unit volume to increase the
magnetic field from an initial value Bi to a final value #2 in the toroid is

Evol HdB [8.181

where the integration limits are determined by the initial and final magnetic field. This is the ex-
pression for calculating the energy density (energy per unit volume) required to change the
field from #1 to #2- It should be emphasized that Equation 8.18 is valid for any medium. We
conclude that an incremental energy density of dEy0\ = H dB is required to increase the mag-
netic field by dB at a point in any medium including free space.

We can now consider a core material that we can represent by a constant relative perme-
ability ixr. This means we can exclude those materials that do not have a linear relationship
between B and H, such as ferromagnetic and ferrimagnetic materials, which we will discuss
later. If the core is free space or air, then /xr = 1.

Suppose that we increase the current in Figure 8.11 from zero to some final value / so that
the magnetic field changes from zero to some final value B. Since the medium has a constant
relative permeability /xr, we can write

Work done

per unit
volume

during
magnetization

B = lJLrlJL0H



696 chapter 8 . Magnetic Properties and Superconductivity

Energy
density of a
magnetic

field

Magnetostatic
energy density
in free space

Magnetostatic

energy in a
linear

magnetic
medium

and use this in Equation 8.18 to integrate and find the energy per unit volume needed to
establish the field B or field intensity H

Evol

1
2

B 2

[8.19]

This is the energy absorbed from the battery per unit volume of core medium to establish
the magnetic field. This energy is stored in the magnetic field and is called magnetostatic
energy density. It is a form of magnetic potential energy. If we were to suddenly remove the
battery and short those terminals, the current will continue to flow for a short while (deter-
mined by L/R) and do external work in heating the resistor. This external work comes from
the stored energy in the magnetic field. If the medium is free space, or air, then the energy
density is

1 B2
£vol(air) = -/x0#2 = --

2 2/x0

A magnetic field of 2 T corresponds to a magnetostatic energy density of 1.6 MJ m"3 or
1

.6 J cm-3. The energy in a magnetic field of 2 T in a 1 cm3 volume (size of a thimble) has the
work ability (potential energy) to raise an average-sized apple by 5 feet. We should note that as
long as the core material is linear, that is, /xr is independent of the magnetic field itself, magne-
tostatic energy density can also be written as

Evol

1
-HB
2

[8.20]

8
.
2    MAGNETIC MATERIAL CLASSIFICATIONS

In general, magnetic materials are classified into five distinct groups: diamagnetic,
paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic. Table 8.2 provides
a summary of the magnetic properties of these classes of materials.

8.
2
.1 DlAMAGNETISM

Typical diamagnetic materials have a magnetic susceptibility that is negative and
small. For example, the silicon crystal is diamagnetic with Xm = -5.2 x 10

~6
.
 The

relative permeability of diamagnetic materials is slightly less than unity. When a dia-
magnetic substance such as a silicon crystal is placed in a magnetic field, the mag-
netization vector M in the material is in the opposite direction to the applied field

and the resulting field B within the material is less than /x0H. The negative
susceptibility can be interpreted as the diamagnetic substance trying to expel the
applied field from the material. When a diamagnetic specimen is placed in a nonuni-
form magnetic field, the magnetization M of the material is in the opposite direction
to B and the specimen experiences a net force toward smaller fields, as depicted in
Figure 8.12. A substance exhibits diamagnetism whenever the constituent atoms in
the material have closed subshells and shells. This means that each constituent atom

has no permanent magnetic moment in the absence of an applied field. Covalent
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Table 8.2  Classification of magnetic materials

Type (typical values) Xm versus T Comments and Examples

Diamagnetic

Paramagnetic

Negative and
small (-10-6)

Negative and
large (-1)

Positive and small

(io-5-io-4)

Positive and

small (KT5)

Ferromagnetic       Positive and
very large

Antiferromagnetic   Positive and
small

Ferrimagnetic        Positive and
very large

Tindependent

Below a critical

temperature

Independent of T

Curie or Curie-Weiss

law, xm = C/(T - 7c)

Ferromagnetic below
and paramagnetic
above the Curie

temperature

Antiferromagnetic
below and

paramagnetic above
the N6el temperature

Ferrimagnetic below
and paramagnetic
above the Curie

temperature

Atoms of the material have closed

shells. Organic materials, e.g.,
many polymers; covalent solids,
e.g., Si, Ge, diamond; some

ionic solids, e.g., alkalihalides;
some metals, e.g., Cu, Ag, Au.

Superconductors

Due to the alignment of spins of
conduction electrons. Alkali

and transition metals.

Materials in which the constituent

atoms have a permanent magnetic
moment, e.g., gaseous and liquid
oxygen; ferromagnets (Fe),
antiferromagnets (Cr), and
ferrimagnets (FeaC ) at high
temperatures.

May possess a large permanent
magnetization even in the
absence of an applied field.
Some transition and rare earth

metals, Fe, Co, Ni, Gd, Dy.

Mainly salts and oxides of
transition metals, e.g., MnO,
NiO, MnF2, and some
transition metals, a-Cr, Mn.

May possess a large permanent
magnetization even in the
absence of an applied field.
Ferrites.

M

S  FN 4

Figure 8.12  A diamagnetic material placed in a nonuniform
magnetic field experiences a force toward smaller fields.
This repels the diamagnetic material away from a permanent
magnet.
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crystals and many ionic crystals are typical diamagnetic materials because the con-
stituent atoms have no unfilled subshells. Superconductors, as we will discuss later,
are perfect diamagnets with Xm = - 1 and totally expel the applied field from the
material.

8
.
2

.
2 Paramagnetism

Paramagnetic materials have a small positive magnetic susceptibility. For example,
oxygen gas is paramagnetic with Xm = 2.1 x 10~6 at atmospheric pressure and room
temperature. Each oxygen molecule has a net magnetic dipole moment |xmol.

 In the ab-

sence of an applied field, these molecular moments are randomly oriented due to the
random collisions of the molecules, as depicted in Figure 8.13a. The magnetization of
the gas is zero. In the presence of an applied field, the molecular magnetic moments
take various alignments with the field, as illustrated in Figure 8.13b. The degree of
alignment of (xmol with the applied field and hence magnetization M increases with the
strength of the applied field /x0H. Magnetization M typically decreases with increasing
temperature because at higher temperatures there are more molecular collisions, which
destroy the alignments of molecular magnetic moments with the applied field. When a
paramagnetic substance is placed in a nonuniform magnetic field, the induced magne-
tization M is along B and there is a net force toward greater fields. For example, when
liquid oxygen is poured close to a strong magnet, as depicted in Figure 8.14, the liquid
becomes attracted to the magnet.

Many metals are also paramagnetic, such as magnesium with Xm = 1.2 x 10"5.The
origin of paramagnetism (called Pauli spin paramagnetism) in these metals is due to
the alignment of the majority of spins of conduction electrons with the field.

O-* «*-o

(a) av=OandM = 0

M

(bhx OandM H

Figure 8.13
(a) In a paramagnetic material, each individual atom possesses a
permanent magnetic moment, but due to thermal agitation there
is no average moment per atom and M = 0.
(b) In the presence of an applied field, individual magnetic
moments take alignments along the applied field and M is finite
and along B.

Strong magnet

NS

Dewar

Liquid oxygen

Figure 8.14  A paramagnetic
material placed in a nonuniform
magnetic field experiences a force
tdward greater fields.
This attracts the paramagnetic
material [e.g., liquid oxygen)
toward a permanent magnet.
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8.
2

.
3 Ferromagnetism

Ferromagnetic materials such as iron can possess large permanent magnetizations
even in the absence of an applied magnetic field. The magnetic susceptibility Xm is
typically positive and very large (even infinite) and, further, depends on the applied
field intensity. The relationship between the magnetization M and the applied mag-
netic field iJL0ll is highly nonlinear. At sufficiently high fields, the magnetization M of
the ferromagnet saturates. The origin of ferromagnetism is the quantum mechanical
exchange interaction (discussed later) between the constituent atoms that results in re-
gions of the material possessing permanent magnetization. Figure 8.15 depicts a region
of the Fe crystal, called a magnetic domain, that has a net magnetization vector M due
to the alignment of the magnetic moments of all Fe atoms in this region. This crystal
domain has magnetic ordering as all the atomic magnetic moments have been aligned
parallel to each other. Ferromagnetism occurs below a critical temperature called the
Curie temperature 7c. At temperatures above 7c, ferromagnetism is lost and the mate-
rial becomes paramagnetic.

8
.
2

.4 Antiferromagnetism

Antiferromagnetic materials such as chromium have a small but positive suscepti-
bility. They cannot possess any magnetization in the absence of an applied field, in
contrast to ferromagnets. Antiferromagnetic materials possess a magnetic ordering
in which the magnetic moments of alternating atoms in the crystals align in opposite
directions, as schematically depicted in Figure 8.16. The opposite alignments of
atomic magnetic moments are due to quantum mechanical exchange forces (de-
scribed later in Section 8.3). The net result is that in the absence of an applied field,
there is no net magnetization. Antiferromagnetism occurs below a critical tempera-
ture called the Neel temperature 7 . Above TV, antiferromagnetic material becomes
paramagnetic.

r -oir of--M-  [Wr m=o
-0> 0> -oi- 0>-
Figure 8.15   In a magnetized region of a
ferromagnetic material such as iron, all the
magnetic moments are spontaneously aligned in
the same direction.

There is a strong magnetization vector M even
in the absence of an applied field.

Figure 8.16  In this
antiferromagnetic BCC crystal
(Cr), the magnetic moment'of the
center atom is canceled by the
magnetic moments of the corner
atoms (one-eighth of the corner
atom belongs to the unit cell).
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-M-

Figure 8.17  Illustration of magnetic ordering in the               ,                          | ;
ferrimagnetic crystal.  .  O" "'*
All A atoms have their spins aligned in one direction and           !            !             ! >
all B atoms have their spins aligned in the opposite                              v-/  "" w O 
direction. As the magnetic moment of an A atom is greater \          
than that of a B atom, there is net magnetization M in the                        \J 

"

w

crystal. A B

8.
2

.
5 Ferrimagnetism

Ferrimagnetic materials such as ferrites (e.g., FeaCU) exhibit magnetic behavior simi-
lar to ferromagnetism below a critical temperature called the Curie temperature 7c.
Above 7c they become paramagnetic. The origin of ferrimagnetism is based on mag-
netic ordering, as schematically illustrated in Figure 8.17. All A atoms have their spins
aligned in one direction and all B atoms have their spins aligned in the opposite direc-
tion. As the magnetic moment of an A atom is greater than that of a B atom, there is
net magnetization M in the crystal. Unlike the antiferromagnetic case, the oppositely
directed magnetic moments have different magnitudes and do not cancel. The net ef-
fect is that the crystal can possess magnetization even in the absence of an applied
field. Since ferrimagnetic materials are typically nonconducting and therefore do not
suffer from eddy current losses, they are widely used in high-frequency electronics
applications.

All useful magnetic materials in electrical engineering are invariably ferromag-
netic or ferrimagnetic.

8
.
3   FERROMAGNETISM ORIGIN

AND THE EXCHANGE INTERACTION

The transition metals iron, cobalt, and nickel are all ferromagnetic at room tempera-
ture. The rare earth metals gadolinium and dysprosium are ferromagnetic below room
temperature. Ferromagnetic materials can exhibit permanent magnetization even in the
absence of an applied field; that is, they possess a susceptibility that is infinite.

In a magnetized iron crystal, all the atomic magnetic moments are aligned in the
same direction, as illustrated in Figure 8.15, where the moments in this case have all
been aligned along the [100] direction, which gives net magnetization along this di-
rection. It may be thought that the reason for the alignment of the moments is the mag-
netic forces between the moments, just as bar magnets will tend to align head to tail in
an SNSN ... fashion. This is not, however, the cause, as the magnetic potential energy
of interaction is small, indeed smaller than the thermal energy.

The iron atom has the electron structure [Ar]3d64s2. An isolated iron atom has
only the 3d subshell with four of the five orbitals unfilled. By virtue of Hund's rule, the

electrons try to align their spins so that the five 3d orbitals contain two paired electrons
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3d6

It  t   t   t t

4s2

m
Figure 8.18  The isolated Fe
atom has four unpaired spins and a
spin magnetic moment of 4/3.

m

t

Higher energy Lower energy

Figure 8.19  Hund's rule for an atom
with many electrons is based on the
exchange interaction.

and four unpaired electrons, as in Figure 8.18. The isolated atom has four parallel elec-
tron spins and hence a spin magnetic moment of 4/*.

The origin of Hund's rule, visualized in Figure 8.19, lies in the fact that when the
spins are parallel (same ms), as a requirement of the Pauli exclusion principle, the
electrons must occupy orbitals with different mi and hence possess different spatial
distributions (recall that me determines the orientation of an orbit). Different m  val-
ues result in a smaller Coulombic repulsion energy between the electrons compared
with the case where the electrons have opposite spins (different m ), where they
would be in the same orbital (same m ), that is, in the same spatial region. It is appar-
ent that even though the interaction energy between the electrons has nothing to do
with magnetic forces, it does depend nonetheless on the orientations of their spins
(ms), or on their spin magnetic moments, and it is less when the spins are parallel. Two
electrons parallel their spins not because of the direct magnetic interaction between
the spin magnetic moments but because of the Pauli exclusion principle and the
electrostatic interaction energy. Together they constitute what is known as an
exchange interaction, which forces two electrons to take ms and mi values that result
in the minimum of electrostatic energy. In an atom, the exchange interaction therefore
forces two electrons to take the same ms but different mi if this can be done within the
Pauli exclusion principle. This is the reason an isolated Fe atom has four unpaired
spins in the 3d subshell.

In the crystal, of course, the outer electrons are no longer strictly confined to their
parent Fe atoms, particularly the 4s electrons. The electrons now have wavefunctions
that belong to the whole solid. Something like Hund's rule also operates at the crystal
level for Fe, Co, and Ni. If two 3d electrons parallel their spins and occupy different
wavefunctions (and hence different negative charge distributions), the resulting mu-
tual Coulombic repulsion between them and also with all the other electrons and the
attraction to the positive Fe ions result in an overall reduction of potential energy.
This reduction in energy is again due to the exchange interaction and is a direct
consequence of the Pauli exclusion principle and the Coulombic forces. Thus, the ma-
jority of 3d electrons spontaneously parallel their spins without the need for the appli-
cation of an external magnetic field. The number of electrons that actually parallel
their spins depends on the strength of the exchange interaction, and for the iron crys-
tal this turns out to be about 2.2 electrons per atom. Since typically the wavefunctions
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Figure 8.20  The exchange integral as a function of
rAd/ where r is the interatomic distance and r the radius
of the d orbit (or the average of subshell radius).
Cr to Ni are transition metals. For Gd, the x axis is r/ry,
where rf is the radius of the f orbit.

e

A

Co
NiFe+

Gd

0

Mn

Cr

r

r
d

of the 3d electrons in the whole iron crystal show localization around the iron ions,

some people prefer to view the 3d electrons as spending the majority of their time
around Fe atoms, which explains the reason for drawing the magnetized iron crystal
as in Figure 8.15.

It may be thought that all solids should follow the example of Fe and become
spontaneously ferromagnetic since paralleling spins would result in different spa-
tial distributions of negative charge and probably a reduction in the electrostatic en-
ergy, but this is not generally the case at all. We know that, in the case of covalent
bonding, the electrons have the lowest energy when the two electrons spin in oppo-
site directions. In covalent bonding in molecules, the exchange interaction does not
reduce the energy. Making the electron spins parallel leads to spatial negative
charge distributions that result in a net mutual electrostatic repulsion between the
positive nuclei.

In the simplest case, for two atoms only, the exchange energy depends on the in-
teratomic separation between two interacting atoms and the relative spins of the two
outer electrons (labeled as 1 and 2). From quantum mechanics, the exchange interac-
tion can be represented in terms of an exchange energy EqX as

EqX = - 2Je Si . S2 [8.21]

where S\ and S2 are the spin angular momenta of the two electrons and Je is a numeri-
cal quantity called the exchange integral that involves integrating the wavefunctions
with the various potential energy interaction terms. It therefore depends on the elec-
trostatic interactions and hence on the interatomic distance. For the majority of solids,
J

e is negative, so the exchange energy is negative if Si and S2 are in the opposite di-
rections, that is, the spins are antiparallel (as we found in covalent bonding). This is the
antiferromagnetic state. For Fe, Co, and Ni, however, Je is positive. EqX is then nega-
tive if Si and S2 are parallel. Spins of the 3d electrons on the Fe atoms therefore spon-
taneously align in the same direction to reduce the exchange energy. This spontaneous
magnetization is the phenomenon of ferromagnetism. Figure 8.20 illustrates how Je
changes with the ratio of interatomic separation to the radius of the 3d subshell (r/rd).
For the transition metals Fe, Co, and Ni, the r/rd is such that Je is positive.3 In all
other cases, it is negative and does not produce ferromagnetic behavior. It should be

3 According to H. P. Myers, Introductory Solid State Physics 2nd ed., London: Taylor and Francis Ltd., 1997, p. 362,
there have been no theoretical calculations of the exchange integral Je for any real magnetic substance.
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mentioned that Mn, which is not ferromagnetic, can be alloyed with other elements to
increase rlrd and hence endow ferromagnetism in the alloy.

SATURATION MAGNETIZATION IN IRON The maximum magnetization, called saturation
magnetization Msat, in iron is about 1.75 x 106 A m~1

. This corresponds to all possible net spins
aligning parallel to each other. Calculate the effective number of Bohr magnetons per atom that
would give Msat, given that the density and relative atomic mass of iron are 7.86 g cm"3 and

55.85, respectively.

SOLUTION

The number of Fe atoms per unit volume is

_

 pbU 
_

 (7.86 x 103 kg m"3)(6.022 x 1Q23 mol"1)
nat ~ 

~

M7K  
~

     '      55.85 x lO"3 kgrnol"1
= 8

.
48 x 1028 atoms m~3

If each Fe atom contributes x number of net spins, then since each net spin has a magnetic
moment of   we have,

so

1
.
75x10*

nat£     (8.48 x 1028)(9.27 x lO"24)

In the solid, each Fe atom contributes only 2.2 Bohr magnetons to the magnetization even
though the isolated Fe atom has 4 Bohr magnetons. There is no orbital contribution to the mag-
netic moment per atom in the solid because all the outer electrons, 3d and 4$ electrons, can be
viewed as belonging to the whole crystal, or being in an energy band, rather than orbiting
individual atoms. A 3d electron is attracted by various Fe ions in the crystal and therefore does
not experience a central force, in contrast to the 3d electron in the isolated Fe atom that orbits
the nucleus. The orbital momentum in the crystal is said to be quenched.

We should note that when the magnetization is saturated, all atomic magnetic moments are
aligned. The resulting magnetic field within the iron specimen in the absence of an applied
magnetizing field {H - 0) is

#sat = Mo sat = 2.2 T

8
.4    SATURATION MAGNETIZATION

AND CURIE TEMPERATURE

The maximum magnetization in a ferromagnet when all the atomic magnetic moments
have been aligned as much as possible is called the saturation magnetization Msat. In the
iron crystal, for example, this corresponds to each Fe atom with an effective spin mag-
netic moment of 2.2 Bohr magnetons aligning in the same direction to give a magnetic

field /X0Msat or 2.2 T. As we increase the temperature, lattice vibrations become more en-
ergetic, which leads to a frequent disruption of the alignments of the spins. The spins can-
not align perfectly with each other as the temperature increases due to lattice vibrations

EXAMPLE 8.3
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Figure 8.21   Normalized saturated
magnetization versus reduced temperature I/Iq
where 7c is the Curie temperature (1043 K).
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randomly agitating the individual spins. When an energetic lattice vibration passes
through a spin site, the energy in the vibration may be sufficient to disorientate the spin
of the atom. The ferromagnetic behavior disappears at a critical temperature called the
Curie temperature, denoted by Tq, when the thermal energy of lattice vibrations in the
crystal can overcome the potential energy of the exchange interaction and hence destroy
the spin alignments. Above the Curie temperature, the crystal behaves as if it were para-
magnetic. The saturation magnetization Msat, therefore, decreases from its maximum
value Msat(0) at absolute zero of temperature to zero at the Curie temperature. Figure 8.21
shows the dependence of MSat on the temperature when Msat has been normalized to
Msat(0) and the temperature is the reduced temperature, that is, TjTq. At TjTq = 1,
Msat = 0- When plotted in this way, the ferromagnets cobalt and nickel follow closely
the observed behavior for iron. We should note that since for iron Tq = 1043 K, at room
temperature, T/Tc = 0.29 and Msat is very close to its value at Msat(0).

Since at the Curie temperature, the thermal energy, of the order of kTc, is suffi-
cient to overcome the energy of the exchange interaction Etx that aligns the spins, we
can take kTc as an order of magnitude estimate of Etx. For iron, Etx is ~0.09 eV and
for cobalt this is ~0.1 eV.

Table 8.3 summarizes some of the important properties of the ferromagnets Fe,
Co, Ni, and Gd (rare earth metal).

Table 8.3  Properties of the ferromagnets Fe, Co, Ni, and Gd

Fe Co Ni Gd

Crystal structure
Bohr magnetons per atom
M O) (MA m~1)
#sat = MoMSat(T)
Tc

BCC

2
.
22

1
.
75

2
.
2

770 0C

1043 K

HCP

1
.
72

1
.
45

1
.
82

1127 0C

1400 K

FCC

0
.
60

0
.
50

0
.
64

358 0C

631 K

HCP

7
.

1

2
.
0

2
.
5

16 0C

289 K
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8
.
5    MAGNETIC DOMAINS:

FERROMAGNETIC MATERIALS

8
.
5
.

1  Magnetic Domains

A single crystal of iron does not necessarily possess a net permanent magnetization in
the absence of an applied field. If a magnetized piece of iron is heated to a temperature
above its Curie temperature and then allowed to cool in the absence of a magnetic
field, it will possess no net magnetization. The reason for the absence of net magneti-
zation is due to the formation of magnetic domains that effectively cancel each other,
as discussed below. A magnetic domain is a region of the crystal in which all the spin
magnetic moments are aligned to produce a magnetic moment in one direction only.

Figure 8.22a shows a single crystal of iron that has a permanent magnetization as
a result of ferromagnetism (aligning of all atomic spins). The crystal is like a bar mag-
net with magnetic field lines around it. As we know, there is potential energy (PE),
called magnetostatic energy, stored in a magnetic field, and we can reduce this energy
in the external field by dividing the crystal into two domains where the magnetizations
are in the opposite directions, as shown in Figure 8.22b. The external magnetic field
lines are reduced and there is now less potential energy stored in the magnetic field.
There are only field lines at the ends. This arrangement is energetically favorable
because the magnetostatic energy has been reduced by decreasing the external field

Domain wall (180°) Closure domain

N S

A

M

S NS

90° domain wall
Closure domains

N   T S

III

-

7\

lllltll

a (b) (c) (d)

Figure 8.22
(a) Magnetized bar of ferromagnet in which there is only one domain and hence an external
magnetic field.
(b) Formation of two domains with opposite magnetizations reduces the external field. There are,
however, field lines at the ends.

(c) Domains of closure fitting at the ends eliminate the external fields at the ends.
(d) A specimen with several domains and closure domains. There is no external magnetic field
and the specimen appears unmagnetized.
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lines. However, there is now a boundary, called a domain wall (or Bloch wall), between
the two domains where the magnetization changes from one direction to the opposite
direction and hence the atomic spins do, also. It requires energy to rotate the atomic
spin through 180° with respect to its neighbor because the exchange energy favors
aligning neighboring atomic spins (0°). The wall in Figure 8.22b is a 180° wall inas-
much as the magnetization through the wall is rotated by 180°

. It is apparent that the
wall region where the neighboring atomic spins change their relative direction (or ori-
entation) from one domain to the neighboring one has higher PE than the bulk of the
domain, where all the atomic spins are aligned. As we will show below, the domain
wall is not simply one atomic spacing but has a finite thickness, which for iron is typ-
ically of the order of 0.1 |im, or several hundred atomic spacings. The excess energy in
the wall increases with the area of the wall.

The magnetostatic energy associated with the field lines at the ends in Fig-
ure 8.22b can be further reduced by eliminating these external field lines by closing the
ends with sideway domains with magnetizations at 90°

, as shown in Figure 8.22c.
These end domains are closure domains and have walls that are 90° walls. The mag-
netization is rotated through 90° through the wall. Although we have reduced the magne-
tostatic energy, we have increased the potential energy in the walls by adding additional
walls. The creation of magnetic domains continues (spontaneously) until the potential
energy reduction in creating an additional domain is the same as the increase in creat-
ing an additional wall. The specimen then possesses minimum potential energy and is
in equilibrium with no net magnetization. Figure 8.22d shows a specimen with several
domains and no net magnetization. The sizes, shapes, and distributions of domains de-
pend on a number of factors, including the size and shape of the whole specimen. For
iron particles of dimensions less than of the order of 0.01 jum, the increase in the poten-
tial energy in creating a domain wall is too costly and these particles are single do-
mains and hence always magnetized.

The magnetization of each domain is normally along one of the preferred directions
in which the atomic spin alignments are easiest (the exchange interaction is the
strongest). For iron, the magnetization is easiest along any one of six (100) directions
(along cube edges), which are called easy directions. The domains have magnetizations
along these easy directions. The magnetization of the crystal along an applied field oc-
curs, in principle, by the growth of domains with magnetizations (or components of M)
along the applied field (H), as illustrated in Figure 8.23a and b. For simplicity, the mag-
netizing field is taken along an easy direction. The Bloch wall between the domains A
and B migrates toward the right, which enlarges the domain A and shrinks domain B,
with the net result that the crystal has an effective magnetization M along H. The migra-
tion of the Bloch wall is caused by the spins in the wall, and also spins in section B ad-
jacent to the wall, being gradually rotated by the applied field (they experience a torque).
The magnetization process therefore involves the motions of Bloch walls in the crystal.

8
.
5

.
2 Magnetocrystalline Anisotropy

Ferromagnetic crystals characteristically exhibit magnetic anisotropy, which means
that the magnetic properties are different along different crystal directions. In the case
of iron (BCC), the spins in a domain are most easily aligned in any of the six [100] type
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Figure 8.23
(a) An unmagnetized crystal of iron in the absence of an
applied magnetic field. Domains A and B are the same size
and have opposite magnetizations.
(b) When an external magnetic field is applied, the domain
wall migrates into domain B, which enlarges A and shrinks
B

. The result is that the specimen now acquires net
magnetization.
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Figure 8.24  Magnetocrystalline anisotropy in a single iron
crystal.
M versus H depends on the crystal direction and is easiest along
[100] and hardest along [111].

j:

directions, collectively labeled as (100), and correspond to the six edges of the cubic
unit cell. The exchange interactions are such that spin magnetic moments are most eas-
ily aligned with each other if they all point in one of the six (100) directions. Thus
(100) directions in the iron crystal constitute the easy directions for magnetization.
When a magnetizing field H along a [100] direction is applied, as illustrated in Fig-
ure 8.23a and b, domain walls migrate to allow those domains (e.g., A) with magneti-
zations along H to grow at the expense of those domains (e.g., B) with magnetizations
opposing H. The observed M versus H behavior is shown in Figure 8.24. Magnetiza-
tion rapidly increases and saturates with an applied field of less than 0.01 T.

On the other hand, if we want to magnetize the crystal along the [111] direction by
applying a field along this direction, then we have to apply a stronger field than that
along [100]. This is clearly shown in Figure 8.24, where the resulting magnetization
along [111] is smaller than that along [100] for the same magnitude of applied field.
Indeed, saturation is reached at an applied field that is about a factor of 4 greater than
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Table 8.4   Exchange interaction, magnetocrystalline anisotropy energy K, and saturation magnetostriction coefficient Asat

Eex«kTc K A.sat
Material       Crystal (meV) Easy Hard (mjcnr3)       (x lO"6)

Fe BCC 90 < 100>; cube edge <1 !!>; cube diagonal 48 20 [100]
--20 [111]

Co HCP 120 I Hoc axis X toe axis 450

Ni FCC 50 <111>; cube diagonal      <100>; cube edge 5 -46 [100]
-24 [111]

NOTE: K is the magnitude of what is called the first anisotropy constant [K\) and is approximately the magnitude of the anisotropy energy.
E

ex is an estimate from kTc, where 7c is the Curie temperature. All approximate values are from various sources. (Further data can be found
in D. Jiles, Introduction to Magnetism and Magnetic Materials, London, England: Chapman and Hall, 1991.)

that along [100]. The [111] direction in the iron crystal is consequently known as the
hard direction. The M versus H behavior along [100], [110], and [111] directions in
an iron crystal and the associated anisotropy are shown in Figure 8.24.

When an external field is applied along the diagonal direction OD in Figure 8.24,
initially all those domains with M along OA, OB, and OC, that is, those with magne-
tization components along OD, grow by consuming those with M in the wrong direc-
tion and eventually take over the whole specimen. This is an easy process (similar
to the process along [100]) and requires small fields and represents the processes from
0 to P on the magnetization curve for [111] in Figure 8.24. However, from P onwards,
the magnetizations in the domains have to be rotated away from their easy directions,
that is, from OA, OB, and OC toward OD. This process consumes substantial energy
and hence needs much stronger applied fields.

It is apparent that the magnetization of the crystal along [100] needs the least
energy, whereas that along [111] consumes the greatest energy. The excess energy
required to magnetize a unit volume of a crystal in a particular direction with respect
to that in the easy direction is called the magnetocrystalline anisotropy energy and
is denoted by K. For iron, the anisotropy energy is zero for [100] and largest for the
[111] direction, about 48 kJ m~3 or 3.5 x 10"6 eV per atom. For cobalt, which has the
HCP crystal structure, the anisotropy energy is at least an order of magnitude greater.
Table 8.4 summarizes the easy and hard directions, and the anisotropy energy K for the
hard direction.

8
.
5

.3 Domain Walls

We recall that the spin magnetic moments rotate across a domain wall. We men-
tioned that the wall is not simply one atomic spacing wide, as this would mean two
neighboring spins being at 180° to each other and hence possessing excessive ex-
change interaction. A schematic illustration of the structure of a typical 180° Bloch

wall, between two domains A and B, is depicted in Figure 8.25. It can be seen that
the neighboring spin magnetic moments are rotated gradually, and over several hun-
dred atomic spacings the magnetic moment reaches a rotation of 180°. Exchange
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Figure 8.25 In a Bloch wall, the neighboring spin magnetic moments rotate gradually,
and it takes several hundred atomic spacings to rotate the magnetic moment by 1 80°

.

forces between neighboring atomic spins favor very little relative rotation. Had it
been left to exchange forces alone, relative rotation of neighboring spins would be so
minute that the wall would have to be very thick (infinitely thick) to achieve a 180°

rotation.

However, magnetic moments that are oriented away from the easy direction pos-
sess excess energy, called the anisotropy energy {K). If the wall is thick, then it will
contain many magnetic moments rotated away from the easy direction and there would
be a substantial anisotropy energy in the wall. Minimum anisotropy energy in the wall
is obtained when the magnetic moment changes direction by 180° from the easy di-
rection along +z to that along -z in Figure 8.25 without any intermediate rotations
away from z. This requires a wall of one atomic spacing. In reality, the wall thickness
is a compromise between the exchange energy, demanding a thick wall, and anisotropy
energy, demanding a thin wall. The equilibrium wall thickness is that which minimizes
the total potential energy, which is the sum of the exchange energy and the anisotropy
energy within the wall. This thickness turns out to be ~0.1 |im for iron and less for
cobalt, in which the anisotropy energy is greater.

MAGNETIC DOMAIN WALL ENERGY AND THICKNESS The Bloch wall energy and thickness
depend on two main factors: the exchange energy £ex (J atom-1) and magnetocrystalline energy
K (J m~3). Suppose that we consider a Bloch wall of unit area, and thickness 5, and calculate
the potential energy t/wall in this wall due to the exchange energy and the magnetocrystalline
anisotropy energy. The spins change by 180° across the thickness <5 of the Bloch wall as in Fig-
ure 8.25. The contribution C/exchange from the exchange energy arises because it takes energy to
rotate one spin with respect to another. If the thickness b is large, then the angular change from
one spin to the next will be small, and the exchange energy contribution C/exchange will also be
small. Thus, C/exchange is inversely proportional to 5. C/exchange is also directly proportional to Zsex
which gauges the magnitude of this exchange energy ; it costs EQX to rotate the two spins 180° to

each other. Thus, C/exchange
The anisotropy energy contribution C/anisotropy arises from having spins point away from the

easy direction. If the thickness 5 is large, there are more and more spin moments that are aligned
away from the easy direction, and the anisotropy energy contribution C/anisotropy is also large.
Thus, C/anisotropy is proportional to 8, and also, obviously, to the anisotropy energy K that gauges
the magnitude of this energy. Thus, C/aniSotropy Kb.

EXAMPLE 8.4

i
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Figure 8.26  The potential energy of a
domain wall depends on the exchange
and anisotropy energies.
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Figure 8.26 shows the contributions of the exchange and anisotropy energies, Uexch&nge
 and

anisotropy, to the total Bloch wall energy as a function of wall thickness 5. It is clear that exchange
and anisotropy energies have opposite (or conflicting) requirements on the wall thickness.
There is, however, an optimum thickness 8' that minimizes the Bloch wall energy, that is, a
thickness that balances the requirements of exchange and anisotropy forces.

If the interatomic spacing is a, then there would be iV = 8/a atomic layers in the wall.
Since the spin moment angle changes by 180° across <5, we can calculate the relative spin ori-
entations (180°/AO of adjacent atomic layers, and hence we can find the exact contributions of
exchange and anisotropy energies. We do not need the exact mathematics, but the final result is
that the potential energy Uwa\i per unit area of the wall is approximately

U.wall
ex

2a8
+ K8

The first term on the right is the exchange energy contribution (proportional to Eex/8), and the sec-
ond is the anisotropy energy contribution (proportional to AT 5); both have the features we discussed.

Show that the minimum energy occurs when the wall has the thickness
1/2

Taking Eex  kTc, where Tc is the Curie temperature, and for iron, K  50 kJ m 3, and
a  0.3 nm, estimate the thickness of a Bloch wall and its energy per unit area.

SOLUTION

We can differentiate C/Waii with respect to 6,

dU wall

d8 
=

7r2£
,ex

2a82
+ K

and then set it to zero for 5 = 8' to find,

\ 2aK J

1/2

Since Tc = 1043 K, Eex = kTc = (1.38 x lO"23 J K-1)(1043 K) = 1.4 x lO"20 J, so that

V 2aK )        [2(0.3 x 10-9)(50, 000) J or 68 nm
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7r2£
ex        , 7r2(1.4 x lO"20) , 8

and     U n =   + K8 = + (50 x 103)(6.8 x 10"8)
2a8' 2(0.3 x 10-9)(6.8 x lO"8)

= 0
.
007 J m"2      or      7 mJ m"2

A better calculation gives 8' and C/waii as 40 nm and 3 mJ m-2, respectively, about the same
order of magnitude.4 The Bloch wall thickness is roughly 70 nm or 8/a = 230 atomic layers. It
is left as an exercise to show that when 8 = 8\ the exchange and anisotropy energy contribu-
tions are equal.

8.5.4 Magnetostriction

If we were to strain a ferromagnetic crystal (by applying a suitable stress) along a cer-
tain direction, we would change the. interatomic spacing not only along this direction
but also in other directions and hence change the exchange interactions between the
atomic spins. This would lead to a change in the magnetization properties of the crys-
tal. In the converse effect, the magnetization of the crystal generates strains or changes
in the physical dimensions of the crystal. For example, in very qualitative terms, when
an iron crystal is magnetized along the [111] direction by a strong field, the atomic
spins within domains are rotated from their easy directions toward the hard [111] di-
rection. These electron spin rotations involve changes in the electron charge distri-
butions around the atoms and therefore affect the interatomic bonding and hence the
interatomic spacing. When an iron crystal is placed in a magnetic field along an easy
direction [100], it gets longer along this direction but contracts in the transverse
directions [010] and [001], as depicted in Figure 8.27. The reverse is true for nickel.
The longitudinal strain Ai/l along the direction of magnetization is called the
magnetostrictive constant, denoted by X. The magnetostrictive constant depends on
the crystal direction and may be positive (extension) or negative (contraction). Further,
X depends on the applied field and can even change sign as the field is increased; for
example, X for iron along the [110] direction is initially positive and then, at higher
fields, becomes negative. When the crystal reaches saturation magnetization, A. also
reaches saturation, called saturation magnetostriction strain Asat, which is typically
10"6-10"5. Table 8.4 summarizes the XsaLt values for Fe and Ni along the easy and hard
directions. The crystal lattice strain energy associated with magnetostriction is called
the magnetostrictive energy, which is typically less than the anisotropy energy.

Magnetostriction is responsible for the transformer hum noise one hears near
power transformers. As the core of a transformer is magnetized one way and then in the
opposite direction under an alternating voltage, the alternating changes in the longitu-
dinal strain vibrate the surrounding environment, air, oil, and so forth, and generate an
acoustic noise at twice the main frequency, or 120 Hz, and its harmonics. (Why?)

The magnetostrictive constant can be controlled by alloying metals. For example,
Xsat along the easy direction for nickel is negative and for iron it is positive, but for the
alloy 85% Ni-15% Fe, it is zero. In certain magnetic materials, X can be quite large,

4 See, for example, D. Jiles, Introduction to Magnetism and Magnetic Materials, London, England: Chapman and
Hall, 1991.
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Figure 8.27 Magnetostriction means that the
iron crystal in a magnetic field along x, an easy
direction, elongates along x but contracts in the
transverse directions (in low fields).

Original Fe crystal

-H- a:[100]

greater than 10_4
, which has opened up new areas of sensor applications based on

the magnetostriction effect. For example, it may be possible to develop torque sensors
for automotive steering applications by using Co-ferrite type magnetic materials5
(e.g., CoO-Fe203 or similar compounds) that have XSSit of the order of 10~4.

8
.
5

.
5 Domain Wall Motion

The magnetization of a single ferromagnetic crystal involves the motions of domain
boundaries to allow the favorably oriented domains to grow at the expense of domains
with magnetizations directed away from the field (Figure 8.23). The motion of a do-
main wall in a crystal is affected by crystal imperfections and impurities and is not
smooth. For example, in a 90° Bloch wall, the magnetization changes direction by 90°
across the boundary. Due to magnetostriction (Figure 8.27), there is a change in the
distortion of the lattice across the 90° boundary, which leads to a complicated strain
and hence stress distribution around this boundary. We also know that crystal imper-
fections such as dislocations and point defects also have strain and stress distributions
around them. Domain walls and crystal imperfections therefore interact with each
other. Dislocations are line defects that have a substantial volume of strained lattice

around them. Figure 8.28 visualizes a dislocation with tensile and compressive strains
around it and a domain wall that has a tensile strain on the side of the dislocation. If

the wall gets close to the dislocation, the tensile and compressive strains cancel,
which results in an unstrained lattice and hence a lower strain energy. This energeti-
cally favorable arrangement keeps the domain boundary close to the dislocation. It
now takes greater magnetic field to snap away the boundary from the dislocation. Do-
main walls also interact with nonmagnetic impurities and inclusions. For example, an
inclusion that finds itself in a domain becomes magnetized and develops south and
north poles, as shown in Figure 8.29a. If the domain wall were to intersect the inclu-
sion and if there were to be two neighboring domains around the inclusion, as in Fig-
ure 8.29b, then the magnetostatic energy would be lowered-energetically a favorable
event. This reduction in magnetostatic potential energy means that it now takes greater
force to move the domain wall past the impurity, as if the wall were "pinned" by the
impurity.

The motion of a domain wall in a crystal is therefore not smooth but rather jerky.
The wall becomes pinned somewhere by a defect or an impurity and then needs a

5 See, for example, D. Jiles and C. C. H. Lo, Sensors and Actuators, A106, 3, 2003.
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Figure 8.28  Stress and strain
distributions around a dislocation and
near a domain wall.
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Figure 8.29  Interaction of a Bloch wall with a nonmagnetic
(no permanent magnetization) inclusion.
(a) The inclusion becomes magnetized and there is magnetostatic
energy.

(b) This arrangement has lower potential energy and is thus favorable.

greater applied field to break free. Once it snaps off, the domain wall is moved until it
is attracted by another type of imperfection, where it is held until the field increases
further to snap it away again. Each time the domain wall is snapped loose, lattice
vibrations are generated, which means loss of energy as heat. The whole domain wall
motion is nonreversible and involves energy losses as heat to the crystal.

8
.
5

.6 Polycrystalline Materials and the M versus H Behavior

The majority of the magnetic materials used in engineering are polycrystalline and
therefore have a microstructure that consists of many grains of various sizes and ori-
entations depending on the preparation and thermal history of the component. In an
unmagnetized polycrystalline sample, each crystal grain will possess domains, as de-
picted in Figure 8.30. The domain structure in each grain will depend on the size and
shape of the grain and, to some extent, on the magnetizations in neighboring grains.
Although very small grains, perhaps smaller than 0.1 jun, may be single domains, in
most cases the majority of the grains will have many domains. Overall, the structure
will possess no net magnetization, provided that it was not previously subjected to an
applied magnetic field. We can assume that the component was heated to a temperature
above the Curie point and then allowed to cool to room temperature without an ap-
plied field.

Suppose that we start applying a very small external magnetic field (Mo ) along
some direction, which we can arbitrarily label as +x. The domain walls within vari-
ous grains begin to move small distances, and favorably oriented domains (those with
a component of M along +jc) grow a little larger at the expense of those pointing away
from the field, as indicated by point a in Figure 8.31. The domain walls that are
pinned by imperfections tend to bow out. There is a very small but net magnetization
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Small grain with a single domain

Figure 8.30  Schematic illustration of magnetic
domains in the grains of an unmagnetized
polycrystalline iron sample.
Very small grains have single domains.
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Figure 8.31   M versus H behavior of a previously unmagnetized polycrystalline iron specimen.
An example grain in the unmagnetized specimen is that at O.
(a) Under very small fields, the domain boundary motion is reversible.
(b) The boundary motions are irreversible and occur in sudden jerks.
(c) Nearly all the grains are single domains with saturation magnetizations in the easy directions.
(d) Magnetizations in individual grains have to be rotated to align with the field H.
(e) When the field is removed, the specimen returns along cf to e.
(f) To demagnetize the specimen, we have to apply a magnetizing field of Hc in the reverse direction.

along the field, as indicated by the Oa region in the magnetization versus magnetiz-
ing field (M versus H) behavior in Figure 8.31. As we increase the magnetizing field,
the domain motions extend larger distances, as shown for point b in Figure 8.31, and
walls encounter various obstacles such as crystal imperfections, impurities, second
phases, and so on, which tend to attract the walls and thereby hinder their motions. A
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domain wall that is stuck (or pinned) at an imperfection at a given field cannot move
until the field increases sufficiently to provide the necessary force to snap the wall
free, which then suddenly surges forward to the next obstacle. As a wall suddenly
snaps free and shoots forward to the next obstacle, essentially two causes lead to heat
generation. Sudden changes in the lattice distortion, due to magnetostriction, create
lattice waves that carry off some of the energy. Sudden changes in the magnetization
induce eddy currents that dissipate energy via Joule heating (domains have a finite
electrical resistance). These processes involve energy conversion to heat and are irre-
versible. Sudden jerks in the wall motions lead to small jumps in the magnetization of
the specimen as the magnetizing field is increased; the phenomenon is known as the
Barkhausen effect. If we could examine the magnetization precisely with a highly
sensitive instrument, we would see jumps in the M versus H behavior, as shown in the
inset in Figure 8.31.

As we increase the field, magnetization continues to increase by jerky domain wall
motions that enlarge domains with favorably oriented magnetizations and shrink away
those with magnetizations pointing away from the applied field. Eventually domain
wall motions leave each crystal grain with a single domain and magnetization in one of
the easy directions, as indicated by point c in Figure 8.31. Although some grains would
be oriented to have the easy direction and hence M along the applied field, the magne-
tization in many grains will be pointing at some angle to H as shown for point c in
Figure 8.31. From then until point d, the increase in the applied field forces the magne-
tization in a grain, such as that at point c to rotate toward the direction of H. Eventually
the applied field is sufficiently strong to align M along H, and the specimen reaches sat-
uration magnetization MSSLt, directed along H or +x, as at point d in Figure 8.31.

If we were to decrease and remove the magnetizing field, the magnetization in
each grain would rotate to align parallel with the nearest easy direction in that grain.
Further, in some grains, additional small domains may develop that reduce the magne-
tization within that grain, as indicated at point e in Figure 8.31. This process, from
point d to point e, leaves the specimen with a permanent magnetization, called the
remanent or residual magnetization and denoted by Mr.

If we were now to apply a magnetizing field in the reverse direction -x, the mag-
netization of the specimen, still along +jc, would decrease and eventually, at a suffi-
ciently large applied field M would be zero and the sample would have been totally
demagnetized. This is shown as point / in Figure 8.31. The magnetizing field Hc re-
quired to totally demagnetize the sample is called the coercivity or the coercive field.
It represents the resistance of the sample to demagnetization. We should note that at
point/in Figure 8.31, the sample again has grains with many domains, which means
that during the demagnetization process, from point e to point /, new domains had to
be generated. The demagnetization process invariably involves the nucleation of vari-
ous domains at various crystal imperfections to cancel the overall magnetization. The
treatment of the nucleation of domains is beyond the scope of this book; we will
nonetheless, accept it as required process for the demagnetization of the crystal grains.

If we continue to increase the applied magnetic field along - jc, as illustrated in
Figure 8.32a, the process from point/onward becomes similar to that described for
magnetization from point a to point d in Figure 8.31 along -{-x except that it is now
directed along - x. At point g, the sample reaches saturation magnetization along the
-x direction

. The full M versus H behavior as the magnetizing field is cycled between
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(a) A typical M versus H hysteresis curve.
(b) The corresponding 8 versus H hysteresis curve. The shaded area inside the hysteresis loop is the
energy loss per unit volume per cycle.

+a: to -x has a closed loop shape, shown in Figure 8.32a, called the hysteresis loop.
We observe that in both H-jc and - x directions, the magnetization reaches saturation
Msat when H reaches //sat, and on removing the applied field, the specimen retains an
amount of permanent magnetization, represented by points e and h and denoted by Mr.
The necessary applied field of magnitude Hc that is needed to demagnetize the speci-
men is the coercivity (or coercive field), which is represented by points / and /. The
initial magnetization curve, Oabcd in Figure 8.31, which starts from an unmagnetized
state, is called the initial magnetization curve.

We can, of course, monitor the magnetic field B instead of Af, as in Figure 8.32b,
where

B = jjL0M + jjL0H

which leads to a hysteresis loop in the B versus H behavior. The very slight increase in
B with H when M is in saturation is due to the permeability of free space {ii0H). The
area enclosed within the B versus H hysteresis loop, shown as the hatched region in
Figure 8.32b, represents the energy dissipated per unit volume per cycle of applied
field variation.

Suppose we do not take a magnetic material to saturation but still subject the speci-
men to a cyclic applied field alternating between the +a: and - x directions. Then the hys-
teresis loop would be different than that when the sample is taken all the way to saturation,
as shown in Figure 8.33. The magnetic field in the material does not reach Z?Sat (corre-
sponding to MSat) but instead reaches some maximum value Bm when the magnetizing
field is Hm. There is still a hysteresis effect because the magnetization and demagnetiza-
tion processes are nonreversible and do not retrace each other. The shape of the hysteresis
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Figure 8.33  The B versus H hysteresis loop
depends on the magnitude of the applied field in
addition to the material and sample shape and size.

loop depends on the magnitude of the applied field in addition to the material and sample
shape and size. The area enclosed within the loop is still the energy dissipated per unit
volume per cycle of applied field oscillation. The hysteresis loop taken to saturation, as in
Figure 8.32a and b, is called the saturation (major) hysteresis loop. It is apparent from
Figure 8.33 that the remanence and coercivity exhibited by the sample depend on the B-H
loop. The quoted values normally correspond to the saturation hysteresis loop.

Ferrimagnetic materials exhibit properties that closely resemble those of ferro-
magnetic materials. One can again identify distinct magnetic domains and domain
wall motions during magnetization and demagnetization that also lead to B-H hyste-
resis curves with the same characteristic parameters, namely, saturation magnetization
(MSat and Bsait at HsaLt), remanence (Mr and Br), coercivity (Hc), hysteresis loss, and so on.

8.5.7 Demagnetization

The B-H hysteresis curves, as in Figure 8.32b, that are commonly given for magnetic
materials represent B versus H behavior observed under repeated cycling. The applied
field intensity H is cycled back and forward between the - x and +jc directions. If we
were to try and demagnetize a specimen with a remanent magnetization at point e in
Figure 8.34 by applying a reverse field intensity, then the magnetization would move
along from point e to point/. If at point/we were to suddenly switch off the applied
field, we would find that B does not actually remain zero but recovers along/to point
e

' and attains some value B .. The main reason is that small domain wall motions are
reversible and as soon as the field is removed, there is some reversible domain wall

motion "bouncing back" the magnetization along/-V. We can anticipate this recovery
and remove the field intensity at some point /' so that the sample recovers along f'O
and the magnetization ends up being zero. However, to remove the field intensity at
point /', we need to know not only the exact B-H behavior but also the exact location
of point /' (or the recovery behavior). The simplest method to demagnetize the sam-
ple is first to cycle H with ample magnitude to reach saturation and then to continue
cycling H but with a gradually decreasing magnitude, as depicted in Figure 8.35. As H
is cycled with a decreasing magnitude, the sample traces out smaller and smaller B-H
loops until the B-H loops are so small that they end up at the origin when H reaches
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Figure 8.35  A magnetized specimen can be
demagnetized by cycling the field intensity with a
decreasing magnitude, that is, tracing out smaller
and smaller 8-H loops until the origin is reached,
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zero. The demagnetization process in Figure 8.35 is commonly known as deperming.
Undesirable magnetization of various magnetic devices such as recording heads is typ-
ically removed by this deperming process (for example, a demagnetizing gun brought
close to a magnetized recording head implements deperming by applying a cycled H
with decreasing magnitude).

EXAMPLE 8.5 ENERGY DISSIPATED PER UNIT VOLUME AND THE HYSTERESIS LOOP Consider a toroidal coil

with an iron core that is energized from a voltage supply through a rheostat, as shown in Fig-
ure 8.11. Suppose that by adjusting the rheostat we can adjust the current i supplied to the coil
and hence the magnetizing field H in the core material. H and i are simply related by Ampere's
law. However, the magnetic field B in the core is determined by the B-H characteristics of the
core material. From electromagnetism (see Example 8.2), we know that the battery has to do
work dEvo\ per unit volume of core material to increase the magnetic field by dB, where

Work done

per unit
volume

during
magnetization

dEvol H dB

so that the total energy or work involved per unit volume in changing the magnetic field from
an initial value 2?i to a final value Bi in the core is

rB2

H dB [8.22]

where the integration limits are determined by the initial and final magnetic fields.
Equation 8.22 corresponds to the area between the B-H curve and the B axis between B\

and B2. Suppose that we take the iron core in the toroid from point P on the hysteresis curve to
2, as shown in Figure 8.36. This is a magnetization process for which energy is put into the
sample. The work done per unit volume from P to Q is the area PQRS, shown as hatched. On
returning the sample to the same initial magnetization (same magnetic field B as we had at P),
taking it from Q to 5, energy is returned from the core into the electric circuit. This energy per
unit volume is the area QRS, shown as gray, and is less than PQRS during magnetization. The
difference is the energy dissipated in the sample as heat (moving domain walls and so on) and
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corresponds to the hysteresis loop area PQS. Over one full cycle, the energy dissipated per unit
volume is the total hysteresis loop area.

The hysteresis loop and hence the energy dissipated per unit volume per cycle depend not
only on the core material but also on the magnitude of the magnetic field (J5m), as apparent in
Figure 8.33. For example, for magnetic steels used in transformer cores, the hysteresis power
loss Ph per unit volume of core is empirically expressed in terms of the maximum magnetic field
Bm and the ac frequency/as6

P
,h [8.23]

where K is a constant that depends on the core material (typically, K = 150.7),/is the ac fre-
quency (Hz), Bm is the maximum magnetic field (T) in the core (assumed to be in the range
0
.
1-1

.5 T), and n = 1.6. According to Equation 8.23, the hysteresis loss can be decreased by
operating the transformer with a reduced magnetic field.

Hysteresis
power loss
per m3

8
.
6   SOFT AND HARD MAGNETIC MATERIALS

8
.
6
.

1 Definitions

Based on their B-H behavior, engineering materials are typically classified into soft and
hard magnetic materials. Their typical B-H hysteresis curves are shown in Figure 8.37.
Soft magnetic materials are easy to magnetize and demagnetize and hence require rel-
atively low magnetic field intensities. Put differently, their B-H loops are narrow, as
shown in Figure 8.37. The hysteresis loop has a small area, so the hysteresis power loss
per cycle is small. Soft magnetic materials are typically suitable for applications
where repeated cycles of magnetization and demagnetization are involved, as in elec-
tric motors, transformers, and inductors, where the magnetic field varies cyclically.
These applications also require low hysteresis losses, or small hysteresis loop area.
Electromagnetic relays that have to be turned on and off require the relay iron to be
magnetized and demagnetized and therefore need soft magnetic materials.

Hard magnetic materials, on the other hand, are difficult to magnetize and demag-
netize and hence require relatively large magnetic field intensities, as apparent in Fig-
ure 8.37. Their B-H curves are broad and almost rectangular. They possess relatively
large coercivities, which means that they need large applied fields to be demagnetized.
The coercive field for hard materials can be millions of times greater than those for soft

6 This is the power engineers Steinmetz equation for commercial magnetic steels. It has been applied not only to
silicon irons (Fe + few percent Si) but also to a wide range of magnetic materials.
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Figure 8.37
materials.

Soft and hard magnetic
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magnetic materials. Their characteristics make hard magnetic materials useful as per-
manent magnets in a variety of applications. It is also clear that the magnetization can
be switched from one very persistent direction to another very persistent direction,
from +Br to -2?r, by a suitably large magnetizing field intensity. As the coercivity is
strong, both the states +£r and -Br persist until a suitable (large) magnetic field in-
tensity switches the field from one direction to the other. It is apparent that hard mag-
netic materials can also be used in magnetic storage of digital data, where the states
+#r and -Br can be made to represent 1 and 0 (or vice versa).

8
.
6

.2 Initial and Maximum Permeability

It is useful to characterize the magnetization of a material by a relative permeability
/xr, since this simplifies magnetic calculations. For example, inductance calculations
become straightforward if one could represent the magnetic material by iir alone. But
it is clear from Figure 8.38a that

B
Mr =

ll0H

is not even approximately constant because it depends on the applied field and the
magnetic history of the sample. Nonetheless, we still find it useful to specify a relative
permeability to compare various materials and even use it in various calculations. The
definition nr = B/(n0H) represents the slope of the straight line from the origin O to
the point P, as shown in Figure 8.38a. This is a maximum when the line becomes a tan-
gent to the B-H curve at P, as in the figure. Any other line from O to the B-H curve
that is not a tangent does not yield a maximum relative permeability (the mathematical
proof is left to the reader, though the argument is intuitively acceptable from the fig-
ure). The maximum relative permeability, as defined in Figure 8.38a, is denoted by
Mr,max and serves as a useful magnetic parameter. The point P in Figure 8.38a that de-

fines the maximum permeability corresponds to what is called the "knee" of the B-H
curve. Many transformers are designed to operate with the maximum magnetic field in
the core reaching this knee point. For pure iron, ii m™ is less than 104, but for certain
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Figure 8.38   Definitions of (a) maximum permeability and (b) initial permeability.

soft magnetic materials such as supermalloys (a nickel-iron alloy), the values of Mr
.max

can be as high as 106
.

Initial relative permeability, denoted as represents the initial slope of the ini-
tial B versus H curve as the material is first magnetized from an unmagnetized state, as
illustrated in Figure 8.38b. This definition is useful for soft magnetic materials that are
employed at very low magnetic fields {e.g., small signals in electronics and communi-
cations engineering). In practice, weak applied magnetic fields where \xri is useful are
typically less than 10"4 T. In contrast, Mr

.
max is useful when the magnetic field in the ma-

terial is not far removed from saturation. Initial relative permeability of a magnetically
soft material can vary by orders of magnitude. For example, /xr/ for iron is 150, whereas
for supemumetal-200, a commercial alloy of nickel and iron, it is about 2 x 105.

8
.7   SOFT MAGNETIC MATERIALS:

EXAMPLES AND USES

Table 8.5 identifies what properties are desirable in soft magnetic materials and also lists
some typical examples with various applications. An ideal soft magnetic material would
have zero coercivity (f/c), a very large saturation magnetization (Bsat)* zero remanent mag-
netization (Z?r), zero hysteresis loss, and very large />6r

,
max and )Ltw. A number of example

materials, from pure iron to ferrites, which are ferrimagnetic, are listed in Table 8.5. Pure
iron, although soft, is normally not used in electric machines (except in a few specific
relay-type applications) because its good conductivity allows large eddy currents to be in-
duced under varying fields. Induced eddy currents in the iron lead to Joule losses (/V2),
which are undesirable. The addition of a few percentages of silicon to iron (silicon-iron),
known typically as silicon-steels, increases the resistivity and hence reduces the eddy cur-
rent losses. Silicon-iron is widely used in power transformers and electric machinery.

The nickle-iron alloys with compositions around 77% Ni-23% Fe constitute an
important class of soft magnetic materials with low coercivity, low hysteresis losses, and
high permeabilities ( n and /ir

,
max). High makes these alloys particularly useful in

low magnetic field applications that are typically found in high-frequency work in
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Table 8.5   Selected soft magnetic materials and some typical values and applications

Magnetic
Material (T) (T) (T) V-ri Mr, max l pical Applications

Ideal soft

Iron (commercial)

grade, 0.2%
impurities)

Silicon iron

(Fe: 2-4% Si)

Supermalloy
(79%Ni-15.5%

Fe-5% Mo-0.5% Mn)

78 Permalloy
(78.5%
Ni-21.5%Fe)

Glassy metals,
Fe-Si-B

Ferrites,
Mn-Zn ferrite

0

<10,
-4

Large

2
.
2

0

<0.1

Large Large 0

150 10'i4 250

<10,
-4 2

.
0 0

.
5-1

2 x 10~7   0.7-0.8 <0.1

103

105

5 x 10-6     0.86      <0.1    8 x 103

2 x lO"6

lO"5

1
.
6

0
.
4

<io-6 -

Transformer cores, inductors, electric

machines, electromagnet cores,
relays, magnetic recording heads.

Large eddy current losses. Generally
not preferred in electric machinery
except in some specific applications
(e.g., some electromagnets and
relays).

104-     30-100    Higher resistivity and hence lower eddy
current losses. Wide range of electric
machinery (e.g., transformers).

High permeability, low-loss electric
devices, e.g., specialty transformers,
magnetic amplifiers.

Low-loss electric devices, audio

transformers, HF transformers,

recording heads, filters.
Low-loss transformer cores.

4 x 105

106

105

<0.5

<0.1

105 20

<0
.
01   2 x 103   5 x 103 <0.01 HF low-loss applications. Low

conductivity ensures negligible
eddy current losses. HF transformers,
inductors (e.g., pot cores, E and U
cores), recording heads.

NOTE: Wh is the hysteresis loss, energy dissipated per unit volume per cycle in hysteresis losses, J m"3 cycle-1, typically at Bm = 1 T.

electronics (e.g., audio and wide-band transformers). They have found many engi-
neering uses in sensitive relays, pulse and wide-band,

 transformers, current transform-

ers, magnetic recording heads, magnetic shielding, and so forth. Alloying iron with
nickel increases the resistivity and hence reduces eddy current losses. The magne-
tocrystalline anisotropy energy is least at these nickel compositions, which leads to
easier domain wall motions and hence smaller hysteresis losses. There are a number of
commercial nickel-iron alloys whose application depends on the exact composition
(which may also have a few percentages of Mo, Cu, or Cr) and the method of prepara-
tion (e.g., mechanical rolling). For example, supermalloy (79% Ni-16% Fe-5% Co)
has fjLri  105, compared with commercial grade iron, which has /xn less than 103.

Amorphous magnetic metals, as the name implies, have no crystal structure (they
only have short-range order) and consequently possess no crystalline imperfections such
as grain boundaries and dislocations. They are prepared by rapid solidification of the melt
by using special techniques such as melt spinning (as described in Chapter 1). Typically
they are thin ribbons by virtue of their preparation method. Since they have no crystal
structure, they also have no magnetocrystalline anisotropy energy, which means that all
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directions are easy. The absence of magnetocrystalline anisotropy and usual crystalline
defects which normally impede domain wall motions, leads to low coercivities and hence
to soft magnetic properties. The coercivity, however, is not zero inasmuch as there is still
some magnetic anisotropy due to the directional nature of the strains frozen in the metal
during rapid solidification. By virtue of their disordered structure, these metallic glasses
also have higher resistivities and hence they have smaller eddy current losses. Although
they are ideally suited for various transformer and electric machinery applications, their
limited size and shape, at present, prevent their use in power applications.

Ferrites are ferrimagnetic materials that are typically oxides of mixed transition
metals, one of which is iron. For example, Mn ferrite is MnFe204 and MgZn ferrite is
Mni_JCZnJCFe204. They are normally insulators and therefore do not suffer from eddy
current losses. They are ideal as magnetic materials for high-frequency work where
eddy current losses would prevent the use of any material with a reasonable conductivity.
Although they can have high initial permeabilities and low losses, they do not possess
as large saturation magnetizations as ferromagnets, and further, their useful temperature
range (determined by the Curie temperature) is lower. There are many types of commer-
cial ferrites available depending on the application, tolerable losses, and the required
upper frequency of operation. MnZn ferrites, for example, have high initial permeabil-
ities (e.g., 2 x 103) but are only useful up to about 1 MHz, whereas NiZn ferrites have
lower initial permeability (e.g., 102) but can be used up to 200 MHz. Generally, the ini-
tial permeability in the high-frequency region decreases with frequency.

Garnets are ferrimagnetic materials that are typically used at the highest frequencies
that cover the microwave range (1-300 GHz). The yttrium iron garnet, YIG, which is
YsFesO , is one of the simplest garnets with a very low hysteresis loss at microwave fre-
quencies. Garnets have excellent dielectric properties with high resistivities and hence
low losses. The main disadvantages are the low saturation magnetization, which is 0.18
T for YIG, and low Curie temperature, 280 0C for YIG. The compositions of garnets de-
pend on the properties required for the particular microwave application. For example,
YiiGdo

.
QgFesO  is a garnet that is used in X-band (8-12 GHz) three-port circulators

handling high microwave powers (e.g., peak power 200 kW and average power 200 W).

AN INDUCTOR WITH A FERRITE CORE Consider a toroidal coil with a ferrite core. Suppose
that the coil has 200 turns and is used in HF work with small signals. The mean diameter of the
toroid is 2.5 cm and the core diameter is 0.5 cm. If the core is a MnZn ferrite, what is the

approximate inductance of the coil?

SOLUTION

The inductance L of a toroidal coil is given by

fxri 0N2A
L =  

i

so

(2 x 103)(4jr x 10-7Hm-1)(200)2 (  ml
L =  -= - = 0.025 H      or      25 mH

(jt0.025 m)

EXAMPLE 8.6
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Had the core been air, the inductance would have been 1.26 x 10"5 H or 12.6 (iH. The main
assumption is that B is uniform in the core, and this will be only so if the diameter of the toroid
(2.5 cm) is much greater than the core diameter (0.5 cm). Here this ratio is 5 and the calculation
is only approximate.

8
.8   HARD MAGNETIC MATERIALS:

EXAMPLES AND USES

An ideal hard magnetic material, as summarized in Table 8.6, has very large coerciv-
ity and remanent magnetic field. Further, since they are used as permanent magnets,
the energy stored per unit volume in the external magnetic field should be as large as
possible since this is the energy available to do work. This energy density (J m"3) in
the external field depends on the maximum value of the product BH in the second
quadrant of the B-H characteristics and is denoted as (BH)maiX. It corresponds to the
largest rectangular area that fits the B-H curve in the second quadrant, as shown in
Figure 8.39.

When the size of a ferromagnetic sample falls below a certain critical dimension,
of the order of 0.1 |Lim for cobalt, the whole sample becomes a single domain, as
depicted in Figure 8.40, because the cost of energy in generating a domain wall is too
high compared with the reduction in external magnetostatic energy. These small
particle-like pieces of magnets are called single domain fine particles. Their magnetic

Table 8.6  Hard magnetic materials and typical values

Magnetic Material (T)

B
r

(T) (kj m3) Examples and Uses

Ideal hard Large

Alnico (Fe-Al-Ni-Co-Cu)     0.19

Alnico (Columnar)

Strontium ferrite

(anisotropic)

Rare earth cobalt, e.g.,
Sm2Coi7 (sintered)

NdFeB magnets

Hard particles,
y-FeiOa

0.
075

0
.
3-0

.
4

0
.
62-1.1

0
.
9-1

.
0

0
.
03

Large

0
.
9

1
.
35

0
.
36-0.43

1
.

1

1
.
0-1

.
2

Large

50

60

24-34

150-240

200-275

0
.
2

Permanent magnets in various
applications.

Wide range of permanent magnet
applications.

Starter motors, dc motors,

loudspeakers, telephone
receivers, various toys.

Servo motors, stepper motors,
couplings, clutches, quality
audio headphones.

Wide range of applications, small
motors (e.g., in hand tools),
walkman equipment, CD
motors, MRI body scanners,
computer applications.

Audio and video tapes,
floppy disks.
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Figure 8.41    A single domain elongated particle.
Due to shape anisotropy, magnetization prefers to be along
the long axis as in (a). Work has to be done to change M
from (a) to (b) to (c).

properties depend not only on the crystal structure of the particle but also on the
shape of the particle because different shapes give rise to different external magnetic

fields. For a spherical iron particle, the magnetization M will be in an easy direction,
for example, along [100] taken along +z. To reverse the magnetization from +z to - z
by an applied field, we have to rotate the spins around past the hard direction, as shown
in Figure 8.40, since we cannot generate reverse domains (or move domain walls).
The rotation of magnetization involves substantial work due to the magnetocrystalline
anisotropic energy, and the result is high coercivity. The higher the magnetocrystalline
anisotropy energy, the greater the coercivity. The energy involved in creating a domain
wall increases with the magnetocrystalline anisotropy energy. The critical size below
which a particle becomes a single domain therefore increases with the crystalline
anisotropy. Barium ferrite crystals have the hexagonal structure and hence have a high
degree of magnetocrystalline anisotropy. Critical size for single domain barium ferrite
particles is about 1-1.5 |Lim, and the coercivity iaqHc of small particles can be as high
as 0.3 T, compared with values 0.02-0.1 T in multidomain barium ferrite pieces.

Particles that are not spherical may even have higher coercivity as a result of shape
anisotropy. Consider an ellipsoid (elongated) fine particle, shown in Figure 8.41a. If
the magnetization M is along the long axis (along z), then the potential energy in the
external magnetic field is less than if M were along the minor axis (along y), as com-
pared in Figure 8.41a and b. Thus, we have to do work to rotate M from the long to the
short axis, or from Figure 8.41a to b. An elongated fine particle therefore has its mag-
netization along its length, and the effect is called shape anisotropy. If we have to
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reverse the magnetization from +z to -z by applying a reverse field, then we can only
do so by rotating the magnetization, as shown in Figure 8.41a to c. M has to be rotated
around through the minor axis, and this involves substantial work. Thus the coercivity
is high. In general, the greater the elongation of the particle with respect to its width,
the higher the coercivity. Small spherical Fe-Cr-Co particles have a coercivity A60//c
at most 0.02 T, but elongated and aligned particles can have a coercivity as high as
0

.075 T due to shape anisotropy.
High coercivity magnets can be fabricated by having elongated fine particles dis-

persed by precipitation in a structure. Fine particles will be single domains. Alnico is a
popular permanent magnet material that is an alloy of the metals Al, Ni, Co, and Fe
(hence the name). Its microstructure consists of fine elongated Fe-Co rich particles,
called the a'-phase, dispersed in a matrix that is Ni-Al rich and called the a-phase. The
structure is obtained by an appropriate heat treatment that allows fine a' particles to
precipitate out from a solid solution of the alloy. The a' particles are strongly magnetic,
whereas the a-phase matrix is weakly magnetic. When the heat treatment is carried out
in the presence of a strong applied magnetic field, the a' particles that are formed have
their elongations (or lengths) and hence their magnetizations along the applied field.
The demagnetization process requires the rotations of the magnetizations in single do-
main elongated a' particles, which is a difficult process (shape anisotropy), and hence
the coercivity is high. The main drawback of the Alnico magnet is that the alloy is
mechanically hard and brittle and cannot be shaped except by casting or sintering
before heat treatment. There are, however, other alloy permanent magnets that can be
machined.

A variety of permanent magnets are made by compacting high-coercivity particles
by using powder metallurgy (e.g., powder pressing or sintering). The particles are
magnetically hard because they are sufficiently small for each to be of single domain
or they possess substantial shape anisotropy (elongated particles may be ferromagnetic
alloys, e.g., Fe-Co, or various hard ferrites). These are generically called powdered
solid permanent magnets. An important class is the ceramic magnets that are made by
compacting barium ferrite, BaFe OQ, or strontium ferrite, SrFe OQ, particles. The
barium ferrite has the hexagonal crystal structure with a large magnetocrystalline
anisotropy, which means that barium ferrite particles have high coercivity. The ce-
ramic magnet is typically formed by wet pressing ferrite powder in the presence of a
magnetizing field, which allows the easy directions of the particles to be aligned,
and then drying and carefully sintering the ceramic. They are used in many low-cost
applications.

Rare earth cobalt permanent magnets based on samarium-cobalt (Sm-Co) alloys
have very high (BH)m&x values and are widely used in many applications such as dc
motors, stepper and servo motors, traveling wave tubes, klystrons, and gyroscopes.
The intermetallic compound SmCos has a hexagonal crystal structure with high mag-
netocrystalline anisotropy and hence high coercivity. The SmCos powder is pressed in
the presence of an applied magnetic field to align the magnetizations of the particles.
This is followed by careful sintering to produce a solid powder magnet. The Sn Cois
magnets are more recent and have particularly high values of (BH)max up to about
240 kJ m~3. Sm2Coi5 is actually a generic name and the alloy may contain other tran-
sition metals substituting for some of the Co atoms.
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One important application of permanent
magnets is in small dc motors. Toothbrushes
that operate from batteries use dc motors
with strong permanent magnets to get the
required torque to drive the brushes.

The more recent neodymium-iron-boron, NdFeB, powdered solid magnets can
have very large (HB)max values up to about 275 kJ m~3. The tetragonal crystal struc-
ture has the easy direction along the long axis and possesses high magnetocrystalline
anisotropic energy. This means that we need a substantial amount of work to rotate the
magnetization around through the hard direction, and hence the coercivity is also high.
The main drawback is the lower Curie temperature, typically around 300 0C, whereas
for Alnico and rare earth cobalt magnets, the Curie temperatures are above 700 0C.
Another method of preparing NdFeB magnets is by the recrystallization of amorphous
NdFeB at an elevated temperature in an applied field. The grains in the recrystallized
structure are sufficiently small to be single domain grains and therefore possess high
coercivity.

(BH)max FOR A PERMANENT MAGNET Consider the permanent magnet in Figure 8.42. There
is a small air gap of length £g where there is an external magnetic field that is available to do
work. For example, if we were to insert an appropriate coil in the gap and pass a current through
the coil, it would rotate as in a moving coil panel meter. Show that the magnetic energy per unit
volume stored in the gap is proportional to the maximum value of BH. How does (BH)m3LX vary
with the magnetizing field?

SOLUTION

Let £m be the mean length of the magnet from one end to the other, as shown in Figure 8.42.
We assume that the cross-sectional area A is constant throughout. There are no windings
around the magnet and no current, 1 = 0. Ampere's law for H involves integrating H along a
closed path or around the mean path length im + lg. Suppose that Hm and Hg are the magnetic

EXAMPLE 8.7
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Figure 8.42  A permanent magnet with a small air gap.
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field intensities in the permanent magnet and in the gap, respectively. Then H dt integrated
around im + ig is

Hdi = Hmim + Hgig = 0

so that

and hence

I

t8

Bg = -p>oy-Hm [8.24]

Equation 8.24 is a relationship between Bg in the gap and Hm in the magnet. In addition, we
have the B-H relationship for the magnetic material itself between the magnetic field Bm and
intensity Hm in the magnet, that is,

B
m
 = f(Hm) [8.25]

The magnetic flux in the magnet and in the air gap must be continuous. Since we assumed
a uniform cross-sectional area, the continuity of flux across the air gap implies that Bm = Bg.
Thus we need to equate Equation 8.24 to Equation 8.25. Equation 8.24 is a straight line with a
negative slope in a Bg versus Hm plot, as shown in Figure 8.43a. Equation 8.25 is, of course, the
B-H characteristics of the material

. The two intersect at point P, as shown in Figure 8.43a,
where Bg = Bm = B'

m
 and Hm = H'

m
.

We know that there is magnetic energy in the air gap given by

mag
 = (Gap volume)(Magnetic energy density in the gap)

X
-(Alm)B'

m
H

'

m

i(Magnet volume)B'
m
H

'

Km
[8.26]

mThus, the external magnetic energy depends on the magnet volume and the product of B'n
and H  of the magnet characteristics at the operating point P. For a given magnet size, the mag-
netic energy in the gap is proportional to the rectangular area B  H , OB'

m PH'm in Figure 8.43a,
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Figure 8.43
(a) Point P represents the operating point of the magnet and determines the magnetic field inside and
outside the magnet.
(b) Energy density in the gap is proportional to BH, and for a given geometry and size of gap, this is a
maximum at a particular magnetic field 8  or 8g.

and we have to maximize this area for the best energy extraction. Figure 8.43b shows how the
product BH varies with B in a typical magnetic material. BH is maximum at (BH)max, when the
magnetic field is B * and the field intensity is H*. We can appropriately choose the air-gap size
to operate at these values, in which case we will be only limited by the (BH)max available for that
magnetic material. It is clear that (BH)max is a good figure of merit for comparing hard magnetic
materials. According to Table 8.6, we can extract four to five times more work from a rare earth
cobalt magnet than from an Alnico magnet of the same size if we were not limited by economics
and weight. It should be mentioned that Equation 8.26 is only approximate as it neglects all
fringe fields.

8
.
9 SUPERCONDUCTIVITY

8
.
9
.1 Zero Resistance and the Meissner Effect

In 1911 Kamerlingh Onnes at the University of Leiden in Holland observed that
when a sample of mercury is cooled to below 4.2 K, its resistivity totally vanishes
and the material behaves as a superconductor, exhibiting no resistance to current
flow. Other experiments since then have shown that there are many such substances,
not simply metals, that exhibit superconductivity when cooled below a critical
temperature Tc that depends on the material. On the other hand, there are also many
conductors, including some with the highest conductivities such as silver, gold, and
copper, that do not exhibit superconductivity. The resistivity of these normal
conductors at low temperatures is limited by scattering from impurities and crystal
defects and saturates at a finite value determined by the residual resistivity. The two
distinctly different types of behavior are depicted in Figure 8.44. Between 1911 and
1986, many different metals and metal alloys had been studied, and the highest



730 chapter 8 . Magnetic Properties and Superconductivity

Figure 8.44  A superconductor such as lead
evinces a transition to zero resistivity at a critical
temperature Tc (7.2 K for Pb).
A normal conductor such as silver exhibits residual

resistivity down to lowest temperatures.
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recorded critical temperature was about 23 K in a niobium-germanium compound
(NbsGe) whose superconductivity was discovered in the early 1970s. In 1986 Bednorz
and Miiller, at IBM Research Laboratories in Zurich, discovered that a copper
oxide-based ceramic-type compound La-Ba-Cu-O, which normally has high resis-
tivity, becomes superconducting when cooled below 35 K. Following this Nobel
prize-winning discovery, a variety of copper oxide-based compounds (called cuprate
ceramics) have been synthesized and studied. In 1987 it was found that yttrium bar-
ium copper oxide (Y-Ba-Cu-O) becomes superconducting at a critical temperature
of 95 K, which is above the boiling point of nitrogen (77 K). This discovery was par-
ticularly significant because liquid nitrogen is an inexpensive cryogent that is readily
liquified and easy to use compared with cryogent liquids that had to be used in the

Superconductivity, zero resistance below a certain critical
temperature, was discovered by a Dutch physicist, Heike
Kamerlingh Onnes, in 1911. Kamerlingh Onnes and one of his
graduate students found that the resistance of frozen mercury
simply vanished at 4.15 K; Kamerlingh Onnes won the Nobel
prize in 1913.

SOURCE: © Riiksmuseum voor de Geschiedenis der

Natuurwetenschappen, courtesy AIP Emilio Segre Visual
Archives.

<1
8
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m

John Bardeen, Leon N. Cooper, and John Robert Schrieffer, in Nobel prize ceremony
(1972). They received the Nobel prize for the explanation of superconductivity in terms
of Cooper pairs.
I SOURCE: AIP Emilio Segre Visual Archives.
"My belief is that the pairing condensation is what Mother Nature had in mind when she
created these fascinating high-7

"

c systems." Robert Schrieffer (1991)

past (liquid helium). At present the highest critical temperature for a superconductor
is around 130 K (-143 0C) for Hg-Ba-Ca-Cu-O. These superconductors with Tc
above ~30 K are now typically referred as high-rc superconductors. The quest for
a near-room-temperature superconductor goes on, with many scientists around the
world trying different materials, or synthesizing them, to raise Tc even higher. There
are already commercial devices utilizing high-rc superconductors, for example,
thin-film SQUIDs7 that can accurately measure very small magnetic fluxes, high-Q
filters, and resonant cavities in microwave communications.

The vanishing of resistivity is not the only characteristic of a superconductor. A
superconductor cannot be viewed simply as a substance that has infinite conductivity
below its critical temperature. A superconductor below its critical temperature expels
all the magnetic field from the bulk of the sample as if it were a perfectly diamagnetic
substance. This phenomenon is known as the Meissner effect. Suppose that we place
a superconducting material in a magnetic field above Tc. The magnetic field lines will

ji penetrate the sample, as we expect for any low /ir medium. However, when the
superconductor is cooled below Tc, it rejects all the magnetic flux in the sample, as
depicted in Figure 8.45. The superconductor develops a magnetization M by devel-
oping surface currents, such that M and the applied field cancel everywhere inside

I 7 SQUID is a superconducting quantum interference device that can detect very small magnetic fluxes.



732 chapters . Magnetic Properties and Superconductivity

B B B off

Superconductor

Perfect conductor

T>T
C

T<T
C

T< T
c

Figure 8.45  The Meissner effect.
A superconductor cooled below its critical temperature expels all magnetic field lines from
the bulk by setting up a surface current. A perfect conductor (a= oo) shows no Meissner
effect.

the sample. Put differently ijl0M is in the opposite direction to the applied field and
equal to it in magnitude. Thus, below Tc a superconductor is a perfectly diamagnetic
substance (xm = - 1). This should be contrasted with the behavior of a perfect conduc-
tor, which only exhibits infinite conductivity, or p = 0, below Tc. If we place a perfect
conductor in a magnetic field and then cool it below Tc, the magnetic field is not re-
jected. These two types of behavior are identified in Figure 8.45. If we switch off the
field, the field around the superconductor simply disappears. But switching off the field
means there is a decreasing applied field. This change in the field induces currents in the
perfect conductor by virtue of Faraday

'

s law of induction. These currents generate a
magnetic field that opposes the change (Lenz

'

s law); in other words, they generate a
field along the same direction as the applied field to reenforce the decreasing field. As
the current can be sustained (p = 0) without Joule dissipation, it keeps on flowing and
maintaining the magnetic field. The two final situations are shown in Figure 8.45 and
distinguish the Meissner effect, a distinct characteristic of a superconductor, from the
behavior of a perfect conductor (p = 0 only). The photograph showing the levitation of
a magnet above the surface of a superconductor (Figure 8.46) is the direct result of the
Meissner effect: the exclusion of the magnet's magnetic fields from the interior of the
superconductor.

The transition from the normal state to the superconducting state as the temperature
falls below the critical temperature has similarities with phase transitions such as solid
to liquid or liquid to vapor changes. At the critical temperature, there is a sharp change
in the heat capacity as one would observe for any phase change. In the superconducting
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Figure 8.46
Left: A magnet over a superconductor becomes levitated. The superconductor is a perfect diamagnet which means that there
can be no magnetic field inside the superconductor.
Right: Photograph of a magnet levitating above a superconductor immersed in liquid nitrogen (77 K). This is the Meissner
effect.

I SOURCE: Photo courtesy of Professor Paul C. W. Chu.

state, we cannot treat a conduction electron in isolation. The electrons behave collec-

tively and thereby impart the superconducting characteristics to the substance, as dis-
cussed later.

8.9.2 Type I and Type II Superconductors

The superconductivity below the critical temperature has been observed to disappear
in the presence of an applied magnetic field exceeding a critical value denoted by Bc.
This critical field depends on the temperature and is a characteristic of the material.
Figure 8.47 shows the dependence of the critical field on the temperature. The criti-
cal field is maximum, £c(0), when T = 0 K (obtained by extrapolation8). As long as
the applied field is below Bc at that temperature, the material is in the superconduct-
ing state, but when the field exceeds Bc, the material reverts to the normal state. We
know that in the superconducting state, the applied magnetic field lines are expelled
from the sample and the phenomenon is called the Meissner effect. The external
field, in fact, does penetrate the sample from the surface into the bulk, but the mag-
nitude of this penetrating field decreases exponentially from the surface. If the field
at the surface of the sample is B0, then at a distance x from the surface, the field is

8 There is a third law to thermodynamics that is not as emphasized as the first two laws, which dominate all branches
of engineering. That is, one can never reach the absolute zero of temperature.
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Figure 8.47 The critical field versus
temperature in Type I superconductors.
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Figure 8.48 The critical field versus
temperature in three examples of Type I
superconductors.

A

B
c

o

Xm = -1

* B = ijl0H O

A B B
c\ c2

I

B = fi0H

Mixed state

Type I Type II

Figure 8.49  Characteristics of Type I and Type II superconductors. 8 = ijl0H is the
applied field and M is the overall magnetization of the sample. Field inside the sample,
Binside = MoH + MoM/ which is zero only for 8 < 8C (Type I) and 8 < 8ci (Type II).

given by an exponential decay,

B(x) = *"eXPH)
where A. is a "characteristic length

" of penetration, called the penetration depth, and
depends on the temperature and Tc (or the material). At the critical temperature, the
penetration length is infinite and any magnetic field can penetrate the sample and de-
stroy the superconducting state. Near absolute zero of temperature, however, typical
penetration depths are 10-100 nm. Figure 8.48 shows the Bc versus T behavior for
three example superconductors, tin, mercury, and lead.

Superconductors are classified into two types, called Type I and Type II, based on
their diamagnetic properties. In Type I superconductors, as the applied magnetic
field B increases, so does the opposing magnetization M until the field reaches the crit-
ical field Bc, whereupon the superconductivity disappears. At that point, the perfect
diamagnetic behavior, the Meissner effect, is lost, as illustrated in Figure 8.49. A Type
I superconductor below Bc is in the Meissner state, where it excludes all the magnetic
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Figure 8.50 The mixed or vortex state in a Type II
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Figure 8.51 Temperature dependence of 8ci
and 8C2.

flux from the interior of the sample. Above Bc it is in the normal state, where the mag-
netic flux penetrates the sample as it would normally and the conductivity is finite.

In the case of Type II superconductors, the transition does not occur sharply from
the Meissner state to the normal state but goes through an intermediate phase in which
the applied field is able to pierce through certain local regions of the sample. As the
magnetic field increases, initially the sample behaves as a perfect diamagnet exhibit-
ing the Meissner effect and rejecting all the magnetic flux. When the applied field in-
creases beyond a critical field denoted as Bcu the lower critical field, the magnetic
flux lines are no longer totally expelled from the sample. The overall magnetization M
in the sample opposes the field, but its magnitude does not cancel the field everywhere.
As the field increases, M gets smaller and more flux lines pierce through the sample
until at BC2, the upper critical field, all field lines penetrate the sample and supercon-
ductivity disappears. This behavior is shown in Figure 8.49. Type II superconductors
therefore have two critical fields Bc\ and Z?C2.

When the applied field is between Bci and BC2, the field lines pierce through the sam-
ple through tubular local regions, as pictured in Figure 8.50. The sample develops local
small cylindrical (filamentary) regions of normal state in a matrix of superconducting
state and the magnetic flux lines go though these filaments of local normal state, as
shown in Figure 8.50. The state between Bc\ and BC2 is called the mixed state (or vortex
state) because there are two states-normal and superconducting-mixed in the same
sample. The filaments of normal state have finite conductivity and a quantized amount
of flux through them. Each filament is a vortex of flux lines (hence the name vortex
state). It should be apparent that there should be currents circulating around the walls of
vortices. These circulating currents ensure that the magnetic flux through the supercon-
ducting matrix is zero. The sample overall has infinite conductivity due to the supercon-
ducting regions. Figure 8.51 shows the dependence of Bci and BC2 on the temperature and
identifies the regions of Meissner, mixed, and normal states. All engineering applica-
tions of superconductors invariably use Type II materials because BC2 is typically much
greater than Bc found in Type I materials and, furthermore, the critical temperatures of
Type II materials are higher than those of Type I. Many superconductors, including the
recent high-7  superconductors, are of Type II. Table 8.7 summarizes the characteristics
of selected Type I and Type II superconductors.
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Table 8.7   Examples of Type I and Type I! superconductors

Type I Sn Hg Ta V Pb Nb

TC(K)
Bc(T)

3
.
72

0
.
030

4
.
15

0
.
041

4
.
47

0
.
083

5
.
40

0
.
14

7
.
19

0
.
08

9
.
2

0
.
198

Type II NbaSn NbaGe Ba2-*BrxCu04

Y-Ba-Cu-O

(YBazCuaO?)

Bi-Sr-Ca-Cu-O

(BizSrzCazCuiO ) Hg-Ba-Ca-Cu-O

Tc (K)

BC2 (Tesla)
at OK

7c(Acm-2)
at OK

18.05

24.5

23.2

38

30-35

M50

40i7

93-95

-300

lOMO

122 130-135

i7

NOTE: Critical fields are close to absolute zero, obtained by extrapolation. Type I for pure, clean elements.

8
.
9

.
3 Critical Current Density

Another important characteristic feature of the superconducting state is that when the
current density through the sample exceeds a critical value 7C, it is found that super-
conductivity disappears. This is not surprising since the current through the super-
conductor will itself generate a magnetic field and at sufficiently high current densities,
the magnetic field at the surface of the sample will exceed the critical field and extin-
guish superconductivity. This plausible direct relation between Bc and Jc is only true
for Type I superconductors, whereas in Type II superconductors, Jc depends in a com-
plicated way on the interaction between the current and the flux vortices. New high-rc
superconductors have exceedingly high critical fields, as apparent in Table 8.7, that do
not seem to necessarily translate to high critical current densities. The critical current
density in Type II superconductors depends not only on the temperature and the
applied magnetic field but also on the preparation and hence the microstructure (e.g.,
polycrystallinity) of the superconductor material. Critical current densities in new
high-rc superconductors vary widely with preparation conditions. For example, in
Y-Ba-Cu-O

, Jc may be greater than 107 A cm-2 in some carefully prepared thin films
and single crystals but around 103-106 A cm

-2 in some of the poly crystalline bulk
material (e.g., sintered bulk samples). In NbsSn, used in superconducting solenoid
magnets, on the other hand, Jc is close to 107 A cm

-2 at near 0 K.

The critical current density is important in engineering because it limits the total cur-
rent that can be passed through a superconducting wire or a device. The limits of
superconductivity are therefore defined by the critical temperature Tc, critical magnetic

field Bc (or B ), and critical current density Jc. These constitute a surface in a three-
dimensional plot, as shown in Figure 8.52, which separates the superconducting state
from the normal state. Any operating point (Tu Bu J\) inside this surface is in the
superconducting state. When the cuprate ceramic superconductors were first discovered,
their Jc values were too low to allow immediate significant applications in engineering.
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-lO7 A cm"2 jr Figure 8.52  The critical surface for
J

c a niobium-tin alloy, which is a Type II
J superconductor.

Their synthesis over the last 10 years has advanced to a level that we can now benefit
from large critical currents and fields. Over the same temperature range, ceramic
cuprate superconductors now easily outperform the traditional superconductors. There
are already a number of applications of these high-rc superconductors in the commer-
cial market.

SUPERCONDUCTING SOLENOIDS9 Superconducting solenoid magnets can produce very
large magnetic fields up to ~ 15 T or so, whereas the magnetic fields available from a ferro-
magnetic core solenoid is limited to ~2 T. High field magnets used in magnetic resonance
imaging are based on superconducting solenoids wound using a superconducting wire. They
are operated around 4 K with expensive liquid helium as the cryogen. These superconducting
wires are typically NbaSn or NbTi alloy filaments embedded in a copper matrix. A very large
current, several hundred amperes, is passed through the solenoid winding to obtain the neces-
sary high magnetic fields. There is, of course, no Joule heating once the current is flowing in
the superconducting state. The main problem is the large forces and hence stresses in the coil
due to large currents. Two wires carrying currents in the opposite direction repel each other,
and the force is proportional to /2

. Thus the magnetic forces between the wires of the coil give
rise to outward radial forces trying to "blow open" the solenoid, as depicted in Figure 8.53.
The forces between neighboring wires are attractive and hence give rise to compressional
forces squeezing the solenoid axially. The solenoid has to have a proper mechanical support
structure around it to prevent mechanical fracture and failure due to large forces between the
windings. The copper matrix serves as mechanical support to cushion against the stresses as
well as a good thermal conductor in the event that superconductivity is inadvertently lost dur-
ing operation.

Suppose that we have a superconducting solenoid that is 10 cm in diameter and 1 m in
length and has 500 turns of NbaSn wire, whose critical field Bc at 4.2 K (liquid He temperature)
is about 20 T and critical current density Jc is 3 x 106 A cm-2. What is the current necessary to
set up a field of 5 T at the center of a solenoid? What is the approximate energy stored in the

9 Designing a superconducting solenoid is by no means trivial, and the enthusiastic student is referred to a very
readable description given by James D. Doss, Engineer's Guide to High Temperature Superconductivity, New York:
John Wiley & Sons, 1989, ch. 4. Photographs and descriptions of catastropnic failure in high field solenoids can be
found in an article by G. Broebinger, A. Passner, and J. Bevk, "Building World-Record Magnets" in Scientific
American, June 1995, pp. 59-66.

EXAMPLE 8.8
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Figure 8.53 A solenoid carrying a current experiences radial forces pushing the coil apart and axial
forces compressing the coil.
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solenoid? Assume that the critical current density decreases linearly with the applied field. Fur-
ther, assume also that the field across the diameter of the solenoid is approximately uniform
(field at the windings is the same as that at the center).

SOLUTION

We can assume that we have a long solenoid, that is, length (100 cm) > diameter (10 cm). The
field at the center of a long solenoid is given by

B
t

so the current necessary for B = 5 T is

Bi (5)(1)
/ 7958 A or 7

.
96 kA

fM0N     {An x 10-7)(500)

As the coil is 1 m and there are 500 turns, the coil wire radius must be 1 mm. If all the cross

section of the wire were of superconducting medium, then the corresponding current density
would be

/ 7958
wire

nr
2 TT (0.001) 2

2
.
5 x 109 A m"2 or 2

.
5 x 105 A cm-2

The actual current density through the superconductors will be greater than this as the
wires are embedded in a metal matrix. Suppose that 20 percent by cross-sectional area (and
hence as volume percentage) is the superconductor; then the actual current density through the
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superconductor is

7,

.Aviire

super 0
.
2

1
.
25 x 106 A cm-2

We now need the critical current density /c

' at a field of 5 T. Assuming Jc decreases linearly
with the applied field and vanishes when B = Bc, we can find 7 , from linear interpolation

2j  2J
J

'

c
 = J

c- = (3 x 106 A
B

e

, 20T-5T fi ,
cm

"2
) = 2

.
25 x 106 A cm"2

20 T

The actual current density /super through the superconductors is less than this critical value
J'

c
. We can assume that the superconducting solenoid will operate "safely" (with all other de-

signs correctly implemented). It should be emphasized that accurate and reliable calculations
will involve the actual Jc-Bc-Tc surface, as in Figure 8.52 for the given material.

Since the field in the solenoid is B = 5 T, assuming that this is uniform along the axis and
the core is air, the energy density or energy per unit volume is

B2 52
£vni = ~- = - = 9

.
95 x 106 J m"3

2 0     2(47r x lO"7)

so the total energy

E = £vol [volume] = (9.95 x 106 Jnr3)[(l m)( 0.052 m2)]

= 7
.
81 x 104 J      or      78.1 kJ

If all this energy can be converted to electrical work, it would light a 100 W lamp for
13 min (and if converted to mechanical work, it could lift an 8 ton truck by 1 m).

8
.10   SUPERCONDUCTIVITY ORIGIN

Although superconductivity was discovered in 1911, the understanding of its origin
did not emerge until 1957 when Bardeen, Cooper, and Schrieffer formulated the theory
(called the BCS theory) in terms of quantum mechanics. The quantum mechanical
treatment is certainly beyond the scope of this book, but one can nonetheless grasp an
intuitive understanding, as follows. The cardinal idea is that, at sufficiently low tem-
peratures, two oppositely spinning and oppositely traveling electrons can attract each
other indirectly through the deformation of the crystal lattice of positive metal ions.
The idea is illustrated pictorially in Figure 8.54. The electron 1 distorts the lattice

Lattice vibration
2

+ +

10

Figure 8.54  A pictorial and intuitive
view of an indirect attraction between

two oppositely traveling electrons via
lattice distortion and vibration.
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around it and changes its vibrations as it passes through this region. Random thermal
vibrations of the lattice at low temperatures are not strong enough to randomize this in-
duced lattice distortion and vibration. The vibrations of this distorted region now look
differently to another electron, 2, passing by. This second electron feels a "net" attrac-
tive force due to the slight displacements of positive metal ions from their equilibrium
positions. The two electrons interact indirectly through the deformations and vibra-
tions of the lattice of positive ions. This indirect interaction at sufficiently low temper-
atures is able to overcome the mutual Coulombic repulsion between the electrons and
hence bind the two electrons to each other. The two electrons are called a Cooper pair.
The intuitive diagram in Figure 8.54, of course, does not even convey the intuition why
the spins of the electrons should be opposite. The requirement of opposite spins comes
from the formal quantum mechanical theory. The net spin of the Cooper pair is zero
and their net linear momentum is also zero. There is a further significance to the pair-
ing of electron spins in the Cooper pair. As a quasi-particle, or an entity, the Cooper
pair has no net spin and hence the Cooper pairs do not obey the Fermi-Dirac statistics.10

They can therefore all "condense" to the lowest energy state and possess one single
wavefunction that can describe the whole collection of Cooper pairs. All the paired
electrons are described collectively by a single coherent wavefunction , which ex-
tends over the whole sample. A crystal imperfection cannot simply scatter a single
Cooper pair because all the pairs behave as a single entity-like a "huge molecule."
Scattering one pair involves scattering all, which is simply not possible. An analogy
may help. One can scatter an individual football player running on his own. But if all
the team members got together and moved forward arm in arm as a rigid line, then the
scattering of any one now is impossible, as the rest will hold him in the line and con-
tinue to move forward (don't forget, it's only an analogy!). Superconductivity is said
to be a macroscopic manifestation of quantum mechanics. The BCS theory has had
good success with traditional superconductors, but there seems to be some doubt about
its applicability to the new high-7  superconductors. There are a number of high-rc
superconductivity theories at present, and the interested student can easily find addi-
tional reading on the subject.

ADDITIONAL TOPICS

8
.11    ENERGY BAND DIAGRAMS AND MAGNETISM

8
.11.1 Pauli Spin Paramagnetism

Consider a paramagnetic metal such as sodium. The paramagnetism arises from the
alignment of the spins of conduction electrons with the applied magnetic field. A con-
duction electron in a metal has an extended wave function and does not orbit any par-
ticular metal ion. The conduction electron's magnetic moment arises from the electron
spin alone, and |xspin is in the opposite direction to the spin; |uispin can be either up

I 10 In fact, the Cooper pair without a net spin behaves as if is were a boson particle.
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Figure 8.55   Pauli spin paramagnetism in metals due to conduction electrons.

(ms = -5) or down (ms = +5). In the absence of a magnetic field, the energies of
magnetic moment up and down states (or wavefunctions) are the same and there are as
many electrons with magnetic moment up as there are with magnetic moment down.
Figure 8.55a shows the density of states (number of states per unit energy per unit vol-
ume) for states with magnetic moment up (t), denoted as g (E), and for states with
magnetic moment down (4,), denoted as g iE). Both states have the same energy and
both are equally occupied. All energy levels up to the Fermi energy EF are occupied as
shown in Figure 8.55a. Effectively we are viewing the energy band of the metal as two
subbands corresponding to magnetic moment up and down bands. The bands overlap
in the absence of a field and are indistinguishable.

Consider what happens in the presence of an applied field B0 along the z direction.
If a conduction electron's magnetic moment fjiz is along the field (aligned with the
field), then it has a lower potential energy. Thus, those electron wavefunctions with a
magnetic moment up have lower energy, whereas those wavefunctions with a mag-
netic moment down have higher energy. In the presence of a field B0, therefore, all
states with magnetic moment up, and hence g (E), are lowered in energy by PB0
where ft is the Bohr magneton. All states with magnetic moment down, and hence
gfjXZs), are raised by PB0. Both shifts are shown in Figure 8.55b. Those electrons with
magnetic moment down near EF in the gi(E) band can now find lower energy states
in the g (E) band and hence flip their spins and transfer to the g (E) band. There are
now more electrons in states with magnetic moment up in the g (E) band than in the
gi(E) band. When averaged over all conduction electrons there is now a net magnetic
moment per conduction electron along the z direction or the applied field.

To find the net magnetic moment per conduction electron we have to find how
many electrons transfer from the g  (E) band to the g (E) band. The energy separation
AE between the magnetic moment down and up states is 2pB0. All electrons, ne per unit
volume, in the flf; (E) band around E F within an energy range 5 A E transfer to the g  (E)
band. A£ is small, so ne is approximately Sf|(£V)(| &E) or \ g(EF)(  AE) because
g(EF) includes states with spin up and down, that is,  g(EF) = gi(EF). The magnetic
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moment down band decreases by ne and the magnetic moment up band increases by ne
and the net magnetic moment per unit volume is

M *2neiiz = 2[\g{EF)(\&E)}p
= 2 [i g(EF) (I 208,)] p = P2g(EF)B0

Pauli spin        Using B0 = /x0H and the definition Xm = M/H, the paramagnetic susceptibility is

P<*ra- Xpara « ixop2
g{EF)

We see that the density of states at the Fermi level determines the susceptibility.
magnetism

EXAMPLE 8.9 PAULI SPIN PARAMAGNETISM OF SODIUM The Fermi energy of sodium, EF, is 3.15 eV.
Using the density of states g(E) expression for the free conduction electrons in a metal, evalu-
ate the paramagnetic susceptibility of sodium and compare with the experimental value of
9
.

1 x lO"6.

SOLUTION

The density of states g{E) in the free electron model is

g(E) = (8,r2"2) J
We have to evaluate g{E) at the Fermi energy E = EF = 3.15 eV,

/   9 1 x 10"31 \3/2
&EP) = (Znl ) ((6 626 xl0_34)2 j    (3-15 x 1.6 x lO-'V'2 = 7.54 x 10« J"' m

Paramagnetic susceptibility is

Xpara = iJi0p2g{EF) = (An x 10"7)(9.27 x l(r24)2(7.54 x 1046) = 8.16 x KT6

We need to subtract the diamagnetic from the calculated paramagnetic susceptibility to ob-
tain the net susceptibility, which would decrease the calculated value slightly. Nonetheless,
given the approximate nature of the theory, the calculated value is not far out from the measured
value.

8
.
11.2  Energy Band Model of Ferromagnetism

The energy band model of paramagnetism can be extended to explain ferromagnet-
ism. Once we start using the energy band model, we are essentially assigning all the
valence (outer shell) electrons of the atoms to a collective sharing among all the
atoms; they no longer belong to their individual parents. These valence electrons
now belong to the whole crystal. (The model is also known as the itinerant electron
model.)

Recall that in a ferromagnetic crystal there is an internal magnetization, even in
the absence of an applied field, due to a net number of unpaired spins; that is, overall,
the crystal has more electrons with spins up than with spins down. The reason is the
exchange energy, which causes the spin magnetic moments of two electrons to line up
parallel to each other so that their energy is lowered in much the same way as Hund'

s
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Figure 8.56  Energy band model of
ferromagnetism.
(a) The split cf-band.
(b) The s-band is not affected. The arrows in
the bands are spin magnetic moments.

rule works within an atom. In magnetic metals such as Fe, Ni, and Co, there are two
bands of interest, the s -band and the d-band. The two bands overlap but the s -band is
much wider. We can represent the density of states for magnetic moment up and mag-
netic moment down states separately. Consider the d-band. The density of states
g (E) for magnetic moment up states is lowered by AE with respect to the density of
states (Jf|(£) for magnetic moment down states due to the exchange energy as shown
in Figure 8.56a. The energy lowering AE for the s-band can be neglected as in Fig-
ure 8.56b. All the states up to the Fermi energy are occupied. For Fe, the d-band
magnetic moment up states are filled almost to the top of the band (this band is 96
percent full), and magnetic moment down states are filled roughly halfway. Thus,
there are many more electrons with moments up than moments down; put differently
there are many electrons that have aligned their spins. The spin magnetic moment
alignment of electrons is exactly what is needed to generate a net magnetization. (In
some books, the spin magnetic moment down band is sketched lower than the spin
magnetic moment up band in contrast to Figure 8.56a. Both sketches are correct
since both would also result in a net number of electrons having their spins in paral-
lel, and hence a net magnetization within the crystal. Another way to look at it is to
realize that there are two bands: one band for the "majority of spins," and another

band for the "minority spins.")
The s-band is filled up to £>, and there are almost equal numbers of electrons

with up and down moments in this band. The ferromagnetic effect arises from the be-
havior of electrons mainly in the d-band. Electrical conduction, on the other hand, is
determined by electrons in the s-band. The reason is that the s-band is very wide
compared with the d-band, and the electron effective mass in the s-band is very
small. Thus, electrons have a much higher mobility in the s-band than in the d-band.
When an s-electron is scattered (by phonons, impurities, defects, etc.) into the d-band,
it does not make any significant contribution to conduction because the drift mobil-
ity is very small in this band. The spin of the electron cannot be flipped easily in
a scattering process. An s-electron with its moment down can be easily scattered
into the empty states in the corresponding moment-down d-band (there are many
empty states at EF), but the moment-up electron has no states in the moment-up
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d-band into which it can be scattered
. Conduction occurs by moment-up electrons;

these are the favored electrons for conduction.
The band model is particularly useful in explaining the noninteger number of

Bohr magnetons that give rise to the ferromagnetism. The isolated Fe atom has six
3d and two 45 electrons or 8 valence electrons. These electrons in the crystal become
shared by all the atoms. If Af is the number of atoms per unit volume, then one unit
volume of crystal has 8Af valence electrons. 8Af electrons enter the s and d bands,
filling states starting from the lowest energy.11 The exact distribution of electrons
depends on how many states are available at each energy as electrons fill the bands.
We simply summarize the results of the filling process that is shown in Figure 8.56
for Fe:

0
.3iV electrons in the moment-up s-band (N states available)

0
.3iV electrons in the moment-down s-band (N states available)

4
.8Af electrons in the moment-up d-band (5A  states available)

2
.6N electrons in the moment-down d-band (5Af states available)

To find how many electrons have parallel spin magnetic moments, we simply sum
the above, which is 2.2N moment-up electrons per unit volume or 2.2N Bohr magne-
tons per unit volume, or 2.2 Bohr magnetons per atom. The saturation magnetization
Msat is then (2.2N)P or 2.2 T. There is therefore a natural explanation for a noninteger
number of spins per atom in the band model of ferromagnetism.

8
.
12    ANISOTROPIC AND GIANT

MAGNETORESISTANCE

In general, magnetoresistance refers to the change in the resistance of a material
(any material) when it is placed in a magnetic field. When a nonmagnetic metal
such as copper is placed in a magnetic field, the change in its resistivity, and hence
the sample resistance, is so small that it has no real practical use. When a magnetic
metal, such as iron, is placed in a magnetic field, the change in the resistivity
depends on the direction of the current flow with respect to the magnetic field. The
resistivity p/j for current flow parallel to the magnetic field decreases, and the re-
sistivity px, perpendicular to the field, increases by roughly the same amount. The
change in the resistivity due to the applied magnetic field is anisotropic (depends
on the direction) and is called anisotropic magnetoresistance (AMR). The change
in resistivity is limited to a few percent, but, nonetheless, is still useful. The physi-
cal origin of this phenomenon is based on the applied field being able to tilt the
orbital angular momenta of the M electrons as shown in Figure 8.57a. The field
rotates the 2>d orbitals, which changes the scattering of the conduction electrons
according to their direction of travel; hence p// and p  are different, as shown in
Figure 8.57b.

I 11 8N is used to emphasize that all these valence electrons belong to the crystal, i.e., 8N « 7 x 1024 cm-3.
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Figure 8.57
(a) The origin of anisotropic magnetoresistance (AMR). The electrons traveling along the
field experience more scattering than those traveling perpendicular to the field.
(b) Resistivity depends on the current flow direction with respect to the applied magnetic
field.

On the other hand, a very large magnetoresistance, called giant magnetoresis-
tance (GMR), has been observed in certain special multilayer structures, which ex-
hibit substantial changes in the resistance (e.g., more than 10 percent) when a magnetic
field is applied.12 Even though GMR is a relatively new discovery (1988), it is already
widely used in the read heads of hard disk drives. There are also various magnetic field
sensors based on the GMR.

The special multilayer structure in its simplest form has two ferromagnetic lay-
ers (such as Fe or Co or their alloys, etc.) separated by a nonmagnetic transition metal
layer (such as Cu), called the spacer, as shown in Figure 8.58a. The magnetic layers
are thin (less than 10 nm), and the nonmagnetic layer is even thinner. The magnetiza-
tions of the two ferromagnetic layers are not random; they depend on the thickness of
the spacer because the two layers are "coupled" indirectly through this thin spacer.13 In
the absence of an external field, two magnetic layers are coupled in such a way that
their magnetizations are antiparallel or in opposite directions; this arrangement is also
called an antiferromagnetically coupled configuration. We will use the notation FNA
to represent the antiparallel configuration, where N stands for the nonmagnetic metal.

We can apply an external magnetic field to one of the layers and rotate its magne-
tization so that the two magnetizations are now in parallel as in Figure 8.58c. This par-
allel configuration is frequently called ferromagnetically coupled layers and is denoted
as FNF The two structures have a giant difference in their resistances, hence the term
giant magnetoresistance. The resistance of the antiparallel FNA in Figure 8.58b struc-
ture is much higher than that of the parallel structure FNF in Figure 8.58c.

12 GMR was discovered in the late 1980s by Peter Griinberg Pulich, Germany), and Albert Pert (University of Paris-
Sud) and their coworkers. Magnetoresistance itself, however, has been well known, and dates back to Lord Kelvin's
experiments in 1857.
13 The physics of the coupling process between the two magnetic layers is an indirect exchange interaction, the
details of which are not needed to understand the basics of the GMR phenomenon.
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Figure 8.58  A highly simplified view of the principle of the giant magnetoresistance effect.
(a) The basic trilayer structure.
(b) Antiparallel magnetic layers with high resistance Rap-
(c) An external field aligns layers; parallel alignment has a lower resistance Rp.

The current flow through this multilayer structure (whether along or perpendicu-
lar to the layers) will involve electrons crossing from one layer to another, passing
through the interfaces. Recall that it is the electrons around the Fermi energy that are
involved in the conduction and that their mean speed is orders of magnitude larger than
the drift velocity. The electron trajectories are therefore not parallel to the current flow
(and should not be confused with current flow lines).

Consider the antiparallel FNA structure. The magnetic moment up electron in the
first magnetic layer is the favored conduction electron; that is, it suffers very little scat-
tering. However, when this moment-up electron arrives at the A layer in which the
magnetization is reversed, it finds itself with the wrong spin or wrong moment. It is
now an unfavored electron and is subject to scattering. Thus, the moment-up electron
suffers scattering not only in the bulk of A but, more significantly, as it crosses the N-
layer into the A-layer, that is, at the interface as in Figure 8.58b. The antiparallel FNA
structure therefore has a high resistance, denoted as Rp . In contrast, when the magne-
tizations are parallel, the moment-up electron is the favored electron in both the layers
and experiences very little scattering. The resistance Rp of this parallel (FNF) struc-
ture is smaller than /?ap (Rp < Rap) - The difference in the resistances Rp and Rap in
this simple trilayer is roughly 10 percent or less. But, in multilayered structures, which
have a series of alternating magnetic and nonmagnetic layers (e.g., 50 or more mag-
netic and nonmagnetic alternating layers as in FNANFANFA . . .), the change in the
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Table 8.8   GMR effect in trilayers and multilayers

Sample Structure and layer thicknesses
AR/Rp

(%)
Temperature

(K)

CoFe/CAgCu/CoFe

NiFe/Cu/Co

C090 Fe 1 o/Cu/CogoFe 10

[Co/Cu]ioo

[Co/Co]**}

Trilayer

Trilayer, 10/2.5/2.2 nm
(spin valve)

Trilayer, 4/2.5/0.8 nm (spin valve)

100 layers of Co/Cu, 1 nm /1 nm

60 layers Co/Cu, 0.8 nm / 0.83 nm

4-7

4
.
6

7

80

115

300

300

300

300

4
.
2

I SOURCE: Data from P. Grunberg, Sensors and Actuators, A91, 153, 2001.

resistance can be impressively large, exceeding 100 percent at low temperature and
60-80 percent at room temperature.

The GMR effect is often measured by quoting the change in the resistance with re-
spect to Rp,

Rap - Rp/AR\      
=

 /?ap-

Further, the magnetoresistance effect can be measured either by passing a current that
flows in the plane of the layers or perpendicular to the plane. Most experiments use the
first one, in what is known as current in plane (CIP) measurements; but the biggest
change, however, is observed for currents perpendicular to the plane of the layers.
Table 8.8 summarizes typically reported AR/Rp values for the GMR effect in simple
trilayers and multilayers.

The structures with antiparallel and parallel magnetic alignments are obviously
two extreme cases. If the angle between the magnetization vectors Mi and M2 of the two
magnetic layers is 0, then the resistance of the structure depends on 0 , with the minimum
for 0 = 0 (FNF) and the maximum for 0 = 180° (FNA) as shown in Figure 8.59. The
fractional change in the resistance depends on 0 as

AR 
_

 / A/?\    1 - cos 6

Rp       V Rp /max 2

As expected, the change is maximum when 0 = 180°.
One of the best applications of GMR is in a spin valve, in which the current flow

is controlled by an external applied magnetic field. Stated differently, the resistance of
the valve is controlled by an applied field. Figure 8.60a shows one possible simple spin
valve structure. The magnetization of the Co magnetic layer is fixed, that is, pinned, by
having this layer next to an antiferromagnetic layer, called the pinning layer. The
exchange interaction between the ferromagnetic Co layer and the antiferromagnetic
CoMn layer effectively pins the direction of the Co layer; it takes an enormous field to
change the magnetization of the Co layer. A Cu spacer layer separates the Co and the
next magnetic FeNi layer. The FeNi layer is called \htfree layer because its magneti-
zation can be changed by an external magnetic field. Normally, in the absence of a

Giant

magnetoresis-
tance effect

GMR and

relative mag-
netizations of
magnetic
layers



748 chapter 8 . Magnetic Properties and Superconductivity

=180°

Maximum resistance

2

St" 17

1

 = 90°

1

PHI

 = 0°

Minimum resistance

Figure 8.59 Resistance of the multilayer structure depends on the relative orientations of magnetization
in the two magnetic layers.
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Figure 8.60  Principle of the spin valve.
(a) No applied field.
(b) Applied field has fully oriented the free-layer magnetization.
(c) Resistance change versus applied magnetic field (schematic) for a FeNi/Cu/FeNi spin valve.

field, the magnetization of the FeNi layer is antiparallel to the Co layer, and the struc-
ture has a high resistance RAp. An applied external field B0 = ijl0H can rotate the FeNi
layer's magnetization and can easily align FeNi's magnetization fully in parallel with
that of Co so that the resistance becomes minimum, Le., Rp as in Figure 8.60b. It is
clear that the external field can be used to control the flow of current through this struc-
ture. (The name spin valve reflects the fact that the valve operation relies on the spin
of the electrons.) The free layer should be relatively soft to be able to respond to the
applied field, whereas the pinned layer should have sufficient coercivity not to lose its
magnetization. Figure 8.60c shows a typical magnetoresistance versus applied field
characteristics for one particular type of spin valve. The spin valve exhibits hysteresis;
that is, the signal AR versus H depends on the direction of magnetization as shown in
the figure.
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8
.13    MAGNETIC RECORDING MATERIALS

General Principles of Magnetic Recording Outside electric machinery (mainly
rotating machines and transformers), magnetic materials are most widely used in mag-
netic recording media to store information in either analog or digital form. The deep
disappointment of accidently losing valuable stored information on the hard drive of
one

'

s computer is well known to most computer users. Magnetic materials in magnetic
recording fall into two categories: those used in magnetic heads to record (write), play
(read), and erase information, and those used in magnetic media in which the informa-
tion is stored either permanently or until the next write requirement. The magnetic
storage media can be flexible, as in audio and video cassettes and floppy disks, or it can
be rigid, as in the hard disk of a computer hard drive. Even though magnetic recording
appears in seemingly diverse applications (e.g., audio tape recorders vis- -vis com-
puter hard drives), the basic principles are nonetheless quite similar.

As a very simple example, we will consider magnetic recording of a signal on an
audio tape, as shown schematically in Figure 8.61. The tape is simply a polymer back-
ing tape that has a thin coating of magnetic material on it, as described later. The in-
formation is converted into a current signal i(t) that modulates the current around a
toroid-type electromagnet with a very small air gap (around 1 jum). This gapped core
electromagnet is the inductive recording head. The current modulates the magnetic
field intensity in the core of the head and hence the field in the gap and around it. The
recording of information is achieved by the fringing magnetic field around the gap re-
gion magnetizing the audio type passing under the head at a constant speed (the tape is
usually in contact with the head). As the fringing field changes according to the current
signal, so does the magnetization of the audio tape. This means that the electrical sig-
nal is stored as a spatial magnetic pattern in the tape. The fringing fields of the recording
head modulate the magnetization in the tape in the direction of motion, put differently,
along the length of the tape. This type of magnetic information storage is called longi-
tudinal recording.

Input signal/(0

9 9

Output signal

)A
V. i

V(t)

f\ f\ f\

Magnetic medium (e.g., tape)

I ,   Velocity, u

7

Fringe field
Record (write)

uuu 
Storage       Read (play)

Figure 8.61 The principle of longitudinal magnetic recording on a flexible medium, for example,
magnetic tape in an audio cassette.
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The audio tape moves forward and passes under a second head, called the play (or
read) head, that converts the spatial variations in the magnetization in the tape into a
voltage signal that is amplified and appropriately conditioned for playback, as depicted
in Figure 8.61. Of course, the same recording head can also serve as the play head, as
is customarily the practice in various general audio recording equipment. The reading
process is based on Faraday

's law of induction. As the magnetized region in the tape
passes under the play head, a portion of the magnetic field from this tape region pene-
trates into the core and flows around the whole core and hence links the coil. We should

recall that magnetic fields prefer to flow in high permeability regions to which they are
strongly attracted. The field thus loops around through the core of the head. It does so
because the magnetic permeability of the core is very high. As the tape moves past the
play head, the field linking the coil changes as different magnetized regions in the tape
pass through. The changes in the magnetic flux linking the coil generate a voltage v(t)
that is proportional to the strength of the field and hence the magnetization in the tape
under the head; the speed of the tape remains the same. Thus the spatial magnetic pat-
tern (information) in the tape is converted into an output voltage signal as the tape is
run through under the play head at a constant rate. It should be apparent that the spatial
magnetic pattern in the tape is proportional to the current signal i(t), whereas the out-
put signal at the play head is the induced voltage v(t).

Suppose that the input signal has a frequency/, or period 1//, and the speed of the
tape is u. Then the magnetic pattern repeats at every 1 // seconds. During this time the
tape advances by a distance Ax = u/f. This Ax represents a spatial wavelength X that
characterizes the repetition of the spatial magnetic pattern that represents the informa-
tion. The smaller the k, the greater the/and hence the greater the information that can
be stored. Typical video tapes have X in the submicron range (e.g., 0.75 |nm) to be able
to store the high density of information in a video signal into a spatial magnetic pat-
tern. The actual recording process in a video cassette recorder is more complicated and
involves moving the heads helically across the film, which increases the relative tape
speed and hence the induced voltage.

The recording of digital information is straightforward because the information in
the form of ones and zeros involves only changes, or no changes, in the direction of
magnetization along the tape. In the recording of analog signals, the audio signal is
combined with an ac bias signal. However, the analog signal can also be stored as a
digital signal by converting it, by an appropriate encoding procedure, to a digital
signal.

Hard Disk Storage The basic principle of magnetic recording used in hard disk
drives of computers is somewhat similar to the basic schematic illustration for record-
ing on a tape in Figure 8.61, but with a few notable differences that allow high mag-
netic data storage capacity and a compact size. The basic principle of the magnetic
hard disk drive storage is shown in Figure 8.62. The information storage medium is a
thin film of magnetic material (described later) coated, for example, by sputtering, on
a disk substrate, which rotates inside the hard drive. The information is recorded as

magnetization patterns on this thin-film magnetic medium by an inductive write head,
similar in principle to the recording head in Figure 8.61. Both the write and the read
heads are in a single compact assembly that moves radially across the rotating disk to
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write or read the information into tracks, called magnetic bit tracks, on the magnetic
medium. The total area storage density depends on the information density in the track
and the track density on the disk. The read head is not an inductive head (as in Figure
8

.61) but a tiny giant magnetoresistance (GMR) sensor whose resistance depends on
an external magnetic field, as explained in Section 8.12. In this case, the field that in-
fluences the GMR sensor comes from that of the magnetized region of the disk that is
under the GMR sensor. The principle of the GMR is shown in Figure 8.60. The GMR
sensor is a multilayered thin-film device whose resistance changes by roughly 10 per-
cent or so in response to an applied field. This change in the resistance generates the
read signal. Normally a constant current is passed through the GMR sensor, and the
read signal is the voltage variation across the sensor; this voltage is due to the resis-
tance variation induced by the field from the magnetization pattern under the sensor.

There are two important reasons for using a GMR sensor instead of a conventional
inductive read head. First is that the GMR sensor is so much smaller than the inductive

head that it can probe a much smaller region of the magnetic medium; we can there-
fore squeeze more information into a given area on the magnetic storage medium. A
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Figure 8.63 A simplified schematic illustration of a MIG (metal-in-
gap) head.
The ferrite core has the poles coated with a ferromagnetic soft metal
to enhance the head performance.

Ferrite

Glass gap
spacer

Sendust layers

typical GMR sensor has a width that is something like 50 nm (~1000 times thinner than
the human hair). Second, for the same size, GMR is much more sensitive than the in-
ductive head. Thus, all hard drive read heads are tiny GMR sensors as indicated in Fig-
ure 8.62. The inductive write head is normally a thin-film head, which has a very
small width. Consequently, the information can be written into a very small area on the
magnetic storage medium. Usually the thin-film write head and the GMR sensor are
integrated into the same structure for convenient write and read operations. The afore-
mentioned basic principles still govern the operation of current magnetic hard drive
storage devices.14

Recording Head Materials The material for the recording head must be magneti-
cally soft so that its magnetization easily follows the input signal (current / or magnetic
field intensity H). At the same time, it must provide a strong fringing magnetic field
at the gap to magnetize the audio tape, that is, overcome the coercivity of the tape. This
requires high saturation magnetization. Thus, the recording head needs small coer-
civity and large saturation magnetization, which requires soft magnetic materials with
as large relative permeabilities as possible.

Typical materials that are used in recording heads are permalloys (Ni-Fe alloys),
Sendust (Fe-Al-Si alloy), some sintered soft ferrites (e.g., MnZn and NiZn ferrites),
and, more recently, various magnetic amorphous metals such as CoZrNb alloys. Typi-
cally, metal-based heads (from permalloy, Sendust, or related materials) are made of
laminated metal sheets (with thin insulation between them) to suppress eddy current
losses at high frequencies. For high-frequency recording, generally ferrite heads are
preferred since ferrites are insulators and suffer no eddy current losses. Ferrites how-
ever have low saturation magnetizations and require magnetic storage media of low
coercivity. The main problem in ferrite recording heads is that the comers of the poles
at the air gap become saturated first. Once saturated, the field around the gap is not
proportional to the input current signal, and this degrades the quality of recording. This
is overcome by coating the pole faces with a high magnetization metal alloy such as
Sendust, or, more recently, a magnetic amorphous metal (e.g., CoZrNb), as depicted
in Figure 8.63. Since the magnetic metal alloy is only at the tips of the head, the eddy
current losses are still small. This type of head where the poles of the ferrite core have
a metal coating is called a metal-in-gap (MIG) head and is widely used in various

14 One highly recommended book on magnetic recording is R. L Comstock, Introduction to Magnetism and
Magnetic Recording, New York: Wiley, 1999. See also R. L. Comstock, "Modern Magnetic Materials in Data
Storage," J. Mater. Sci: Mater. Elecron. 12, 509, 2002.
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Figure 8.64  A highly simplified
schematic illustration of the principle
of a thin-film head.

recording applications. The gap distance itself also influences the extent of the fring-
ing field around it and hence the field penetrating into the magnetic tape. The smaller
the gap, the greater the fringing. The necessary fringing fields for proper recording on
a tape require gap sizes around 1 (iim or less.

More recently, recording head devices have been fabricated using thin films of
various ferromagnetic metals or ferrite alloys that have sufficiently small eddy current
losses to be useable at high frequencies. A highly simplified illustration of the princi-
ple of a thin-film head is shown in Figure 8.64. The head is manufactured by using
typical thin-film deposition techniques, such as sputtering of the metal film in a vac-
uum chamber, photolithography, or some other method. The magnetic core is in the
form of a thin film whose thickness is a few microns and whose width is about the

same as the tape. The gap at the end of the core has the same width as the core, but its
spacing is very small (e.g., 0.25 |Lim) and generates the necessary fringing field. A
spiral-type coil made by depositing a nonmagnetic metal thin film threads the core.
The magnetic core is like a U-shaped core that is threaded by the metal strips of the
coil. If the core is a metallic material, the coil metal is appropriately insulated from it
by thin films of insulation.

Magnetic Storage Media Materials The properties of magnetic storage media
such as magnetic tapes, floppy disks, and hard disks used in various magnetic recording
applications (audio, video, digital, etc.) must be such that they are able to retain the
spatial magnetization pattern written on them after they have passed the recording
head. This requires high remanent magnetization Mr. High remanent magnetization is
also important in the reading process because the magnetic flux that induces voltages
in the read head depends on this remanent magnetization, given a particular speed of
motion under the read head. Thus the read operation requires media with high Mr.

Further, it should be difficult to undesirably erase the magnetic information on the
tape by demagnetizing it under stray fields, and this requires high coercivity Hc. A
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Figure 8.65  A magnetic tape is typically a
magnetic coating on a flexible polymer (e.g.,
PET) sheet in the form of a tape.

Thin particulate coating (5-15 jiim)

Flexible polymer (polyester-

PET) backing tape (25-50 jum)

strong magnet passed over a floppy disk can destroy the information stored in it. The co-
ercivity therefore determines the stability of the recording. The coercivity cannot be too
high, however, as this would prevent the writing operation, that is, magnetization, under
the recording head. One therefore has to find a compromise that allows the information
to be written and.at the same time retained without ease of demagnetization.

These two requirements, high Mr and medium-to-high HC9 lead to a choice of
medium to hard magnetic materials as magnetic storage media. Typical flexible stor-
age media (e.g., audio or video tapes) use particulate coatings on flexible polymeric
sheets or tapes, as pictured schematically in Figure 8.65. Elongated particles of various
magnetic materials are magnetically hard due to a combination of two factors. First,
these particles tend to be single domains and are hard due to the magnetocrystalline
anisotropy energy. Second, they are also elongated, have a greater length to width ratio
(aspect ratio), which means they are also hard due to shape anisotropy; they prefer to
be magnetized along the length.

Typical particulate matter used in coatings are }/-Fe203, Co-modified }/-Fe203 or
Co()/-Fe203), Cr02, and metallic particles (Fe), as summarized in Table 8.9. The over-
all magnetic properties of the particulate coating depend not only on the properties of
the individual particles (which are hard) but also on the concentration of particles as
well as their distribution in the coating. For example, as the packing density of parti-
cles increases, the saturation magnetization MSdli (total magnetic moment per unit vol-
ume) also increases, which is desirable, but the coercivity worsens. The concentrations
of particles in the coating are typically between 5 x 1014 cm

"3 (e.g., floppy disk) and

Table 8.9 Selected examples of flexible magnetic storage media based on coatings of particulate
matter: typical values

Particulate V-oMr HoHc
Matter Topical Application (T) (T) Comments

y-FeaOa Audio tape (Type I) 0.16 0.036

y-Fe203 Floppy disk 0.07 0.03

Co(y-Fe203) Videotape 0.13 0.07

CrOa Audio tape (Type II) 0.16 0.05

Cr02 Videotape 0.14 0.06

Fe Audio tape (Type IV) 0.30 0.11

Widely used particles.

Cobalt-impregnated y- iO  particles.

More expensive than y-Fe203.

High coercivity and magnetization. To
avoid corrosion, the particles have
to be treated (expensive).
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5 x 1015 cm-3 (e.g., video tape), which are sufficient to provide the necessary rema-
nent field and maintain adequate coercivity.

The brown gamma iron oxide, }/-Fe203, is a metastable form of iron oxide that is
ferrimagnetic and is prepared synthetically. Cobalt-treated y-F Os particles have a
small percentage of Co impregnated into the surface of the particles, which improves
the magnetic hardness. Cobalt-impregnated y-F Oi particles are used in various video
tapes. All these particles in Table 8.9 are needle shaped (elongated rod-like shapes)
with length-to-diameter ratios greater than 5, which makes them substantially hard as a
result of shape anisbtropy. The needle-like particles are typically 0.3-0.6 jam in length
and 0.05-0.1 jam in diameter. The particles are initially mixed into a lacquer-like resin
binder that is then coated onto a thin polyester backing tape. When the resin coating
solidifies, it forms a magnetic coating stuck on the backing tape. Typically between
20-40 percent of this magnetic coating is actually due to the magnetic particles.

Another form of magnetic storage medium is in the form of magnetic thin films de-
posited onto various hard substrates or even on a flexible plastic tape as in some video
tapes. The hard disk in the hard drive of a computer, for example, is typically an alu-
minum disk that has a thin magnetic film (e.g., CoPtCr) coated onto it. The deposition
of the magnetic thin film may involve vacuum deposition techniques (e.g., electron
beam evaporation or sputtering) or electroplating. Typical film thicknesses are less
than 50 nm. The advantage of using a thin-film coating is that they are solid films of a
magnetic material, that is, almost 100 percent dense, whereas in a particulate medium,
the packing density of magnetic particles is 20-40 percent. Consequently, thin mag-
netic films have higher saturation and remanent magnetizations, which enable a
smaller area of the thin film to be used for storing the same information as that in a flex-
ible medium. Thus there is an increase in the stored information density-a distinct ad-
vantage. Table 8.10 lists the characteristics of a few selected thin magnetic films used
as magnetic storage media. Most thin films are alloys of Co because Co has a high
degree of magnetocrystalline anisotropy and hence good coercivity Hc. Alloying Co
with Cr provides good corrosion resistance and increases Hc. Alloying with Pt or Ta
also increases Hc. The desired film properties can usually be obtained by alloying Co
with other elements and optimizing the deposition conditions; this is an ongoing
research area. The current commercial interest is to increase the storage density even

Table 8.10  Selected examples of thin films in magnetic storage media: typical values

Thin Film Typical Deposition
(jLoMg iioHc Comment and Typical
(T) (T) or Potential Application

Co and rare earth

CoCK-FeaOa)

CoNiP

CoCr alloys

CoPtCrB

Sputtering in vacuum 0.7-0.8 0.05-0.07

Sputtering in vacuum 0.3 0.07-0.08

Electroplating 1 0.1

Sputtering in vacuum 0.3-0.7 0.05-0.3

Sputtering in vacuum 0.3-0.5 0.25-0.6

Longitudinal magnetic recording media

Longitudinal magnetic recording media

Longitudinal magnetic recording media, hard disks

Longitudinal and perpendicular magnetic recording
media, hard disks

Longitudinal and perpendicular magnetic recording
media, hard disks
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further by using perpendicular magnetic recording in contrast to longitudinal record-
ing. In perpendicular recording, the local magnetizations in the thin film are perpen-
dicular to the surface of the film.

The magnetic coating on some video tapes may be in the form of a thin film
deposited by vacuum evaporation of the magnetic material using an electron beam to
heat it. Some recent video tapes have CoNi thin-film coatings that are evaporated by
an electron beam onto a polyester (PET) tape.

Josephson
junction

supercurrent

8
.14    JOSEPHSON EFFECT

The Josephson junction is a junction between two superconductors that are separated
by a thin insulator (a few nanometers thick) as depicted in Figure 8.66. If the insulating
barrier is sufficiently thin, then there is a probability that the Cooper pairs can tunnel
across the junction. The wavefunction  of the Cooper pair, however, changes phase
by 0 when it tunnels through the junction, not unexpected as the pair goes through a
potential barrier. The maximum superconducting current Ic that can flow through this
weak link depends on not only the thickness and area (size) of the insulator but also on
the superconductor materials and the temperature. The current /, or the supercurrent,
through the junction due to Cooper pair tunneling is determined by the phase angle 0,

I = Ic sin & [8.27]

where Ic is the maximum current or the critical current. If the current through the junc-
tion is controlled by an external circuit, then the tunneling Cooper pairs on either side
of the junction (in the superconductors) adjust their respective phases to maintain the
phase change to satisfy Equation 8.27. If we plot the I-V characteristics of this junc-
tion as in Figure 8.67, we would find that for / < /c, the behavior follows the vertical
OC line with no voltage across the junction.

If the current through the junction exceeds /c, then the Cooper pairs cannot tunnel
through the insulator because Equation 8.27 cannot be satisfied. There is still a current
through the junction, but it is due to the tunneling of norpial, that is, single electrons as
represented by the curve OABD in Figure 8.67. Thus, the current switches from point
C to point B and then follows the normal tunneling curve B to D. At point B, a voltage

I

Insulating barrier
Superconductor    / Superconductor

/

Superconductor

Superconductor

Thin film of oxide

a (b)

Figure 8.66
(a) A Josephson junction is a junction between two superconductors separated by a thin insulator.
(b) In practice, thin-film technology is used to fabricate a Josephson junction.
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Figure 8.67  \-V characteristics of a
Josephson junction for positive currents when
the current is controlled by an external circuit.
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dependence of the maximum (dc) Josephson
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develops across the junction and increases with the current. The normal tunneling cur-
rent in the range OA is negligible and rises suddenly when the voltage exceeds Va. The
reason is that a certain amount of voltage (corresponding to a potential energy eV ) is
needed to provide the necessary energy to disassociate the tunneling single electron
from its Cooper pair. It is apparent that the thin insulation acts as a weak superconduc-
tor or as a weak link in the superconductor; weak with regard to the currents that can
flow in the superconductor itself. The I-V characteristic in Figure 8.67 is symmetric
about O (as in the photograph for an actual device), and is called the dc characteristic
of the Josephson junction. In addition, the I-V behavior exhibits hysteresis; that is, if
we were to decrease the current, the behavior does not follow DBC down to O, but fol-

lows the DBA curve. When the current is decreased nearly to zero, the normal tunnel-
ing current switches to the supercurrent. The Josephson junction is bistable; that is, it
has two states corresponding to the superconducting state OC and normal state ABD.
Thus, the device behaves as an electronic switch whose switching time, in theory, is
determined by tunneling times, in the picoseconds range. In practice the switching
time (~10 ps) is limited by the junction capacitance.

If, on the other hand, a dc voltage is applied across the Josephson junction, then
the phase change B is modulated by the applied voltage. The most interesting and sur-
prising aspect is that the voltage modulates the rate of change of the phase through the
barrier, that is,

dG
_

dt

2eV

When we integrate this, we find that 6 is time and voltage dependent, so, accord-
ing to Equation 8.27, the current is a sinusoidal function of time and voltage, that is,

/ 27z(2eV)t\
I = /csml 0o I

Applied
voltage
modulates

phase
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or

ac Josephson
effect

I = I0sin(27tft)

where I0 is a new constant incorporating 0o and the frequency of the oscillations of the
current is given by

/ =
2eV

h
[8.28]

The Josephson junction therefore generates an oscillating current of frequency /
when there is a dc voltage V across it. This is called the ac Josephson effect, a re-
markable phenomenon originally predicted by Josephson as a graduate student at
Cambridge (1962). According to the ac Josephson effect, the junction generates an ac
current at a frequency ofle/h Hz per volt or 483.6 MHz per microvolt. Furthermore,
the frequency of the current has nothing to do with the material properties of the junc-
tion but is only determined by the applied voltage through e and h. The ac Josephson
effect has been adopted to define the voltage standard: One volt is the voltage that,
when applied to a Josephson junction, will generate an ac current and hence an elec-
tromagnetic radiation of frequency 483,597.9 GHz.

8
.15   FLUX QUANTIZATION

Consider a ring of a superconducting material above its Tc. Suppose that the ring is im-
mersed in magnetic flux lines from a magnet placed above it as shown in Figure 8.68a.
When we cool the ring to below Tc, the magnetic flux lines are excluded from the ring
itself, due to the Meissner effect, but they go through the hole, as shown in Fig-
ure 8.68b. If we now remove the magnet, we may think that the magnetic flux lines
simply disappear, but this is not the case. A persistent current is set up on the inside sur-
face of the superconducting ring that flows to maintain the flux constant in the hollow.
This supercurrent generates flux lines in the hollow as if to replace those taken away
by the removal of the magnet, as depicted in Figure 8.68c. Since the current can flow
indefinitely in the ring, the overall effect is that the magnetic flux is trapped within the
ring. Indeed, if we were to bring back the magnet, the current in the ring would disap-
pear to ensure that the magnetic flux in the hollow remains unchanged. The origin of

Figure 8.68
(a) Above Tc, the flux lines enter the ring.
(b) The ring and magnet are cooled through Tc.
The flux lines do not enter the superconducting ring
but stay in the hole.
(c) Removing the magnet does not change the flux
in the hole.

S

(111) /fiit
s

(b)r<rc |c)r<rc
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flux trapping can be appreciated by considering what would happen if the flux were
allowed to change, that is, d<&/dt  0. A changing flux would induce a voltage
y = -d®/dt around the ring that would drive an infinite current / = V/R where
R = 0. This is not possible, and hence the flux cannot change, which means we must
have d®/dt = 0. One should also note that there can be no electric field inside a
superconductor because

J
<£= - = 0

a

since the conductivity a is infinite.
What would happen if we have a superconducting ring (below Tc) that initially had

no flux in the hole? If we were to bring a magnet to it, then the flux lines would now
be excluded from both the ring itself and also the hole since the trapped flux within the
ring is zero.

It turns out that the trapped flux <I> inside the ring is quantized by virtue of super-
conductivity being a quantum phenomenon. The smallest quantized amount of flux is
called the magnetic flux quantum and is given by h/2e or 2.0679 x 10"15 Wb

.
 The

flux <I> in the ring is an integer multiple n of this quantum,

h
<& = n -

2e
[8.29]

Trapped flux
is quantized

CD Selected Topics and Solved Problems
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Selected Topics

Atomic Diamagnetism
Atomic Paramagnetism
Ferrimagnetism and Ferrites

Solved Problems

Diamagnetism: Examples

DEFINING TERMS

Antiferromagnetic materials have crystals in which
alternating permanent atomic spin magnetic moments
are equal in magnitude but point in opposite directions
(antiparallel), which leads to no net magnetization of
the crystal.

Bloch wall is a magnetic domain wall.

Bohr magneton (fi) is a useful elementary unit of
magnetic moment on the atomic scale. It is equal to the
magnetic moment of one electron spin along an
applied magnetic field P = eti/2me.

Coercivity or coercive field (Hc) measures the ability
of a magnetized material to resist demagnetization. It is
the required reverse applied field that would remove
any remanent magnetization, that is, demagnetize the
material.

Cooper pair is a quasi-particle formed by the mutual
attraction of two electrons with opposite spins and
opposite linear momenta below a critical temperature.
It has a charge of -2e and a mass of 2me but no net
spin. It does not obey Fermi-Dirac statistics. The
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electrons are held together by the induced distortions
and vibrations of the lattice of positive metal ions with
which the electrons interact.

Critical magnetic field (Bc) is the maximum field
that can be applied to a superconductor without
destroying the superconducting behavior. Bc decreases
from its maximum value at absolute zero to zero at Tc.

Critical temperature (rc) is a temperature that sepa-
rates the superconducting state from the normal state.
Above Tc, the substance is in the normal state with a

finite resistivity, but below Tcy it is in the super-
conducting state with zero resistivity.

Curie temperature (Tc) is the critical temperature at
which the ferromagnetic and ferrimagnetic properties
are lost. Above the Curie temperature, the material
behaves as if it were paramagnetic.

Diamagnetic material has a negative magnetic sus-
ceptibility and reduces or repels applied magnetic
fields. Superconductors are perfect diamagnets that
repel the applied field. Many substances possess weak
diamagnetism, so the applied field is slightly decreased
within the material.

Domain wall is a region between two neighboring
magnetic domains of differing orientations of mag-
netization.

Domain wall energy is the excess energy in the domain
wall as a result of the gradual orientations of the neigh-
boring spin magnetic moments of atoms through the wall
region. It is the excess energy due to the excess exchange
interaction energy, magnetocrystalline anisotropy en-
ergy, and magnetostrictive energy in the wall region.

Easy direction is the crystal direction along which the
atomic magnetic moments (due to spin) are sponta-
neously and most easily aligned. Exchange interaction
energy is lowest (hence favorable) when the alignment
of atomic spin magnetic moments is in this direction in
the crystal. For the iron crystal, it is one of the six [100]
directions (cube edge).

Eddy current loss is the Joule energy loss (I2R) in a
ferromagnetic material subjected to changing magnetic
fields (in ac fields). The varying magnetic field induces
voltages in the ferromagnetic material that drive cur-
rents (called eddy currents) that generate Joule heating
due to I2R.

Eddy currents are the induced conduction currents
flowing in a ferromagnetic material as a result of vary-
ing (ac) magnetic fields.

Exchange interaction energy (£ex) is a kind of
Coulombic interaction energy between two neighbor-
ing electrons and positive metal ions that depends on
the relative spin orientations of the electrons as a conse-
quence of the Pauli exclusion principle. Its exact origin
is quantum mechanical. Qualitatively, different spins
lead to different electron wavefunctions, different neg-
ative charge distributions, and hence different Coulom-
bic interactions. In ferromagnetic crystals, EqX is nega-
tive when the neighboring electron spins are parallel.

Ferrimagnetic materials possess crystals that con-
tain two sets of atomic magnetic moments that oppose
each other, but one set has greater strength and there-
fore there is a net magnetization of the crystal. An
unmagnetized ferrimagnetic substance normally has
many magnetic domains whose magnetization vectors
add to give no overall magnetization.

Ferrites are ferrimagnetic materials that are ceramics
with insulating properties. They are therefore used in
HF applications where eddy current losses are signifi-
cant. Their general composition is (MO)(Fe203),
where M is typically a divalent metal. For magnetically
soft ferrites, M is typically Fe, Mn, Zn, or Ni, whereas
for magnetically hard ferrites, M is typically Sr or Ba.
Hard ferrites such as BaOFe203 have the hexagonal
crystal structure with a high degree of magnetocrys-
talline anisotropy and therefore possess high coercivity
(difficult to demagnetize).

Ferromagnetic materials have the ability to possess
large permanent magnetizations even in the absence
of an applied field. An unmagnetized ferromagnetic
material normally has many magnetic domains whose
magnetization vectors add to give no overall magneti-
zation. However, in a sufficiently strong magnetizing
field, the whole ferromagnetic substance becomes one
magnetic domain in which all the atomic spin magnetic
moments are aligned to give a large magnetization
along the field. Some of this magnetization is retained
even after the removal of the field.

Giant magnetoresistance (GMR) is the large change
in the resistance of a special multilayer structure when a
magnetic field is applied; the simplest structure usually
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consists of two thin ferromagnetic layers (e.g., Fe) sand-
wiching an even thinner nonmagnetic metal (e.g., Cu).

Hard direction is the crystal direction along which it
is hardest to align the atomic spin magnetic moments
relative to the easy direction. Exchange interaction
energy Eex favors the easy direction most (EqX is most
negative) and favors the hard direction least (Eex is
least negative).

Hard magnetic materials characteristically have high
remanent magnetizations (Br) and high coercivities
(Hc), so once magnetized, they are difficult to demag-
netize. They are suitable for permanent magnet appli-
cations. They have broad B-H hysteresis loops.

Hard magnetic particles are small particles of vari-
ous shapes that have high coercivity due to having a
single magnetic domain with high magnetocrystalline
anisotropy energy, or possessing substantial shape
anisotropy (aspect ratio-length-to-width ratio).

Hysteresis loop is the magnetization (M) versus
applied magnetic field intensity (H) or B versus H
behavior of a ferromagnetic (or ferrimagnetic) sub-
stance through one cycle as it is repeatedly magnetized
and demagnetized.

Hysteresis loss is the energy loss involved in magne-
tizing and demagnetizing a ferromagnetic (or ferri-
magnetic) substance. It arises from various energy
losses involved in the irreversible motions of the

domain walls. Hysteresis loss per unit volume of spec-
imen is the area of the B-H hysteresis loop.

Initial permeability (/xri /i0) is the initial slope of the
B versus H characteristic of an unmagnetized ferro-
magnetic (or ferrimagnetic) material and typically rep-
resents the magnetic permeability under very small
applied magnetic fields. Initial relative permeability
(liri) is the relative permeability of an unmagnetized
ferromagnetic (or ferrimagnetic) material under very
small applied fields.

Magnetic dipole moment (|xm
) is defined as Mun,

where / is the current flowing in a circuit loop of area A
and u„ is the unit vector in the direction of an advance of
a screw when it is turned in the direction of the circulat-

ing current. Qualitatively, it measures the strength of the
magnetic field created by a current loop and also the ex-
tent of interaction of the current loop with an externally

applied magnetic field. ixm
 is normal to the surface of

the loop. Magnetic moment in a magnetic field experi-
ences a torque that tries to rotate |xm to align it with the
field. In a nonuniform field, the magnetic moment ex-
periences a force that attracts it to a greater field.

Magnetic domain is a region of a ferromagnetic (or
ferrimagnetic) crystal that has spontaneous magnetiza-
tion, that is, magnetization in the absence of an applied
field, due to the alignment of all magnetic moments in
that region.

Magnetic Held, magnetic induction, or magnetic flux
density (B) is a field that is generated by a current-
carrying conductor that produces a force on a current-
carrying conductor elsewhere. Equivalently, we can
define it as the field generated by a moving charge that
acts to produce a force on a moving charge elsewhere.
The force is called the Lorentz force and is given by
F = q\ x B where v is the velocity of the particle with
charge q. The magnetic field B in a material is the sum
of the applied field /i0H, and that due to the magnetiza-
tion of the material /x0M, that is, B = /x0(H + M).

Magnetic Held intensity or magnetizing field (H)
gauges the magnetic strength of external conduction
currents (e.g., currents flowing in the windings) in the
absence of a material medium. It excludes the magne-
tization currents that become induced on the surfaces

of any material placed in a magnetic field. ii0H is the
magnetic field in free space and is considered to be the
applied magnetic field. The terms intensity or strength
distinguish H from B, which is simply called the mag-
netic field.

Magnetic flux (O) represents to what extent magnetic
field lines are flowing through a given area perpendi-
cular to the field lines. If M is a small area perpendic-
ular to the magnetic field B and B is constant over M,
then the flux <$<!> through M is defined by 54) = B 8A.
Total flux through any closed surface is zero.

Magnetic permeability (/x) is the magnetic field gen-
erated per unit magnetizing field, that is, /x = B/H.
Permeability gauges the effectiveness of a medium in
generating as much magnetic field as possible per unit
magnetizing field. Permeability of free space is the
absolute permeability which is the magnetic field
generated in a vacuum per unit magnetizing field.
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Magnetic susceptibility (Xm) indicates the ease with
which the material becomes magnetized under an
applied magnetic field. It is the magnetization in-
duced in the material per unit magnetizing field,
Xm = M/H.

Magnetization or magnetization vector (M) repre-
sents the net magnetic moment per unit volume of
material. In the presence of a magnetic field, individual
atomic moments tend to align with the field, which
results in a net magnetization. Magnetization of a spec-
imen can be represented by the flow of currents on the
surface over a unit length of the specimen; M = /m,
where Im is the surface magnetization current per unit
length.

Magnetization current (Im) is a bound current per
unit length that exists on the surface of a substance due
to its magnetization. It is not, however, due to the flow
of free charges but arises in the presence of an applied
magnetic field as a result of the orientations of the elec-
tronic motions in the constituent atoms. In the bulk,
these electronic motions cancel each other and there is

no net bulk current, but on the surface, they add to give
a bound surface current Im per unit length, which is
equal to the magnetization M of the substance.

Magnetocrystalline anisotropy is the anisotropy
associated with magnetic properties such as the
magnetization in different directions in a ferromag-
netic (or ferrimagnetic) crystal. Atomic spins prefer to
align along certain directions in the crystal, called easy
directions. The direction along which it is most diffi-
cult to align the spins is called the hard direction. For
example, in the iron crystal, all atomic spins prefer to
align along one of the [100] directions (easy direc-
tions) and it is most difficult to align the spins along
one of the [111] directions (hard directions).

Magnetocrystalline anisotropy energy (K) is the
energy needed to rotate the magnetization of a ferro-
magnetic (or ferrimagnetic) crystal from its natural
easy direction to a hard direction. For example, it takes
an energy of about 48 mJ cm-3 to rotate the magneti-
zation of an iron crystal from the easy direction [100]
to the hard direction [111].

Magnetoresistance generally refers to the change in
the resistance of a magnetic material when it is placed
in a magnetic field. The change in the resistance of a

nonmagnetic metal, such as copper, is usually very
small. In a magnetic metal, the change in the resistivity
due to the applied magnetic field is anisotropic; that is,
it depends on the direction of current flow with respect
to the applied field and is called anisotropic magne-
toresistance (AMR).

Magnetostatic energy is the potential energy stored
in an external magnetic field. It takes external work to
establish a magnetic field, and this energy is said to be
stored in the magnetic field. Magnetic energy per unit
volume at a point in free space is given by

1
£Voi(air) = -il0H

2
B 2

Magnetostriction is the change in the length of a fer-
romagnetic (or ferrimagnetic) crystal as a result of its
magnetization. An iron crystal placed in a magnetic
field along an easy direction becomes longer along this
direction but contracts in the transverse direction.

Magnetostrictive energy is the strain energy in the
crystal due to magnetostriction, that is, the work done
in straining the crystal when it becomes magnetized.

Maximum relative permeability (/xr
>
max) is the max-

imum relative permeability of a ferromagnetic (or
ferrimagnetic) material.

Meissner effect is the repulsion of all magnetic flux
from the interior of a superconductor. The supercon-
ductor behaves as if it were a perfect diamagnet with
Xm = -1.

Paramagnetic materials have a small and positive
magnetic susceptibility. In an applied field, they
develop a small amount of magnetization in the direc-
tion of the applied field, so the magnetic field in the
material is slightly greater. They are attracted to a
higher magnetic field.

Relative permeability (fir) measures the magnetic
field in a medium with respect to that in a vacuum,
IJir = B/ii0H. Since B depends on the magnetization
of the medium, /xr measures the ease with which the

material becomes magnetized.

Remanence or remanent magnetization (Mr) is the
magnetization that remains in a magnetic material after
it has been fully magnetized and the magnetizing field
has been removed. It measures the ability of a magnetic
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Pauli spin
paramagnetism

Potential energy
of a Block wall

Block wall

thickness

What is the approximate inductance of an air-cored solenoid with a diameter of 1 cm, length of
20 cm, and 500 turns? What is the magnetic field inside the solenoid and the energy stored in the whole
solenoid when the current is 1 A? What happens to these values if the core medium has a relative per-
meability Mr of 600?

8
.2 Magnetization Consider a long solenoid with a core that is an iron alloy (see Problem 8.1 for the rel-

evant formulas). Suppose that the diameter of the solenoid is 2 cm and the length of the solenoid is
20 cm. The number of turns on the solenoid is 200. The current is increased until the core is magnetized
to saturation at about I =2 A and the saturated magnetic field is 1.5 T.

a. What is the magnetic field intensity at the center of the solenoid and the applied magnetic field,
HoH, for saturation?

b
. What is the saturation magnetization Msat of this iron alloy?

c. What is the total magnetization current on the surface of the magnetized iron alloy specimen?
d

. If we were to remove the iron-alloy core and attempt to obtain the same magnetic field of 1.5 T in-
side the solenoid, how much current would we need? Is there a practical way of doing this?

8
.
3

8
.
4

8
.
5

8.
6

8
.7

Paramagnetic and diamagnetic materials Consider bismuth with Xm = -16.6 x 10_5 and aluminum
with Xm = 2.3 x 10~5

. Suppose that we subject each sample to an applied magnetic field Bo of 1 T
applied in the +* direction. What is the magnetization M and the equivalent magnetic field /x0Af in each
sample? Which is paramagnetic and which is diamagnetic?

Mass and molar susceptibilities Sometimes magnetic susceptibilities are reported as molar or mass
susceptibilities. Mass susceptibility (in m3 kg

-1) is Xm/p where p is the density. Molar susceptibility
(in m3 mol-1) is xm(Afat/p) where Mat is the atomic mass. Terbium (Tb) has a magnetic molar suscep-
tibility of 2.0 cm3 mol-1. Tb has a density of 8.2 g cm-3 and an atomic mass of 158.93 g mol-1. What
is its susceptibility, mass susceptibility and relative permeability? What is the magnetization in the sam-
ple in an applied magnetic field of 2 T?

Pauli spin paramagnetism Paramagnetism in metals depends on the number of conduction electrons
that can flip their spins and align with the applied magnetic field. These electrons are near the Fermi
level Ep, and their number is determined by the density of states (?(£>) at £>. Since each electron has a
spin magnetic moment of   paramagnetic susceptibility can be shown to be given by

where the density of states is given by Equation 4.10. The Fermi energy of calcium Ep is 4.68 eV. Eval-
uate the paramagnetic susceptibility of calcium and compare with the experimental value of 1.9 x 10_5

.

Ferromagnetism and the exchange interaction Consider dysprosium (Dy), which is a rare earth
metal with a density of 8.54 g cm-3 and atomic mass of 162.50 g mol-1

.
 The isolated atom has the elec-

tron structure [Xe]4/106s2. What is the spin magnetic moment in the isolated atom in terms of number of
Bohr magnetons? If the saturation magnetization of Dy near absolute zero of temperature is 2.4 MA m-1,
what is the effective number of spins per atom in the ferromagnetic state? How does this compare with
the number of spins in the isolated atom? What is the order of magnitude for the exchange interaction in
eV per atom in Dy if the Curie temperature is 85 K?

Magnetic domain wall energy and thickness The energy of a Bloch wall depends on two main fac-
tors: the exchange energy £ex (J/atom) and magnetocrystalline energy K (J m~3). If a is the interatomic
distance and 8 is the wall thickness, then it can be shown that the potential energy per unit area of the
wall is

7r2£
(ex

2a8
+ K8

Show that the minimum energy occurs when the wall has the thickness

2aK )
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material to retain a portion of its magnetization
after the removal of the applied field. The correspond-
ing magnetic field (/x0Mr) is the remanent magnetic
field Br.

Saturation magnetization is the maximum magneti-
zation that can be obtained in a ferromagnetic crystal at
a given temperature when all the magnetic moments
have been aligned in the direction of the applied field,
when there is a single magnetic domain with its mag-
netization M along the applied field.

Shape anisotropy is the anisotropy in magnetic prop-
erties associated with the shape of the ferromagnetic
(or ferrimagnetic) substance. A crystal rod that is thin
and long prefers to have its magnetization M along the
length (long axis) of the rod because this direction of
magnetization creates less external magnetic fields and
leads to less external magnetostatic energy compared
with the case when M is along the width (short axis) of
the rod. Reversing the magnetization involves rotating
M through the width of the rod, where the external
magnetic field and hence magnetostatic energy are
large, and requires large substantial work. It is there-

fore difficult to rotate magnetization around from the
long axis to the short axis.

Soft magnetic materials characteristically have high
saturation magnetizations (#sat) hut low saturation
magnetizing fields (Hsai) and low coercivities (Hc), so
they can be magnetized and demagnetized easily. They
have tall and narrow B-H hysteresis loops.

Superconductivity is a phenomenon in which a sub-
stance loses all resistance to current flow (acquires
zero resistivity) and also exhibits the Meissner effect
(becomes a perfect diamagnet).

Type I superconductors have a single critical field
(Bc) above which the superconducting behavior is
totally lost.

Type II superconductors have a lower (Bci) and an
upper (BC2) critical field. Below Bc\, the substance is in
the superconducting phase with Meissner effect; all
magnetic flux is excluded from the interior. Between
Bc\ and #C2, magnetic flux lines pierce through local
filamentary regions of the superconductor, which
behave normally. Above BC2, the superconductor re-
verts to normal behavior.

QUESTIONS AND PROBLEMS
8.1 Inductance of a long solenoid Consider the very long (ideally infinitely long) solenoid shown in Fig-

ure 8.69. If r is the radius of the core and t is the length of the solenoid, then r. The total number
of turns is N and the number of turns per unit length is n = N/i. The current through the coil wires is /.
Apply Ampere's law around C, which is the rectangular circuit PQRS, and show that

B % ijL0i£rnI

Further, show that the inductance is

L % /X0/Xrrt2Vcore

where Vcore is the volume of the core. How would you increase the inductance of a long solenoid?

Inductance of a
long solenoid

C
R

I

n = Turns per unit length

Figure 8.69
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and show that when 8 = 8'
, the exchange and anisotropy energy contributions are equal. Using reasonable

values for various parameters, estimate the Bloch energy and wall thickness for Ni. (See Example 8.4.)

*8.8     Toroidal inductor and radio engineers toroidal inductance equation
a

. Consider a toroidal coil (Figure 8.10) whose mean circumference is i and that has Af tightly wound
turns around it. Suppose that the diameter of the core is 2a and t » a. By applying Ampere's law,
show that if the current through the coil is /, then the magnetic field in the core is

B
i

[8.30]

b
.

where \xr is the relative permeability of the medium. Why do you need I » a for this to be valid?
Does this equation remain valid if the core cross section is not circular but rectangular, a x b, and
I » a and W.

Show that the inductance of the toroidal coil is

L
li0lirN2A

i
[8.31]

where A is the cross-sectional area of the core.

c
.
 Consider a toroidal inductor used in electronics that has a ferrite core size FT-37, that is, round but

with a rectangular cross section. The outer diameter is 0.375 in (9.52 mm), the inner diameter is
0
.187 in (4.75 mm), and the height of the core is 0.125 in (3.175 mm). The initial relative perme-

ability of the ferrite core is 2000, which corresponds to a ferrite called the 77 Mix. If the inductor
has 50 turns, then using Equation 8.31, calculate the approximate inductance of the coil.

Radio engineers use the following equation to calculate the inductances of toroidal coils,d
.

L(mH)
ALN

106

2

[8.32]

where L is the inductance in millihenries (mH) and Ai is an inductance parameter, called an induc-
tance index, that characterizes the core of the inductor. Al is supplied by the manufacturers of fer-
rite cores and is typically quoted as millihenries (mH) per 1000 turns. In using Equation 8.32, one
simply substitutes the numerical value of AL to find L in millihenries. For the FT-37 ferrite toroid
with the 77 Mix as the ferrite core, Al is specified as 884 mH/1000 turns. What is the inductance of
the toroidal inductor in part (c) from the radio engineers equation in Equation 8.32? What is the per-
centage difference in values calculated by Equations 8.32 and 8.31? What is your conclusion?
{Comment: The agreement is not always this close.)

*8.9     A toroidal inductor

a
. Equations 8.31 and 8.32 allow the inductance of a toroidal coil in electronics to be calculated.

Equation 8.32 is the equation that is used in practice. Consider a toroidal inductor used in electron-
ics that has a ferrite core of size FT-23 that is round but with a rectangular cross section. The outer
diameter is 0.230 in (5.842 mm), the inner diameter is 0.120 in (3.05 mm), and the height of the
core is 0.06 in (1.5 mm). The ferrite core is a 43-Mix that has an initial relative permeability of 850
and a maximum relative permeability of 3000. The inductance index for this 43-Mix ferrite core of
size FT-23 is Al - 188 (mH/1000 turns). If the inductor has 25 turns, then using Equations 8.31
and 8.32, calculate the inductance of the coil under small-signal conditions and comment on the
two values.

b
.

c.

The saturation field #sat of the 43-Mix ferrite is 0.2750 T. What will be typical dc currents that will
saturate the ferrite core (an estimate calculation is required)? It is not unusual to find such an in-
ductor in an electronic circuit also carrying a dc current. Will your calculation of the inductance re-
main valid in these circumstances?

Suppose that the toroidal inductor discussed in parts (a) and (b) is in the vicinity of a very strong
magnet that saturates the magnetic field inside the ferrite core. What will be the inductance of the
coil?

Toroidal coil

inductance

Radio engineers
inductance

equation
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*8
.
10   The transformer

a. Consider the transformer shown in Figure 8.70a whose primary is excited by an ac (sinusoidal)
voltage of frequency / The current flowing into the primary coil sets up a magnetic flux in the
transformer core. By virtue of Faraday's law of induction and Lenz's law, the flux generated in
the core is the flux necessary to induce a voltage nearly equal and opposite to the applied volt-
age. Thus,

Transformer
equation

Hysteresis loss

Eddy current
loss

b
.

v -
d(Total flux linked)    NA dB

dt dt

where A is the cross-sectional area, assumed constant, and N is the number of turns in the primary.
Show that if Vm  is the rms voltage at the primary (Vmax = VVmsV ) and Bm is the maximum mag-
netic field in the core, then

rms AAANAfBm [8.33]

Transformers are typically operated with Bm at the "knee" of the B-H curve, which corre-
sponds roughly to maximum permeability. For transformer irons, Bm % 1.2 T. Taking = 120 V
and a transformer core with A = 10 cm x 10 cm, what should N be for the primary winding? If
the secondary winding is to generate 240 V, what should be the number of turns for the secondary
coil?

The transformer core will exhibit hysteresis and eddy current losses. The hysteresis loss per unit
second, as power loss in watts, is given by

Pk = KfB"V(.'core [8.34]

where K = 150.7,/is the ac frequency (Hz), Bm is the maximum magnetic field (T) in the core (as-
sumed to be in the range 0.2-1.5 T), n = 1.6, and VCore is the volume of the core. The eddy current
losses are reduced by laminating the transformer core, as shown in Figure 8.70b. The eddy current
loss is given by

Pe = 1.65/!0 Vccore [8.35]

where d is the thickness of the laminated iron sheet in meters (Figure 8.70b) and p is its resistivity
(Q m).

Suppose that the transformer core has a volume of 0.0108 m3 (corresponds to a mean circum-
ference of 1.08 m). If the core is laminated into sheets of thickness 1 mm and the resistivity of the
transformer iron is 6 x 10~7 S2 m, calculate both the hysteresis and eddy current losses at/= 60 Hz,
and comment on their relative magnitudes. How would you reduce each loss?

V
.rms

Primary m

5

IN
3

Secondary

rms

a

Windings

a

Eddy
ft currents

T Lamination

B

Insulation - d

(a)

Figure 8.70
(a) A transformer with N turns in the primary.
(b) Laminated core reduces eddy current losses.

(b)



Questions and Problems 767

8.11 Losses in a magnetic recording head Consider eddy current losses in a permalloy magnetic head for
audio recording up to 10 kHz. We will use Equation 8.35 for the eddy current losses. Consider a magnetic
head weighing 30 g and made from a permalloy with density 8.8 g cm-3 and resistivity 6 x 10_7 £2 m.
The head is to operate at Bm of 0.5 T. If the eddy current losses are not to exceed 1 mW, estimate the
thickness of laminations needed. How would you achieve this?

*8
.12 Design of a ferrite antenna for an AM receiver We consider an AM radio receiver that is to operate

over the frequency range 530-1600 kHz. Suppose that the receiving antenna is to be a coil with a ferrite
rod as core, as depicted in Figure 8.71. The coil has N turns, its length is i, and the cross-sectional area is
A

. The inductance L of this coil is tuned with a variable capacitor C. The maximum value of C is 265 pF,
which with L should correspond to tuning in the lowest frequency at 530 kHz. The coil with the ferrite
core receives the EM waves, and the magnetic field of the EM wave permeates the ferrite core and in-
duces a voltage across the coil. This voltage is detected by a sensitive amplifier, and in subsequent elec-
tronics it is suitably demodulated. The coil with the ferrite core therefore acts as the antenna of the
receiver (ferrite antenna). We will try to find a suitable design for the ferrite coil by carrying out
approximate calculations-in practice some trial and error experimentation would also be necessary. We
will assume that the inductance of a finite solenoid is

L
YUrilAoAN2

t
[8.36]

where A is the cross-sectional area of the core, t is the coil length, N is the number of turns, and y is a
geometric factor that accounts for the solenoid coil being of finite length. Assume y % 0.75. The reso-
nant frequency /of an LC circuit is given by

i
= [8.37]

a.

b
.

If d is the diameter of the enameled wire to be used as the coil winding, then the length i « Nd. If
we use an enameled wire of diameter 1 mm, what is the number of coil turns N we need for a fer-

rite rod given that its diameter is 1 cm and its initial relative permeability is 100?

Suppose that the magnetic field intensity H of the signal in free space is varying sinusoidally, that is,

H = Hm sin(2 /0 [8.38]

where Hm is the maximum magnetic field intensity. H is related to the electric field £ at a point by
H = !E/ZSpace, where ZSpace is the impedance of free space given by 377 Si. Show that the induced
voltage at the antenna coil is

'Lmd
m

2n311Cfy
[8.39]

where /is the frequency of the AM wave and £m is the electric field intensity of the AM station at the
receiver point. Suppose that the electric field of a local AM station at the receiver is 10 mV m

~l
.
 What

is the voltage induced across the ferrite antenna and can this voltage be detected by an amplifier?
Would you use a ferrite rod antenna at short-wave frequencies, given the same C but less N?

Inductance of a
solenoid

LC circuit

resonant

frequency

Induced voltage
across a ferrite
antenna

Ferrite rod Figure 8.71
AM receiver.

A ferrite antenna of an

*8
.13 A permanent magnet with an air gap The magnetic field energy in the gap of a permanent magnet

is available to do work. Suppose that Bm and Bg are the magnetic field in the magnet and the gap, Hm
and Hg are the field intensities in the magnet and the gap, and Vm and Vg are the volumes of the magnet
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Magnet and gap
relationship

8
.
14

Energy in gap of
a magnet

8.
15

and gap; show that, in terms of magnitudes,

Bg Hg Vg % Bm Hm Vm

What is the significance of this result?

A permanent magnet with an air gap

a.    Show that the maximum energy stored in the air gap of a permanent magnet can be written very
roughly as

where Vm is the volume of the magnet, which is much greater than that of the gap; Br is the rema-
nent magnetic field; and Hc is the coercivity of the magnet.

b
. Using Table 8.6, compare the (BH)  with the product (jHc) ( Br) and comment on the close-

ness of agreement.

c. Calculate the energy in the gap of a rare earth cobalt magnet that has a volume of 0.1 m3. Give an
example of typical work (e.g., raising so many apples, each 100 g, by so many meters) that could
be done if all this energy could be converted to mechanical work.

Weight, cost, and energy of a permanent magnet with an air gap For a certain application, an
energy of 1 U is required in the gap of a permanent magnet. There are three candidates, as shown in
Table 8.11. Which material will give the lightest magnet? Which will give the cheapest magnet?

Table 8.11   Three permanent magnet candidates

Magnet
(BH)max
(kJ m"3)

Density
(g cm 3)

Yesterday's
Relative Price

(per unit mass)

Alnico

Rare earth

Ferrite

50

200

30

7
.
3

8
.
2

4
.
8

1

2

0
.
5

*8
.16 Permanent magnet with yoke and air gap Consider a permanent magnet bar that has L-shaped fer-

romagnetic (high permeability) pieces attached to its ends to direct the magnetic field to an air gap as de-
picted in Figure 8.72. The L-shaped high fir pieces for directing the magnetic field are called yokes.
Suppose that Am, Ay, and Ag are the cross-sectional areas of the magnet, yoke, and gap as indicated in
the figure. The lengths of the magnet, yoke, and air gap are im, y, and g, respectively. The magnet, the
two yokes, and the gap can be considered to be all connected end-to-end or in series. Applying Ampere's
circuital law for H we can write,

Hmtm + 2Hyty + Hglg  = 0

Since all four components, magnet, yokes, and gap, are in series, we can assume that the magnetic
flux <I> through each of them is the same,

a.
    Show that

cD = B
m

A
m
 = By Ay = BgAg

Hm=
    Am \   It     

,
 1

I l oAg      fX0fXryAy J
Bl

b
.    What does the equation in part (a) represent? Given that Bm and Hm in the magnet must obey the equa-

tion in part (a), and also the B-H characteristic of the magnet material itself, what is your conclusion?
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Yoke
y

A
y

A
m

A
g

m 8
s i

Yoke y

PTT  GaP

Figure 8.72 A permanent magnet
with two pieces of yoke and an air
gap-

8
.
17

8
.
18

c.

d
.

f.

Should the yokes be magnetically hard or soft? Justify your decision.

Show that if /ir>, is very large (/iry » oo),

Mo

e.    If Vm = Amlm and Vg = Aglg are the volumes of the magnet and gap, respectively, show that

Bg Hg Vg = Bm Hm Vm

What is your conclusion (consider the magnetic energy stored in the gap)?

Consider a rare earth permanent magnet, with a density of 8.2 g cm-3, that has a (BH)maLX of about
200 kJ m~3. Suppose that (BH)maLX occurs very roughly at Bm % Br where for this rare earth
magnet Br % 1 T. Suppose that Am % Ag. What is the volume, effective length (lm), and mass of
the magnet that is needed to store the maximum energy in the gap if ig
What is the maximum energy in the gap?

1 cmandAg = 1000 cm2?

Superconductivity and critical current density Consider two superconducting wires, tin (Sn; Type I)
and NbaSn (Type H), each 1 mm in thickness. The magnetic field on the surface of a current-carrying
conductor is given by

B
Vol
27tr

a. Assuming that Sn wire loses its superconductivity when the field at the surface reaches the critical
field (0.2 T), calculate the maximum current and hence the critical current density that can be
passed through the Sn wire near absolute zero of temperature.

Calculate the maximum current and critical current density for the NbaSn wire using the same as-
sumption as in part {a) but taking the critical field to be the upper critical field Zfo, which is 24.5 T
at 0 K. How does your calculation of Jc compare with the critical density of about 1011 A m-2 for

NbsSn at 0 K?

Magnetic pressure in a solenoid Consider a long solenoid with an air core. Diametrically opposite
windings have oppositely directed currents and, due to the magnetic force, they repel each other. This
means that the solenoid experiences a radial force Fr that is trying to open up the solenoid, i.e., stretch
out the windings as depicted in Figure 8.53. Suppose that A is the surface area of the core (on to which
wires are wound). If we decrease the core diameter by dx, the volume changes by dV. We have to do
work dW against the radial magnetic forces Fr,

dW = Frdx Adx = PrdV
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Radial magnetic
pressure in a
solenoid

where Pr = Fr/A is the radial pressure, called the magnetic pressure, acting on the windings of the
solenoid. (This pressure acts to tear apart the solenoid.) Using the fact that the work done against the
magnetic forces in changing the volume changes the magnetic energy in the core, show that

What is the radial pressure on a solenoid that has a field of 35 T in the core? How many atmos-
pheres is this? What is the equivalent ocean depth that gives the same pressure? What happens to this
pressure at 100 T?

*8.19 Enterprising engineers in the high arctic building a superconducting inductor A current-carrying
inductor has energy stored in its magnetic field that can be converted to electrical work. A group of en-
terprising engineers and scientists living in Resolute in Nunavut (Canada) have decided to build a
toroidal inductor to store energy so that this energy can be used to supply a small community of 10 houses
each consuming on average 3 kW of energy during the night (6 months). They have discovered a super-
conductor (Type II) that has a BC2 = 100 T and a critical current density of Jc = 5 x 1010 A m"2 at night
temperatures (it is obviously a novel high-jTc superconductor of some sort). Their superconducting wire
has a diameter of 5 mm and is available in any desirable length. All the wiring in the community is done
by superconductors except where energy needs to be converted to other forms (mechanical, heat, etc.).
They have decided on the following design specification for their toroid:

The mean diameter Aoroid 0  toroid, (5) (Outside diameter + Inside diameter), is 10 times
longer than the core diameter DCore. The field inside the toroid is therefore reasonably uniform to
within 10 percent.

The maximum operating magnetic field in the core is 35 T. Fields larger than this can result in
mechanical fracture and failure.

Assume that Jc decreases linearly with the magnetic field and that the mechanical engineers in the
group can take care of the forces trying to blow open the toroid by building a proper support
structure.

Find the size of the toroid (mean diameter and circumference), the number of turns and the length of the
superconducting wire they need, the current in the coil, and whether this current is sufficiently below the
critical current at that field. Is it feasible?

8
.20     Magnetic storage media

a. Consider the storage of video information (FM signal) on a video tape. Suppose that the maximum
signal frequency to be recorded as a spatial magnetic pattern is 10 MHz. The heads helically scan
the tape, and the relative velocity of the tape to head is about 10 m s-1. What is the minimum spa-
tial wavelength of the stored magnetic pattern (information) on the tape?

b
. Suppose that the speed of an audio cassette tape in a cassette player is 5 cm s-1. If the maximum

frequency that needs to be recorded is 20 kHz, what is the minimum spatial wavelength on the tape?

Note: An excellent quantitive description of magnetic recording may be found in R. L. Comstock, In-
troduction to Magnetism and Magnetic Recording, New York: John Wiley & Sons, 1999.

*8
.21 Magnetic recording principles In this "back of an envelope" calculation we consider the principle of

operation of a recording head for writing on a magnetic tape (perhaps an audio or a video tape). The record-
ing head has a small gap, of size g (about 1 (um or less), which is much smaller than the mean circumfer-
ence of the head i (perhaps a few millimeters) as shown in Figure 8.73. The coil of this head has N turns
and is energized by the signal current i. The fringe field intensity Hf at the gap magnetizes the magnetic
tape passing under the head. Hf must be greater than the coercivity Hc of the storage medium (tape) to be
able to magnetize that region of the tape under the head. Suppose that Hm = magnetic field intensity in the
core of the head; Hg - magnetic field intensity in the gap; Hf = fringing field intensity below the gap;
Bm - fjirfji0Hm - magnetic field in the core of the head; Bg = fJioHg = magnetic field in the gap.

The magnetic flux must be continuous through the small gap. Thus, if A is the cross-sectional area,

Flux in the core = ABm - Flux in the gap = ABg or Bg = Bl
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Figure 8.73  The gap of a
recording head and the fringing
field for magnetizing the tape.

a.   Applying Ampere's law for H around the mean circumference, t -f g, show that

1
NI

b
.

c.

If we apply Ampere's law for H around the semicircle of radius r coming out from the gap into the
tape as shown in Figure 8.73 we get

H8g-Hf(7Tr)K0

Show that,

Trrifirg + i)
NI

d
.

The fringing field must overcome the coercivity of the storage medium. Suppose that the storage
medium has Hc - 50 kA m"1 and we have to determine M given the head material. Suppose that
fir % 104

, g = 1 fim = 10~6 m, 1 5 mm = 5 x 10~3 m, and r = 1 jam = 10~6 m to record into
a depth of 1 jun. What is the minimum NH If the minimum signal current (after amplification) is
5 mA, how many turns do you need for the coil?

What is the magnetic field Bm in the core? Can you use a ferrite head?

Field in the gap

Fringing field
for recording on
storage media

M

m

is*mm

iff

!

Left: These high-temperature superconductor (HTS) flat tapes are based on (Bi2xPbx)Sr2Ca2Cu301o (Bi-2223).
The tape has an outer surrounding protective metallic sheath. Right: HTS tapes have a major advantage over
equivalent-sized metal conductors, in being able to transmit considerably higher power loads. Coils made
from HTS tape can be used to create more compact and efficient motors, generators, magnets, transformers,
and energy storage devices.
I SOURCE: Courtesy of Australian Superconductors.
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Augustin Jean Fresnel (1788-1827) was a French physicist, and a civil
engineer for the French government, who was one of the principal
proponents of the wave theory of light. He made a number of distinct
contributions to optics including the well-known Fresnel lens that was used in
lighthouses in the nineteenth century. He fell out with Napoleon in 1815 and
was subsequently put into house arrest until the end of Napoleon's reign.
During his enforced leisure time he formulated his wave ideas of light into a
mathematical theory.

SOURCE: Smithsonian Institution, courtesy of AlP Emilio Segre Visual
Archives.

Christiaan Huygens (1629-1695), a Dutch physicist,
explained double refraction of light in calcite in terms
of ordinary and extraordinary waves. Christiaan
Huygens made many contributions to optics and wrote
prolifically on the subject.

SOURCE: Courtesy of Emilo Segre Visual Archives,
American Institute of Physics.
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CHAPTER

9

Optical Properties of Materials

The way electromagnetic (EM) radiation interacts with matter depends very much on
the wavelength of the EM wave. Many familiar types of EM radiation have wave-
lengths that range over many orders of magnitude. Although radio waves and X-rays
are both EM waves, the two interact in a distinctly different way with matter. We tend
to think of "light" as the electromagnetic radiation that we can see, that is, wavelengths
in the visible range, typically 400 to 700 nm. However, in many applications, light is
also used to describe EM waves that can have somewhat shorter or longer wavelengths
such as ultraviolet (UV) and infrared (IR) light. For many practical purposes, it is use-
ful to (arbitrarily) define light as EM waves that have wavelengths shorter than very
roughly 100 (xm but longer than long-wavelength X-rays, roughly 10 nm. Today'

s

light wave communications use EM waves with wavelengths of 1300 and 1550 nm; in
the infrared. Optical properties of materials are those characteristic properties that
determine the interaction of light with matter; the best example being the refractive
index n that determines the speed of light in a medium through v = c/n, where vis the
speed of light in the medium and c is the speed of light in free space. The present chap-
ter examines the key optical properties of matter and how these depend on the mate-

rial and on the characteristics of the EM wave. The refractive index n, for example,
depends on the dielectric polarization mechanisms as well as the wavelength k. The
material's n-X behavior is called the dispersion relation and is one of the most im-
portant characteristics in many optical device applications.

We know from Chapter 3 that, depending on the experiment, we can treat light
either as an EM wave, exhibiting typical wave-like properties, or as photons, exhibit-
ing particle-like behavior. In this chapter we will primarily use the wave nature of
light, though for absorption of light, the photon interpretation is more appropriate as
the photons interact with electrons in the material.

773
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Traveling
wave along z

9.1    LIGHT WAVES IN A HOMOGENEOUS MEDIUM

We know from well-established experiments that light exhibits typical wave-like
properties such as interference and diffraction. We can treat light as an EM wave with
time-varying electric and magnetic fields Ex and By, respectively, which propagate
through space in such a way that they are always perpendicular to each other and the
direction of propagation z is as depicted in Figure 9.1. The simplest traveling wave is
a sinusoidal wave, which, for propagation along z, has the general mathematical
form,1

Ex = E0 cos(cot - kz + <t>o) [9.1]

where Ex is the electric field at position z at time t\ k is the propagation constant, or
wavenumber, given by In/X, where X is the wavelength; co is the angular frequency;
E0 is the amplitude of the wave; and 0O is a phase constant which accounts for the fact
that at t = 0 and z = 0, Ex may or may not necessarily be zero depending on the choice
of origin. The argument (cot - kz + 0o) is called the phase of the wave and denoted
by (p. Equation 9.1 describes a monochromatic plane wave of infinite extent travel-
ing in the pb itive z direction as depicted in Figure 9.2. In any plane perpendicular to
the direction of propagation (along z)9 the phase of the wave, according to Equa-
tion 9.1, is constant which means that the field in this plane is also constant. A surface
over which the phase of a wave is constant is referred to as a wavefront. A wavefront
of a plane wave is obviously a plane perpendicular to the direction of propagation as
shown in Figure 9.2.

We know from electromagnetism that time-varying magnetic fields result in
time-varying electric fields (Faraday's law) and vice versa. A time-varying electric
field would set up a time-varying magnetic field with the same frequency. Accord-
ing to electromagnetic principles,2 a traveling electric field Ex as represented by
Equation 9.1 would always be accompanied by a traveling magnetic field By with
the same wave frequency and propagation constant (co and k) but the directions of
the two fields would be orthogonal as in Figure 9.1. Thus, there is a similar traveling
wave equation for the magnetic field component By. We generally describe the in-
teraction of a light wave with a nonconducting matter (conductivity, (7 = 0) through
the electric field component Ex rather than By because it is the electric field that dis-
places the electrons in molecules or ions in the crystal and thereby gives rise to the
polarization of matter. However, the two fields are linked, as in Figure 9.1, and
there is an intimate relationship between the two fields. The optical field refers to
the electric field Ex.

We can also represent a traveling wave using the exponential notation since
cos (/> = RetexpO

'

)] where Re refers to the real part. We then need to take the real

1 This chapter uses E for the electric field which was reserved for energy in previous chapters. There should be no
confusion with Eg that represents the energy bandgap. In addition, n is used to represent the refractive index rather
than the electron concentration.

2 Maxwell's equations formulate electromagnetic phenomena and provide relationships between the electric and
magnetic fields and their space and time derivatives. We only need to use a few selected results from Maxwell's
equations without delving into their derivations. The magnetic field 8 is also called the magnetic induction or
magnetic flux density.



9 . i Light Waves in a Homogeneous Medium 775

Direction of propagation

X

A

> z

y

B
y

k

Figure 9rl An electromagnetic wave is a traveling wave that has time-varying electric and magnetic
fields that are perpendicular to each other and the direction of propagation z.

E and B have constant phase
in this xy plane; a wavefront

k

E5
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li
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Figure 9.2  A plane EM wave traveling along z, has the same Ex (or By) at any point in a
given xy plane.
All electric field vectors in a given xy plane are therefore in phase. The xy planes are of infinite
extent in the x and y directions.
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part of any complex result at the end of calculations. Thus, we can write Equation 9.1 as

Ex{z,t) = Re[£,

„expO
,

</>0)exp j(cot - kz)]

or

Ex(z,t)= F\e[Ectxp j(cot - kz)] [9.2]

where Ec = E0 expijfio) is a complex number that represents the amplitude of the wave
and includes the constant phase information 0O.

Traveling
wave along z
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Figure 9.3  A traveling plane EM wave along a
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We indicate the direction of propagation with a vector k, called the wavevector,
whose magnitude is the propagation constant k = 2n/\. It is clear that k is perpendic-
ular to constant phase planes as indicated in Figure 9.2. When the EM wave is propa-
gating along some arbitrary direction k, as indicated in Figure 9.3, then the electric
field £(r, 0 at a point r on a plane perpendicular to k is

t) = E0 cos(a>f - k . r + 0<,) [9.3]

because the dot product k . r is along the direction of propagation similar to kz. The
dot product is the product of k and the projection of r onto k which is in Figure 9.3,
so k . r = kr'

. Indeed, if propagation is along z, k . r becomes kz. In general, if k has
components kx, ky, and kz along the jc, y, and z directions, then from the definition of the
dot product, k . r = kxx + kyy + kzz.

The time and space evolution of a given phase 0, for example, the phase corre-
sponding to a maximum field, according to Equation 9.1 is described by

cj) = cot - kz + (po = constant

During a time interval 8t, this constant phase (and hence the maximum field)
moves a distance 8z. The phase velocity of this wave is therefore 8z/St. Thus the
phase velocity vis

dz co
v= - = - = vk

dt k
[9.4]

where v is the frequency (co = 2nv).
We are frequently interested in the phase difference A0 at a given time between

two points on a wave (Figure 9.1) that are separated by a certain distance. If the wave
is traveling along z with a wavevector k, as in Equation 9.1, then the phase difference
between two points separated by A z is simply k Az since cot is the same for each point.
If this phase difference is 0 or multiples of 2n, then the two points are in phase. Thus,
the phase difference A0 can be expressed as k Az or InAz/h.
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9
.
2    REFRACTIVE INDEX

When an EM wave is traveling in a dielectric medium, the oscillating electric field po-
larizes the molecules of the medium at the frequency of the wave. Intuitively,

 the EM

wave propagation can be considered to be the propagation of this polarization in the
medium. The field and the induced molecular dipoles become coupled. The net effect
is that the polarization mechanism delays the propagation of the EM wave. The
stronger the interaction between the field and the dipoles, the slower is the propagation
of the wave. The relative permittivity er measures the ease with which the medium
becomes polarized, and hence it indicates the extent of interaction between the field
and the induced dipoles. For an EM wave traveling in a nonmagnetic dielectric
medium of relative permittivity £r, the phase velocity v is given by

1
[9.5]

If the frequency v is in the optical frequency range, then sr will be due to electronic po-
larization as ionic polarization will be too sluggish to respond to the field. However,

 at

the infrared frequencies or below, the relative permittivity also includes a significant
contribution from ionic polarization and the phase velocity is slower. For an EM wave
traveling in free space, er = 1 and Vacuum = l/V T  = c = 3 x 108 m s-1, the ve-
locity of light in a vacuum. The ratio of the speed of light in free space to its speed in
a medium is called the refractive index n of the medium,

n = - = [9.6]

Suppose that in free space k0 is the wavevector (k0 = In/ko) and X0 is the wave-
length, then the wavevector k in the medium will be nk0 and the wavelength X will be
X0/n. Indeed, we can also define the refractive index in terms of the wavevector k in
the medium with respect to that in a vacuum kcv0>

k
n = - [9.7]

Equation 9.6 is in agreement with our intuition that light propagates more slowly
in a denser medium which has a higher refractive index. We should note that the fre-
quency v remains the same. The refractive index of a medium is not necessarily the
same in all directions. In noncrystalline materials such as glasses and liquids, the ma-
terial structure is the same in all directions and n does not depend on the direction.
The refractive index is then isotropic. In crystals, however, the atomic arrangements
and interatomic bonding are different along different directions. Crystals, in general,
have nonisotropic, or anisotropic, properties. Depending on the crystal structure, the
relative permittivity £r is different along different crystal directions. This means that,
in general, the refractive index n seen by a propagating EM wave in a crystal will
depend on the value of sr along the direction of the oscillating electric field (that is,
along the direction of polarization). For example, suppose that the wave in Figure 9.1
is traveling along the z direction in a particular crystal with its electric field oscillating

Phase

velocity in
a medium

with er

lIllHHi

Definition of
refractive
index

Definition of
refractive
index



778 chapter 9 . Optical Properties of Materials

EXAMPLE 9.1

along the x direction. If the relative permittivity along this x direction is erx, then
nx = y/e . The wave therefore propagates with a phase velocity that is c/nx. The
variation of n with direction of propagation and the direction of the electric field de-
pends on the particular crystal structure. With the exception of cubic crystals (such as
diamond) all crystals exhibit a degree of optical anisotropy which leads to a number
of important applications. Typically noncrystalline solids, such as glasses and liquids,
and cubic crystals are optically isotropic; they possess only one refractive index for
all directions.

RELATIVE PERMITTIVITY AND REFRACTIVE INDEX Relative permittivity en or the dielectric
constant, of materials is frequency dependent and further it depends on crystallographic direc-
tion since it is easier to polarize the medium along certain directions in the crystal. Glass has no
crystal structure; it is amorphous. The relative permittivity is therefore isotropic but nonetheless
frequency dependent.

The relationship n = JJ  between the refractive index n and er must be applied at the
same frequency for both n and er. The relative permittivity for many materials can be vastly dif-
ferent at high and low frequencies because different polarization mechanisms operate at these
frequencies. At low frequencies all polarization mechanisms present can contribute to er,
whereas at optical frequencies only the electronic polarization can respond to the oscillating
field. Table 9.1 lists the relative permittivity £r(LF) at low frequencies {e.g., 60 Hz or 1 kHz as
would be measured for example using a capacitance bridge in the laboratory) for various mate-
rials. It then compares V LF) with n.

For diamond and silicon there is an excellent agreement between V£r(LF) and n. Both are
covalent solids in which electronic polarization (electronic bond polarization) is the only polar-
ization mechanism at low and high frequencies. Electronic polarization involves the displace-
ment of light electrons with respect to positive ions of the crystal. This process can readily
respond to the field oscillations up to optical or even ultraviolet frequencies.

For AgCl and Si02, V r(LF) is larger than n because at low frequencies both of these solids
possess a degree of ionic polarization. The bonding has a substantial degree of ionic character
which contributes to polarization at frequencies below far-infrared wavelengths. (The AgCl crys-
tal has almost all ionic bonding.) In the case of water, the er(L¥) is dominated by orientational or

Table 9.1   Low-frequency (LF) relative permittivity £r(LF) and refractive index n

Material er{m \/ir(LF) n (optical) Comments

Diamond

Si

AgCl

Si02

Water

5
.7 2.39 2.41 (at 590 nm)

11.9 3.44 3.45(at2.15jJLm)

11.14 3.33 2.00 (at 1-2 pm)

3
.84 2.00 1.46 (at 600 nm)

80 8.9 1.33 (at 600 nm)

Electronic bond polarization
up to UV light

Electronic bond polarization up
to optical frequencies

Ionic polarization contributes
to er(LF)

Ionic polarization contributes
to£r(LF)

Dipolar polarization contributes
to £y(LF), which is large
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dipolar polarization which is far too sluggish to respond to high-frequency oscillations of the
field at optical frequencies.

It is instructive to consider what factors affect n. The simplest (and approximate) expression
for the relative permittivity is

sr « 1 +
Net

[9.8]
o

where Af is the number of molecules per unit volume and a is the polarizability per molecule.
Both atomic concentration, or density, and polarizability therefore increase n. For example,
glasses of given type but with greater density tend to have higher n.

Relative

permittivity
and

polarizability

9
.
3    DISPERSION: REFRACTIVE

INDEX-WAVELENGTH BEHAVIOR

The refractive index of materials in general depends on the frequency, or the wave-
length. This wavelength dependence follows directly from the frequency dependence of
the relative permittivity er. Figure 9.4 shows what happens to an atom in the presence
of an oscillating electric field E which is due to a light wave passing through this loca-
tion; it may also be due to an applied external field.

In the absence of an electric field and in equilibrium, the center of mass C of the
orbital motions of the electrons coincides with the positively charged nucleus at O and
the net electric dipole moment is zero as indicated in Figure 9.4a. Suppose that the
atom has Z number of electrons orbiting the nucleus and all the electrons are contained

Z electrons in shell

Atomic

nucleus

C

O

Center of negative
charge

E = £
0

e>'

C O
x

(a) A neutral atom in f = 0.

/ induced

(b) Induced dipole moment in a field.

Figure 9.4 Electronic polarization of an atom. In the presence of a field in the +x direction, the
electrons are displaced in the -x direction (from O), and the restoring force is in the +x direction.
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Induced

electronic

dc dipole
moment

Simple
harmonic

motion

Natural

frequency
of the atom

within a given shell. In the presence of the electric field E, however, the light electrons
become displaced in the opposite direction to the field, so their center of mass C is
shifted by some distance x with respect to the nucleus O which we take to be the origin
as shown in Figure 9.4b. As the electrons are "pushed

"

 away by the applied field, the
Coulombic attraction between the electrons and nuclear charge "pulls in" the electrons.
The force on the electrons, due to E, trying to separate them away from the nuclear
charge is ZeE. The restoring force Fr, which is the Coulombic attractive force between
the electrons and the nucleus, can be taken to be proportional to the displacement x pro-
vided that the latter is small. The reason is that Fr = Fr{x) can be expanded in powers
of x, and for small x only the linear term matters. The restoring force Fr is obviously
zero when C coincides with O {x = 0). We can write Fr = - fix where /S is a constant
and the negative sign indicates that Fr is always directed toward the nucleus 0.

First consider applying a dc field. In equilibrium, the net force on the negative
charge is zero or ZeE = fix from which x is known. Therefore the magnitude of the
induced electronic dipole moment is given by

zV
/ induced - (Ze)x - E

P

[9.9]

As expected induced is proportional to the applied field. The electronic dipole mo-
ment in Equation 9.9 is valid under static conditions, i.e., when the electric field is a
dc field. Suppose that we suddenly remove the applied electric field polarizing the
atom. There is then only the restoring force - fix, which always acts to pull the elec-
trons toward the nucleus O. The equation of motion of the negative charge center is
then (force = mass x acceleration)

-fix = Zme

d2x

dt*

By solving this differential equation we can show that the displacement at any
time is a simple harmonic motion, that is,

X(t) = X0 COS(CQ0t)

where the angular frequency of oscillation co0 is

\Zme)

1/2

[9.10]

In essence, this is the oscillation frequency of the center of mass of the electron
cloud about the nucleus and x0 is the displacement before the removal of the field.
After the removal of the field, the electronic charge cloud executes simple harmonic
motion about the nucleus with a natural frequency (jo0 determined by Equation 9.10;
(D0 is also called the resonance frequency. The oscillations, of course, die out with
time because there is an inevitable loss of energy from an oscillating charge cloud. An
oscillating electron is like an oscillating current and loses energy by radiating EM
waves; all accelerating charges emit radiation.

Consider now the presence of an oscillating electric field due to an EM wave pass-
ing through the location of this atom as in Figure 9.4b. The applied field oscillates
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harmonically in the +x and - x directions, that is, E = E0e\p(jcot). This field will
drive and oscillate the electrons about the nucleus. There is again a restoring force Fr
acting on the displaced electrons trying to bring back the electron shell to its equilib-
rium placement around the nucleus. For simplicity we will again neglect energy losses.
Newton's second law for Ze electrons with mass Zme driven by E is given by

d2x
Zme-r = -ZeE0exp(jcot) - fix

at1
[9.11]

The solution of this equation gives the instantaneous displacement x (t) of the center
of mass of electrons from the nucleus (C from 0),

x = x(t) = -
eE0 zxp(jcot)

me(col - co2)

The induced electronic dipole moment is then simply given by induced = -(Ze)x.
The negative sign is needed because normally x is measured from negative to positive
charge whereas in Figure 9.4b it is measured from the nucleus. By definition, the elec-
tronic polarizability ae is the induced dipole moment per unit electric field,

ae =
Pinduced

E

Ze2

me(col - co2)
[9.12]

Thus, the displacement x and hence electronic polarizability ae increase as co in-
creases. Both become very large when co approaches the natural frequency o)0. In prac-
tice, charge separation x and hence polarizability ae do not become infinite 2Ltco = co0
because two factors impose a limit. First, at large x, the system is no longer linear and
this analysis is not valid. Secondly, there is always some energy loss.

Given that the polarizability is frequency dependent as in Equation 9.12, the effect
on the refractive index n is easy to predict. The simplest (and a very rough) relation-
ship between the relative permittivity sr and polarizability ae is

N
er = 1 H ae

So

where iV is the number of atoms per unit volume. Given that the refractive index n is
related to er by n2 = er, it is clear that n must be frequency dependent, i.e.,

2
 /NZe2\ 1

n   =1+   H 2\ s0me J co20- co2
[9.13]

We can also express this in terms of the wavelength X. If X0 = 27Tc/a)0 is the reso-
nance wavelength, then Equation 9.13 is equivalent to

2 (UZe2\( X0 \2 X2
V s0me )\27ic) X2-X2

This type of relationship between n and the frequency co, or wavelength X, is called
the dispersion relation. Although the above treatment is grossly simplified, it does
nonetheless emphasize that n will always be wavelength dependent and will exhibit a

Lorentz

oscillator

model

Electronic

polarizability

Relative

permittivity
and

polarizability

Dispersion
relation

Dispersion
relation
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Table 9.2  Sellmeier and Cauchy coefficients

Sellmeier

A3 (ixm)

A.2

(jJUll)

A.3

(Mm)

Si02 (fused silica) 0.696749 0.408218 0.890815 0.0690660 0.115662 9.900559

86.5% Si02-13.5% 0.711040 0.451885 0.704048 0.0642700 0.129408 9.425478

Ge02 0.80686642 0.71815848 0.85416831 0.068972606 0.15396605 11.841931

Sapphire 1.023798 1.058264 5.280792 0.0614482 0.110700 17.92656
Diamond 0.3306 4.3356              - 0.1750 0.1060 -

Cauchy

Range of hv (eV) 12 (eV"2) /i-4(eV
-4)

Diamond

Silicon

Germanium

0
.
05-5.47

0
.
002-1.08

0
.
002-0.75

-1
.
07 x 10~5

-2
.
04 x lO"8

-1
.
0 x lO"8

2
.
378

3
.
4189

4
.
003

8
.
01 x lO-3

8
.
15 x lO"2

2
.
2 x lO"1

1
.
04 x KT4

1
.
25 x lO"2

1
.
4 x lO"1

SOURCE: Sellmeier coefficients combined from various sources. Cauchy coefficients from D. Y. Smith et a/., J. Phys.
CM 13,3883, 2001.

Sellmeier

equation

Cauchy
short-form
dispersion
equation

substantial increase as the frequency increases toward a natural frequency of the po-
larization mechanism. In the above example, we considered the electronic polarization
of an isolated atom with a well-defined natural frequency coo. In the crystal, however,
the atoms interact, and further we also have to consider the valence electrons in the

bonds. The overall result is that n is a complicated function of the frequency or the
wavelength. One possibility is to assume a number of resonant frequencies, that is, not
just X0 but a series of resonant frequencies, A.i, A.2,... , and then sum the contributions
arising from each with some weighing factor A1, A2, etc.,

n2 = 1 +
A1X2

+
A2X 2

A
,

2
+

A3A2
+ [9.15]

A2-A2

where A1, A2, A3 and A1, A2, and A3 are constants, called Sellmeier coefficients.3 Equa-

tion 9.15 turns out to be quite a useful semiempirical expression for calculating n at var-
ious wavelengths if the Sellmeier coefficients are known. Higher terms involving A4 and
higher A coefficients can generally be neglected in representing n versus A behavior over
typical wavelengths of interest. For example, for diamond, we only need the A\ and A 2
terms. The Sellmeier coefficients are listed in various optical data handbooks.

There is another well-known useful n-X dispersion relation due originally to
Cauchy (1836), which has the short form given by

B C

n = A + T? + [9.16]

I 3 This is also known as the Sellmeier-Herzberger formula.
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where A, B, and C are material specific constants. Typically, the Cauchy equation is
used in the visible spectrum for various optical glasses. A more general Cauchy dis-
persion relation is of the form4

n = n-2(hvy2 + no + n2(hv)2 + n4(hv)4 [9.17]

where hv is the photon energy, and no,n-2,n2, and 4 are constants; values for dia-
mond, Si, and Ge are listed in Table 9.2. The general Cauchy equation is usually ap-
plicable over a wide photon energy range.

Cauchy
dispersion
equation in
photon
energy

GaAs DISPERSION RELATION For GaAs, from X = 0.89 to 4.1 jjim, the refractive index is
given by the following dispersion relation,

3
.
78X2

n2 = 7
.10 +

X2 - 0.2767

where X is in microns ((xm). What is the refractive index of GaAs for light with a photon energy
of 1 eV?

SOLUTION

Athv = 1 eV,

he     (6.62 x lO"34 Js)(3 x lO s"1)
X = - = ; = 1.24 am

hv        (leV x 1.6 x 10-19 JeV1)

Thus,

so that

n
2 7

.10-h
3

.
78A2

X2 - 0.2767
7
.10 +

3
.78(1.24) 2

(1.24)2 - 0.2767
11.71

n = 3.42

Note that the n versus X expression for GaAs is actually a Sellmeier-type formula because
when X2 » X], then     can be simply lumped with 1 to give 1 + Ai = 7.10.

SELLMEIER EQUATION AND DIAMOND The relevant Sellmeier coefficients for diamond are

given in Table 9.2. Calculate its refractive index at 550 nm (green light) to three decimal places.

SOLUTION

The Sellmeier dispersion relation for diamond is

n2 = 1 +
0

.
3306X2 4.3356X2

+
X2 - (175 nm)2    X2 - (106 nm)2

0
.3306(550 nm)2            4.3356(550 nm)2

1 + -r + -- = 5.8707
(550 nm)2 - (175 nm)2    (550 nm)2 - (106 nm) 2

So that n = 2.423

which is about 0.1 percent different than the experimental value of 2.426.

EXAMPLE 9.2

GaAs

[9.18] dispersion
relation

EXAMPLE 9.3

I 4D. Y. Smith et a/., J. Phys. CM 13, 3883, 2001.
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EXAMPLE 9.4 CAUCHY EQUATION AND DIAMOND Using the Cauchy coefficients for diamond in Table 9.2,
calculate the refractive index at 550 nm.

SOLUTION

At k = 550 nm, the photon energy is

he     (6.62 x 10-34Js)(3 x lO s"1) 1
hv = - =  x  r = 2.254 eV

X 550 xl0-9m 1.6 x lO"19 JeV"1

Using the Cauchy dispersion relation for diamond with coefficients from Table 9.2,

n - rc_2(/iv)~2 + no + niQiv)1 + n {hv)A

= (-1.07 x 10-5)(2.254)-2 + 2.378 + (8.01 x 10-3)(2.254)2 + (1.04 x 10-4)(2.254)4

= 2
.
421

The difference in n from the value in Example 9.3 is 0.08 percent, and is due to the Cauchy co-
efficients quoted in Table 9.2 being applicable over a wider wavelength range at the expense of
some accuracy.

9A    GROUP VELOCITY AND GROUP INDEX

Since there are no perfect monochromatic waves in practice, we have to consider the
way in which a group of waves differing slightly in wavelength will travel along the z
direction as depicted in Figure 9.5. When two perfectly harmonic waves of frequencies
a) - Sco and co + Sco and wave vectors k - 8k and k + 8 k interfere, as shown in Fig-
ure 9.5, they generate a wavepacket which contains an oscillating field at the mean
frequency co that is amplitude modulated by a slowly varying field of frequency 8co.
The maximum amplitude moves with a wave vector 8 k and thus with a group velocity
that is given by 8co/8k, that is,

Group dco
/   „ v9= TT [9-191velocity y dk

Figure 9.5  Two slightly different wavelength /\   /\   /\   /\   /\   /\   /\   /\   /\ /\
waves traveling in the same direction result in >/ V/  \/   V/   \s   \s    xs   \/   \/ 0) + 6(0

a wave packet that has an amplitude variation -f-
that travels at the group velocity.

/\/\/\y\/\/\/\/v (o-dm

E 6kE maxmax
00)

(O

Wave packet
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The group velocity therefore defines the speed with which energy or information
is propagated since it defines the speed of the envelope of the amplitude variation. The
maximum electric field in Figure 9.5 advances with a velocity Vg, whereas the phase
variations in the electric field are propagating at the phase velocity v.

Inasmuch as co = vk and the phase velocity v = c/n, the group velocity in a medium
can be readily evaluated from Equation 9.19. In a vacuum, obviously vis simply c and
independent of the wavelength or k. Thus for waves traveling in a vacuum,

 a) = ck and

the group velocity is

dco

(vacuum) = - = c = Phase velocitydk [9.20]

On the other hand, suppose that v depends on the wavelength or k by virtue of n
being a function of the wavelength as in the case for glasses. Then,

CO Vk    [*(*)]( A.) [9.21]

where n = n(X) is a function of the wavelength. The group velocity Vg in a medium,
from differentiating Equation 9.21 in Equation 9.19, is approximately given by

dco
va(medmm) = - =

y dk

c

This can be written as

(medium) = -
9

dn
n - k -

dk

c

where

dn
Nn = n - k -

9 dk

is defined as the group index of the medium. Equation 9.23 defines the group refractive
index of a medium and determines the effect of the medium on the group velocity via
Equation 9.22.

In general, for many materials the refractive index n and hence the group index Ng
depend on the wavelength of light by virtue of the relative permittivity sr being fre-
quency dependent. Then both the phase velocity vand the group velocity Vg depend on
the wavelength and the medium is called a dispersive medium. The refractive index n
and the group index Ng of pure Si02 (silica) glass are important parameters in optical
fiber design in optical communications. Both of these parameters depend on the wave-
length of light as shown in Figure 9.6. Around 1300 nm, Ng is at a minimum which
means that for wavelengths close to 1300 nm, Ng is wavelength independent. Thus,
light waves with wavelengths around 1300 nm travel with the same group velocity and
do not experience dispersion. This phenomenon is significant in the propagation of
light in glass fibers used in optical communications.

Group
velocity
in a vacuum

Group
[9.22] velocity

in a medium

[9.23]     Group index
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Figure 9.6  Refractive index n and
the group index Ng of pure Si02 (silica)
glass as a function of wavelength.
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EXAMPLE 9.5

Group
velocity

GROUP VELOCITY Consider two sinusoidal waves which are close in frequency, that is, waves of
frequencies co - 8co and co + 8co as in Figure 9.5. Their wavevectors will be k - 8k and k + 8k.
The resultant wave will be

E z, t) = E0 cos[((o - 8co)t -(k- 8k)z] + E0 cos[(cd + 8co)t - (k + 8k)z]

2cos[i(A - jB)]cos[£(A 4- B)] weBy using the trigonometric identity cos A 4- cos B
arrive at

Ex(z, t) = 2E0 cos[(<Mf - {8k)z] cosM - kz]

As depicted in Figure 9.5, this represents a sinusoidal wave of frequency a) which is am-
plitude modulated by a very slowly varying sinusoidal of frequency 8a). The system of waves,
that is, the modulation, travels along z at a speed determined by the modulating term
cos[{8a))t - {8k)z]. The maximum in the field occurs when [{8a))t - {8k)z\ = 2m7r = constant
(m is an integer), which travels with a velocity

dz

dt

8a)

Ik or
9

da)

Ik

This is the group velocity of the waves, as stated in Equation 9.19, since it determines the
speed of propagation of the maximum electric field along z.

EXAMPLE 9.6 GROUP AND PHASE VELOCITIES Consider a light wave traveling in a pure SiOz (silica) glass
medium. If the wavelength of light is 1300 nm and the refractive index at this wavelength is
1

.447, what is the phase velocity, group index (A ), and group velocity (v )?

SOLUTION

The phase velocity is given by

c

n

3 x 108 ms"1

1
.
447

2
.
073 x 108 m s-i
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From Figure 9.6, at X = 1300 nm, Ng = 1.462, so

c      3 x 108 m s-1

v,
9

N
,9

1
.
462

2
.
052 x 10* m s8 _ „-l

The group velocity is -0.7 percent smaller than the phase velocity.

9
.5    MAGNETIC FIELD: IRRADIANCE

AND POYNTING VECTOR

Although we have considered the electric field component Ex of the EM wave, we
should recall that the magnetic field (magnetic induction) component By always
accompanies Ex in an EM wave propagation. In fact, if vis the phase velocity of an EM
wave in an isotropic dielectric medium and n is the refractive index, then according to
electromagnetism, at all times and anywhere in an EM wave,5

E
X   =    VBy   = By [9.24]

where v= (e0eriJL0)~l/2 and n = </e . Thus, the two fields are simply and intimately
related for an EM wave propagating in an isotropic medium. Any process that alters Ex
also intimately changes By in accordance with Equation 9.24.

As the EM wave propagates in the direction of the wavevector k as shown in
Figure 9.7, there is an energy flow in this direction. The wave brings with it electro-
magnetic energy. A small region of space where the electric field is Ex has an energy
density, that is, energy per unit volume, given by \e0erE2x. Similarly, a region of
space where the magnetic field is By has an energy density \By

/iJL0. Since the two
fields are related by Equation 9.24, the energy densities in the Ex and By fields are the
same,

1 1
B 2

[9.25]

The total energy density in the wave is therefore e0erEl. Suppose that an ideal
"

energy meter
" is placed in the path of the EM wave so that the receiving area A of this

meter is perpendicular to the direction of propagation. In a time interval At, a portion
of the wave of spatial length v At crosses A as shown in Figure 9.7. Thus, a volume
A v At of the EM wave crosses A in time At. The energy in this volume consequently
becomes received. If 5 is the EM power flow per unit area,

giving,

S = Energy flow per unit time per unit area

(A v At) (e e E2)
S =   K O r x/ = ve0erE2

x
 = v2

e0erExBy [9.26]

Fields in an

EM wave

Energy
densities in

an EM wave

I 5 This is actually a statement of Faraday's law for EM waves. In vector notation it is often expressed as cob = k X E.
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Area AtE

k

6
B

Propagation direction

Figure 9,7  A plane EM wave traveling along k crosses an area A at right
angles to the direction of propagation. In time Af, the energy in the cylindrical
volume Av Af (shown dashed) flows through A.

Poynting
vector

Average
irradiance

(intensity)

Average
irradiance

(intensity)

In an isotropic medium, the energy flow is in the direction of wave propagation. If
we use the vectors E and B to represent the electric and magnetic fields in the EM
wave, then the wave propagates in a direction E x B, because this direction is perpen-
dicular to both E and B. The EM power flow per unit area in Equation 9.26 can be
written as

S = v2s0erE x B [9.27]

where S, called the Poynting vector, represents the energy flow per unit time per unit
area in a direction determined by E x B (direction of propagation). Its magnitude,

power flow per unit area, is called the irradiance.6

The field Ex at the receiver location (say, z = Zi) varies sinusoidally which means
that the energy flow also varies sinusoidally. The irradiance in Equation 9.26 is the
instantaneous irradiance. If we write the field as Ex = E0 sin(a;f) and then calculate
the average irradiance by averaging 5 over one period, we would find the average
irradiance,

_

 1 2
I - average -       o rE0

Since v = c/n and er - n2 we can write Equation 9.28 as

[9.28]

1
2

I - average - 
2

0 '
o

[9.29]= (1.33 x l0-3)nE2
o

The instantaneous irradiance can only be measured if the power meter can re-
spond more quickly than the oscillations of the electric field, and since this is in the

6 The term intensity is widely used and interpreted by many engineers as power flow per unit area even though the
strictly correct term is irradiance. Many optoelectronic data books simply use intensity to mean irradiance.
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optical frequencies range, all practical measurements invariably yield the average ir-
radiance because all detectors have a response rate much slower than the frequency of
the wave.

9
,
6    SNELL'S LAW AND TOTAL INTERNAL

REFLECTION (TIR)

We consider a traveling plane EM wave in a medium (1) of refractive index rii propa-
gating toward a medium (2) with a refractive index 2- Constant phase fronts are joined
with broken lines, and the wavevector k, is perpendicular to the wave fronts as shown
in Figure 9.8. When the wave reaches the plane boundary between the two media, a
transmitted wave in medium 2 and a reflected wave in medium 1 appear. The transmit-
ted wave is called the refracted light. The angles, 0t, 6r define the directions of the
incident, transmitted, and reflected waves, respectively, with respect to the normal to
the boundary plane as shown in Figure 9.8. The wavevectors of the reflected and trans-
mitted waves are denoted as kr and k,, respectively. Since both the incident and re-
flected waves are in the same medium, the magnitudes of kr and k/ are the same, kr = fc,-.

Refracted light

A,

X
v \

A
y

A 6
t

n 2

B
O n i

99 9 9
r r

A B

k
AA

k
r

A
B

r

A
rIncident light Bi Reflected light

Figure 9.8 A light wave traveling in a medium with a greater refractive index
(ni > 02) suffers reflection and refraction at the boundary.
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SnelVs law

Simple arguments based on constructive interference can be used to show that there
can only be one reflected wave that occurs at an angle equal to the incidence angle. The
two waves along A/ and 5/ are in phase. When these waves are reflected to become
waves Ar and Bn then they must still be in phase, otherwise they will interfere destruc-
tively and destroy each other. The only way the two waves can stay in phase is if
0

r
 = Qi. All other angles lead to the waves Ar and Br being out of phase and interfering

destructively.
The refracted waves A, and Bt are propagating in a medium of refracted index

2 (< Hi) that is different than n\. Hence the waves A, and Bt have different velocities
than A/ and 5,-. We consider what happens to a wavefront such as AB, corresponding
perhaps to the maximum field, as it propagates from medium 1 to 2. We recall that the
points A and B on this front are always in phase. During the time it takes for the phase
B on wave 5,- to reach B\ phase A on wave At has progressed to A'. The wavefront AB
thus becomes the front A'B' in medium 2. Unless the two waves at A' and B' still have

the same phase, there will be no transmitted wave. A' and B' points on the front are
only in phase for one particular transmitted angle 0t.

If it takes time t for the phase at B on wave S,- to reach B', then BB' = Vit = ct/n\.
During this time t, the phase A has progressed to A' where A A' = = ct/n2. A' and
B' belong to the same front just like A and B, so AB is perpendicular to k; in medium
1 and A'B' is perpendicular to kf in medium 2. From geometrical considerations,
AB' = BB'/sinOi and AB' = AA'/sinfl,, so

AB' =
V2t

sin 0i     sin 0t

or

sin 9i

sin 5/ V2

11 [9.30]

This is Snell's law7 which relates the angles of incidence and refraction to the re-
fractive indices of the media.

If we consider the reflected wave, the wave front AB becomes A"B' in the reflected

wave. In time f, phase B moves to B' and A moves to A". Since they must still be in
phase to constitute the reflected wave, BB' must be equal to AA". Suppose it takes
time t for the wavefront B to move to B' (or A to A"). Then, since BB' = A A" = Vit9
from geometrical considerations,

AB' =
sin 0i     sin 0r

so that 9i = 0r. The angles of incidence and reflection are the same.
When ni > n2, then obviously the transmitted angle is greater than the incidence

angle as apparent in Figure 9.8. When the refraction angle ft reaches 90°

,
 the incidence

7 Willebrord van Roijen Snell (1581-1626), a Dutch physicist and mathematician, was born in Leiden and
eventually became a professor at Leiden University. He obtained his refraction law in 1621 which was published
by Rene Descartes in France in 1637; it is not known whether Descartes knew of Snell's law or formulated it
independently.
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TIR
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Figure 9.9   Light wave traveling in a more dense medium strikes a less dense medium.
Depending on the incidence angle with respect to 0Cl determined by the ratio of the refractive indices,

the wave may be transmitted (refracted) or reflected.
(a) Oi < Sc.

(b) 0, = 0c.
(c) 0/ > 6C and total internal reflection (TIR).

angle is called the critical angle 9C which is given by

2
sin 0C = - [9.31]

When the incidence angle 0, exceeds 0C, then there is no transmitted wave but only
a reflected wave. The latter phenomenon is called total internal reflection (TIR). The
effect of increasing the incidence angle is shown in Figure 9.9. It is the TIR phenome-
non that leads to the propagation of waves in a dielectric medium surrounded by a
medium of smaller refractive index as in optical waveguides {e.g., optical fibers).

Critical angle
for total
internal

reflection
(TIR)

OPTICAL FIBERS IN COMMUNICATIONS Figure 9.10 shows a simplified view of a modem op-
tical communications system. Information is converted into a digital signal {e.g., current pulses)
which drives a light emitter such as a semiconductor laser. The light pulses from the emitter are
coupled into an optical fiber, which acts as a light guide. The optical fiber is a very thin glass
fiber [made of silica (SiC )], almost as thin as your hair, that is able to optically guide the light
pulses to their destination. The photodetector at the destination converts the light pulses into an
electric signal, which is then decoded into the original information.

The core of the optical fiber has a higher refractive index than the surrounding region,
which is called the cladding as shown in Figure 9.10. Optical fibers for short-distance applica-
tions (e.g., communications in local area networks within a large building) usually have a core
region that has a diameter of about 100 jxm, and the whole fiber would be about 150-200 jxm
in diameter. The core and cladding refractive indices, nj and 2, respectively, are normally only
1-3 percent different. The light propagates along the fiber core because light rays experience
total internal reflections at the core-cladding interface as shown in Figure 9.10. Only those light
rays that can exercise TIR travel along the fiber length and can reach the destination. Consider
a fiber with n core) = 1.455, and (cladding) = 1.440. The critical angle for a ray traveling

EXAMPLE 9.7
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Optical fiber

Digital signal

Information-

Emitter

Input Output

Photodetector

-| |-  Information

TIR n
2

e \e
Fiber axis

nCore 1

Light
Cladding nray

2

Figure 9.10  An optical fiber link for transmitting digital information in communications.
The fiber core has a higher refractive index, so the light travels along the fiber inside the fiber core
by total internal reflection at the core-cladding interface.

A small hole is made in a plastic bottle full of water to generate a water
jet. When the hole is illuminated with a laser beam (from a green laser
pointer), the light is guided by total internal reflections along the jet to the
tray. Light guiding by a water jet was demonstrated by John Tynaall in
1854 to the Royal Institution. (Water with air bubbles was used to
increase the visibility of light, since air bubbles scatter light.)

guiding
light

Laser

pointer

iti

in the core is

arcsin
.

 /1.440 \
arcsin | -- I 81.8°

\ 1.455

Those light rays that have angles 0 > Qc satisfy TIR and can propagate along the fiber.8
Notice that the ray angles with respect to the fiber axis are less than 8.2°.

8 The light propagation in an optical fiber is much more complicated than the simple zigzagging of light rays with
TIRs at the core-cladding interface. The waves in the core have to satisfy not only TIR but also have to avoid
destructive interference so that they are not destroyed as they travel along the guide; see for example, S. O. Kasap,
Optoelectronics and Photonics: Principles and Practices, Upper Saddle River: Prentice Hall, 2001, chap. 2.
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9
.7    FRESNEL'S EQUATIONS

9
.
7
.1  Amplitude Reflection and Transmission Coefficients

Although the ray picture with constant phase wave fronts is useful in understanding
refraction and reflection, to obtain the magnitude of the reflected and refracted
waves and their relative phases, we need to consider the electric field in the light
wave. The electric field in the wave must be perpendicular to the direction of propa-
gation as shown in Figure 9.11. We can resolve the field £/ of the incident wave into
two components, one in the plane of incidence Em and the other perpendicular to
the plane of incidence Ei

t
j
_

. The plane of incidence is defined as the plane contain-
ing the incident and the reflected rays which in Figure 9.11 corresponds to the plane
of the paper.9 Similarly for both the reflected and transmitted waves, we will have
field components parallel and perpendicular to the plane of incidence, i.e., Er9\\, Ert±
andEtjhEt .

As apparent from Figure 9.11, the incident, transmitted, and reflected waves all
have a wavevector component along the z direction; that is, they have an effective
velocity along z. The fields E  Er

t
±, and Ett± are all perpendicular to the z direc-

tion. These waves are called transverse electric field (TE) waves. On the other
hand, waves with Em, Ert\\, and E  only have their magnetic field components per-
pendicular to the z direction and these are called transverse magnetic field (TM)
waves.

We will describe the incident, reflected, and refracted waves by the exponential
representation of a traveling wave, i.e.,

Ei = Ei0 exp j(a)t - k,- . r)

E
r
 = Ero exp j(cot - k

r
 . r)

Et = Eto exp j{cot - k, r)

[9.32]

[9.33]

[9.34]

where r is the position vector; the wavevectors k/, kr, and k, describe, respectively,
the directions of the incident, reflected, and transmitted waves; and Ero, and Eto
are the respective amplitudes. Any phase changes such as 0r and 0, in the reflected
and transmitted waves with respect to the phase of the incident wave are incorporated
into the complex amplitudes Ero and Eto. Our objective is to find Ero and Eto with re-
spect to Ei0.

We should note that similar equations can be stated for the magnetic field compo-
nents in the incident, reflected, and transmitted waves, but these will be perpendicular
to the corresponding electric fields. The electric and magnetic fields anywhere on the
wave must be perpendicular to each other as a requirement of electromagnetic wave
theory. This means that with E\\ in the EM wave we have a magnetic field associated

Incident wave

Reflected
wave

Transmitted

wave

9 The definitions of the field components follow those of S. G. Lipson et al., Optical Physics, 3rd ed., Cambridge,
MA, Cambridge University Press, 1995, and Grant Fowles, Introduction to Modern Optics, 2nd ed., New York,
Dover Publications, Inc., 1975, whose clear treatments of this subject are highly recommended. The majority of the
authors use a different convention which leads to different signs later in the equations; Fresnel's equations are
related to the specific electric field directions from which they are derived.
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(a) If 0/ < 0C, then some of the wave is
transmitted into the less dense medium.
Some of the wave is reflected.

(b) If 0/ > 0C/ then the incident wave suffers
total internal reflection. There is a decaying
evanescent wave into medium 2.

Figure 9,11   Light wave traveling in a more dense medium strikes a less dense medium.
The plane of incidence is the plane of the paper and is perpendicular to the flat interface between the two media.
The electric field is normal to the direction of propagation. It can be resolved into perpendicular (_L) and parallel (||)
components.

Boundary
condition

Boundary
condition

with it such that B± = {n/c)E\\. Similarly £]
_
 will have a magnetic field B\\ associated

with it such that Bj| = (n/c)E±.
There are two useful fundamental rules in electromagnetism that govern the be-

havior of the electric and magnetic fields at a boundary between two dielectric media
which we can arbitrarily label as 1 and 2. These rules are called boundary conditions.
The first states that the electric field that is tangential to the boundary surface tangential
must be continuous across the boundary from medium 1 to 2, Le.9 at the boundary
y = 0 in Figure 9.11,

tangential(l) - tangential (2) [9.35]

The second rule is that the tangential component of the magnetic field Btangentiai to
the boundary must be likewise continuous from medium 1 to 2 provided that die two
media are nonmagnetic (relative permeability /zr = 1),

#tangential(l) = tangential (2) [9.36]

Using these boundary conditions for the fields at y = 0, and the relationship be-
tween the electric and magnetic fields, we can find the reflected and transmitted waves
in terms of the incident wave. The boundary conditions can only be satisfied if the
reflection and incidence angles are equal, 6r = 0,, and the angles for the transmitted
and incident waves obey Snell's law, n\ sin 0/ = n2 sin 0r.

Applying the boundary conditions to the EM wave going from medium 1 to 2, the
amplitudes of the reflected and transmitted waves can be readily obtained in terms of
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nu n2, and the incidence angle ft alone.10 These relationships are called FresnePs
equations. If we define n = 2/ 1, as the relative refractive index of medium 2 to that
of 1, then the reflection and transmission coefficients for E±

_

 are

1 =
ErO,-L

E

and

iO,_L

£fO
,-

L

cosft - (n2 - sin2<9,-)1/2
cos ft-K -sin2 )1/2

[9.37]

2 cos ft

SfCJ
.

 
~

 cos ft + {n2 - sin2ft)1/2
[9.38]

There are corresponding coefficients for the E\\ fields with corresponding reflection
and transmission coefficients h and t\\\

h =
r0,|| (n2 - sin2 ft)1/2 - n2 cos ft

£      (n si ftO  + cosft

6 =
E'0,|| 2fl cos 0,1.

£fo
,
||     w2 cos ft + (n2 - sin2 ft)1/*

Further, the reflection and transmission coefficients are related by

rn+*f,| = 1 and r± + 1 = t±

[9.39]

[9.40]

[9.41]

The significance of these equations is that they allow the amplitudes and phases of
the reflected and transmitted waves to be determined from the coefficients rj

_
, , fy, and

t±. For convenience we take Eio to be a real number so that the phase angles of r± and
(1 correspond to the phase changes measured with respect to the incident wave. For
example, if r± is a complex quantity, then we can write this as r± = IrJ exp(~j(l>±)
where IrJ and 0

_

l represent the relative amplitude and phase of the reflected wave
with respect to the incident wave for the field perpendicular to the plane of incidence.
Of course, when /i is a real quantity, then a positive number represents no phase shift
and a negative number is a phase shift of 180° (or tt). As with all waves, a negative sign
corresponds to a 180° phase shift. Complex coefficients can only be obtained from
Fresnel's equations if the terms under the square roots become negative, and this can
only happen when n < 1 (or ni > ni), and also when ft > ft, the critical angle. Thus,
phase changes other than 0 or 180° occur only when there is total internal reflection.

Figure 9.12a shows how the magnitudes of the reflection coefficients IrJ and |r|||
vary with the incidence angle ft for a light wave traveling from a more dense medium,
n\ = 1.44, to a less dense medium, = 1.00, as predicted by Fresnel

'

s equations. Fig-
ure 9.12b shows the changes in the phase of the reflected wave, 0j

_
 and 4>\\> with ft. The

critical angle ft as determined from sin ft = m/nx in this case is 44°
.
 It is clear that for

incidence close to normal (small ft), there is no phase change in the reflected wave. For

Reflection
coefficient

Transmission

coefficient

Reflection
coefficient

Transmission

coefficient

Transmission

and reflection

10 These equations are readily available in any electromaanetism textbook. Their derivation from the two boundary
conditions involves extensive algebraic manipulation which we will not carry out here. The electric and magnetic
field components on both sides of the boundary are resolved tangentially to the boundary surface and the
boundary conditions are then applied. We then use such relations as cos 0,= (1 - sin 9t)]/2 and sin 0f as determined
by Snell's law, etc.
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Figure 9.12  Internal reflection.
(a) Magnitude of the reflection coefficients rn and r± versus the angle of incidence 0, for ni = 1.44 and
02 = 1.00. The critical angle is 44°

.

(b) The corresponding phase changes 0|| and 0_l versus incidence angle.
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example, putting normal incidence (0/ = 0) into Fresnel's equations, we find

r„ = r± =
ni - tt2

ni + n2
[9.42]

This is a positive quantity for n\ > n2 which means that the reflected wave suffers
no phase change. This is confirmed by 0

_
l and 0|| in Figure 9.12b. As the incidence

angle increases, eventually q becomes zero at an angle of about 35°
.
 We can find this

special incidence angle, labeled as 6P, by solving the Fresnel equation, Equation 9.39,
for rn =0. The field in the reflected wave is then always perpendicular to the plane of
incidence and hence well-defined. This special angle is called the polarization angle
or Brewster's angle and from Equation 9.39 is given by

7*2
tan Op = - [9.43]

The reflected wave is then said to be linearly polarized because it contains electric
field oscillations that are contained within a well-defined plane which is perpendicular
to the plane of incidence and also to the direction of propagation. Electric field oscilla-
tions in unpolarized light, on the other hand, can be in any one of an infinite number
of directions that are perpendicular to the direction of propagation. In linearly polar-
ized light, however, the field oscillations are contained within a well-defined plane.
Light emitted from many light sources such as a tungsten light bulb or an LED diode is
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unpolarized and the field is randomly oriented in a direction that is perpendicular to the
direction of propagation.

For incidence angles greater than 9P but smaller than 0C, Fresnel's equation, Equa-
tion 9.39, gives a negative number for ry which indicates a phase shift of 180° as shown
in 0|| in Figure 9.12b. The magnitudes of both and rL increase with 0, as apparent in
Figure 9.12a. At the critical angle and beyond (past 44° in Figure 9.12), i.e., when 0, > 0C,
the magnitudes of both Ty and /i go to unity, so the reflected wave has the same amplitude
as the incident wave. The incident wave has suffered total internal reflection (TIR).
When Oi > 0C, in the presence of TIR, the Equations 9.37 to 9.40 are complex quantities
because then sin 0, > n and the terms under the square roots become negative. The
reflection coefficients become complex quantities of the type r± - 1 . exp(- j(t)±) and
ru = 1 . exp(-with the phase angles 0j

_
 and  being other than 0 or 180°. The re-

flected wave therefore suffers phase changes 0j
_
 and 4>\\ in the components E±

_
 and E\\. These

phase changes depend on the incidence angle, as apparent in Figure 9.12b, and on ni and tt2.
Examination of Equation 9.37 for shows that for 0,- > 0C, we have IrJ = 1, but

the phase change 0
_
l is given by

sin-ty rt2)1/:
cos 0,

9.44]

For the    component, the phase change 0|| is given by

1  \     (sin2 9, - n2)1*2
tan

A 1
n2 cos 0/

[9.451

We can summarize that, in internal reflection (ni > 2), the amplitude of the re-
flected wave from TIR is equal to the amplitude of the incident wave but its phase has
shifted by an amount determined by Equations 9.44 and 9.45.11 The fact that 0|| has an
additional n shift which makes (f>\\ negative for 0, > 0C is due to the choice for the di-
rection of the reflected optical field Er  in Figure 9.11. (This tt shift can be ignored if
we simply invert y.)

The reflection coefficients in Figure 9.12 considered the case in which ni > ni.
When light approaches the boundary from the higher index side, that is, n\ > 2, the
reflection is said to be internal reflection and at normal incidence there is no phase
change. On the other hand, if light approaches the boundary from the lower index side,
that is, n\ < 2, then it is called external reflection. Thus in external reflection light be-
comes reflected by the surface of an optically denser (higher refractive index) medium.
There is an important difference between the two. Figure 9.13 shows how the reflection
coefficients /l and Ty depend on the incidence angle 0/ for external reflection (ny - 1 and
n2 - 1.44). At normal incidence, both coefficients are negative, which means that in
external reflection at normal incidence there is a phase shift of 180°

. Further, rj) goes
through zero at the Brewster angle 6P given by Equation 9.43. At this angle of incidence,
the reflected wave is polarized in the E± component only. Transmitted light in both inter-
nal reflection (when 0, < 0C) and external reflection does not experience a phase shift.

Phase change
in TIR

Phase change
in TIR

'' it snouia De apparent that the concepts and the resulting equations apply to a well-defined linearly polarized
light wave.
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1

Figure 9.13 The reflection coefficients
All and rj

_

 versus angle of incidence 0/ for
ni = 1.00 and 02 = 1.44.
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What happens to the transmitted wave when 0, > 6C1 According to the boundary
conditions, there must still be an electric field in medium 2; otherwise, the boundary
conditions cannot be satisfied. When 0,- > 0C, the field in medium 2 is a wave that trav-
els near the surface of the boundary along the z direction as depicted in Figure 9.14.
The wave is called an evanescent wave and advances along z with its field decreasing
as we move into medium 2, i.e.,

Et
,
L(y> z,t) <xe a2y exp j((ot - kizz) [9.46]

where kiZ = ki sin 0,- is the wavevector of the incident wave along the z axis, and 0 2 is
an attenuation coefficient for the electric field penetrating into medium 2,

[9.47]
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where k is the free-space wavelength. According to Equation 9.46, the evanescent
wave travels along z and has an amplitude that decays exponentially as we move from
the boundary into medium 2 (along y) as shown in Figure 9.11b. The field of the
evanescent wave is e~l in medium 2 when y = l/a2 = 8 which is called the penetra-
tion depth. It is not difficult to show that the evanescent wave is correctly predicted
by Snell's law when 0, > 6C. The evanescent wave propagates along the boundary
(along z) with the same speed as the z component velocity of the incident and re-
flected waves. In Equations 9.32 to 9.34 we had assumed that the incident and
reflected waves were plane waves, that is, of infinite extent. If we were to extend the
plane wavefronts on the reflected wave, these would cut the boundary as shown in
Figure 9.14. The evanescent wave traveling along z can be thought of as arising from
these plane wavefronts at the boundary as in Figure 9.14. (The evanescent wave is
important in light propagation in optical waveguides such as in optical fibers.) If the
incident wave is a narrow beam of light (e.g., from a laser pointer), then the reflected
beam would have the same cross section. There would still be an evanescent wave at

the boundary, but it would exist only within the cross-sectional area of the reflected
beam at the boundary.

9.
7

.2 Intensity, Reflectance, and Transmittance

It is frequently necessary to calculate the intensity or irradiance of the reflected and
transmitted waves when light traveling in a medium of index ni is incident at a bound-
ary where the refractive index changes to n2. In some cases we are simply interested in
normal incidence where 0,- = 0°

. For example, in laser diodes light is reflected from the
ends of an optical cavity where there is a change in the refractive index.

Reflectance R measures the intensity of the reflected light with respect to that of
the incident light and can be defined separately for electric field components parallel
and perpendicular to the plane of incidence. The reflectances     and R\\ are defined by

Ri = = |rx|2
2

and ft =
\Ero,

2

2 = Mil|2 [9.48]

From Equations 9.37 to 9.40 with normal incidence, these are simply given by

\ni +n2/

2

[9.49]

!

Since a glass medium has a refractive index of around 1.5, this means that typically
4 percent of the incident radiation on an air-glass surface will be reflected back.

Transmittance T relates the intensity of the transmitted wave to that of the inci-
dent wave in a similar fashion to the reflectance. We must, however, consider that the
transmitted wave is in a different medium and further its direction with respect to the
boundary is also different by virtue of refraction. For normal incidence, the incident
and transmitted beams are normal and the transmittances are defined and given by

2

71 =
n2\Eto

,
±\

ni\Ei0
f
l\2

\2

and Tn =
n2\Eto

,\\

ni|JE/0f|||2
I fill2 [9.50]

Reflectance
at normal

incidence
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Transmit-

tance at

normal

incidence

or

T= 71 = Ti =
An\n2

{ni + n2)2
[9.51]

Further, the fraction of light reflected and fraction transmitted must add to unity. Thus
R + 7= 1.

EXAMPLE 9.8 REFLECTION OF LIGHT FROM A LESS DENSE MEDIUM (INTERNAL REFLECTION) A ray of light
which is traveling in a glass medium of refractive index n\ = 1.460 becomes incident on a less
dense glass medium of refractive index n2 = 1.440. Suppose that the free-space wavelength {X)
of the light ray is 1300 nm.

a. What should be the minimum incidence angle for TIR?
b

. What is the phase change in the reflected wave when 0/ = 87° and when 0i = 90°?
c. What is the penetration depth of the evanescent wave into medium 2 when 0, = 80° and

when 0, = 90°?

SOLUTION

a.

b
.

c.

The critical angle 0C for TIR is given by sin 0C =        = 1.440/1.460, so 0C = 80.51°.

Since the incidence angle 0, > 0C, there is a phase shift in the reflected wave. The phase
change in Er

,
± is given by </>_]_. With ni = 1.460, n2 = 1.440, and 0/ = 87°

,

,1/2

tan

L2(8r)_(i yi
(sin -n2)"2     L V1-460/ J

008(87°)COS0(

= 2
.989 = tan [i (143.0°)]

so the phase change is 143°. For the     component, the phase change is

(sin2*?,- -n2)1'2
tan

n2 cos 0/ tan(i )
SO

tan

1

which gives

011 = 143.95° - 180° = -36.05°

We can repeat the calculation with 0, = 90° to find 0
_

l = 180° and    = 0°.

Note that as long as 0, > 0C, the magnitude of the reflection coefficients are unity. Only
the phase changes.

The amplitude of the evanescent wave as it penetrates into medium 2 is

We ignore the z dependence, exp j((x)t - kzz), as this only gives a propagating property
along z. The field strength drops to e~x when y = 1 /a2 = 5, which is called the penetration
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depth. The attenuation constant 012 is

i
.e.,

2 -11/2

= 1
.
104 x 106 nT'

2* (1.440)     r/l-460\2    2    
o
 T

oti = i    sin2(870) - 1
(1300 x 10-9 m)L\ 1.440/ J

so the penetration depth is 8 = I fa = 1/(1.104 x 106 m) = 9.06 x 10"7 m, or 0.906 fxm.
For 90°, repeating the calculation we find #2 = 1 . 164 x 106 m-1, so 8 = 1 /g  = 0.859 fxm.
We see that the penetration is greater for smaller incidence angles. The values for the
refractive indices and wavelength are typical of those values found in optical fiber commu-
nications.

REFLECTION AT NORMAL INCIDENCE. INTERNAL AND EXTERNAL REFLECTION Consider the

reflection of light at normal incidence on a boundary between a glass medium of refractive
index 1.5 and air of refractive index 1.

a. If light is traveling from air to glass, what is the reflection coefficient and the intensity of
the reflected light with respect to that of the incident light?

b
. If light is traveling from glass to air, what is the reflection coefficient and the intensity of

the reflected light with respect to that of the incident light?
c. What is the polarization angle in the external reflection in part (a)? How would you make

a polaroid device that polarizes light based on the polarization angle?

SOLUTION

a.   The light travels in air and becomes partially reflected at the surface of the glass which cor-
responds to external reflection. Thus    = 1 and n2 = 1.5. Then,

n\ - tii     1 - 1.5
rn = rL =  = = -0.2" ni+n2     1 + 1.5

This is negative which means that there is a 180° phase shift. The reflectance (fl),
which gives the fractional reflected power, is

R = rl = 0.04      or 4%

b
. The light travels in glass and becomes partially reflected at the glass-air interface which

corresponds to internal reflection. Thus ni = 1.5 and n2 = 1. Then,

ni - n2 1.5-1
r,| = rj

.

 = -        = = 0.2" Wi+rt2 1.5+1

There is no phase shift. The reflectance is again 0.04 or 4 percent. In both cases (a) and
(b), the amount of reflected light is the same.

c. Light is traveling in air and is incident on the glass surface at the polarization angle. Here
n\ = 1, n2 = 1.5, and tan Op = (112/n\) = 1.5, so Op = 56.3°

.

If we were to reflect light from a glass plate keeping the angle of incidence at 56.3°, then
the reflected light will be polarized with an electric field component perpendicular to the plane
of incidence. The transmitted light will have the field greater in the plane of incidence; that is,

EXAMPLE 9.9
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it will be partially polarized. By using a stack of glass plates one can increase the polarization
of the transmitted light. (This type of pile-of-plates polarizer was invented by Dominique F. J.
Arago in 1812.)

EXAMPLE 9.10 ANTIREFLECTION COATINGS ON SOLAR CELLS When light is incident on the surface of a
semiconductor, it becomes partially reflected. Partial reflection is an important consideration in
solar cells where transmitted light energy into the semiconductor device is converted to electric
energy. The refractive index of Si is about 3.5 at wavelengths around 700-800 nm. Thus the re-
flectance with rci(air) = 1 and n2(Si)  3.5 is

fl=f y=(i y=o.309\nx+n2)      Vl + 3.5/

This means that 30 percent of the light is reflected and is not available for conversion to
electric energy, a considerable reduction in the efficiency of the solar cell.

However, we can coat the surface of the semiconductor device with a thin layer of a
dielectric material such as Sia  (silicon nitride) that has an intermediate refractive index.
Figure 9.15 illustrates how the thin dielectric coating reduces the reflected light intensity. In
this case ni(air) = 1, (coating)  1.9, and rt3(Si) = 3.5. Light is first incident on the air-
coating surface, and some of it becomes reflected; this reflected wave is shown as A in Figure
9
.15. Wave A has experienced a 180° phase change on reflection as this is an external reflec-

tion. The wave that enters and travels in the coating then becomes reflected at the coating-
semiconductor surface. This wave, which is shown as B, also suffers a 180° phase change since

3 > 2- When wave B reaches A, it has suffered a total delay of traversing the thickness d of
the coating twice. The phase difference is equivalent to kc(2d) where kc = In/Xc is the
wave vector in the coating and is given by 27t/Xc where Xc is the wavelength in the coating.
Since Xc = k/n2, where X is the free-space wavelength, the phase difference A0 between A and
B is (2nn2/X){2d). To reduce the reflected light, A and B must interfere destructively, and this
requires the phase difference to be tt or odd multiples of n, mn where m = 1,3,5,... is an odd
integer. Thus

( 2nn2 )2d = mn      or      d = ml  )
X   J \4n2J

Thus, the thickness of the coating must be multiples of the quarter wavelength in the coating and
depends on the wavelength.

Figure 9.15 Illustration of how an
antireflection coating reduces the
reflected light intensity.

d

B < < /
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coating photovoltaic device
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To obtain a good degree of destructive interference between waves A and B, the two am-
plitudes must be comparable. It turns out that we need n2 = Vwiw3- When 2 = Vwiw3» then
the reflection coefficient between the air and coating is equal to that between the coating and the
semiconductor. In this case we would need VJ E or 1.87. Thus, Si3N4 is a good choice as an
antireflection coating material on Si solar cells.

Taking the wavelength to be 700 nm, d = (700 nm)/[4(l .9)] = 92.1 nm or odd multiples of d.

DIELECTRIC MIRRORS A dielectric mirror consists of a stack of dielectric layers of alternating
refractive indices as schematically illustrated in Figure 9.16 where ni is smaller than n2. The
thickness of each layer is a quarter wavelength or A.iayer/4, where A.iayer is the wavelength of light
in that layer, or A /n, where X0 is the free-space wavelength at which the mirror is required to
reflect the incident light and n is the refractive index of the layer. Reflected waves from the in-
terfaces interfere constructively and give rise to a substantial reflected light. If there are a suffi-
cient number of layers, the reflectance can approach unity at the wavelength k0. Figure 9.16 also
shows schematically a typical reflectance versus wavelength behavior of a dielectric mirror with
many layers.

The reflection coefficient for light in layer 1 being reflected at the 1-2 boundary is
A12 = (ni - n2)/{n\ + 2) and is a negative number indicating a n phase change. The
reflection coefficient for light in layer 2 being reflected at the 2-1 boundary is = ( 2 - n\)/
{nx + W2) which is -ri2 (positive) indicating no phase change. Thus the reflection coefficient
alternates in sign through the mirror. Consider two arbitrary waves A and B which are reflected
at two consecutive interfaces. The two waves are therefore already out of phase by n due to re-
flections at the different boundaries. Further, wave B travels an additional distance which is

twice (A.2/4) before reaching wave A and therefore experiences a phase change equivalent to
2(A.2/4) or A.2/2, that is, tt. The phase difference between A and B is then n + n or In. Thus
waves A and B are in phase and interfere constructively. We can similarly show that waves B
and C also interfere constructively and so on, so all reflected waves from the consecutive
boundaries interfere constructively. After several layers (depending on n\ and 2), the trans-
mitted intensity will be very small and the reflected light intensity will be close to unity. Di-
electric mirrors are widely used in modem vertical cavity surface emitting semiconductor
lasers.

EXAMPLE 9.11
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Figure 9.16 Schematic illustration of the principle of the dielectric mirror with many low and high refractive index
layers and its reflectance.
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9
.
8    COMPLEX REFRACTIVE INDEX

AND LIGHT ABSORPTION

Generally when light propagates through a material, it becomes attenuated in the di-
rection of propagation as illustrated in Figure 9.17. We distinguish between absorption
and scattering both of which give rise to a loss of intensity in the regular direction of
propagation. In absorption, the loss in the power in the propagating EM wave is due
to the conversion of light energy to other forms of energy, e.g., lattice vibrations (heat)
during the polarization of the molecules of the medium, local vibrations of impurity
ions, and excitation of electrons from the valence band to the conduction band. On the

other hand, scattering is a process by which the energy from a propagating EM wave
is redirected as secondary EM waves in various directions away from the original di-
rection of propagation; this is discussed in Section 9.11.

It is instructive to consider what happens when a monochromatic light wave such as

E = E0 exp j((i>t - kz) [9.52]

is propagating in a dielectric medium. The electric field E in Equation 9.52 is either
parallel to x or y since propagation is along z. As the wave travels through the medium,
the molecules become polarized. This polarization effect is represented by the relative
permittivity er of the medium. If there were no losses in the polarization process, then
the relative permittivity er would be a real number and the corresponding refractive
index n = y[e~r  would also be a real number. However, we know that there are always
some losses in all polarization processes. For example, when the ions of an ionic crys-
tal are displaced from their equilibrium positions by an alternating electric field and
made to oscillate, some of the energy from the electric field is coupled and converted to
lattice vibrations (intuitively, "sound" and heat). These losses are generally accounted
for by describing the whole medium in terms of a complex relative permittivity
(or dielectric constant) £r, that is,

Er = er
 - jer

[9.53]

where the real part determines the polarization of the medium with losses ignored
and the imaginary part describes the losses in the medium. For a lossless medium,
obviously er = e'  The loss depends on the frequency of the wave and usually
peaks at certain natural (resonant) frequencies. If the medium has a finite conductivity

Figure 9.17 Attenuation of light in the direction of
propagation.

MediumE
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(e.g., due to a small number of conduction electrons), then there will be a Joule loss
due to the electric field in the wave driving these conduction electrons. This type of
light attenuation is called free carrier absorption. In such cases, e" and a are
related by

cr

[9.54]

where e0 is the absolute permittivity and a is the conductivity at the frequency of the
EM wave. Since er is a complex quantity, we should also expect to have a complex
refractive index.

An EM wave that is traveling in a medium and experiencing attenuation due to
absorption can be generally described by a complex propagation constant fc, that is,

k = k, - jk" [9.55]

where k' and k" are the real and imaginary parts. If we put Equation 9.55 into Equa-
tion 9.52, we will find the following,

E = £,0exp(-A:,,z)exp j(a)t - k'z) [9.56]

The amplitude decays exponentially while the wave propagates along z. The real
k' part of the complex propagation constant (wavevector) describes the propagation
characteristics, e.g., phase velocity v = ay/k'. The imaginary k" part describes the rate
of attenuation along z. The intensity I at any point along z is

la \E\2 a exp(-2rz)

so the rate of change in the intensity with distance is

dl
- = -Ik"!
dz

[9.57]

where the negative sign represents attenuation.
Suppose that k0 is the propagation constant in a vacuum. This is a real quantity as

a plane wave suffers no loss in free space. The complex refractive index N with real
part n and imaginary part K is defined as the ratio of the complex propagation constant
in a medium to propagation constant in free space,

N = n - jK = - = (-)[*' - jk"]
ko     \ko /

[9.58a]

i.e.,

n = - and
k0

k"
K = -

k
o

[9.58b]

The real part n is simply and generally called the refractive index and K is called
the extinction coefficient. In the absence of attenuation,

k" = 0      * = *'
k k'

and      N = n = - = -
ko k

g
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Figure 9.18  Optical properties of an
amorphous silicon film in terms of real (n) and
imaginary [K] parts of the complex refractive
index.
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We know that in the absence of loss, the relationship between the refractive index n
and the relative permittivity er is n = *fe . This relationship is also valid in the presence
of loss except that we must use complex refractive index and complex relative permit-
tivity, that is,

N = n - jK = jrr  = y ; - je'l [9.59]

By squaring both sides we can relate n and K directly to e'r and e". The final result is

n2 - K2 = s'
r
      and      2nK = e" [9.60]

Optical properties of materials are typically reported either by showing the fre-
quency dependences of n and K or e'

r and e". Clearly we can use Equation 9.60 to ob-
tain one set of properties from the other. Figure 9.18 shows the real (ri) and imaginary
(K) parts of the complex refractive index of amorphous silicon (noncrystalline form of
Si) as a function of photon energy {h v). For photon energies below the bandgap energy,
K is negligible and n is close to 3.5. Both n and K change strongly as the photon energy
increases far beyond the bandgap energy.

If we know the frequency dependence of the real part e'r of the relative permittivity
of a material, we can also determine the frequency dependence of the imaginary part e"

,

and vice versa. This may seem remarkable, but it is true provided that we know the fre-
quency dependence of either the real or imaginary part over as wide a range of frequen-
cies as possible (ideally from dc to infinity) and the material is linear, i.e., it has a relative
permittivity that is independent of the applied field; the polarization response must be lin-
early proportional to the applied field.12 The relationships that relate the real and imagi-
nary parts of the relative permittivity are called Kramers-Kronig relations. If (cd) and
e
"(Q)) represent the frequency dependences of the real and imaginary parts, respectively,

then one can be determined from the other as depicted schematically in Figure 9.19.
The optical properties n and K can be determined by measuring the reflectance

from the surface of a material as a function of polarization and the angle of incidence
(based on Fresnel's equations).

I 12 In addition the material system should be passive-contain no sources of energy.
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Figure 9.19  Kramers-Kronig relations
allow frequency dependences of the real and
imaginary parts of the relative permittivity to
be related to each other. The material must be

a linear system.

It is instructive to mention that the reflection and transmission coefficients that we

derived in Section 9.7 were based on using a real refractive index, that is, neglecting
losses. We can still use the reflection and transmission coefficients if we simply use the
complex refractive index N instead of n. For example, consider a light wave traveling
in free space incident on a material at normal incidence (0,- = 90°). The reflection co-
efficient is now

r =
N- 1 

_

   n - jK - 1

N+ 1

The reflectance is then

R =
n-jK-1

n-jK + l

n-jK + 1

2 
_

 (n - I)2 + K2
(n + I)2 + K2

[9.61]

which reduce to the usual forms when the extinction coefficient K = 0.

COMPLEX REFRACTIVE INDEX Spectroscopic ellipsometry measurements on a silicon crystal
at a wavelength of 826.6 nm show that the real and imaginary parts of the complex relative per-
mittivity are 13.488 and 0.038, respectively. Find the complex refractive index, the reflectance
and the absorption coefficient a at this wavelength, and the phase velocity.

SOLUTION

We know that e'
r
 = 13.488 and e" = 0

.038. Thus, from Equation 9.60, we have

n2 - K2 = 13.488      and      2nK = 0.038

We can take K from the second equation and substitute for it in the first equation,

2    / 0.038 \2
13.488

This is a quadratic equation in n2 that can be easily solved on a calculator to find n = 3.67. Once
we know n, we can find K = 0.038/2n = 0.00517. If we simply take the square root of the real
part of 6v, we would still find n = 3.67, because the extinction coefficient K is small. The re-
flectance of the Si crystal is

(n - I)2 + K2     (3.67 - I)2 + 0.005172
R

(n + I)2 + K2     (3.67 + I)2 + 0.005172
0

.
327

Reflection
coefficient

[9.62] Reflectance

EXAMPLE 9.12
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which is the same as simply using (n - l)2/(n + I)2 = 0
.
327, because K is small.

The absorption coefficient a describes the loss in the light intensity I via I = I0 exp(-az).
By virtue of Equation 9.57,

a = 2k" = 2k
0K = li --p-- Vo0517) = 7.9 x 104 m"1

\826.6 x lO-9/

Almost all of this absorption is due to band-to-band absorption (photogeneration of electron-
hole pairs).

The phase velocity is given by

c     3 x 108 ms
-1

v= -
n 3

.
67

8
.
17 x 107 ms

EXAMPLE 9.13 COMPLEX REFRACTIVE INDEX OF InP An InP crystal has a refractive index (real part) n of
3

.549 at a wavelength of 620 nm (photon energy of 2 eV). The reflectance of the air-InP crys-
tal surface at this wavelength is 0.317. Calculate the extinction coefficient K and the absorption
coefficient or of InP at this wavelength.

SOLUTION

The reflectance R is given by

R
(n - I)2 + K2
(n + I)2 + K2

which on solving gives K = 0.302.
The absorption coefficient is

or 0
.
317

(3.549 - I)2 + K2
(3.549 + I)2 + K2

6
.

1 x 106 m"1

1

EXAMPLE 9.14

Imaginary
relative

permittivity
and

conductivity

FREE CARRIER ABSORPTION COEFFICIENT AND CONDUCTIVITY Consider a semiconductor

sample with a conductivity a, and a refractive index n. Show that the absorption coefficient due
to free carrier absorption (due to conductivity) is given by

-{-)'
-

\ce0J n

An n-type Ge has a resistivity of about 5 x 10~3£2m. Calculate the imaginary part e" of the rel-
ative permittivity at a wavelength of 10 jjim where the refractive index is 4. Find the attenuation
coefficient or due to free carrier absorption.

SOLUTION

The relationship between the conductivity and the absorption coefficient is given by

a

S0(0
e [9.63]

The relationship between the imaginary part s" of the relative permittivity and the extinction
coefficient K is

2nK s
r
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where n is the refractive index (the real part of N). Since the absorption coefficient from Exam-
ple 9.13 is

then

.. 2*". a.*- 2(f)(|)
[9.64]

where co is the angular frequency of the EM radiation, co = Inc/k. Substituting for a in terms
of e" gives

«-(-)-\ce0J n
[9.65]

The frequency co is

2nc    r27r(3 x lO'ms"1)!    1 00       ,4   J .cy =  =   -  = 1.88 x 1014rads
"1

k      L    10xl0-6m J

The relationship between the conductivity and e" is given by

„ 
_

  q   
_

 T
 

(5 x IQ- m)"1
 

1

 " e0(o 
~ L(8.85 x lO- Fm- Cl.gg x lO rads"1)]

< = 0.120

The absorption coefficient due to free carriers is given by

_
 / J

_

\ a 
_

 T
 

1
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COMPLEX REFRACTIVE INDEX AND RESONANCE ABSORPTION Equation 9.12 is a simple ex-
pression for the electronic polarizability ae due to an oscillating field. It is based on the Lorentz
model in which there is a restoring force acting against polarization of the atom or the molecule.
(x)0 is a resonant frequency, or a natural frequency, associated with this type of electronic polar-
ization. The same type of expression will also apply to ionic polarization, except that the reso-
nant frequency a)0 will be lower, and the mass me has to be changed to an effective mass of the
ions.13 In practice there will be some loss mechanism that absorbs energy from the oscillating
field and dissipates it. For example, in ionic polarization, this would involve energy transfer from
light to lattice vibrations. In mechanics it is well known that the loss forces (frictional forces)
are always proportional to the velocity dx/dt. If we include the energy loss in ac polarization,
Equation 9.11 would have an additional term -y dx/dt on the right-hand side. If we then fol-
low the same steps to obtain aei we would find

Ze,
2

e

me((ol - co2 + jyco)
[9.66]

which is a complex number with real and imaginary parts (ae = af

e
 - ja' ).

EXAMPLE 9.15

Electronic

polarizability
with loss

13 Both electronic and ionic polarizabilities have similar expressions. The ionic polarizability in an oscillating field
was derived in Chapter 7, and looks almost exactly like Equation 9.66.
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Relative

permittivity

Complex
relative

permittivity

Complex
refractive
index

Since ae is a complex quantity, so is er, and hence the refractive index. Consider the sim-
plest relationship between the relative permittivity er and polarizability ae,

N
1 + -or,

So
[9.67]

where N is the number of atoms per unit volume (or ion pairs per unit volume for ionic polar-
ization). Thus, the relative permittivity is a complex quantity, that is £r = e'r - je".

 We can sub-

stitute from Equation 9.66 into 9.67, and also use the fact that when co = 0 , er = erdc, to obtain
a simple expression for er

1 +
Srdc - 1

/ co \ 2 yco
-

 -) +
\(Do/ Oil

[9.68]

1

The relationship between the complex refractive index N and the complex relative permit-
tivity 6r is

N = n - jK = e1/2 = « - ;<)1/2 [9.69]

Suppose for simplicity we consider ionic polarization, and we set er(ic = 9 and y = O.lco0
(reasonable values for ionic polarization). We can calculate £r from Equation 9.68 for any
choice of (o/(o0 (or for co by taking (o0 = 1), and then calculate N, that is n and K. (Our calcu-
lator or the math program must be able to handle complex numbers.) Figure 9.20a shows the
dependence of n and K on the frequency (o/(o0 for the simple Lorentz oscillator model in Equa-
tion 9.68. Notice how n and the extinction coefficient K peak close to co = (o0.

The reflectance from Equation 9.62 is plotted in Figure 9.20b as R versus (o/(o0. It is appar-
ent that R reaches its maximum value at a frequency slightly above co = (o0, and then remains
high until co reaches nearly 3(o0; the reflectance is substantial while absorption is strong. It may

Figure 9.20
(a) Refractive index and extinction coefficient versus
normalized frequency, a>/a>0.
(b) Reflectance versus normalized frequency.
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seem strange that the crystal is both highly reflecting and highly absorbing. The light that is in-
cident is strongly reflected, and the light that is inside the crystal becomes strongly absorbed.
This phenomenon is known as infrared reflectance, and occurs over a band of frequencies,
called the Reststrahlen band; in the present case from (o0 to roughly 3(o0.

9
.
9    LATTICE ABSORPTION

In optical absorption, some of the energy from the propagating EM wave is converted
to other forms of energy, for example, to heat by the generation of lattice vibrations.
There are a number of absorption processes that dissipate the energy from the wave.
One important mechanism is called lattice absorption (Reststrahlen absorption)
and involves the vibrations of the lattice atoms as illustrated in Figure 9.21. The crys-
tal in this example consists of ions, and as an EM wave propagates it displaces the
oppositely charged ions in opposite directions and forces them to vibrate at the fre-
quency of the wave. In other words, the medium experiences ionic polarization. It is
the displacements of these ions that give rise to ionic polarization and its contribution
to the relative permittivity £r. As the ions and hence the lattice is made to vibrate by
the passing EM wave, as shown in Figure 9.21, some energy is coupled into the nat-
ural lattice vibrations of the solid. This energy peaks when the frequency of the wave
is close to the natural lattice vibration frequencies. Typically these frequencies are in
the infrared region. Most of the energy is then absorbed from the EM wave and con-
verted to lattice vibrational energy (heat). We associate this absorption with the reso-
nance peak or relaxation peak of ionic polarization loss (imaginary part of the relative
permittivity e").

Figure 9.22 shows the infrared resonance absorption peaks in the extinction co-
efficient K versus wavelength characteristics of GaAs and CdTe; both crystals have
substantial ionic bonding. These absorption peaks in Figure 9.22 are usually called
Reststrahlen bands because absorption occurs over a band of frequencies (even
though the band may be narrow), and in some cases may even have identifiable fea-
tures. Indeed, if we were to plot the reflectance (R) versus wavelength, it would be
similar to that shown in Figure 9.20b, and the band would be identified with the high
reflectance region.

Ions at equilibrium positions in the crystal

©©©©0©0©0©©©©©

Forced oscillations by the EM wave

a® O ® VzyQ  o "S*® 'n 
"

qp; ©

k Propagation
direction

Figure 9.21   Lattice absorption through a
crystal. The field in the EM wave oscillates
the ions which consequently generate
"mechanical" waves in the crystal; energy
is thereby transferred from the wave to
lattice vibrations.
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Although Figure 9.21 depicts an ionic solid to visualize absorption due to lattice
waves, energy from a passing EM wave can also be absorbed by various ionic im-
purities in a medium as these charges can couple to the electric field and oscillate.
Bonding between an oscillating ion and the neighboring atoms causes the mechanical
oscillations of the ion to be coupled to neighboring atoms. This leads to a generation
of lattice waves which takes away energy from the EM wave.

EXAMPLE 9.16 RESTSTRAHLEN ABSORPTION Figure 9.22 shows the infrared extinction coefficient K of
GaAs and CdTe. Consider CdTe. Calculate the absorption coefficient a and the reflectance R of
CdTe at the Reststrahlen peak, and also at 50 jjim and at 100 jxm. What is your conclusion?

SOLUTION

At the resonant peak, k  12 jxm, K  6, and n  5, so the corresponding free-space wavevec-
tor is

0 X

27T
8

.
7 x 104 m"1

72 x lO"6 m

The absorption coefficient a, by definition, is 2k,f in Equation 9.57, so

a = 2k" = 2k
0K = 2(8.7 x 104 m"1) ) = 1.0 x 106 m"1

which corresponds to an absorption depth l/or of about 1 jxm. The reflectance is

(rt-l)2 + tf2     (5-l)2 + 62
R 0

.
72 or 72%

(n + l)2 + tf2     (5 + l)2 + 62

Repeating the above calculations at X = 50 jjim, we get or = 8.3 x 102 m-1, and R = 0.11
or 11 percent. There is a sharp increase in the reflectance from 11 to 72 percent as we approach
the resonant peak. At X - 100 jxm, a = 6.3 x 103 m"1 and R = 0.31 or 31 percent, which is
again smaller than the peak reflectance. R is maximum around the Reststrahlen peak.



9.io Band-to-Band Absorption 813

9.10    BAND-TO-BAND ABSORPTION

The photon absorption process for photogeneration, that is, the creation of electron-hole
pairs (HHPs), requires the photon energy to be at least equal to the bandgap energy Eg of
the semiconductor material to excite an electron from the valence band (VB) to the
conduction band (CB). The upper cut-off wavelength (or the threshold wavelength) kg

for photogenerative absorption is therefore determined by the bandgap energy Eg
 of the

semiconductor, so h(c/kg) = Eg or

kg(iim) =
1

.
24

[9.701
Eg(eV)

For example, for Si, Eg = 1.12 eV and kg is 1.11 jxm whereas for Ge, Eg
 = 0

.
66 eV

and the corresponding kg = 1.87 jxm. It is clear that Si photodiodes cannot be used
for optical communications at 1.3 and 1.55 jxm, whereas Ge photodiodes are com-
mercially available for use at these wavelengths. Table 9.3 lists some typical bandgap
energies and the corresponding cut-off wavelengths of various photodiode semicon-
ductor materials.

Incident photons with wavelengths shorter than kg become absorbed as they travel
in the semiconductor, and the light intensity, which is proportional to the number of
photons, decays exponentially with distance into the semiconductor. The light inten-
sity I at a distance x from the semiconductor surface is given by

I(jc) = l0exp(-ax) [9.71]

where I0 is the intensity of the incident radiation and a is the absorption coefficient
that depends on the photon energy or wavelength k. The absorption coefficient a is a
material property. Most of the photon absorption (63%) occurs over a distance 1 /a,
and 1 /a is called the penetration depth 8. Figure 9.23 shows the a versus k charac-
teristics of various semiconductors where it is apparent that the behavior of a with the
wavelength k depends on the semiconductor material.

Absorption in semiconductors can be understood in terms of the behavior of the
electron energy (E) with the electron momentum (hk) in the crystal, called the crystal

Cut-off
wavelength
and bandgap

Absorption
coefficient

Table 9.3 Bandgap energy Eg at 300 K, cut-off wavelength Xg, and type of
bandgap (D = direct and I = indirect) for some photodetector materials

Semiconductor (eV) kg (nm) Type

InP

GaAso
.
ggSbo.u

Si

Ino
.
7Gao.3Aso.64Po.36

Ino
.

53Gao.47As
Ge

InAs

InSb

1
.
35

1
.
15

1
.
12

0
.
89

0
.
75

0
.
66

0
.
35

0
.
18

0
.
91

1
.
08

1
.
11

1
.
4

1
.
65

1
.
87

3
.
5

7

D

D

I

D

D

I

D

D
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Figure 9.23  Absorption coefficient a versus
wavelength X for various semiconductors.
I SOURCE: Data selectively collected and combined
I from various sources.
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Figure 9.24  Electron energy E versus crystal momentum hk and photon absorption.
(a) Photon absorption in a direct bandgap semiconductor.
(b) Photon absorption in an indirect bandgap semiconductor (VB = valence band; CB = conduction band).

momentum. If k is the wavevector of the electron's wavefunction in the crystal, then
the momentum of the electron within the crystal is hk. E versus hk behaviors for
electrons in the conduction and valence bands of direct and indirect bandgap semi-
conductors are shown in Figure 9.24a and b, respectively. In direct bandgap semi-
conductors such as III-V semiconductors (e.g., GaAs, InAs, InP, GaP) and in many of
their alloys (e.g., InGaAs, GaAsSb) the photon absorption process is a direct process
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which requires no assistance from lattice vibrations. The photon is absorbed and the
electron is excited directly from the valence band to the conduction band without a
change in its A;-vector, or its crystal momentum hk, inasmuch as the photon momen-
tum is very small. The change in the electron momentum from the valence to the con-
duction band is

Mcb - ftfcvB = Photon momentum « 0

This process corresponds to a vertical transition on the electron energy (E) versus
electron momentum (fik) diagram as shown in Figure 9.24a. The absorption coefficient
of these semiconductors rises sharply with decreasing wavelength from kg as apparent
for GaAs and InP in Figure 9.23.

In indirect bandgap semiconductors such as Si and Ge, the photon absorption for
photon energies near Eg requires the absorption and emission of lattice vibrations, that
is, phonons,14 during the absorption process as shown in Figure 9.24. If K is the
wavevector of a lattice wave (lattice vibrations travel in the crystal), then hK represents
the momentum associated with such a lattice vibration; that is, hK is a phonon
momentum. When an electron in the valence band is excited to the conduction band,
there is a change in its momentum in the crystal, and this change in the momentum can-
not be supplied by the momentum of the incident photon which is very small. Thus, the
momentum difference must be balanced by a phonon momentum,

ftfccB - vb = Phonon momentum = fiK

The absorption process is said to be indirect as it depends on lattice vibrations
which in turn depend on the temperature. Since the interaction of a photon with a va-
lence electron needs a third body, a lattice vibration, the probability of photon absorp-
tion is not as high as in a direct transition. Furthermore, the cut-off wavelength is not
as sharp as for direct bandgap semiconductors. During the absorption process, a
phonon may be absorbed or emitted. If # is the frequency of the lattice vibrations, then
the phonon energy is h$. The photon energy is hv where v is the photon frequency.
Conservation of energy requires that

hv = Eg ± h&

Thus, the onset of absorption does not exactly coincide with Eg, but typically it is
very close to Eg inasmuch as hft is small (< 0.1 eV). The absorption coefficient ini-
tially rises slowly with decreasing wavelength from about kg as apparent in Figure 9.23
for Si and Ge.

I I WIWI!1 1" 

FUNDAMENTAL ABSORPTION A GaAs infrared LED emits at about 860 nm. A Si photode-
tector is to be used to detect this radiation. What should be the thickness of the Si crystal that
absorbs most of this radiation?

EXAMPLE 9.17

14 As much as an electromagnetic radiation is quantized in terms of photons, lattice vibrations in the crystal are
quantized in terms of phonons. A phonon is a quantum of lattice vibration. If K is the wavevector of a vibrational
wave in a crystal lattice and co is its angular frequency, then the momentum of the wave is hK and its energy is hco.



816 chapter 9 . Optical Properties of Materials

SOLUTION

According to Figure 9.23, at X  0.8 jjim, Si has a « 6 x 104 nT1, so the absorption depth

1 1 .
8 = - =  = 1.7 x 10~5 m      or     17 ixm

a     6 x 104 m"1

If the crystal thickness is 5, then 63 percent of the radiation will be absorbed. If the thick-
ness is 25, then the fraction of absorbed radiation, from Equation 9.71, will be

Fraction of absorbed radiation = 1 - exp[-oe(28)] = 0.86      or 86%

9
.11    LIGHT SCATTERING IN MATERIALS

Scattering of an EM wave implies that a portion of the energy in a light beam is di-
rected away from the original direction of propagation as illustrated for a small dielec-
tric particle scattering a light beam in Figure 9.25. There are various types of scattering
processes.

Consider what happens when a propagating wave encounters a molecule, or a small
dielectric particle (or region), which is smaller than the wavelength. The electric field in
the wave polarizes the particle by displacing the lighter electrons with respect to the
heavier positive nuclei. The electrons in the molecule couple and oscillate with the elec-
tric field in the wave (ac electronic polarization). The oscillation of charge "up" and
"

down," or the oscillation of the induced dipole, radiates EM waves all around the
molecule as depicted in Figure 9.25. We should remember that an oscillating charge is
like an alternating current which always radiates EM waves (like an antenna). The net
effect is that the incident wave becomes partially reradiated in different directions and
hence loses intensity in its original direction of propagation. We may think of the process
as the particle absorbing some of the energy via electronic polarization and reradiating
it in different directions. It may be thought that the scattered waves constitute a spheri-
cal wave emanating from the scattering molecule, but this is not generally the case as the
reemitted radiation depends on the shape and polarizability of the molecule in different
directions. We assumed a small particle so that at any time the field has no spatial varia-
tion through the particle, whose polarization then oscillates with the electric field oscil-
lation. Whenever the size of the scattering region, whether an inhomogeneity or a small

Figure 9.25 Rayleigh scattering involves A dielectric particle smaller than the wavelength
the polarization of a small dielectric
particle or a region that is much smaller
than the light wavelength.

The field forces dipole oscillations in the Incident wave / //      Through wave
particle (by polarizing it), which leads to /   XV-rK    x _

the emission of EM waves in "many"
directions so that a portion of the light
energy is directed away from the incident
beam.

/

Scattered waves
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particle or a molecule, is much smaller than the wavelength A of the incident wave, the
scattering process is generally termed Rayleigh scattering. In this type of scattering,
typically the particle size is smaller than one-tenth of the wavelength.

Rayleigh scattering of waves in a medium arises whenever there are small inho-
mogeneous regions in which the refractive index is different than the medium (which
has some average refractive index). This means a local change in the relative permit-
tivity and polarizability. The result is that the small inhomogeneous region acts like a
small dielectric particle and scatters the propagating wave in different directions. In the
case of optical fibers, dielectric inhomogeneities arise from fluctuations in the relative
permittivity that is part of the intrinsic glass structure. As the fiber is drawn by freez-
ing a liquid-like flow, random thermodynamic fluctuations in the composition and
structure that occur in the liquid state become frozen into the solid structure. Conse-
quently, the glass fiber has small fluctuations in the relative permittivity which leads to
Rayleigh scattering. Nothing can be done to eliminate Rayleigh scattering in glasses as
it is part of their intrinsic structure.

It is apparent that the scattering process involves electronic polarization of the mol-
ecule or the dielectric particle. We know that this process couples most of the energy at
ultraviolet frequencies where the dielectric loss due to electronic polarization is maxi-
mum and the loss is due to EM wave radiation. Therefore, as the frequency of light in-
creases, the scattering becomes more severe. In other words, scattering decreases with
increasing wavelength. For example, blue light which has a shorter wavelength than red
light is scattered more strongly by air molecules. When we look at the sun directly, it ap-
pears yellow because the blue light has been scattered in the direct light more than the
red light. When we look at the sky in any direction but the sun, our eyes receive scat-
tered light which appears blue; hence the sky is blue. At sunrise and sunset, the rays
from the sun have to traverse the longest distance through the atmosphere and have the
most blue light scattered which gives the sun its red color at these times.

9
.12    ATTENUATION IN OPTICAL FIBERS

As light propagates through an optical fiber, it becomes attenuated by a number of
processes that depend on the wavelength of light. Figure 9.26 shows the attenuation
coefficient, as dB per km, of a typical silica-glass-based optical fiber as a function of
wavelength. The sharp increase in the attenuation at wavelengths beyond 1.6 fim in the
infrared region is due to energy absorption by "lattice vibrations" of the constituent
ions of the glass material. Fundamentally, energy absorption in this region corresponds
to the stretching of the Si-O bonds in ionic polarization induced by the EM wave.
Absorption increases with wavelength as we approach the resonance wavelength of
the Si-O bond which is around 9 fim. In the case of Ge-O glasses, this is further away,
around 11 |xm. There is another intrinsic material absorption in the region below
500 nm, not shown in Figure 9.26, which is due to photons exciting electrons from the
valence band to the conduction band of the glass.

There is a marked attenuation peak centered at 1.4 |xm, and a barely discernible
minor peak at about 1.24 |xm. These attenuation regions arise from the presence of
hydroxyl ions as impurities in the glass structure inasmuch as it is difficult to remove all
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Figure 9.26  Illustration of typical
attenuation versus wavelength
characteristics of a silica-based optical
fiber.
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traces of hydroxyl (water) products during fiber production. Further, hydrogen atoms
can easily diffuse into the glass structure at high temperatures during production which
leads to the formation of hydrogen bonds in the silica structure and OH ions. Energy is
absorbed mainly by the stretching vibrations of the OH bonds within the silica structure
which has a fundamental resonance in the infrared region (beyond 2.7 |xm) but over-
tones or harmonics at lower wavelengths (or higher frequencies). The first overtone at
around 1.4 |xm is the most significant as can be seen in Figure 9.26. The second over-
tone is around 1 |xm, and in high-quality fibers this is negligible. A combination of the
first overtone of the OH vibration and the fundamental vibrational frequency of Si02
gives rise to a minor loss peak at around 1.24 jxin. There are two important windows in
the attenuation versus wavelength behavior where the attenuation exhibits minima. The
window at around 1.3 jxm is the region between two neighboring OH

~

 absorption
peaks. This window is widely used in optical communications at 1310 nm. The window
at around 1.55 |xm is between the first harmonic absorption of OH

" and the infrared lat-

tice absorption tail and represents the lowest attenuation. Current technological drive is
to use this window for long-haul communications. It can be seen that it is important to
keep the hydroxyl content in the fiber within tolerable levels.

There is a background attenuation process that decreases with wavelength and is
due to the Rayleigh scattering of light by the local variations in the refractive index.
Glass has a noncrystalline or an amorphous structure which means that there is no
long-range order to the arrangement of the atoms but only a short-range order, typi-
cally a few bond lengths. The glass structure is as if the structure of the melt has been
suddenly frozen. We can only define the number of bonds a given atom in the structure
will have. Random variations in the bond angle from atom to atom lead to a disordered
structure. There is therefore a random local variation in the density over a few bond
lengths which leads to fluctuations in the refractive index over few atomic lengths.
These random fluctuations in the refractive index give rise to light scattering and hence
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light attenuation along the fiber. It should be apparent that since a degree of structural
randomness is an intrinsic property of the glass structure, this scattering process is un-
avoidable and represents the lowest attenuation possible through a glass medium. As
one may surmise, attenuation by scattering in a medium is minimum for light propa-
gating through a "perfect

"

 crystal. In this case the only scattering mechanisms will be
due to thermodynamic defects (vacancies) and the random thermal vibrations of the
lattice atoms.

As mentioned above, the Rayleigh scattering process decreases with wavelength
and, according to Lord Rayleigh, it is inversely proportional to A.4. The expression for
the attenuation ur in a single component glass due to Rayleigh scattering is approxi-
mately given by

OCR ~ - (n2
-l)

2
PTkTf [9.72]

where k is the free-space wavelength, n is the refractive index at the wavelength of
interest, fir is the isothermal compressibility (at 7}) of the glass, k is the Boltzmann
constant, and 7} is a quantity called the fictive temperature (roughly the softening tem-
perature of glass) where the liquid structure during the cooling of the fiber is frozen to
become the glass structure. Fiber is drawn at high temperatures, and as the fiber cools
eventually the temperature drops sufficiently for the atomic motions to be so sluggish
that the structure becomes essentially "frozen-in" and remains like this even at room
temperature. Thus 7} marks the temperature below which the liquid structure is frozen,
and hence the density fluctuations are also frozen into the glass structure. It is appar-
ent that Rayleigh scattering represents the lowest attenuation one can achieve using a
glass structure. By proper design, the attenuation window at 1.5 jxm may be lowered
to approach the Rayleigh scattering limit.

Rayleigh
scattering
in silica

RAYLEIGH SCATTERING LIMIT What is the attenuation due to Rayleigh scattering at around the
k = 1.55 jjim window given that pure silica (Si02) has the following properties: 7}= 1730 0C
(softening temperature), pT = 7 x lO-11 m2 N"1 (at high temperatures), n = 1.4446 at 1.5 jjim?

SOLUTION

We simply calculate the Rayleigh scattering attenuation using

EXAMPLE 9.18

Stt3

so

Stt3

aR * 3(1 55 x lO-*)*(L44462 " 1)2(7 x W"11) 38 x 10-23)(1730 + 273)

= 3
.
27 x 10 or 3

.
27 x lO"2 km"1

Attenuation in dB per km is then

QfdB = 4.34a/? = (4.34)(3.27 x lO"2 km
"1) = 0.142 dB km"1

This represents the lowest possible attenuation for a silica glass fiber at 1.55 jxm.
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9.13    LUMINESCENCE, PHOSPHORS, AND WHITE LEDS

We know from our general experience that certain substances, known as phosphors, can
absorb light and then reemit light even after the excitation light source has been turned
off; this is an example of luminescence. In general, luminescence is the emission of
light by a material, called a phosphor, due to the absorption and conversion of energy
into electromagnetic radiation as illustrated in Figure 9.27a and b. The luminescent ra-
diation emitted by the phosphor material is considered to be quite separate from the
thermal radiation emitted by virtue of its temperature. Luminescence is light emitted by
a nonthermal source when it is excited, in contrast to the emission of radiation from a

heated object such as the tungsten filament of a light bulb; the latter is called incandes-
cence. Typically the emission of light occurs from certain dopants, impurities, or even
defects, called luminescent or luminescence centers, purposefully introduced into a
host matrix, which may be a crystal or glass as shown in Figure 9.27c. The luminescent
center is also called an activator. There are many examples of phosphors. For example,
in ruby, the Cr3"1- ions are the luminescent centers in the sapphire (AI2O3) crystal host.
Cr3 " ions can absorb UV or violet light and then emit red light. This phosphor system is
written as A OaiCr3"1-

. The excitation and emission involves only the Cr3"1- ion. In other
cases, the activator excitation may also involve the host as discussed later.

Luminescence is normally categorized according to the source of excitation
energy. Photoluminescence involves excitation by photons (light) as in Figure 9.27a.
X-ray luminescence involves incident X-rays exciting a phosphor to emit light.

Cathodoluminescence, as shown in Figure 9.27b, is light emission when the excita-
tion is the bombardment of the phosphor with energetic electrons as in TV cathode ray
tubes. Electroluminescence is light emission due to the passage of an electric current.
Electroluminescence in semiconductive materials appears as a result of an excited
electron transiting down to the ground energy level, which would correspond to the re-
combination of an electron and a hole; the excited electron is the conduction band

(CB), and its ground state corresponds to a hole in the valence band (VB). The direct
electron-hole recombination mechanism generally occurs very quickly. For example,
typical minority carrier lifetimes are in the range of nanoseconds, so light emission
from a semiconductor stops within nanoseconds after the removal of the excitation.
Such quick luminescence processes occurring over a nanosecond time scale or shorter
are normally identified as fluorescence. The emission of light from a fluorescent tube

Emitted light Emitted light

Activators or
Phosphor      y Phosphor/y* Phosphor ;

/ \      /I     /  \ ZZ
r/n   luminescent centers

ncident    VJ>\       electrons 1      0 #i
light Heat Heat Host matrix (e.g., Al203)

(a) Photoluminescence (b) Cathodoluminescence       (c) A typical phosphor = host + activators

Figure 9.27  Photoluminescence, cathodoluminescence, and a typical phosphor.
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This flashlight uses a white LED instead of an
incandescent light bulb. The flashlight can operate
continuously for 200 hours and can project an intense
spot over 30 ft. White LEDs use a phosphor to
generate yellow light from the blue light emitted from
the LED's semiconductor chip. The mixture of blue and
yellow light appears as white.

is actually a fluorescence process. The tube contains a gas mixture of argon and mer-
cury. The Ar and Hg gas atoms become excited by the electrical discharge process and
emit light mainly in the ultraviolet region. This UV light is absorbed by the fluorescent
coating on the inside of the tube. The excited activators in the phosphor coating then
emit radiation in the visible region. A number of phosphors are used to obtain "white"

light from the tube.
There are also phosphors from which light emission may continue for millisec-

onds to hours after the cessation of excitation. These slow luminescence processes are
normally referred to as phosphorescence (also known as afterglow).

Many phosphors are based on activators doped into a host matrix; for example,
Eu3+ (europium ion) in a Y2O3 (yttrium oxide) matrix is a widely used modem phos-
phor. When excited by UV radiation, it provides an efficient luminescence emission in
the red (around 613 nm). It is used as the red-emitting phosphor in color TV tubes and
in modem tricolor fluorescent lamps. In very general terms, we can represent the energy
of an activator in a host matrix by the highly simplified energy diagram in Figure 9.28.

Energy of luminescent center in host

E
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E
1
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.Nonradiative decay

Figure 9.28  Photoluminescence: light absorption,
excitation, nonradiative decay and light emission, and
return to the ground state f j.
The energy levels have been displaced horizontally for
clarity.
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The ground state of the activator is Ei. Upon excitation by an incident radiation of
suitable energy hvcx the activator becomes excited to E2. From this energy level, it de-
cays, or relaxes, down relatively quickly (on a time scale of the order of picoseconds)
to an energy level £2 by emitting phonons or lattice vibrations. This type of decay is
called radiationless or nonradiative decay. From E'2, the activator decays down to E\
by emitting a photon (spontaneous emission), which is the emitted luminescent radi-
ation. The emitted photon energy is hvtm, which is less than the excitation photon energy
/iVgx. The return from E[ to the ground state Ei involves phonon emissions. Further,
for some activators, E,x is either very close to Ex, or it is Zsi.The energy levels such as
£2, #2' etc-> 316 not well-defined single levels but involve finely spaced multi-
levels. The higher levels may form multilevel narrow energy "bands." In this exam-
ple, the activator absorbed the incident radiation and was directly excited, which is
known as activator excitation. The Cr3+ ions in A OaiCr34" can be excited directly
by blue light and would then emit in the red. There are many phosphors in which the
excitation involves the host. In host excitation, the host matrix absorbs the incident

radiation and transfers the energy to the activator, which then becomes excited to £2
in Figure 9.28, and so on. In X-ray phosphors, for example, the X-rays are absorbed
by the host, which subsequently transfers the energy to the activators. It is apparent
from Figure 9.28 that the emitted radiation {hvem) has a longer wavelength than the
exciting radiation {hvex), that is, hvem < hvex. The downshift in the light frequency
from absorbed to emitted radiation is called the Stoke's shift. It should be empha-
sized that the energy levels of the activator (as shown in Figure 9.28) also depend on
the host, because the internal electric fields within the host crystal act on the activator
and shift these levels up and down. The emission characteristics depend firstly on the
activator, and secondly on the host.

There are a number of host excitation mechanisms. In one possible process, which
involves a semiconductor host, as depicted in Figure 9.29, an incident photon initially ex-
cites a valence band (VB) electron to the conduction band (CB). The electron then ther-
malizes, i.e., loses the excess energy as it collides with lattice vibrations, and falls close
to EC9 and wanders around in the crystal. In one process, a in Figure 9.29, the electron can
be captured into an excited state D of a luminescent center or an activator. The electron
then falls down in energy to the ground state A of the activator releasing a photon, which
is the luminescent emission. The electron at the ground state then recombines with a hole
in the VB. Thus the activator acts as a radiative recombination center. In some cases D

and A may be separate centers representing donor and acceptor-like centers, hence the la-
bels D and A. In other cases, the radiative recombination center may simply be a single
energy level in the bandgap, which is shown as R in Figure 9.29. The electron can emit a
photon as it is captured into R, shown as process b in Figure 9.29, or emit the photon after
it is captured by R, as it recombines with a hole, shown as process c in Figure 9.29.
Processes a and b occur in various ZnS-based phosphors. For example, in ZnS:Cu+
phosphors, the activator is Cu+, which has an energy level at A in Figure 9.29. The lumi-
nescent emission is enhanced by using a coactivator, such as Al in ZnS:Cu+. Al acts as a
shallow donor D, and the luminescence is due to process a in Figure 9.29.

There may also be traps in the semiconductor because of various crystal defects, or
there may be added impurities. The electron can become captured by a trap at a local-
ized energy level Et in the bandgap, but close to Ec. These electron traps temporarily
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Figure 9.29  Optical absorption generates an EHP.
Both carriers thermalize. There are a number of recombination processes via a dopant that can result
in a luminescent emission.

capture an electron from the conduction band and thereby immobilize it. The time the
electron spends trapped at Et depends on the energy depth of the trap from the con-
duction band, Ec - Et. After a while a strong lattice vibration returns the electron back
into the conduction band (by thermal excitation). The time interval between photogen-
eration and recombination can be relatively long if the electron remains captured at Et
for a considerable length of time. In fact, the electron may become trapped and de-
trapped many times before it finally recombines, so the emission of light can persist for
a relatively long time after the cessation of excitation {e.g., milliseconds or longer) as
indicated by process d in Figure 9.29.

It is also possible to excite electrons into the CB by bombarding the material with
a high-energy electron beam, which leads to cathodoluminescence. Color CRT dis-
plays are typically coated uniformly with three sets of phosphor dots which exhibit
cathodoluminescence in the blue, red, and green wavelengths. In electroluminescence,
an electric current, either ac or dc, is used to inject electrons into the CB which then re-
combine with holes and emit light. For example, passing a current through certain
semiconducting phosphors such as ZnS doped with Mn causes light emission by elec-
troluminescence. The emission of light from a light emitting diode (LED) is an example
of injection electroluminescence in which the applied voltage causes charge carrier
injection and recombination in a device (diode) that has a junction between a /?-type
and an n-type semiconductor.

Zinc sulfide with various activators has been one of the traditional phosphors. The
ZnS:Ag+ in which Ag+ is the activator, is still used as a blue emitting phosphor, though
in some cases Cd is substituted for some of the Zn. ZnS:Cu+ emits in the green, which
is also a useful phosphor. Most modem phosphors, on the other hand, have been based
on using rare earth activators in various hosts. For example, Y203:Eu3+ absorbs UV
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Table 9.4  Selected phosphor examples

Phosphor Activator

Useful

Emission

Example
Excitation Comment or Application

YaOsrEu3*

BaMgAljoOi7:Eu2+
CeMgAliiOi9:Tb3+
Y3Al50,2:Ce3+
Sr2Si04:Eu3+

ZnS:Ag+
Zno

.
68Cdo.32S:Ag

","

ZnSiCu"1"

Eu3+

Eu2+

Tb3+

Ce3+

Eu3+

Ag+
Ag+
Cu+

Red

Blue

Green

Yellow

Yellow

Blue

Green

Green

UV

UV

UV

Blue, violet

Violet

Electron beam

Electron beam

Electron beam

Fluorescent lamp, color TV

Fluorescent lamp

Fluorescent lamp

White LED

White LED (experimental)

Color TV blue phosphor

Color TV green phosphor

Color TV green phosphor

Yellow

Blue

White LED

a

Phosphor (YAG):
yellow emission

InGaN chip: blue
emission

Total white emission

1
.
0

.
9

0
.
5 -

t Blue

\ chip
emission

0

350

Yellow

phosphor
emission

450 550 650

Wavelength (nm)

(b)

750

Figure 9.30
(a) A typical "white" LED structure.
(b) The spectral distribution of light emitted by a white LED. Blue luminescence is emitted by the GalnN chip and
"yellow" phosphorescence or luminescence is produced by a phosphor. The combined spectrum looks "white."

radiation and emits in the red. YsAlsO iCe3* absorbs blue light and emits yellow light.
Some of the most popular activators are Eu3+ for red, Eu2+ for blue, and Tb3+ for green.
Table 9.4 summarizes a number of phosphors commonly used in various applications.

Recent inexpensive white LEDs that have appeared on the market seem to emit
white light by emitting a mixture of blue and yellow light which are registered visually
by the eye as appearing white. (Yellow consists of red and green mixed together, so
mixing blue and yellow generates "white.") The production of white LEDs became
possible due to development of bright blue-emitting LEDs based on gallium-indium-
nitride (GalnN). The white LED uses a semiconductor chip emitting at a short wave-
length (blue, violet, or ultraviolet) and a phosphor to convert some of the blue light to
yellow light as depicted in Figure 9.30a. The phosphor absorbs light from the diode
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and undergoes luminescent emission at a longer wavelength. Obviously, the quality
and spectral characteristics of the combined emission vary with different designs; Fig-
ure 9.30b shows example spectra involved in the blue and yellow emissions and the
overall "white" emission from a white LED. Typical phosphors have been based on
yttrium-aluminum- (Y3 AI5O12) garnets (YAGs) as the host material. This host is doped
with one of the rare earth elements for the activator. Cerium is a common dopant ele-
ment in YAG phosphors; that is, the phosphor is Y3A15Oi2:Cq3+9 which is able to effi-
ciently absorb the blue and emit the yellow. White LEDs are soon expected to challenge
the existing incandescent sources for general lighting.

9.14 POLARIZATION

A propagating EM wave has its electric and magnetic fields at right angles to the
direction of propagation. If we place a z axis along the direction of propagation, then
the electric field can be in any direction in the plane perpendicular to the z axis. The
term polarization of an EM wave describes the behavior of the electric field vector in
the EM wave as it propagates through a medium. If the oscillations of the electric field
at all times are contained within a well-defined line, then the EM wave is said to be

linearly polarized as shown in Figure 9.31a. The field vibrations and the direction of
propagation (z) define a plane of polarization (plane of vibration), so linear polariza-
tion implies a wave that is plane-polarized. By contrast, if a beam of light has waves
with the E field in each in a random direction but perpendicular to z, then this light
beam is unpolarized. A light beam can be linearly polarized by passing the beam

y
Plane of polarization a

\
E

E
y

E

i A

'
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E

a (b) (c)

Figure 9.31
(a) A linearly polarized wave has its electric field oscillations defined along a line perpendicular to the direction of
propagation z. The field vector E and z define a plane of polarization.
(b) The E-field oscillations are contained in the plane of polarization.
(c) A linearly polarized light at any instant can be represented by the superposition of two fields Ex and Ey with the
right magnitude and phase.
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through a polarizer, such as a polaroid sheet, a device that only passes electric field os-
cillations lying on a well-defined plane parallel to its transmission axis.

Suppose that we arbitrarily place the x and y axes and describe the electric field in
terms of its components Ex and Ey along x and y (we are justified to do this because Ex
and Ey are perpendicular to z). To find the electric field in the wave at any space and
time location, we add Ex and Ey vectorially. Both Ex and Ey can individually be de-
scribed by a wave equation which must have the same angular frequency co and
wavenumber k. However, we must include a phase difference 0 between the two:

Ex = Exo cos(cot - kz) [9.73]

and

Ey = Ey0 cosicot -kz + 4>) [9.74]

where 0 is the phase difference between Ey and Ex'9 0 can arise if one of the compo-
nents is delayed (retarded).

The linearly polarized wave in Figure 9.31a has the E oscillations at -45° to the
x axis as shown in Figure 9.31b. We can generate this field by choosing Exo = Ey0
and 0 = ±180° (±7r) in Equations 9.73 and 9.74. Put differently, Ex and Ey have the
same magnitude, but they are out of phase by 180°

.
 If u* and are the unit vectors

along x and y, using 0 = tt in Equation 9.74, the field in the wave is

E = uxEx + UyEy = uxExo cos((ot - kz) - UyEy0 cos((ot - kz)

or

E = E0cos((ot - kz) [9.75]

where

E
0
 = uxExo-UyEyo [9.76]

Equations 9.75 and 9.76 state that the vector E0 is at -45° to the x axis and propagates
along the z direction.

There are many choices for the behavior of the electric field besides the simple
linear polarization in Figure 9.31. For example, if the magnitude of the field vector E
remains constant but its tip at a given location on z traces out a circle by rotating in a
clockwise sense with time, as observed by the receiver of the wave, then the wave is said
to be right circularly polarized15 as in Figure 9.32. If the rotation of the tip of E is coun-
terclockwise, the wave is said to be left circularly polarized. From Equations 9.73
and 9.74, it should be apparent that a right circularly polarized wave has Exo = Eyo = A
(an amplitude) and 0 = 7r/2. This means that,

EX = A cos((ot - kz) [9.77]

and

Ey = - A sin(cot - kz) [9.78]

15 There is a difference in this definition in optics and engineering. The definition here follows that in optics which is
more prevalent in optoelectronics.
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It is relatively straightforward to show that Equations 9.77 and 9.78 represent a
circle that is

E2
x
 + E2

y
 = A

2
[9.79]

as shown in Figure 9.32.
When the phase difference 0 is other than 0, ±71, or ±n/2, the resultant wave is

elliptically polarized and the tip of the vector in Figure 9.32 traces out an ellipse.

9.15    OPTICAL ANISOTROPY

An important characteristic of crystals is that many of their properties depend on the
crystal direction; that is, crystals are generally anisotropic. The dielectric constant er
depends on electronic polarization which involves the displacement of electrons with
respect to positive atomic nuclei. Electronic polarization depends on the crystal direc-
tion inasmuch as it is easier to displace electrons along certain crystal directions. This
means that the refractive index nofa crystal depends on the direction of the electric
field in the propagating light beam. Consequently, the velocity of light in a crystal
depends on the direction of propagation and on the state of its polarization, i.e., the di-
rection of the electric field. Most noncrystalline materials, such as glasses and liquids,
and all cubic crystals are optically isotropic, that is, the refractive index is the same in
all directions. For all classes of crystals excluding cubic structures, the refractive index
depends on the propagation direction and the state of polarization. The result of opti-
cal anisotropy is that, except along certain special directions, any unpolarized light ray
entering such a crystal breaks into two different rays with different polarizations and
phase velocities. When we view an image through a calcite crystal, an optically
anisotropic crystal, we see two images, each constituted by light of different polariza-
tion passing through the crystal, whereas there is only one image through an optically
isotropic crystal as depicted in Figure 9.33. Optically anisotropic crystals are called
birefringent because an incident light beam may be doubly refracted.

Experiments and theories on "most anisotropic crystals," i.e., those with the high-
est degree of anisotropy, show that we can describe light propagation in terms of three
refractive indices, called principal refractive indices nu 2, and 3, along three mu-
tually orthogonal directions in the crystal, say x, y, and z, called principal axes. These
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Figure 9.33  A line viewed through
a cubic sodium chloride (halite) crystal
(optically isotropic) and a calcite
crystal (optically anisotropic).

v.

indices correspond to the polarization state of the EM wave along these axes. In addi-
tion, anisotropic crystals may possess one or two optic axes. An optic axis is a special
direction in the crystal along which the velocity of propagation does not depend on the
state of polarization. The propagation velocity along the optic axis is the same what-
ever the polarization of the EM wave.

Crystals that have three distinct principal indices also have two optic axes and are
called biaxial crystals. On the other hand, uniaxial crystals have two of their princi-
pal indices the same (ni = 2) and have only one optic axis. Table 9.5 summarizes
crystal classifications according to optical anisotropy. Uniaxial crystals, such as
quartz, that have 3 > n\, are called positive, and those such as calcite that have
n-s < n\ are called negative uniaxial crystals.

Table 9.5 Principal refractive indices of some optically isotropic
and anisotropic crystals (near 589 nm, yellow Na-D line)

Optically Isotropic

Glass (crown)
Diamond

Fluorite (CaFa)

Uniaxial-Positive

Ice

Quartz
Rutile (Ti02)

Uniaxial-Negative

Calcite (CaCOa)
Tourmaline

Lithium niobate

(LiNBOa)

Biaxial

Mica (muscovite)

n = n0

1
.
510

2
,
417

1
.
434

0

1
.
309

1
.
5442

2
.
616

no

1
.
658

1
.
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2
.29

#11

1
.
5601

ne

1
.
3105

1
.
5533

2
.
903

n€

1
.
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1
.
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.
5936 1

.
5977



9.15 Optical Anisotropy 829

Figure 9,34  Two polaroid analyzers are placed with
their transmission axes, along the long edges, at right
angles to each other.
The ordinary ray, undeflected, goes through the left
polarizer, whereas the extraordinary wave, deflected, goes
through the right polarizer. The two waves therefore have
orthogonal polarizations.

9
.15.1  Uniaxial Crystals and Fresnel's Optical Indicatrix

For our discussions of optical anisotropy, we will consider uniaxial crystals such as
calcite and quartz. All experiments and theories lead to the following basic principles.16

Any EM wave entering an anisotropic crystal splits into two orthogonal linearly
polarized waves that travel with different phase velocities; that is, they experience
different refractive indices. These two orthogonally polarized waves in uniaxial crys-
tals are called ordinary (o) and extraordinary (e) waves. The owave has the same
phase velocity in all directions and behaves like an ordinary wave in which the field is
perpendicular to the phase propagation direction. The e-wave has a phase velocity that
depends on its direction of propagation and its state of polarization, and further the
electric field in the e-wave is not necessarily perpendicular to the phase propagation
direction. These two waves propagate with the same velocity only along a special
direction called the optic axis. The o-wave is always perpendicularly polarized to the
optic axis and obeys the usual Snell

's law.

The two images observed through the calcite crystal in Figure 9.33 are due to
owaves and e-waves being refracted differently, so when they emerge from the crys-
tal they have been separated. Each ray constitutes an image, but the field directions are
orthogonal. The fact that this is so is easily demonstrated by using two polaroid ana-
lyzers with their transmission axes at right angles as in Figure 9.34. If we were to view
an object along the optic axis of the crystal, we would not see two images because the
two rays would experience the same refractive index.

As mentioned, we can represent the optical properties of a crystal in terms of
three refractive indices along three orthogonal axes, the principal axes of the crystal,
shown as x, y, and z in Figure 9.35a. These are special axes along which the polariza-
tion vector and the electric field are parallel. (Put differently, the electric displace-
ment17 D and the electric field E vectors are parallel.) The refractive indices along
these x, y, and z axes are the principal indices nu 7*2, and n , respectively, for electric

16 These statements can be proved by solving Maxwell's equations in an anisotropic medium.
17 Electric displacement D at any point is defined by D = £0E + P where E is the electric field and P is the
polarization at that point.
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Figure 9.35

field oscillations along these directions (not to be confused with the wave propagation
direction). For example, for a wave with a polarization parallel to the x axes, the re-
fractive index is n\.

The refractive index associated with a particular EM wave in a crystal can be
determined by using Fresnel's refractive index ellipsoid, called the optical indica-
trix,18 which is a refractive index surface placed in the center of the principal axes,
as shown in Figure 9.35a, where the x, y, and z axis intercepts are n\, na, and 3. If all
three indices were the same, n\ = 2 = «3 = w0, we would have a spherical surface
and all electric field polarization directions would experience the same refractive index
n0. Such a spherical surface would represent an optically isotropic crystal. For posi-
tive uniaxial crystals such as quartz, n\ = ni < 3, which is the ellipsoid example
shown in Figure 9.35a.

Suppose that we wish to find the refractive indices experienced by a wave travel-
ing with an arbitrary wavevector k, which represents the direction of phase propaga-
tion. This phase propagation direction is shown as OP in Figure 9.35b and is at an
angle 0 to the z axis. We place a plane perpendicular to OP and passing through the
center O of the indicatrix. This plane intersects the ellipsoid surface in a curve ABA'B'

which is an ellipse. The major (BOB') and minor (AOA') axes of this ellipse determine
the field oscillation directions and the refractive indices associated with this wave. Put

differently, the original wave is now represented by two orthogonally polarized EM
waves.

The line AOA', the minor axis, corresponds to the polarization of the ordinary
wave, and its semiaxis AA' is the refractive index n0 = 722 of this 0-wave. The electric
displacement and the electric field are in* the same direction and parallel to AOA'. If

18 There are various names in the literature with various subtle nuances: the Fresnel ellipsoid, optical indicatrix,
index ellipsoid, reciprocal ellipsoid, Poinsot ellipsoid, ellipsoid of wave normals.
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we were to change the direction of OP, we would always find the same minor axis,
i
.e., n0 is either ni or n2 whatever the orientation of OP (try orientating OP to be along

y and along x). This means that the o-wave always experiences the same refractive
index in all directions. (The owave behaves just like an ordinary wave, hence the
name.)

The line BOB' in Figure 9.35b, the major axis, corresponds to the electric dis-
placement field (D) oscillations in the extraordinary wave, and its semiaxis OB is the
refractive index ne(0) of this e-wave. This refractive index is smaller than ni but greater
than 2 (= no). The e-wave therefore travels more slowly than the owave in this
particular direction and in this crystal. If we change the direction of OP, we find
that the length of the major axis changes with the OP direction. Thus, ne(0) depends on
the wave direction 0. As apparent, ne = n0 when OP is along the z axis, that is, when the
wave is traveling along z as in Figure 9.36a. This direction is the optic axis, and all
waves traveling along the optic axis have the same phase velocity whatever their po-
larization. When the e-wave is traveling along the y axis, or along the x axis, ne(6) =
7*3 = ne and the e-wave has its slowest phase velocity as shown in Figure 9.36b. Along
any OP direction that is at an angle 0 to the optic axis, the e-wave has a refractive index
ne(0) given by

1

ne(0) 2

cos2 0    sin2 0
+

n
2
o

n
2
e

[9.80]

Clearly, for 0 = 0°, ne(0o) = n0 and for 0 = 90°, (90°) = ne.
The major axis BOB' in Figure 9.35b determines the e-wave polarization by defin-

ing the direction of the displacement vector D and not E. Although D is perpendicular
to k, this is not true for E. The electric field Ee_wave of the e-wave is orthogonal to that
of the 0-wave, and it is in the plane determined by k and the optic axis. Ee.wave is
orthogonal to k only when the e-wave propagates along one of the principal axes. In
birefringent crystals it is usual to take the ray direction as the direction of energy flow,

Refractive
index of the
e-wave
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that is the direction of the Poynting vector (S). The Ee.Wave is then orthogonal to the ray
direction. For the o-wave, the wavefront propagation direction k is the same as the
energy flow direction S. For the e-wave, however, the wavefront propagation direction
k is not the same as the energy flow direction S.

9
.
15.2 Birefringence of Calcite

Consider a calcite crystal (CaCOs) which is a negative uniaxial crystal and also well
known for its double refraction. When the surfaces of a calcite crystal have been
cleaved, that is, cut along certain crystal planes, the crystal attains a shape that is called
a cleaved form and the crystal faces are rhombohedrons (parallelogram with 78.08°
and 101.92°). A cleaved form of the crystal is called a calcite rhomb. A plane of the cal-
cite rhomb that contains the optical axis and is normal to a pair of opposite crystal sur-
faces is called a principal section.

Consider what happens when an unpolarized or natural light enters a calcite crystal
at normal incidence and thus also normal to a principal section to this surface, but at an
angle to the optic axis as shown in Figure 9.37. The ray breaks into ordinary {o) and
extraordinary {e) waves with mutually orthogonal polarizations. The waves propagate
in the plane of the principal section as this plane also contains the incident light. The
owave has its field oscillations perpendicular to the optic axis. It obeys Snell's law

which means that it enters the crystal undeflected. Thus the direction of is-field
oscillations must come out of the paper so that it is normal to the optic axis and also to
the direction of propagation. The field E± in the o-ray is shown as dots, oscillating into
and out of the paper.

The e-wave has a polarization orthogonal to the o-wave and in the principal sec-
tion. The e-wave polarization is in the plane of the paper, indicated as E\\, in Figure
9

.37. It travels with a different velocity and diverges from the o-wave. Clearly, the
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ray
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Principal section
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A calcite rhomb Optic axis
(in plane of paper)

Figure 9.37  An EM wave that is off the optic axis of a calcite crystal splits into two waves called ordinary and
extraordinary waves.
These waves have orthogonal polarizations and travel with different velocities. The o-wave has a polarization that is/
always perpendicular to the optical axis.
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e-wave does not obey the usual Snell
's law inasmuch as the angle of refraction is not

zero. We can determine the e-ray direction by noting that the e-wave propagates side-
ways as in Figure 9.37b at right angles to E\\.

9.
15.3 Dichroism

In addition to the variation in the refractive index, some anisotropic crystals also exhibit
dichroism, a phenomenon in which the optical absorption in a substance depends on
the direction of propagation and the state of polarization of the light beam. A dichroic
crystal is an optically anisotropic crystal in which either the e-wave or the o-wave is
heavily attenuated (absorbed). This means that a light wave of arbitrary polarization en-
tering a dichroic crystal emerges with a well-defined polarization because the other or-
thogonal polarization would have been attenuated. Generally dichroism depends on the
wavelength of light. For example, in a tourmaline (aluminum borosilicate) crystal, the
owave is much more heavily absorbed with respect to the e-wave.

9.
16    BlREFRINGENT RETARDING PLATES

Consider a positive uniaxial crystal such as a quartz (ne > n0) plate that has the optic
axis (taken along z) parallel to the plate faces as in Figure 9.38. Suppose that a linearly
polarized wave is normally incident on a plate face. If the field E is parallel to the optic
axis (shown as then this wave will travel through the crystal as an e-wave with a
velocity c/ne slower than the c-wave since ne > n0. Thus, the optic axis is the "slow axis"

for waves polarized parallel to it. If E is at right angles to the optic axis (shown as Ex),
then this wave will travel with a velocity c/n0, which will be the fastest velocity in the
crystal. Thus the axis perpendicular to the optic axis (say x) will be the "fast axis" for

polarization along this direction. When a light ray enters a crystal at normal incidence
to the optic axis and plate surface, then the o- and e-waves travel along the same
direction as shown in Figure 9.38. We can of course resolve a linear polarization at an
angle a to z into E±

_
 and E\\. The o-wave corresponds to the propagation of Ex_

 and

the e-wave to the propagation of E\\ in the crystal. When the light comes out at the

z = Slow axis

Optic axisA

E

-
E

1
I l

L

A

y

n
o

x = fast axis

Figure 9.38  A retarder plate.
The optic axis is parallel to the plate face. The
o and e-waves travel in the same direction but at

different speeds.
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Figure 9.39   Input and output polarizations
of light through (a) a half-wavelength plate
and (b) through a quarter-wavelength plate.
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opposite face, these two components and E\\ would have been phase shifted by 0.
Depending on the initial angle a of E and the length of the crystal,

 which determines

the total phase shift 0 through the plate, the emerging beam can have its initial linear
polarization rotated, or changed into an elliptically or circularly polarized light as sum-
marized in Figure 9.39.

If L is the thickness of the plate, then the o-wave experiences a phase change given
by fco-wave L through the plate where /:0.Wave is the wavevector of the o-wave; fco-wave =
(27r/A.)n0, where k is the free-space wavelength. Similarly, the e-wave experiences a
phase change (27z/X)neL through the plate. Thus, the phase difference 0 between the
orthogonal components £

_
l and E\\ of the emerging beam is

In
0 = -{ne - n0)L

A
[9.81]

The phase difference 0 expressed in terms of full wavelengths is called the retardation
of the plate. For example, a phase difference 0 of 180° is a half-wavelength retardation.

The polarization of the exiting-beam depends on the crystal-type, (ne - n0), and
the plate thickness L. We know that depending on the phase difference 0 between the
orthogonal components of the field, the EM wave can be linearly, circularly, or ellipti-
cally polarized.

A half-wave plate retarder has a thickness L such that the phase difference 0 is
tt or 180°

, corresponding to a half wavelength (A./2) 0f retardation. The result is that
Zsil is delayed by 180° with respect to E±. If we add the emerging E± and E\\ with this
phase shift 0, E would bgjtt an angle -a to the optic axis and still linearly polarized.
E has been rotated counterclockwise through 2a.
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A quarter-wave plate retarder has a thickness L such that the phase difference (j>
is n/2 or 90°, corresponding to a quarter wavelength \k. If we add the emerging £

_
l

and £|| with this phase shift 0, the emerging light will be elliptically polarized if
0 < a < 45° and circularly polarized if a = 45°.

QUARTZ HALF-WAVE PLATE What should be the thickness of a half-wave quartz plate for a
wavelength X & 707 nm given the extraordinary and ordinary refractive indices are n0

 =1
.
541

andne= 1.549?

SOLUTION

Half-wavelength retardation is a phase difference of tt, so from Equation 9.81

<P = - (ne - n0)L = tt
A

EXAMPLE 9.19

giving

L =   = 1  = 44.2 urn
(ne -n0)      (1.549 - 1.541) 

This is roughly the thickness of a sheet of paper.

9
.
17    OPTICAL ACTIVITY AND CIRCULAR

BIREFRINGENCE

When a linearly polarized light wave is passed through a quartz crystal along its optic
axis, it is observed that the emerging wave has its E-vector (plane of polarization)
rotated, which is illustrated in Figure 9.40. This rotation increases continuously with
the distance traveled through the crystal (about 21.7° per mm of quartz). The rotation of
the plane of polarization by a substance is called optical activity. In very simple intuitive
terms, optical activity occurs in materials in which the electron motions induced by the
external electromagnetic field follows spiraling or helical paths (orbits).19 Electrons

flowing in helical paths resemble a current flowing in a coil and thus possess a magnetic
moment. The optical field in light therefore induces oscillating magnetic moments which
can be either parallel or antiparallel to the induced oscillating electric dipoles. Wavelets
emitted from these oscillating induced magnetic and electric dipoles interfere to consti-
tute a forward wave that has its optical field rotated either clockwise or counterclockwise.

If 0 is the angle of rotation, then 0 is proportional to the distance L propagated in
the optically active medium as depicted in Figure 9.40. For an observer receiving the
wave through quartz, the rotation of the plane of polarization may be clockwise (to the
right) or counterclockwise (to the left) which are called dextrorotatory and levorotatory
forms of optical activity. The structure of quartz is such that atomic arrangements spi-
ral around the optic axis either in clockwise or counterclockwise sense. Quartz thus
occurs in two distinct crystalline forms, right-handed and left-handed, which exhibit

19 The explanation of optical activity involves examining both induced magnetic and electric dipole moments which
will not be described here in detail.
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Figure 9.40 An optically active material such as quartz rotates the plane of polarization of the
incident wave: The optical field E rotated to E'.
If we reflect the wave back into the material, E' rotates back to E.

Optical
activity

dextrorotatory and levorotatory types of optical activity, respectively. Although we
used quartz as an example, there are many substances that are optically active, includ-
ing various biological substances and even some liquid solutions (e.g., com syrup) that
contain various organic molecules with a rotatory power.

The specific rotatory power (0 /L) is defined as the extent of rotation per unit
distance traveled in the optically active substance. Specific rotatory power depends on
the wavelength. For example, for quartz this is 49° per mm at 400 nm but 17° per mm
at 650 nm.

Optical activity can be understood in terms of left and right circularly polarized
waves traveling at different velocities in the crystal, i.e., experiencing different refrac-
tive indices. Due to the helical twisting of the molecular or atomic arrangements in the
crystal, the velocity of a circularly polarized wave depends on whether the optical field
rotates clockwise or counterclockwise. A vertically polarized light with a field E at the
input can be thought of as two right- and left-handed circularly polarized waves ER and
EL that are symmetrical with respect to the y axis, i.e., at any instant a = ft, as shown
in Figure 9.41. If they travel at the same velocity through the crystal, then they remain
symmetrical with respect to the vertical (a = ft remains the same) and the resultant is
still a vertically polarized light. If, however, these travel at different velocities through
a medium, then at the output and E  are no longer symmetrical with respect to the
vertical, a'  p', and their resultant is a vector E' at an angle 0 to the y axis.

Suppose that nR and nt are the refractive indices experienced by the right- and left-
handed circularly polarized light, respectively. After traversing the crystal length L, the
phase difference between the two optical fields E  and E'

L at the output leads to a new
optical field E' that is E rotated by 0, given by

n

0 = -(nL - nR)L
A

[9.82]

where X is the free-space wavelength. For a left-handed quartz crystal, and for 589 nm
light propagation along the optic axis, nR = 1.54427 and nL = 1.54420, which means
0 is about 21.4° per mm of crystal.

In a circularly birefringent medium, the right- and left-handed circularly polar-
ized waves propagate with different velocities and experience different refractive
indices nR and    Since optically active materials naturally rotate the optical field,

 it is
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Figure 9.41 Vertically polarized wave at the input can be thought of as two right- and left-
handed circularly polarized waves that are symmetrical; i.e., at any instant a = fi.
If these travel at different velocities through a medium, then at the output they are no longer
symmetric with respect to y, a  fi, and the result is a vector E' at an angle 9 to y.

not unreasonable to expect that a circularly polarized light with its optical field rotat-
ing in the same sense as the optical activity will find it easier to travel through the
medium. Thus, an optically active medium possesses different refractive indices for
right- and left-handed circularly polarized light and exhibits circular birefringence. It
should be mentioned that if the direction of the light wave is reversed in Figure 9.40,
the ray simply retraces itself and E' becomes E.

ADDITIONAL TOPICS

9
.
18    ELECTRO-OPTIC EFFECTS20

Electro-optic effects refer to changes in the refractive index of a material induced by
the application of an external electric field, which therefore "modulates" the optical
properties. We can apply such an external field by placing electrodes on opposite faces
of a crystal and connecting these electrodes to a battery. The presence of such a field
distorts the electron motions in the atoms or molecules of the substance or distorts the

crystal structure resulting in changes in the optical properties. For example, an applied
external field can cause an optically isotropic crystal such as GaAs to become birefrin-
gent. In this case, the field induces principal axes and an optic axis. Typically changes
in the refractive index are small. The frequency of the applied field has to be such that

20 An extensive discussion and applications of the electro-optic effects may be found in S. O. Kasap,
Optoelectronics and Photonics: Principles and Practices, Prentice Hall, 2001, Upper Saddle River, NJ, ch. 7.
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Field induced

refractive
index

Pockels effect

Kerr effect

the field appears static over the time scale it takes for the medium to change its prop-
erties, that is, respond, as well as for any light to cross the substance. The electro-optic
effects are classified according to first- and second-order effects.

If we were to take the refractive index n to be a function of the applied electric
field E, that is, n = n(E), we can of course expand this as a Taylor series in E. The new
refractive index nf is

n = n + aiE + a2E2 + [9.83]

where the coefficients ai and a2 are called the linear electro-optic effect and second-
order electro-optic effect coefficients. Although we would expect even higher terms in
the expansion in Equation 9.83, these are generally very small and their effects negli-
gible within the highest practical fields. The change in n due to the first E term is called
the Pockels effect. The change in n due to the second E2 term is called the Kerr
effect,21 and the coefficient a2 is generally written as A.K where K is called the Kerr
coefficient. Thus, the two effects are

and

An - a\E

An = a2E2 = (XK)E2

[9.84]

[9.85]

All materials exhibit the Kerr effect. It may be thought that we will always find
some (nonzero) value for ai for all materials, but this is not true and only certain
crystalline materials exhibit the Pockels effect. If we apply a field E in one direction
and then reverse the field and apply -E, then according to Equation 9.84, An should
change sign. If the refractive index increases for E, it must decrease for -E. Revers-
ing the field should not lead to an identical effect (the same An). The structure has to
respond differently to E and -E. There must therefore be some asymmetry in the struc-
ture to distinguish between E and - E. In a noncrystalline material, An for E would be
the same as An for -E as all directions are equivalent in terms of dielectric properties.
Thus a\ = 0 for all noncrystalline materials (such as glasses and liquids). Similarly, if
the crystal structure has a center of symmetry, then reversing the field direction has an
identical effect and ai is again zero. Only crystals that are noncentrosymmetric22
exhibit the Pockels effect. For example, a NaCl crystal (centrosymmetric) exhibits no
Pockels effect, but a GaAs crystal (noncentrosymmetric) does.

The Pockels effect expressed in Equation 9.84 is an oversimplification because in re-
ality we have to consider the effect of an applied field along a particular crystal direction
on the refractive index for light with a given propagation direction and polarization. For
example, suppose that x, y, and z are the principal axes of a crystal with refractive indices
nu n2, and n  along these directions. For an optically isotropic crystal, these would be the
same whereas for a uniaxial crystal such as LiNbOs ni = n2 # n  as depicted in the xy
cross section in Figure 9.42a. Suppose that we suitably apply a voltage across a crystal
and thereby apply an external dc field Ea. In the Pockels effect, the field will modify the

21 John Kerr (1824-1907) was a Scottish physicist who was a faculty member at Free Church Training College for
Teachers, Glasgow (1857-1901) where he set up an optics laboratory and demonstrated the Kerr effect (1875).
22 A crystal is a center of symmetry about a point O, if any atom (or point) with a position vector r from O also
appears when we invert r, that is, take -r.
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(a) Cross section of the optical indicatrix

LiNb03 no app'i6  field, ni = n2 = n0.
(b) Applied field along y in LiNb02
modifies the indicatrix and changes ni and
n2 to n\ and n .

optical indicatrix. The exact effect depends on the crystal structure. For example, a crys-
tal like GaAs, optically isotropic with a spherical indicatrix, becomes birefringent with
two different refractive indices. In the case of LiNbOs (lithium niobate), which is an op-
toelectronically important uniaxial crystal, a field Ea along the y direction changes the
principal refractive indices n\ and n2 (both equal to n0) to n\ and as illustrated in Fig-
ure 9.42b. Moreover, in some crystals such as KDP (KH2PO4, potassium dihydrogen
phosphate), the field Ea along z rotates the principal axes by 45° about z and changes the
principal indices. Rotation of principal axes in LiNbOs is small and can be neglected.

As an example consider a wave propagating along the z direction (optic axis) in a
LiNbOs crystal. This wave will experience the same refractive index (n\ = n2 = n0)
whatever the polarization as in Figure 9.42a. However, in the presence of an applied
field Ea parallel to the principal y axis as in Figure 9.42b, the light propagates as two
orthogonally polarized waves (parallel to x and y) experiencing different refractive
indices n\ and n . The applied field thus induces a birefringence for light traveling
along the z axis. (The field induced rotation of the principal axes in this case, though
present, is small and can be neglected.) Before the field Ea is applied, the refractive in-
dices ni and 2 are both equal to n0. The Pockels effect then gives the new refractive
indices nj and    in the presence of Ea as

1
n\x*ni + -n\r22Ea and n

t

2

1
"2 - 

2
n2r22 fl [9.86]    Pockels effect

where r22 is a constant, called a Pockels coefficient, that depends on the crystal struc-
ture and the material. The reason for the seemingly unusual subscript notation is that
there are more than one constant and these are elements of a tensor that represents the
optical response of the crystal to an applied field along a particular direction with
respect to the principal axes (the exact theory is more mathematical than intuitive). We
therefore have to use the correct Pockels coefficients for the refractive index changes
for a given crystal and a given field direction.23 If the field were along z, the Pockels
coefficient in Equation 9.86 would be r . Table 9.6 shows some typical values for
Pockels coefficients of various crystals.

23 The reader should not be too concerned with the subscripts but simply interpret them as identifying the right
Pockels coefficient value for the particular electro-optic problem at hand.
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Table 9.6   Pockels [t) and Kerr [K) coefficients in various materials

Material Crystal Indices

Pockels Coefficients

x lO12 m/V

LiNbOa

KDP

GaAs

Uniaxial

Uniaxial

Isotropic

n0 2
.
272

ne = 2.187

n0 = 1.512
fle= 1.470
n0 = 3.6

r22 = 3.4; r5i = 28
r4i = 8.8; r63 = 10.5

r4\ - 1
.
5
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Figure 9.43 Transverse Pockels cell phase modulator. A linearly polarized input light into
an electro-optic crystal emerges as a circularly polarized light.

Transverse

Pockels effect

It is clear that the control of the refractive index by an external applied field (and
hence a voltage) is a distinct advantage that enables the phase change through a Pockels
crystal to be controlled or modulated; such a phase modulator is called a Pockels cell.
In the longitudinal Pockels cell phase modulator the applied field is in the direction of
light propagation, whereas in the transverse phase modulator the applied field is trans-
verse to the direction of light propagation.

Consider the transverse phase modulator in Figure 9.43. In this example, the applied
electric field Ea = V/d is applied parallel to the y direction, normal to the direction of
light propagation along z. Suppose that the incident beam is linearly polarized (shown
as E) say at 45° to the y axes. We can represent the incident light in terms of polariza-
tions (Ej and E ) along the x and y axes. These components Ex and E  experience re-
fractive indices n[ and n , respectively. Thus, when E* traverses the distance L, its phase
changes by 0i,

2nn\       2nL(       1 . V\
01 =

When the component Ey traverses the distance L, its phase changes by 02, given
by a similar expression except that r22 changes sign. Thus the phase change A0
between the two field components is

In
A0 = 01 - 02 = - " 22- V

A a

L
[9.87]



Defining Terms 841

The applied voltage thus inserts an adjustable phase difference A0 between the two
field components. The polarization state of the output wave can therefore be controlled by
the applied voltage and the Pockels cell is a polarization modulator. We can change the
medium from a quarter-wave to a half-wave plate by simply adjusting V. The voltage V =
Vx/2, the half-wave voltage, corresponds to A0 = n and generates a half-wave plate.

CD Selected Topics and Solved Problems

Selected Topics

Real and Imaginary Dielectric Constant
Optical Dispersion and Absorption

Solved Problems

Fresnel's Equations
Complex Refractive Index and Light Absorption
Dispersion: Refractive Index versus Wavelength

Behavior
_

DEFINING TERMS

Absorption is the loss in the power of electromagnetic
radiation that is traveling in a medium. The loss is due
to the conversion of light energy to other forms of
energy, such as lattice vibrations (heat) during the
polarization of the molecules of the medium, local
vibrations of impurity ions, excitation of electrons from
the valence band to the conduction band, and so on.

Activator is a luminescent center in a host crystal or
glass in which it is excited, by some external excitation
such as UV light; following excitation, the activator
emits radiation to return to its ground state, or become
de-excited.

Anisotropy (optical) refers to the fact that the refrac-
tive index n of a crystal depends on the direction of
propagation of light and on the state of its polarization,
that is, the direction of the electric field.

Antireflection coating is a thin dielectric layer
coated on an optical device or component to reduce
the reflection of light and increase the transmitted
light intensity.

Attenuation is the decrease in the optical power (or
irradiance) of a traveling wave in the direction of prop-
agation due to absorption and scattering.

Attenuation coefficient or represents the spatial rate
of attenuation of an EM wave along the direction of

propagation. If P0 is the optical power at some location
O

, and if it is P at a distance L from O along the direc-
tion of propagation, then P = P0exp(-aL).

Birefringent crystals such as calcite are optically
anisotropic which leads to an incident light beam be-
coming separated into ordinary and extraordinary waves
with orthogonal polarizations; incident light becomes
doubly refracted because these two waves experience
different refractive indices n0 and ne.

Brewster's angle or polarization angle (Op) is the
angle of incidence that results in the reflected wave
having no electric field in the plane of incidence (plane
defined by the incident ray and the normal to the sur-
face). The electric field oscillations in the reflected

wave are in the plane perpendicular to the plane of
incidence.

Circularly birefringent medium is a medium in
which right and left circularly polarized waves propa-
gate with different velocities and experience different
refractive indices kr and n .

Circularly polarized light is light where the magni-
tude of the field vector E remains constant but its tip at
a given location on the direction of propagation traces
out a circle by rotating either in a clockwise sense, right
circularly polarized, with time, as observed by the
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receiver of the wave, or in a counterclockwise sense,

left circularly polarized.

Complex propagation constant (k' - jk") describes
the propagation characteristics of an electromagnetic
wave that is experiencing attenuation as it travels in a
lossy medium. If k = k' - jk" is the complex propaga-
tion constant, then the electric field component of a plane
wave traveling in a lossy medium can be described by

E = E0 exp(-k"z) exp j{(ot - k'z)

The amplitude decays exponentially while the wave
propagates along z. The real k' part of the complex
propagation constant (wavevector) describes the prop-
agation characteristics, that is, the phase velocity
v co/k'. The imaginary k" part describes the rate of
attenuation along z.

Complex refractive index N with real part n and ima-
ginary part K is defined as the ratio of the complex prop-
agation constant k in a medium to propagation constant
k

0 in free space,

N="- =M£)(*'-yr)

The real part n is simply called the refractive index,
and K is called the extinction coefficient.

Critical angle (0C) is the angle of incidence that
results in a refracted wave at 90° when the incident

wave is traveling in a medium of lower refractive
index and is incident at a boundary with a material with
a higher refractive index.

Dielectric mirror is made from alternating high and
low refractive index quarter-wave-thick multilayers
such that constructive interference of partially reflected
waves gives rise to a high degree of wavelength-
selective reflectance.

Dispersion relation is a relationship between the
refractive index n and the wavelength k of the EM wave,
n = n(X)\ the wavelength usually refers to the free-
space wavelength. The relationship between the angular
frequency co and the propagation constant k, the co-k
curve, is also called the dispersion relation.

Dispersive medium has a refractive index n that
depends on the wavelength; that is, n is not a constant.

Electro-optic effects refer to changes in the refractive
index of a material induced by the application of an

external electric field, which therefore "modulates" the

optical properties; the applied field is not the electric
field of any light wave, but a separate external field.

Extinction coefficient is the imaginary part of the
complex refractive index N.

Fluorescence is luminescence that occurs over very
short time scales, usually less than 10

"8 seconds (or

10 ns). In fluorescence, the onset and decay of lumi-
nescent emission, due to the onset and cessation of ex-

citation of the phosphor, is very short, appearing to be
almost instantaneous.

Fresnel's equations describe the amplitude and phase
relationships between the incident, reflected, and
transmitted waves at a dielectric-dielectric interface in

terms of the refractive indices of the two media and the

angle of incidence.

Group index (Ng) represents the factor by which the
group velocity of a group of waves in a dielectric
medium is reduced with respect to propagation in free
space, Ng = c/Vg where Vg is the group velocity.

Group velocity (v ) is the velocity at which energy,
or information, is transported by a group of waves; vg
is determined by dco/dk whereas phase velocity is
determined by co/k.

Instantaneous irradiance is the instantaneous flow

of energy per unit time per unit area and is given by the
instantaneous value of the Poynting vector S.

Irradiance (average) is the average flow of energy
per unit time per unit area where averaging is typically
carried out by the light detector (over many oscillation
periods). Average irradiance can also be defined math-
ematically by the average value of the Poynting vector
S

. The instantaneous irradiance can only be measured
if the power meter can respond more quickly than the
oscillations of the electric field, and since this is in the

optical frequencies range, all practical measurements
invariably yield the average irradiance.

Kerr effect is a second-order effect in which the

change in the refractive index n depends on the square
of the electric field, that is, An = a2E2

i where a2 is a
material dependent constant.

Kramers-Kronig relations relate the real and imagi-
nary parts of the relative permittivity. If we know the
complete frequency dependence of the real part (a>),



Defining Terms 843

using the Kramer-Kronig relation, we can find the fre-
quency dependence of the imaginary part e"((ji)).

Luminescence is the emission of light by a material,
called a phosphor, due to the absorption and conversion
of energy into electromagnetic radiation. Typically the
emission of light occurs from certain dopant impurities
or even defects, called luminescent or luminescence

centers or activators purposefully introduced into a
host matrix, which may be a crystal or glass, which can
accept the activators. Photoluminescence involves ex-
citation by photons (light). Cathodoluminescence is
light emission when the excitation is the bombardment
of the phosphor with energetic electrons as in TV cath-
ode ray tubes. Electroluminescence is light emission
due to the passage of an electric current as in the LED.

Optic axis is an axis in the crystal structure along which
there is no double refraction for light propagation along
this axis.

Optical activity is the rotation of the plane of polar-
ization of plane polarized light by a substance such as
quartz.

Optical indicatrix (Fresnel's ellipsoid) is a refractive
index surface placed in the center of the principal axes
x, y, and z of a crystal; the axis intercepts are n\, n2, and

3. We can represent the optical properties of a crystal
in terms of three refractive indices along three orthog-
onal axes, the principal axes of the crystal, x, y, and z.

Phase of a traveling wave is the quantity (kx - cot)
which determines the amplitude of the wave at posi-
tion x and at time t given the propagation constant
k(= lic/X) and angular frequency a>. In three dimen-
sions it is the quantity (k . r - cot) where k is the
wavevector and r is the position vector.

Phase velocity is the rate at which a given phase on a
traveling wave advances. It represents the velocity of a
given phase rather than the velocity at which informa-
tion is carried by the wave. Two consecutive peaks of a
wave are separated by a wavelength X, and it takes
a time period 1 /v for one peak to reach the next (or the
time separation of two consecutive peaks at one loca-
tion); then the phase velocity is defined as v= Xv.

Phosphor is a substance made of an activator and a
host matrix (crystal or glass) that exhibits lumines-
cence upon suitable excitation.

Phosphorescence is a slow luminescence process in
which luminescent emission occurs well after the ces-

sation of excitation, even after minutes or hours.

Pockels effect is a linear change in the refractive
index n of a crystal due to an application of an external
electric field £, other than the field of the light wave,
that is, An = a\E, where ai is a constant that depends
on the crystal structure.

Polarization of an EM wave describes the behavior of

the electric field vector in the EM wave as it propagates
through a medium. If the oscillations of the electric
field at all times are contained within a well-defined

line, then the EM wave is said to be linearly polar-
ized. The field vibrations and the direction of propa-
gation, e.g., z direction, define a plane of polarization
(plane of vibration), so linear polarization implies a
wave that is plane-polarized.

Poynting vector (S) represents the energy flow per
unit time per unit area in a direction determined by
E x B (direction of propagation), S = v2e0erE x B.
Its magnitude, power flow per unit area, is called the
irradiance.

Principal axes of the crystal, normally labeled, x, y,
and z, are special axes along which the polarization
vector and the electric field are parallel. Put differently,
the electric displacement D and the electric field E
vectors are parallel. The refractive indices along these
x, y, and z axes are the principal indices wi, fl2, and w3»
respectively, for electric field oscillations along these
directions (not to be confused with the wave propaga-
tion direction).

Reflectance is the fraction of power in the reflected
electromagnetic wave with respect to the incident
power.

Reflection coefficient is the ratio of the amplitude of
the reflected EM wave to that of the incident wave. It

can be positive, negative, or a complex number which
then represents a phase change.

Refraction is a change in the direction of a wave
when it enters a medium with a different refractive

index. A wave that is incident at a boundary between
two media with different refractive indices experiences
refraction and changes direction in passing from one to
the other medium.
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Refractive index n of an optical medium is the ratio
of the velocity of light in a vacuum to its velocity in the
medium n = c/v.

Retarding plates are optical devices that change the
state of polarization of an incident light beam. For
example, when a linearly polarized light enters a
quarter-wave plate, it emerges from the device either
as circularly or elliptically polarized light, depending
on the angle of the incident electric field with respect
to the optic axis of the retarder plate.

Scattering is a process by which the energy from a
propagating EM wave is redirected as secondary EM
waves in various directions away from the original
direction of propagation. There are a number of scat-
tering processes. In Rayleigh scattering, fluctuations in
the refractive index, inhomogeneities, etc., lead to the
scattering of light that decreases with the wavelength
as A4

.

Snell's law is a law that relates the angles of incidence
and refraction when an EM wave traveling in one
medium becomes refracted as it enters an adjacent
medium. If light is traveling in a medium with index n\
is incident on a medium of index 2, and if the angles
of incidence and refraction (transmission) are 0, and 0h

then according to Snell's law,

sin Oi n2

smOt n\

Specific rotatory power is defined as the amount
of rotation of the optical field in a linearly polarized
light per unit distance traveled in the optically active
substance.

Stoke's shift in luminescence is the shift down in the

frequency of the emitted radiation with respect to that
of the exciting radiation.

Total internal reflection (TIR) is the total reflection
of a wave traveling in a medium when it is incident at
a boundary with another medium of lower refractive
index. The angle of incidence must be greater than the
critical angle 0C which depends on the refractive
indices sin 6c > m/ni.

Transmission coefficient is the ratio of the amplitude of
the transmitted wave to that of the incident wave when

the incident wave traveling in a medium meets a bound-
ary with a different medium (different refractive index).

Transmittance is the fraction of transmitted intensity
when a wave traveling in a medium is incident at a
boundary with a different medium (different refractive
index).

Wavefront is a surface where all the points have the
same phase. A wavefront on a plane wave is an infinite
plane perpendicular to the direction of propagation.

Wavenumber or propagation constant is defined as
lir/X where k is the wavelength. It is the phase shift in
the wave over a distance of unit length.

Wavepacket is a group of waves with slightly different
frequencies traveling together and forming a "group."
This wavepacket travels with a group velocity Vg that
depends on the slope of a) versus k characteristics of the
wavepacket, i.e., Vg = dco/dk.
Wavevector is a vector denoted as k that describes the

direction of propagation of a wave and has the magni-
tude of the wavenumber, k lnjX.

QUESTIONS AND PROBLEMS

9
.1       Refractive index and relative permittivity  Using n = jTr, calculate the refractive index n of the

materials in the table given their low-frequency relative permittivities sr (LF). What is your conclusion?

Material

a-Se Ge NaCl MgO

Br (LF)

n (~ 1-5 jim)

6
.
4

2
.
45

16.2

4
.
0

5
.
90

1
.
54

9
.
83

1
.
71
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9
.2 Refractive index and bandgap Diamond, silicon, and germanium all have the same diamond unit

cell. All three are covalently bonded solids. Their refractive indices (n) and energy bandgaps (Eg) are
shown in the table, (a) Plot n versus Eg and (b) plot n4 versus 1 /Eg. What is your conclusion? According
to Moss's rule, very roughly,

What is the value of K?

Bandgap, Eg (eV)
n

n4E
g
 « K = Constant

Diamond

5

2
.
4

Material

Silicon

1
.

1

3
.
46

Germanium

0
.
66

4
.
0

Moss's rule

*9
.
3

9
.
4

9
.5

9.
6

9
.
7

*9
.
8

Temperature coefficient of refractive index Suppose that we could write the relationship between
the refractive index n (at frequencies much less than ultraviolet light) and the bandgap Eg of a semicon-
ductor as suggested by Herv£ and Vandamme,

2

n
2

1 + {e8 + b)
where Eg is in eV, A = 13.6 eV, and B = 3.4 eV. (B depends on the incident photon energy.) Temperature
dependence in n results from dEg/dT and dB/dT. Show that the temperature coefficient of refractive
index (TCRI) is given by,24

1   dn 
_   (*2 - 1)3/2 \dEg

where B' is dB /dT. Given that B' = 2.5 x 10-5 eV K-1, calculate TCRI for two semiconductors: Si with
n « 3.5 and dE8/dT « -3 x lO"4 eV K"1

, and AlAs with n % 3.2 and dEg/dT % -4 x lO"4 eV K"1.

Sellmeier dispersion equation Using the Sellmeier equation and the coefficients in Table 9.2, calculate
the refractive index of fused silica (Si02) and germania (Ge02) at 1550 nm. Which is larger, and why?

Dispersion (n versus A.) in GaAs By using the dispersion relation for GaAs, calculate the refractive
index n and the group index Ng of GaAs at a wavelength of 1300 nm.

Cauchy dispersion equation Using the Cauchy coefficients and the general Cauchy equation, calcu-
late the refractive index of a silicon crystal at 200 jxm and at 2 jxm, over two orders of magnitude wave-
length change. What is your conclusion? Would you expect a significant chnge in n for fico > Egl

Cauchy dispersion relation for zinc selenide ZnSe is a II-VI semiconductor and a very useful opti-
cal material used in various applications such as optical windows (especially high-power laser win-
dows), lenses, prisms, etc. It transmits over 0.50 to 19 jim. n in the 1-11 jxm range described by a
Cauchy expression of the form

n

 0-0485 0.0061 .
2

.
4365 +  =- + - 0.0003A2

A2     ' A4

in which A is in jxm. What is ZnSe's refractive index n and group index     at 5 jxm?

Dispersion (/i versus A) Consider an atom in the presence of an oscillating electric field as in Figure 9.4.
The applied field oscillates harmonically in the +x and -x directions and is given by E = E0 expijcot).
The energy losses can be represented by a frictional force whose magnitude is proportional to the velocity

Herve-

Vandamme

relationship

ZnSe dispersion
relation

I 24 P. J. L Herve and L. K. J. Vandamme, J. Appl. Phys., 77, 5476, 1995 and references therein.
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Electronic

polarizability

Complex
refractive index

Dispersion in
diamond

9
.
9

9
.
10

9
.
11

9
.
12

9
.
13

dx/dt.lfy is the proportionality constant per electron and per unit electron mass, then Newton's second
law for Z electrons in the polarized atom is

d x -y dx
Zme -tt = -ZeE0exp(ja)t) - Zmea) x - Zmey -

dtA dt

where w0 = (p/Zme)Xf2 is the natural frequency of the system composed of Z electrons and a+Ze nu-
cleus and p is a force constant for the restoring Coulombic force between the electrons and the nucleus.
Show that the electronic polarizability ae is

a
,e

Pinduced

E

Ze2

me(col - a)2 + jya))

What does a complex polarizability represent? Since ote is a complex quantity, so is er and hence
the refractive index. By writing the complex refractive index N = where er is related to oie by the
Clausius-Mossotti equation, show that

N2 - 1
 

NZe2
 

N2 + 2 
~

 3eome(a% - co2 + jyw)

where N is the number of atoms per unit volume. What are your conclusions?

Dispersion and diamond Consider applying the simple electronic polarizability and Clausius-
Mossotti equations to diamond. Neglecting losses,

Ze2

a
,

me(co2-co2)
and

NZe2

sr + 2    3e0me (w2 - co2)

For diamond we can take Z = 4 (valence electrons only as these are the most responsive), N = 1.8 x
1029 atoms m-3, £r(DC) = 5.7. Find o)0 and then find the refractive index at A. = 0.5 |im and 5 \xm.

Electric and magnetic fields in light The intensity (irradiance) of the red laser beam from a He-Ne
laser in air has been measured to be about 1 mW cm-2. What are the magnitudes of the electric and mag-
netic fields? What are the magnitudes if this 1 mW cm-2 beam were in a glass medium with a refractive
index n = 1.45 and still had the same intensity?

Reflection of light from a less dense medium (internal reflection)   A ray of light which is traveling
in a glass medium of refractive index n\ = 1.450 becomes incident on a less dense glass medium of re-
fractive index n2 = 1.430. Suppose that the free-space wavelength (A) of the light ray is 1 \xm.

What should be the minimum incidence angle for TIR?

What is the phase change in the reflected wave when 0/ = 85° and when 0/ = 90° ?

What is the penetration depth of the evanescent wave into medium 2 when 0,- = 85° and when
0i =90°?

Internal and external reflection at normal incidence Consider the reflection of light at normal incidence
on a boundary between a GaAs crystal medium of refractive index 3.6 and air of refractive index 1.
a. If light is traveling from air to GaAs, what is the reflection coefficient and the intensity of the re-

flected light in terms of the incident light?
b

. If light is traveling from GaAs to air, what is the reflection coefficient and the intensity of the re-
flected light in terms of the incident light?

Antireflection coating

Consider three dielectric media with flat and parallel boundaries with refractive indices nu "2, and
3. Show that for normal incidence the reflection coefficient between layers 1 and 2 is the same as

that between layers 2 and 3 if «2 = Jnxn?,. What is the significance of this?

a.

b
.

c.

a.
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b
. Consider a Si photodiode that is designed for operation at 900 nm. Given a choice of two possible

antireflecdon coatings, Si02 with a refractive index of 1.5 and Ti02 with a refractive index of 2.3,
which would you use and what would be the thickness of the antireflecdon coating you chose? The
refractive index of Si is 3.5.

9
.14 Optical fibers in communications Optical fibers for long-haul applications usually have a core re-

gion that has a diameter of about 10 jxm, and the whole fiber would be about 125 jxm in diameter. The
core and cladding refractive indices, ni and «2, respectively, are normally only 0.3-0.5 percent differ-
ent. Consider a fiber with ri] (core) = 1.4510, and n2(cladding) = 1.4477, both at 1550 nm. What is the
maximum angle that a light ray can make with the fiber axis if it is still to propagate along the fiber?

9
.15 Optical fibers in communications Consider a short-haul optical fiber that has n i (core) = 1.455 and

n2(cladding) = 1.440 at 870 nm. Assume the core-cladding interface behaves like the flat interface be-
tween two infinite media as in Figure 9.11. Consider a ray that is propagating that has an angle of inci-
dence 85° at the core-cladding interface. Can this ray exercise total internal reflection? What would be
its penetration depth into the cladding?

9.16 Complex refractive index Spectroscopic ellipsometry measurements on a silicon crystal at a wave-
length of 620 nm show that the real and imaginary parts of the complex relative permittivity are 15.2254 

carrier
and 0.172, respectively. Find the complex refractive index. What is the reflectance and absorption coef- ,

, .        ,      absorption
ficient at this wavelength? What is the phase velocity?

9
.17 Complex refractive index Spectroscopic ellipsometry measurements on a germanium crystal at a

photon energy of 1.5 eV show that the real and imaginary parts of the complex relative permittivity
are 21.56 and 2.772, respectively. Find the complex refractive index. What is the reflectance and ab-
sorption coefficient at this wavelength? How do your calculations match with the experimental values
of n = 4.653 and K = 0.298, R= 0.419 and a = 4.53 x 106 m"1 ?

9
.18 An rc-type germanium sample has a conductivity of about 300 Q~1 m~1. Calculate the imaginary part e"

of the relative permittivity at a wavelength of 20 jam. Find the attenuation coefficient a due to free car-
rier absorption. The refractive index of germanium at the specified wavelength is n = 4.

9.19 Reststrahlen absorption in CdTe Figure 9.22 shows the infrared extinction coefficient K of CdTe.
Calculate the absorption coefficient a and the reflectance R of CdTe at 60 jxm and 80 jxm.

9
.20 Reststrahlen absorption in GaAs Figure 9.22 shows the infrared extinction coefficient K of

GaAs as a function of wavelength. Optical measurements show that K peaks at A. = 37.1 jam where
K « 11.6 and n % 6.6. Calculate the absorption coefficient a and the reflectance R at this wavelength.

9
.21 Fundamental absorption Consider the semiconductors in Figure 9.23, and those semiconductors

listed in Table 9.3.

a. Which semiconductors can be candidates for a photodetector that can detect light in optical com-
munications at 1550 nm?

b
. For amorphous Si (a-Si), one definition of an optical gap is the photon energy that results in an op-

tical absorption coefficient a of 104 cm-1. What is the optical gap of a-Si in Figure 9.23?
c. Consider a solar cell from crystalline Si. What is the absorption depth of light at 1000 nm, and at

500 nm?

9
.22 Quartz half-wave plate What are the possible thicknesses of a half-wave quartz plate for a wave-

length A.  1.01 jam given the extraordinary and ordinary refractive indices are n0 = 1.534 and ne =
1
.543, respectively?

9
.23 Pockels cell modulator What should be the aspect ratio d/L for the transverse LiNiOs phase modula-

tor in Figure 9.43 that will operate at a free-space wavelength of 1.3 |um and will provide a phase shift
A<f> of n (half wavelength) between the two field components propagating through the crystal for an ap-
plied voltage of 20 V? The Pockels coefficient  is 3.2 x lO-12 m/V and n0 = 2.2.
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A

Bragg's Diffraction Law
and X-ray Diffraction

Bragg's law

Bragg's Diffraction Condition

X-rays are electromagnetic (EM) waves with wavelengths typically in the range from 0.
01 nm to a

few nanometers. This wavelength region is comparable with typical interplanar spacings in crys-
tals. When an X-ray beam impinges on a crystal, the waves in the beam interact with the planes of
atoms in the crystal and, as a result, the waves become scattered and the X-ray beam becomes dif-
fracted. An analogy with radio waves may help. Radio waves with wavelengths in the range 1-10 m
(short waves and VHP waves) easily interact with objects of comparable size. It is well known that
these radio waves become scattered by objects of comparable size such as trees, houses, and build-
ings. However, long-wave radio waves with wavelengths in kilometers do not become scattered
by these objects because the object sizes now are much smaller than the wavelength.

When X-rays strike a crystal, the EM waves penetrate the crystal structure. Each plane of
atoms in the crystal reflects a portion of the waves. The reflected waves from different planes
then interfere with each other and give rise to a diffracted beam which is at a well-defmed angle
20 to the incident beam as depicted in Figure A. 1. Some of the incident beam goes through the
crystal undiffracted and some of the beam becomes diffracted. Further, the diffracted rays exist
only in certain directions. These diffraction directions correspond to well-defined diffraction
angles 20, as defined in Figure A.l. The diffraction angle 20, the wavelength of the X-rays A,
and the interplanar separation d of the diffraction planes within the crystal are related through
the Bragg diffraction condition, that is,

2dsm0 = nk     n= 1,2,3,... [A.1]

Figure A.1   A schematic illustration of
X-ray diffraction by a crystal.
X-rays penetrate the crystal and then
become diffracted by a series of atomic
planes.

Crystal surface
does not

affect diffraction

X-rays

Diffracted beam

Crystal
20

Through beam

Planes of atoms

848
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Incident X-ray beam

,
 A

Diffracted beam

d

d

A'

B B
'

EM waves

O
e e

M
P

O
'

dsind N\   rfd sin 0      Atomic Planes

7
.

Crystal

Figure A.2   Diffraction involves
X-ray waves being reflected by
various atomic planes in the crystal.
These waves interfere constructively to
form a diffracted beam only for
certain diffraction angles that satisfy
the Bragg condition.

Consider X-rays penetrating a crystal structure and becoming reflected by a given set of
atomic planes as shown in Figure A.2. We can consider an X-ray beam to be many parallel waves
that are in phase. These waves penetrate the crystal structure and become reflected at successive
atomic planes. The interplanar separation of these planes is d. Waves reflected from adjacent atomic
planes interfere constructively to constitute a diffracted beam only when the path difference be-
tween the rays is an integer multiple of the wavelength-a requirement of constructive interference.
This will only be the case for certain directions of reflection. For simplicity, we will consider two
waves A and B in an X-ray beam being reflected from two consecutive atomic planes in the crys-
tal. The angle between the X-rays and the atomic planes is 6 as defined in Figure A.2. Initially the
waves A and B are in phase. Wave A is reflected from the first plane, whereas wave B is reflected

from the second plane. When wave A is reflected at 0, wave B is at P. Wave B becomes reflected
from O' on the second plane and then moves along reflected B'. Wave B has to travel a further dis-
tance, PO'Q, equivalent to 2d sin 0 before reaching wave A. The path difference between the two
reflected waves A' and B' is PO' Q or 2d sin 0. For constructive interference this must be nk where

n is an integer. Otherwise the reflected waves will interfere destructively and cancel each other out.
Thus the condition for the existence of a diffracted beam is that the path difference between A' and
B' should be a multiple of the wavelength k; which is Equation A.l. The diffraction condition in
Equation A. 1 is referred to as Bragg's law. The angle 0 is called the Bragg angle, whereas 20 is
called the diffraction angle. The index n is called the order of diffraction. The incidence angle 0 is
the angle between the incident X-ray and the atomic planes within the crystal and not the angle at
the actual crystal surface. The crystal surface, whatever shape, does not affect the diffraction
process because X-rays penetrate the crystal and then become diffracted by a series of parallel
atomic planes. The Bragg diffraction condition has much wider applications than just crystallogra-
phy; for example, it is of central importance to the operation of modem semiconductor lasers.

X-ray Diffraction and Study of Crystal Structures

When an X-ray beam is incident on a single crystal, the scattered beam from a given set of planes
in the crystal is at an angle 20 that satisfies the Bragg law. In three dimensions, all directions
from the crystal that are at an angle 20 to the incident beam define a cone as shown in Figure A.3a
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Incident X-ray beam
with wavelength X

Diffracted

 \ beam

Single crystal

All X-ray
wavelengths

Monochromatic X-ray
beam

i

\
4

26

/

/

Photographic film

Single crystal

Powdered crystal

Photographic film

(a) All 20 directions around the incident
beam define a diffraction cone. The
diffracted beam lies on the cone, but

its exact direction depends on the
exact orientation of the diffraction

planes to the incident beam.

(b) Laue technique. A single crystal is
irradiated with a beam of white X-rays.
Diffracted X-rays give a spot diffraction
pattern on a photographic plate.

(c) Powdered crystal technique. A sample of
powdered crystal is irradiated with a
monochromatic (single wavelength) X-ray
beam. Diffracted X-rays give diffraction
rings on a photographic plate.

Figure A.3

with its apex at the crystal. This is called a diffraction cone. There are many such diffraction
cones, each corresponding to a different set of diffraction planes with a distinct set of Miller in-
dices (hkl). Although all lines lying on a diffraction cone satisfy the Bragg condition, the exact
direction of the diffracted beam depends on the exact orientation (or tilt) of the diffracting planes
to the incident ray. When a monochromatic X-ray beam is incident on a single crystal, as illus-
trated in Figure A.3a, the diffracted beam is along one particular direction on the diffraction cone
for that set of diffraction planes (hkl) with a particular orientation to the incident beam.

The Laue technique of studying crystal structures involves irradiating a single crystal with
a white X-ray beam that has a wide range of wavelengths. A photographic plate is used to capture
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the diffraction pattern as shown in Figure A.3b. Effectively we are scanning the wavelength X
and picking up diffractions from various (hkl) planes each time the Bragg condition is satisfied.
Thus, whenever X and d for a particular set of (hkl) planes satisfy the Bragg condition, there is
a diffraction. The diffraction pattern is a spot pattern where each spot is the result of diffraction
from a given set of (hkl) planes oriented in a particular way to the incident beam. By using a
range of wavelengths we ensure that the required wavelength is available for obtaining diffrac-
tion for a given set of planes. The relative positions of the spots are used to determine the crys-
tal structure.

One of the simplest methods for studying crystal structures is the powder technique which
involves irradiating a powdered crystal, or a poly crystalline sample, with a collimated X-ray
beam of known wavelength (monochromatic) as shown in Figure A. 3c. Powdering the crystal
enables a given set of (hkl) planes to receive the X-rays at many different angles 6 and at many
different orientations, or tilts. Put differently, it allows the angle 6 to be scanned for differently
oriented crystals. Since all possible crystal orientations are present by virtue powdering, the dif-
fracted rays form diffraction cones and the diffraction pattern developed on a photographic plate
has diffraction rings as shown in Figure A.3c.

Each diffraction ring in the powder technique in Figure A.3c represents diffraction from a
given set of (hkl) planes. Whenever the angle 0 satisfies the Bragg law for a given set of atomic
planes, with Miller indices (hkl) and with an interplanar separation dhu, there is a diffracted
beam. An X-ray detector placed at an angle 20 with respect to the through-beam will register a
peak in the detected X-ray intensity, as shown in Figure A.4a. The instrument that allows this
type of X-ray diffraction study is called a diffractometer. The variation of the detected intensity
with the diffraction angle 26 represents the diffraction pattern of the crystal. The particular dif-
fraction pattern depicted in Figure A.4b is for aluminum, an FCC crystal. Different crystals
exhibit different diffraction patterns.

In the case of cubic crystals, the interplanar spacing d is related to the Miller indices of a
plane (hkl). The separation dhki between adjacent (hkl) planes is given by

dhki
a

[A.2]

where a is the lattice parameter (side of the cubic unit cell). When we substitute for d = dhki in
the Bragg condition in Equation A.l, square both sides, and rearrange the equation, we find

(sin<9)2
2i2

nzX

4a2
(h2 + k2 + l2) [A.3]

This is essentially Bragg's law for cubic crystals. The diffraction angle increases with
(h2 + k1 + I1). Higher-order Miller indices, those with greater values of (h2 + k2 + /2), give

rise to wider diffraction angles. For example, the diffraction angle for (111) is smaller than that
for (200) because (h1 + k2 + I2) is 3 for (111) and 4 for (200). Furthermore, with X and a val-
ues that are typically involved in X-ray diffraction, second- and higher-order diffraction peaks,
n = 2, 3,..., can be ruled out.

In the case of the simple cubic crystal all possible (hkl) planes give rise to diffraction peaks
with diffraction angles satisfying the Bragg law or Equation A.3. The latter equation therefore
defines a diffraction pattern for the simple cubic crystal structure because it generates all the
possible values of 26 for all the planes in the cubic crystal. In the case of FCC and BCC crystals,
however, not all (hkl) planes give rise to diffraction peaks predicted by Equation A.3. Examination

Interplanar
separation in
cubic crystals

Bragg
condition for
cubic crystals
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(a) A schematic illustration of a diffract©meter for X-ray diffraction
studies of crystals.
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(b) A schematic diagram illustrating the intensity of X-rays as detected in (a) versus the diffraction angle,
20, for an FCC crystal [e.g., Al).

Figure A.4 A schematic diagram of a diffractometer and the diffraction pattern obtained from an FCC
crystal.

of the diffraction pattern in Figure A.4b for an FCC crystal shows that only those planes with
Miller indices that are either all odd or all even integers give rise to diffraction peaks. There are
no diffractions from those planes with mixed odd and even integers.

The Bragg law for the cubic crystals in Equation A.3 is a necessary diffraction condition
but not sufficient because diffraction involves the interaction of EM waves with the electrons in

the crystal. To determine whether there will be a diffraction peak from a set of planes in a crys-
tal we also have to consider the distributions of the atoms and their electrons in the crystal. In
FCC and BCC structures diffractions from certain planes are missing because the atoms on these
planes give rise to out-of-phase reflections.
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B
Flux, Luminous Flux, and the

Brightness of Radiation

Many optoelectronic light emitting devices are compared by their luminous efficiencies, which
requires a knowledge of photometry. Radiometry is the science of radiation measurement, for
example, the measurement of emitted, absorbed, reflected, transmitted radiation energy; radia-
tion is understood to mean electromagnetic energy in the optical frequency range (ultraviolet,
visible, and infrared). Photometry, on the other hand, is a subset of radiometry in which radia-
tion is measured with respect to the spectral responsivity of the eye, that is, over the visible
spectrum and by taking into account the spectral visual sensitivity of the eye under normal light
adapted conditions, Le.,photopic conditions.

Flux (4)) in radiometry has three related definitions, radiant, luminous and photon flux,
which correspond to the rate of flow of radiation energy, perceptible visual energy, and pho-
tons, respectively. (Notice that, in radiometry, these fluxes are not defined in terms of flow per
unit area.) For example, radiant flux is the energy flow per unit time in the units of Watts. Ra-
diometric quantities, such as radiant flux 4>e, radiant energy flow per unit time, usually have a sub-
script e and invariably involve energy or power. Radiometric spectral quantities, such as spectral
radiant flux refer to the radiometric quantity per unit wavelength; i.e., <&k = d<&e/dX is the
radiant flux per unit wavelength.

Luminous flux or photometric flux <!>„, is the visual "brightness" of a source as observed
by an average daylight adapted eye and is proportional to the radiant flux (radiation power emit-
ted) of the source and the efficiency of the eye to detect the spectrum of the emitted radiation.
While the eye can see a red color source, it cannot see an infrared source, and the luminous flux
of the infrared source would be zero. Similarly, the eye is less efficient in the violet than in the
green region, and less radiant flux is needed to have a green source at the same luminous flux
as the blue source. Luminous flux <!>„ is measured in lumens (1m), and at a particular wave-
length it is given by

<t>
v
 = <t>

e x K X TJeye

where <J> e is the radiant flux (in Watts), K is a conversion constant (standardized to be 633 Im/W),

jjeye (also denoted as V) is the luminous efficiency (luminous efficacy) of the daylight adapted
eye, which is unity at 555 nm; ye depends on the wavelength. By definition, a 1 W light source
emitting at 555 nm (green, where ye = 1) emits a luminous flux of 633 1m. The same 1 W light
source at 650 nm (red), where rjgye =0.11, emits only 70 1m. When we buy a light bulb, we are
essentially paying for lumens because it is luminous flux that the eye perceives. A typical 60 W
incandescent lamp provides roughly 900 1m. Fluorescent tubes provide more luminous flux

Luminous

flux in lumens
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output than incandescent lamps for the same electric power input as they have more spectral
emission in the visible region and make better use of the eye

's spectral sensitivity. Some exam-
ples are 100 W incandescent lamps, 1300-1800 1m, depending on the filament operating tem-
perature (hence bulb design), and 25 W compact fluorescent lamps, 1500-17501m.

Luminous efficacy of a light source (such as a lamp) in the lighting industry is the effi-
ciency with which an electric light source converts the input electric power (W) into an emitted
luminous flux (1m). A 100 W light bulb producing 1700 1m has an efficacy of 17 Im/W. While
at present the LED efficacies are below those of fluorescent tubes, rapid advances in LED tech-
nologies are bringing the expected efficacies to around 50 Im/W or higher. LEDs as solid-state
lamps have much longer lifetimes and much higher reliability, and hence are expected to be
more economical than incandescent and fluorescent lamps.

kM" 
3?

* i

'

is-

Ilia

4

From left to right: Michael Faraday, Thomas Henry Huxley, Charles Wheatstone, David
Brewster and John Tyndall. Professor Tyndall has been attributed with the first demonstra-
tion (1854) of light being guided along a water jet, which is based in total internal
reflection.

I SOURCE: Courtesy of AIP Emilio Segre Visual Archives, Zeleny Collection.
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Major Symbols and Abbreviations
A

a

a (subscript)
ac

Go

Av,Ap
APF

B
,
 B

B

Bc
Bm

BC

BCC

BE

BJT

C

c

Cjep
C

m

Cm

cs

C
v

CB

CE

CMOS

CN

CVD

D

d

area; cross-sectional area; amplification
lattice parameter; acceleration; amplitude of vibrations; half-channel thick-

ness in a JFET (Ch. 6)
acceptor, e.g., Na = acceptor concentration (m~3)
alternating current
Bohr radius (0.0529 nm)
voltage amplification, power amplification
atomic packing factor

magnetic field vector (T), magnetic field
frequency bandwidth
critical magnetic field
maximum magnetic field
Richardson-Dushman constant, effective Richardson-Dushman constant

base collector

body-centered cubic
base emitter

bipolar junction transistor

capacitance; composition; the Nordheim coefficient (ft m)
speed of light (3 x 108m s-1); specific heat capacity (J K-1 kg

-1)

depletion layer capacitance
molar heat capacity (J K-1 mol

-1)
diffusion (storage) capacitance of a forward-biased pn junction
specific heat capacity (J K"1 kg

-1)

heat capacity per unit volume (J K-1 m~3)
conduction band; common base

common emitter

complementary MOS
coordination number

chemical vapor deposition

diffusion coefficient (m2 s-1); thickness; electric displacement (C m~2)
density (kg m~3); distance; separation of the atomic planes in a crystal,

separation of capacitor plates; piezoelectric coefficient; mean grain size
(Ch. 2)

855
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d (subscript)
dc

E

Ect Ev

En

Ef, Efo

Eg
Emag

e

e (subscript)
eff (subscript)
EHP

EM

EMF (emf)

F

f
m
FCC

FET

G

Gp
9(E)
9

9d

9

H
,
 H

h

n

h (subscript)
hpE, hfe

HCP

HF

/

J

/
, i (subscript)
/br

donor, e.g., Nj = donor concentration (m~3)
direct current

piezoelectric coefficients

energy; electric field (V m-1) (Ch. 9)

acceptor and donor energy levels
conduction band edge, valence band edge
exchange interaction energy
Fermi energy, Fermi energy at 0 K - k

bandgap energy
magnetic energy
electric field (V m-1)
dielectric strength or breakdown field (V m-1)
local electric field

electronic charge (1.602 x lO-19 C)
electron, e.g., iie = electron drift mobility; electronic
effective, e.g.,  = effective drift mobility
electron-hole pair
electromagnetic
electromagnetic force (V)

force (N); function

frequency; function
Fermi-Dirac function

face-centered cubic

field effect transistor

rate of generation
rate of photogeneration
parallel conductance (ft-1)
density of states
conductance; transconductance (A/V); piezoelectric voltage coefficient (Ch. 7)
incremental or dynamic conductance (A/V)
mutual transconductance (A/V)

magnetic field intensity (strength), magnetizing field (A m-1)
Planck's constant (6.6261 x 10"34 J s)
Planck's constant divided by Infy = 1.0546 x 10"34 J s)
hole, e.g., ixh = hole drift mobility
dc current gain, small-signal (ac) current gain in the common emitter

configuration
hexagonal close-packed
high frequency

electric current (A); moment of inertia (kg m2) (Ch. 1)

light intensity (W m~2)
quantity related to ionic polarization
breakdown current

base, collector, and emitter currents in a BJT



Appendix C 857

i

i (subscript)

IC

J

J

J
c

Jp
JFET

K

KE

L

L

ln(jc)
LCAO

M
,
 M

M

Mat
M

r

Msat
m

me

<
K
mt

ms

MOS (MOST)
MOSFET

N

n

instantaneous current (A); small-signal (ac) current, i = 81
intrinsic, e.g., ai, = intrinsic concentration
small signal base, collector, and emitter currents (81By 81c, 81E) in a BJT
integrated circuit

current density (A m~2)
total angular momentum vector
imaginary constant: V-T
critical current density (A m~2)
pyroelectric current density
junction FET

spring constant (Ch. 1); phonon wavevector (m-1); bulk modulus (Pa);
dielectric constant (Ch. 7)

Boltzmann constant (k = R/NA = 1.3807 x 10~23 J K-1); wavenumber
(k = In/X), wavevector (m-1); electromechanical coupling factor (Ch. 7)

kinetic energy

total orbital angular momentum
length; inductance
length; mean free path; orbital angular momentum quantum number
channel length in a FET
electron and hole diffusion lengths
lengths of the n- and /7-regions outside depletion region in a pn junction
natural logarithm of x
linear combination of atomic orbitals

magnetization vector (A m-1), magnetization (A m-1)
multiplication in avalanche effect
relative atomic mass; atomic mass; "atomic weight

" (g mol-1)
remanent or residual magnetization (A m-1); reduced mass of two bodies A

and£, Mr = MAMB/(MA + MB)
saturation magnetization (A m-1)
mass (kg)
mass of the electron in free space (9.10939 x 10"31 kg)
effective mass of the electron in a crystal
effective mass of a hole in a crystal
magnetic quantum number
spin magnetic quantum number
metal-oxide-semiconductor (transistor)
metal-oxide-semiconductor FET

number of atoms or molecules; number of atoms per unit volume (m~3)
(Chs. 7 and 9); number of turns on a coil (Ch. 8)

Avogadro's number (6.022 x 1023 mol"1)
electron concentration (number per unit volume); atomic concentration;

principal quantum number; integer number; refractive index (Ch. 9)
heavily doped n-region
number of atoms per unit volume
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Af0 Nv effective density of states at the conduction and valence band edges (m~3)
Nd, donor and ionized donor concentrations (m~3)
ne, n0 refractive index for extraordinary and ordinary waves in a birefringent crystal
rii intrinsic concentration (m~3)
nno, ppo equilibrium majority carrier concentrations (m~3)
itpo, pno equilibrium minority carrier concentrations (m~3)
N

s concentration of electron scattering centers
nv velocity density function; vacancy concentration (m~3)

P probability; pressure (Pa); power (W) or power loss (W)
p, p electric dipole moment (C m)
p hole concentration (m~3); momentum (kg m s-1); pyroelectric coefficient

(C m K"1) (Ch. 7)
p* heavily doped p-region
Pav average dipole moment per molecule
pe electron momentum (kg m s-1)
PE potential energy
Pinduced induced dipole moment (C m)
p0 permanent dipole moment (C m)
PET polyester, polyethylene terephthalate
PZT lead zirconate titanate

Q charge (C); heat (J); quality factor
Q' rate of heat flow (W)

q charge (C); an integer number used in lattice vibrations (Ch. 4)

R gas constant (NAk = 8.3145 J mol-1 K-1); resistance; radius; reflection coef-
ficient (Ch. 3); rate of recombination (Ch. 5)

R reflectance (Ch. 9)
pyroelectric current and voltage responsivities

r position vector
r radial distance; radius; interatomic separation; resistance per unit length
r reflection coefficient (Ch. 9)
RH Hall coefficient (m3 C"*)
r0 bond length, equilibrium separation
rm:> root mean square

S total spin momentum, intrinsic angular momentum; Poynting vector (Ch. 9)
S cross-sectional area of a scattering center; Seebeck coefficient, thermoelectric

power (V m"1); strain (Ch. 7)
Sband number of states per unit volume in the band
Sj strain along direction j
SCL space charge layer

T temperature in Kelvin; transmission coefficient
T transmittance

t time (s); thickness (m)
t transmission coefficient

tan 8 loss tangent
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Tc Curie temperature
Tc critical temperature (K)
7} mechanical stress along direction j (Pa)
TC thermocouple
TCC temperature coefficient of capacitance (K-1)
TCR temperature coefficient of resistivity (K_1)

U total internal energy
mean speed (of electron) (m s"1)

V voltage; volume; PE function of the electron, PEC*)
Vbr                  breakdown voltage
V

o built-in voltage
Vp pinch-off voltage
Vr reverse bias voltage

v velocity (m s_1); instantaneous voltage (V)
v2 mean square velocity; mean square voltage
VdX drift velocity in the x direction
ve, Vnns effective velocity or rms velocity of the electron

Fermi speed

Vg group velocity
Vth thermal velocity
VB valence band

W width; width of depletion layer with applied voltage; dielectric loss
W0 width of depletion region with no applied voltage
Wn, Wp width of depletion region on the n-side and on the p-side with no applied

voltage

X atomic fraction

Y admittance {Q ~1); Young's modulus (Pa)

Z impedance (ft); atomic number, number of electrons in the atom

polarizability; temperature coefficient of resistivity (K-1); absorption coeffi-
cient (m-1); gain or current transfer ratio from emitter to collector of a BJT

P current gain Ic/h of a BJT; Bohr magneton (9.2740 x lO-24 J T-1); spring
constant (Ch. 4)

pi Schottky coefficient
y emitter injection efficiency (Ch. 6); gyromagnetic ratio (Ch. 8); Griineisen

parameter (Ch. 4); loss coefficient in the Lorentz oscillator model
Tph flux (m-2 s-1), photon flux (photons m~2 s"1)

small change; skin depth (Ch. 2); loss angle (Ch. 7); domain wall thickness
(Ch. 8); penetration depth (Ch. 9)

A change, excess {e.g.. An = excess electron concentration)
v2 aVa*2 + a2/a;y2 + d2/dz2

e0£r9 permittivity of a medium (C V-1 m-1 or F m"1); elastic strain

permittivity of free space or absolute permittivity (8.8542 x 10
"12 C V-1 m-1

or Fm-1)
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er relative permittivity or dielectric constant
r) efficiency; quantum efficiency; ideality factor
6 angle; an angular spherical coordinate; thermal resistance; angle between a

light ray and normal to a surface (Ch. 9)
k thermal conductivity (W m-1 K"1); dielectric constant

X wavelength (m); thermal coefficient of linear expansion (K-1); electron
mean free path in the bulk crystal (Ch. 2); characteristic length (Ch. 8)

\k, fx magnetic dipole moment (A m2) (Ch. 3)
ix MoMr, magnetic permeability (H m-1); chemical potential (Ch. 5)
/x0 absolute permeability (47r x 10~7 Hm

-1)

/xr relative permeability
\km, iAm magnetic dipole moment (A m2) (Ch. 8)

lid drift mobility (m2 V"1 s
"1)

ixh, iAe hole drift mobility, electron drift mobility (m2 V-1 s
"1)

v frequency (Hz); Poisson's ratio; volume fraction (Ch. 7)
n pi, 3.14159...; piezoresistive coefficient (Pa-1)
7tL,7tT longitudinal and transverse piezoresistive coefficients (Pa

~ *)
O Peltier coefficient (V)
p resistivity (Q m); density (kg m""3); charge density (C m~3)
Pe energy density (J m-3)
Pnet net space charge density (C m~3)
pJ2 Joule heating per unit volume (W m~3)
cr electrical conductivity (ft-1 m-1); surface concentration of charge (C m"2)

(Ch. 7)

ap polarization charge density (C m~2)
cr0 free surface charge density (C m~2)
as Stefan's constant (5.670 x lO"8 W m-2 K"4)

r time constant; mean electron scattering time; relaxation time; torque (N m)
Tg mean time to generate an electron-hole pair
</> angle; an angular spherical coordinate
4) work function (J or eV), magnetic flux (Wb)
<J>

e radiant flux (W)
<P

m metal work function (J or eV)
<&„ energy required to remove an electron from an n-type semiconductor (J or eV)
<&

v luminous flux (lumens)

X volume fraction; electron affinity; susceptibility (xe is electrical; Xm is
magnetic)

( ,0 total wavefunction

i/r (x) spatial dependence of the electron wavefunction under steady-state conditions
r/skW Bloch wavefunction, electron wavefunction in a crystal
t hyb hybrid orbital
(o angular frequency (Inv); oscillation frequency (rad s"1)
coj ionic polarization resonance frequency (angular)
a)o resonance or natural frequency (angular) of an oscillating system.
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D

Elements to Uranium

Element

Hydrogen
Helium

Lithium

Beryllium
Boron

Carbon

Nitrogen
Oxygen
Fluorine

Neon

Sodium

Magnesium
Aluminum

Silicon

Phosphorus
Sulfur

Chlorine

Argon
Potassium

Calcium

Scandium

Titanium

Vanadium

Chromium

Manganese
Iron

Cobalt

Nickel

Copper
Zinc

Gallium

Germanium

Symbol

H

He

Li

Be

B

C

N

O

F

Ne

Na

Mg
Al

Si

P

S

CI

Ar

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

Ge

Z

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Atomic

Mass

(g mor1)
1

.
008

4
.
003

6
.
941

9
.
012

10.81

12.01

14.007

16.00

18.99

20.18

22.99

24.31

26.98

28.09

30.97

32.06

35.45

39.95

39.09

40.08

44.96

47.87

50.94

52.00

54.95

55.85

58.93

58.69

63.55

65.39

69.72

72.61

Electronic
Structure

Is1

Is2

[He]2 1
[mis2
[He]2s2pl
[He]2s2p2
[He]252p3
[He]2sy
[He]2s2p5
[He]2s2p6
[Ne]3 1
[Ne]3ls2
[Ne]3 2p1
[Ne]3s2p2
[Ne]3s2p3
[Ne]3jy
[Ne]3$y
[Ne]3sy
[Ar]4sl
[Ar]4s2
[Ar]3dl4s2
[Ar]3d24j2
[Ar]3</34s2
[Ar]3d54sl
[Ar]3 54 2
[Ar]3</64s2
[Ar]3</74s2
[Ar]3d*4s2
[Ar]3 10451
[Ar]3</104s2
[Ar]3dl04s2pl
[Ar]3dl04s2p2

Density (g cm 3)
(*at 0 0C, 1 atm)

0
.
00009*

0
.
00018*

0
.
54

1
.
85

2
.
5

2
.
3

0
.
00125*

0
.
00143*

0
.
00170*

0
.
00090*

0
.
97

1
.
74

2
.
70

2
.
33

1
.
82

2
.
0

0
.
0032*

0
.
0018*

0
.
86

1
.
55

3
.
0

4
.
5

5
.
8

7
.
19

7
.
43

7
.
86

8
.
90

8
.
90

8
.
96

7
.
14

5
.
91

5
.
32

Crystal in
Solid State

HCP

FCP

BCC

HCP

Rhombohedral

Hexagonal
HCP

Monoclinic

Monoclinic

FCC

BCC

HCP

FCC

Diamond

Triclinic

Orthorhombic

Orthorhombic

FCC

BCC

FCC

HCP

HCP

BCC

BCC

BCC

BCC

HCP

FCC

FCC

HCP

Orthorhombic

Diamond

861
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Element

Arsenic

Selenium

Bromine

Krypton
Rubidium

Strontium

Yttrium

Zirconium

Niobium

Molybdenum
Technetium

Ruthenium

Rhodium

Palladium

Silver

Cadmium

Indium

Tin

Antimony
Tellurium

Iodine

Xenon

Cesium

Barium

Lanthanum

Cerium

Praseodymium
Neodymium
Promethium

Samarium

Europium
Gadolinium

Terbium

Dysprosium
Holmium

Erbium

Thulium

Ytterbium

Lutetium

Hafnium

Tantalum

Tungsten
Rhenium

Symbol

As

Se

Br

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag
Cd

In

Sn

Sb

Te

I

Xe

Cs

Ba

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy
Ho

Er

Tm

Yb

Lu

Hf

Ta

W

Re

Z

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Atomic
Mass

(g mol1)
74.92

78.96

79.90

83.80

85.47

87.62

88.90

91.22

92.91

95.94

(97.91)
101.07

102.91

106.42

107.87

112.41

114.82

118.71

121.75

127.60

126.91

131.29

132.90

137.33

138.91

140.12

140.91

144.24

(145)
150.4

151.97

157.25

158.92

162.50

164.93

167.26

168.93

173.04

174.97

178.49

180.95

183.84

186.21

Electronic
Structure

[Ar]3dl04s2p3
[Ai]3dl04sY
[Ai]3dl04s2p5
[Ar]3 104 y
[Krtf.s1
[Kx]5s2
[KiWl5s2
[Kr]4d25s2
[Kr]4 4551
[Kr]4 55 1
[Kr]4 5552
[Kr]4 75j1
[Kr]4d85sl
[Kr]4rf10
[Kr]4d/105ls1
[Kr]4dl05s2
[Kr]4dl05sy
[Kr]4dl05s2p2
[Kr]4rfl05,s2/?3
[Kr]4</105*y
[Kr]4 l0552/75
[Kr]4 1055y
[Xe]6sl
[Xe]6s2
[Xe]5dl6s2
[Xe]4fl5dl6s2
[Xe]4/36j2
[Xe]4/46s2
[Xe]4/5652
[Xe]4/661s2
[Xe]4/76j2
[Xe]4/75 1652
[Xe]4/9652
[Xe]4/106j2
[Xe]4fn6s2
[Xe]4/126s2
[Xe]4/,36ls2
[Xe]4/146 2
[Xe]4/,45J161s2
[Xe]4/145d/261s2
[Xe]4/145t/361s2
[Xe]4/145t/4652
[Xe]4/,45J5652

Density (g cm 3)
(*at 0 0C, 1 atm)

5
.
72

4
.
80

3
.
12

3
.
74

1
.
53

2
.
6

4
.
5

6
.
50

8
.
55

10.2

11.5

12.2

12.4

12.0

10.5

8
.
65

7
.
31

7
.
30

6
.
68

6
.
24

4
.
92

0
.
0059*

1
.
87

3
.
62

6
.
15

6
.
77

6
.
77

7
.
00

7
.
26

7
.
5

5
.
24

7
.
90

8
.
22

8
.
55

8
.
80

9
.
06

9
.
32

6
.
90

9
.
84

13.3

16.4

19.3

21.0

Crystal in
Solid State

Rhombohedral

Hexagonal
Orthorhombic

FCC

BCC

FCC

HCP

HCP

BCC

BCC

HCP

HCP

FCC

FCC

FCC

HCP

FCT

BCT

Rhombohedral

Hexagonal
Orthorhombic

FCC

BCC

BCC

HCP

FCC

HCP

HCP

Hexagonal
Rhombohedral

BCC

HCP

HCP

HCP

HCP

HCP

HCP

FCC

HCP

HCP

BCC

BCC

HCP
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Element

Osmium

Iridium

Platinum

Gold

Mercury
Thallium

Lead

Bismuth

Polonium

Astatine

Radon

Francium

Radium

Actinium

Thorium

Protactinium

Uranium

Symbol

Os

Ir

Pt

Au

Hg
Tl

Pb

Bi

Po

At

Rn

Fr

Ra

Ac

Th

Pa

U

Z

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

Atomic

mass

(g mol1)

190.2

192.22

195.08

196.97

200.59

204.38

207.2

208.98

(209)
(210)
(222)
(223)
226.02

227.02

232.04

(231.03)

(238.05)

Electronic
Structure

[Xe]4/145</66s2
[Xe]4/145 7652
[Xe]4/145J9651
[Xe]4/145 10651
tXe]4/145d/106ls2
[Xe]4/145</106sy
[Xe]4/145</106jy
[Xe]4/145</106sy
[Xe]4/145 1061sy
[Xe]4/145d/1065y
tXe]4/145 1061yy
[Rn]751
[Rn]7s2
[Rn]6 1752
[Rn]6</27s2
[Rn]5/26 171s2
[Rn]5/36 1752

Density (g cm 3)
(*at 0 0C, 1 atm)

22.6

22.5

21.4

19.3

13.55

11.8

11.34

9
.
8

9
.
2

0
.
0099*

5

10.0

11.7

15.4

19.07

Crystal in
Solid State

HCP

FCC

FCC

FCC

Rhombohedral

HCP

FCC

Rhombohedral

SC

Rhombohedral

BCC

FCC

FCC

BCT

Orthorhombic

m

1

m

m

A

"I don't really start until I get my proofs back from the printers. Then I can begin serious
writing.

"

John Maynard Keynes (1883-1946)
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E

Constants and Useful Information

Physical Constants

Atomic mass unit

Avogadro's number
Bohr magneton
Boltzmann constant

Electron mass in free space
Electron charge
Gas constant

Gravitational constant

Permeability of vacuum or
absolute permeability

Permittivity of vacuum or
absolute permittivity

Planck's constant

Planck's constant /In
Proton rest mass

Rydberg constant
Speed of light
Stefan's constant

amu

Na

k

tne

e

R

G

o

h

h

m

R

c

oo

1
.66054 x 10-27kg

6
.
02214 x lO mol"1

9
.
2740 x lO"24!!"1

1
.
3807 x lO"23 J K"1 = 8.6174 x lO-5 eV K"1

9
.10939 x 10-31kg

1
.
60218 x 10-19C

8
.
3145 J K"1 mol"1 or m3 Pa K"1 mol"1

6
.6742 x 10-11Nm2kg-2

47r x lO Hm-1 (orWbA-1

8
.
8542 x lO- Fm-1

6
.
626 x lO"34 J s = 4.136 x lO"15 eV s

1
.
055 x lO"34 J s = 6.582 x lO"16 eV s

1
.67262 x 10"27kg

1
.
0974 x lO7!*-1

2
.
9979 x 108 m s-1

5
.
6704 x lO"8 W m"2 K"4

Useful Information

Acceleration due to gravity at
45° latitude

kT atr=293K(20 0C)
kT atr=300K(27 0C)
Bohr radius

1 angstrom
1 micron

leV= 1.6022 x lO"19!
1 kJ mol"1 = 0.010364 eV atom

1 atmosphere (pressure)
= 1

.
013 x 105Pa

g

kT

kT

do

A

|xm

-i

9
.
81 m s"2

0
.
02525 eV

0
.
02585 eV

0
.
0529 nm

10-l0m
10-6m

864



Appendix E 865

LED Colors

The table gives the wavelength ranges and colors as usually specified for LEDs.

Color

Emerald Red

Blue        green       Green      Yellow     Amber     Orange     orange       Red     Deep red Infrared

X (nm)    X < 500    530-564    565-579   580-587   588-594    595-606    607-615   616-632   633-700     X > 700

Visible Spectrum

The table gives the typical wavelength ranges and color perception by an average person.

Color Violet Blue Green Yellow Orange Red

X (nm) 390-455 455-492 492-577 577-597 597-622 622-780

Complex Numbers

j
2

-1

expO
'

fl) = cos 0 + j sin 0

Z = a + jb = rejd

Z*=a- jb = re-je

r = (a2 + b2)l/2

Re(Z) = a

Magnitude2 = |Z|2 = ZZ*=a2 + b2

cos 0 = (eje +e-j9)

b
tan0 = -

a

lm(Z) = b

Argument = 0 = arctan 1-1

sin0= -l
2 j

Expansions

x      i 1    2       1 3
2!        3! 

n(ji - 1) ,    n(n - \){n - 2) ,(1 + x)n = 1 + nx +     _     a:2 -h - ~ V +

Small x:

2! 3!

(1 + x)n « 1 + rt*       sin  « * tan jc ~ jc

Small Aa: inx = x0 + Ax:      f(x) «        + A* ( - )
\dx/ Xo

cos a:  1



r i n d

Accelerated failure tests, 177

Acceptors, 390,461
Accumulation, 570

Accumulation region, 444
Activated state, 98

Activation energy, 98
Activator, 820, 841

excitation, 822

Active device, defined, 570
Affinity, electron, 375, 386, 462
Allotropy, 61-63, 102

transition temperature, 61
Alloy, 178

ternary, iii-v, 545
Amorphous semiconductors, 78-82,

458-461

bandgap, 460
extended states, 458,462
localized states, 459,463
mobility edge, 460
tail states, 460

Amorphous solids, 78-82,98-99
Ampere's law, 693
Angular momentum, 269

intrinsic, 245-247
orbital, 232

potential energy, 249-250
total, 252-253

Anion, 6, 15,99
Anisotropic magnetoresistance (AMR),

744-748,762

Anisotropy, magnetocrystalline, 706-708
shape, 725, 763

Antibonding orbital, 286, 288
Antiferromagnetism, 699, 759
Antireflection coating, 570, 802-803
Arrhenius rate equation, 47
a-Si:H

, 82,459
Aspect ratio, 175
Atomic concentration, 55

Atomic magnetic moments, 687-688
Bohr magneton, 688, 759
unfilled subshells, 688

Atomic mass, 8
Atomic mass number, 8

Atomic mass units (amu), 8,99
Atomic number, 4

effective (Ze#), 240
Atomic packing factor (APF), 55, 99
Atomic structure, 3-8

orbital angular momentum quantum
number, 4, 232, 270

principal quantum number, 4, 232, 270
shell, 4, 239
subshells, 4, 239

Atomic weight. See Atomic mass
Attenuation, 841
Attenuation coefficient, 841

Attenuation in optical fibers, 817-819
graph, 818
Rayleigh scattering limit, 819

Avalanche breakdown, 502-504, 570
Avalanche effect, 503

Average free time (in electron drift),
 117.

See also Mean free time

Avogadro's number, 8, 25, 99

B versus H, 716-717
Balmer series, 278

Balmer-Rydberg formula, 245
Band theory of solids, 291-299
Bandgap (energy gap) Eg, 302, 355, 357,

375, 464

direct band gap, 430,451
indirect band gap, 430,452
mobility gap, 460
narrowing and emitter injection

efficiency, 576
temperature dependence, 467

Bardeen-Cooper-Schrieffer
photo, 731
theory, 739

Barkhausen effect, 715

Basis, 50, 95,99
BCC (body centered cubic). See Crystal

structure

BCS theory. See Bardeen-Cooper-
Schrieffer

BCT (body centered tetragonal). See
Crystal structure

Bednorz, J. George, 684
Beer-Lambert law, 428

Biaxial crystals, 828
negative, 828
positive, 828

Binary eutectic phase diagrams, 90-95
Bipolar junction transistor, 475, 506-522,

570

a, 509-510

active region, 511
amplifier, CB, 515-517
/3,510, 521
base, 506

base transport factor, aj, 509-510
base-width modulation, 512, 570. See

also Early effect
collector, 506

collector junction, 507, 570
common base (CB) configuration,

506-517

common emitter (CE) DC characteris-
tics, 517-518

current gain a, CB, 509-510
current transfer ratio a, 509, 514
emitter, 506

emitter injection efficiency, 513-514,
575

emitter junction, 507, 571
emitter current, 509

equations, pnp BJT, 574-575
input resistance, 516, 519
power gain, 509
saturated operating region, 518
small signal equivalent circuit, 572
small signal low-frequency model,

518-522

transconductance, 520
transistor action, 509

transit time, minority carrier, 510
voltage gain, 516, 520

Birefrigence. See also Retarding plates
circular, 835-837

crystals, 827, 841
ofcalcite, 832-833

of calcite crystal, photo, 828
BJT. See Bipolar junction transistor
Blackbody radiation, 201-205

Planck's formula, 203

Rayleigh-Jeans law, 203
Stefan's black body radiation law, 203
Stefan's constant, 203
Wien's law, 277

Black's equation, 177, 178
Bloch wall, 706,708-711,759

potential energy, 710
thickness, 710

Bloch wavefunctions, 450,461,462

Bohr magneton, 280, 688, 759
Bohr model, 3

Bohr radius, 233, 239
Bohr's correspondence principle, 217
Boltzmann constant, 28

Boltzmann energy distribution, 39
Boltzmann factor, 38

Boltzmann statistics, 312-313, 363,

479,661

Bond, general, 9-25
energy, 11, 99
length, 10
polar, 22
primary, 9-18, 102
relative angle, 78
secondary 18-22, 102
switching, 155
twisting, 79

Bonding and types of solids, 9-25
Bonding (binding) energy, 11,99
Bonding orbital, 286, 288
Boson particle, 740
Bound charges, 589
Boundary conditions

dielectrics, 614-620,670
electric field, 794

magnetic field, 794
quantum mechanics, 210

Bragg diffraction condition, 194, 269, 356,
848-852

Bragg angle, 849
diffracted beam, 848

diffraction angle, 849
for cubic crystals, 851

Bragg distributed reflector, 568
Bragg's law. See Bragg diffraction

condition

Brass, 178, 182
Bravais lattices, 95-98

unit cell geometry, 56,97
Bronze, 178

Brewster's angle, 796, 841

866



Index 867

Brillouin zones, 355, 357-361
Buckminsterfullerene. See Carbon
Built-in field, 570

Built-in potential, 421-422,478-480
Built-in voltage, 570
Bulk modulus, 99

Capacitance
definition, 584

per unit volume, 634
temperature coefficient (TCC), 636
volume efficiency, 634

Capacitor
constructions, 631-634
dielectric materials, 631

dielectrics table, 635, 678
electrolytic, 633
equivalent circuits for parallel and

series, 676

polyester (PET), 636,677
polymeric film, 632
tantalum, 634

temperature coefficient, 636
types compared, 631,635,678

Carbon, 61-63

amorphous, 63
Buckminsterfullerene, 61-62

diamond, 61,62
graphite, 61, 62
lonsdaleite, 62

properties (table), 63
Carbon nanotube (CNT), 63, 336, 370

field enhancement factor, 370
Carrier concentration

majority carrier, 410
minority carrier, 410
of extrinsic semiconductor, 388-392
of intrinsic semiconductor, 380-387

saturation temperature, 397
temperature dependence of, 396-401

extrinsic range, 398
intrinsic range, 398
ionization range, 397

Cathode, 363

Cathodoluminescence, 335, 820, 843
Cation, 6, 15, 99
Cauchy coefficients (table), 782
Cauchy dispersion equation, 783,784
CB. See Conduction band

Ceramic, magnets, 726
Ceramic, materials, 22
Chemisorption, 74
Chip (integrated circuit), 570
Circular birefrigence, 835-837, 841

media, 836

optical activity, 835
specific rotary power, 836, 844

Cladding, 791
Clausius-Mossotti equation, 593-594,

602, 670
Coaxial cable failure, 628-631

thermal breakdown, 678-679

Coercive field (coercivity), 715,759
Cohesive energy, 17
Cole-Cole plots, 611-614
Collimated beam, 36

Common Base (CB) BJT configuration.
See Bipolar junction transistor

Compensated semiconductor, 461
Compensation doping, 392-396,461,

465

Complementary principle, 269
Complex dielectric constant, 605-611,

804-811

loss angle, 610
loss tangent, 607
relaxation peak, 607

Complex propagation constant, 805, 842

Complex refractive index, 804-811, 842,
845-847

extinction coefficient, 805, 842
for a-Si, 806
ofInP,808

resonance absorption, 809-811
Complex relative permittivity. See

Complex dielectric constant
Compton effect, 269
Compton scattering, 199-202
Conduction, 114-122,416-422

in metals, 318-320

in semiconductors, 378-380
in silver, 319

Conduction band (CB), 302, 374-378,
461

Conduction electron concentration,
115, 148

Conduction electrons, 115, 155, 181,299
Conduction in solids

electrical, 113-148
thermal, 149-154
in thin films, 166-167

Conductivity
activation energy for, 161
electrical, 178, 180-181
of extrinsic semiconductor, 389
of Fermi level electrons in metal, 318
of intrinsic semiconductor, 380

of ionic crystals and glasses, 159-162
lattice-scattering-limited, 124
of metals, 114, 350-352, 367
ofnonmetals, 154-162
of semiconductors, 155-159

temperature dependence of, 122-125,
404-406

Conductivity-mixture rule, 140
Contact potential, 320-322
Continuity equation, 422-427

steady state, 424-427
time-dependent, 422-423

Continuous random network (CRN)
model, 79

Cooper pairs, 740, 759
Coordination number (CN), 12, 17

definition, 99
Core, 791

Corona discharge, 622,670
Covalent bond, 99
Covalent solids, 595-596

Covalently bonded solids, 11-13
Critical angle, 842
Critical electric field, 571

Crystal, 99
Crystal directions and planes, 56-61,110
Crystal lattice, 49-63

different types, 97
Crystal periodicity, 49

strained around a point defect, 66
Crystal structure, 50

body-centered cubic (BCC), 51,
97, 109

body-centered tetragonal (BCT), 97,98
close-packed, 13, 51
CsCl, 54

diamond cubic, 52, 109
face-centered cubic (FCC), 14,50,55,

97, 100

diffraction pattern (figure), 852
hexagonal close-packed (HCP),

 51

NaCl, 51-53

polymorphic, 61
properties (table), 54
study using x-ray diffraction, 849-852

Laue technique, 850
powder technique, 851

types, 49-56,97
zinc blende (ZnS), 53, 109

Crystal surface, 73-76
absorption, 74
adsorption, 74
chemisorption, 74
dangling bonds, 74, 81
Kossel model, 74

passivating layer, 74
physisorption (physical adsorption), 74
reconstructed, 74

terrace-ledge-kink model, 74
Crystal symmetry, 98
Crystal systems, 98
Crystal types, 49-56
Crystalline defects, 64-76
Crystalline solid, 49
Crystalline state, 49-63
Crystallization, 99

from melt, 70
nuclei, 70

Cubic crystals, 97
interplanar separation, 851

Cubic symmetry, 50
Curie temperature, 648,650,670,703-704

table, 704
Curie-Weiss law, 697

Current in plane (CIP), 747
Czochralski growth, 76-77

Dangling bonds, 81
De Broglie relationship, 205-207, 269
Debye equations, 611-614,670

non-Debye relaxation, 614
Debye loss peak, 612
Debye heat capacity, 342-348
Debye frequency, 344, 363
Debye temperature, 344, 363

table, 346

Defect structures, 75-76

Deformation, plastic (permanent), 69
Degeneracy, 230

three-fold, 230

Degenerate semiconductor, 406,461
Degree of freedom, 28
Delocalized electrons, 13

electron cloud or gas, 13, 295
Demagnetization, 717-719
Density of states, 305-311, 315-316, 363,

380-382,429

effective density at CB edge, 382,461
effective density at VB edge, 382

Density of vibrational states, 364
Deperming. See Demagnetization
Depletion capacitance, 498-499, 564
Depletion region. See pn junction
Depolarizing field, 657-658

depolarizing factor, 657
Diamagnetism, 696-698

deperming, 718
Dichroism, 833
Dielectric breakdown, 620-631

aging effects, 621
breakdown mechanisms compared, 628
in coaxial cables, 628-631,678-679
electrical tree, 626

electrofracture, 624-625,671
electromechanical, 624-625,671
electron avalanche breakdown, 623

electronic, 623-624, 671
external discharges, 627-628, 671
in gases, 621-622
internal discharges, 625-626,671
intrinsic, 623-624,671
in liquids, 622-623
loss, 603-611

partial discharge, 621-622,672
in solids, 623-631

surface tracking, 628, 671,672
table, 621



868 Index

Dielectric breakdown-Cont.
thermal, 624, 673

water treeing, 627
Dielectric materials, 583-683

constant. See Relative permittivity
definition, 670

dispersion relation, 666
loss, 603-611,670
loss table, 611

low-it, 175

properties (table), 678
strength, 584, 620-621, 670. See also

Dielectric breakdown

strength table, 621
volume efficiency, 634

Dielectric mirrors, 803,
 842

Dielectric mixtures, 667-669
effective dielectric constant, 667
Lichtenecker formula, 668

logarithmic mixture rules, 668
Maxwell-Gamett formula, 669

Dielectric resonance, 607,662-667, 670

frictional force, 663

Lorentz dipole oscillator model, 664
natural angular frequency, 664
peak, 665
relaxation peak, 665
resonant angular frequency, 664
restoring force, 663
spring constant, 663

Diffraction, 269, 848-852. See also Bragg
diffraction condition

angle, 849
beam, 848

patterns (figure), 193, 852
study of crystal structure, 352-361,

849-852

Diffractrometer
,
 851

Diffusion, 46-49, 99, 416-422,461, 571
coefficient, 48, 99, 420
current, 484

current density, 416,418
diffusion length, 424,427,483
mean free path, 416-417

Diffusion capacitance, 500-502, 571
diode action, 501

dynamic conductance, 501
dynamic (incremental) resistance,

500, 571

Diffusion coefficient, 420

Diode. See pn Junction
action, 501

equation, 488
laser, 266-269

long, 572
photodiodes, 564-566
short, 486, 572

Dipolar (orientational) polarization,
598-600, 660-662, 670

Langevin function, 661-662
relaxation equation, 670
relaxation process, 604, 670
relaxation time, 604

Dipole moment. See Electric dipole
moment; Magnetic dipole moment

Dipole relaxation, 604-607, 670
Dipole-dipole interaction,

 20-21
Dirac, Paul Adrien Maurice

,
 314

Direct recombination capture
coefficient, 469

Dislocations, 68-70, 99
edge, 68, 99
screw, 69, 102

Dispersion relation, 364, 666, 842. See
also Refractive index

Dispersive medium, 785,
 842

Domains. See Ferromagnetism
Donors, 389,461

Doping, 388-396
compensation, 392-394
H-type, 384, 388-390
/7-type, 384, 390-392

Doppler effect, 265, 269
Double-hetrostructure (DH) device, 547
Drift mobility, 117,401 04

definition, 178
due to ionic conduction, 162

effective, 127,403
impurity dependence, 401-404
impurity-scattering-limited, 127,403,462
lattice-scattering-limited, 127,402, 463
tables, 146, 386
temperature dependence, 401-404

Drift velocity, 114, 118, 121, 157,
178,379

Drude model, 114-122,319
Dulong-Petit rule, 30, 344
Dynamic (incremental) resistance,

500-502, 571

Early effect, 512, 570
Early voltage, 538
Eddy currents and losses, 760, 766
Effective mass, 303-305, 364, 379,

453 55,462

EHP. See Electron-hole pairs
Eigenenergy, 214
Eigenfunction, 210
Einstein relation, 188,419,462
E-k diagrams,

 448 152

Elastic modulus, 24-25, 100
Electric dipole moment, 19, 100, 583,

585-589, 670

definition, 19, 100, 670
induced, 20, 586, 779-780
in nonuniform electric field, 674-675

permanent, 15, 19, 598
relaxation time, 604

Electric displacement, 654-658
depolarizing factor, 657
depolarizing field, 657

Electric susceptibility, 591, 671
Electrical conductivity, 178, 180-181
Electrical contacts, 143-144

Electrical noise, 42-45, 108. See also Noise
Johnson resistor noise equation, 44
rms noise voltage, 44

Electrochemical potential, 321
Electrodeposition, 167
Electroluminescence, 544, 820, 843

injection, 823
Electromechanical coupling factor, 642
Electromigration, 172

accelerated failure tests, 177
of Al-Cu interconnects, 189
barrier, 177

definition, 178
hillock, 177

mean time to 50 percent failure, 177
rate, 177

void, 177

Electromigration and Black's equation,
176-177

Electron

average energy in CB, 385,462
average energy in metal, 317, 363
concentration in CB, 382, 388-390, 392
conduction electrons, 115, 155, 181, 299
confined,212-217

crystal momentum 451,454, 813-814
current due to, 419

diffraction in crystals, 352-361
diffraction patterns, 206
diffusion current density, 418
effective mass, 303-305, 364, 379,

453 55,462

effective speed in metals, 317
energy in hydrogenic atom, 236-241
energy in metals, 317
Fermi-Dirac statistics, 123

gas, 295
group velocity, 454
magnetic dipole moment, 248-252
mean recombination time {pn junction),

487

mobility, 379
momentum, 214

motion and drift, 452 53

in a potential box, 228-230
spin, 245-247, 271
spin resonance (ESR), 280
standing wave, 353
surface scattering, 168-172
as a wave, 205-212, 352-354
wavefunction in hydrogenic atom,

231-236

wavefunction in infinite PE well, 229

wavelength, 207
Electron affinity, 6, 100, 375, 436, 462
Electron beam deposition, 80, 167
Electron drift mobility. See Drift mobility
Electron spin resonance (ESR), 280
Electronegativity, 22, 100
Electron-hole pairs, 376-378

generation, 302, 376-378, 383,410-414
mean thermal generation time, 490
recombination, 377-378,412,457 58

Electronic impurity, 546
Electronic (quantum) state, 234, 247
Electro-optic effects, 837-841, 842

field induced refractive index, 838
Kerr effect, 838, 842
noncentrosymmetric crystals, 838
Pockels effect, 838, 843

Electroresistivity, 431, 463
Energy bands, 291-295, 305-308
Energy density, 269, 695
Energy gap {Eg). See Bandgap
Energy, quantized, 214, 236-241

ground state energy, 215
in the crystal, 462
infinite potential well, 230

Energy versus crystal momentum plot. See
E-k diagrams

Epitaxial layer, 544,571
Equilibrium, 100
Equilibrium state, 41, 100
Eutectic composition, 93, 100
Eutectic phase diagrams, 90-95
Eutectic point, 91
Eutectic transformation, 92
Evanescent wave, 798

attenuation coefficient, 798

penetration depth, 799
Excess carrier concentration, 410,462,

468 69

Exchange integral, 702
Exchange interaction, 700-703, 760
Excitation

activator, 822

host, 822
Excited atom, 6

Extended states, 458,462
External quantum efficiency, 571
External reflection, 798, 801-802, 846
Extinction coefficient, 805, 842
Extrinsic semiconductors, 388-396,462,

464-465

Family of directions in a crystal, 58
Family of planes in a crystal, 59
Fermi eneigy, 294, 314, 317, 320-322,

364, 366,435 36, 462
in intrinsic semiconductor, 384



Index 869

in a metal, 315-317
table, 295

Fenni surface, 359

Fermi-Dirac statistics, 123, 312-315,
364

Ferrimagnetism, 700, 760
Ferrite antenna, 767-768

Ferrites, 723, 760, 767-768. See also
Ferrimagnetism

Ferroelectric crystals, 647-653, 671
ferroelectric axis, 649

Ferromagnetism, 699, 760
closure domains, 706

domain wall energy, 709-711, 760,
764-765

domain wall motion, 712-713
domain walls, 706, 708-711,760
domains, 699, 705-706, 761
electrostatic interaction energy,

 701

energy band model, 742-744
magnetocrystalline anisotropy,

706-708

materials table, 704

ordering, 699
origin, 700-703
polycrystalline materials, 713-717

Pick's first law, 418

Field assisted tunneling probability, 334
Field effect transistor, 571. See JFET;

MOSFET

Field emission, 332-337, 364
Field emission tip, 335

anode, 335

gate, 335
Spindt tip cathode, 335

Field enhancement factor, 370
Fluence

energy, 275
photon, 276

Fluorescence, 820, 842
Flux, defined, 269

luminous, 853

of particles, 416
of photons, 198, 853
photometric, 853
radiant, 853

Flux quantization, 758-759
Forward bias, 487-489. See also pn

Junction

Fourier's law, 150, 178
Fowler-Nordheim

anode current, 335

equation, 334
field emission current, 370

Fraunhofer, 244-245

Free surface charge density, 592
Frenkel defect, 66, 100
Fresnel's equations, 793-803, 842
Fresnel's optical indicatrix, defined,

829-832, 843

extraordinary wave, 829
ordinary wave, 829

Frequency, resonant
antiresonant, 645

mechanical resonant, 645

natural angular frequency, 664
resonant angular frequency, 664

Fuchs-Sondheimer equation, 170

GaAs, 52, 386, 466
Gas constant, 25

Gas pressure (kinetic theory), 27
Gauge factor, 434
Gauss's law, 614-620, 654-658, 671
Giant magnetoresistance (GMR),

744-748,See also

Magnetoresistance
table, 747

Glasses, 78-82. See also Amorphous
solids

melt spinning, 79
GMR. See Giant magnetoresistance
Grain, 70, 100
Grain boundaries, 70-73, 100

disordered, 72

Grain coarsening (growth), 73
Ground state, 215, 269

energy, 215, 237
Group index, 784-787, 842

definition, 785

Group velocity, 364, 784-787, 842
in medium, 785
in vacuum, 785

Gruneisen's model of thermal expansion,
361-363

Gruneisen's law, 362, 371
Gruneisen's parameter (table), 363

Gyromagnetic ratio, 687

Hall coefficient, 146, 178, 359
for ambipolar conduction, 158
for intrinsic Si, 158-159

Hall devices, 145-148

Hall effect, 145-148, 178, 185-186
in semiconductors, 156-159, 468

Hall field, 146

Hall mobility, 148
Hard disk storage, 750-752

magnetic bit tracks, 751
magnetoresistance sensor, 751
thin film heads, 752

Hard magnetic materials, 724-729,
761

design, 768-769
neodymium-iron-boron, 727
rare earth cobalt, 726-727

single domain particles, 724, 761
table, 724

Harmonic oscillator, 337-342,
 364

average energy, 343
energy, 338
potential energy of, 338
Schrddinger equation, 338
zero point energy, 339, 365

Heat, 41, 100

Heat capacity, 28, 100
Heat current, 153
Heat of fusion, 84

Heat, thermal fluctuation and noise,
40-45

noise in an RLC circuit, 44

rms noise voltage, 44
thermal equilibrium, 40

Heisenberg's uncertainty principle,
217-220, 269, 277

for energy and time, 219
for position and momentum, 218

Helium atom, 254-256
Helium-neon laser, 261-264

efficiency, 264
Herv6-Vandamme relationship,

 845

Heterogeneous media, 667-669
Lichtenecker formula, 668

logarithmic mixture rules, 668
Maxwell-Gamett formula, 669

Heterogeneous mixture (multiphase solid),
139-143, 178

Heterojunction, 547, 571
Heterostructure devices, 544, 547

confining layers, 548
double hetrostructure, 547

Hexagonal crystals, 52, 97
HF resistance of conductor, 163-166

Hole, 155, 302, 373, 376-378,455 56

concentration in VB, 382, 391-392
current due to, 419

diffusion current density, 418
diffusion length, 483
effective mass, 380,456
mean recombination time (pn junction),

487

mobility, 380
Homogeneous mixture, 178-179
Homojunction, 547, 571
Host excitation, 822

Host matrix, 820, 843
Human eye, 273-275

photopic vision, 273
scotopic vision, 273

Hund's rule, 256-258, 269, 281
Hybrid orbital, 300
Hybridization, 300
Hydrogen bond, 19
Hydrogenated amorphous silicon. See

a-Si:H

Hydrogenic atom, 231-253
electron wavefunctions, 231-236

line spectra, 278
Hysteresis loop, 715-719, 761

energy dissipated per unit volume,
718-719

loss, 761,766

Image charges theorem, 332
Impact ionization, 503, 571
Impurities, 64-66
Incandescence, 820

Inductance, 163
,
 693-694

of a solenoid, 763

toroid, 694, 723, 765
Infinite potential well, 212-217
Insulation strength. See also Dielectric

breakdown

aging, 627, 671
Integrated circuit (IC), 571
Intensity, defined, 269

of EM waves, 192

©flight, 192, 197-198, 799
Interconnects, 172-176, 179,

 188

aspect ratio, 175
effective multilevel capacitance, 174
low-k dielectric materials, 175

multilevel interconnect delay time, 175
RC time constant, 173, 175-176

Interfacial polarization. See Polarization
Internal discharges. See Dielectric

breakdown

Internal reflection, 796-797, 800-801,
846

Interplanar separation in cubic crystals,
851

Interstitial site, 45, 101
impurity, 66, 83-84

Intrinsic angular momentum. See Angular
momentum; Spin

Intrinsic concentration (/!,), 383,462,485
Intrinsic semiconductors, 374-387,462
Inversion, 532-535,571. See also MOSFET
Ion implantation, 541-543, 571
Ionic conduction, 179

Ionic crystals, 17
lonically bonded solids, 14-18, 104

table, 21

Ionization energy, 6, 15, 101, 237,462
for /ith shell, 237
ofHe+

,
240

Irradiance, 787-789

average, 788, 842
instantaneous, 788, 842

Isoelectronic impurity, 546, 572
Isomorphous, 101
Isomorphous alloys, 83-88
Isomorphous phase diagram, 84, 179
Isotropic substance, 101
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Dielectric breakdown-Cont.

thermal, 624, 673
water treeing, 627

Dielectric materials, 583-683

constant. See Relative permittivity
definition, 670

dispersion relation, 666
loss, 603-611,670
loss table, 611

low-it, 175

properties (table), 678
strength, 584, 620-621, 670. See also

Dielectric breakdown

strength table, 621
volume efficiency, 634

Dielectric mirrors, 803, 842
Dielectric mixtures, 667-669

effective dielectric constant, 667
Lichtenecker formula, 668

logarithmic mixture rules, 668
Maxwell-Gamett formula, 669

Dielectric resonance, 607,662-667, 670
frictional force, 663

Lorentz dipole oscillator model, 664
natural angular frequency, 664
peak, 665
relaxation peak, 665
resonant angular frequency, 664
restoring force, 663
spring constant, 663

Diffraction, 269, 848-852. See also Bragg
diffraction condition

angle, 849
beam, 848

patterns (figure), 193, 852
study of crystal structure, 352-361,

849-852

Diffractrometer, 851

Diffusion, 46- 9, 99,416-422,461,571
coefficient, 48, 99, 420
current, 484

current density, 416,418
diffusion length, 424,427,483
mean free path, 416-417

Diffusion capacitance, 500-502, 571
diode action, 501

dynamic conductance, 501
dynamic (incremental) resistance,

500, 571

Diffusion coefficient, 420

Diode. See pn Junction
action, 501

equation, 488
laser, 266-269

long, 572
photodiodes, 564-566
short, 486, 572

Dipolar (orientational) polarization,
598-600, 660-662,670

Langevin function, 661-662
relaxation equation, 670
relaxation process, 604, 670
relaxation time, 604

Dipole moment. See Electric dipole
moment; Magnetic dipole moment

Dipole relaxation, 604-607,670
Dipole-dipole interaction, 20-21
Dirac, Paul Adrien Maurice, 314

Direct recombination capture
coefficient, 469

Dislocations, 68-70, 99
edge, 68, 99
screw, 69, 102

Dispersion relation, 364,666, 842. See
also Refractive index

Dispersive medium, 785, 842
Domains. See Ferromagnetism
Donors, 389,461

Doping, 388-396
compensation, 392-394
/i-type, 384, 388-390
p-type, 384, 390-392

Doppler effect, 265, 269
Double-hetrostructure (DH) device,

 547

Drift mobility, 117, 401-404
definition, 178

due to ionic conduction, 162

effective, 127,403
impurity dependence, 401-404
impurity-scattering-limited, 127,403,462

lattice-scattering-limited, 127, 402, 463
tables, 146, 386
temperature dependence, 401-404

Drift velocity, 114, 118, 121, 157,
178, 379

Drude model, 114-122,319
Dulong-Petit rule, 30, 344
Dynamic (incremental) resistance,

500-502, 571

Early effect, 512, 570
Early voltage, 538
Eddy currents and losses, 760, 766
Effective mass, 303-305, 364, 379,

453-455,462

EHP. See Electron-hole pairs
Eigenenergy, 214
Eigenfunction, 210
Einstein relation, 188,419,462
E-k diagrams,

 448-452

Elastic modulus, 24-25, 100
Electric dipole moment, 19, 100, 583,

585-589, 670

definition, 19, 100, 670
induced, 20, 586, 779-780
in nonuniform electric field, 674-675

permanent, 15, 19, 598
relaxation time, 604

Electric displacement, 654-658
depolarizing factor, 657
depolarizing field, 657

Electric susceptibility, 591,671
Electrical conductivity, 178, 180-181
Electrical contacts, 143-144

Electrical noise, 42-45, 108. See also Noise
Johnson resistor noise equation, 44
rms noise voltage, 44

Electrochemical potential, 321
Electrodeposition, 167
Electroluminescence, 544, 820, 843

injection, 823
Electromechanical coupling factor, 642
Electromigration, 172

accelerated failure tests, 177
of Al-Cu interconnects, 189
barrier, 177

definition, 178
hillock, 177

mean time to 50 percent failure, 177
rate, 177

void, 177

Electromigration and Black's equation,

176-177

Electron

average energy in CB, 385,462
average energy in metal, 317, 363
concentration in CB, 382, 388-390, 392
conduction electrons, 115, 155, 181, 299
confined, 212-217

crystal momentum 451, 454, 813-814
current due to, 419

diffraction in crystals, 352-361
diffraction patterns, 206
diffusion current density, 418
effective mass, 303-305, 364

, 379,
453 55, 462

effective speed in metals, 317
energy in hydrogenic atom, 236-241
energy in metals, 317
Fermi-Dirac statistics, 123

gas, 295
group velocity, 454
magnetic dipole moment, 248-252
mean recombination time (injunction),

487

mobility, 379
momentum, 214

motion and drift, 452-453

in a potential box, 228-230
spin, 245-247, 271
spin resonance (ESR), 280
standing wave, 353
surface scattering, 168-172
as a wave, 205-212, 352-354
wavefunction in hydrogenic atom,

231-236

wavefunction in infinite PE well, 229

wavelength, 207
Electron affinity, 6, 100, 375,436,462

Electron beam deposition, 80, 167
Electron drift mobility. See Drift mobility
Electron spin resonance (ESR),

 280

Electronegativity, 22, 100
Electron-hole pairs, 376-378

generation, 302, 376-378, 383,410-414
mean thermal generation time, 490
recombination, 377-378,412,457 58

Electronic impurity, 546
Electronic (quantum) state, 234,

 247

Electro-optic effects, 837-841, 842
field induced refractive index, 838

Kerr effect, 838, 842
noncentrosymmetric crystals, 838
Pockels effect, 838, 843

Electroresistivity, 431, 463
Energy bands, 291-295,

 305-308

Energy density, 269, 695
Energy gap {Eg). See Bandgap
Energy, quantized, 214, 236-241

ground state energy, 215
in the crystal, 462
infinite potential well, 230

Energy versus crystal momentum plot. See
E-k diagrams

Epitaxial layer, 544, 571
Equilibrium, 100
Equilibrium state, 41, 100
Eutectic composition, 93, 100
Eutectic phase diagrams, 90-95
Eutectic point, 91
Eutectic transformation, 92

Evanescent wave, 798

attenuation coefficient, 798

penetration depth, 799
Excess carrier concentration, 410,462,

468 69

Exchange integral, 702
Exchange interaction, 700-703, 760
Excitation

activator, 822

host, 822

Excited atom, 6

Extended states, 458,462
External quantum efficiency, 571
External reflection, 798, 801-802, 846
Extinction coefficient, 805, 842
Extrinsic semiconductors, 388-396,462,

464-465

Family of directions in a crystal, 58
Family of planes in a crystal, 59
Fermi energy, 294, 314, 317, 320-322,

364, 366, 435 36, 462
in intrinsic semiconductor, 384
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in a metal, 315-317
table, 295

Fermi surface, 359

Fermi-Dirac statistics, 123, 312-315,
364

Ferrimagnetism, 700, 760
Ferrite antenna, 767-768

Ferrites, 723, 760, 767-768. See also
Ferrimagnetism

Ferroelectric crystals, 647-653,
 671

ferroelectric axis, 649

Ferromagnetism, 699, 760
closure domains, 706

domain wall eneigy, 709-711, 760,
764-765

domain wall motion, 712-713

domain walls, 706, 708-711, 760
domains, 699, 705-706, 761
electrostatic interaction energy, 701
energy band model, 742-744
magnetocrystalline anisotropy,

706-708
materials table, 704

ordering, 699
origin, 700-703
polycrystalline materials, 713-717

Pick's first law, 418

Field assisted tunneling probability,
 334

Field effect transistor, 571. See JFET;
MOSFET

Field emission, 332-337, 364
Field emission tip, 335

anode, 335

gate, 335
Spindt tip cathode, 335

Field enhancement factor, 370
Fluence

energy, 275
photon, 276

Fluorescence, 820, 842
Flux, defined, 269

luminous, 853

of particles, 416
of photons, 198, 853
photometric, 853
radiant, 853

Flux quantization, 758-759
Forward bias, 487-489. See also pn

Junction

Fourier's law, 150, 178
Fowler-Nordheim

anode current, 335

equation, 334
field emission current, 370

Fraunhofer, 244-245

Free surface charge density, 592
Frenkel defect, 66, 100
Fresnel's equations, 793-803, 842
Fresnel's optical indicatrix, defined,

829-832, 843

extraordinary wave, 829
ordinary wave, 829

Frequency, resonant
antiresonant, 645
mechanical resonant, 645

natural angular frequency, 664
resonant angular frequency, 664

Fuchs-Sondheimer equation, 170

GaAs, 52, 386, 466
Gas constant, 25

Gas pressure (kinetic theory), 27
Gauge factor, 434
Gauss's law, 614-620, 654-658, 671
Giant magnetoresistance (GMR),

744-748, 751,760. See also
Magnetoresistance

table, 747

Glasses, 78-82. See also Amorphous
solids

melt spinning, 79
GMR. See Giant magnetoresistance
Grain, 70, 100
Grain boundaries, 70-73, 100

disordered, 72

Grain coarsening (growth), 73
Ground state, 215, 269

energy, 215, 237
Group index, 784-787, 842

definition, 785

Group velocity, 364, 784-787, 842
in medium, 785
in vacuum, 785

Gruneisen's model of thermal expansion,
361-363

Gruneisen's law, 362, 371
Gruneisen's parameter (table), 363

Gyromagnetic ratio, 687

Hall coefficient, 146, 178, 359
for ambipolar conduction, 158
for intrinsic Si, 158-159

Hall devices, 145-148

Hall effect, 145-148, 178, 185-186
in semiconductors, 156-159,468

Hall field, 146

Hall mobility, 148
Hard disk storage, 750-752

magnetic bit tracks, 751
magnetoresistance sensor, 751
thin film heads, 752

Hard magnetic materials, 724-729,
761

design, 768-769
neodymium-iron-boron, 727
rare earth cobalt, 726-727

single domain particles, 724, 761
table, 724

Harmonic oscillator, 337-342, 364
average energy, 343
energy, 338
potential energy of, 338
Schrodinger equation, 338
zero point energy, 339, 365

Heat, 41, 100
Heat capacity, 28, 100
Heat current, 153
Heat of fusion, 84

Heat, thermal fluctuation and noise
,

40-45

noise in an RLC circuit, 44

rms noise voltage, 44
thermal equilibrium, 40

Heisenberg's uncertainty principle,
217-220, 269, 277

for energy and time, 219
for position and momentum, 218

Helium atom, 254-256
Helium-neon laser, 261-264

efficiency, 264
Herv6-Vandamme relationship, 845
Heterogeneous media, 667-669

Lichtenecker formula, 668

logarithmic mixture rules, 668
Maxwell-Gamett formula, 669

Heterogeneous mixture (multiphase solid),

139-143, 178

Heterojunction, 547, 571
Heterostructure devices, 544, 547

confining layers, 548
double hetrostructure, 547

Hexagonal crystals, 52, 97
HF resistance of conductor, 163-166

Hole, 155, 302, 373, 376-378,455- 56
concentration in VB, 382, 391-392
current due to, 419

diffusion current density, 418
diffusion length, 483
effective mass, 380,456
mean recombination time {pn junction),

487

mobility, 380
Homogeneous mixture, 178-179
Homojunction, 547, 571
Host excitation, 822

Host matrix, 820, 843
Human eye, 273-275

photopic vision, 273
scotopic vision, 273

Hund's rule, 256-258, 269, 281
Hybrid orbital, 300
Hybridization, 300
Hydrogen bond, 19
Hydrogenated amorphous silicon. See

a-Si:H

Hydrogenic atom, 231-253
electron wavefunctions, 231-236

line spectra, 278
Hysteresis loop, 715-719, 761

energy dissipated per unit volume,

718-719

loss, 761,766

Image charges theorem, 332
Impact ionization, 503, 571
Impurities, 64-66
Incandescence, 820

Inductance, 163,693-694
of a solenoid, 763

toroid, 694, 723, 765
Infinite potential well, 212-217
Insulation strength. See also Dielectric

breakdown

aging, 627,671
Integrated circuit (IC), 571
Intensity, defined, 269

of EM waves, 192

of light, 192, 197-198, 799
Interconnects, 172-176, 179, 188

aspect ratio, 175
effective multilevel capacitance, 174
low-k dielectric materials, 175

multilevel interconnect delay time, 175
RC time constant, 173, 175-176

Interfacial polarization. See Polarization
Internal discharges. See Dielectric

breakdown

Internal reflection, 796-797, 800-801,
846

Interplanar separation in cubic crystals,

851

Interstitial site, 45, 101
impurity, 66, 83-84

Intrinsic angular momentum. See Angular
momentum; Spin

Intrinsic concentration («,), 383,462,485
Intrinsic semiconductors, 374-387,462
Inversion, 532-535,571. See also MOSFET
Ion implantation, 541-543, 571
Ionic conduction, 179

Ionic crystals, 17
lonically bonded solids, 14-18, 104

table, 21

Ionization energy, 6, 15, 101, 237,462
for /ith shell, 237
ofHe+

,
240

Irradiance, 787-789

average, 788, 842
instantaneous, 788, 842

Isoelectronic impurity, 546, 572
Isomorphous, 101
Isomorphous alloys, 83-88
Isomorphous phase diagram, 84,179
Isotropic substance, 101
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JFET, 522-532, 571
amplifier, 528-532,577
channel, 523, 570
characteristics, 524, 528
common source amplifier, 529
constant current region, 528
current saturation region, 528
drain, 522
drain current, 523
field effect, 528

gate, 522
general principles, 522-528
nonlinearity, 532
pentode region, 528
pinch-off condition, 525-526
pinch-off voltage, 524, 572, 576-577
quiescent point, 529
source, 522

transconductance, 531

voltage gain, small-signal, 531
Johnson resistor noise equation,

 44

Josephson effect, 756-758
dc characteristics, 757
definition of 1 V, 758

Joule's law, 179

Junction field effect transistor. See JFET

k
. See Wavevector

Kamerlingh Onnes, Heike, 730
Kerr effect, 838, 842

coefficients, table, 840
Kilby, Jack, 474
Kinetic (molecular) theory, 25-36, 101

degree of freedom, 28
equipartition of energy theorem,

 28

heat capacity, 28. See also Dulong-Petit
rule

mean kinetic energy,
 27-28

mean speed, 27, 30-31, 115
thermal fluctuations, 40-45

Kossel model, 74

Kramers-Kroning relations, 806,
 842-843

Lamellae, 93

Langevin function, 661-662
Lasers, 258-267,269-270

cavity modes, 265
diode, 266-269

Doppler effect, 265
He-Ne laser. See Helium-neon laser

lasing emission, 261
linewidth, 265

long-lived states, 260
metastable state, 260

output spectrum,
 265-267

population inversion, 259
pump energy level, 260
pumping, 260, 270
semiconductor, 475, 566-569
single-frequency,

 569

single-mode, 569
stimulated emission, 259,

 271
threshold current, 569

Lattice, 50, 95, 101. See also Bravais
lattices

cut-off frequency, 340
energy, 18
parameter, 50, 56, 96, 101
space, 95
waves, 337-342, 347, 364

Lattice vibrations, 339-350

density of states, 343, 363
heat capacity, 344
internal energy, 343
modes, 341-342, 364
state, 341,364

Lattice-scattering-limited conductivity,
124

Laue technique, 850
Law of the junction, 482-483, 572
Lennard-Jones 6-12 potential energy

curve, 23

Lever rule, 144
Lichtenecker formula, 668

Light absorption, 804-811
and conductivity, 808

Light as wave, 191-194
Light emitting diodes (LEDs), 475,543-551

characteristics, 548-551
electroluminescence, 544

external efficiency,
 546

heterojunction high intensity, 547-548
linewidth, 549,572, 579
materials, 546

principles, 543-546
spectral linewidths, 550-551, 579
substrate, 544

turn-on (cut-in) voltage, 550, 573
Light propagation, 804-805

attenuated, 805

conduction loss, 805
lossless, 804

Light scattering, 804, 816-817, 844
Light waves, 774-776
Line defects, 68-70

strain Held, 68

Linear combination of atomic orbitals

(LCAO), 287, 364
Liquidus curve, 85
Local field, 593-594,658-660,671-672
Localized states, 459,463

Long range order, 49,78

Lonsdaleite, 62

Lorentz dipole oscillator model, 664

Lorentz equation, 658-660
Lorentz field, 593-594
Lorentz force, 145, 179
Lorenz number, 150. See also

Wiedemann-Franz-Lorenz's law

Loss angle, 610
Loss tangent (factor), 607,

 672
Lumens, 853

Luminescence
,
 820-825

activator, 820, 841
activator excitation, 822

cathodoluminescence, 820, 843
electroluminescence, 544, 820, 843
fluorescence, 820, 842
host excitation, 822

host matrix, 820, 843
phosphorescence, 821, 843
photoluminescence, 820, 843
radiative recombination center, 822
Stoke's shift, 822, 844
X-ray,

 820

Luminescent (luminescence centers). See
Activator

Luminous efficacy, 854
Luminous (photometric) flux or power,

270, 273, 853
lumens, 853

Lyman series, 278

Madelung constant, 17
Magnet, permanent,

 768
table, 768

with yoke and air gap, 768-769
Magnetic bit tracks, 751
Magnetic dipole moment, 685-686,761

atomic, 687-688
definition, 686

of electron, 248-252

orbital, 249,687
per unit volume, 689
potential energy, 249-250
spin, 249, 687

Magnetic domains. See Ferromagnetism
Magnetic field (B), 179, 761, 787-789

in a gap, 771
intensity, 691-692
transverse, 793

Magnetic field intensity (strength). See
Magnetizing field (H)

Magnetic flux, 693, 761
quantization, 758-759

Magnetic flux density. See Magnetic
field

Magnetic induction. See Magnetic field
Magnetic materials classification,

696-700

amorphous, 722
soft and hard materials

,
 719-721

table, 697

Magnetic moment. See Magnetic dipole
moment

Magnetic permeability, 179, 692-696,
761. See also Relative permeability

quantities table, 693
relative

, 692, 762
Magnetic pressure, 769-770
Magnetic quantities and units, table, 693
Magnetic quantum number, 232, 270
Magnetic recording, 749-756

fringing magnetic field, 749, 771
general principles, 749-750,770-771
hard disk storage, 750-752
head materials, 752-753

inductive recording heads, 749
longitudinal recording,

 749

magnetic bit tracks, 751
materials tables

, 754, 755
storage media, 753-756,

 770-771
thin film heads, 752

Magnetic susceptibility, 692-696, 762
Magnetism and energy band diagrams,

740-744

Energy band model of ferromagnetism,

742-744

Pauli-Spin paramagnetism, 740-742
Magnetization current, 690, 762
Magnetization of matter,

 685-696

Magnetization vector (M), 688-690, 762
and surface currents, 690,762

Magnetization versus H, 713-717
coercivity, 715, 759
initial magnetization, 716
remanent (residual), 715,762-763
saturation, 703-704, 717,763

Magnetizing field (H), 691-692, 761
conduction current, 691

Magnetocrystalline anisotropy, 706-708,
762

easy direction, 706, 708,
 760

energy, 708, 762
hard direction, 708, 761

Magnetometer, 179
Magnetoresistance, anisotropic and giant,

744-748, 762

current in plane (CIP), 747
ferromagnetic layer, 745
spacer, 745
spin valve, 747

Magnetostatic energy, 705,
 762

density, 696
per unit volume, 694-696

Magnetostriction, 711-712,762
saturation strain, 711

Magnetostrictive energy, 711,762
constant, 711

Majority carrier, 410,463
Mass action law (semiconductors),

383,463

with bandgap narrowing,
 576

Mass fractions, 8-9, 88
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Matthiessen's rule, 125-134, 179, 181
combined with Nordheim's rule, 137,

142-143

Maxwell's equations, 774
Maxwell-Boltzmann distribution function,

37-39

Maxwell's principle of equipartition of
energy, 28,42 3

Mayadas-Shatkez formula, 168
Mean free path

of electron, 122, 123, 179
in polycrystalline sample, 168
in thin film, 169

of gas molecules, 106-107
Mean free time, 117, 119, 121, 179
Mean frequency of collisions, 118
Mean kinetic energy and temperature,

25-31

Mean scattering time. See Mean free
time

Mean speed of molecules, 39-40
Mean square free time, 121
Mean thermal expansion coefficient, 35
Mechanical work, 101

Meissner effect, 731,762
Melt spinning, 79
Metallic bonding, 13, 101
Metallurgical junction (semiconductors),

476, 572

Metal-metal contacts, 320-322

Metal-oxide semiconductor (MOS),
532-535, 572. See also MOSFET

threshold voltage, 539-541, 573
Metal-oxide semiconductor field effect

transistor. See MOSFET

Metals, band theory, 352-361
free electron model of, 315-317

quantum theory of, 315-320
Miller indices, 58- 1, 101
Minority carrier, 410-416,463

diffusion, 483

diffusion length, 463
excess concentration of, 410-416

injection, 407 16,475,481-483,
572

lifetime, 412,463
profiles (hyperbolic), 574
recombination time, 412, 573

Miscibility, 101
Mixed bonding, 22-25
Mixture rules, 139-144, 184
Mobility. See Drift mobility
Mode number, 265

Modem theory of solids, 285-371
Molar fractions, 8

Molar heat capacity, 28, 101, 343
Mole, 8, 101
Molecular orbital, 286

Molecular orbital theory of bonding,
285-290

hydrogen molecule, 285-289
Molecular orbital wavefunction, 364
Molecular solids, 21

Molecular speeds, distribution (Stem-type
experiment), 36

Molecular velocity and energy
distribution, 36-40

Monoclinic crystals, 97
Moseley relation, 279
MOSFET, 532-543, 572

accumulation, 570

amplifier, 577-578
depletion layer, 532-534,571
early voltage, 538
enhancement, 535-539, 571
field effect and inversion, 532-535

inversion layer, 534
ion implanted, 541-543
MOST, 572

NMOS, 572
PMOS, 572

silicon gate technology, 542
threshold voltage, 539-541, 573

Moss's rule, 845

Motion of a diatomic molecule
,
 28-29

rotational, 28-29

translational, 28-29

Mott-Jones equations, 324
MUller, K. Alex, 684
Multilevel interconnect

delay time, 175
effective capacitance, 174
RC time constant, 175

Nanotube, carbon, 63, 336,
 370

Natural (resonance) frequency of an atom,

780, 846

Nearly free electron model, 449
N6el temperature, 699
Newton's second law, 25
Nichrome, 135
NMOS. See MOSFET

Nondegenerate semiconductor, 406-407,

463

Node, 215

Noise, 40-45. See also Electrical
noise

Nonstoichiometry, 75-76
Nordheim's coefficient, 136

table, 136

Nordheim's rule, 134-139, 179,
 182

combined with Matthiessen's rule, 137,
142-143

Normalization condition in quantum
mechanics, 214

/i-type doping, 388-390
energy-band diagram,

 389

Nucleate (solidify), 84

Ohm's law of electrical conduction,
118, 150

Ohmic contacts, 443-448,463
Optic axis, 829-830, 843

principal, 827-828, 843
Optical absorption, 427-431, 804-811,

841

absorption coefficient, 428, 813
band-to-band (interband), 429,

813-816

and conductivity, 808
free carrier, 805, 847
lattice, 811-812

penetration depth, 429, 813
Reststrahlen absorption, 811
upper cut-off wavelength, 813

Optical activity, 835, 843
specific rotary power,

 836

Optical amplifiers, 267
Optical anisotropy, 827-833, 841
Optical fiber, 791, 817-819

attenuation in, 817-819

cladding, 791
in communications, 791-792
core, 791

Optical fiber amplifiers, 267-268
Erbium (Er3+ ion) doped, 267, 282
long-lived energy level, 267

Optical field, 774
Optical indicatrix. See Fresnel's optical

indicatrix

Optical power. See Radiant, power
Optical properties of materials, 773-847
Optical pumping, 260, 270
Optically isotropic, media, 778

crystals, 827
Orbital, 234, 270, 364

magnetic moment, 249
Orbital wavefunction, 270, 364

Orientational polarization. See Dipolar
polarization

Orthorombic crystal, 97

Parallel rule of mixtures, 140

Paramagnetism, 698, 762
Pauli spin, 740-742, 764

Parity, 216
even, 216
odd, 216

Partial discharge, 618,621-622,672
Particle flux, 416-420
Particle statistics. See Statistics
Paschen

curves, 677

series, 278

Passivated Emitter Rear Locally diffused
cells (PERL), 561-562

Passive device, defined, 572
Pauli exclusion principle, 115, 254-256,

270,312-313, 701

Pauli spin magnetization, 698,740-742,764
Pauling scale of electronegativity, 22
PECVD. See Plasma-enhanced chemical

vapor deposition
Peltier, coefficient, 447 148

device, 444

effect, 445, 463
figure of merit (FOM), 471 72
maximum cooling rate, 472

Penetration depth, 429, 813
Periodic array of points in space. See

Crystal structure
PERL. See Passivated Emitter Rear

Locally diffused cells
Permanent magnet, (BH) , 727-729
Permeability, absolute, 692. See also

Magnetic permeability; Relative
permeability

initial, 720-721,761
maximum, 720-721,762
relative, 692, 762

Permittivity. See Relative permittivity
Phase, 83, 101, 179

cored structure, 87

diagrams, 84-88, 101
equilibrium, 87
eutectic, 90-95
lever rule, 87

liquidus curve, 85
nonequilibrium cooling, 87
solidus curve, 85

tie line, 88

Phonons, 337-352, 364,409,463, 815
dispersion relation, 340, 364
energy, 340
group velocity, 341
lattice cut-off frequency, 340
momentum, 340, 815
phosphors, 820-825, 843
table, 824

Phosphorescence, 821, 843
Photoconductivity, 414-416, 463
Photodetectors, 475
Photodiodes, 564-566

Photoelectric effect, 194-199, 270, 276
Photogeneration, 376,41(M12,463

carrier kinetic energy, 473
steady state rate, 469

Photoinjection, 463
Photometric flux. See Luminous flux or

power
Photometry, 853
Photon, 191-205,270,272

efficiency, quantum, 276
energy, 196,200
flux, 198, 853
momentum, 199, 200
picture, 198
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Photon amplification, 258-261
Photovoltaic devices, principles, 551-559.

See also Solar cell

Photoresponse time, 413-414
Physical vapor deposition (PVD), 167
Physisorption, 74
Piezoelectric

antiresonant frequency, 645
bender, 680

coefficients, 641, 681
detectors, 681

electromechanical coupling factor, 642
inductance, 646

materials, 672

mechanical resonant frequency, 645
poling, 643, 672
properties table, 642
quartz oscillators and filters, 644-647
spark generator, 643-644
transducer, 641, 673
voltage coefficient, 644, 680

Piezoelectricity, 638-647
center of symmetry, 639
nanosymmetric, 640

Piezoresistive strain gauge, 434-435
Piezoresistivity, 431 35,463,470

Cantilever equations, 470
diaphragm, 434
piezoresistive coefficient, 433,463

pin Diodes, 564-566
depletion layer capacitance, 564

Pinch-off, 524-528, 537, 572, 576-577
Planar concentration of atoms, 60, 101,

109-110

Planar defects, 70-73

Planck, Max, 203
constant, 196

Plane of incidence, 793

Plasma-enhanced chemical vapor
deposition (PECVD), 82

PLZT, 672

PMOS. See MOSFET

pn Junction, 476-493
band diagram, 494-498
built-in potential, 478-480
depletion capacitance, 498-499, 571
depletion region, 477, 571
depletion region width, 479,498
diffusion capacitance, 500-502
diffusion current, 481 87

forward bias, 481 87, 571
hetrojunction, 547
homojunction, 547
ideal diode equation, 485
ideality factor, 488
incremental resistance, 500-502
/-V characteristics

,
 497

I-Vfor Ge
, Si and GaAs, 486,489

no bias, 476-481

recombination current, 488, 572
reverse bias, 489-493

reverse saturation current, 485,490,
572

short diode, 486

space charge layer (SCL), 477, 571
storage capacitance. See Diffusion

capacitance
temperature dependence, 574
total current, 487 *89

total reverse current, 491

pn Junction band diagrams 494-498
built-in voltage from band diagrams,

498

forward and reverse bias, 495-498

open circuit, 494-495
Pockels cell phase modulator, 840, 847
Pockels effect, 838,

 843

coefficients, table, 840

Point defects, 64-68
Frenkel, 66

impurities, 64-68
interstitial, 66

Schottky, 66
substitutional, 65

thermodynamic, 64
Poisson ratio, 186

Polar molecules, 19

Polarizability, 586, 588, 781. See
Polarization

defined, 586, 672
dipolar (orientational), 662
ionic, 664

orientational, 662

table, 588

Polarization, 101,583-603
charges, 591
definition, 585-586, 672
dipolar, 598-600, 660-662, 670
electronic, 585-589,595-596, 671,

781

electronic bond, 671

induced, 586, 664,671
interfacial, 600-601,671
ionic, 597-598, 602, 662-667, 671,

811

mechanisms, 597-603

orientational. See Polarization, dipolar
relaxation peak, 665
table, 602

total, 601-603

vector, 589-593, 672
Polarization angle. See Brewster's angle
Polarization modulator, 841

halfwave voltage, 841
Polarization of EM wave, 796, 825-827,

843

circular, 826, 841
elliptical, 827
liner, 796, 825
plane, 825

Polarized molecule, 20

Poling, 643, 672
Polycrystalline films and grain boundary

scattering, 167-168
Polymorphism, 61, 102
Polysilicon gate (poly-Si), 541-543,

 572

Population inversion, 259, 270. See also
Lasers

Powder technique, 851
Poynting vector, 787-789, 843
Primary a, 94
Primary bonds, 18
Principal optic axis, 827-828
Principal refractive index, 827
Probability. See Statistics
Probability of electron scattering, 119
Probability per unit energy, 39
Proeutectic (primary a), 94
Properties of electrons in a band,

296-299

Property, definition, 102
p-type doping,

 390-392

energy-band diagram, 391
Pumping, 260, 270
PVwork, 101

Pyroelectric, crystals, 647-653
coefficients, 650

current density, 652
current responsivity, 652
detector, 651-652,681-682
electric time constant, 682
material, 672

table, 650

thermal time constant, 682

voltage responsivity, 652
PZT,672,681

Q-factor
,
 672

Quantization
of angular momentum, 241-245
of energy, 230, 236-241
space, 241-245,247

Quantum leak. See Tunneling
Quantum numbers, 214, 232

magnetic, 232, 241,270
orbital angular momentum, 232,

241-245,270

principal, 232, 270
quantum state, 234
spin magnetic, 246, 271

Quantum physics, 191-283
harmonic oscillator, 337-342

tunneling, 221-228, 271,278
Quartz oscillators and filter, 644-647
Quartz crystal

equivalent circuit, 646
inductance, 647

Quiescent point, 529

Radial function, 233-236

Radial probability density, 233
function, 236

Radiant, 270

flux, 269, 271,853
power, 271

Radiant emittance, 203. See also Black-

body radiation
Radiation, 271

brightness, 853-854
Radiative recombination center, 822

Radiometry, 853
flux in, 269, 853

Random motion, 416-422

Rare earth cobalt, magnets, 726
Rayleigh scattering, 816-817

in silica, 819

Rayleigh-Jeans law, 203
Recombination, 383,407 09,457-458,

463,469

capture coefficient, direct, 469
current, 487 89, 572
direct, 407-409,469
indirect, 407 09,457 58
lifetime, 469

mean recombination time, 412,487
and minority carrier injection,

 407-416
rate, 469

Reflectance, 799-803, 807, 843
infrared, 811

Reflection of light, 793-799
coefficient, 793-799, 807, 843
external, 797, 801-802, 846
internal, 796, 797, 800-801, 846
at normal incidence, 796

phase changes, 795
Refracted light, 789-790, 843

phase changes, 795
transmission coefficients, 793-799,

844

Refractive index, 777-779, 844
complex, 804-811
definition, 777

dispersion relation, 773, 781-782,
842, 846

dispersion relation in diamond, 846
dispersion relation in GaAs, 783
field emission, 838

isotropic, 777
at low frequencies, 778
temperature coefficient, 845
versus wavelength, 779-784

Relative atomic mass. See Atomic mass

Relative permeability, 692, 762
Relative permittivity, 583, 584-585,672,

673,778,781,844
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complex, 605,670, 804
definition, 584, 672
effective, 667

loss angle, 610
real and imaginary, 605-614
table, 602,610

Relaxation peak, 607
Relaxation process, 606
Relaxation time, 117, 179, 604, 672
Remanence. See under Magnetization
Remanent magnetization. See under

Magnetization
Residual resistivity, 128, 179
Resistivity, effective, 140
Resistivity index (n), 132
Resistivity of metals (Table), 129

due to impurities, 138
graph, 130

Resistivity of mixtures and porous
materials, 139-144

Resistivity of thin films, 167-172
Resistivity-mixture rule, 140, 142
Resonant frequency. See Frequency,

resonant

Reststrahlen absorption, 811-812
Reststrahlen band, 811

Retarding plates, 833-835, 844,

847

half-wave retarder, 834

quarter-wave retarder, 835
quartz retarder, 835
relative phase shift, 834
retardation, defined, 834

Reverse bias, 489-493,
 572. See also

pn Junction
RF heating, 77
Rhombohedral crystal, 97
Richardson-Dushman equation, 328-332,

333

Root mean square velocity,
 40

Rydberg constant, 245

Saturated solution, 102

Saturation of magnetism,
 703-704

Schottky defect, 66, 102
Schottky effect, 332-337
Schottky coefficient, 333
Schottky junction, 435 43,464

built-in electric field, 437

built-in potential, 437
depletion region, 437
diode, 435-140

energy band diagram, 436,438,
440

I-V characteristic
,
 438

Schottky barrier height, 437
Schottky junction equation, 440
solar cell, 440-443

space charge layer (SCL), 437
Schrodinger's equation, 208-212, 271,

450

for three dimension, 209

time dependent, 208-209
time independent, 208-212, 271

SCL. See Space charge layer
Screw dislocation, 69, 102

line, 69

Secondary bonding, 18-22, 102
Secondary emission, 368-369
Seebeck effect, 322-328,

 364-365
in semiconductors, 472-473

Mott and Jones equation, 324
Seebeck coefficient, 322-323

Seed, 77

Selection rules, 242-243, 271
Sellmeier coefficients, 782

Sellmeier equation, 782,
 845

Semiconductor bonding, 299-302

Semiconductor devices, 475-581

ultimate limits to device performance,
578

Semiconductor optical amplifiers,
566-569

active layer, 567
optical amplification, 568

Semiconductors, 299-303, 373 73
conduction band (CB), 302
degenerate and non-degenerate,

406-407

direct and indirect bandgap, 448-458,
814-815

strain gauge, 434-435
tables, 366, 386
valance band (VB), 301

Series rule of mixtures, 140
Shell model, 3

Shockley, William, 372,473
Shockley equation, 485, 572
Short-range order, 79
Silicon, 80, 299-301, 374-380

amorphous, 80-82,459. See also a-Si:H
conduction band, 302

crystalline, 80-82
energy band diagram, 374
hybrid orbitals, 300
hydrogenated amorphous silicon

(a-Si:H), 82,459
properties (table), 674
valence band, 301

zone refining, 88-90
Silicon gate technology. See Polysilicon

gate
Silicon single crystal growth, 76-77
Skin depth for conduction, 163
Skin effect in inductor, 166

Skin effect: HF resistance of conductor,
163-166, 179

at 60 Hz, 188

Small signal equivalent circuit, 572
Snelfs law, 790-792, 844
Soft magnetic materials, 721-724, 763

table, 722

Solar cell, 475, 551-563, 581
antireflection coating, 551, 802-803,

841,846

fill factor, 558, 571
finger electrodes, 551
I-V characteristics

,
 556-557

load line, 557

materials, devices and efficiencies,
561-563

maximum power delivered, 580
normalized current and voltage, 580
open circuit voltage, 552, 558-559
operating point, 557
passivated emitter rear locally diffused

cells (PERL), 561-562
photocurrent, 553, 572
photovoltaic device principles, 551-559
power delivered to the load, 557
Schottky junction, 440-443
series resistance, 559-561, 581
short circuit current, 556

shunt (parallel) resistance, 559-561,
581

total current, 556

Solder (Pb-Sn), 90-95, 111
Solid solution and Nordheim's rule

,

134-139, 182

Cu-Au, 137

Cu-Ni, 135

Solid solutions, 65, 83-95, 102, 179
interstitial, 84

isomorphous, 83
substitutional, 65

Solidification, nucleation, 70

Solidus curve, 85

Solute, 83, 102
Solvent, 83, 102
Solvus curve, 90

Sound velocity, 347
Space charge layer (SCL), 437,477. See

also pn Junction
Specific heat capacity, 31, 101
Spectral irradiance, 202
Spherical harmonic, 232
Spin, 245-247

of an electron (defined), 271
magnetic moment, 280
magnetic quantum number, 246
paired, 255
Stem-Gerlach experiment, 250

Spin-orbit coupling, 280-281
potential energy, 281

Spontaneous emission, 259, 271
Sputtering, 167
SQUID, 731
State, electronic, 234, 247, 271, 365

ground, 215
stationary state, 210

Statistics, 312-315

Boltzmann classical statistics, 312-313,

363

Boltzmann tail, 315
Fermi-Dirac statistics

, 123,312-315, 364
of donor occupation, 390, 465
of dopant ionization, 400

Stefan-Boltzmann law. See Blackbody
radiation

Stefan's black body radiation law, 179,
203-204

Stefan's constant, 203-204
Stimulated emission, 259, 271
Stoichiometric compounds, 75, 102
Stoichiometry, 75-76
Stoke's shift, 822, 844
Strain, 24, 102

shear strain, 102

volume strain, 102

Strain gauge, 186
Stress, 24, 102

shear stress, 102

Strong force, 4
Substrate, 544, 572

Superconducting solenoid, 737-739,771
Superconductivity, 685, 729-740,763

critical current, 736-739, 769
critical magnetic field, 735, 760
critical surface, 737

critical temperature, 729,760
high Tc materials, 731,736

Meissner effect, 729-733, 762
Meissner state, 734

origin, 739-740
penetration depth, 734
table, 736

type I and II, 733-736, 763
vortex state, 735

weak link, 757

zero resistance, 729-733

Supercooled liquid, 78
Surface current, 690

Surface polarization charges, 589
density, 590

Surface scattering, 168
Surface tracking, 628, 672. See also

Dielectric breakdown

Temperature coefficient of capacitance
(TCC), 672, 677

Temperature coefficient of resistivity
(TCRora), 125-134, 180, 182

definition, 128

metals (table), 129
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Temperature dependence of resistivity in
pure metals, 122-125

Temperature of light bulb filament, 187
Ternary alloys, 545
Terrace-ledge-kink model. See Kossel

model

Tetragonal crystals, 97
Thermal coefficient of linear expansion,

33, 102, 187
Thermal conduction, 149-154, 185
Thermal conductivity, 149-153, 180

Ag, 183
due to phonons, 348
graph (versus electrical conductivity),

150

of nonmetals, 348-350
table, 152

Thermal equilibrium, 40
Thermal equilibrium carrier concentration,

397, 464

Thermal evaporation, 167
Thermal expansion, 31-36, 102
Thermal expansion coefficient. See

Thermal coefficient of linear

expansion
Thermal fluctuations, 40-45

Thermal generation, 376
Thermal generation current, 572-573
Thermal radiation, 202. See also Blackbody

radiation

Thermal resistance, 153-154, 180, 185
Thermal velocity, 40, 387, 401,464
Thermalization, 427

Thermally activated conductivity, 161, 179
Thermally activated processes, 45-49, 161

activated state and activation energy,
46,161

Arrhenius type behavior, 45
diffusion, 46

diffusion coefficient, 48

jump frequency, 47
root mean square displacement, 48

Thermionic emission, 328-332, 365, 369
constant, 331

Thermocouple, 322-328
equation, 325, 327-328, 369

Thermoelectric cooler, 443-448

Thermoelectric emf, 325, 327
metals (table), 326

Thermoelectric power, 322-323
Thin film, 180, 188
Thin film head, 752
Thin metal films, 166-172

Threshold voltage, 539-541,573
Toroid, 693-696, 765
Total internal reflection (TIR), 789-792,

797,844

critical angle, 791, 842
phase change in, 797

Transducer. See Piezoelectric, transducer

Transistor action, defined, 509, 573. See
also Bipolar junction transistor

Transition temperature, 61
Transmission coefficient, 844

Transmittance, 799-803, 844
Transverse electric field, 793

Transverse magnetic field, 793
Trapping, 409
Triclinic crystal system, 97
Tunneling, 221-228, 271, 278

field-assisted probability, 334
probability, 223
reflection coefficient, 223

scanning tunneling microscope,
223-227

transmission coefficient, 222-223

Two-phase alloy resistivity, 143-144
Ag-Ni, 143

Two-phase solids,
 83-95

Unharmonic effect, 34
Unharmonic oscillations, 34

Unharmonicity, 34, 349
Uniaxial crystals, 828
Unipolar conductivity, 118
Unit cell, 50, 56, 97, 102

hexagonal, 52
Unpolarized light, 796
Upper cut-off (threshold) wavelength, 813

graph, 814
table, 813

Vacancy, 64-68, 102, 110
concentration in Al, 67

concentration in semiconductor, 67-68

Vacuum deposition, 106-107
Vacuum level (energy), 292-295,464
Vacuum tubes, 328-337

rectifier, 329
saturation current, 329

Valence band (VB), 301, 374-378,464
Valence electrons, 5, 102
Valency of an atom, 5
van der Waals bond, 19-20

water (HjO), 20
van der Waals-London force, 19

Vapor deposition, 167. See also Physical
vapor deposition

Varactor diodes, 499

Varshni equation, 467
VB. See Valence band

Velocity density (distribution) function, 37
Vibrational wave, 151

Virial theorem, 6, 7, 102-103
Vitreous silica, 78

Volume expansion, 35
Volume expansion coefficient, 35
Vortex state, 735

Wave, defined, 271-272
dispersion relation, 364, 666, 842
electromagnetic (EM), 191
energy densities in an EM, 787
equation, 272, 347

fields in EM, 787

group velocity, 341
incident, 793
lattice, 340

light waves, 774-776
longitudinal, 339
matter waves, 210

monochromatic plane EM, 774
phase, 774, 843
phase velocity, 776, 777, 843
propagation constant, 774
reflected, 793
transmitted, 793

transverse, 339

traveling, 192, 774-775
ultrasonic, 641

vibrational, 151

Wavefront, 774, 844
Wavefunction, 208-210

antisymmetric, 216
defined, 272

eigenfunction, 210
matter waves, 210

one-electron, 254

stationary states, 210
steady state total, 209
symmetric, 216

Wavenumber, 192, 774, 844. See also
Wavevector

Wavepacket, 784, 844
Wavevector (it), defined, 192,272, 776, 844

of electron, 272,450-456

Weak injection, 425
Weight fractions, 8-9, 88
White LED, 820-825

Wiedemann-Franz-Lorenz's law, 150

Wien's displacement law, 205, 277
Work function, 196, 272, 295, 365,

435 37,443,464
effective, 333
of a semiconductor, 384

table, 295, 369,470

X-rays, 193-194, 199-202, 272, 275-276,
367, 848

diffraction, 849-852

energy fluence, 275
photon fluence, 276
radiography, 275
roentgen, 275

Young's double-slit experiment (figure),
193, 205

Young's fringes, 192
Young's modulus, 102. See also Elastic

modulus

Zener breakdown, 502-506, 573
Zener effect, 505

Zero resistance, 729-733

Zero-point energy, 365
Zone refining, 88-90

"We have a habit in writing articles published in scientific journals to make the work as
finished as possible, to cover up all the tracks, to not worry about the blind alleys or describe
how you had the wrong idea first, and so on. So there isn't any place to publish, in a dignified
manner, what you actually did in order to get to do the work."

Richard P. Feynman
Nobel Lecture, 1966
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