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Preface

This fourth edition emphasizes solar system design and analysis using simulations. The
design of many systems that use conventional energy sources (e.g., oil, gas, and electricity)
use a worst-case environmental condition—think of a building heating system. If the
system can maintain the building temperature during the coldest period, it will be able to
handle all less severe conditions. To be sure, even building heating systems are now using
simulations during the design phase. In addition to keeping the building comfortable during
the worst conditions, various design choices can be made to reduce annual energy use.

This and earlier editions of this book describe TRNSYS (pronounced Tran-sis), a
general system simulation program (see Chapter 19). Like all heating and air conditioning
systems, a solar system can be thought of as a collection of components. TRNSYS
has hundreds of component models, and the TRNSYS language is used to connect the
components together to form a system. Following the Preface to the First Edition is
the Introduction where a ready-made TRNSYS program (called CombiSys) is described
that simulates a solar-heated house with solar-heated domestic hot water. TRANSED, a
front-end program for TRNSYS is used so it is not necessary to learn how to develop
TRNSYS models to run CombiSys. CombiSys can be freely downloaded from the John
Wiley website (http://www.wiley.com/go/solarengineering4e).

CombiSys provides an input window where various design options can be selected
(e.g., the collector type and design, storage tank size, collector orientation, and a variety of
other choices). A series of simulation problems (identified with a prefix *‘S’’ followed by a
chapter number and then a problem number) have been added to the standard problems of
many chapters. The *“‘SO’” problems (that is, Chapter 0, the Introduction) require running
CombiSys and answering general questions that may require performing energy balances
and doing simple economic calculations. As new topics are discussed in this text new ‘S’’
problems are introduced, often with the objective to duplicate some aspect of CombiSys.
With this approach it is hoped that the student will understand the inner workings of a
simulation program and be made aware of why certain topics are introduced and discussed
in the text.

The purpose of studying and understanding any topic in engineering is to make the
next system better than the last. Part I in this study of solar systems contains 11 chapters
devoted to understanding the operation of components (e.g., the sun, collectors, storage
systems, loads, etc.). The results of these early chapters are mathematical models that allow
the designer to estimate component performance (in the TRNSYS language, the outputs)
for a given set of component conditions (i.e., TRNSYS inputs). It is easy to think of
collectors, storage tanks, photovoltaic arrays, and batteries as components, but here even
the sun and economics are treated as components. The sun component manipulates the
available (generally measured but sometimes estimated) solar radiation data to obtain the
needed solar radiation data on an arbitrarily oriented surface and in a desired time interval.
The time scale of reported solar data ranges from a few seconds to yearly. Sometimes we
even need to estimate the solar energy in a wavelength interval. The available measured
solar radiation data is typically energy rates (i.e., power) from a specified and easily

xi
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Preface

calculated direction such as the ‘‘beam’ radiation that comes directly from the sun and
the ‘‘diffuse’’ radiation that has been scattered in some generally unknown manner over
all parts of the sky. The mathematical model of the sun component must accommodate
these various input and output requirements. The final chapter in Part I covers economics.
Generally the objective of a solar system is to produce environmentally friendly power at
an acceptable cost. The familiar calculations of levelized cost per unit of energy and/or
life-cycle savings (versus some energy alternative) are not trivial since the time horizon
of a solar system can be multiple decades, requiring the estimates of far-future economic
conditions. The economic impact of externalities such as reduced pollutants is difficult to
evaluate since these costs are not easily monetized.

Part II, chapters 12 through 18, discusses various thermal systems that have been built,
the performance measured and the results published. They are descriptive chapters with the
intent of providing the reader with a feeling of what can be accomplished. Many of these
systems were built and tested during a time when governments were funding universities
and laboratories where a requirement was to make the results public. Most solar systems
today are privately funded and performance data is often difficult or impossible to obtain.

Chapters 19 through 22 of Part III are devoted to system design (sometimes called
system sizing). Before the late 1970s personal computers were not available so simulations
were done either by hand or on large main-frame computers and were very expensive.
Research into ‘‘design methods’” focused on the development of short-cut design assistance
to replace expensive simulations. The earliest example is from the early 1950s, which used
a radiation statistic called ‘‘utilizability’’ to assist in solar sizing (see Section 2.22 and
Chapter 21). The next step, the f-chart method (see Chapter 21) is from the mid-1970s and
used numerical experiments to develop correlations of the various nondimensional groups.
This process is not unlike laboratory experiments that are used to correlate dimensionless
heat transfer results (the Nusselt number) to dimensionless fluid parameters (Reynolds,
Prandtl, and Grashof numbers). The significant difference is that the experimental results
in the f-chart development were hundreds of detailed main-frame computer simulations
and were validated with a few year-long experiments. These design methods still have
a place in today’s engineering practice. They are extremely fast and thus provide an
inexpensive alternative to annual simulations, especially for small systems. Large (and
therefore expensive) systems can afford to be looked at using detailed simulations. Some
of the problems in these chapters compare the detailed simulations using TRNSYS with
the various design methods.

Chapters 23 and 24 of Part III cover sizing of photovoltaic (PV) and wind energy
systems. It is obvious that the solar radiation processing developed in Chapter 2 is very
important in the design and analysis of PV systems. The detailed physics of a solar cell
is complex, but it is not necessary to understand these details to design a PV system. The
current-voltage (/-V) characteristics of cells are discussed in detail and a mathematical
I-V model is presented that is useful in design. Wind energy systems are introduced with a
simple analysis that leads to understanding of manufacturers wind turbine characteristics.
The performance of an isolated turbine is discussed, but interference of the wind patterns
with close-packed multiple turbines is not discussed.

WILLIAM A. BECKMAN

Madison, Wisconsin



Preface to the Third Edition

It has been 14 years since the second edition was published, but during that period the
fundamentals of solar engineering have not changed significantly. So, why is a third edition
needed? The best explanation is to realize that the details of all engineering disciplines
grow in complexity with time and new ways of presenting complex material become
apparent.

In Part I, Fundamentals, the first two chapters on the solar resource have received only
modest updates. The sun’s position has been well understood for centuries and so Chapter 1
has been updated by recasting some equations in simpler forms. The understanding and
modeling of the influence of the earth’s atmosphere on the radiation striking surfaces
of arbitrary orientation have been active research areas for many years. Some of this
work has been used to update Chapter 2. Chapter 3 now includes heat transfer relations
needed for transpired solar collectors and heat transfer relations for low-pressure conditions
encountered in linear concentrating collectors. Chapters 4 and 5 on properties of opaque
and transparent surfaces have not changed significantly. Chapter 6 on flat-plate collectors
now includes an analysis of transpired collectors. Collector testing is important but has
not changed significantly. However, different countries express test results in different
ways so a more through discussion of alternative presentations has been added. Compound
parabolic concentrators (CPCs) receive a more extensive treatment in Chapter 7 along with
the heat transfer analysis of linear concentrating collectors. Energy storage, the subject of
Chapter 8, now includes a discussion of battery models. Chapters 9 and 10 on solar system
models have not been significantly changed. Chapter 11 on economic analysis methods,
the final chapter in Part I, now includes a discussion of solar savings fraction.

There have been thousands of new installations of a wide variety of solar applications
since the last edition. Most of these installations have been successful in that the
designer’s goals were reached. However, lessons learned from earlier installations are
generally applicable to new installations. Consequently, Part II, Chapters 12 through 18, on
applications has only a few changes. For example, the Solar Electric Generating Systems
(SEGS) discussion in Chapter 17 has been updated with new data. The impressive result is
that the systems work better each year due to a better understanding of how to control and
maintain them.

Since the publication of the previous edition Part III, Design Methods, has been
reduced in importance due to the advances in simulation techniques and the availability of
fast computers. But even with very fast computers the time to prepare a simulation may
not be time well spent. There remains a need for fast design methods for small systems and
for survey types of analysis; Chapters 19 through 22 provide the basis for satisfying these
needs. There have been significant advances in the modeling of photovoltaic cells so that
Chapter 23 has been extensively revised. Chapter 24 on wind energy has been added as
wind (an indirect form of solar energy) has become a significant source of electrical power.

The senior/graduate-level engineering course on solar energy has been taught here at
the University of Wisconsin at least once each year for the past 40 years. Earlier editions
of this book were a major part of the course. The students delight in finding and pointing
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xiv  Preface to the Third Edition

out errors. It is not possible to write a book without introducing errors. It has been our
experience that the errors approach zero but never reach zero. If errors are found, please
forward them to us. In the past we have provided errata and will continue to provide one
on the University of Wisconsin Solar Energy Laboratory website.

Professor John Atwater (Jack) Duffie passed away on April 23, 2005, shortly after
his 80th birthday. The two of us started the process of updating this book on the day we
received copies of the second edition in 1991. Work started in earnest late in 2001 when
we converted the T/Maker’s WriteNow version of the second edition into a Word version.

We must again acknowledge the help, inspiration, and forbearance of our colleagues
and graduate students at the Solar Energy Laboratory of the University of Wisconsin-
Madison. Also colleagues around the world have pointed out problem areas and offered
constructive suggestions that have been incorporated into this edition.

WILLIAM A. BECKMAN

Madison, Wisconsin
October 2005



Preface to the Second Edition

In the ten years since we prepared the first edition there have been tremendous changes in
solar energy science and technology. In the time between 1978 (when we made the last
changes in the manuscript of the first edition) and 1991 (when the last changes were made
for this edition) thousands of papers have been published, many meetings have been held
with proceedings published, industries have come and gone, and public interest in the field
has waxed, waned, and is waxing again.

There have been significant scientific and technological developments. We have better
methods for calculating radiation on sloped surfaces and modeling stratified storage tanks.
We have new methods for predicting the output of solar processes and new ideas on how
solar heating systems can best be controlled. We have seen new large-scale applications
of linear solar concentrators and salt-gradient ponds for power generation, widespread
interest in and adoption of the principles of passive heating, development of low-flow
liquid heating systems, and great advances in photovoltaic processes for conversion of
solar to electrical energy.

Which of these many new developments belong in a second edition? This is a difficult
problem, and from the great spread of new materials no two authors would elect to include
the same items. For example, there have been many new models proposed for calculating
radiation on sloped surfaces, given measurements on a horizontal surface. Which of these
should be included? We have made choices; others might make different choices.

Those familiar with the first edition will note some significant changes. The most
obvious is a reorganization of the material into three parts. Part I is on fundamentals, and
covers essentially the same materials (with many additions) as the first eleven chapters in
the first edition. Part II is on applications and is largely descriptive in nature. Part III is on
design of systems, or more precisely on predicting long-term system thermal performance.
This includes information on simulations, on f-chart, on utilizability methods applied to
active and passive systems, and on the solar load ratio method developed at Los Alamos.
This section ends with a chapter on photovoltaics and the application of utilizability
methods to predicting PV system performance.

While the organization has changed, we have tried to retain enough of the flavor
of the first edition to make those who have worked with it feel at home with this one.
Where we have chosen to use new correlations, we have included those in the first edition
in footnotes. The nomenclature is substantially the same. Many of the figures will be
familiar, as will most of the equations. We hope that the transition to this edition will be an
easy one.

We have been influenced by the academic atmosphere in which we work, but have also
tried to stay in touch with the commercial and industrial world. (Our students who are now
out in industry have been a big help to us.) We have taught a course to engineering students
at least once each year and have had a steady stream of graduate students in our laboratory.
Much of the new material we have included in this edition has been prepared as notes for
use by these students, and the selection process has resulted from our assessment of what
we thought these students should have. We have also been influenced by the research that
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our students have done; it has resulted in ideas, developments and methods that have been
accepted and used by many others in the field.

We have drawn on many sources for new materials, and have provided references as
appropriate. In addition to the specific references, a number of general resources are worthy
of note. Advances in Solar Energy is an annual edited by K. Boer and includes extensive
reviews of various topics; volume 6 appeared in 1990. Two handbooks are available, the
Solar Energy Handbook edited by Kreider and Kreith and the Solar Energy Technology
Handbook edited by Dickenson and Cheremisinoff. Interesting new books have appeared,
including Igbal’s Introduction to Solar Radiation, Rabl’s Active Solar Collectors and
Their Applications, and Hull, Nielsen, and Golding, Salinity-Gradient Solar Ponds. The
Commission of the European Communities has published an informative series of books
on many aspects of solar energy research and applications. There are several journals,
including Solar Energy, published by the International Solar Energy Society, and the
Journal of Solar Energy Engineering, published by the American Society of Mechanical
Engineers. The June 1987 issue of Solar Energy is a cumulative subject and author index
to the 2400 papers that have appeared in the first 39 volumes of the journal.

We have aimed this book at two audiences. It is intended to serve as a general source
book and reference for those who are working in the field. The extensive bibliographies
with each chapter will provide leads to more detailed exploration of topics that may be of
special interest to the reader. The book is also intended to serve as a text for university-level
engineering courses. There is material here for a two semester sequence, or by appropriate
selection of sections it can readily be used for a one semester course. There is a wealth of
new problems in Appendix A. A solutions manual is available that includes course outlines
and suggestions for use of the book as a text.

We are indebted to students in our classes at Wisconsin and at Borldnge, Sweden who
have used much of the text in note form. They have been critics of the best kind, always
willing to tell us in constructive ways what is right and what is wrong with the materials.
Heidi Burak and Craig Fieschko provided us with very useful critiques of the manuscript.
Susan Pernsteiner helped us assemble the materials in useful form.

We prepared the text on Macintosh computers using T/Maker’s WriteNow word
processor, and set most of the equations with Prescience Company’s Expressionist. The
assistance of Peter Shank of T/Maker and of Allan Bonadio of Prescience is greatly
appreciated. If these pages do not appear as attractive as they might, it should be attributed
to our skills with these programs and not to the programs themselves.

Lynda Litzkow prepared the new art work for this edition using MacDraw II. Her
assistance and competence have been very much appreciated. Port-to-Print, of Madison,
prepared galleys using our disks. The cooperation of Jim Devine and Tracy Ripp of
Port-to-Print has been very helpful.

We must again acknowledge the help, inspiration, and forbearance of our colleagues
at the Solar Energy Laboratory. Without the support of S. A. Klein and J. W. Mitchell, the
preparation of this work would have been much more difficult.

JOHN A. DUFFIE
WILLIAM A. BECKMAN
Madison, Wisconsin
June 1991



Preface to the First Edition

When we started to revise our earlier book, Solar Energy Thermal Processes, it quickly
became evident that the years since 1974 had brought many significant developments in
our knowledge of solar processes. What started out to be a second edition of the 1974 book
quickly grew into a new work, with new analysis and design tools, new insights into solar
process operation, new industrial developments, and new ideas on how solar energy can be
used. The result is a new book, substantially broader in scope and more detailed than the
earlier one. Perhaps less than 20 percent of this book is taken directly from Solar Energy
Thermal Processes, although many diagrams have been reused and the general outline of
the work is similar. Our aim in preparing this volume has been to provide both a reference
book and a text. Throughout it we have endeavored to present quantitative methods for
estimated solar process performance.

In the first two chapters we treat solar radiation, radiation data, and the processing
of the data to get it in forms needed for calculation of process performance. The next
set of three chapters is a review of some heat transfer principles that are particularly
useful and a treatment of the radiation properties of opaque and transparent materials.
Chapters 6 through 9 go into detail on collectors and storage, as without an understanding
of these essential components in a solar process system it is not possible to understand how
systems operate. Chapters 10 and 11 are on system concepts and economics. They serve
as an introduction to the balance of the book, which is concerned with applications and
design methods.

Some of the topics we cover are very well established and well understood. Others are
clearly matters of research, and the methods we have presented can be expected to be out
dated and replaced by better methods. An example of this situation is found in Chapter 2;
the methods for estimating the fractions of total radiation which are beam and diffuse
are topics of current research, and procedures better than those we suggest will probably
become available. In these situations we have included in the text extensive literature
citations so the interested reader can easily go to the references for further background.

Collectors are at the heart of solar processes, and for those who are starting a study
of solar energy without any previous background in the subject, we suggest reading
Sections 6.1 and 6.2 for a general description of these unique heat transfer devices. The
first half of the book is aimed entirely at development of the ability to calculate how
collectors work, and a reading of the description will make clearer the reasons for the
treatment of the first set of chapters.

Our emphasis is on solar applications to buildings, as they are the applications
developing most rapidly and are the basis of a small but growing industry. The same ideas
that are the basis of application to buildings also underlie applications to industrial process
heat, thermal conversion to electrical energy generation and evaporative processes, which
are all discussed briefly. Chapter 15 is a discussion of passive heating, and uses many of
the same concepts and calculation methods for estimating solar gains that are developed
and used in active heating systems. The principles are the same; the first half of the book
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develops these principles, and the second half is concerned with their application to active,
passive and nonbuilding processes.

New methods of simulation of transient processes have been developed in recent
years, in our laboratory and in others. These are powerful tools in the development of
understanding of solar processes and in their design, and in the chapters on applications the
results of simulations studies are used to illustrate the sensitivity of long-term performance
to design variables. Simulations are the basis of the design procedures described in
Chapters 14 and 18. Experimental measurements of system performance are still scarce,
but in several cases we have made comparisons of predicted and measured performance.

Since the future of solar applications depends on the costs of solar energy systems, we
have included a discussion of life cycle ecomonic analysis, and concluded it with a way
of combining the many economics parameters in a life cycle saving analysis into just two
numbers which can readily be used in system optimization studies. We find the method
to be highly useful, but we make no claims for the worth of any of the numbers used in
illustrating the method, and each user must pick his own economic parameters.

In order to make the book useful, we have wherever possible given useful relationships
in equation, graphical, and tabular form. We have used the recommended standard
nomenclature of the journal of Solar Energy (21, 69, 1978), except for a few cases where
additional symbols have been needed for clarity. For example, G is used for irradiance
(a rate, W/m?), H is used for irradiation for a day (an integrated quantity, MJ/m?), and I is
used for irradiation for an hour (MJ/m?), which can be thought of as an average rate for an
hour. A listing of nomenclature appears in Appendix B, and includes page references to
discussions of the meaning of symbols where there might be confusion. SI units are used
throughtout, and Appendix C provides useful conversion tables.

Numerous sources have been used in writing this book. The journal Solar Energy, a
publication of the International Solar Energy Society, is very useful, and contains a variety
of papers on radiation data, collectors of various types, heating and cooling processes,
and other topics. Publications of ASME and ASHRAE have provided additional sources.
In addition to these journals, there exists a very large and growing body of literature
in the form of reports to and by government agencies which are not reviewed in the
usual sense but which contain useful information not readily available elsewhere. These
materials are not as readily available as journals, but they are referenced where we have
not found the material in journals. We also call the reader’s attention to Geliotecknika
(Applied Solar Energy), a journal published by the Academy of Sciences of the USSR
which is available in English, and the Revue Internationale d’Heliotechnique, published by
COMPLES in Marseille.

Many have contributed to the growing body of solar energy literature on which we
have drawn. Here we note only a few of the most important of them. The work of
H. C. Hottel and his colleagues at MIT and that of A. Whillier at MIT continue to be of
basic importance. In space heating, the publications of G. O. G. Lof, S. Karaki and their
colleagues at Colorado State University provide much of the quantitative information we
have on that application.

Individuals who have helped us with the preparation of this book are many. Our
graduate students and staff at the Solar Energy Laboratory have provided us with ideas,
useful information and reviews of parts of the manuscript. Their constructive comments
have been invaluable, and references to their work are included in the appropriate chapters.
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The help of students in our course on Solar Energy Technology is also acknowledged; the
number of errors in the manuscript is substantially lower as a result of their good-natured
criticisms.

Critical reviews are imperative, and we are indebted to S. A. Klein for his reading
of the manuscript. He has been a source of ideas, a sounding board for a wide variety
of concepts, the author of many of the publications on which we have drawn, and a
constructive critic of the best kind.

High on any list of acknowledgements for support of this work must be the College
of Engineering and the Graduate School of the University of Wisconsin-Madison. The
College has provided us with support while the manuscript was in preparation, and the
Graduate School made it possible for each of us to spend a half year at the Division
of Mechanical Engineering of the Commonwealth Scientific and Industrial Research
Organization, Australia, where we made good use of their library and developed some of
the concepts of this book. Our Laboratory at Wisconsin has been supported by the National
Science Foundation, the Energy Research and Development Administration, and now the
Department of Energy, and the research of the Laboratory has provided ideas for the book.

It is again appropriate to acknowledge the inspiration of the late Farrington Daniels.
He kept interest in solar energy alive in the 1960s and so helped to prepare for the new
activity in the field during the 1970s.

Generous permissions have been provided by many publishers and authors for the use
of their tables, drawings and other materials in this book. The inclusion of these material
made the book more complete and useful, and their cooperation is deeply appreciated.

A book such as this takes more than authors and critics to bring it into being. Typing
and drafting help are essential and we are pleased to note the help of Shirley Quamme
and her co-workers in preparing the manuscript. We have been through several drafts of
the book which have been typed by our student helpers at the laboratory; it has often been
difficult work, and their persistence, skill and good humor have been tremendous.

Not the least, we thank our patient families for their forbearance during the lengthy
process of putting this book together.

JOHN A. DUFFIE
WILLIAM A. BECKMAN

Madison, Wisconsin
June 1980



Introduction

CombiSys is a special version of the system simulation program TRNSYS (pronounced
tran-sis and discussed in Chapter 19) and can be downloaded for free from the Wiley
website (http://www.wiley.com/go/solarengineering4e). The early paragraphs of Appendix
A (Problems) provide instructions for downloading, installing, and running TRNSY'S on
your Windows computer. This program simulates a solar ‘‘CombiSystem’’ that supplies
heat for both a house heating system and a domestic hot-water system. A diagram of the
energy flows in a solar CombiSystem is shown below.

c > Auxiliary
EHorSol T
S EAuxDHW
EDHW
ElncSol
CHX »  Tank —LHX Auxiliary
ESol T
EAuxHouse
EHouse
T ELossTank

EMains

The system has the following major components:

The weather data comes from the TMY?2 data set (Second version of the U.S. Typical
Meteorological Year) and consists of 329 built-in U.S. weather stations. Additional data
can be added; Problem S2.2 is concerned with adding new data. The data consists of
hourly ambient temperatures and hourly beam (directly from the sun) radiation and diffuse
(scattered) radiation both incident on a horizontal surface (EHorSol). A radiation processor
converts this horizontal data into incident radiation on the plane of the collectors (EIncSol).

The collector is either a flat-plate liquid heater with one glass cover, similar to those
shown in Figures 6.1.1 and 6.3.1, or an evacuated tube collector, similar to those shown
in Figures 6.13(d)—(f). The collectors are mounted on the building [in a manner similar to
that in Figure 13.2.5(b) and (c)]. The total roof area suitable for collectors is 75 m?. The
collectors can face from due east to due west at a slope between 0 and 90°. Collector data
can be supplied in two ways: one of six built-in collectors can be chosen (three flat-plate and
three evacuated tube collectors, with each set having low, average, and high-performance
collectors). The second option is to provide all of the usual data supplied by the collector
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manufacturer. The default values when entering the detailed solar collector parameters
are identical to choosing the second collector from the list of six. There are two accepted
standards for reporting collector parameters; reporting data based on the collector inlet
temperature or on the average of the inlet and outlet temperatures. Conversion from one
standard to the other is discussed in Section 6.19. Collector analysis is treated in great
detail in Chapters 6 and 7.

The collector heat exchanger (CHX) isolates the antifreeze solution in the collector
loop from the water storage tank loop. If no heat exchanger is present, then set the
effectiveness equal to one.

The solar storage tank is an insulated water storage unit that is sized in proportion to
the collector area. Typical values range from 30 to 100 liters/m?. The tank can be fully
mixed or stratified (whereby the hottest solar-heated water migrates to the top of the tank).

The solar domestic hot water (DHW) subsystem consists of a heating coil (heat
exchanger) located inside the main storage tank (not shown). Mains water is heated as
it passes through this heat exchanger. If solar energy heats the domestic hot water above
45°C (as it probably will in the summer) then a bypass system (not shown) takes mains
water and mixes it with the too-hot water to deliver water at 45°C. If insufficient solar
energy is available, then the auxiliary energy supply maintains the delivered water at 45°C.
This heater is of sufficient capacity that it can supply all of the domestic hot-water energy
needs if necessary. The hot-water load depends upon the number of people (0 to 50) and
can vary from 0 to 100 liters per person per day. The mains temperature is assumed to be
constant throughout the year.

The solar space heating subsystem withdraws water from the top of the tank and
circulates it through a water-to-air load heat exchanger (LHX) and returns it to the tank.
If the water is hot enough to more than meet the entire house heating load, then the flow
rate of the water is reduced to exactly meet the load. If there is insufficient solar energy
available to meet the load, then the house heating auxiliary heater is turned on to meet
the remainder of the load The building overall loss coefficient (UA) includes infiltration.
Details of how systems are controlled and related matters are discussed in later chapters.

The first thing to do in preparation for a detailed study of solar energy is to run
Problem S0.1. Additional CombiSys problems are provided that can be run without any
additional knowledge. It is hoped that these exercises will provide motivation for an
in-depth study of solar energy.

The TRNSYS program is run from a front-end called TRNSED (pronounced
Trans-ed), which accepts inputs in the form of check boxes, radio buttons, pull-down
menus, and input boxes. The individual inputs along with the default parameter values
(shown in square brackets) are listed and described below. The defaults for radio buttons
are shown as filled circles.

Simulation Period

Month of the Simulation (Pulldown: January to December) [January]

Day of Month for Simulation Start (Number 1-31) [1]

Length of Simulation (Pulldown: one day to one year) [One-Year Simulation]
Simulation timestep (Pulldown: 1, 5, 10, 15, 30 or 60) [60 Minutes]
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Radiation Calculations

Radiation Data: Pulldown with two choices
e Use Total Horizontal and Beam Normal
e Use Total Horizontal only
Tilted Surface Radiation Mode: Pulldown with four choices
e Isotropic Sky Model (Equation 2.15.1)
e Hay and Davies Model (Equation 2.16.4)
e HDKR Model (Equation 2.16.7)
Perez Model (Equation 2.16.14)

Location

City name (Pulldown with 239 choices of TMY?2 weather data) [CO: Publeo]
Collector slope (Number 0—90) [60°]
Collector azimuth (Number; facing equator = 0°, East = —90°, West = +90°) [0°]

Solar Collectors Parameter Options

e Select Solar Collector from a List
Collector Type (Pulldown: 6 collectors to choose from) [Choose 2nd]
Collector Total Area (Number 0—75) [30 m?]
Collector—Storage Tank Heat Exchanger Effectiveness (Number 0—1) [0.80]
Collector Efficiency Equation (Pulldown: Equation 6.17.3 or 6.17.5) [6.17.3]
e Enter Detailed Solar Collector Parameters
Collector Total Area (Number 0—75) [30 m?]
Intercept (maximum) Efficiency (Number 0—1) [0.80]
First-Order Loss Coefficient (Number) [3.1235 W/m? K]
Second-Order Loss Coefficient (Number) [0.012 W/m?/K?]
Incidence Angle Modifier 1AM) Coefficient b, (Number) [0.20]
Collector Flow Rate during Tests (Number > 0) [40 I/h m?]
Collector—Storage Heat Exchanger Effectiveness (Number 0—1) [0.8]
Collector Flow Rate (Number > 0) [40 liters/h m?])
Collector Efficiency Equation (Pulldown: 6.17.3 or 6.17.5) [6.17.3]

Number of Storage Tank Nodes

e | Node Storage Tank
e 3 Node Storage Tank
e 5 Node Storage Tank
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Tank Parameters

Tank Volume per Collector Area (Number 10—100) [75 liters/m2]
Tank Loss Coefficient (Number 0.10—5.0) [0.5 W/m? K]
Maximum Tank Temperature (Number 40-110) [100°C]

Load Parameters

Two check boxes to select or unselect:
e Turn Solar Domestic Hot Water Load ON
e Turn Solar Space Heating Load ON

Domestic Hot-Water Load

Average Hot-Water Draw per Occupant (Number 0—100) [60 liters/day]
Number of Occupants (Number 0—50) [5]
Mains Temperature (Number 0—-40) [10°C]

Space Heating Load

Overall House Heat Loss Coefficient (Number 0—-500) [350 W/K]
Spacing Heating Setpoint (Number 15-25) [20°C]

Online Plotter Options

Two check boxes to select or unselect:
e Plot Instantaneous values

e Plot Integrated Energy

THE PROBLEM

Run the simulation program CombiSys in Pueblo, Colorado, for an entire year using the
default parameter set. Perform an energy balance on the main solar tank for the entire
year. (Energy in — Energy out — Energy Stored = Error) The error is due to numerical
tolerances in solving the equations. Express the error as a percentage of the delivered solar
energy, 100"Error/(Solar Energy in) = %error.

In addition, you can change several of the design parameters of the system. These
include:

The collector area (which cannot exceed 75 m?).

Storage unit size normally varies in proportion to the collector area; ratios of 50, 75,
and 100 liters/m? can be assumed.

The collector slope can conceivably vary between 30° and 75°.

You are to write a brief report that is intended to inform a group of contractors and
architects about the performance of the system and the effects of changes in the design on
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system performance. Use plots or diagrams to illustrate your results. To reduce the number
of runs, you can investigate storage size only for the 60° slope. The usual performance
figure is the solar fraction, 7, defined as the ratio of the solar contribution to the load
divided by the load.

Estimate how much the home owner can afford to pay for the solar equipment if the
auxiliary energy is (a) natural gas and (b) electricity.

There are many other design parameters that for this problem you cannot change or do
not need to change. These include the heating load of the building and the characteristics
of the collector. We will look at the impact of other design parameters during the semester.

COMMENTS AND SUGGESTIONS

Itis suggested that you first simulate the system using the default conditions. The computing
time will be very small, and you can use this first simulation to become accustomed to the
program and what it does.

Quantities like solar energy collected, energy lost from the tank, auxiliary energy, and
various temperatures are computed as a function of time. Energy rates are integrated to
give monthly energy quantities.

Examining the On-Line Plots

You may manipulate the on-line plots in a variety of ways. The right mouse button will
start and stop the simulation. After the simulation is complete select NO to the question
““Exit on-line Plotter’’. With the plot on the screen, click on the various plot identifiers at
the top of the plot—the individual plots should disappear and reappear. Click and drag
the mouse over part of the plot for a blow-up of a region. Click near the top or bottom on
either the right- or left-hand axis numbers to change the scale. If the simulation is more
than one page, you may move back and forth in time with the tabs at the bottom. There
are two tabs at the bottom for looking at either instantaneous values or integrated values.
When finished, go to menu item Calculations and choose Exit.

Examining the Output

Once the simulation has completed and you have returned to TRNSED, you will find an
output file, COMBISYS.OUT, under the Windows menu item at the top of the screen. The
output is a text file that you can copy and paste into Excel. The values printed in the output
file are as follows:
UTank: change in internal energy of the storage tank from the start of each month
ESol: the integrated energy transferred across the collector loop heat exchanger
EAux: integrated auxiliary energy added to the space to meet heating load requirements

ELossTank: the integrated energy loss from the tank (assumed to be in an unheated
area of the house)

EMains: the integrated energy entering the tank with the water from the mains
EDHW: the integrated energy leaving the tank with the DHW
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EHouse: integrated energy losses from the house
ElncSol: the integrated solar radiation incident on the collectors

EHorSol: the integrated solar radiation incident on a horizontal surface

Values are printed for each month. If the simulation ends within a month, a value will
be printed for the completed portion of the last month. You will need to add up the monthly
values to obtain yearly values. Copy the file and paste into Excel (or other spreadsheet
program) to do your calculations. Annual information of this type, as will be seen later, is
essential information in determining the economics of the application.

If you look at ““View Simulation Results’’, you will find a summary of the performance
for the total time of the simulation.



Part 1

FUNDAMENTALS

In Part I, we treat the basic ideas and calculation procedures that must be understood in
order to appreciate how solar processes work and how their performance can be predicted.
The first five chapters are basic to the material in Chapter 6. In Chapter 6 we develop
equations for a collector which give the useful output in terms of the available solar
radiation and the losses. An energy balance is developed which says, in essence, that the
useful gain is the (positive) difference between the absorbed solar energy and the thermal
losses.

The first chapter is concerned with the nature of the radiation emitted by the sun and
incident on the earth’s atmosphere. This includes geometric considerations, that is, the
direction from which beam solar radiation is received and its angle of incidence on various
surfaces and the quantity of radiation received over various time spans. The next chapter
covers the effects of the atmosphere on the solar radiation, the radiation data that are
available, and how those data can be processed to get the information that we ultimately
want—the radiation incident on surfaces of various orientations.

Chapter 3 notes a set of heat transfer problems that arise in solar energy processes and
is part of the basis for analysis of collectors, storage units, and other components.

The next two chapters treat interaction of radiation and opaque and transparent
materials, that is, emission, absorption, reflection, and transmission of solar and long-wave
radiation. These first five chapters lead to Chapter 6, a detailed discussion and analysis
of the performance of flat-plate collectors. Chapter 7 is concerned with concentrating
collectors and Chapter 8 with energy storage in various media. Chapter 9 is a brief
discussion of the loads imposed on solar processes and the kinds of information that must
be known in order to analyze the process.

Chapter 10 is the point at which the discussions of individual components are brought
together to show how solar process systems function and how their long-term performance
can be determined by simulations. The object is to be able to quantitatively predict system
performance; this is the point at which we proceed from components to systems and see
how transient system behavior can be calculated.

The last chapter in Part I is on solar process economics. It concludes with a method
for combining the large number of economic parameters into two which can be used to
optimize thermal design and assess the effects of uncertainties in an economic analysis.
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Solar Radiation

The sun’s structure and characteristics determine the nature of the energy it radiates into
space. The first major topic in this chapter concerns the characteristics of this energy
outside the earth’s atmosphere, its intensity, and its spectral distribution. We will be
concerned primarily with radiation in a wavelength range of 0.25 to 3.0 xem, the portion of
the electromagnetic radiation that includes most of the energy radiated by the sun.

The second major topic in this chapter is solar geometry, that is, the position of the
sun in the sky, the direction in which beam radiation is incident on surfaces of various
orientations, and shading. The third topic is extraterrestrial radiation on a horizontal
surface, which represents the theoretical upper limit of solar radiation available at the
earth’s surface.

An understanding of the nature of extraterrestrial radiation, the effects of orientation
of a receiving surface, and the theoretically possible radiation at the earth’s surface is
important in understanding and using solar radiation data, the subject of Chapter 2.

1.1 THE SUN

The sun is a sphere of intensely hot gaseous matter with a diameter of 1.39 x 10° m and
is, on the average, 1.5 x 10" m from the earth. As seen from the earth, the sun rotates on
its axis about once every 4 weeks. However, it does not rotate as a solid body; the equator
takes about 27 days and the polar regions take about 30 days for each rotation.

The sun has an effective blackbody temperature of 5777 K.! The temperature in the
central interior regions is variously estimated at 8 x 10° to 40 x 10® K and the density is
estimated to be about 100 times that of water. The sun is, in effect, a continuous fusion
reactor with its constituent gases as the ‘‘containing vessel’” retained by gravitational
forces. Several fusion reactions have been suggested to supply the energy radiated by
the sun. The one considered the most important is a process in which hydrogen (i.e.,
four protons) combines to form helium (i.e., one helium nucleus); the mass of the helium
nucleus is less than that of the four protons, mass having been lost in the reaction and
converted to energy.

The energy produced in the interior of the solar sphere at temperatures of many
millions of degrees must be transferred out to the surface and then be radiated into

IThe effective blackbody temperature of 5777 K is the temperature of a blackbody radiating the same amount
of energy as does the sun. Other effective temperatures can be defined, e.g., that corresponding to the blackbody
temperature giving the same wavelength of maximum radiation as solar radiation (about 6300 K).
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4 Solar Radiation

space. A succession of radiative and convective processes occur with successive emission,
absorption, and reradiation; the radiation in the sun’s core is in the x-ray and gamma-ray
parts of the spectrum, with the wavelengths of the radiation increasing as the temperature
drops at larger radial distances.

A schematic structure of the sun is shown in Figure 1.1.1. It is estimated that 90% of
the energy is generated in the region of 0 to 0.23R (where R is the radius of the sun), which
contains 40% of the mass of the sun. At a distance 0.7R from the center, the temperature
has dropped to about 130,000 K and the density has dropped to 70 kg/m?; here convection
processes begin to become important, and the zone from 0.7 to 1.0R is known as the
convective zone. Within this zone the temperature drops to about 5000 K and the density
to about 107> kg/m>.

The sun’s surface appears to be composed of granules (irregular convection cells),
with dimensions from 1000 to 3000 km and with cell lifetime of a few minutes. Other
features of the solar surface are small dark areas called pores, which are of the same order
of magnitude as the convective cells, and larger dark areas called sunspots, which vary in
size. The outer layer of the convective zone is called the photosphere. The edge of the
photosphere is sharply defined, even though it is of low density (about 10~* that of air
at sea level). It is essentially opaque, as the gases of which it is composed are strongly
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Figure 1.1.1 The structure of the sun.
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ionized and able to absorb and emit a continuous spectrum of radiation. The photosphere
is the source of most solar radiation.

Outside the photosphere is a more or less transparent solar atmosphere, observable
during total solar eclipse or by instruments that occult the solar disk. Above the photosphere
is a layer of cooler gases several hundred kilometers deep called the reversing layer.
Outside of that is a layer referred to as the chromosphere, with a depth of about 10,000 km.
This is a gaseous layer with temperatures somewhat higher than that of the photosphere
but with lower density. Still further out is the corona, a region of very low density and of
very high (10° K) temperature. For further information on the sun’s structure see Thomas
(1958) or Robinson (1966).

This simplified picture of the sun, its physical structure, and its temperature and
density gradients will serve as a basis for appreciating that the sun does not, in fact,
function as a blackbody radiator at a fixed temperature. Rather, the emitted solar radiation
is the composite result of the several layers that emit and absorb radiation of various
wavelengths. The resulting extraterrestrial solar radiation and its spectral distribution have
now been measured by various methods in several experiments; the results are noted in the
following two sections.

1.2 THE SOLAR CONSTANT

Figure 1.2.1 shows schematically the geometry of the sun-earth relationships. The eccen-
tricity of the earth’s orbit is such that the distance between the sun and the earth varies
by 1.7%. At a distance of one astronomical unit, 1.495 x 10'" m, the mean earth-sun
distance, the sun subtends an angle of 32'. The radiation emitted by the sun and its spatial
relationship to the earth result in a nearly fixed intensity of solar radiation outside of
the earth’s atmosphere. The solar constant G, is the energy from the sun per unit time
received on a unit area of surface perpendicular to the direction of propagation of the
radiation at mean earth-sun distance outside the atmosphere.

Before rockets and spacecraft, estimates of the solar constant had to be made from
ground-based measurements of solar radiation after it had been transmitted through the

Sun 1.27 x 10’ m
7900 mi

Diam. =1.39 x 10 m
=8.64 x 10° mi

Solar constant

j = 1367 W/m?
Gsc{ = 433 B/ft® hr

| = 4.92murm? hr

A
Y

= 1495 x 10""'m

, . 7%
=9.3 x 10" mi

Distance is{

Figure 1.2.1 Sun-earth relationships.
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atmosphere and thus in part absorbed and scattered by components of the atmosphere.
Extrapolations from the terrestrial measurements made from high mountains were based
on estimates of atmospheric transmission in various portions of the solar spectrum.
Pioneering studies were done by C. G. Abbot and his colleagues at the Smithsonian
Institution. These studies and later measurements from rockets were summarized by
Johnson (1954); Abbot’s value of the solar constant of 1322 W/m? was revised upward
by Johnson to 1395 W/m?.

The availability of very high altitude aircraft, balloons, and spacecraft has permitted
direct measurements of solar radiation outside most or all of the earth’s atmosphere. These
measurements were made with a variety of instruments in nine separate experimental
programs. They resulted in a value of the solar constant G, of 1353 W/m? with an
estimated error of £1.5%. For discussions of these experiments, see Thekaekara (1976) or
Thekaekara and Drummond (1971). This standard value was accepted by NASA (1971)
and by the American Society of Testing and Materials (2006).

The data on which the 1353-W/m? value was based have been reexamined by
Frohlich (1977) and reduced to a new pyrheliometric scale® based on comparisons of the
instruments with absolute radiometers. Data from Nimbus and Mariner satellites have also
been included in the analysis, and as of 1978, Frohlich recommends a new value of the
solar constant G, of 1373 W/m?, with a probable error of 1 to 2%. This was 1.5% higher
than the earlier value and 1.2% higher than the best available determination of the solar
constant by integration of spectral measurements. Additional spacecraft measurements
have been made with Hickey et al. (1982) reporting 1373 W/m? and Willson et al.
(1981) reporting 1368 W/m?. Measurements from three rocket flights reported by Duncan
et al. (1982) were 1367, 1372, and 1374 W/mz. The World Radiation Center (WRC) has
adopted a value of 1367 W/m?, with an uncertainty of the order of 1%. As will be seen
in Chapter 2, uncertainties in most terrestrial solar radiation measurements are an order
of magnitude larger than those in G.. A value of G, of 1367 W/m? (1.960 cal/cm?
min, 433 Btu/ft2 h, or 4921 MJ/m? h) is used in this book. [See Igbal (1983) for more
detailed information on the solar constant.]

1.3 SPECTRAL DISTRIBUTION OF EXTRATERRESTRIAL RADIATION

In addition to the total energy in the solar spectrum (i.e., the solar constant), it is useful
to know the spectral distribution of the extraterrestrial radiation, that is, the radiation that
would be received in the absence of the atmosphere. A standard spectral irradiance curve
has been compiled based on high-altitude and space measurements. The WRC standard is
shown in Figure 1.3.1. Table 1.3.1 provides the same information on the WRC spectrum in
numerical form. The average energy G, ; (in W/ m? pm) over small bandwidths centered
at wavelength A is given in the second column. The fraction f,_, of the total energy in
the spectrum that is between wavelengths zero and A is given in the third column. The
table is in two parts, the first at regular intervals of wavelength and the second at even
fractions f;,_,. This is a condensed table; more detailed tables are available elsewhere
(see Igbal, 1983).

ZPyrheliometric scales are discussed in Section 2.2.
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Figure 1.3.1 The WRC standard spectral irradiance curve at mean earth-sun distance.

Table 1.3.1a  Extraterrestrial Solar Irradiance (WRC Spectrum) in Increments of Wavelength®

A ch,)» fO—l A Gsc.)» fO—)\ A Gsc.)» fO—)\
(um)  (W/m? um) (=) | (um) (W/m? um) (=) | (um) (W/m?> um) (-
0.250 81.2 0.001 | 0.520 1849.7 0.243 | 0.880 955.0 0.622
0.275 265.0 0.004 | 0.530 1882.8 0.257 | 0.900 908.9 0.636
0.300 499 .4 0.011 | 0.540 1877.8 0.271 | 0.920 847.5 0.648
0.325 760.2 0.023 | 0.550 1860.0 0.284 | 0.940 799.8 0.660
0.340 955.5 0.033 | 0.560 1847.5 0.298 | 0.960 771.1 0.672
0.350 955.6 0.040 | 0.570 1842.5 0.312 | 0.980 799.1 0.683
0.360 1053.1 0.047 | 0.580 1826.9 0.325 | 1.000 753.2 0.695
0.370 1116.2 0.056 | 0.590 1797.5 0.338 | 1.050 672.4 0.721
0.380 1051.6 0.064 | 0.600 1748.8 0.351 | 1.100 574.9 0.744
0.390 1077.5 0.071 | 0.620 1738.8 0.377 | 1.200 507.5 0.785
0.400 1422.8 0.080 | 0.640 1658.7 0.402 | 1.300 427.5 0.819
0.410 1710.0 0.092 | 0.660 1550.0 0.425 | 1.400 355.0 0.847
0.420 1687.2 0.105 | 0.680 1490.2 0.448 | 1.500 297.8 0.871
0.430 1667.5 0.116 | 0.700 1413.8 0.469 | 1.600 231.7 0.891
0.440 1825.0 0.129 | 0.720 1348.6 0.489 | 1.800 173.8 0.921
0.450 1992.8 0.143 | 0.740 1292.7 0.508 | 2.000 91.6 0.942
0.460 2022.8 0.158 | 0.760 1235.0 0.527 | 2.500 54.3 0.968
0.470 2015.0 0.173 | 0.780 1182.3 0.544 | 3.000 26.5 0.981
0.480 1975.6 0.188 | 0.800 1133.6 0.561 | 3.500 15.0 0.988
0.490 1940.6 0.202 | 0.820 1085.0 0.578 | 4.000 7.7 0.992
0.500 1932.2 0.216 | 0.840 1027.7 0.593 | 5.000 2.5 0.996
0.510 1869.1 0.230 | 0.860 980.0 0.608 | 8.000 1.0 0.999

“G,., is the average solar irradiance over the interval from the middle of the preceding wavelength interval to

the middle of the following wavelength interval. For example, at 0.600 ;zm. 1748.8 W/m? um is the average

value between 0.595 and 0.610 pm.
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Table 1.3.1b  Extraterrestrial Solar Irradiance in Equal Increments of Energy

Energy Band Wavelength Midpoint Energy Band Wavelength Midpoint

fi—Jfin Range Wavelength fi— Jfin Range Wavelength

=) (pm) (pm) (=) (pm) (pm)
0.00-0.05 0.250-0.364 0.328 0.50-0.55 0.731-0.787 0.758
0.05-0.10 0.364-0.416 0.395 0.55-0.60 0.787-0.849 0.817
0.10-0.15 0.416-0.455 0.437 0.60-0.65 0.849-0.923 0.885
0.15-0.20 0.455-0.489 0.472 0.65-0.70 0.923-1.008 0.966
0.20-0.25 0.489-0.525 0.506 0.70-0.75 1.008-1.113 1.057
0.25-0.30 0.525-0.561 0.543 0.75-0.80 1.113-1.244 1.174
0.30-0.35 0.561-0.599 0.580 0.80-0.85 1.244-1.412 1.320
0.35-0.40 0.599-0.638 0.619 0.85-0.90 1.412-1.654 1.520
0.40-0.45 0.638-0.682 0.660 0.90-0.95 1.654-2.117 1.835
0.45-0.50 0.682-0.731 0.706 0.95-1.00 2.117-10.08 2.727

Example 1.3.1

Calculate the fraction of the extraterrestrial solar radiation and the amount of that radiation
in the ultraviolet (A < 0.38 pm), the visible (0.38 um < A < 0.78 um), and the infrared
(A > 0.78 pum) portions of the spectrum.

Solution

From Table 1.3.1a, the fractions of f,_, corresponding to wavelengths of 0.38 and 0.78
pum are 0.064 and 0.544. Thus, the fraction in the ultraviolet is 0.064, the fraction in the
visible range is 0.544 — 0.064 = 0.480, and the fraction in the infrared is 1.0 — 0.544 =
0.456. Applying these fractions to a solar constant of 1367 W/m? and tabulating the
results, we have:

Wavelength range (um) 0-0.38 0.38-0.78 0.78—00
Fraction in range 0.064 0.480 0.456
Energy in range (W/m?) 87 656 623 |

1.4 VARIATION OF EXTRATERRESTRIAL RADIATION

Two sources of variation in extraterrestrial radiation must be considered. The first is the
variation in the radiation emitted by the sun. There are conflicting reports in the literature
on periodic variations of intrinsic solar radiation. It has been suggested that there are
small variations (less than +1.5%) with different periodicities and variation related to
sunspot activities. Willson et al. (1981) report variances of up to 0.2% correlated with
the development of sunspots. Others consider the measurements to be inconclusive or not
indicative of regular variability. Measurements from Nimbus and Mariner satellites over
periods of several months showed variations within limits of +0.2% over a time when
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Figure 1.4.1 Variation of extraterrestrial solar radiation with time of year.

sunspot activity was very low (Frohlich, 1977). Data of Hickey et al. (1982) over a span of
2.5 years from the Nimbus 7 satellite suggest that the solar constant is decreasing slowly,
at a rate of approximately 0.02% per year. See Coulson (1975) or Thekaekara (1976) for
further discussion of this topic. For engineering purposes, in view of the uncertainties and
variability of atmospheric transmission, the energy emitted by the sun can be considered
to be fixed.

Variation of the earth-sun distance, however, does lead to variation of extraterrestrial
radiation flux in the range of £3.3%. The dependence of extraterrestrial radiation on time
of year is shown in Figure 1.4.1. A simple equation with accuracy adequate for most
engineering calculations is given by Equation 1.4.1a. Spencer (1971), as cited by Igbal
(1983), provides a more accurate equation (£0.01%) in the form of Equation 1.4.1b:

360n
G, (1 =+ 0.033 cos 365 ) (1.4.1a)

on

G,,(1.000110 + 0.034221 cos B + 0.001280 sin B
+0.000719 cos 2B + 0.000077 sin 2B) (1.4.1b)

where G, is the extraterrestrial radiation incident on the plane normal to the radiation on
the nth day of the year and B is given by

360
B=@mn-1)>— 1.4.2
(n =1z (1.4.2)

1.5 DEFINITIONS

Several definitions will be useful in understanding the balance of this chapter.

Air Mass m The ratio of the mass of atmosphere through which beam radiation
passes to the mass it would pass through if the sun were at the zenith (i.e., directly
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overhead, see Section 1.6). Thus at sea level m = 1 when the sun is at the zenith and
m = 2 for a zenith angle 6, of 60°. For zenith angles from 0° to 70° at sea level, to a close
approximation,

1

m =
cos 0,

(1.5.1)

For higher zenith angles, the effect of the earth’s curvature becomes significant and must
be taken into account.? For a more complete discussion of air mass, see Robinson (1966),
Kondratyev (1969), or Garg (1982).

Beam Radiation The solar radiation received from the sun without having been
scattered by the atmosphere. (Beam radiation is often referred to as direct solar radiation;
to avoid confusion between subscripts for direct and diffuse, we use the term beam
radiation.)

Diffuse Radiation The solar radiation received from the sun after its direction
has been changed by scattering by the atmosphere. (Diffuse radiation is referred to in
some meteorological literature as sky radiation or solar sky radiation; the definition used
here will distinguish the diffuse solar radiation from infrared radiation emitted by the
atmosphere.)

Total Solar Radiation The sum of the beam and the diffuse solar radiation on
a surface.* (The most common measurements of solar radiation are total radiation on a
horizontal surface, often referred to as global radiation on the surface.)

Irradiance, W/m?> The rate at which radiant energy is incident on a surface per unit
area of surface. The symbol G is used for solar irradiance, with appropriate subscripts for
beam, diffuse, or spectral radiation.

Irradiation or Radiant Exposure, J/m> The incident energy per unit area on a
surface, found by integration of irradiance over a specified time, usually an hour or a day.
Insolation is a term applying specifically to solar energy irradiation. The symbol H is used
for insolation for a day. The symbol / is used for insolation for an hour (or other period if
specified). The symbols H and 7 can represent beam, diffuse, or total and can be on surfaces
of any orientation.

Subscripts on G, H, and I are as follows: o refers to radiation above the earth’s
atmosphere, referred to as extraterrestrial radiation; b and d refer to beam and diffuse
radiation; 7" and n refer to radiation on a tilted plane and on a plane normal to the direction
of propagation. If neither 7 nor n appears, the radiation is on a horizontal plane.

Radiosity or Radiant Exitance, W/m? The rate at which radiant energy leaves a
surface per unit area by combined emission, reflection, and transmission.

Emissive Power or Radiant Self-Exitance, W/m? The rate at which radiant energy
leaves a surface per unit area by emission only.

3 An empirical relationship from Kasten and Young (1989) for air mass that works for zenith angles approaching
90° is

_ exp(—0.0001184h)

B cos(6.) 4 0.5057(96.080 — §_)~1-634

where £ is the site altitude in meters.
“Total solar radiation is sometimes used to indicate quantities integrated over all wavelengths of the solar
spectrum.
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Any of these radiation terms, except insolation, can apply to any specified wave-length
range (such as the solar energy spectrum) or to monochromatic radiation. Insolation refers
only to irradiation in the solar energy spectrum.

Solar Time Time based on the apparent angular motion of the sun across the sky
with solar noon the time the sun crosses the meridian of the observer.

Solar time is the time used in all of the sun-angle relationships; it does not coincide
with local clock time. It is necessary to convert standard time to solar time by applying
two corrections. First, there is a constant correction for the difference in longitude between
the observer’s meridian (longitude) and the meridian on which the local standard time is
based.’ The sun takes 4 min to transverse 1° of longitude. The second correction is from the
equation of time, which takes into account the perturbations in the earth’s rate of rotation
which affect the time the sun crosses the observer’s meridian. The difference in minutes
between solar time and standard time is

Solar time — standard time =4 (L — Ly,.) + E (1.5.2)

where L is the standard meridian for the local time zone, L, is the longitude of the
location in question, and longitudes are in degrees west, that is, 0° < L < 360°. The
parameter E is the equation of time (in minutes) from Figure 1.5.1 or Equation 1.5.3% [from
Spencer (1971), as cited by Igbal (1983)]:
E =229.2(0.000075 4 0.001868 cos B — 0.032077 sin B
—0.014615 cos 2B — 0.04089 sin 2B) (1.5.3)
where B is found from Equation 1.4.2 and # is the day of the year. Thus 1 <n < 365.
Note that the equation of time and displacement from the standard meridian are both
in minutes and that there is a 60-min difference between daylight saving time and standard

time. Time is usually specified in hours and minutes. Care must be exercised in applying
the corrections, which can total more than 60 min.

Example 1.5.1

At Madison, Wisconsin, what is the solar time corresponding to 10:30 AM central time on
February 3?

Solution
In Madison, where the longitude is 89.4° and the standard meridian is 90°, Equation 1.5.2
gives
Solar time = standard time + 4(90 — 89.4) + E
= standard time + 2.4 + F

3To find the local standard meridian, multiply the time difference between local standard clock time and
Greenwich Mean Time by 15.
OAll equations use degrees, not radians.
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Figure 1.5.1 The equation of time E in minutes as a function of time of year.

On February 3, n = 34, and from Equation 1.5.3 or Figure 1.5.1, E = —13.5min, so the
correction to standard time is —11 min. Thus 10:30 am Central Standard Time is 10:19 AM
solar time. |

In this book time is assumed to be solar time unless indication is given otherwise.

1.6 DIRECTION OF BEAM RADIATION

The geometric relationships between a plane of any particular orientation relative to the
earth at any time (whether that plane is fixed or moving relative to the earth) and the
incoming beam solar radiation, that is, the position of the sun relative to that plane, can
be described in terms of several angles (Benford and Bock, 1939). Some of the angles
are indicated in Figure 1.6.1. The angles and a set of consistent sign conventions are as
follows:

¢ Latitude, the angular location north or south of the equator, north positive; —90° < ¢
<90°.

8  Declination, the angular position of the sun at solar noon (i.e., when the sun is on the
local meridian) with respect to the plane of the equator, north positive; —23.45° < §
<23.45°

B Slope, the angle between the plane of the surface in question and the horizontal; 0° <
B < 180°. (B > 90° means that the surface has a downward-facing component.)
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Figure 1.6.1 (a) Zenith angle, slope, surface azimuth angle, and solar azimuth angle for a tilted
surface. (b) Plan view showing solar azimuth angle.

y  Surface azimuth angle, the deviation of the projection on a horizontal plane of the
normal to the surface from the local meridian, with zero due south, east negative, and
west positive; —180° < y < 180°.

o Hour angle, the angular displacement of the sun east or west of the local meridian
due to rotation of the earth on its axis at 15° per hour; morning negative, afternoon
positive.

6  Angle of incidence, the angle between the beam radiation on a surface and the normal
to that surface.

Additional angles are defined that describe the position of the sun in the sky:

0, Zenith angle, the angle between the vertical and the line to the sun, that is, the angle
of incidence of beam radiation on a horizontal surface.

o, Solar altitude angle, the angle between the horizontal and the line to the sun, that is,
the complement of the zenith angle.

v, Solar azimuth angle, the angular displacement from south of the projection of beam

radiation on the horizontal plane, shown in Figure 1.6.1. Displacements east of south

are negative and west of south are positive.

The declination § can be found from the approximate equation of Cooper (1969),

284 +n
§ = 23.45 si _— 1.6.1
3.45 sin <36O 36 ) ( a)
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Table 1.6.1 Recommended Average Days for Months and Values of n by Months*

1 for ith For Average Day of Month

Month Day of Month Date n 8

January i 17 17 -20.9
February 31+ 16 47 —13.0
March 59+ 16 75 —2.4
April 90 + i 15 105 9.4
May 120 4+ 15 135 18.8
June 151+ 11 162 23.1
July 181 + i 17 198 21.2
August 2124 16 228 13.5
September 243 + i 15 258 2.2
October 273 +i 15 288 -9.6
November 304+ 14 318 —18.9
December 334 4 10 344 —23.0

4From Klein (1977). Do not use for |¢| > 66.5°.

or from the more accurate equation (error < 0.035°) [from Spencer (1971), as cited by
Igbal (1983)]

8 = (180/7)(0.006918 — 0.399912 cos B + 0.070257 sin B
— 0.006758 cos 2B + 0.000907 sin 2B
— 0.002697 cos 3B 4 0.00148 sin 3B) (1.6.1b)

where B is from Equation 1.4.2 and the day of the year n can be conveniently obtained
with the help of Table 1.6.1.

Variation in sun-earth distance (as noted in Section 1.4), the equation of time E (as
noted in Section 1.5), and declination are all continuously varying functions of time of
year. For many computational purposes it is customary to express the time of year in terms
of n, the day of the year, and thus as an integer between 1 and 365. Equations 1.4.1, 1.5.3,
and 1.6.1 could be used with noninteger values of n. Note that the maximum rate of change
of declination is about 0.4° per day. The use of integer values of n is adequate for most
engineering calculations outlined in this book.

There is a set of useful relationships among these angles. Equations relating the angle
of incidence of beam radiation on a surface, 0, to the other angles are

cos @ = sin § sin ¢ cos B — sin § cos ¢ sin S cos y
+ cos & cos ¢ cos B cos w + cos § sin ¢ sin B cos ¥y cos w

4+ cos § sin B sin y sin (1.6.2)

and
cos 8 = cos 6, cos B+ sin 6, sin B cos(y, — ) (1.6.3)

The angle 6 may exceed 90°, which means that the sun is behind the surface. Also, when
using Equation 1.6.2, it is necessary to ensure that the earth is not blocking the sun (i.e.,
that the hour angle is between sunrise and sunset).
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Example 1.6.1

Calculate the angle of incidence of beam radiation on a surface located at Madison,
Wisconsin, at 10:30 (solar time) on February 13 if the surface is tilted 45° from the
horizontal and pointed 15° west of south.

Solution

Under these conditions, n = 44, the declination § from Equation 1.6.1 is —14°, the hour
angle w = —22.5° (15° per hour times 1.5 h before noon), and the surface azimuth angle
y = 15°. Using a slope 8 = 45° and the latitude ¢ of Madison of 43° N, Equation 1.6.2 is

cos 0 = sin(—14) sin 43 cos 45 — sin(—14) cos 43 sin 45 cos 15
+ cos(—14) cos 43 cos 45 cos(—22.5)
+ cos(—14) sin 43 sin 45 cos 15 cos(—22.5)
+ cos(—14) sin 45 sin 15 sin(—22.5)
cos § = —0.117 +0.121 + 0.464 4+ 0.418 — 0.068 = 0.817
6 = 35° |

There are several commonly occurring cases for which Equation 1.6.2 is simplified.
For fixed surfaces sloped toward the south or north, that is, with a surface azimuth angle
y of 0° or 180° (a very common situation for fixed flat-plate collectors), the last term
drops out.

For vertical surfaces, 8 = 90° and the equation becomes

cos § = —sin § cos ¢ cos Y 4 cos § sin ¢ cos Yy cos w +cos § sin y sinw  (1.6.4)

For horizontal surfaces, the angle of incidence is the zenith angle of the sun, 6. Its
value must be between 0° and 90° when the sun is above the horizon. For this situation,
B =0, and Equation 1.6.2 becomes

cos 6, = cos ¢ cos § cos w + sin ¢ sin § (1.6.5)

The solar azimuth angle y, can have values in the range of 180° to —180°. For north
or south latitudes between 23.45° and 66.45°, y, will be between 90° and —90° for days
less than 12 h long; for days with more than 12 h between sunrise and sunset, y, will be
greater than 90° or less than —90° early and late in the day when the sun is north of the
east-west line in the northern hemisphere or south of the east-west line in the southern
hemisphere. For tropical latitudes, y, can have any value when § — ¢ is positive in the
northern hemisphere or negative in the southern, for example, just before noon at ¢ = 10°
and § = 20°, y, = —180°, and just after noon y, = +180°. Thus y, is negative when the
hour angle is negative and positive when the hour angle is positive. The sign function in
Equations 1.6.6 is equal to +1 if w is positive and is equal to —1 if w is negative:

_| {cos @, sin ¢ —sin §
cos - (1.6.6)
sin 6, cos ¢

s = sign(w)
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Example 1.6.2

Calculate the zenith and solar azimuth angles for ¢ = 43° at a 9:30 AM on February 13 and
b 6:30 pm on July 1.

Solution
a  On February 13 at 9:30, § = —14° and @ = —37.5°. From Equation 1.6.5,

cos 6, = cos 43 cos(—14) cos(—37.5) + sin 43 sin(—14) = 0.398
0, = 66.5°

From Equation 1.6.6

Vs = —1 .
sin 66.5 cos 43

66.5 sin 43 — sin (—14
cos—] <cos sin sin ( ))‘  _40.0°

b OnlJuly I at 6:30 PM, n = 182, § = 23.1°, and w = 97.5°. From Equation 1.6.5,

cos 6, = cos 43 cos 23.1 cos 97.5 + sin 43 sin 23.1
6, =79.6°

cos—] (cos 79.6 sin 43 — sin 23.1 )’ 112.0°

R
vs=F sin 79.6 cos 43

Useful relationships for the angle of incidence of surfaces sloped due north or due
south can be derived from the fact that surfaces with slope g to the north or south have the
same angular relationship to beam radiation as a horizontal surface at an artificial latitude
of ¢ — B. The relationship is shown in Figure 1.6.2 for the northern hemisphere. Modifying
Equation 1.6.5 yields

cos 0 = cos(¢p — B) cos § cos w + sin(¢p — B) sin & (1.6.7a)

©

e, ‘\0"\5’

0 () I —

e0m yadiotio”

\

Qory, -

s

Figure 1.6.2 Section of earth showing 8, 6, ¢, and ¢ — B for a south-facing surface.
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For the southern hemisphere modify the equation by replacing ¢ — 8 by ¢ + S, consistent
with the sign conventions on ¢ and §:

cos 0 = cos(¢p + B) cos § cos w + sin(¢p + B) sin § (1.6.7b)

For the special case of solar noon, for the south-facing sloped surface in the northern
hemisphere,

Onoon = 10 — 8 — Bl (1.6.8)
and in the southern hemisphere

Onoon = |—¢ + 8 — B (1.6.8b)
where 8 = 0, the angle of incidence is the zenith angle, which for the northern hemisphere is
0; noon = |¢ — 4| (1.6.9a)

and for the southern hemisphere
0, noon = |—¢ + 9 (1.6.9b)

Equation 1.6.5 can be solved for the sunset hour angle w,, when 6, = 90°:

sin ¢ sin &

cos Wy, = — = —tan ¢ tan § (1.6.10)

cos ¢ cos §

The sunrise hour angle is the negative of the sunset hour angle. It also follows that the
number of daylight hours is given by

N = Zcos™' (—tan ¢ tan §) (1.6.11)

A convenient nomogram for determining day length has been devised by Whillier
(1965) and is shown in Figure 1.6.3. Information on latitude and declination for either
hemisphere leads directly to times of sunrise and sunset and day length.

An additional angle of interest is the profile angle of beam radiation on a receiver
plane R that has a surface azimuth angle of y. It is the projection of the solar altitude angle
on a vertical plane perpendicular to the plane in question. Expressed another ways, it is the
angle through which a plane that is initially horizontal must be rotated about an axis in
the plane of the surface in question in order to include the sun. The solar altitude angle
o, (i.e., angle EAD) and the profile angle «,, (i.e., angle fab) for the plane R are shown in
Figure 1.6.4. The plane adef includes the sun. Note that the solar altitude and profile angle
are the same when the sun is in a plane perpendicular to the surface R (e.g., at solar noon
for a surface with a surface azimuth angle of 0° or 180°). The profile angle is useful in
calculating shading by overhangs and can be determined from

tan o
tano, = ——
cos(y; — ¥)

) (1.6.12)



18

Solar Radiation

. 8 9 10 1 12

Day |ength{ winter *u...m‘ummwmw
summer —s 16 15 14 13 12
winter —= 4:00 5:00 6:00

Sunset hour
summer —»

20

10
. / \ \
: \ ‘
g o / Example
3 / \ Latitude 50°
3 Declination 21°
/ \ Sunset 7:50 PM  (summer)
—10 \ 4:10 PM  (winter)
/ Day length 15.7 hr. (summer}
/ 8.3 hr. (winter)
~20{-A N \
4 N \
J FM A M J J A S ON D
0 10 Month > 30 40 \ES
(I T FEUTE TR TS N N A AT ATET AN T B S S T S AATTS SN W S A S N S L
Latitude

Figure 1.6.3 Nomogram to determine time of sunset and day length. Adapted from Whillier
(1965).

Zenith 4
o
z e Sun
Os
E
d D A
A C South
%4—?&7’

Figure 1.6.4  The solar altitude angle o, (ZEAD) and the profile angle «, (£fab) for surface R.
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Example 1.6.3

Calculate the time of sunrise, solar altitude, zenith, solar azimuth, and profile angles for a
60° sloped surface facing 25° west of south at 4:00 PM solar time on March 16 at a latitude
of 43°. Also calculate the time of sunrise and sunset on the surface.

Solution
The hour angle at sunset is determined using Equation 1.6.10. For March 16, from
Equation 1.6.1 (or Table 1.6.1), § = —2.4°:

w, = cos” [ tan 43 tan(—2.4)] = 87.8°

The sunrise hour angle is therefore —87.8°. With the earth’s rotation of 15° per hour,
sunrise (and sunset) occurs 5.85h (5h and 51 min) from noon so sunrise is at 6:09 AM (and
sunset is at 5:51 pm).

The solar altitude angle « is a function only of time of day and declination. At
4:00 PM, w = 60°. From Equation 1.6.5, recognizing that cos 0, =sin(90 — 0,) = sin «,

sin oy = cos 43 cos(—2.4) cos 60 + sin 43 sin(—2.4) = 0.337
;=197 and 6, =90—qa, =70.3"

The solar azimuth angle for this time can be calculated with Equation 1.6.6:

70.3 sin 43 —sin (—2.4
¥, = sign(60) |:cos_1 (COS - sin ( )ﬂ = 66.8°

sin 70.3 cos 43

The profile angle for the surface with y = 25° is calculated with Equation 1.6.12:

1 tan 19.7 o
—tan (———" ) =257
o= <cos (668 — 25)

The hour angles at which sunrise and sunset occur on the surface are calculated from
Equation 1.6.2 with 8 = 90° (cos 6 = 0):
0 = sin(—2.4) sin 43 cos 60 — sin(—2.4) cos 43 sin 60 cos 25
+ [cos(—2.4) cos 43 cos 60 + cos(—2.4) sin 43 sin 60 cos 25] cos w
~+ [cos(—2.4) sin 60 sin 25] sin w

or
0 = 0.008499 + 0.9077 cos w + 0.3657 sin w

which, using sin @ + cos? w = 1, has two solutions: w = —68.6° and w = 112.4°. Sunrise
on the surface is therefore 68.6/15 = 4.57 h before noon, or 7:26 AM. The time of sunset on
the collector is the actual sunset since 112.4° is greater than 87.8° (i.e., when 6 = 90° the
sun has already set). |



20 Solar Radiation

Solar azimuth and altitude angles are tabulated as functions of latitude, declination,
and hour angle by the U.S. Hydrographic Office (1940). Highly accurate equations are
available from the National Renewable Energy Laboratory’s website. Information on the
position of the sun in the sky is also available with less precision but easy access in various
types of charts. Examples of these are the Sun Angle Calculator (1951) and the solar
position charts (plots of « or 6, vs. y, for various ¢, §, and w) in Section 1.9. Care is
necessary in interpreting information from other sources, since nomenclature, definitions,
and sign conventions may vary from those used here.

1.7 ANGLES FOR TRACKING SURFACES

Some solar collectors ‘‘track’ the sun by moving in prescribed ways to minimize the angle
of incidence of beam radiation on their surfaces and thus maximize the incident beam
radiation. The angles of incidence and the surface azimuth angles are needed for these
collectors. The relationships in this section will be useful in radiation calculations for these
moving surfaces. For further information see Eibling et al. (1953) and Braun and Mitchell
(1983).

Tracking systems are classified by their motions. Rotation can be about a single axis
(which could have any orientation but which in practice is usually horizontal east-west,
horizontal north-south, vertical, or parallel to the earth’s axis) or it can be about two axes.
The following sets of equations (except for Equations 1.7.4) are for surfaces that rotate
on axes that are parallel to the surfaces. Figure 1.7.1 shows extraterrestrial radiation on a
fixed surface with slope equal to the latitude and also on surfaces that track the sun about
a horizontal north-south or east-west axis at a latitude of 45° at the summer and winter

Radiation [MJ/m2-hr]

| T IR N AT NNV ST N '
0O 2 4 6 8 10 12 14 16 18 20 22 24

Time [hr]
Figure 1.7.1 Extraterrestrial solar radiation for ¢ = 45° on a stationary collector at 8 = 45° on
north-south (N-S) and east-west (E-W) single-axis tracking collectors. The three dotted curves are
for the winter solstice and the three solid curves are for the summer solstice.
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solstices. It is clear that tracking can significantly change the time distribution of incident
beam radiation. Tracking does not always result in increased beam radiation; compare the
winter solstice radiation on the north-south tracking surface with the radiation on the fixed
surface. In practice the differences will be less than indicated by the figure due to clouds
and atmospheric transmission.

For a plane rotated about a horizontal east-west axis with a single daily adjustment so
that the beam radiation is normal to the surface at noon each day,

cos O = sin®§ + cos> 8 cos w (1.7.1a)

The slope of this surface will be fixed for each day and will be

B=lp— 4 (1.7.1b)

The surface azimuth angle for a day will be 0° or 180° depending on the latitude and

declination:
0° if —6>0
y = (1.7.1¢c)
180° if ¢ —8<0

For a plane rotated about a horizontal east-west axis with continuous adjustment to
minimize the angle of incidence,

cos 0 = (1 — cos’ 8 sin® w)'/? (1.7.2a)
The slope of this surface is given by
tan B = tan 0_|cos y;| (1.7.2b)

The surface azimuth angle for this mode of orientation will change between 0° and 180° if
the solar azimuth angle passes through £90°. For either hemisphere,

(1.7.2¢)

0° if |y, <90
180° if |y, =90

For a plane rotated about a horizontal north-south axis with continuous adjustment to
minimize the angle of incidence,

cos 0 = (cos2 0, + cos? 8 sin’ a))l/2 (1.7.3a)

The slope is given by
tan f = tan 0 |cos(y — y,)| (1.7.3b)

The surface azimuth angle y will be 90° or —90° depending on the sign of the solar
azimuth angle:
90° if y,>0
y = s (1.7.3¢)
—-90° if y, <0
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For a plane with a fixed slope rotated about a vertical axis, the angle of incidence
is minimized when the surface azimuth and solar azimuth angles are equal. From
Equation 1.6.3, the angle of incidence is

cos 6 = cos 6_ cos B +sin 6_ sin B (1.7.4a)

The slope is fixed, so
B = const (1.7.4b)

The surface azimuth angle is
V=Y (1.7.4¢)

For a plane rotated about a north-south axis parallel to the earth’s axis with continuous
adjustment to minimize 6,

cosf = cosé (1.7.52)
The slope varies continuously and is
t
tan f = 29 (1.7.5b)
cos y

The surface azimuth angle is

_; sin 0, sin y;

=t 180C,C 1.7.5
v an cos 0’ sin ¢ + -2 ( ©)
where
cos 0" = cos 6, cos ¢ + sin 6_ sin ¢ cos y (1.7.5d)
0 if (tant SRESNY)
C, = cos 0’ sin ¢ (1.7.5¢)
+1 otherwise
+1 ify, >0
C, = (1.7.5¢f)
-1 ify, <0
For a plane that is continuously tracking about two axes to minimize the angle of
incidence,
cosf =1 (1.7.6a)
B=0, (1.7.6b)
Y =V (1.7.6¢)

Example 1.7.1

Calculate the angle of incidence of beam radiation, the slope of the surface, and the
surface azimuth angle for a surface at a ¢ = 40°, § = 21°, and w = 30° (2:00 P™m) and
b ¢ =40°,§ = 21°, and w = 100° if it is continuously rotated about an east-west axis to
minimize 6.
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Solution
a Use Equations 1.7.2 for a surface moved in this way. First calculate the angle of
incidence:
6 = cos™' (1 — cos”21sin* 30)"/? = 27.8°
Next calculate 6, from Equation 1.6.5:

0, = cos~!(cos 40 cos 21 cos 30 + sin 40 sin 21) = 31.8°

We now need the solar azimuth angle y,, which can be found from Equation 1.6.6:

31.8 sin 40 — sin 21
cos-! cos . sin sin _0.3°
sin 31.8 cos 40

y, = sign(30)

Then from Equation 1.7.2b
B = tan" ! (tan 31.8 |cos 62.3]) = 16.1°

From Equation 1.7.2c, with y, <90, y = 0.
b  The procedure is the same as in part a:
6 = cos™' (1 — cos®21sin? 100)!/? = 66.8°
0, = cos~!(cos 40 cos 21 cos 100 + sin 40 sin 21) = 83.9°
cos 83.9 sin 40 — sin 21 o
=1124

1] ..
= 100
Vs =CO8 [Slgn( ) ( sin 83.9 cos 40
The slope is then
B = tan"'(tan 83.9 |cos 112.4|) = 74.3°

And since |y,| > 90, y will be 180°. (Note that these results can be checked using
Equation 1.6.5.) |

1.8 RATIO OF BEAM RADIATION ON TILTED SURFACE TO THAT
ON HORIZONTAL SURFACE

For purposes of solar process design and performance calculations, it is often necessary
to calculate the hourly radiation on a tilted surface of a collector from measurements or
estimates of solar radiation on a horizontal surface. The most commonly available data are
total radiation for hours or days on the horizontal surface, whereas the need is for beam
and diffuse radiation on the plane of a collector.

The geometric factor R, the ratio of beam radiation on the tilted surface to that
on a horizontal surface at any time, can be calculated exactly by appropriate use of
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Gbt
PN
o» G” A Figure 1.8.1 Beam radiation on horizontal

and tilted surfaces.

Equation 1.6.2. Figure 1.8.1 indicates the angle of incidence of beam radiation on the
horizontal and tilted surfaces. The ratio G, 1/ G, is given by’

R — Gy r _ Gy, cos 0 _ cos 0 (1.8.1)
"7 G,  G,,cos6. cosé. o

and cos ¢ and cos 6, are both determined from Equation 1.6.2 (or from equations derived
from Equation 1.6.2).

Example 1.8.1

What is the ratio of beam radiation to that on a horizontal surface for the surface and time
specified in Example 1.6.1?

Solution

Example 1.6.1 shows the calculation for cos 6. For the horizontal surface, from Equation
1.6.5,
cos 6, = sin(—14) sin 43 + cos(—14) cos 43 cos(—22.5) = 0.491

And from Equation 1.8.1

R — cos 0 _0.818_167
" cos6, 0491 -

The optimum azimuth angle for flat-plate cssollectors is usually 0° in the northern
hemisphere (or 180° in the southern hemisphere). Thus it is a common situation that y = 0°
(or 180°). In this case, Equations 1.6.5 and 1.6.7 can be used to determine cos 6, and cos
0, respectively, leading in the northern hemisphere, for y = 0°, to

cos(¢p — B)cos § cos w + sin(¢p — B) sin §
R, = - - (1.8.2)
cos ¢ cos & cos w + sin ¢ sin §

In the southern hemisphere, y = 180° and the equation is

__cos(¢ + B)cos & cos w +sin(¢ + B) sin §

R
b cos ¢ cos 6 cos w + sin ¢ sin §

(1.8.3)

"The symbol G is used in this book to denote rates, while [ is used for energy quantities integrated over an hour.
The original development of R, by Hottel and Woertz (1942) was for hourly periods; for an hour (using angles
at the midpoint of the hour), R, = Ib,T/Ib'
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A special case of interest is Rj, .o, the ratio for south-facing surfaces at solar noon. From
Equations 1.6.8a and 1.6.9a, for the northern hemisphere,

coslep — & — B
R = 1.8.4
b,noon COS|¢ _ 5| ( a)
For the southern hemisphere, from Equations 1.6.8b and 1.6.9b,
cos|—¢ + 6 — B
R - 1.8.4b
b,noon COS|—¢ + 5] ( )

Hottel and Woertz (1942) pointed out that Equation 1.8.2 provides a convenient
method for calculating R, for the most common cases. They also showed a graphical
method for solving these equations. This graphical method has been revised by Whillier
(1975), and an adaptation of Whillier’s curves is given here. Figures 1.8.2(a—e) are plots
of both cos 6, as a function of ¢ and cos 6 as a function of ¢ — B for various dates
(i.e., declinations). By plotting the curves for sets of dates having (nearly) the same absolute
value of declination, the curves ‘‘reflect back’ on each other at latitude 0°. Thus each set
of curves, in effect, covers the latitude range of —60° to 60°.

As will be seen in later chapters, solar process performance calculations are very often
done on an hourly basis. The cos 6, plots are shown for the midpoints of hours before and
after solar noon, and the values of R, found from them are applied to those hours. (This
procedure is satisfactory for most hours of the day, but in hours that include sunrise and
sunset, unrepresentative values of R, may be obtained. Solar collection in those hours is
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most often zero or a negligible part of the total daily collector output. However, care must
be taken that unrealistic products of R, and beam radiation /, are not used.)

To find cos 6_, enter the chart for the appropriate time with the date and latitude of
the location in question. For the same date and latitude cos 6 is found by entering with an
abscissa corresponding to ¢ — B. Then R;, is found from Equation 1.8.1. The dates on the
sets of curves are shown in two sets, one for north (positive) latitudes and the other for
south (negative) latitudes.

Two situations arise, for positive values or for negative values of ¢ — . For positive
values, the charts are used directly. If ¢ — f is negative (which frequently occurs when
collectors are sloped for optimum performance in winter or with vertical collectors), the
procedure is modified. Determine cos 6, as before. Determine cos ¢ from the absolute
value of ¢ — B using the curve for the other hemisphere, that is, with the sign on the
declination reversed.

Example 1.8.2

Calculate R, for a surface at latitude 40° N at a tilt 30° toward the south for the hour 9 to
10 solar time on February 16.

Solution

Use Figure 1.8.2(c) for the hour £2.5 h from noon as representative of the hour from 9 to
10. To find cos 6., enter at a latitude of 40° for the north latitude date of February 16. Here
cos 0, = 0.45. To find cos 6, enter at a latitude of ¢ — B = 10° for the same date. Here

cos & = 0.73. Then

cos 0 0.73

p = =— =162
cos 6, 045

The ratio can also be calculated using Equation 1.8.2. The declination on February 16
is —13°:
_ cos 10 cos(—13) cos(—37.5) + sin 10 sin(—13) _ 0.722 _ 161
b cos40 cos(—13) cos(—37.5) +sin40 sin(—13)  0.448 ’ [ |

Example 1.8.3

Calculate R, for a latitude 40° N at a tilt of 50° toward the south for the hour 9 to 10 solar
time on February 16.

Solution

As found in the previous example, cos 6, = 0.45. To find cos 6, enter at an abscissa of
+10°, using the curve for February 16 for south latitudes. The value of cos 6 from the
curve is 0.80. Thus R, = 0.80/0.45 = 1.78. Equation 1.8.2 can also be used:

_cos 10 cos(—13) cos(—37.5) + sin(—10) sin(—=13)  0.800 L79
b cos 40 cos(—13) cos(—37.5) + sin 40 sin(—13) ~ 0.448 [ |

It is possible, using Equation 1.8.2 or Figure 1.8.2, to construct plots showing the
effects of collector tilt on R, for various times of the year and day. Figure 1.8.3 shows
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Figure 1.8.3 Ratio R, for a surface with slope 50° to south at latitude 40° for various hours from
solar noon.

such a plot for a latitude of 40° and a slope of 50°. It illustrates that very large gains in
incident beam radiation are to be had by tilting a receiving surface toward the equator.

Equation 1.8.1 can also be applied to other than fixed flat-plate collectors. Equations
1.7.1 to 1.7.6 give cos 6 for surfaces moved in prescribed ways in which concentrating
collectors may move to track the sun. If the beam radiation on a horizontal surface is known
or can be estimated, the appropriate one of these equations can be used in the numerator of
Equation 1.8.1 for cos 6. For example, for a plane rotated continuously about a horizontal
east-west axis to maximize the beam radiation on the plane, from Equation 1.7.2a, the ratio
of beam radiation on the plane to that on a horizontal surface at any time is

(1 — cos? 8 sin® w)!/2
R, = - - (1.8.5)
coS ¢ cos & cos w + sin ¢ sin §

Some of the solar radiation data available are beam radiation on surfaces normal to the
radiation, as measured by a pyrheliometer.® In this case the useful ratio is beam radiation
on the surface in question to beam radiation on the normal surface; simply R, = cos 0,
where 0 is obtained from Equations 1.7.1 to 1.7.6.

1.9 SHADING

Three types of shading problems occur so frequently that methods are needed to cope
with them. The first is shading of a collector, window, or other receiver by nearby

8Pyrheliometers and other instruments for measuring solar radiation are described in Chapter 2.
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trees, buildings, or other obstructions. The geometries may be irregular, and systematic
calculations of shading of the receiver in question may be difficult. Recourse is made to
diagrams of the position of the sun in the sky, for example, plots of solar altitude o, versus
solar azimuth y,, on which shapes of obstructions (shading profiles) can be superimposed
to determine when the path from the sun to the point in question is blocked. The second
type includes shading of collectors in other than the first row of multirow arrays by the
collectors on the adjoining row. The third includes shading of windows by overhangs and
wingwalls. Where the geometries are regular, shading is amenable to calculation, and the
results can be presented in general form. This will be treated in Chapter 14.

At any point in time and at a particular latitude, ¢, §, and w are fixed. From the
equations in Section 1.6, the zenith angle 6_ or solar altitude angle o, and the solar azimuth
angle y, can be calculated. A solar position plot of 6, and o versus y, for latitudes of
+45° is shown in Figure 1.9.1. Lines of constant declination are labeled by dates of mean
days of the months from Table 1.6.1. Lines of constant hour angles labeled by hours are
also shown. See Problem S1.5 for other latitudes.

The angular position of buildings, wingwalls, overhangs, or other obstructions can be
entered on the same plot. For example, as observed by Mazria (1979) and Anderson (1982),
if a building or other obstruction of known dimensions and orientation is located a known
distance from the point of interest (i.e., the receiver, collector, or window), the angular
coordinates corresponding to altitude and azimuth angles of points on the obstruction (the
object azimuth angle y, and object altitude angle «,) can be calculated from trigonometric
considerations. This is illustrated in Examples 1.9.1 and 1.9.2. Alternatively, measurements
of object altitude and azimuth angles may be made at the site of a proposed receiver and the
angles plotted on the solar position plot. Instruments are available to measure the angles.
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Figure 1.9.1 Solar position plot for +45° latitude. Solar altitude angle and solar azimuth angle are
functions of declination and hour angle, indicated on the plots by dates and times. The dates shown
are for northern hemisphere; for southern hemisphere use the corresponding dates as indicated in
Figure 1.8.2.
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Example 1.9.1

A proposed collector site at S is 10.0m to the north of a long wall that shades it when
the sun is low in the sky. The wall is of uniform height of 2.5m above the center of
the proposed collector area. Show this wall on a solar position chart with (a) the wall
oriented east-west and (b) the wall oriented on a southeast-to-northwest axis displaced 20°
from east-west.

Solution

In each case, we pick several points on the top of the wall to establish the coordinates for
plotting on the solar position plot.

a Take three points indicated by A, B, and C in the diagram with A to the south and B
10 m and C 30 m west of A. Points B’ and C’ are taken to the east of A with the same object
altitude angles as B and C and with object azimuth angles changed only in sign.

For point A, the object azimuth y,, is 0°. The object altitude angle is

2.5 o
tan o,y = o0 Y= 14.0
For point B, SB = (10* 4+ 10%)!/2 = 14.1 m,
t = 25 =10.0°
an o,p = a1 o,p = 10.
10 .
tan y,p = 10’ Yo = 45.0
(@
s
|
10m
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For point C, SC = (10> +30%)"/2 = 31.6 m,

25 .
tan Qe = 575> dyo = 4.52
31.6
30 o
tan y,c = 0’ V,c =716

There are points corresponding to B and C but to the east of A; these will have the
same object azimuth angles except with negative signs. The shading profile determined by
these coordinates is independent of latitude. It is shown by the solid line on the plot for
¢ = 45°. Note that at object azimuth angles of 90°, the object distance becomes infinity
and the object altitude angle becomes 0°.

The sun is obscured by the wall only during times shown in the diagram. The wall
does not cast a shadow on point S at any time of day from late March to mid-September.
For December 10, it casts a shadow on point S before 9:00 AM and after 3:00 pm.

90 0
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50

40
30
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100 west

Solar Azimuth Angle ys

b The obstruction of the sky does not show east-west symmetry in this case, so five
points have been chosen as shown to cover the desirable range. Point A is the same as
before, that is, o4, = 14.0°, y,, = 0°.

Arbitrarily select points on the wall for the calculation. In this case the calculations
are easier if we select values of the object azimuth angle and calculate from them the
corresponding distances from the point to the site and the corresponding «,. In this case
we can select values of y, for points B, C, D, and E of 45°, 90°, —30°, and —60°.

For point B, with y,; = 45°, the distance SB can be calculated from the law of sines:

sin 70 sin(180 — 45 — 70)
SB 10
25
m’

., SB=104m

tan o, = a,p = 13.5°
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For point D, with y,,, = —30°, the calculation is
in 11 in(180 — 110 —
sin 110 _ sin(180 0 30), SD — 146m
SD 10
25 o
tan O,p = m, d,p = 9.7

The calculations for points C and E give «, = 5.2° at y, = 90° and o, = 2.6” at
Yor = —60.0°.

The shading profile determined by these coordinates is plotted on the solar position
chart for ¢ = 45° and is shown as the dashed line. In this case, the object altitude angle
goes to zero at azimuth angles of —70° and 110°. In either case, the area under the curves
represents the wall, and the times when the wall would obstruct the beam radiation are
those times (declination and hour angles) in the areas under the curves. |

There may be some freedom in selecting points to be used in plotting object coordinates,
and the calculation may be made easier (as in the preceding example) by selecting the
most appropriate points. Applications of trigonometry will always provide the necessary
information. For obstructions such as buildings, the points selected must include corners
or limits that define the extent of obstruction. It may or may not be necessary to select
intermediate points to fully define shading. This is illustrated in the following example.

Example 1.9.2

It is proposed to install a solar collector at a level 4.0 m above the ground. A rectangular
building 30 m high is located 45 m to the south, has its long dimension on an east-west
axis, and has dimensions shown in the diagram. The latitude is 45°. Diagram this building
on the solar position plot to show the times of day and year when it would shade the
proposed collector.

- Proposed Collector
|

N I
i
:45m

B 52m 8

|
[
I
18m{ A

m
C

Solution

Three points that will be critical to determination of the shape of the image are the top near
corners and the top of the building directly to the south of the proposed collector. Consider
first point A. The object altitude angle of this point is determined by the fact that it is 45 m
away and 30 — 4 = 26 m higher than the proposed collector:

26 o
tan OlUA = E, OlUA = 30.0

The object azimuth angle y,, is 0° as the point A is directly to the south.
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For point B, the distance SB is (457 + 522)!/2 = 68.8 m. The height is again 26 m.

Then 26
tan d,p = ﬁ’ d,p = 20.70
The object azimuth angle y, 5 is
52 o
tan y,p = 15’ Vop = 49.1

The calculation method for point C is the same as for B. The distance SC =
(45 + 8912 =457 m:

tan o, = o,c =29.6"

45.7°

tan y,o = Yoo = 10.1°

45’
Note again that since point C lies to the east of south, y, is by convention negative.

The shading profile of the building can be approximated by joining A and C and A and
B by straight lines. A more precise representation is obtained by calculating intermediate
points on the shading profile to establish the curve. In this example, an object altitude angle
of 27.7° is calculated for an object azimuth angle of 25°.

These coordinates are plotted and the outlines of the building are shown in the figure.
The shaded area represents the existing building as seen from the proposed collector site.
The dates and times when the collector would be shaded from direct sun by the building
are evident.
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Implicit in the preceding discussion is the idea that the solar position at a point in time
can be represented for a point location. Collectors and receivers have finite size, and what
one point on a large receiving surface ‘‘sees’’ may not be the same as what another point
sees. The problem is often to determine the amount of beam radiation on a receiver. If
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(a)

ez —efa 0=

Figure 1.9.2 (a) Cross section of a long overhang showing projection, gap, and height. (b) Section
showing shading planes.

shading obstructions are far from the receiver relative to its size, so that shadows tend to
move over the receiver rapidly and the receiver is either shaded or not shaded, the receiver
can be thought of as a point. If a receiver is partially shaded, it can be considered to consist
of a number of smaller areas, each of which is shaded or not shaded. Or integration over
the receiver area may be performed to determine shading effects. These integrations have
been done for special cases of overhangs and wingwalls.

Overhangs and wingwalls are architectural features that are applied to buildings to
shade windows from beam radiation. The solar position charts can be used to determine
when points on the receiver are shaded. The procedure is identical to that of Example 1.9.1;
the obstruction in the case of an overhang and the times when the point is shaded from
beam radiation are the times corresponding to areas above the line. This procedure can be
used for overhangs of either finite or infinite length. The same concepts can be applied
to wingwalls; the vertical edges of the object in Example 1.9.2 correspond to edges of
wingwalls of finite height.

An overhang is shown in cross section in Figure 1.9.2(a) for the most common
situation of a vertical window. The projection P is the horizontal distance from the plane
of the window to the outer edge of the overhang. The gap G is the vertical distance from
the top of the window to the horizontal plane that includes the outer edge of the overhang.
The height H is the vertical dimension of the window.

The concept of shading planes was introduced by Jones (1980) as a useful way of
considering shading by overhangs where end effects are negligible. Two shading planes
are labeled in Figure 1.9.2(b). The angle of incidence of beam radiation on a shading
plane can be calculated from its surface azimuth angle y and its slope § = 90 + ¢ by
Equation 1.6.2 or equivalent. The angle ¥ of shading plane 1 is tan~![P/(G + H)] and
that for shading plane 2 is tan~! (P /G). Note that if the profile angle « p 1s less than 90 —
Y, the outer surface of the shading plane will ‘‘see’’ the sun and beam radiation will reach
the receiver.”

Shading calculations are needed when flat-plate collectors are arranged in rows.
Normally, the first row is unobstructed, but the second row may be partially shaded by the

10

Use of the shading plane concept will be discussed in Chapters 2 and 14.
10See Figure 12.1.2(c) for an example.
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Figure 1.9.3 Section of two rows of a multirow collector array.

first, the third by the second, and so on. This arrangement of collectors is shown in cross
section in Figure 1.9.3.

For the case where the collectors are long in extent so the end effects are negligible,
the profile angle provides a useful means of determining shading. As long as the profile
angle is greater than the angle CAB, no point on row N will be shaded by row M. If the
profile angle at a point in time is CA’B’ and is less than CAB, the portion of row N below
point A” will be shaded from beam radiation.

Example 1.9.3

A multiple-row array of collectors is arranged as shown in the figure. The collectors are
2.10 m from top to bottom and are sloped at 60° toward the south. At a time when the profile
angle (given by Equation 1.6.12) is 25°, estimate the fraction of the area of the collector in
row N that will be shaded by the collectors in row M. Assume that the rows are long so
end effects are not significant.

Solution

Referring to the figure, the angle BAC is tan~! [1.82/(2.87 — 1.05)] = 45°, and since «
is 25°, shading will occur.
The dimension AA’ can be calculated:

C 1.82 2.57
= = . m
sin 45

ZCAA' =180—45—-60=75", LCA'A=180—75-20=285"

p
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From the law of sines,

,  2.57sin 20
AA'= —— =0.88m
sin 85
The fraction of collector N that is shaded is 0.88/2.10 = 0.42. [ |

1.10 EXTRATERRESTRIAL RADIATION ON A HORIZONTAL SURFACE

Several types of radiation calculations are most conveniently done using normalized
radiation levels, that is, the ratio of radiation level to the theoretically possible radiation
that would be available if there were no atmosphere. For these calculations, which are
discussed in Chapter 2, we need a method of calculating the extraterrestrial radiation.

At any point in time, the solar radiation incident on a horizontal plane outside of the
atmosphere is the normal incident solar radiation as given by Equation 1.4.1 divided by R;:

360n
G,=G, (1 -+ 0.033 cos 2365 > cos 0, (1.10.1)

where G, is the solar constant and n is the day of the year. Combining Equation 1.6.5 for
cos 6, with Equation 1.10.1 gives G, for a horizontal surface at any time between sunrise
and sunset:

360
G,=G, (1 + 0.033 cos 36511) (cos ¢ cos § cos w —+ sin ¢ sin §) (1.10.2)

It is often necessary for calculation of daily solar radiation to have the integrated
daily extraterrestrial radiation on a horizontal surface, H,. This is obtained by integrating
Equation 1.10.2 over the period from sunrise to sunset. If G, is in watts per square meter,
H, in daily joules per square meter per day is

1+ 0.033
+ cos 365

o

24 x 3600G,, ( 360n>
Hy=""""s

. Twg . .
X (cos ¢ cos § sin w; + 18(; sin ¢ sin 8) (1.10.3)
where w; is the sunset hour angle, in degrees, from Equation 1.6.10.

The monthly mean!! daily extraterrestrial radiation ﬁo is a useful quantity. For
latitudes in the range +60 to —60 it can be calculated with Equation 1.10.3 using n and
§ for the mean day of the month'? from Table 1.6.1. Mean radiation H,, is plotted as a
function of latitude for the northern and southern hemispheres in Figure 1.10.1. The curves
are for dates that give the mean radiation for the month and thus show ﬁo. Values of H,

T An overbar is used throughout the book to indicate a monthly average quantity.
12The mean day is the day having H,, closest to H .
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Figure 1.10.1 Extraterrestrial daily radiation on a horizontal surface. The curves are for the mean
days of the month from Table 1.6.1.
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for any day can be estimated by interpolation. Exact values of H , for all latitudes are given
in Table 1.10.1.

Example 1.10.1

What is H,, the day’s solar radiation on a horizontal surface in the absence of the
atmosphere, at latitude 43° N on April 15?

Table 1.10.1 Monthly Average Daily Extraterrestrial Radiation, MJ/m?

¢ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

90 0.0 0.0 1.2 193 372 448 412 265 54 0.0 0.0 0.0
85 0.0 0.0 22 192 370 447 410 2064 6.4 0.0 0.0 0.0
80 0.0 0.0 47 19.6 366 442 405 26.1 9.0 0.6 0.0 0.0
75 0.0 0.7 7.8 21.0 359 433 398 263 119 2.2 0.0 0.0
70 0.1 27 109 231 353 421 387 275 148 4.9 0.3 0.0
65 1.2 54 139 254 357 410 383 292 177 7.8 2.0 0.4
60 3.5 83 169 276 366 41.0 388 309 205 10.8 4.5 2.3
55 62 113 19.8 29.6 376 413 394 326 231 138 7.3 4.8
50 9.1 144 225 315 385 415 400 341 255 167 103 7.7
45 122 174 251 332 392 417 404 353 278 196 133 10.7
40 153 203 274 346 397 41.7 40.6 364 298 224 164 137
35 183 2311 296 358 40.0 415 406 373 31.7 250 193 16.8
30 21.3 257 315 368 40.0 41.1 404 37.8 332 274 222 199
25 242 282 332 375 398 404 40.0 382 346 296 250 229
20 27.0 30.5 347 379 393 395 393 382 356 31.6 277 258
15 296 326 359 380 385 384 383 380 364 334 301 285
10 320 344 368 379 375 370 37.1 375 37.0 350 324 31.1

5 342 360 375 374 363 353 356 367 372 363 345 335

0 362 374 378 367 348 335 340 357 372 373 363 357
-5 380 385 379 358 330 314 321 344 369 380 379 376
—-10 395 393 377 345 31.1 292 299 329 363 385 393 394
—-15 408 398 372 33.0 289 268 27.6 31.1 354 387 404 409
—20 41.8 40.0 364 313 266 242 252 291 343 38.6 412 421
—25 425 400 354 293 241 215 226 270 329 382 41.7 431
—30 430 397 340 272 214 187 199 246 312 376 420 438
=35 432 39.1 325 248 186 158 17.0 221 293 36.6 420 442
—40 43.1 382 30.6 223 158 129 142 194 272 355 41.7 445
—45 428 371 28.6 19.6 129 10.0 113 166 249 340 412 445
=50 423 357 263 168 10.0 7.2 84 138 224 324 405 443
=55 41.7 341 239 139 7.2 4.5 57 109 198 305 396 440
—60 410 324 212 109 4.5 22 3.1 80 17.0 284 38.7 437
—65 405 30.6 185 7.9 2.1 0.3 1.0 52 141 262 378 437
—-70 40.8 28.8 15.6 5.0 0.4 0.0 0.0 26 11.1 240 374 449
=75 419 27.6 126 24 0.0 0.0 0.0 0.8 80 219 381 462
—80 427 274 9.7 0.6 0.0 0.0 0.0 0.0 50 20.6 388 47.1
-85 432 277 7.2 0.0 0.0 0.0 0.0 0.0 24 203 393 476
—90 433 278 6.2 0.0 0.0 0.0 0.0 0.0 1.4 204 394 478
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Solution

For these circumstances, n = 105 (from Table 1.6.1), § = 9.4° (from Equation 1.6.1), and
¢ = 43°. From Equation 1.6.10

cos w, = —tan 43 tan 9.4 and w; = 98.9°

Then from Equation 1.10.3, with G, = 1367 W/m?,

24 x 3600 x 1367 360 x 105
H =" 1 40.033 cos
b4 365
T x 98.9

X (cos 43 cos 9.4 sin 98.9 + sin 43 sin 9.4)

180
=33.8MJ/m?

From Figure 1.10.1(a), for the curve for April, we read H, = 34.0M]J /mz, and from
Table 1.10.1 we obtain H, = 33.8 MJ /m? by interpolation. |

It is also of interest to calculate the extraterrestrial radiation on a horizontal surface
for an hour period. Integrating Equation 1.10.2 for a period between hour angles w; and
w, which define an hour (where w, is the larger),

12 x 3600 360
I =226 (140033 cos 22
- 365

w(w, — wy)

180 sin ¢ sin 8] (1.10.4)

x |:c0s ¢ cos § (sin w, — sin w;) +
(The limits w; and @, may define a time other than an hour.)

Example 1.10.2

What is the solar radiation on a horizontal surface in the absence of the atmosphere at
latitude 43° N on April 15 between the hours of 10 and 11?

Solution

The declination is 9.4° (from the previous example). For April 15, n = 105. Using
Equation 1.10.4 with w; = —30° and w, = —15°,

[ - 12 x 3600 x 1367

o

360 x 105
(1 + 0.033 cos ;>

b4 365
m[—15 - (=30)]

180
=3.79 MJ/m? [ |

X <c0s 43 cos 9.4 [sin (—15) — sin(—30)] + sin 43 sin 9.4)



References 41

The hourly extraterrestrial radiation can also be approximated by writing Equation
1.10.2 in terms of /, evaluating w at the midpoint of the hour. For the circumstances of
Example 1.10.2, the hour’s radiation so estimated is 3.80 MJ/m?. Differences between the
hourly radiation calculated by these two methods will be slightly larger at times near sunrise
and sunset but are still small. For larger time spans, the differences become larger. For
example, for the same circumstances as in Example 1.10.2 but for the 2-h span from 7:00
to 9:00, the use of Equation 1.10.4 gives 4.58 MJ/m?, and Equation 1.10.2 for 8:00 gives
4.61 MJ/m>.

1.11 SUMMARY

In this chapter we have outlined the basic characteristics of the sun and the radiation it
emits, noting that the solar constant, the mean radiation flux density outside of the earth’s
atmosphere, is 1367 W/m? (within 4-1%), with most of the radiation in a wavelength
range of 0.3 to 3 um. This radiation has directional characteristics that are defined by a
set of angles that determine the angle of incidence of the radiation on a surface. We have
included in this chapter those topics that are based on extraterrestrial radiation and the
geometry of the earth and sun. This is background information for Chapter 2, which is
concerned with effects of the atmosphere, radiation measurements, and data manipulation.
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Available Solar Radiation

In this chapter we describe instruments for solar radiation measurements, the solar radiation
data that are available, and the calculation of needed information from the available data. It
is generally not practical to base predictions or calculations of solar radiation on attenuation
of the extraterrestrial radiation by the atmosphere, as adequate meteorological information
is seldom available. Instead, to predict the performance of a solar process in the future,
we use past measurements of solar radiation at the location in question or from a nearby
similar location.

Solar radiation data are used in several forms and for a variety of purposes. The most
detailed information available is beam and diffuse solar radiation on a horizontal surface,
by hours, which is useful in simulations of solar processes. (A few measurements are
available on inclined surfaces and for shorter time intervals.) Daily data are often available
and hourly radiation can be estimated from daily data. Monthly total solar radiation on
a horizontal surface can be used in some process design methods. However, as process
performance is generally not linear with solar radiation, the use of averages may lead to
serious errors if nonlinearities are not taken into account. It is also possible to reduce
radiation data to more manageable forms by statistical methods.

2.1 DEFINITIONS

Figure 2.1.1 shows the primary radiation fluxes on a surface at or near the ground that are
important in connection with solar thermal processes. It is convenient to consider radiation
in two wavelength ranges.!

Solar or short-wave radiation is radiation originating from the sun, in the wavelength
range of 0.3 to 3 wm. In the terminology used throughout this book, solar radiation includes
both beam and diffuse components unless otherwise specified.

Long-wave radiation is radiation originating from sources at temperatures near
ordinary ambient temperatures and thus substantially all at wavelengths greater than 3 pm.
Long-wave radiation is emitted by the atmosphere, by a collector, or by any other body
at ordinary temperatures. (This radiation, if originating from the ground, is referred to in
some literature as ‘‘terrestrial’’ radiation.)

'We will see in Chapters 3, 4, and 6 that the wavelength ranges of incoming solar radiation and emitted radiation
from flat-plate solar collectors overlap to a negligible extent, and for many purposes the distinction noted here is
very useful. For collectors operating at high enough temperatures there is significant overlap and more precise
distinctions are needed.

Solar Engineering of Thermal Processes, Fourth Edition. John A. Duffie and William A. Beckman 43
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Instruments for measuring solar radiation are of two basic types:

A pyrheliometer is an instrument using a collimated detector for measuring solar
radiation from the sun and from a small portion of the sky around the sun (i.e., beam
radiation) at normal incidence.

A pyranometer is an instrument for measuring total hemispherical solar (beam plus
diffuse) radiation, usually on a horizontal surface. If shaded from the beam radiation
by a shade ring or disc, a pyranometer measures diffuse radiation.

In addition, the terms solarimeter and actinometer are encountered; a solarimeter can
generally be interpreted to mean the same as a pyranometer, and an actinometer usually
refers to a pyrheliometer.

In the following sections we discuss briefly the two basic radiation instruments
and the pyrheliometric scales that are used in solar radiometry. More detailed discus-
sions of instruments, their use, and the associated terminology are found in Robinson
(1966), World Meteorological Organization (WMO, 1969), Kondratyev (1969), Coulson
(1975), Thekaekara (1976), Yellott (1977), and Igbal (1983). Stewart et al. (1985) review
characteristics of pyranometers and pyrheliometers.

2.2 PYRHELIOMETERS AND PYRHELIOMETRIC SCALES

Standard and secondary standard solar radiation instruments are pyrheliometers. The water
flow pyrheliometer, designed by Abbot in 1905, was an early standard instrument. This
instrument uses a cylindrical blackbody cavity to absorb radiation that is admitted through
a collimating tube. Water flows around and over the absorbing cavity, and measurements
of its temperature and flow rate provide the means for determining the absorbed energy.
The design was modified by Abbot in 1932 to include the use of two thermally identical
chambers, dividing the cooling water between them and heating one chamber electrically
while the other is heated by solar radiation; when the instrument is adjusted so as to make
the heat produced in the two chambers identical, the electrical power input is a measure of
the solar energy absorbed.

Standard pyrheliometers are not easy to use, and secondary standard instruments
have been devised that are calibrated against the standard instruments. The secondary
standards in turn are used to calibrate field instruments. Robinson (1966) and Coulson
(1975) provide detailed discussion and bibliography on this topic. Two of these secondary
standard instruments are of importance.
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The Abbot silver disc pyrheliometer, first built by Abbot in 1902 and modified in
1909 and 1927, uses a silver disc 38 mm in diameter and 7 mm thick as the radiation
receiver. The side exposed to radiation is blackened, and the bulb of a precision mercury
thermometer is inserted in a hole in the side of the disc and is in good thermal contact with
the disc. The silver disc is suspended on wires at the end of a collimating tube, which in
later models has dimensions such that 0.0013 of the hemisphere is ‘‘seen’’ by the detector.
Thus any point on the detector sees an aperture angle of 5.7°. The disc is mounted in a
copper cylinder, which in turn is in a cylindrical wood box that insulates the copper and the
disc from the surroundings. A shutter alternately admits radiation and shades the detector at
regular intervals; the corresponding changes in disc temperature are measured and provide
the means to calculate the absorbed radiation. A section drawing of the pyrheliometer is
shown is Figure 2.2.1.

The other secondary standard of particular importance is the Angstrém compensa-
tion pyrheliometer, first constructed by K. Angstrom in 1893 and modified in several
developments since then. In this instrument two identical blackened manganin strips are
arranged so that either one can be exposed to radiation at the base of collimating tubes by
moving a reversible shutter. Each strip can be electrically heated, and each is fitted with a
thermocouple. With one strip shaded and one strip exposed to radiation, a current is passed
through the shaded strip to heat it to the same temperature as the exposed strip. When there
is no difference in temperature, the electrical energy to the shaded strip must equal the
solar radiation absorbed by the exposed strip. Solar radiation is determined by equating
the electrical energy to the product of incident solar radiation, strip area, and absorptance.
After a determination is made, the position of the shutter is reversed to interchange the
electrical and radiation heating, and a second determination is made. Alternating the shade
and the functions of the two strips compensates for minor differences in the strips such as
edge effects and lack of uniformity of electrical heating.

Shutter

Thermometer

Collimating
tube

Blackened
silver disc

Figure 2.2.1 Schematic section of the Abbot silver disc pyrheliometer.
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The Angstrom instrument serves, in principle, as an absolute or primary standard.
However, there are difficulties in applying correction factors in its use, and in practice there
are several primary standard Angstrdm instruments to which those in use as secondary
standards are compared.

The Abbot and Angstrom instruments are used as secondary standards for calibration
of other instruments, and there is a pyrheliometric scale associated with each of them.
The first scale, based on measurements with the Angstr(jm instrument, was established in
1905 (the Angstrém scale of 1905, or AS05). The second, based on the Abbot silver disc
pyrheliometer (which was in turn calibrated with a standard water flow pyrheliometer) was
established in 1913 (the Smithsonian scale of 1913, or SS13).

Reviews of the accuracy of these instruments and intercomparisons of them led
to the conclusions that measurements made on SS13 were 3.5% higher than those on
ASO5, that SS13 was 2% too high, and that ASO5 was 1.5% too low. As a result,
the International Pyrheliometric Scale 1956 (IPS56) was adopted, reflecting these
differences. Measurements made before 1956 on the scale ASO5 were increased by 1.5%,
and those of SS13 were decreased by 2% to correct them to IPS56.

Beginning with the 1956 International Pyrheliometer Comparisons (IPC), which
resulted in IPS56, new comparisons have been made at approximately five-year intervals,
under WMO auspices, at Davos, Switzerland. As a result of the 1975 comparisons, a new
pyrheliometric scale, the World Radiometric Reference (WRR) (also referred to as the
Solar Constant Reference Scale, SCRS) was established; it is 2.2% higher than the IPS56
scale. (SS13 is very close to WRR.)

Operational or field instruments are calibrated against secondary standards and are
the source of most of the data on which solar process engineering designs must be based.
Brief descriptions of two of these, the Eppley normal-incidence pyrheliometer (NIP) and
the Kipp & Zonen actinometer, are included here. The Eppley NIP is the instrument in
most common use in the United States for measuring beam solar radiation, and the Kipp &
Zonen instrument is in wide use in Europe. A cross section of a recent model of the Eppley
is shown in Figure 2.2.2. The instrument mounted on a tracking mechanism is shown in
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Figure 2.2.2  Cross section of the Eppley NIP. Courtesy of The Eppley Laboratory.
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Figure 2.2.3 An Eppley NIP on an altaz-
imuth tracking mount. Courtesy of The Eppley
Laboratory.

Figure 2.2.3. The detector is at the end of the collimating tube, which contains several
diaphragms and is blackened on the inside. The detector is a multijunction thermopile
coated with Parson’s optical black. Temperature compensation to minimize sensitivity to
variations in ambient temperature is provided. The aperture angle of the instrument is 5.7°,
so the detector receives radiation from the sun and from an area of the circumsolar sky two
orders of magnitude larger than that of the sun.

The Kipp & Zonen actinometer is based on the Linke-Feussner design and uses a
40-junction constantan-manganin thermopile with hot junctions heated by radiation and
cold junctions in good thermal contact with the case. In this instrument the assembly of
copper diaphragms and case has very large thermal capacity, orders of magnitude more
than the hot junctions. On exposure to solar radiation the hot junctions rise quickly to
temperatures above the cold junction; the difference in the temperatures provides a measure
of the radiation. Other pyrheliometers were designed by Moll-Gorczynski, Yanishevskiy,
and Michelson.

The dimensions of the collimating systems are such that the detectors are exposed to
radiation from the sun and from a portion of the sky around the sun. Since the detectors do
not distinguish between forward-scattered radiation, which comes from the circumsolar sky,
and beam radiation, the instruments are, in effect, defining beam radiation. An experimental
study by Jeys and Vant-Hull (1976) which utilized several lengths of collimating tubes
so that the aperture angles were reduced in step from 5.72° to 2.02° indicated that for
cloudless conditions this reduction in aperture angle resulted in insignificant changes in
the measurements of beam radiation. On a day of thin uniform cloud cover, however,
with solar altitude angle of less than 32°, as much as 11% of the measured intensity was
received from the circumsolar sky between aperture angles of 5.72° and 2.02°. Tt is difficult
to generalize from the few data available, but it appears that thin clouds or haze can affect
the angular distribution of radiation within the field of view of standard pyrheliometers.
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The WMO recommends that calibration of pyrheliometers only be undertaken on days in
which atmospheric clarity meets or exceeds a minimum value.

2.3 PYRANOMETERS

Instruments for measuring total (beam plus diffuse) radiation are referred to as pyranome-
ters, and it is from these instruments that most of the available data on solar radiation
are obtained. The detectors for these instruments must have a response independent of
wavelength of radiation over the solar energy spectrum. In addition, they should have a
response independent of the angle of incidence of the solar radiation. The detectors of most
pyranometers are covered with one or two hemispherical glass covers to protect them from
wind and other extraneous effects; the covers must be very uniform in thickness so as not
to cause uneven distribution of radiation on the detectors. These factors are discussed in
more detail by Coulson (1975).

Commonly used pyranometers in the United States are the Eppley and Spectrolab
instruments, in Europe the Moll-Gorczynski, in Russia the Yanishevskiy, and in Australia
the Trickett-Norris (Groiss) pyranometer.

The Eppley 180° pyranometer was the most common instrument in the United States.
It used a detector consisting of two concentric silver rings; the outer ring was coated with
magnesium oxide, which has a high reflectance for radiation in the solar energy spectrum,
and the inner ring was coated with Parson’s black, which has a very high absorptance
for solar radiation. The temperature difference between these rings was detected by a
thermopile and was a measure of absorbed solar radiation. The circular symmetry of the
detector minimized the effects of the surface azimuth angle on instrument response. The
detector assembly was placed in a nearly spherical glass bulb, which has a transmittance
greater than 0.90 over most of the solar radiation spectrum, and the instrument response
was nearly independent of wavelength except at the extremes of the spectrum. The response
of this Eppley was dependent on ambient temperature, with sensitivity decreasing by 0.05
t0 0.15%/°C (Coulson, 1975); much of the published data taken with these instruments was
not corrected for temperature variations. It is possible to add temperature compensation
to the external circuit and remove this source of error. It is estimated that carefully used
Eppleys of this type could produce data with less than 5% errors but that errors of twice
this could be expected from poorly maintained instruments. The theory of this instrument
has been carefully studied by MacDonald (1951).

The Eppley 180° pyranometer is no longer manufactured and has been replaced by
other instruments. The Eppley black-and-white pyranometer utilizes Parson’s-black- and
barium-sulfate-coated hot and cold thermopile junctions and has better angular (cosine)
response. It uses an optically ground glass envelope and temperature compensation to
maintain calibration within 4-1.5% over a temperature range of —20 to +40°C. It is shown
in Figure 2.3.1.

The Eppley precision spectral pyranometer (PSP) utilizes a thermopile detector,
two concentric hemispherical optically ground covers, and temperature compensation
that results in temperature dependence of 0.5% from —20 to +40°C. [Measurements of
irradiance in spectral bands can be made by use of bandpass filters; the PSP can be fitted
with hemispherical domes of filter glass for this purpose. See Stewart et al. (1985) for
information and references.] It is shown in Figure 2.3.2.
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Figure 2.3.1 The Eppley black-and-white pyranometer. Courtesy of The Eppley Laboratory.

Figure 2.3.2 The Eppley PSP. Courtesy of The Eppley Laboratory.

The Moll-Gorczynski pyranometer uses a Moll thermopile to measure the temperature
difference of the black detector surface and the housing of the instrument. The thermopile
assembly is covered with two concentric glass hemispherical domes to protect it from
weather and is rectangular in configuration with the thermocouples aligned in a row (which
results in some sensitivity to the azimuth angle of the radiation).

Pyranometers are usually calibrated against standard pyrheliometers. A standard
method has been set forth in the Annals of the International Geophysical Year (IGY,
1958), which requires that readings be taken at times of clear skies, with the pyranometer
shaded and unshaded at the same time as readings are taken with the pyrheliometer. It
is recommended that shading be accomplished by means of a disc held 1 m from the
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pyranometer with the disc just large enough to shade the glass envelope. The calibration
constant is then the ratio of the difference in the output of the shaded and unshaded
pyranometer to the output of the pyrheliometer multiplied by the calibration constant of
the pyrheliometer and cos 6,, the angle of incidence of beam radiation on the horizontal
pyranometer. Care and precision are required in these calibrations.

It is also possible, as described by Norris (1973), to calibrate pyranometers against a
secondary standard pyranometer such as the Eppley precision pyranometer. This secondary
standard pyranometer is thought to be good to +1% when calibrated against a standard
pyrheliometer. Direct comparison of the precision Eppley and field instruments can be
made to determine the calibration constant of the field instruments.

A pyranometer (or pyrheliometer) produces a voltage from the thermopile detectors
that is a function of the incident radiation. It is necessary to use a potentiometer to detect
and record this output. Radiation data usually must be integrated over some period of
time, such as an hour or a day. Integration can be done by means of planimetry or by
electronic integrators. It has been estimated that with careful use and reasonably frequent
pyranometer calibration, radiation measurements should be good within +5%; integration
errors would increase this number. Much of the available radiation data prior to 1975 is
probably not this good, largely because of infrequent calibration and in some instances
because of inadequate integration procedures.

Another class of pyranometers, originally designed by Robitzsch, utilizes detectors
that are bimetallic elements heated by solar radiation; mechanical motion of the element
is transferred by a linkage to an indicator or recorder pen. These instruments have the
advantage of being entirely spring driven and thus require no electrical energy. Variations
of the basic design are manufactured by several European firms (Fuess, Casella, and SIAP).
They are widely used in isolated stations and are a major source of the solar radiation data
that are available for locations outside of Europe, Australia, Japan, and North America.
Data from these instruments are generally not as accurate as that from thermopile-type
pyranometers.

Another type of pyranometer is based on photovoltaic (solar cell) detectors. Examples
are the LI-COR LI-200SA pyranometer and the Yellott solarimeter. They are less precise
instruments than the thermopile instruments and have some limitations on their use. They
are also less expensive than thermopile instruments and are easy to use.

The main disadvantage of photovoltaic detectors is their spectrally selective response.
Figure 2.3.3 shows a typical terrestrial solar spectrum and the spectral response of a silicon
solar cell. If the spectral distribution of incident radiation was fixed, a calibration could
be established that would remain constant; however, there are some variations in spectral
distribution? with clouds and atmospheric water vapor. LI-COR estimates that the error
introduced because of spectral response is 5% maximum under most conditions of natural
daylight and is 3% under typical conditions.

Photovoltaic detectors have additional characteristics of interest. Their response to
changing radiation levels is essentially instantaneous and is linear with radiation. The
temperature dependence is +0.15%/°C maximum. The LI-COR instrument is fitted with
an acrylic diffuser that substantially removes the dependence of response on the angle of
incidence of the radiation. The response of the detectors is independent of its orientation,

2This will be discussed in Section 2.6.
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Figure 2.3.3 Spectral distribution of extraterrestrial solar radiation and spectral response of a
silicon solar cell. From Coulson (1975).

but reflected radiation from the ground or other surroundings will in general have a
different spectral distribution than global horizontal radiation, and measurements on
surfaces receiving significant amounts of reflected radiation will be subject to additional
eITors.

The preceding discussion dealt entirely with measurements of total radiation on a
horizontal surface. Two additional kinds of measurements are made with pyranometers:
measurements of diffuse radiation on horizontal surfaces and measurements of solar
radiation on inclined surfaces.

Measurements of diffuse radiation can be made with pyranometers by shading the
instrument from beam radiation. This is usually done by means of a shading ring, as shown
in Figure 2.3.4. The ring is used to allow continuous recording of diffuse radiation without
the necessity of continuous positioning of smaller shading devices; adjustments need to
be made for changing declination only and can be made every few days. The ring shades
the pyranometer from part of the diffuse radiation, and a correction for this shading must
be estimated and applied to the observed diffuse radiation (Drummond, 1956, 1964; IGY,
1958; Coulson, 1975). The corrections are based on assumptions of the distribution of
diffuse radiation over the sky and typically are factors of 1.05 to 1.2. An example of shade
ring correction factors, to illustrate their trends and magnitudes, is shown in Figure 2.3.5.

Measurements of solar radiation on inclined planes are important in determining the
input to solar collectors. There is evidence that the calibration of pyranometers changes if
the instrument is inclined to the horizontal. The reason for this appears to be changes in
the convection patterns inside the glass dome, which changes the manner in which heat is
transferred from the hot junctions of the thermopiles to the cover and other parts of the
instrument. The Eppley 180° pyranometer has been variously reported to show a decrease
in sensitivity on inversion from 5.5% to no decrease. Norris (1974) measured the response
at various inclinations of four pyranometers when subject to radiation from an incandescent
lamp source and found correction factors at inclinations of 90° in the range of 1.04 to 1.10.
Stewart et al. (1985) plot two sets of data of Latimer (1980) which show smaller correction
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Figure 2.3.4 Pyranometer with shading ring to eliminate beam radiation. Courtesy of The Eppley
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Figure 2.3.5 Typical shade ring correction factors to account for shading of the detector from
diffuse radiation. Adapted from Coulson (1975).

factors. Figure 2.3.6 shows the set with the greater factors, with the Eppley PSP showing
maximum positive effects at 8 = 90° of 2.5% and smaller corrections for Kipp & Zonen
instruments. There are thus disagreements of the magnitude of the corrections, but for the
instruments shown, the corrections are of the order of 1 or 2%.

It is evident from these data and other published results that the calibration of
pyranometers is to some degree dependent on inclination and that experimental information
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Figure 2.3.6 Effects of inclination of pyranometers on calibration. The instruments are the Eppley
PSP, the Eppley 8—48, and the Kipp & Zonen CM6. Adapted from Stewart et al. (1985).

is needed on a particular pyranometer in any orientation to adequately interpret information
from it.

The Bellani spherical distillation pyranometer is based on a different principle. It uses
a spherical container of alcohol that absorbs solar radiation. The sphere is connected to
a calibrated condenser receiver tube. The quantity of alcohol condensed is a measure of
integrated solar energy on the spherical receiver. Data on the total energy received by a
body, as represented by the sphere, are of interest in some biological processes.

2.4 MEASUREMENT OF DURATION OF SUNSHINE

The hours of bright sunshine, that is, the time in which the solar disc is visible, is of
some use in estimating long-term averages of solar radiation.> Two instruments have been
or are widely used. The Campbell-Stokes sunshine recorder uses a solid glass sphere of
approximately 10 cm diameter as a lens that produces an image of the sun on the opposite
surface of the sphere. A strip of standard treated paper is mounted around the appropriate
part of the sphere, and the solar image burns a mark on the paper whenever the beam
radiation is above a critical level. The lengths of the burned portions of the paper provide an
index of the duration of ‘‘bright sunshine.”” These measurements are uncertain on several
counts: The interpretation of what constitutes a burned portion is uncertain, the instrument
does not respond to low levels of radiation early and late in the day, and the condition of
the paper may be dependent on humidity.

A photoelectric sunshine recorder, the Foster sunshine switch (Foster and Foskett,
1953), is now in use by the U.S. Weather Service. It incorporates two selenium photovoltaic
cells, one of which is shaded from beam radiation and one exposed to it. In the absence of
beam radiation, the two detectors indicate (nearly) the same radiation level. When beam
radiation is incident on the unshaded cell, the output of that cell is higher than that of the
shaded cell. The duration of a critical radiation difference detected by the two cells is a
measure of the duration of bright sunshine.

3The relationship between sunshine hours and solar radiation is discussed in Section 2.7.
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2.5 SOLAR RADIATION DATA

Solar radiation data are available in several forms. The following information about
radiation data is important in their understanding and use: whether they are instantaneous
measurements (irradiance) or values integrated over some period of time (irradiation)
(usually hour or day); the time or time period of the measurements; whether the measure-
ments are of beam, diffuse, or total radiation; the instruments used; the receiving surface
orientation (usually horizontal, sometimes inclined at a fixed slope, or normal to the
beam radiation); and, if averaged, the period over which they are averaged (e.g., monthly
averages of daily radiation).

Most radiation data available are for horizontal surfaces, include both direct and diffuse
radiation, and were measured with thermopile pyranometers (or in some cases Robitzsch-
type instruments). Most of these instruments provide radiation records as a function of time
and do not themselves provide a means of integrating the records. The data were usually
recorded in a form similar to that shown in Figure 2.5.1 by recording potentiometers and
were integrated graphically. Uncertainties in integration add to uncertainties in pyranometer
response; electronic integration is now common.

Two types of solar radiation data are widely available. The first is monthly average
daily total radiation on a horizontal surface, H. The second is hourly total radiation on
a horizontal surface, I, for each hour for extended periods such as one or more years.
The H data are widely available and are given for many stations in Appendix D. The
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Figure 2.5.1 Total (beam and diffuse) solar radiation on a horizontal surface versus time for clear
and largely cloudy day, latitude 43°, for days near equinox.
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traditional units have been calories per square centimeter; the data in Appendix D are in the
more useful megajoules per square meter. These data are available from weather services
(e.g., NSRDB, 1991-2005) and the literature [e.g., from the Commission of the European
Communities (CEC) European Solar Radiation Atlas (1984) and Lof et al. (1966a,1966b)].
The WMO sponsors compilation of solar radiation data at the World Radiation Data Center;
these are published in Solar Radiation and Radiation Balance Data (The World Network),
an annual publication.

The accuracy of some of the earlier (pre-1970) data is generally less than desirable,
as standards of calibration and care in use of instruments and integration have not always
been adequate.* Recent measurements and the averages based thereon are probably good
to £5%. Most of the older average data are probably no better than +10%, and for some
stations a better estimate may be +20%. Substantial inconsistencies are found in data from
different sources for some locations.

A very extensive and carefully compiled monthly average daily solar radiation database
is available for Europe and part of the Mediterranean basin. Volume 1 of the European
Solar Radiation Atlas (CEC, 1984), is based on pyranometric data from 139 stations in 29
countries. It includes solar radiation derived from sunshine hour data for 315 stations (with
114 of the stations reporting both) for a total of 340 stations. Ten years of data were used
for each station except for a few where data for shorter periods were available. The data
and the instruments used to obtain them were carefully evaluated, corrections were made
to compensate for instrumental errors, and all data are based on the WRR pyrheliometric
scale. The Atlas includes® tables that show averages, maxima, minima, extraterrestrial
radiation, and sunshine hours. Appendix D includes some data from the Atlas.

Average daily solar radiation data are also available from maps that indicate general
trends. For example, a world map is shown in Figure 2.5.2 (L&f et al., 1966a,b).% In some
geographical areas where climate does not change abruptly with distance (i.e., away from
major influences such as mountains or large industrial cities), maps can be used as a source
of average radiation if data are not available. However, large-scale maps must be used with
care because they do not show local physical or climatological conditions that may greatly
affect local solar energy availability.

For calculating the dynamic behavior of solar energy equipment and processes and for
simulations of long-term process operation, more detailed solar radiation data (and related
meteorological information) are needed. An example of this type of data (hourly integrated
radiation, ambient temperature, and wind speed) is shown in Table 2.5.1 for a January
week in Boulder, Colorado. Additional information may also be included in these records,
such as wet bulb temperature and wind direction.

In the United States there has been a network of stations recording solar radiation
on a horizontal surface and reporting it as daily values. Some of these stations also
reported hourly radiation. In the 1970s, the U.S. National Oceanic and Atmospheric
Administration (NOAA) undertook a program to upgrade the number and quality of the

4The SOLMET (1978) program of the U.S. Weather Service has addressed this problem by careful study of the
history of individual instruments and their calibrations and subsequent *‘rehabilitation’” of the data to correct for
identifiable errors. The U.S. data in Appendix D have been processed in this way.

SMonthly average daily radiation on surfaces other than horizontal are in Volume II of the Atlas.

SFigure 2.5.2 is reproduced from deJong (1973), who redrew maps originally published by Lof et al. (1966a).
deJong has compiled maps and radiation data from many sources.
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Table 2.5.1 Hourly Radiation for Hour Ending at Indicated Time, Air Temperature, and Wind

Speed Data for January Week, Boulder, Colorado (Latitude = 40 °N, Longitude = 105 W)

I T, 1% I T, %
Day Hour  (kJ/m? °C)  (m/s) Day Hour  (kJ/m? °C) (m/s)
8 1 0 —1.7 3.1 8 13 1105 2.8 8.0
8 2 0 -33 3.1 8 14 1252 3.8 9.8
8 3 0 -2.8 3.1 8 15 641 3.3 9.8
8 4 0 -22 3.1 8 16 167 2.2 7.2
8 5 0 -2.8 4.0 8 17 46 0.6 7.6
8 6 0 -2.8 3.6 8 18 0 —0.6 7.2
8 7 0 —22 3.6 8 19 0 —1.1 8.0
8 8 17 —22 4.0 8 20 0 -1.7 5.8
8 9 134 —1.1 1.8 8 21 0 -1.7 5.8
8 10 331 1.1 3.6 8 22 0 -22 7.2
8 11 636 2.2 1.3 8 23 0 —22 6.3
8 12 758 2.8 22 8 24 0 —22 5.8
9 1 0 -2.8 7.2 9 13 1185 —22 2.2
9 2 0 -33 7.2 9 14 1009 -13 1.7
9 3 0 -33 6.3 9 15 796 —0.6 1.3
9 4 0 -33 5.8 9 16 389 —0.6 1.3
9 5 0 -3.9 4.0 9 17 134 -22 4.0
9 6 0 -3.9 45 9 18 0 -2.8 4.0
9 7 0 -3.9 1.8 9 19 0 -33 45
9 8 4 -3.9 2.2 9 20 0 -5.6 5.8
9 9 71 -3.9 2.2 9 21 0 —6.7 5.4
9 10 155 -33 4.0 9 22 0 -7.8 5.8
9 11 343 -238 4.0 9 23 0 -83 45
9 12 402 -22 4.0 9 24 0 -83 6.3
10 1 0 —9.4 5.8 10 13 1872 2.2 7.6
10 2 0 —10.0 6.3 10 14 1733 4.4 6.7
10 3 0 -8.9 5.8 10 15 1352 6.1 6.3
10 4 0 —10.6 6.3 10 16 775 6.7 4.0
10 5 0 -83 49 10 17 205 6.1 2.2
10 6 0 -83 7.2 10 18 4 3.3 45
10 7 0 —10.0 5.8 10 19 0 0.6 4.0
10 8 33 -8.9 5.8 10 20 0 0.6 3.1
10 9 419 -7.2 6.7 10 21 0 0.0 2.7
10 10 1047 -5.0 94 10 22 0 0.6 2.2
10 11 1570 -22 8.5 10 23 0 1.7 3.6
10 12 1805 —1.1 8.0 10 24 0 0.6 2.7
11 1 0 -1.7 8.9 11 13 138 -5.0 6.7
11 2 0 -22 4.9 11 14 96 -39 6.7
11 3 0 —22 45 11 15 84 —4.4 7.6
11 4 0 -2.8 5.8 11 16 42 -39 6.3
11 5 0 —44 54 11 17 4 -5.0 6.3

(Continued)
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Table 2.5.1 (Continued)

I T, % I T, %
Day Hour  (kJ/m? °C)  (mfs) Day Hour  (kJ/m? °0) (m/s)
11 6 0 —5.0 45 11 18 0 —5.6 45
11 7 0 -5.6 3.6 11 19 0 —6.7 45
11 8 4 —6.1 5.8 11 20 0 -7.8 3.1
11 9 42 -5.6 5.4 11 21 0 —94 2.7
11 10 92 -5.6 5.4 11 22 0 -89 3.6
11 11 138 -5.6 9.4 11 23 0 —94 4.0
11 12 163 -5.6 8.0 11 24 0 —11.1 3.1
12 1 0 —11.7 4.0 12 13 389 —22 5.8
12 2 0 -12.8 3.1 12 14 477 —0.6 4.0
12 3 0 -15.6 7.2 12 15 532 2.8 22
12 4 0 —16.7 6.7 12 16 461 —0.6 2.2
12 5 0 —16.7 6.3 12 17 33 —1.7 3.1
12 6 0 —16.1 6.3 12 18 0 —4.4 1.3
12 7 0 -17.2 3.6 12 19 0 -7.8 2.7
12 8 17 ~17.8 2.7 12 20 0 -7.8 4.0
12 9 71 —13.3 8.0 12 21 0 -89 4.9
12 10 180 —11.1 8.9 12 22 0 -10.6 4.9
12 11 247 -78 8.5 12 23 0 —12.8 4.9
12 12 331 -5.6 7.6 12 24 0 —11.7 5.4
13 1 0 -10.6 4.0 13 13 1926 5.6 5.4
13 2 0 -10.6 5.4 13 14 1750 7.2 45
13 3 0 -10.0 4.5 13 15 1340 8.3 4.9
13 4 0 —11.1 3.1 13 16 703 8.9 45
13 5 0 -10.6 3.6 13 17 59 6.7 5.4
13 6 0 -94 3.1 13 18 0 4.4 3.6
13 7 0 -72 3.6 13 19 0 1.1 3.6
13 8 17 -10.6 4.0 13 20 0 0.0 3.1
13 9 314 -8.3 5.8 13 21 0 —22 6.7
13 10 724 -1.7 6.7 13 22 0 2.8 7.2
13 11 1809 1.7 5.4 13 23 0 1.7 8.0
13 12 2299 3.3 6.3 13 24 0 1.7 5.8
14 1 0 —0.6 7.2 14 13 1968 6.7 1.8
14 2 0 —1.1 7.6 14 14 1733 6.7 2.7
14 3 0 —0.6 6.3 14 15 1331 7.2 3.1
14 4 0 -39 2.7 14 16 837 6.7 3.1
14 5 0 -1.7 49 14 17 96 7.2 2.7
14 6 0 -2.8 5.8 14 18 4 3.3 2.7
14 7 0 -238 4.0 14 19 0 0.0 3.6
14 8 38 -5.0 3.1 14 20 0 3.9 5.4
14 9 452 -5.0 49 14 21 0 -39 3.6
14 10 1110 -1.7 45 14 22 0 -39 5.8
14 11 1608 2.8 3.1 14 23 0 —6.1 5.4
14 12 1884 3.8 3.6 14 24 0 —6.7 6.3
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radiation measuring stations, to rehabilitate past data (to account for sensor deterioration,
calibration errors, and changes in pyrheliometric scales), and to make these data available
(with related meteorological data) on magnetic tapes. In 1978, corrected data tapes of
hourly meteorological information (including solar radiation on a horizontal surface based
on the SCRC) for 26 stations over a period of 23 years became available. These tapes
are referred to as the SOLMET tapes and are described in detail in the SOLMET Manual
(1978).

In the late 1970s, the U.S. federal government funded the development and operation
of a national solar radiation network (SOLRAD). Measurements of hourly total horizontal
and direct normal radiation were made at the 38 stations that were part of the network.
Eleven of the stations also measured diffuse radiation. Data for 1977 to 1980 were checked
for quality and are available from the National Climatic Data Center. Funding for much of
the program was reduced in 1981, and by 1985 the network was shut down. Since then,
some additional funding has become available to upgrade the instrumentation at many of
the stations to automate data acquisition and recalibrate pyranometers.

Many national weather services have produced typical meteorological year (TMY)
data sets for specific locations that represent the average weather conditions over time
periods such as 30 years. These data sets typically contain hourly values of solar radiation,
ambient temperature, humidity, wind speed, wind direction, and other weather data. The
data are intended to be used in the prediction of the long-term performance of solar
systems. The data should not be used to predict performance under extreme conditions or
the performance of wind systems. The monthly average data for the U.S. stations shown
in Appendix D are derived from TMY?2 data, a data set that was developed from weather
data for the period 1961 to 1990 and is available from the National Renewable Energy
Laboratory (NREL) website. TM Y3 data for the period 1991 to 2005 is also available from
the NREL website.

The time recorded for hourly weather data is not consistent among various databases.
For example, the original TMY data set from the United States uses local solar time.
Most new data sets, including TMY2 data, use local standard clock time (i.e., it does not
account for daylight savings time). Consequently, in an office building energy simulation
the occupancy schedule must be shifted by 1h at the start and end of daylight savings
time. Some computer programs do this shift automatically. Equation 1.5.2 can be used to
convert between the recorded time and local solar time.

2.6 ATMOSPHERIC ATTENUATION OF SOLAR RADIATION

Solar radiation at normal incidence received at the surface of the earth is subject to
variations due to change in the extraterrestrial radiation as noted in Chapter 1 and to two
additional and more significant phenomena: (1) atmospheric scattering by air molecules,
water, and dust and (2) atmospheric absorption by O, H,O, and CO,. Igbal (1983) reviews
these matters in considerable detail.

Scattering of radiation as it passes through the atmosphere is caused by interaction
of the radiation with air molecules, water (vapor and droplets), and dust. The degree to
which scattering occurs is a function of the number of particles through which the radiation
must pass and the size of the particles relative to A, the wavelength of the radiation. The
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pathlength of the radiation through air molecules is described by the air mass. The particles
of water and dust encountered by the radiation depend on air mass and on the time- and
location-dependent quantities of dust and moisture present in the atmosphere.

Air molecules are very small relative to the wavelength of the solar radiation, and
scattering occurs in accordance with the theory of Rayleigh (i.e., the scattering coefficient
varies with A~%). Rayleigh scattering is significant only at short wavelengths; above
A = 0.6 um it has little effect on atmospheric transmittance.

Dust and water in the atmosphere tend to be in larger particle sizes due to aggregation
of water molecules and condensation of water on dust particles of various sizes. These
effects are more difficult to treat than the effects of Rayleigh scattering by air molecules, as
the nature and extent of dust and moisture particles in the atmosphere are highly variable
with location and time. Two approaches have been used to treat this problem. Moon
(1940) developed a transmission coefficient for precipitable water [the amount of water
(vapor plus liquid) in the air column above the observer] that is a function of =2 and a
coefficient for dust that is a function of A~%73. Thus these transmittances are less sensitive
to wavelength than is the Rayleigh scattering. The overall transmittance due to scattering
is the product of three transmittances, which are three different functions of A.

The second approach to estimation of effects of scattering by dust and water is by
use of Angstrdm’s turbidity equation. An equation for atmospheric transmittance due to
aerosols, based on this equation, can be written as

T, = exp(—=Br""m) (2.6.1)

where f is the Angstrom turbidity coefficient, « is a single lumped wavelength exponent,
A is the wavelength in micrometers, and m is the air mass along the path of interest.
Thus there are two parameters, S and «, that describe the atmospheric turbidity and its
wavelength dependence; 8 varies from 0 to 0.4 for very clean to very turbid atmospheres,
o depends on the size distribution of the aerosols (a value of 1.3 is commonly used). Both
B and « vary with time as atmospheric conditions change.

More detailed discussions of scattering are provided by Fritz (1958), who included
effects of clouds, by Thekaekara (1974) in a review, and by Igbal (1983).

Absorption of radiation in the atmosphere in the solar energy spectrum is due
largely to ozone in the ultraviolet and to water vapor and carbon dioxide in bands in
the infrared. There is almost complete absorption of short-wave radiation by ozone in
the upper atmosphere at wavelengths below 0.29 um. Ozone absorption decreases as A
increases above 0.29 pum, until at 0.35 um there is no absorption. There is also a weak
ozone absorption band near A = 0.6 um.

Water vapor absorbs strongly in bands in the infrared part of the solar spectrum, with
strong absorption bands centered at 1.0, 1.4, and 1.8 um. Beyond 2.5 um, the transmission
of the atmosphere is very low due to absorption by H,O and CO,. The energy in the
extraterrestrial spectrum at A > 2.5 um is less than 5% of the total solar spectrum, and
energy received at the ground at A > 2.5 yum is very small.

The effects of Rayleigh scattering by air molecules and absorption by O;, H,O,
and CO, on the spectral distribution of beam irradiance are shown in Figure 2.6.1 for
an atmosphere with 8 = 0 and 2cm of precipitable water, w. The WRC extraterrestrial
distribution is shown as a reference. The Rayleigh scattering is represented by the difference
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Figure 2.6.1 An example of the effects of Raleigh scattering and atmospheric absorption on the
spectral distribution of beam irradiance. Adapted from Igbal (1983).
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Figure 2.6.2 An example of spectral distribution of beam irradiance for air masses of 0, 1, 2, and
5. Adapted from Igbal (1983).

between the extraterrestrial curve and the curve at the top of the shaded areas; its effect
becomes small at wavelengths greater than about 0.7 um. The several absorption bands
are shown by the shaded areas.

The effect of air mass is illustrated in Figure 2.6.2, which shows the spectral
distribution of beam irradiance for air masses of O (the extraterrestrial curve), 1, 2, and 5
for an atmosphere of low turbidity.’

"The broadband (i.e., all wavelengths) transmittance of the atmosphere for beam normal radiation can be estimated
by the method presented in Section 2.8.
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Figure 2.6.3 Relative energy distribution of total and diffuse radiation for a clear sky. Data from
SMARTS.
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Figure 2.6.4 An example of calculated total, beam, and diffuse spectral irradiances on a horizontal
surface for typical clear atmosphere. Adapted from Igbal (1983).

The spectral distribution of total radiation depends also on the spectral distribution
of the diffuse radiation. Some measurements are available in the ultraviolet and visible
portions of the spectrum (Robinson, 1966; Kondratyev, 1969), which has led to the
conclusion that in the wavelength range 0.35 to 0.80 um the distribution of the diffuse
radiation is similar to that of the total beam radiation.® Figure 2.6.3 shows relative data on
spectral distribution of total and diffuse radiation for a clear sky. The diffuse component has
a distribution similar to the total but shifted toward the short-wave end of the spectrum; this
is consistent with scattering theory, which indicates more scatter at shorter wavelengths.
Fritz (1958) suggests that the spectrum of an overcast sKy is similar to that for a clear sky.
Igbal (1983) uses calculated spectral distributions like that of Figure 2.6.4 to show that
for typical atmospheric conditions most of the radiation at wavelengths longer than 1 ym

8Scattering theory predicts that shorter wavelengths are scattered most, and hence diffuse radiation tends to be at
shorter wavelengths. Thus, clear skies are blue.
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is beam, that scattering is more important at shorter wavelengths, and that the spectral
distribution of diffuse is dependent on atmospheric conditions.

For most practical engineering purposes, the spectral distribution of solar radiation
can be considered as approximately the same for the beam and diffuse components. It may
also be observed that there is no practical alternative; data on atmospheric conditions on
which to base any other model are seldom available.

For purposes of calculating properties of materials (absorptance, reflectance, and
transmittance) that depend on the spectral distribution of solar radiation, it is convenient
to have a representative distribution of terrestrial solar radiation in tabular form. Wiebelt
and Henderson (1979) have prepared such tables for several air masses (zenith angles)
and atmospheric conditions based on the National Aeronautics and Space Administration
(NASA) spectral distribution curves and a solar constant of 1353 W/m?. These can be
used with little error for most engineering calculations with the more recent value of G|,
of 1367 W/m?. Programs such as SMARTS (Gueymard, 2005) are available to calculate
the spectral energy arriving at the earth’s surface for various atmospheric conditions.
Table 2.6.1 shows the terrestrial spectrum divided into 20 equal increments of energy, with
a mean wavelength for each increment that divides that increment into two equal parts.
This table is for a relatively clear atmosphere with air mass 1.5. It can be used as a typical
distribution of terrestrial solar radiation.

Table 2.6.1 ASTM G173-03 Air Mass 1.5 Reference Terrestrial Spectral Distribution of Beam
Normal Plus Circumsolar Diffuse Radiation in Equal Increments of Energy?®

Energy Band Wavelength Range Midpoint Wavelength
(%) (Nanometers) (Nanometers)
0-5 280-416 385
5-10 416-458 439
10-15 458-492 475
15-20 492-525 508
20-25 525-559 542
25-30 559-592 575
30-35 592-627 609
35-40 627-662 644
40-45 662-700 680
45-50 700-741 719
50-55 741-786 764
55-60 786-835 808
60-65 835-885 859
65-70 885-970 917
70-75 970-1038 100
75-80 1038—-1140 107
80-85 1140-1257 120
85-90 1257-1541 131
90-95 1541-1750 163
95-100 1750-4000 219

“Derived from SMARTS v 2.9.2.
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In summary, the normal solar radiation incident on the earth’s atmosphere has a spectral
distribution indicated by Figure 1.3.1. The x-rays and other very short wave radiation of
the solar spectrum are absorbed high in the ionosphere by nitrogen, oxygen, and other
atmospheric components. Most of the ultraviolet is absorbed by ozone. At wavelengths
longer than 2.5 um, a combination of low extraterrestrial radiation and strong absorption
by CO, means that very little energy reaches the ground. Thus, from the viewpoint of
terrestrial applications of solar energy, only radiation of wavelengths between 0.29 and
2.5 pum need be considered.

2.7 ESTIMATION OF AVERAGE SOLAR RADIATION

Radiation data are the best source of information for estimating average incident radiation.
Lacking these or data from nearby locations of similar climate, it is possible to use empirical
relationships to estimate radiation from hours of sunshine or cloudiness. Data on average
hours of sunshine or average percentage of possible sunshine hours are widely available
from many hundreds of stations in many countries and are usually based on data taken with
Campbell-Stokes instruments. Examples are shown in Table 2.7.1. Cloud cover data (i.e.,
cloudiness) are also widely available but are based on visual estimates and are probably
less useful than hours of sunshine data.

The original Angstrom-type regression equation related monthly average daily radi-
ation to clear-day radiation at the location in question and average fraction of possible
sunshine hours:

7.1

Table 2.7.1 Examples of Monthly Average Hours per Day of Sunshine by Latitude and Altitude

Location Paris, Bombay, Sokoto, Perth, Madison,
Latitude Hong Kong, France, India, Nigeria, Australia, ‘Wisconsin,
Altitude, 22° N, 48° N, 19° N, 13°N, 32°8, 43° N,
m Sea Level 50m Sea Level 107 m 20 m 270 m
January 4.7 2.1 9.0 9.9 10.4 4.5
February 35 2.8 9.3 9.6 9.8 5.7
March 3.1 49 9.0 8.8 8.8 6.9
April 3.8 7.4 9.1 8.9 7.5 7.5
May 5.0 7.1 9.3 8.4 5.7 9.1
June 5.3 7.6 5.0 9.5 4.8 10.1
July 6.7 8.0 3.1 7.0 5.4 9.8
August 6.4 6.8 2.5 6.0 6.0 10.0
September 6.6 5.6 54 7.9 7.2 8.6
October 6.8 4.5 7.7 9.6 8.1 7.2
November 6.4 2.3 9.7 10.0 9.6 4.2
December 5.6 1.6 9.6 9.8 10.4 3.9

Annual 53 5.1 7.4 8.8 7.8 7.3
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where  H = monthly average daily radiation on horizontal surface
H = average clear-sky daily radiation for location and month in question
a’, b’ = empirical constants
7 = monthly average daily hours of bright sunshine
N = monthly average of maximum possible daily hours of bright sunshine

(i.e., day length of average day of month)

A basic difficulty with Equation 2.7.1 lies in the ambiguity of the terms 72/N and
H . The former is an instrumental problem (records from sunshine recorders are open to
interpretation). The latter stems from uncertainty in the definition of a clear day. Page
(1964) and others have modified the method to base it on extraterrestrial radiation on a
horizontal surface rather than on clear-day radiation:

=a+b (2.7.2)

| =|
Z|| =l

where ﬁo is the extraterrestrial radiation for the location averaged over the time period
in question and a and b are constants depending on location. The ratio H/H , is termed
the monthly average clearness index and will be used frequently in later sections and
chapters.

Values of H, can be calculated from Equation 1.10.3 using day numbers from
Table 1.6.1 for the mean days of the month or it can be obtained from either Table 1.10.1 or
Figure 1.10.1. The average day length N can be calculated from Equation 1.6.11 or it can
be obtained from Figure 1.6.3 for the mean day of the month as indicated in Table 1.6.1.
Lof et al. (1966a) developed sets of constants a and b for various climate types and
locations based on radiation data then available. These are given in Table 2.7.2.

The following example is based on Madison data (although the procedure is not
recommended for a station where there are data) and includes comparisons of the estimated
radiation with TMY3 data and estimates for Madison based on the Blue Hill constants
(those which might have been used in the absence of constants for Madison)

Example 2.7.1

Estimate the monthly averages of total solar radiation on a horizontal surface for Madi-
son, Wisconsin, latitude 43°, based on the average duration of sunshine hour data of
Table 2.7.1.

Solution

The estimates are based on Equation 2.7.2 using constants ¢ = 0.30 and b = 0.34 from
Table 2.7.2. Values of ﬁo are obtained from either Table or Figure 1.10.1 and day
lengths from Equation 1.6.11, each for the mean days of the month. The desired estimates
are obtained in the following table, which shows daily H in MJ/m?. (For comparison,
TMY 3 data for Madison are shown, and in the last column estimates of Madison radiation
determined by using constants a and b for Blue Hill.)
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H, N Estimated H ~ Measured H¢ Estimated H”
Month MJ/m?) (h) n/N MJ/m?) (MJ/m?) (MJ/m?)
January 13.36 9.2 0.49 6.3 6.9 6.2
February 18.80 10.3 0.55 9.2 9.7 9.3
March 26.01 11.7 0.59 13.0 13.1 13.4
April 33.75 13.2 0.57 16.6 16.9 17.0
May 39.39 14.5 0.63 20.2 21.0 21.0
June 41.74 15.2 0.67 22.0 23.4 23.1
July 40.52 14.0 0.66 21.2 22.2 22.2
August 35.88 13.8 0.73 19.6 19.6 20.9
September 28.77 12.3 0.70 15.5 14.5 16.4
October 20.89 19.8 0.67 11.0 9.7 11.6
November 14.61 9.5 0.44 6.6 6.2 6.4
December 11.90 8.8 0.44 5.4 5.6 5.3

“From TMY?3 data.
bUsing constants for Blue Hill.

The agreement between measured and calculated radiation is reasonably good, even
though the constants a and b for Madison were derived from a different database from
the measured data. If we did not have constants for Madison and had to choose a
climate close to that of Madison, Blue Hill would be a reasonable choice. The estimated
averages using the Blue Hill constants are shown in the last column. The trends are
shown, but the agreement is not as good. This is the more typical situation in the use of
Equation 2.7.2. |

Data are also available on mean monthly cloud cover C, expressed as tenths of the sky
obscured by clouds. Empirical relationships have been derived to relate monthly average
daily radiation H to monthly average cloud cover C. These are usually of the form

H _
_ = a// + b//C (273)

o

Norris (1968) reviewed several attempts to develop such a correlation. Bennett (1965)
compared correlations of ﬁ/ﬁn with C, with ﬁ/ﬁ, and with a combination of the two
variables and found the best correlation to be with 7z/N, that is, Equation 2.7.2. Cloud
cover data are estimated visually, and there is not necessarily a direct relationship between
the presence of partial cloud cover and solar radiation at any particular time. Thus there
may not be as good a statistical relationship between H/H, and C as there is between
ﬁ/ﬁn and ﬁ/ﬁ. Many surveys of solar radiation data (e.g., Bennett, 1965; Lof et al.,
1966a,b) have been based on correlations of radiation with sunshine hour data. However,
Paltridge and Proctor 1976 used cloud cover data to modify clear-sky data for Australia
and derived from the data monthly averages of H, which are in good agreement with
measured average data.
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Table 2.7.2 Climatic Constants for Use in Equation 2.7.2

Sunshine Hours in
Percentage of Possible

Location Climate  Vegetation” Range Average a b
Albuquerque, NM BS-BW E 68-85 78 0.41 0.37
Atlanta, GA Cf M 45-71 59 038  0.26
Blue Hill, MA Df D 42-60 52 022 050
Brownsville, TX BS GDsp 47-80 62 0.35 0.31
Buenos Aires, Argentina ~ Cf G 47-68 59 026  0.50
Charleston, SC Cf E 60-75 67 048  0.09
Darien, Manchuria Dw D 55-81 67 0.36 0.23
El Paso, TX BW Dsi 78-88 84 0.54 0.20
Ely, NV BW Bzi 61-89 77 0.54  0.18
Hamburg, Germany Cf D 11-49 36 022 057
Honolulu, HI Af G 57-717 65 0.14  0.73
Madison, WI Df M 40-72 58 030 034
Malange, Angola Aw-BS GD 41-84 58 0.34 034
Miami, FL Aw E-GD 56-71 65 042 022
Nice, France Cs SE 49-76 61 0.17  0.63
Poona, India Am S 25-49 37 0.30 0.51
Monsoon Dry 65-89 81 0.41 0.34
Kisangani, Zaire Af B 34-56 48 028  0.39
Tamanrasset, Algeria BW Dsp 76-88 83 030 043

“Climatic classification based on Trewartha’s map (1954, 1961), where climate types are:
Af Tropical forest climate, constantly moist; rainfall throughout the year
Am Tropical forest climate, monsoon rain; short dry season, but total rainfall sufficient to support rain
forest
Aw Tropical forest climate, dry season in winter
BS Steppe or semiarid climate
BW Desert or arid climate
Cf Mesothermal forest climate; constantly moist; rainfall throughout the year
Cs Mesothermal forest climate; dry season in winter
Df Microthermal snow forest climate; constantly moist; rainfall throughout the year
Dw Microthermal snow forest climate; dry season in winter
bVegetation classification based on Kiichler’s map, where vegetation types are:
B Broadleaf evergreen trees
Bzi Broadleaf evergreen, shrub form, minimum height 3 ft, growth singly or in groups or patches
D Broadleaf deciduous trees
Dsi Broadleaf deciduous, shrub form, minimum height 3 ft, plants sufficiently far apart that they frequently
do not touch
Dsp Broadleaf deciduous, shrub form, minimum height 3 ft, growth singly or in groups or patches
E Needleleaf evergreen trees
G Grass and other herbaceous plants
GD Grass and other herbaceous plants; broadleaf deciduous trees
GDsp Grass and other herbaceous plants; broadleaf deciduous, shrub forms, minimum height 3 ft, growth
singly or in groups or patches
M Mixed broadleaf deciduous and needleleaf evergreen trees
S Semideciduous: broadleaf evergreen and broadleaf deciduous trees
SE Semideciduous: broadleaf evergreen and broadleaf deciduous trees: needleleaf evergreen trees
Note: These constants are based on radiation data available before 1966 and do not reflect improvements in
data processing and interpretation made since then. The results of estimations for U.S. stations will be
at variance with TMY2 data. It is recommended that these correlations be used only when there are no
radiation data available.
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2.8 ESTIMATION OF CLEAR-SKY RADIATION

The effects of the atmosphere in scattering and absorbing radiation are variable with time
as atmospheric conditions and air mass change. It is useful to define a standard ‘‘clear’’
sky and calculate the hourly and daily radiation which would be received on a horizontal
surface under these standard conditions.

Hottel (1976) has presented a method for estimating the beam radiation transmitted
through clear atmospheres which takes into account zenith angle and altitude for a standard
atmosphere and for four climate types. The atmospheric transmittance for beam radiation
7,18 Gy,,/G,, (or G,;/G,r) and is given in the form

—k
T, = day +a; exp (0059 ) (2.8.1a)
Z

The constants a, a;, and k for the standard atmosphere with 23 km visibility are found
from afj, a’j, and k*, which are given for altitudes less than 2.5 km by

ai = 0.4237 — 0.00821(6 — A)? (2.8.1b)
a* = 0.5055 + 0.00595(6.5 — A)> 2.8.1c)
k* = 02711 + 0.01858(2.5 — A)> (2.8.1d)

where A is the altitude of the observer in kilometers. (Hottel also gives equations for g,
ay, and k* for a standard atmosphere with 5 km visibility.)

Correction factors are applied to agj, a7}, and k* to allow for changes in climate types.
The correction factors ry = ag/a;, ry = a;/aj}, and r, = k/k* are given in Table 2.8.1.
Thus, the transmittance of this standard atmosphere for beam radiation can be determined
for any zenith angle and any altitude up to 2.5 km. The clear-sky beam normal radiation is
then

G.p»=G,.7 (2.8.2)

where G, is obtained from Equation 1.4.1. The clear-sky horizontal beam radiation is
Gy, =G,,1, cosb, (2.8.3)
For periods of an hour, the clear-sky horizontal beam radiation is

I, =1,,T, cosO, (2.8.4)

C

Table 2.8.1 Correction Factors for Climate Types®

Climate Type Ty r T

Tropical 0.95 0.98 1.02
Midlatitude summer 0.97 0.99 1.02
Subarctic summer 0.99 0.99 1.01
Midlatitude winter 1.03 1.01 1.00

“From Hottel (1976).
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Example 2.8.1

Calculate the transmittance for beam radiation of the standard clear atmosphere at Madison
(altitude 270 m) on August 22 at 11:30 AM solar time. Estimate the intensity of beam
radiation at that time and its component on a horizontal surface.

Solution

On August 22, n = 234, the declination is 11.4°, and from Equation 1.6.5 the cosine of the
zenith angle is 0.846.

The next step is to find the coefficients for Equation 2.8.1. First, the values for
the standard atmosphere are obtained from Equations 2.8.1b to 2.8.1d for an altitude of
0.27 km:

ai = 0.4237 — 0.00821(6 — 0.27)> = 0.154
a* = 0.5055 4+ 0.00595(6.5 — 0.27)* = 0.736
k* = 02711 + 0.01858(2.5 — 0.27)* = 0.363

The climate-type correction factors are obtained from Table 2.8.1 for midlatitude summer.
Equation 2.8.1a becomes

1.02
7, = 0.154 x 0.97 4- 0.736 x 0.99 exp (—0.363 X 0 846) =0.62

The extraterrestrial radiation is 1339 W/m? from Equation 1.4.1. The beam radiation is
then
Gy = 1339 x 0.62 = 830 W/m?

The component on a horizontal plane is

G, = 830 x 0.846 = 702 W/m?
|

It is also necessary to estimate the clear-sky diffuse radiation on a horizontal surface to
get the total radiation. Liu and Jordan (1960) developed an empirical relationship between
the transmission coefficients for beam and diffuse radiation for clear days:

G
T, = G—d =0.271 — 0.2947, (2.8.5)

0

where 7, i1s G,;/G,, (or 1,;/1,), the ratio of diffuse radiation to the extraterrestrial (beam)
radiation on the horizontal plane. The equation is based on data for three stations. The
data used by Liu and Jordan predated that used by Hottel (1976) and may not be
entirely consistent with it; until better information becomes available, it is suggested that
Equation 2.8.5 be used to estimate diffuse clear-sky radiation, which can be added to
the beam radiation predicted by Hottel’s method to obtain a clear hour’s total. These
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calculations can be repeated for each hour of the day, based on the midpoints of the hours,
to obtain a standard clear day’s radiation H.,.

Example 2.8.2

Estimate the standard clear-day radiation on a horizontal surface for Madison on
August 22.

Solution

For each hour, based on the midpoints of the hour, the transmittances of the atmosphere for
beam and diffuse radiation are estimated. The calculation of 7, is illustrated for the hour
11 to 12 (i.e., at 11:30) in Example 2.8.1, and the beam radiation for a horizontal surface
for the hour is 2.53 MJ/m? (702 W /m? for the hour).

The calculation of 7, is based on Equation 2.8.5:

7, = 0.271 — 0.294(0.62) = 0.089

Next G,,,, calculated by Equation 1.4.1, is 1339 W/m?. Then G, is G,,, cos 6, so that

on’

G, = 1339 x 0.846 x 0.089 = 101 W/m>

Then the diffuse radiation for the hour is 0.36 MJ/m?. The total radiation on a horizontal
plane for the hour is 2.53 + 0.36 = 2.89 MJ/m?. These calculations are repeated for each
hour of the day. The result is shown in the tabulation, where energy quantities are in
megajoules per square meter. The beam for the day H,, is twice the sum of column
4, giving 19.0 MJ/m?. The day’s total radiation H, is twice the sum of column 7, or

22.8 MJ/m?.
ch

Hours T, Normal Horizontal 7, 1, 1.
11-12,12—-1 0.620 2.99 2.52 0.089 0.36 2.89
10-11,1-2 0.607 2.93 2.33 0.092 0.35 2.69
9-10,2-3 0.580 2.79 1.97 0.100 0.34 2.31
8-9,3-4 0.530 2.56 1.46 0.115 0.32 1.78
7-8,4-5 0.444 2.14 0.88 0.140 0.28 1.15
6-7,5-6 0.293 1.41 0.32 0.185 0.20 0.53
5-6,6-7 0.150 0.72 0.03 0.227 0.05 0.07

A simpler method for estimating clear-sky radiation by hours is to use data for the
ASHRAE standard atmosphere. Farber and Morrison (1977) provide tables of beam normal
radiation and total radiation on a horizontal surface as a function of zenith angle. These are
plotted in Figure 2.8.1. For a given day, hour-by-hour estimates of / can be made, based
on midpoints of the hours.
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This method estimates the ‘‘clear-sky’’ day’s radiation as 10% greater than the Hottel
and Liu and Jordan ‘‘standard’’-day method. The difference lies in the definition of a
standard (clear) day. While the ASHRAE data are easier to use, the Hottel and Liu and
Jordan method provides a means of taking into account climate type and altitude.

2.9 DISTRIBUTION OF CLEAR AND CLOUDY DAYS AND HOURS

The frequency of occurrence of periods of various radiation levels, for example, of good
and bad days, is of interest in two contexts. First, information on the frequency distribution
is the link between two kinds of correlations, that of the daily fraction of diffuse with
daily radiation and that of the monthly average fraction of diffuse with monthly average
radiation. Second, later in this chapter the concept of utilizability is developed; it depends
on these frequency distributions.

The monthly average clearness index K, is the ratio’ of monthly average daily
radiation on a horizontal surface to the monthly average daily extraterrestrial radiation. In
equation form,

Ky = (2.9.1)

| =|

We can also define a daily clearness index K as the ratio of a particular day’s radiation to
the extraterrestrial radiation for that day. In equation form,

Kr = (2.9.2)

o

These ratios were originally referred to by Liu and Jordan (1960) as cloudiness indexes. As their values approach
unity with increasing atmospheric clearness, they are also referred to as clearness indexes, the terminology used
here.
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An hourly clearness index k; can also be defined:

ky = (2.9.3)

I
IO

The data H, H , and [ are from measurements of total solar radiation on a horizontal
surface, that is, the commonly available pyranometer measurements. Values of ﬁo, H,,
and /, can be calculated by the methods of Section 1.10.

If for locations with a particular value of K, the frequency of occurrence of days
with various values of K is plotted as a function of K, the resulting distribution could
appear like the solid curve of Figure 2.9.1. The shape of this curve depends on the average
clearness index K ;. For intermediate K ;- values, days with very low K or very high K
occur relatively infrequently, and most of the days have K; values intermediate between
the extremes. If fT is high, the distribution must be skewed toward high K; values, and
if it is low, the curve must be skewed toward low K, values. The distribution can be
bimodal, as shown by Ibafiez et al. (2003).

The data used to construct the frequency distribution curve of Figure 2.9.1 can also be
plotted as a cumulative distribution, that is, as the fraction f of the days that are less clear
than K, versus K. In practice, following the precedent of Whillier (1956), the plots are
usually shown as K versus f. The result is shown as the dashed line in Figure 2.9.1.

Liu and Jordan (1960) found that the cumulative distribution curves are very nearly
identical for locations having the same values of fT, even though the locations varied
widely in latitude and elevation. On the basis of this information, they developed a
set of generalized distribution curves of K, versus f which are functions of K ;, the
monthly clearness index. These are shown in Figure 2.9.2. The coordinates of the curves
are given in Table 2.9.1. Thus if a location has a K; of 0.6, 19% of the days will
have K < 0.40.'°

10Recent research indicates that there may be some seasonal dependence of these distributions in some
locations.
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Figure 2.9.2 Generalized distribution of days with various values of K as a function of K .

Table 2.9.1 Coordinates of Liu and Jordan Generalized Monthly K Cumulative Distribution

Curves

Value of f(Kp)
K, ET =03 fT =04 fr =0.5 fT =0.6 fr =0.7
0.04 0.073 0.015 0.001 0.000 0.000
0.08 0.162 0.070 0.023 0.008 0.000
0.12 0.245 0.129 0.045 0.021 0.007
0.16 0.299 0.190 0.082 0.039 0.007
0.20 0.395 0.249 0.121 0.053 0.007
0.24 0.496 0.298 0.160 0.076 0.007
0.28 0.513 0.346 0.194 0.101 0.013
0.32 0.579 0.379 0.234 0.126 0.013
0.36 0.628 0.438 0.277 0.152 0.027
0.40 0.687 0.493 0.323 0.191 0.034
0.44 0.748 0.545 0.358 0.235 0.047
0.48 0.793 0.601 0.400 0.269 0.054
0.52 0.824 0.654 0.460 0.310 0.081
0.56 0.861 0.719 0.509 0.360 0.128
0.60 0.904 0.760 0.614 0.410 0.161
0.64 0.936 0.827 0.703 0.467 0.228
0.68 0.953 0.888 0.792 0.538 0.295
0.72 0.967 0.931 0.873 0.648 0.517
0.76 0.979 0.967 0.945 0.758 0.678
0.80 0.986 0.981 0.980 0.884 0.859
0.84 0.993 0.997 0.993 0.945 0.940
0.88 0.995 0.999 1.000 0.985 0.980
0.92 0.998 0.999 — 0.996 1.000
0.96 0.998 1.000 — 0.999 —
1.00 1.000 — — 1.000 —
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Bendt et al. (1981) have developed equations to represent the Liu and Jordan
(1960) distributions based on 20 years of data from 90 locations in the United States.
The correlation represents the Liu and Jordan curves very well for values of f(K;)
less than 0.9; above 0.9 the correlations overpredict the frequency for given values of the
clearness index. The Bendt et al. (1981) equations are

exp(yKT,min) - CXP(VKT)

2.9.4)
exp(y KT,min) - CXp()/ KT,max)

f(Kp) =

where y is determined from the equation

E _ (KT,min - 1/7/) exp(yKT,min) - (KT.max - 1/V) eXp(VKT,max) (2 9 5)
T eXp(VKT,min) - eXp(VKT,max) o

Solving for y in this equation is not convenient, and Herzog (1985) gives an explicit
equation for y from a curve fit:

1.184& — 27.182 exp(—1.5
y = —1.498 + 184 exp(~1.58) (2.9.62)

KT,max - KT,min

and

K7 max — K7mi
g — —Lmax 7 BT .min (2.9.6b)
KT,max - KT

A value of Ky i, of 0.05 was recommended by Bendt et al. (1981) and Hollands and
Huget (1983) recommend that K ... be estimated from

K7 e = 0.6313 +0.267K ; — 11.9(K; — 0.75)° (2.9.6¢)

The universality of the Liu and Jordan (1960) distributions has been questioned,
particularly as applied to tropical climates. Saunier et al. (1987) propose an alternative
expression for the distributions for tropical climates. A brief review of papers on the
distributions is included in Knight et al. (1991).

Similar distribution functions have been developed for hourly radiation. Whillier
(1953) observed that when the hourly and daily curves for a location are plotted, the
curves are very similar. Thus the distribution curves of daily occurrences of K; can also
be applied to hourly clearness indexes. The ordinate in Figure 2.9.2 can be replaced by k-
and the curves will approximate the cumulative distribution of hourly clearness. Thus for
a climate with K 7 = 0.4, 0.493 of the hours will have k; < 0.40.

2.10 BEAM AND DIFFUSE COMPONENTS OF HOURLY RADIATION

In this and the following two sections we review methods for estimation of the fractions
of total horizontal radiation that are diffuse and beam. The questions of the best methods
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Figure 2.10.1 A sample of diffuse fraction versus clearness index data from Cape Canaveral, FL.

Adapted from Reindl (1988).

for doing these calculations are not fully settled. A broader database and improved
understanding of the data will probably lead to improved methods. In each section we
review methods that have been published and then suggest one for use. The suggested
correlations are in substantial agreement with other correlations, and the set is mutually
consistent.

The split of total solar radiation on a horizontal surface into its diffuse and beam
components is of interest in two contexts. First, methods for calculating total radiation on
surfaces of other orientation from data on a horizontal surface require separate treatments
of beam and diffuse radiation (see Section 2.15). Second, estimates of the long-time
performance of most concentrating collectors must be based on estimates of availability of
beam radiation. The present methods for estimating the distribution are based on studies
of available measured data; they are adequate for the first purpose but less than adequate
for the second.

The usual approach is to correlate /,;/1, the fraction of the hourly radiation on a
horizontal plane which is diffuse, with k;, the hourly clearness index. Figure 2.10.1
shows a plot of diffuse fraction 1,/ versus k; for Cape Canaveral, Florida. In order
to obtain /,/I-versus-k; correlations, data from many locations similar to that shown in
Figure 2.10.1 are divided into ‘‘bins,”” or ranges of values of k;, and the data in each bin
are averaged to obtain a point on the plot. A set of these points then is the basis of the
correlation. Within each of the bins there is a distribution of points; a k of 0.5 may be
produced by skies with thin cloud cover, resulting in a high diffuse fraction, or by skies
that are clear for part of the hour and heavily clouded for part of the hour, leading to a low
diffuse fraction. Thus the correlation may not represent a particular hour very closely, but
over a large number of hours it adequately represents the diffuse fraction.

Orgill and Hollands (1977) have used data of this type from Canadian stations, Erbs
et al. (1982) have used data from four U.S. and one Australian station, and Reindl et al.
(1990a) have used an independent data set from the United States and Europe. The three
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Figure 2.10.2 The ratio /,/I as function of hourly clearness index k; showing the Orgill and
Hollands (1977), Erbs et al. (1982), and Reindl et al. (1990a) correlations.
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Figure 2.10.3 The ratio /,/I as a function of hourly clearness index k. From Erbs et al. (1982).

correlations are shown in Figure 2.10.2. They are essentially identical, although they were
derived from three separate databases. The Erbs et al. correlation (Figure 2.10.3) is!!

1.0 — 0.09%; for ky < 0.22
I 0.9511 — 0.1604k, + 4.388K2
la _ rt T for0.22 < k; < 0.80 2.10.1)
i —16.638k3 + 12.336k%

0.165 for k; > 0.8

"'"The Orgill and Hollands correlation has been widely used, produces results that are for practical purposes the
same as those of Erbs et al., and is represented by the following equations:

1.0 — 0.249%,  for0 <k, <035
= 11557 — 1.84k, for0.35 < k; < 0.75
0.177 for k, > 0.75

L
1
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For values of k; greater than 0.8, there are very few data. Some of the data that are
available show increasing diffuse fraction as k; increases above 0.8. This apparent rise
in the diffuse fraction is probably due to reflection of radiation from clouds during times
when the sun is unobscured but when there are clouds near the path from the sun to the
observer. The use of a diffuse fraction of 0.165 is recommended in this region.

In a related approach described by Boes (1975), values of 1,;/I from correlations are
modified by a restricted random number that adds a statistical variation to the correlation.

2.11 BEAM AND DIFFUSE COMPONENTS OF DAILY RADIATION

Studies of available daily radiation data have shown that the average fraction which is
diffuse, H;/H,is afunction of K+, the day’s clearness index. The original correlation of Liu
and Jordan (1960) is shown in Figure 2.11.1; the data were for Blue Hill, Massachusetts.
Also shown on the graph are plots of data for Israel from Stanhill (1966), for New
Delhi from Choudhury (1963), for Canadian stations from Ruth and Chant (1976) and
Tuller (1976), for Highett (Melbourne), Australia, from Bannister (1969), and for four
U.S. stations from Collares-Pereira and Rabl (1979a). There is some disagreement, with
differences probably due in part to instrumental difficulties such as shading ring corrections
and possibly in part due to air mass and/or seasonal effects. The correlation by Erbs (based
on the same data set as is Figure 2.10.2) is shown in Figure 2.11.2. A seasonal dependence
is shown; the spring, summer, and fall data are essentially the same, while the winter data
show somewhat lower diffuse fractions for high values of K;. The season is indicated by
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||D 0.4 u ant oy N
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02" srtsrs+ Choudhury = 7
Collares-Periera & Rabl |
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o 1 | i 1
0 0.2 0.4 0.6 0.8 1.0
Daily total radiation  H
Ky = —ayroairadiaion _ 71

= Daily extraterrestrial H,

Figure 2.11.1 Correlations of daily diffuse fraction with daily clearness index. Adapted from Klein
and Duffie (1978).
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Figure 2.11.2  Suggested correlation of daily diffuse fraction with K. From Erbs et al. (1982).

the sunset hour angle w,. Equations representing this set of correlations are as follows!?:
For o, < 81.4°

Hy {1.0 —0.2727K; +2.4495K7 — 11.9514K3 + 9.3879K;  for K < 0.715

H 0.143 for K; > 0.715
(2.11.1a)
and for w; > 81.4°
H; _ |1.0+0.2832K; —2.5557K7 4 0.8448K; for Ky < 0.722 2.1L.15)
H 0175 for Ky > 0.722 o

Example 2.11.1

The day’s total radiation on a horizontal surface for St. Louis, Missouri (latitude 38.6°),
on September 3 is 23.0 MJ/m?. Estimate the fraction and amount that is diffuse.

Solution

For September 3, the declination is 7°. From Equation 1.6.10, the sunset hour angle is
95.6°. From Equation 1.10.3, the day’s extraterrestrial radiation is 33.3 MJ/m?. Then

H 230
Ky=—=""=069
™ H ~ 333

o

12The Collares-Pereira and Rabl correlation is

0.99 for K, <0.17
1.188 — 2.272K, + 9.473K2

= —21.865K3 + 14.648K+  for 0.17 < K, < 0.75
—0.54K, +0.632 for 0.75 < K, < 0.80
0.2 for K, > 0.80

x|
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From Figure 2.11.2 or Equation 2.11.1b, H;/H = 0.26, so an estimated 26% of the day’s
radiation is diffuse. The day’s diffuse energy is 0.26 x 23.0 = 6.0 MJ/m?. |

2.12 BEAM AND DIFFUSE COMPONENTS OF MONTHLY RADIATION

Charts similar to Figures 2.11.1 and 2.11.2 have been derived to show the distribution
of monthly average daily radiation into its beam and diffuse components. In this case,
the monthly fraction that is diffuse, H,/H, is plotted as a function of monthly average
clearness index, K 7 (= H/H ). The data for these plots can be obtained from daily data
in either of two ways. First, monthly data can be plotted by summing the daily diffuse
and total radiation data. Second, as shown by Liu and Jordan (1960), a generalized daily
H,;/H-versus-K; curve can be used with a knowledge of the distribution of good and bad
days (the cumulative distribution curves of Figure 2.9.2) to develop the monthly average
relationships.

Figure 2.12.1 shows several correlations of H,/H versus K ;. The curves of Page
(1964) and Collares-Pereira and Rabl (1979a) are based on summations of daily total and
diffuse radiation. The original curve of Liu and Jordan (modified to correct for a small error
in Fd /ﬁ at low fT) and those labeled Highett, Stanhill, Choudhury, Ruth and Chant, and
Tuller are based on daily correlations by the various authors (as in Figure 2.11.1) and on
the distribution of days with various K ; as shown in Figure 2.9.2. The Collares-Pereira
and Rabl curve in Figure 2.12.1 is for their all-year correlation; they found a seasonal
dependence of the relationship which they expressed in terms of the sunset hour angle of the
mean day of the month. There is significant disagreement among the various correlations
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Figure 2.12.1 Correlations of average diffuse fractions with average clearness index. Adapted from
Klein and Duffie (1978).
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Figure 2.12.2 Suggested correlation of H,/H versus K ; and w,. Adapted form Erbs et al. (1982).

of Figure 2.12.1. Instrumental problems and atmospheric variables (air mass, season, or
other) may contribute to the differences.

Erbs et al. (1982) developed monthly average diffuse fraction correlations from the
daily diffuse correlations of Figure 2.11.2. As with the daily correlations, there is a seasonal
dependence; the winter curve lies below the other, indicating lower moisture and dust in
the winter sky with resulting lower fractions of diffuse. The dependence of ﬁd /H on
K is shown for winter and for the other seasons in Figure 2.12.2. Equations for these
correlations are as follows'?: For w, < 81.4°and 0.3 < ?T <0.8

H — — _
7‘1 — 1.391 — 3.560K ; + 4.189K » — 2.137K (2.12.1a)
and for w, > 81.4°and 0.3 < K, < 0.8

4 — 1311 —3.022K, +3427K; — 1.821K (2.12.1b)

m” |

Example 2.12.1

Estimate the fraction of the average June radiation on a horizontal surface that is diffuse in
Madison, Wisconsin.

Solution

From Appendix D, the June average daily radiation H for Madison is 23.0 MJ/m?. From
Equation 1.10.3, for June 11 (the mean day of the month, n = 162, from Table 1.6.1),
when the declination is 23.1°, H, = 41.8 MJ/m?. Thus K, = 23.0/41.8 = 0.55. From
Equation 1.6.10, w, = 113.4°. Then, using either Equation 2.12.1b or the upper curve from
Figure 2.12.2, H,/H = 0.38. [ |

3The Collares-Pereira and Rabl correlation, with w, in degrees, is

|

4 —0.775 4 0.00606 (wg —90) —[0.505 + 0.00455(wg — 90)] cos(1 IS?T —103)

|
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2.13 ESTIMATION OF HOURLY RADIATION FROM DAILY DATA

When hour-by-hour (or other short-time base) performance calculations for a system
are to be done, it may be necessary to start with daily data and estimate hourly values
from daily numbers. As with the estimation of diffuse from total radiation, this is not
an exact process. For example, daily total radiation values in the middle range between
clear-day and completely cloudy day values can arise from various circumstances, such
as intermittent heavy clouds, continuous light clouds, or heavy cloud cover for part of the
day. There is no way to determine these circumstances from the daily totals. However, the
methods presented here work best for clear days, and those are the days that produce most
of the output of solar processes (particularly those processes that operate at temperatures
significantly above ambient). Also, these methods tend to produce conservative estimates
of long-time process performance.

Statistical studies of the time distribution of total radiation on horizontal surfaces
through the day using monthly average data for a number of stations have led to
generalized charts of r,, the ratio of hourly total to daily total radiation, as a function of
day length and the hour in question:

n=4q (2.13.1)
Figure 2.13.1 shows such a chart, adapted from Liu and Jordan (1960) and based on
Whillier (1956, 1965) and Hottel and Whillier (1958). The hours are designated by the
time for the midpoint of the hour, and days are assumed to be symmetrical about solar
noon. A curve for the hour centered at noon is also shown. Day length can be calculated
from Equation 1.6.11 or it can be estimated from Figure 1.6.3. Thus, knowing day length (a
function of latitude ¢ and declination §) and daily total radiation, the hourly total radiation
for symmetrical days can be estimated.

A study of New Zealand data by Benseman and Cook (1969) indicates that the curves
of Figure 2.13.1 represent the New Zealand data in a satisfactory way. Igbal (1979) used
Canadian data to further substantiate these relationships. The figure is based on long-term
averages and is intended for use in determining averages of hourly radiation. Whillier
(1956) recommends that it be used for individual days only if they are clear days. Benseman
and Cook (1969) suggest that it is adequate for individual days, with best results for clear
days and increasingly uncertain results as daily total radiation decreases.

The curves of Figure 2.13.1 are represented by the following equation from Collares-
Pereira and Rabl (1979a):

COS @ — COS Wy

r,=—(a+b cosw) _° (2.13.22)
24 sinw, — —= cos w,
180
The coefficients a and b are given by
a = 0.409 + 0.5016 sin(w; — 60) (2.13.2b)
b = 0.6609 — 0.4767 sin(w, — 60) (2.13.2¢)

In these equations w is the hour angle in degrees for the time in question (i.e., the
midpoint of the hour for which the calculation is made) and w; is the sunset hour angle.



82 Available Solar Radiation

0.20 \
0.18 \\
\\ \&
0.16 \ \
c
% \\ \\ Hour from solar noon
g 0.14 \\ \ .
©
2 X.\\
2 012 3
3 F\\h
c
2 010 e—]
§ 5 % '\-\“\
g
> 008
3 1
2 — ] 33
I /
= 006 = N —
I
W / n4/%
0.04 / /-—
1
0.02 / 5 2
6 % /
0 8 9 10 11 12 13 14 15 16
Hours from sunrise to sunset
| 1 1 | 1 1 { 1 L | ! 1 ]
60 75 90 105 120

Sunset hour angle, wyq, degrees

Figure 2.13.1 Relationship between hourly and daily total radiation on a horizontal surface as a
function of day length. Adapted form Liu and Jordan (1960).

Example 2.13.1

What is the fraction of the average January daily radiation that is received at Melbourne,
Australia, in the hour between 8:00 and 9:00?

Solution

For Melbourne, ¢ = —38°. From Table 1.6.1 the mean day for January is the 17th. From
Equation 1.6.1 the declination is —20.9°. From Equation 1.6.11 the day length is 14.3 h.
From Figure 2.13.1, using the curve for 3.5h from solar noon, at a day length of 14.3 h,
approximately 7.8% of the day’s radiation will be in that hour. Or Equation 2.13.2 can be
used; with w, = 107° and @ = —52.5°, the result is r, = 0.076. |
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Example 2.13.2

The total radiation for Madison on August 23 was 31.4 MJ/m?. Estimate the radiation
received between 1 and 2 pm.

Solution

For August 23, § = 11° and ¢ for Madison is 43°. From Figure 1.6.3, sunset is at
6:45 pM and day length is 13.4 h. Then from Figure 2.13.1, at day length of 13.4 h and mean
of 1.5h from solar noon, the ratio hourly total to daily total r, = 0.118. The estimated
radiation in the hour from 1 to 2 PM is then 3.7 MJ/m?. (The measured value for that hour
was 3.47 MJ/m?.) |

Figure 2.13.2 shows a related set of curves for r,, the ratio of hourly diffuse to daily
diffuse radiation, as a function of time and day length. In conjunction with Figure 2.11.2,
it can be used to estimate hourly averages of diffuse radiation if the average daily total
radiation is known:

Ly (2.13.3)
ry=—— 13
47 q,
These curves are based on the assumption that /,/H, is the same as /,/H, and are
represented by the following equation from Liu and Jordan (1960):

T COS @ — COS Wy
=g — (2.13.4)
Smwg — ﬁ COS wy

Example 2.13.3

From Appendix D, the average daily June total radiation on a horizontal plane in Madison
is 23.0 MJ/m?. Estimate the average diffuse, the average beam, and the average total
radiation for the hours 10 to 11 and 1 to 2.

Solution

The mean daily extraterrestrial radiation H , for June for Madison is 41.7 MJ/m? (from
Table 1.10.1 or Equation 1.10.3 with n = 162), w, = 113°, and the day length is 15.1h
(from Equation 1.6.11). Then (as in Example 2.12.1), fT = 0.55. From Equation 2.12.1,
H,/H =0.38, and the average daily diffuse radiation is 0.38 x 23.0 = 8.74 MJ/m?.
Entering Figure 2.13.2 for an average day length of 15.1 h and for 1.5 h from solar noon, we
find r; = 0.102. (Or Equation 2.13.4 can be used with @ = 22.5° and w, = 113° to obtain
r, = 0.102.) Thus the average diffuse for those hours is 0.102 x 8.74 = 0.89 MJ/m?.
From Figure 2.13.1 (or from Equations 2.13.1 and 2.13.2) from the curve for 1.5h
from solar noon, for an average day length of 15.1h, r, = 0.108 and average hourly total
radiation is 0.108 x 23.0 = 2.48 MJ/m?. The average beam radiation is the difference
between the total and diffuse, or 2.48 — 0.89 = 1.59 MJ /m2. [ |
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Figure 2.13.2 Relationship between hourly diffuse and daily diffuse radiation on a horizontal
surface as a function of day length. Adapted from Liu and Jordan (1960).

2.14 RADIATION ON SLOPED SURFACES

We turn next to the general problem of calculation of radiation on tilted surfaces when
only the total radiation on a horizontal surface is known. For this we need the directions
from which the beam and diffuse components reach the surface in question. Section 1.8
dealt with the geometric problem of the direction of beam radiation. The direction from
which diffuse radiation is received, that is, its distribution over the sky dome, is a function
of conditions of cloudiness and atmospheric clarity, which are highly variable. Some data
are available, for example, from Kondratyev (1969) and Coulson (1975). Figure 2.14.1,
from Coulson, shows profiles of diffuse radiation across the sky as a function of angular
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Figure 2.14.1 Relative intensity of solar radiation (at A = 0.365 pum) as a function of elevation
angle in the principal plane that includes the sun, for Los Angeles, for clear sky and for smog.
Adapted from Coulson (1975).

elevation from the horizon in a plane that includes the sun. The data are for clear-sky and
smog conditions.

Clear-day data such as that in Figure 2.14.1 suggest a diffuse radiation model as being
composed of three parts. The first is an isotropic part, received uniformly from the entire
sky dome. The second is circumsolar diffuse, resulting from forward scattering of solar
radiation and concentrated in the part of the sky around the sun. The third, referred to as
horizon brightening, is concentrated near the horizon and is most pronounced in clear
skies. Figure 2.14.2 shows schematically these three parts of the diffuse radiation.

The angular distribution of diffuse is to some degree a function of the reflectance p,
(the albedo) of the ground. A high reflectance (such as that of fresh snow, with p, ~ 0.7)
results in reflection of solar radiation back to the sky, which in turn may be scattered to
account for horizon brightening.

Sky models, in the context used here, are mathematical representations of the diffuse
radiation. When beam and reflected radiation are added, they provide the means of
calculating radiation on a tilted surface from measurements on the horizontal. Many sky
models have been devised. A review of some of them is provided by Hay and McKay
(1985). Since 1985, others have been developed. For purposes of this book, three of the
most useful of these models are presented: the isotropic model in Section 2.15 and two
anisotropic models in Section 2.16. The differences among them are in the way they treat
the three parts of the diffuse radiation.
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Figure 2.14.2 Schematic of the distribution of diffuse radiation over the sky dome showing the
circumsolar and horizon brightening components added to the isotropic component. Adapted from
Perez et al. (1988).

It is necessary to know or to be able to estimate the solar radiation incident on tilted
surfaces such as solar collectors, windows, or other passive system receivers. The incident
solar radiation is the sum of a set of radiation streams including beam radiation, the three
components of diffuse radiation from the sky, and radiation reflected from the various
surfaces ‘‘seen’’ by the tilted surface. The total incident radiation on this surface can be
written as'4

IT = IT,b + IT,d,iso + IT,d,cs + IT,d,hz + IT,reﬂ (2141)

where the subscripts iso, cs, hz, and refl refer to the isotropic, circumsolar, horizon, and
reflected radiation streams.

For a surface (a collector) of area A, the total incident radiation can be expressed in
terms of the beam and diffuse radiation on the horizontal surface and the total radiation on
the surfaces that reflect to the tilted surface. The terms in Equation 2.14.1 become

Adr = LRyA, + 1 50 AsFy_ o + 15 Ry A + 1y p, Any Fro—e

+ Y Lip A, (2.14.2)

The first term is the beam contribution. The second is the isotropic diffuse term, which
includes the product of sky area A, (an undefined area) and the radiation view factor from
the sky to the collector F;_.. The third is the circumsolar diffuse, which is treated as
coming from the same direction as the beam. The fourth term is the contribution of the
diffuse from the horizon from a band with another undefined area A;,. The fifth term is the
set of reflected radiation streams from the buildings, fields, and so on, to which the tilted
surface is exposed. The symbol i refers to each of the reflected streams: I; is the solar
radiation incident on the ith surface, p; is the diffuse reflectance of that surface, and F;_,
is the view factor from the ith surface to the tilted surface. It is assumed that the reflecting
surfaces are diffuse reflectors; specular reflectors require a different treatment.

14This and following equations are written in terms of / for an hour. They could also be written in terms of G,
the irradiance.
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In general, it is not possible to calculate the reflected energy term in detail, to account
for buildings, trees, and so on, the changing solar radiation incident on them, and their
changing reflectances. Standard practice is to assume that there is one surface, a horizontal,
diffusely reflecting ground, large in extent, contributing to this term. In this case, /; is
simply / and p; becomes p,, a composite *‘ground’” reflectance.

Equation 2.14.2 can be rewritten in a useful form by interchanging areas and view
factors (since the view factor reciprocity relation requires that, e.g., A, F,_. = A F,_;).
This eliminates the undefined areas A, and A,,. The area A_. appears in each term in the
equation and cancels. The result is an equation that gives /; in terms of parameters that

can be determined either theoretically or empirically:

It = IpRy + 1y isoFers + Ly es Ry + Lang Foony + 10 Feyg (2.14.3)
This equation, with variations, is the basis for methods of calculating /; that are presented
in the following sections.

When I has been determined, the ratio of total radiation on the tilted surface to that
on the horizontal surface can be determined. By definition,

total radiation on tilted surfaced Iy

= — - = = (2.14.4)
total radiation on horizontal surface 1

Many models have been developed, of varying complexity, as the basis for calculating
1. The differences are largely in the way that the diffuse terms are treated. The simplest
model is based on the assumptions that the beam radiation predominates (when it matters)
and that the diffuse (and ground-reflected radiation) is effectively concentrated in the area
of the sun. Then R = R, and all radiation is treated as beam. This leads to substantial
overestimation of I, and the procedure is not recommended. Preferred methods are given
in the following two sections and are based on various assumptions about the directional
distribution of the diffuse radiation incident on the tilted surface.

For most hours the calculation of R, in Equation 2.14.3 is straightforward, as shown
in Section 1.8. However, problems can arise in calculating radiation on a tilted surface at
times near sunrise and sunset. For example, solar radiation data may be recorded before
sunrise or after sunset due to reflection from clouds and/or by refraction of the atmosphere.
The usual practice is to either discard such measurements or treat the radiation as all diffuse
as the impact on solar system performance is negligible. The time scale of most detailed
radiation data is hourly where the reported value is the integrated energy over the previous
hour; that is, the radiation for the hour 4 pM is the integrated radiation from 3 PM to 4 PM.
Estimates of tilted surface radiation typically use the midpoint of the previous hour for
all calculations. However, this practice can cause problems if the hour contains the actual
sunrise or sunset. '3

Consider the case when sunrise (or sunset) occurs at the midpoint of the hour; the
cosine of the zenith angle is zero and R, (Equation 1.8.1) evaluated at the midpoint of

15Sunrise or sunset on a surface that does not correspond to actual sunrise or sunset does not cause problems
because the zenith angle is not 90° and therefore R, does not approach infinity. And, since the incidence angles
are large during this hour, ignoring the self-shading during part of the hour will not result in significant errors.
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the hour is infinite. Under these circumstances the recorded radiation is not zero so the
estimated beam radiation on the tilted surface can be very large. Arbitrarily limiting R, to
some value may not be the best general approach as large values of R, do occur even at
midday at high-latitude regions during the winter. The best approach is to extend Equation
1.8.1 from an instantaneous equation to one integrated over a time period w; to w,. The
instantaneous beam radiation incident on a tilted surface is 7, G, R, and the instantaneous
beam radiation on a horizontal surface is 7, G,,. These expressions cannot be integrated due
to the unknown dependence of 7, on w, but if 7, is assumed to be a constant (a reasonable
assumption), the average R, is given by

) [2)) @2
/ 7,G, R, dw / G, R, dw / cosf dw
Ry e = = ~ 2 = (2.14.5)

) ) w)
/ 7,G, do / G, dw / cos 0, dw
w] ] w1

It is clear that when w, and w, represent two adjacent hours in a day away from sunrise or
sunset R, ... ~ R,. However, when either v, or w, represent sunrise or sunset R, changes
rapidly and integration is needed:

a
Ry ave = b (2.14.6)

where
a = (sind sin¢g cos B —sind cos¢ sin B cosy) X % (wy — )7
+ (cosd cos¢ cos B+ cosd sing sinf cosy) X (sinw, — sinw,)
— (cosd sinf siny) x (cosw, — cosw,)

and

b = (cos¢ cosd) x (sinw, — sinw;) + (sin¢ siné) x 1]@ (wy — wy) .

Example 2.14.1

On March 4 at a latitude of 45° and a surface slope of 60° determine R, at 6:30 aM and
Ry, 4ve for the hour 6 to 7 AM.

Solution

From Equation 1.6.1 the declination is —7.15°. The cosine of the incidence angle at 6:30
AM is found from Equation 1.6.7a with @ = —82.5°,

cos @ = cos(45 — 60) cos(—7.15) cos(—82.5) + sin(45 — 60) sin(—7.15) = 0.157
and the cosine of the zenith angle is found from Equation 1.6.5,

cos 0, = cos(45) cos(—7.15) cos(82.5) + sin(45) sin(—7.15) = 0.004
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so that R, = cos6@/cosf, = 0.157/0.004 = 39.3, a value that is much too high. If there
is any significant beam radiation (measured or estimated), then multiplying it by 39.3 will
probably produce a value that exceeds the solar constant. Clearly this is a situation to be
avoided.

From Equation 1.6.10 sunrise occurs at —82.79°/15 deg/h = 5.52 h before noon, or
6:29 aMm. Consequently w; = —82.79° and w, — 75.0° for use in Equation 2.14.6:

a = [sin(—7.15) sin45 cos 60 — sin(—7.15) cos 45 sin 60 cos 0]

X 15 (=75) — (—82.79)]n

+ [cos(—7.15) cos 45 cos 60 4 cos(—7.15) sin45 sin 60 cos 0]

X [sin(—75) — sin(—82.79)]

— {cos(—=7.15) sin 60 sin0) x [cos(—75) — cos(—82.79)} = 0.0295
b = [cos45 cos(—7.15)] x [sin(—75) — sin(—82.79)]

+ [sin45 sin(=7.15)] x —L-[(=75) — (—82.79)]7 = 0.00639

1
8ol
Therefore R, ,,. = 0.0295/0.00639 = 4.62, a much more reasonable value. An alternative
is to neglect the hours that contain sunrise or sunset. |

2.15 RADIATION ON SLOPED SURFACES: ISOTROPIC SKY

It can be assumed [as suggested by Hottel and Woertz (1942)] that the combination of
diffuse and ground-reflected radiation is isotropic. With this assumption, the sum of the
diffuse from the sky and the ground-reflected radiation on the tilted surface is the same
regardless of orientation, and the total radiation on the tilted surface is the sum of the beam
contribution calculated as I, R, and the diffuse on a horizontal surface, 1,. This represents
an improvement over the assumption that all radiation can be treated as beam, but better
methods are available.

An improvement on this model, the isotropic diffuse model, was derived by Liu
and Jordan (1963). The radiation on the tilted surface was considered to include three
components: beam, isotropic diffuse, and solar radiation diffusely reflected from the
ground. The third and fourth terms in Equation 2.14.3 are taken as zero as all diffuse
radiation is assumed to be isotropic. A surface tilted at slope 8 from the horizontal has a
view factor to the sky F,_; = (1 4+ cos 8)/2. (If the diffuse radiation is isotropic, this is
also R, the ratio of diffuse on the tilted surface to that on the horizontal surface.) The tilted
surface has a view factor to the ground F._, = (1 —cos 8)/2, and if the surroundings
have a diffuse reflectance of Pg for the total solar radiation, the reflected radiation from the
surroundings on the surface will be /p,(1 — cos f)/2. Thus Equation 2.14.3 is modified
to give the total solar radiation on the tilted surface for an hour as the sum of three terms:

14 cos 1 —cos
I =1,R, + 1, (?ﬁ) + I,og <f’3> (2.15.1)
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and by the definition of R,

I, I; (14 cosp 1 —cos B
R=—=2Ry+—|—F— _— 2.15.2
Ry + ( e R (2.15.2)

Example 2.15.1

Using the isotropic diffuse model, estimate the beam, diffuse, and ground-reflected
components of solar radiation and the total radiation on a surface sloped 60° toward the
south at a latitude of 40° N for the hour 9 to 10 AM on February 20. Here I = 1.04 MJ/m?
and p, = 0.60.

Solution

For this hour, 1, = 2.34 MJ/m?, so k; = 1.04/2.34 = 0.445. From the Erbs correlation
(Equation 2.10.1) 1,/1 = 0.766. Thus

1, = 0.766 x 1.04 = 0.796 MJ/m>
I, = 0.234 x 1.04 = 0.244 MJ/m?

The hour angle w for the midpoint of the hour is —37.5°. The declination § = —11.6°.
Then for this south-facing surface
_cos(40 — 60) cos(—11.6) cos(—37.5) + sin(40 — 60) sin(—11.6)
b= cos(40) cos(—11.6) cos(—37.5) + sin(40) sin(—11.6)

Equation 2.15.1 gives the three radiation streams and the total:

1 + cos 60 1 — cos 60
I =0.244 x 1.71 + 0.796 — +1.04 x 0.60 | ——

2
=0.417 4+ 0.597 + 0.156 = 1.17 MJ/m?

Thus the beam contribution is 0.417 MJ/m?, the diffuse is 0.597 MJ/m?, and the ground
reflected is 0.156 MJ/m?. The total radiation on the surface for the hour is 1.17 MJ/m?.
There are uncertainties in these numbers, and while they are carried to 0.001 MJ in
intermediate steps for purposes of comparing sky models, they are certainly no better than
0.01. |

This example is for a surface with a surface azimuth angle of zero. The model (Equation
2.5.1) is applicable for surfaces of any orientation, provided the correct relationship for R,
is used.
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2.16 RADIATION ON SLOPED SURFACES: ANISOTROPIC SKY

The isotropic diffuse model (Equation 2.15.1) is easy to understand, is conservative
(i.e., it tends to underestimate /;), and makes calculation of radiation on tilted surfaces
easy. However, improved models have been developed which take into account the
circumsolar diffuse and/or horizon- brightening components on a tilted surface that are
shown schematically in Figure 2.16.1. Hay and Davies (1980) estimate the fraction of
the diffuse that is circumsolar and consider it to be all from the same direction as the
beam radiation; they do not treat horizon brightening. Reindl et al. (1990b) add a horizon-
brightening term to the Hay and Davies model, as proposed by Klucher (1979), giving a
model to be referred to as the HDKR model. Skartveit and Olseth (1986, 1987) and Olseth
and Skartiveiz (1987) develop methods for estimating the beam and diffuse distribution
and radiation on sloped surfaces starting with monthly average radiation. Perez et al. (1987,
1988, 1990) treat both circumsolar diffuse and horizon brightening in some detail in a
series of models. Neumann et al. (2002) propose a model for circumsolar radiation that
is of particular importance in predicting the performance of concentrating systems where
the angular distribution of energy near the sun’s disc is important. The circumsolar ratio
(CSR; defined as the ratio of the energy in the solar aureole to the energy in the solar disc
plus the solar aureole) is used as a parameter to describe different atmospheric conditions.

The Hay-and-Davies model is based on the assumption that all of the diffuse can be
represented by two parts, the isotropic and the circumsolar. Thus all but the fourth term in
Equation 2.14.3 are used. The diffuse radiation on a tilted collector is written as

Id,T = IT,d,iso + IT,d,cs (2~16~])
and .
Iyr =1y [(1 —A;) (%Osﬂ) + A,-Rb} (2.16.2)

. "Sky"

il
— Circumsolar
' Diffuse

Isotropic -
Diffuse
from Sky
Dome

%  Diffuse from Horizon

&%/T/I#

- Ground - Reflected

"Ground"

Figure 2.16.1 Beam, diffuse, and ground-reflected radiation on a tilted surface.
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where A; is an anisotropy index which is a function of the transmittance of the atmosphere
for beam radiation,

I
A =-br ="t (2.16.3)
I()

The anisotropy index determines a portion of the horizontal diffuse which is to be
treated as forward scattered; it is considered to be incident at the same angle as the beam
radiation. The balance of the diffuse is assumed to be isotropic. Under clear conditions,
the A; will be high, and most of the diffuse will be assumed to be forward scattered. When
there is no beam, A; will be zero, the calculated diffuse is completely isotropic, and the
model becomes the same as Equation 2.15.1.

The total radiation on a tilted surface is then

1 + cos 1 —cos
Ip =+ 1;ADR, + 1, (1= A)) (%) +1p, (%) (2.16.4)

The Hay-and-Davies method for calculating /; is not much more complex than
the isotropic model and leads to slightly higher!® estimates of radiation on the tilted
surface. Reindl et al. (1990a) and others indicate that the results obtained with this
model are an improvement over the isotropic model. However, it does not account for
horizon brightening. Temps and Coulson (1977) account for horizon brightening on clear
days by applying a correction factor of 1+ sin®(8/2) to the isotropic diffuse. Klucher
(1979) modified this correction factor by a modulating factor f so that it has the form
1+ fsin®(8/2) to account for cloudiness.

Reindl et al. (1990b) have modified the Hay-and-Davies model by the addition of a
term like that of Klucher. The diffuse on the tilted surface is

Iy =1, {(1 —A) (@) [1 4 f sin’ (g)] + A,-Rb} (2.16.5)

where A; is as defined by Equation 2.16.3 and

_ b
f= \/7 (2.16.6)

When the beam and ground-reflected terms are added, the HDKR model (the Hay, Davies,
Klucher, Reindl model) results. The total radiation on the tilted surface is then

Iy = (I, + LADR, + 1, (1 - A) (@) [1 4 f sin? (2)]

+ Ip, <#> (2.16.7)

16Recalculation of Example 2.15.1 with Equation 2.16.4 leads to I, =126 MJ /m?, about 7% higher than the
isotropic assumption.
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Example 2.16.1
Do Example 2.15.1 using the HDKR model.

Solution

From Example 2.15.1, I = 1.04 MJ/m?, I, = 0.224 MJ/m?, I, = 0.796 MJ/m?, I, =
2.34 MJ/mz, and R;, = 1.71. From Equation 2.16.3,

0.244
= o =0.104
2.34

The modulating factor f, from Equation 2.16.6, is

0.244
f=—2" = 0484
1.04

Then from Equation 2.16.7,

I = (0.244 + 0.796 x 0.104)1.71

1 4+ cos 60 . 3
+0.796 (1 - 0.104) (2= ) (1+0.484 5in*30)
] _
+1.04 x 0.60 (%6%

=0.559 4 0.567 + 0.156 = 1.28 MJ/m?

In this example, the correction factor to the diffuse to account for horizon brightening is
1.06, and the total estimated radiation on the tilted surface is 9% more than that estimated
by the isotropic model.!” |

The Perez et al. (1990) model is based on a more detailed analysis of the three diffuse
components. The diffuse on the tilted surface is given by

1+ .
Iy =1, [(1 ~F) <%Sﬁ> +F % +F s1nﬂ] (2.16.8)

where F| and F, are circumsolar and horizon brightness coefficients and ¢ and b are terms
that account for the angles of incidence of the cone of circumsolar radiation (Figure 2.16.1)
on the tilted and horizontal surfaces. The circumsolar radiation is considered to be from a
point source at the sun. The terms a and b are given as

a = max(0, cosf), b = max(cos 85, cosb,) (2.16.9)

7In Chapter 5 we will multiply each of the radiation streams by transmittance and absorptance factors which
are functions of the angle of incidence of those streams on collectors. Thus it is generally necessary to calculate
each stream independently. The differences among the various models may become more significant when these
factors are applied.
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With these definitions, a/b becomes R,, for most hours when collectors will have useful
outputs.

The brightness coefficients F; and F, are functions of three parameters that describe
the sky conditions, the zenith angle 6,, a clearness ¢, and a brightness A, where ¢ is a
function of the hour’s diffuse radiation /, and normal incidence beam radiation 1, ,. The
clearness parameter is given by

L+1,,
S 45535 % 1070 67
d

e = 2.16.10
1+5.535x 10763 ( )

where 0, is in degrees and the brightness parameter is

A=m-2L (2.16.11)
IU

n
where m is the air mass (Equation 1.5.1) and [, is the extraterrestrial normal-incidence
radiation (Equation 1.4.1), written in terms of /. Thus these parameters are all calculated
from data on total and diffuse radiation (i.e., the data that are used in the computation
of Ir).

The brightness coefficients /| and F), are functions of statistically derived coefficients
for ranges of values of ¢; a recommended set of these coefficients is shown in Table 2.16.1.
The equations for calculating F; and F, are

70,
F; = max |:0, (fll + f2A + WE) f13)] (2.16.12)
w0,
Fy=|fu+ A+ 180 fa (2.16.13)

This set of equations allows calculation of the three diffuse components on the tilted
surface. It remains to add the beam and ground-reflected contributions. The total radiation
on the tilted surface includes five terms: the beam, the isotropic diffuse, the circumsolar

Table 2.16.1 Brightness Coefficients for Perez Anisotropic Sky“

Range of ¢ Ji fia fi3 fai I Ve

1.000-1.065 —0.008 0.588 —0.062 —0.060 0.072 -0.022
1.065-1.230 0.130 0.683 —0.151 -0.019 0.066 —0.029
1.230-1.500 0.330 0.487 —0.221 0.055 —0.064 —0.026
1.500-1.950 0.568 0.187 —0.295 0.109 -0.152 0.014
1.950-2.800 0.873 -0.392 —-0.362 0.226 —0.462 0.001
2.800-4.500 1.132 —1.237 —0.412 0.288 —0.823 0.056
4.500-6.200 1.060 —1.600 —0.359 0.264 —1.127 0.131
6.200—00 0.678 -0.327 —0.250 0.156 —1.377 0.251

“From Perez et al. (1990).
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diffuse, the diffuse from the horizon, and the ground-reflected term (which parallel the
terms in Equation 2.14.3):

2

l—cos,B)
2

14 cosp a
Ir=0LR,+1,(1-F)|—— )+ 1,F; 5

+1,F, sinf + Ip, ( (2.16.14)

Equations 2.16.8 through 2.16.14, with Table 2.16.1, constitute a working version of the
Perez model. Its use is illustrated in the following example.

Example 2.16.2
Do Example 2.15.1 using the Perez method.

Solution

From Example 2.15.1, I, =2.34 MJ/m?, I = 1.04 MI/m?, I, = 0.244 MJ/m?, I, =
0.796 MJ/m?, cos @ = 0.799, 6 = 37.0°, cos 6. = 0.466,0. = 62.2°, and R, = 1.71.

To use Equation 2.16.14, we need a, b, €, and A in addition to the quantities already
calculated:

a = max[0, cos 37.0] = 0.799
b = max[cos 85, cos 62.2] = 0.466

% =0.799/0.466 = 1.71 (the same as R, in Example 2.15.1)

Next calculate A. The air mass m, from Equation 1.5.1, is

1
m = = —
cos62.2  0.466

—2.144

We also need /,,,. Use Equation 1.4.1 with n = 51,
1,, =4.92(1 +0.033 cos(360 x 51/365)) = 5.025

From the defining equation for A (Equation 2.16.11),

~0.796 x 2.144
o 5.025

=0.340

We next calculate ¢ from Equation 2.16.10. Thus [, , = I,/ cos, = 0.244 c0s62.2 =
0.523 MJ/m?, and

0.787 + 0.523
Sl +5.535 x 107%(62.2%)
o 0.787 _ 129

1 +5.535 x 107%(62.2%)
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With this we can go to the table of coefficients needed in the calculation of F| and F,.
These are, for the third ¢ range,

fll = 0330, f12 = 0487, f13 = —0.221
fz] = 0055, f22 = _0064, ,f23 = _0026

So

62.2m (—0.221)
F, =max |0, {0.330 +0.487 x 0.340 + ———«——

180
= 0.256

62.27(—0.026)

F, = 0.055 + (—0.064) x 0.340 + 130

= 0.005

We now have everything needed to use Equation 2.16.14 to get the total radiation on the
sloped surface:

1 4+ cos 60
I =0.244 x 1.71 + 0.796 (1 — 0.256) — +0.796 x 0.256 x 1.71

. 1 — cos 60
+ 0.005 x 0.796 sin60 + 1.04 x 0.60 —

= 0.417 + 0.444 + 0.348 4+ 0.003 + 0.156
= 1.37 MJ/m?

This is about 6% higher than the result of the HDKR model and about 17% higher than the
isotropic model for this example. |

The next question is which of these models for total radiation on the tilted surface
should be used. The isotropic model is the simplest, gives the most conservative estimates
of radiation on the tilted surface, and has been widely used. The HDKR model is almost
as simple to use as the isotropic and produces results that are closer to measured values.
For surfaces sloped toward the equator, the HDKR model is suggested. The Perez model
is more complex to use and generally predicts slightly higher total radiation on the tilted
surface; it is thus the least conservative of the three methods. It agrees the best by a small
margin with measurements.'® For surfaces with y far from 0° in the northern hemisphere
or 180° in the southern hemisphere, the Perez model is suggested. (In examples to be

18The HDKR method yields slightly better results than either the isotropic model or the Perez model in predicting
utilizable radiation when the critical radiation levels are significant. See Sections 2.20 to 2.22 for notes on
utilizable energy.
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shown in later chapters, the isotropic and HDKR methods will be used, as they are more
amenable to hand calculation.)

2.17 RADIATION AUGMENTATION

It is possible to increase the radiation incident on an absorber by use of planar reflectors.
In the models discussed in Sections 2.15 and 2.16, ground-reflected radiation was taken
into account in the last term, with the ground assumed to be a horizontal diffuse reflector
infinite in extent, and there was only one term in the summation in Equation 2.15.2. With
ground reflectance normally of the order of 0.2 and low collector slopes, the contributions
of ground-reflected radiation are small. However, with ground reflectances of 0.6 to 0.7
typical of snow and with high slopes,'® the contribution of reflected radiation of surfaces
may be substantial. In this section we show a more general case of the effects of diffuse
reflectors of finite size.

Consider the geometry sketched in Figure 2.17.1. Consider two intersecting planes,
the receiving surface c (i.e., a solar collector or passive absorber) and a diffuse reflector r.
The angle between the planes is ¥. The angle ¢ = 180° — B if the reflector is horizontal,
but the analysis is not restricted to a horizontal reflector. The length of the assembly is m.
The other dimensions of the collector and reflector are n and p, as shown.

If the reflector is horizontal, Equation 2.14.3 becomes

Iy = IRy + I,F,_ + I,p,F._, +Ip,F,_, (2.17.1)

where F,._ is again (1 4 cos 8)/2. The view factor F,_,. is obtained from Figure 2.17.2,
F,_, is obtained from the reciprocity relationship A .F,_, = A, F,_., and F._, can be
obtained from the summation rule, F._+ F._, + F._, = 1. The view factor F,_, is
shown in Figure 2.17.2 as a function of the ratios n/m and p/m for vy of 90°, 120°,

and 150°.

Figure 2.17.1 Geometric relationship of an
energy receiving surface ¢ and reflecting sur-

face r.

19At a slope of 45°, a flat surface sees 85% sky and 15% ground. At a slope of 90°, it sees 50% sky and 50%
ground.
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Figure 2.17.2 View factor F,_, as a function of the relative dimensions of the collecting and
reflecting surfaces. Adapted from Hamilton and Morgan (1952).
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Example 2.17.1

A vertical window receiver in a passive heating system is 3.0 m high and 6.0 m long. There
is deployed in front of it a horizontal, diffuse reflector of the same length extending out
2.4 m. What is the view factor from the reflector to the window? What is the view factor
from the window to the reflector? What is the view factor from the window to the ground
beyond the reflector?

Solution

For the given dimensions, n/m =3.0/6.0 =0.5, p/m =2.4/6.0 =04, and from
Figure 2.17.2(a), the view factor F,_. = 0.27.

The area of the window is 18.0 m2, and the area of the reflector is 14.4 m2. From the
reciprocity relationship, F,_, = (14.4 x 0.27)/18.0 = 0.22.

The view factor from window to sky, F,._, is (1 + cos 90)/2, or 0.50. The view factor

from collector to ground is then 1 — (0.50 + 0.22) = 0.28. |

If the surfaces ¢ and r are very long in extent (i.e., m is large relative to n and p, as
might be the case with long arrays of collectors for large-scale solar applications), Hottel’s
“‘crossed-string’” method gives the view factor as

poo_ntrtr=s (2.17.2)
2p

where s is the distance from the upper edge of the collector to the outer edge of the
reflector, measured in a plane perpendicular to planes ¢ and r, as shown in Figure 2.17.3.
This can be determined from

s = (%> + p> — 2np cosy)'/? (2.17.3)
[For a collector array as in Example 2.17.1 but very long in extent, s = (3.0% 4+ 2.4%)%° =
384 mand F,_, = (3424 —3.84)/4.8 =0.33.]

It is necessary to know the incident radiation on the plane of the reflector. The beam
component is calculated by use of R, for the orientation of the reflector surface. The
diffuse component must be estimated from the view factor F,._,. For any orientation of the
surface r,

Do

8
Figure 2.17.3 Section of reflector and collector

—P surfaces.

Foy+F_ +F_, =1 (2.17.4)
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where the view factors are from surface r to sky, to surface ¢, and to ground. The view
factor F,_, is determined as noted above and F,_, will be zero for a horizontal reflector
and will be small for collectors that are long in extent. Thus as a first approximation,
F,_; =1 — F,__ for many practical cases (where there are no other obstructions).

There remains the question of the angle of incidence of radiation reflected from surface
r on surface c. As an approximation, an average angle of incidence can be taken as that
of the radiation from the midpoint of surface r to the midpoint of surface c, as shown in
Figure 2.17.3.2° The average angle of incidence 6, is given by

6, = sin”! (M> (2.17.5)

N

The total radiation reflected from surface r with area A, to surface ¢ with area A, if r has
a diffuse reflectance of p, is

A, =I,R, + (1 —F,_)L]pA,F._, (2.17.6)

c'r—c

Example 2.17.2

A south-facing vertical surface is 4.5 m high and 12 m long. It has in front of it a horizontal
diffuse reflector of the same length which extends out 4 m. The reflectance is 0.85. At
solar noon, the total irradiance on a horizontal surface is 800 W/rn2 of which 200 is
diffuse. The zenith angle of the sun is 50°. Estimate the total radiation on the vertical
surface and the angle of incidence on that part of the total that is reflected from the diffuse
reflector.

Solution

Here we have irradiance, the instantaneous radiation, instead of the hourly values of the
examples in Section 2.15, so the solution will be in terms of G rather than 7.

First estimate F,__ from Figure 2.17.2. Atn/m = 4.5/12 =038 and p/m = 4/12 =
0.33, F,_,. = 0.28. The total radiation on the reflector is the beam component, 600 W/ m?,
plus the diffuse component, which is G, F,_; or G (1 — F,__.). The radiation reflected

from the reflector that is incident on the vertical surface is estimated by Equation 2.17.6:

0.85 x 48 x 0.28
G,_, = [600+200 (1 —0.28)] —2> "2 * 2% _ 160 W/m?
45 x 12

The beam component on the vertical surface is obtained with R;,, which is cos 40/ cos 50 =
1.19. Then G,y = 600 x 1.19 = 715 W/m?. The diffuse component from the sky on the
vertical surface is estimated as

1 + cos 90
G = 200 JFC% — 100 W/m?

20 As the reflector area becomes very large, the angle of incidence becomes that given by the ground reflectance
curve of Figure 5.4.1, where the angle v between the reflector and the collector is v, the abscissa on the
figure.
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The total radiation on the vertical surface (neglecting reflected radiation from ground areas
beyond the reflector) is the sum of the three terms:

Gp =160 + 715 + 100 = 975 W/m?>

An average angle of incidence of the reflected radiation on the vertical surface is estimated
with Equation 2.17.5:
s = (4.0° +4.5)% =6.02m

and
6, = sin~! (4.5 5in90/6.02) = 49°
|

The contributions of diffuse reflectors may be significant, although they will not result
in large increments in incident radiation. In the preceding example, the contribution is
approximately 160 W/m?. If the horizontal surface in front of the vertical plane were
ground with p, = 0.2, the contribution from ground-reflected radiation would have been
0.2 x 800(1 — cos 90)/2, or 80 W/m?.

It has been pointed out by McDaniels et al. (1975), Grassie and Sheridan (1977),
Chiam (1981, 1982), and others that a specular reflector can have more effect in augmenting
radiation on a collector than a diffuse reflector.?! Hollands (1971) presents a method of
analysis of some reflector-collector geometries, and Bannerot and Howell (1979) show
effects of reflectors on average radiation on surfaces. The effects of reflectors that are partly
specular and partly diffuse are treated by Grimmer et al. (1978). The practical problem
is to maintain high specular reflectance, particularly on surfaces that are facing upward.
Such surfaces are difficult to protect against weathering and will accumulate snow in cold
climates.

2.18 BEAM RADIATION ON MOVING SURFACES

Sections 2.15 to 2.17 have dealt with estimation of total radiation on surfaces of fixed
orientation, such as flat-plate collectors or windows. It is also of interest to estimate the
radiation on surfaces that move in various prescribed ways. Most concentrating collectors
utilize beam radiation only and move to ‘‘track’ the sun. This section is concerned with
the calculation of beam radiation on these planes, which move about one or two axes of
rotation. The tracking motions of interest are described in Section 1.7, and for each the
angle of incidence is given as a function of the latitude, declination, and hour angle.

At any time the beam radiation on a surface is a function of G,,, the beam radiation
on a plane normal to the direction of propagation of the radiation:

G,r = Gy, cos6 (2.18.1)

where cos@ is given by equations in Section 1.7 for various modes of tracking of the
collector. If the data that are available are for beam normal radiation, this equation is the

2I'See Chapter 7 for a discussion of specular reflectors.
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correct one to use. Note that as with other calculations of this type, Equation 2.18.1 can be
written for an hour, in terms of / rather than G, and the angles calculated for the midpoint
of the hour.

Example 2.18.1

A concentrating collector is continuously rotated on a polar axis, that is, an axis that is
parallel to the earth’s axis of rotation. The declination is 17.5°, and the beam normal solar
radiation for an hour is 2.69 MJ/m?. What is [ 7> the beam radiation on the aperture of the
collector?

Solution

For a collector continuously tracking on a polar axis, cos @ = cos § (Equation 1.7.5a). Thus

Ly = I, cos8 = 2.69 cos 17.5 = 2.57 MJ/m? n

If radiation data on a horizontal surface are used, the R, concept must be applied. If
the data are for hours (i.e., /), the methods of Section 2.10 are used to estimate /,, and
R, is determined from its definition (Equation 1.8.1) using the appropriate equation for
cos 6. If daily data are available (i.e., H), estimates of hourly beam must be made using
the methods of Sections 2.10, 2.11, and 2.13. This is illustrated in the next example.

Example 2.18.2

A cylindrical concentrating collector is to be oriented so that it rotates about a horizontal
east—west axis so as to constantly minimize the angle of incidence and thus maximize
the incident beam radiation. It is to be located at 35° N latitude. On April 13, the day’s
total radiation on a horizontal surface is 22.8 MJ/m?. Estimate the beam radiation on the
aperture (the moving plane) of this collector for the hour 1 to 2 pMm.

Solution

For this date, § = 8.67°, w, = 96.13°, w = 22.5°, H, = 35.1 MJ/m?, K, =22.8/35.1 =
0.65, and from Figure 2.11.2, H,;/H is 0.34. Thus H; = 7.75 MJ/mz. From Figure 2.13.1
or Equation 2.13.1, r, = 0.121, and from Figure 2.13.2 or Equation 2.13.2, r;, = 0.115.
Thus

I =228 x0.121 = 2.76 MJ/m?

and
I, =7.75 % 0.115 = 0.89 MJ/m?

and, by difference, I, = 1.87 MJ/m?.
Next, calculate R, from the ratio of Equations 1.7.2a and 1.6.5:

R [1 — cos?(8.67) sin?(22.5)]'/2 ~0.926
b c0s35 c0s8.67 cos22.5 +sin35 sin8.67  0.835

=1.11
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and
Ly =1,R, =187 x 1.11 =2.1 MJ/m2 [ |

The uncertainties in these estimations of beam radiation are greater than those
associated with estimations of total radiation, and the use of pyrheliometric data is
preferred if they are available.

2.19 AVERAGE RADIATION ON SLOPED SURFACES: ISOTROPIC SKY

In Section 2.15, the calculation of total radiation on sloped surfaces from measurements
on a horizontal surface was discussed. For use in solar process design procedures,”” we
also need the monthly average daily radiation on the tilted surface. The procedure for
calculating ﬁT is parallel to that for 7, that is, by summing the contributions of the beam
radiation, the components of the diffuse radiation, and the radiation reflected from the
ground. The state of development of these calculation methods for H ; is not as satisfactory
as that for /.

The first method is that of Liu and Jordan (1962) as extended by Klein (1977), which
has been widely used. If the diffuse and ground-reflected radiation are each assumed to be
isotropic, then, in a manner analogous to Equation 2.15.1, the monthly mean solar radiation
on an unshaded tilted surface can be expressed as

_ — 14 cos — 1 —cos
Hy =H,R,+ H, (%) + Hp, (%) (2.19.1)

—  Hy H;\ - H,; (1+cosp 1 — cos B
R = —_— = 1 [ — R — - - 2.19.2
7 < 7 ) »+ i ( ) + Py 2 ( )

where H,/H is a function of K 7, as shown in Figure 2.12.2.

The ratio of the average daily beam radiation on the tilted surface to that on a horizontal
surface for the month is R, which is equal to H,;/H . It is a function of transmittance
of the atmosphere, but Liu and Jordan suggest that it can be estimated by assuming that it
has the value which would be obtained if there were no atmosphere. For surfaces that are
sloped toward the equator in the northern hemisphere, that is, for surfaces with y = 0°,

7 — cos(¢p — B) cosé sinw) + (/180) w! sin(¢ — B) siné
b= cos¢ cosd sinw, + (/180) w, sin¢ siné

(2.19.3a)

where o) is the sunset hour angle for the tilted surface for the mean day of the month,

which is given by
(=t tan 8
), = min COS_I( an¢ tan?) (2.19.3b)
cos” ' (—tan(¢p — B) tand)

where ‘‘min’’ means the smaller of the two items in the brackets.

22See Part I11.
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For surfaces in the southern hemisphere sloped toward the equator, with y = 180°,
the equations are

— cos(¢p + B) cosd sinw), + (/180) w) sin(¢ + B) siné
R, = — — . (2.19.4a)
cos¢ cosd sinwg 4 (r/180) w, sin¢ siné

and

—1,_
@, = min [COS_I (—tang tans) } (2.19.4b)
cos™ ' (—tan(¢ + B) tan)

The numerator of Equation 2.19.3a or 2.19.4a is the extraterrestrial radiation on the
tilted surface, and the denominator is that on the horizontal surface. Each of these is
obtained by integration of Equation 1.6.2 over the appropriate time period, from true
sunrise to sunset for the horizontal surface and from apparent sunrise to apparent sunset on
the tilted surface. For convenience, plots of R, as a function of latitude for various slopes
for y = 0° (or 180° in the southern hemisphere) are shown in Figure 2.19.1. A function
for R, is available in the Engineering Equation Solver (EES) SETP library (available at
www.fchart.com).
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Figure 2.19.1 Estimated R, for surfaces facing the equator as a function of latitude for various (¢ — 8), by months.
(@ (¢ —B)=15% (b) (p — B) =0 (¢) (p — B) = —15" (d) B =90°. For the southern hemisphere, interchange
months as shown on Figure 1.8.2, and use the absolute value of latitude. From Beckman et al. (1977).
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Figure 2.19.1 (Continued)

The following example illustrates the kind of calculations that will be used in estimating
monthly radiation on collectors as part of heating system design procedures.

Example 2.19.1

A collector is to be installed in Madison, latitude 43°, at a slope of 60° to the south.
Average daily radiation data are shown in Appendix D. The ground reflectance is 0.2 for
all months except December and March (p, = 0.4) and January and February (o, = 0.7).
Using the isotropic diffuse assumption, estimate the monthly average radiation incident on
the collector.

Solution

The calculation is detailed below for January, and the results for the year are indicated in a
table. The basic equation to be used is Equation 2.19.1. The first steps are to obtain H ;/H
and R,. The ratio H,;/H is a function of K ; and can be obtained from Equation 2.12.1 or
Figure 2.12.2.

For the mean January day, the 17th, from Table 1.6.1, n = 17, § = —20.9°. The
sunset hour angle is calculated from Equation 1.6.10 and is 69.1°. With n = 17 and
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w, = 69.1°, from Equation 1.10.3 (or Figure 1.10.1 or Table 1.10.1), H, = 13.36 MJ/m>.
Then K 7 = 6.44/13.36 = 0.48.

The Erbs correlation (Equation 2.12.1a) is used to calculate H ;/H from K  and o,
gives H,/H = 0.41. The calculation of R, requires the sunset hour angle on the sloped
collector. From Equations 2.19.3

The angle w; was calculated as 69.1° and is less than 96.7°, so w, = 69.1°. Then

7 cos(—17) cos(—20.9) sin69.1 + (7 x 69.1/180) sin(—17) sin(—20.9)

cos ![— tan(43 — 60) tan(—20.8)] = 96.7°

b= c0s 43 cos(—20.9) sin69.1 + (7 x 69.1/180) sin43 sin(—20.9)

=2.79

The equation for H; (Equation 2.19.1) can now be solved:

+6.44 x 0.7 (

1 — cos 60

Hy =644 (1 —0.41)2.79 + 6.44 x 0.41 (

)

=10.60 + 1.98 + 1.13 = 13.7 MJ/m?

1 + cos 60

2

The results for the 12 months are shown in the table below. Energy quantities are in
megajoules per square meter. The effects of sloping the receiving plane 60° to the south
on the average radiation (and thus on the total radiation through the winter season) are
large indeed. The H values are shown to a tenth of a megajoule per square meter. The
last place is uncertain due to the combined uncertainties in the data and the correlations for
H,/H and R. Tt is difficult to put limits of accuracy on them; they are probably no better

than £10%.

Month H ﬁo YT ﬁd /H ﬁb O ET
January 6.44 13.37 0.48 0.41 2.79 0.7 13.7
February 9.89 18.81 0.53 0.37 2.04 0.7 17.2
March 12.86 26.03 0.49 0.43 1.42 0.4 15.8
April 16.05 33.78 0.48 0.45 0.96 0.2 14.7
May 21.36 39.42 0.54 0.39 0.71 0.2 16.6
June 23.04 41.78 0.55 0.38 0.62 0.2 16.5
July 22.58 40.56 0.56 0.38 0.66 0.2 16.8
August 20.33 35.92 0.57 0.37 0.84 0.2 17.5
September 14.59 28.80 0.51 0.42 1.21 0.2 15.6
October 10.48 20.90 0.50 0.39 1.81 0.2 152
November 6.37 14.62 0.44 0.46 2.56 0.2 114
December 5.74 11.91 0.48 0.41 3.06 0.4 12.7
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2.20 AVERAGE RADIATION ON SLOPED SURFACES: KT METHOD

An alternative approach to calculation of average radiation on sloped surfaces has been
developed by Klein and Theilacker (KT, 1981). It is a bit more cumbersome to use but
shows improved results over the isotropic method when compared with hourly calculations
based on many years of radiation data. The method is first outlined below in a form
restricted to surfaces facing the equator and then in a general form for surfaces of any
orientation. As with Equations 2.19.1 and 2.19.2, it is based on the assumption that both
diffuse and ground-reflected radiation streams are isotropic.

The long-term value of R can be calculated by integrating G, and G from sunrise to
sunset for all days over many years of data for a single month and summing (e.g., data for
all days in January for 10 years should represent the long-term average for January):

N tss
G, dt
Zday:l /ts . r
N tss
S | G
day=1 ta

The denominator is N H. To evaluate the numerator, it is convenient to replace G, by
I and exchange the order of the integration and summation. Using Equation 2.15.1, the
radiation at any time of the day (i.e., for any hour) for N days is

NT; =N [(T ~1,) R, +1, (ﬂ) +1p, <ﬂ>} (220.2)

R= (2.20.1)

2 2

where the I and 1, are long-term averages of the total and the diffuse radiation, obtained
by summing the values of / and I; over N days for each particular hour and dividing by
N. Equation 2.20.1 then becomes”

[ [ mers (552 e (520

R = — 2.20.3
i ( )

Equations 2.13.1 and 2.13.3 define the ratios of hourly to daily total and hourly to daily
diffuse radiation, and Equations 2.13.2 and 2.13.4 relate r, and r; to time w and sunset
hour angle o,. Combining these with Equation 2.20.3 leads, for the case of south-facing
surfaces in the northern hemisphere, to

—  cos(p—PB) H ) T,
R = R |:<a - #) <s1na)§ - 18(; cos )

b /
+3 (T;S + sinw; (cosw; — 2 coswg))]

ﬁd 1+ cosp 1 —cosp

= | — _ 2.20.4
+ (F) e (55 (22040

23The development of this equation assumes that the day length does not change during the month.
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where o) is again given by

~1
o, = min [COS (Fand tano) } (2.20.4b)
cos™ ' (—tan(¢ — B) tand)

and
! = cos”![—tan(¢ — B) tan ] (2.20.4¢)
Also, a and b are given by Equations 2.13.2b and 2.13.2c, and d is given by

. Tw;
d =sinw; — % COS w; (2.20.4d)

Equations 2.20.4 can be used in the southern hemisphere for north-facing surfaces by
substituting ¢ + B for ¢ — B.

Example 2.20.1

Redo Example 2.19.1 for the month of January using the KT method.

Solution

For January, from Example 2.19.1, H, = 13.37 MJ/m?, H,/H = 0.41, and for the mean
day of the month (n = 17), w, = w;, = 69.1°. For the mean day,

a = 0.409 + 0.5016 sin(69.1 — 60) = 0.488

b =0.6609 — 0.4767 sin(69.1 — 60) = 0.586

d=sin60.1 — =1 5601 = 0504
= S1n . 180 COS A1 = 0.

! = cos”'[— tan(43 — 60) tan(—20.9)] = 96.7°

Using Equation 2.20.4a,
_ 43 — 60 69.1
R = 0@ =60 1 ies 041 (sin69.1 — T2 o506.7
0.504 cos 43 180
4 0586 (X 9L 601 (cos69.1 — 2 c0s96.7)
2 ]80 Sin . COS . COS .
I 60 1 — cos 60

+041 (%) 07 (%)

=1.553 +0.308 +0.175 = 2.04
So the monthly average radiation on the collector would be

Hy = HR = 6.44 x 2.04 = 132 MJ/m’ -
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Table 2.20.1 H, and R by Liu-Jordan and KT Methods from Examples 2.19.1 and 2.20.1
(Madison, B = 60° and y = 0°)

Month Liu and Jordan (1962) Klein and Theilacker (1981)
R H,, MI/m? R Hy, MI/m?
January 2.13 13.71 2.04 13.16
February 1.74 17.25 1.69 16.69
March 1.23 15.79 1.21 15.56
April 0.91 14.69 0.93 14.88
May 0.78 16.58 0.80 17.04
June 0.72 16.53 0.74 17.07
July 0.74 16.76 0.76 17.27
August 0.86 17.47 0.88 17.82
September 1.07 15.58 1.06 15.53
October 1.45 15.18 1.41 14.73
November 1.78 11.36 1.70 10.85
December 2.22 12.72 2.12 12.19

Table 2.20.1 shows a comparison of the results of the monthly calculations for
Examples 2.19.1 and 2.20.1. In the winter months, the Liu-and-Jordan method indicates
the higher radiation than the KT method. The situation is reversed in the summer
months.

Studies of calculation of average radiation on tilted surfaces have been done which
account for anisotropic diffuse by other methods. Herzog (1985) has developed a correction
factor to the KT method to account for anisotropic diffuse. Page (1986) presents a very
detailed discussion of the method used in compiling the tables of radiation on inclined
surface that are included in Volume II of the European Solar Radiation Atlas. These tables
show radiation on surfaces of nine orientations, including surfaces facing all compass
points; the tables and the method used to compute them are designed to provide useful
information for daylighting and other building applications beyond those of immediate
concern in this book.

Klein and Theilacker have also developed a more general form that is valid for any
surface azimuth angle y. If y % 0° (or 180°), the times of sunrise and sunset on the sloped
surface will not be symmetrical about solar noon, and the limits of integration for the
numerator of Equations 2.20.1 and 2.20.3 will have different absolute values. The equation
for R is given as

— H; (1+cosp 1 — cos B
R=D+—= |—— _— 2.20.5
+= ( : )-l—pg < > ) ( a)

where

. {max (0,G (o o)) i oy = oy (2.20.5b)

max (0, [G(wg, —w,) + G(w,, w,)])  if oy > o
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1 bA b4
G (0, ) = 37 [(7 —a/B) (0 — wy) 180
+ (a’A — bB)(sinw; — sinw,) — a’C(cos w; — cos w,)

DAY . .
+ > (sinw; cosw; — sinw, COSw,)

bC
+ <7) (sin*w, — sin’w,)] (2.20.5¢)
H
d=a—-=2 (2.20.5d)
H

The integration of Equation 2.20.3 starts at sunrise on the sloped surface or a horizontal
plane, whichever is latest. The integration ends at sunset on the surface or the horizontal,
whichever is earliest. For some orientations the sun can rise and set on the surface twice
during a day, resulting in two terms in the second part of Equation 2.20.5b. The sunrise
and sunset hour angles for the surface are determined by letting & = 90° in Equation 1.6.2.
This leads to a quadratic equation, giving two values of @ (which must be within +w,).
The signs on w, and w, depend on the surface orientation:

AB + C+/A%2 — B2 4 C?
|wg| = min |:a)s, cos1 22 yeires + i| (2.20.5¢)
Y —|og|  if (A > 0and B > 0)or (A > B)
o +wg| otherwise
AB — C/A?2 — B2 4 C?
lwg| = min |:a)s, cos™! yERne + } (2.20.5f)
" — + |wg| if (A > 0and B > 0) or (A > B)
s —|wg|  otherwise
where
A =cosf +tan¢ cosy sinf (2.20.5g)
B = cosw, cos B +tand sin B cosy (2.20.5h)
¢ = Snp siny (2.20.50)
cos ¢

Calculating R by Equations 2.20.5 works for all surface orientations and all latitudes
(including negative latitudes for the southern hemisphere). It is valid whether the sun rises
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or sets on the surface twice each day (e.g., on north-facing surfaces when d is positive) or
not at all. Its use is illustrated in the next example.

Example 2.20.2

What is FT for the collector of Example 2.19.1, but with y = 30°, for the month of
January estimated by Equations 2.20.5?

Solution

A logical order of the calculation is to obtain A, B, and C, then o, and w, and then
G, D, R, and H (i.e., work backward through Equations 2.20.5). Using data from the
previous examples,

A = cos 60 + tan43 cos 30 sin60 = 1.199

B = c0s69.1 cos60 + tan(—20.9) sin 60 cos30 = —0.108
sin 60 sin 30

C=——"7—=0592
cos43
Next calculate wg,, the sunrise hour angle with Equation 2.20.5e. It will be the minimum
of 69.1° and
_ 2 2 2
cos—! 1.199(—0.108) + 0.592\/21.199 2( 0.108)= + 0.592 _ 68.3°
1.199 +0.592
that is,

lo,| = min(69.1, 68.3) = 68.3°

Since A > B, w, = —68.3°.
The sunset hour angle is found next. From Equation 2.20.5f,
1 —0.129 — 0.789

cos 'l ———— =120.9°
1.788

Then
|og | = min(69, 120.9) = 69.1°

Since A > B, oy, = 69.1°.
We next calculate G. Since wy > wy, D = max(0, G (o, w,)). From Equation
2.20.5d, with a = 0.488 (from Example 2.20.1),

a' =0.488 — 0.410 = 0.078
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From Equation 2.20.5c, with b = 0.586 and d = 0.504 and with @, = &, = 69.1° and
W, = w,, = —68.3°,

G (a)ss ’ a)sr) =

1 0.586 x 1.199
2 x 0.504 2

+[0.078 x 1.199 — 0.586(—0.108)][sin 69.1 — sin(—68.3)]
—0.078 x 0.592[cos 69.1 — cos(—68.3)]

(0.586 x 1.199
2

(O.586 x 0.592
+ —

—0.038 (—0.108)) [69.1 — (—68.3)] :@

) [sin69.1 cos 69.1 — sin(—68.3) cos(—68.3)]

5 ) [sin®69.1 — sinz(—68.3)}} =1.39

So D = max(0, 1.39) = 1.39 and, by Equation 2.20.5a,

— 1 + cos 60 1 — cos 60
R =139+4+041 — + 0.7 — =1.94

H, = HR = 6.44 x 1.94 = 12.5 MJ/m? -

The uncertainties in estimating radiation on surfaces sloped to the east or west of south
are greater than those for south-facing surfaces. Greater contributions to the daily radiation
totals occur early and late in the day when the air mass is large and the atmospheric
transmission is less certain and when instrumental errors in measurements made on a
horizontal plane may be larger than when the sun is nearer the zenith. For surfaces with
surface azimuth angles more than 15° from south (or north in the southern hemisphere),
the KT method illustrated in Example 2.20.2 is recommended.

The methods of Sections 2.19 and 2.20 are useful for calculating monthly average
radiation on a tilted surface in one step. Monthly average radiation on a tilted surface can
also be calculated by repeated use of the equations in Sections 2.14 to 2.16.

2.21 EFFECTS OF RECEIVING SURFACE ORIENTATION ON H ,

The methods outlined in the previous sections for estimating average radiation on surfaces
of various orientations can be used to show the effects of slope and azimuth angle on total
energy received on a surface on a monthly, seasonal, or annual basis. (Optimization of
collector orientation for any solar process that meets seasonally varying energy demands,
such as space heating, must ultimately be done taking into account the time dependence
of these demands. The surface orientation leading to maximum output of a solar energy
system may be quite different from the orientation leading to maximum incident energy.)
To illustrate the effects of the receiving surface slope on monthly average daily
radiation, the methods of Section 2.19 have been used to estimate H for surfaces of
several slopes for values of ¢ = 45°, y = 0°, and ground reflectance 0.2. Here, H is a
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Figure 2.21.1 Variation in estimated average daily radiation on surfaces of various slopes as a
function of time of year for a latitude of 45°, FT of 0.50, surface azimuth angle of 0°, and a ground
reflectance of 0.20.

function of H,/H, which in turn is a function of the average clearness index K ;. The
illustration is for K ; = 0.50, constant through the year, a value typical of many temperate
climates. Figure 2.21.1 shows the variations of H; (and H) through the year and shows
the marked differences in energy received by surfaces of various slopes in summer and
winter.

Figure 2.21.2(a) shows the total annual energy received as a function of slope and
indicates a maximum at approximately 8 = ¢. The maximum is a broad one, and the
changes in total annual energy are less than 5% for slopes of 20° more or less than the
optimum. Figure 2.21.2(a) also shows total ‘‘winter’’ energy, taken as the total energy for
the months of December, January, February, and March, which would represent the time
of the year when most space heating loads would occur. The slope corresponding to the
maximum estimated total winter energy is approximately 60°, or ¢ + 15°. A 15° change
in the slope of the collector from the optimum means a reduction of approximately 5% in
the incident radiation. The dashed portion of the winter total curve is estimated assuming
that there is substantial snow cover in January and February that results in a mean ground
reflectance of 0.6 for those two months. Under this assumption, the total winter energy is
less sensitive to slope than with p, = 0.2. The vertical surface receives 8% less energy
than does the 60° surface if pe = 0.6 and 11% less if p, = 0.2.

Calculations of total annual energy for ¢ = 45°, ET = 0.50, and Py = 0.20 for
surfaces of slopes 30° and 60° are shown as a function of surface azimuth angle in
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Figure 2.21.2 (a) Variation of total annual energy and total winter (December to March) energy as
a function of surface slope for a latitude of 45°, K ;- of 0.50, and surface azimuth angle of 0°. Ground
reflectance is 0.20 except for the dashed curve where it is taken as 0.60 for January and February.
(b) Variation of total annual energy with surface azimuth angle for slopes of 30° and 60°, latitude of
45°, K ;- of 0.50, and ground reflectance of 0.20.

Figure 2.21.2(b). Note the expanded scale. The reduction in annual energy is small for
these examples, and the generalization can be made that facing collectors 10° to 20° east
or west of south should make little difference in the annual energy received. (Not shown
by annual radiation figures is the effect of azimuth angle y on the diurnal distribution of
radiation on the surface. Each shift of y of 15° will shift the daily maximum of available
energy by roughly an hour toward morning if y is negative and toward afternoon if y
is positive. This could affect the performance of a system for which there are regular
diurnal variations in energy demands on the process.) Note that there is implicit in these
calculations the assumption that the days are symmetrical about solar noon.

Similar conclusions have been reached by others, for example, Morse and Czarnecki
(1958), who estimated the relative total annual beam radiation on surfaces of variable slope
and azimuth angle.

From studies of this kind, general ‘‘rules of thumb’’ can be stated. For maximum
annual energy availability, a surface slope equal to the latitude is best. For maximum
summer availability, slope should be approximately 10° to 15° less than the latitude. For
maximum winter energy availability, slope should be approximately 10° to 15° more than
the latitude. The slopes are not critical; deviations of 15° result in reduction of the order
of 5%. The expected presence of a reflective ground cover such as snow leads to higher
slopes for maximizing wintertime energy availability. The best surface azimuth angles for
maximum incident radiation are 0° in the northern hemisphere or 180° in the southern
hemisphere, that is, the surfaces should face the equator. Deviations in azimuth angles of
10° or 20° have small effect on total annual energy availability. (Note that selection of
surface orientation to maximize incident solar radiation may not lead to maximum solar
energy collection or to maximum delivery of solar energy to an application. This will be
treated in later chapters.)
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2.22 UTILIZABILITY

In this and the following two sections the concepts of utilizability are developed. The basis
is a simple one: If only radiation above a critical or threshold intensity is useful, then
we can define a radiation statistic, called utilizability, as the fraction of the total radiation
that is received at an intensity higher than the critical level. We can then multiply the
average radiation for the period by this fraction to find the total utilizable energy. In these
sections we define utilizability and show for any critical level how it can be calculated
from radiation data or estimated from K .

In this section we present the concept of monthly average hourly utilizability (the ¢
concept) as developed by Whillier (1953) and Hottel and Whillier (1958). Then in Section
2.23 we show how Liu and Jordan (1963) generalized Whillier’s ¢ curves. In Section 2.24
we show an extension of the hourly utilizability to monthly average daily utilizability (the
@ concept) by Klein (1978). Collares-Pereira and Rabl (1979a,b) independently extended
hourly utilizability to daily utilizability. Evans et al. (1982) have developed a modified and
somewhat simplified general method for calculating monthly average daily utilizability.

In Chapter 6 we develop in detail an energy balance equation to represent the
performance of a solar collector. The energy balance says, in essence, that the useful gain
at any time is the difference between the solar energy absorbed and the thermal losses from
the collector. The losses depend on the difference in temperature between the collector
plate and the ambient temperature and on a heat loss coefficient. Given a coefficient, a
collector temperature, and an ambient temperature (i.e., a loss per unit area), there is a
value of incident radiation that is just enough so that the absorbed radiation equals the
losses. This value of incident radiation is the critical radiation level, /;,. for that collector
operating under those conditions.

If the incident radiation on the tilted surface of the collector, /7, is equal to I, all of
the absorbed energy will be lost and there will be no useful gain. If the incident radiation
exceeds I, there will be useful gain and the collector should be operated. If I < I, no
useful gain is possible and the collector should not be operated. The utilizable energy for
any hour is thus (I; — I.)", where the superscript + indicates that the utilizable energy
can be zero or positive but not negative.

The fraction of an hour’s total energy that is above the critical level is the utilizability

for that particular hour:

_ +
g, = 1~ Tre)” (2.22.1)
IT

where ¢, can have values from zero to unity. The hour’s utilizability is the ratio of the
shaded area (/; — Ir,) to the total area (/;) under the radiation curve for the hour as shown
in Figure 2.22.1. (Utilizability could be defined on the basis of rates, i.e., using G, and
G 1., but as a practical matter, radiation data are available on an hourly basis and that is the
basis in use.)

The utilizability for a single hour is not useful. However, utilizability for a particular

hour for a month of N days (e.g., 10 to 11 in January) in which the hour’s average radiation
I 7 is useful. It can be found from

LS Uy - It
b= 2]: B (2.22.2)
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Figure 2.22.1 G versus time for a day. For the hour

shown, I is the area under the G curve; I, is the area

Time under the constant critical radiation level curve.

The month’s average utilizable energy for the hour is the product N1,¢. The
calculation can be done for individual hours (10 to 11, 11 to 12, etc.) for the month and
the result summed to get the month’s utilizable energy. If the application is such that the
conditions of critical radiation level and incident radiation are symmetrical about solar
noon, the calculations can be done for hour-pairs (e.g., 10to 11 and 1 to 2 or 9 to 10 and 2
to 3) and the amount of calculations halved.

Given hourly average radiation data by months and a critical radiation level, the next
step is to determine ¢. This is done by processing the hourly radiation data /; [as outlined
by Whillier (1953)] as follows: For a given location, hour, month, and collector orientation,
plot a cumulative distribution curve of I/I,. An example for a vertical south-facing
surface at Blue Hill, Massachusetts, for January is shown in Figure 2.22.2 for the hour-pair
11 to 12 and 12 to 1. This provides a picture of the frequency of occurrence of clear,
partly cloudy, or cloudy skies in that hour for the month. For example, for the hour-pair of
Figure 2.22.2, for f = 0.20, 20% of the days have radiation that is less than 10% of the
average, and for f = 0.80, 20% of the days have radiation in that hour-pair that exceeds
200% of the average.

25 | | T T
Blue Hill Observatory
South-facing vertical surface
January, 1953-1956
20— 11-12 a.m. and 12-1 p.m.
c
2
5l
BE 15
9| >
S
=1
>3
=
o
22 10 _ Critical rad.
e ¢ Average rad.
<
R Ny
0.5 -
0 L ¥ |
0 0.2 0.4 0.6 0.8 1.0

Figure 2.22.2 Cumulative distribution curve for hourly radiation on a south-facing vertical surface
in Blue Hill, MA. Adapted from Liu and Jordan (1963).
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A dimensionless critical radiation is defined as

~
&

X, = (2.22.3)
T

~I

An example is shown as the horizontal line in Figure 2.22.2, where X, = 0.75 and
f. = 0.49. The shaded area represents the monthly utilizability, that is, the fraction of
the monthly energy for the hour-pair that is above the critical level. Integrating hourly
utilizability over all values of f. gives f for that critical radiation level:

1
¢ = /f ¢, df (2.22.4)

As the critical radiation level is varied, ¢, varies, and graphical integrations of the
curve give utilizability ¢ as a function of critical radiation ratio X .. An example derived
from Figure 2.22.2 is shown in Figure 2.22.3.

Whillier (1953) and later Liu and Jordan (1963) have shown that in a particular
location for a one-month period ¢ is essentially the same for all hours. Thus, although the
curve of Figure 2.22.3 was derived for the hour-pair 11 to 12 and 12 to 1, it is useful for
all hour-pairs for the vertical surface at Blue Hill.

The line labeled ‘‘limiting curve of identical days’’ in Figure 2.22.3 would result
from a cumulative distribution curve that is a horizontal line at a value of the ordinate
of 1.0 in Figure 2.22.2. In other words, every day of the month looks like the average
day. The difference between the actual ¢ curve and this limiting case represents the

1.0
i 1 [ | |

08— —
9. 0.6 —
z
E
~
Z 04 -
o]

021 Limiting ]

curve of
identical days
0 | ] | ]
0 04 0.8 1.2 1.6 2.0

Critica! radiation ratio, X, = {7 /It

Figure 2.22.3 Utilizability curve derived by numerically integrating Figure 2.22.2. Adapted from
Liu and Jordan (1963).
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error in utilizable energy that would be made by using a single average day to represent
a whole month.

Example 2.22.1

Calculate the utilizable energy on a south-facing vertical solar collector in Blue Hill,
Massachusetts, for the month of January when the critical radiation level on the collector
is 1.07 MJ/ m?. The averages of January solar radiation on a vertical surface are 1.52, 1.15,
and 0.68 MJ /m2 for the hour-pairs 0.5, 1.5, and 2.5 h from solar noon.

Solution

For the hour-pair 11 to 12 and 12 to 1, the dimensionless critical radiation ratio X . is given

as
107 070
©cT 152 7

and the utilizability, from Figure 2.22.3, is 0.54. The utilizable energy on the collector
during this hour is B
I;¢ =152 % 0.54 = 0.82 MJ/m?

For the hour-pair 10 to 11 and 1 to 2, X, = 0.93, ¢>_= 0.43, and 7T¢> = 0.49. For the
hour-pair 9 to 10 and 2 to 3, X, = 1.57, ¢ = 0.15, and 1 ;¢ = 0.10. The average utilizable
energy for the month of January is then

N Tr¢=31x2(0.82+049+0.10) = 87.5 MJ/m’

hours

2.23 GENERALIZED UTILIZABILITY

We now have a way of calculating ¢ for specific locations and specific orientations. For
most locations the necessary data are not available, but it is possible to make use of the
observed statistical nature of solar radiation to develop generalized ¢ curves that depend
only on K , latitude, and collector slope. As noted above, ¢ curves are nearly independent
of the time of day (i.e., the curves for all hour-pairs are essentially the same). It was
observed in early studies (e.g., Whillier, 1953) that ¢ curves based on daily totals of solar
radiation are also nearly identical to hourly ¢ curves. It is possible to generate ¢ curves
from average hourly values of radiation using the methods of Section 2.13 to break daily
total radiation into hourly radiation. However, it is easier to generate ¢ curves from daily
totals, and this is the procedure to be described here.

The radiation data most generally available are monthly average daily radiation on
horizontal surfaces. Thus, with K  and the long-term distribution of days having particular
values of K, from Figure 2.9.2, it is possible to generate sequences of days that represent
the long-term average distribution of daily total radiation. The order of occurrence of the
days is unknown, but for ¢ curves the order is irrelevant.
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For each of these days, the daily total radiation on an inclined collector can be
estimated by a procedure similar to that in Section 2.19 for monthly average radiation. For
a particular day, the radiation on a tilted surface, using the Liu-Jordan?* diffuse assumption,
can be written as?

Hy=(H—-H)R,+H, <#> +H p, (ﬁ) 2.23.1)

where the monthly average conversion of daily beam radiation on a horizontal surface
to daily beam radiation on an inclined surface, ﬁb, is used rather than the value for the
particular day since the exact date within the month is unknown. The value of R, is
found from Equations 2.19.3a or its equivalent. If we divide by the monthly average
extraterrestrial daily radiation H, and introduce K} based on H, (i.e., K = H/H,),
Equation 2.23.1 becomes

Hp _ﬂ — ﬂ 1+ cosp 1 —cosp
ﬁ_‘KTK H)Rb+H( 2 )“’g( 2 )] (2232

o

Theratio H;/ H is the daily fraction of diffuse radiation and can be found from Figure 2.11.2
(or Equation 2.11.1) as a function of K. Therefore, for each of the days selected from the
generalized distribution curve, Equation 2.23.2 can be used to estimate the radiation on a
tilted surface. The average of all the days yields the long-term monthly average radiation on
the tilted surface. The ratio Hy /H 7 can then be found for each day. The data for the whole
month can then be plotted in the form of a cumulative distribution curve, as illustrated in
Figure 2.22.2. The ordinate will be daily totals rather than hourly values, but as has been
pointed out, the shape of the two curves are nearly the same. Finally, integration of the
frequency distribution curve yields a utilizability curve as illustrated in Figure 2.22.3. The
process is illustrated in the following example.

Example 2.23.1

Calculate and plot utilizability as a function of the critical radiation ratio for a collector
tilted 40° to the south at a latitude of 40°. The month is February and K ; = 0.5.

Solution

Since the only radiation information available is K, it will be necessary to gener-
ate a ¢ curve from the generalized K, frequency distribution curves. Twenty days,
each represented by a k; from Figure 2.9.2 at K, = 0.5, are given in the following
table. (Twenty days from the generalized distribution curves are sufficient to represent
a month.)

24Other assumptions for distribution of the diffuse could be used.
25Section 2.19 is concerned with monthly average daily radiation on a tilted surface. Here we want the average
radiation on an inclined surface for all days having a particular value of K.
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Day K, H,/H HT/ﬁo HT/ﬁT
(D 2 3 4 S
1 0.08 0.99 0.078 0.11
2 0.15 0.99 0.145 0.20
3 0.21 0.95 0.211 0.29
4 0.26 0.92 0.269 0.37
5 0.32 0.87 0.345 0.48
6 0.36 0.82 0.405 0.56
7 0.41 0.76 0.483 0.67
8 0.46 0.68 0.576 0.80
9 0.49 0.62 0.640 0.89
10 0.53 0.55 0.726 1.01
11 0.57 0.47 0.822 1.14
12 0.59 0.43 0.872 1.21
13 0.61 0.39 0.924 1.28
14 0.63 0.36 0.972 1.35
15 0.65 0.33 1.020 1.41
16 0.67 0.30 1.070 1.48
17 0.69 0.27 1.121 1.55
18 0.72 0.24 1.189 1.65
19 0.74 0.23 1.229 1.70
20 0.79 0.21 1.326 1.84

Average = 0.721

For any day with daily total horizontal radiation H and daily diffuse horizontal radiation
H,, the ratio of daily radiation on a south-facing tilted surface to extraterrestrial horizontal
radiation is found from Equation 2.23.2. For the condition of this problem, E, =1.79
from Equation 2.19.3a. The view factors from the collector to the sky and ground are
(1 +cosB)/2 =0.88and (1 — cos B)/2 = 0.12, respectively. The ground will be assumed
to be covered with snow so that p, = 0.7. Equation 2.23.2 reduces to

H H,
=L -k} (1.87-091 —<
H H

o

For each day in the table, H;/H is found from Figure 2.11.1 (or Equation 2.11.1) using
the corresponding value of k;. The results of these calculations are given in columns 2
through 4. The average of column 4 is 0.721. Column 5, the ratio of daily total radiation
on a tilted surface Hy to the monthly average value Hr, is calculated by dividing each
value in column 4 by the average value. Column 5 is plotted in the first figure that follows
as a function of the day since the data are already in ascending order. The integration, as
indicated in this figure, is used to determine the utilizability ¢. The area under the whole
curve is 1.0. The area above a particular value of Hy/Hy is the fraction of the month’s
radiation that is above this level. For Hy/H; = 1.2, 13% of the radiation is above this
level. The utilizability is plotted in the second figure. Although daily totals were used to
generate this figure, the hourly ¢ curves will have nearly the same shape. Consequently, the
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curve can be used in hourly calculations to determine collector performance as illustrated
in Example 2.22.1.

2.0 T | T l T BE I 1
If February
t'f g Kr =05,¢=8=40°N, p =07
gL 16—
813
28 |
T (=
|+
Z|5 12—
- .
cls Area =0.13
°ls
512 7
.‘g ;
5|8 08— —
Sio
it -]
S| = .
o|g
>
FlE 04— 1
alg
S = -
1S V4S8 W N T TN S R S
0 0.2 0.4 0.6 0.8 1.0
Fraction of time, f, during which daily
total radiation < Hy/ Hy
e L L L
February
08— K; =05 —
6 =4 =40°N
o =07
® 06— —
Zz
E
8
S 04— —
=)
02 Limiting curve 7
of identical days
b 1 1 1 [ 1
0 0.4 0.8 1.2 1.6 2.0

Critical radiation ratio, X,

In the preceding example, a ¢ curve was generated from knowledge of the monthly
average solar radiation and the known statistical behavior of solar radiation. For some
purposes it is necessary to know monthly average hourly utilizability. If this information
is needed, the method described in Section 2.13 and illustrated in Example 2.13.3 can be
used to determine monthly average hourly radiation from knowledge of monthly average
daily radiation (i.e., K 7).
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For each hour or hour-pair, the monthly average hourly radiation incident on the
collector is given by

_ _ _ — 1+ cosp — 1 —cosp
Iy =(Hr,— Hyry) R, + Hy — + H p,r, — (2.23.3)

or by dividing by H and introducing H = K H ,,

- = H, H, 1 + cos B 1 —cos B
'T=KTH”[<”‘7”) Rot g e (f e\ T

(2.23.4)
The ratios r, and r,; are found from Figures 2.13.1 and 2.13.2 for each hour-pair.
Example 2.23.2
Estimate the utilizability for the conditions of Example 2.23.1 for the hour-pair 11 to 12
and 12 to 1. The critical radiation level is 1.28 MJ/m?. Ground reflectance is 0.7.
Solution

At a latitude of 40° N in February the monthly average daily extraterrestrial radiation is
20.5 MJ/m? and the declination for the average day of the month is —13.0°. The sunset
hour angle and the day length of February 16, the mean day of the month, are 78.9° and
10.5h, respectively. The monthly average ratio H,/H = 0.39 from Figure 2.12.2 and
@ = 7.5°. The ratios r, and r,; from Figures 2.13.1 and 2.13.2 are 0.158 and 0.146. For the
mean day in February and from Equation 1.8.2, R, = 1.62. Then from Equation 2.23.4

17 =0.5x20.5[(0.158 — 0.39 x 0.146)1.62 + 0.39 x 0.146 x 0.88
+0.7 x 0.158 x 0.12] = 2.33 MJ/m?

The critical radiation rate for this hour-pair is

I, 128
X, =X =_""2-055
I, 233

From the figure of Example 2.23.1, ¢ = 0.50. The utilizable energy (UE) for the month
for this hour-pair is

UE =233 x 0.50 x 2 x 28 = 65.2 MJ/m> n

Liu and Jordan (1963) have generalized the calculations of Example 2.23.1. They
found that the shape of the ¢ curves was not strongly dependent on the ground reflectance
or the view factors from the collector to the sky and ground. Consequently, they were
able to construct a set of ¢ curves for a fixed value of K ;. The effect of tilt was taken
into account by using the monthly average ratio of beam radiation on a tilted surface to
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monthly average beam radiation on a horizontal surface Eb as a parameter. The generalized
¢ curves are shown in Figures 2.23.1 for values of fT of 0.3, 0.4, 0.5, 0.6, and 0.7. The
method of constructing these curves is exactly like Example 2.23.1, except that the tilt
used in their calculations was 47° and the ground reflectance was 0.2. A comparison of the
¢ curve from Example 2.23.1, in which the tilt was 40° and the ground reflectance was 0.7
with the generalized ¢ curve for K; = 0.5 and R, = 1.79, shows that the two are nearly
identical.
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Figure 2.23.1 Generalized ¢ curves for south-facing surfaces. Adapted from Liu and Jordan (1963).
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Utilizability, ¢

Utilizability, ¢

With the generalized ¢ curves, it is possible to predict the utilizable energy at a
constant critical level by knowing only the long-term average radiation. This procedure
was illustrated (for one hour-pair) in Example 2.23.2. Rather than use the ¢ curve calculated
in Example 2.23.1, the generalized ¢ curve could have been used. The only additional
calculation is determining Eb so that the proper curve can be selected. In Example 2.23.2,
X, = 0.55. From Equation 2.19.3a, R, = 1.79. Figure 2.23.1(c) is used to obtain ¢; it is
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Figure 2.23.1 (Continued)
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It is convenient for computations to have an analytical representation of the utiliz-
ability function. Clark et al. (1983) have developed a simple algorithm to represent the
generalized ¢ functions. Curves of ¢ versus X, derived from long-term weather data are
represented by

0 it X, > X,
AL if X, =2
6= ( - E) o Ham = (2.23.52)
2
lgl — [g2 + (1 +2g) (1 — ;((—;) :| otherwise
where
_ Xl (2.23.5b)
$=3-x. 23.
R, cos B ky
X,, = 1.85+0.169 5 — 0.0696—— — 0.981 —= (2.23.5¢)
ky ky cos= §
The monthly average hourly clearness index & is defined as
_ 1
ky = =— (2.23.6)
IU
It can be estimated using Equations 2.13.2 and 2.13.4:
T L H - _
kT=_—=—:=—KT=(a+bcosa))KT (2237)
I, rq H, 14

where a and b are given by Equations 2.13.2b and 2.13.2c.
The remaining term in Equation 2.23.5 is R, the ratio of monthly average hourly
radiation on the tilted surface to that on a horizontal surface:

I
Rh= T

= 2.23.8
reH ( )

~|‘,:‘|

Example 2.23.3
Repeat Example 2.23.2 using the Clark et al. (1983) equations.

Solution

The calculations to be made are ﬁh, ET, X ,_X &, and finally ¢. Intermediate results
from Example 2.23.2 that are useful here are I, = 2.33 MJ/m?, r, = 0.158, o, = 78.9°,
®="15° X, =0.549:

2.33
Rh == ==

T
=L - = 1.44
rH 158 x20.3 x 0.50

'~||H"I
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To calculate ET, we need the constants a and b in Equation 2.23.7:

a = 0.409 4+ 0.5016 sin(78.9 — 60) = 0.571
b =0.6609 — 0.4767 sin(78.9 — 60) = 0.506

Thus 3
kr =0.50 (0.571 + 0.506 cos7.5) = 0.536

Next calculate X, with Equation 2.23.5¢:

144  0.0696 x cos40  0.981 x 0.536
0.536> 0.536° cos2(—13)

X, = 1.85+0.169
=1.942

The last steps are to calculate g and ¢ with Equations 2.23.5b and 2.23.5a:

1.942 — 1
g=—"—"—==10624
2 —1.942
Then
2V
) 0.549
¢ =11624 —11624"+(14+2x1624) (1 — —— =0.52
1.942
This is nearly the same ¢ as that from Example 2.23.2. |

The ¢ charts graphically illustrate why a single average day should not be used
to predict system performance under most conditions. The difference in utilizability as
indicated by the limiting curve of identical days and the appropriate ¢ curve is the error
that is incurred by basing performance on an average day. Only if K is high or if the
critical level is very low do all ¢ curves approach the limiting curve. For many situations
the error in using one average day to predict performance is substantial.

The ¢ curves must be used hourly, even though a single ¢ curve applies for a
given collector orientation, critical level, and month. This means that three to six hourly
calculations must be made per month if hour-pairs are used. For surfaces facing the
equator, where hour-pairs can be used, the concept of monthly average daily utilizability
¢ provides a more convenient way of calculating useful energy. However, for processes
that have critical radiation levels that vary in repeatable ways through the days of a month
and for surfaces that do not face the equator, the generalized ¢ curves must be used for
each hour.

2.24 DAILY UTILIZABILITY

The amount of calculations in the use of ¢ curves led Klein (1978) to develop the concept
of monthly average daily utilizability ¢. This daily utilizability is defined as the sum for a
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month (over all hours and days) of the radiation on a tilted surface that is above a critical
level divided by the monthly radiation. In equation form,

Zdays Zhours (IT - IT0)+

H;N

¢ = (2.24.1)

where the critical level is similar to that used in the ¢ concept.’® The monthly utilizable

energy is then the product H;N¢. The concept of daily utilizability is illustrated in
Figure 2.24.1. Considering either of the two sequences of days, ¢ is the ratio of the sum of
the shaded areas to the total areas under the curves.

The value of ¢ for a month depends on the distribution of hourly values of radiation in
the month. If it is assumed that all days are symmetrical about solar noon and that the hourly
distributions are as shown in Figures 2.13.1 and 2.13.2, then ¢ depends on the distribution
of daily total radiation, that is, on the relative frequency of occurrence of below-average,
average, and above-average daily radiation values.?’ Figure 2.24.1 illustrates this point.
The days in the top sequence are all average days; for the low critical radiation level
represented by the solid horizontal line, the shaded areas show utilizable energy, whereas

Sequence A

Radiation

Sequence B

Day 1 Day 2 Day 3

Figure 2.24.1 Two sequences of days with the same average radiation levels on the plane of the
collector. From Klein (1978).

20The critical level for ¢ is based on monthly average *‘optical efficiency’’ and temperatures rather than on values
for particular hours. This will be discussed in Chapter 21.

27Klein assumed symmetrical days in his development of ¢. It can be shown that departure from symmetry within
days (e.g., if afternoons are brighter than mornings) will lead to increases in ¢; thus a ¢ calculated from the
correlations of this section is somewhat conservative.
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for the high critical level represented by the dotted line, there is no utilizable energy. The
bottom sequence shows three days of varying radiation with the same average as before;
utilizable energy for the low critical radiation level is nearly the same as for the first set,
but there is utilizable energy above the high critical level for the nonuniform set of days
and none for the uniform set. Thus the effect of increasing variability of days is to increase
¢, particularly at high critical radiation levels.

The monthly distribution of daily total radiation is a unique function of K ; as shown
by Figure 2.9.2. Thus the effect of daily radiation distribution on ¢ is related to a single
variable, K .

Klein has developed correlations for ¢ as a function of K, and two variables, a
geometric factor R/R, and a dimensionless critical radiation level X .. The symbol R is the
monthly ratio of radiation on a tilted surface to that on a horizontal surface, FT /ﬁ, and is
given by Equation 2.19.2, and R, is the ratio for the hour centered at noon of radiation on
the tilted surface to that on a horizontal surface for an average day of the month. Equation
2.15.2 can be rewritten for the noon hour, in terms of r, , H, and r, , H, as

I rg . H, rg . H, 1 4 cos
w= (), = () mee (i) (F57)
1), re,H ’ reaH 2

+p, <$) (2.24.2)

where r; , and r, , are obtained from Figures. 2.13.1 and 2.13.2 using the curves for solar
noon or from Equations 2.13.2 and 2.13.4.

Note that R, is calculated for a day that has the day’s total radiation equal to the
monthly average daily total radiation, that is, a day in which H = H (R, is not the monthly
average value of R at noon). The calculation of R, is illustrated in Example 2.24.1.

A monthly average critical radiation level X, is defined as the ratio of the critical
radiation level to the noon radiation level on a day of the month in which the day’s radiation
is the same as the monthly average. In equation form,

— I
X, = —K_ (2.24.3)
r,’anH

Klein obtained ¢ as a function of X, for various values of R/R, by the following
process. For a given K, a set of days was established that had the correct long-term
average distribution of values of K (i.e., that match the distributions of Section 2.9). (This
is the process illustrated in Example 2.23.1.) The radiation in each of the days in a sequence
was divided into hours using the correlations of Section 2.13. These hourly values of beam
and diffuse radiation were used to find the total hourly radiation on a tilted surface, /.
Critical radiation levels were then subtracted from these /; values and summed according
to Equation 2.24.1 to arrive at values of ¢.

The ¢ curves calculated in this manner are shown in Figures 2.24.2(a—e) for fT
values of 0.3 to 0.7. These curves can be represented by the equation

é = exp { |:a +b <%)} X, + ch]} (2.24.42)
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where . s
a=2943 —9.271K +4.031K (2.24.4b)
b= —4.345+8.853K, — 3.602?? (2.24.4¢)
c=—0.170 — O.3O6FT + 2.936?; (2.24.4d)
Example 2.24.1

A surface in Madison, Wisconsgl, has a SlOp_e of 60° and a surface azimuth angle of 0°.
For the month of March, when K = 0.49, H = 12.86 MJ/mz, Py = 0.4, and the critical

radiation level is 145 W/m?, calculate ¢ and the utilizable energy.

Solution

For the mean day of March with n = 75, the sunset hour angle is 87.7° from Equation 1.6.10.
Then from Equations 2.13.2 and 2.13.4, r, , = 0.146 and r,;,, = 0.134. For K; = 0.49
(i.e., a day in which H = F), H,;/H from Figure 2.11.2 is 0.62. From Equation 1.8.2,
R,,, = 1.38. Then R, can be calculated using Equation 2.24.2:

z — (1 0.134 x 0.62 - 0.134 x 0.62 [ 1+ cos60
n 0.146 0.146 2

1_
404 (%6% — 112



132 Available Solar Radiation

Equation 2.19.2 is used to calculate R. From Figure 2.19.1 Eb = 1.42. From Figure 2.12.2,
H,;/H =0.43 at K; = 0.49. (See Example 2.19.1 for more details.) Then

_ | 60 1 — cos 60
R =(1—043)1.42 + 043 (JFC%) +04 (%) 123

and 112
=—— =091
1.23

|| =

From Equation 2.24.3 the dimensionless average critical radiation level is

— 145 x 3600

X, = - =025
0.146 x 1.12 x 12.86 x 10

We can now get the utilizability ¢ from Figure 2.24.2(c) or from Equations 2.24.4. With
K; =049, a =—-0.632,b = —0.872, c = 0.385, and ¢ = 0.64, the month’s utilizable
energy is thus

H;N$p = HRN¢ = 12.86 x 1.23 x 31 x 0.64 = 314 MJ/m? -

The ¢ depend on R and R, , which in turn depend on the division of total radiation into
beam and diffuse components. As noted in Section 2.11, there are substantial uncertainties
in determining this division. The correlation of H,/H versus K, of Liu and Jordan
(1960) was used by Klein (1978) to generate the ¢ charts. The correlation of Ruth and
Chant (1976), which indicates significantly higher fractions of diffuse radiation, was also
used to generate ¢ charts, and the results were not significantly different from those of
Figure 2.24.2. A ground reflectance of 0.2 was used in generating the charts, but a value
of 0.7 was also used and it made no significant difference. Consequently, even if the
diffuse-to-total correlation is changed as a result of new experimental evidence, the ¢
curves will remain valid. Of course, using different correlations will change the predictions
of radiation on a tilted surface, which will change the utilizable energy estimates.

Utilizability can be thought of as a radiation statistic that has built into it critical
radiation levels. The ¢ and ¢ concepts can be applied to a variety of design problems,
for heating systems, combined solar energy-heat pump systems, and many others. The
concept of utilizability has been extended to apply to passively heated buildings, where
the excess energy (unutilizable energy) that cannot be stored in a building structure can
be estimated. The unutilizability idea can also apply to photovoltaic systems with limited
storage capacity.

2.25 SUMMARY

In this chapter we have described the instruments (pyrheliometers and pyranometers) used
to measure solar radiation. Radiation data are available in several forms, with the most
widely available being pyranometer measurements of total (beam-plus-diffuse) radiation
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on horizontal surfaces. These data are available on an hourly basis from a limited number
of stations and on a daily basis for many stations.

Solar radiation information is needed in several different forms, depending on the
kinds of calculations that are to be done. These calculations fall into two major categories.
First (and most detailed), we may wish to calculate on an hour-by-hour basis the longtime
performance of a solar process system; for this we want hourly information of solar
radiation and other meteorological measurements. Second, monthly average solar radiation
is useful in estimating long-term performance of some kinds of solar processes. It is not
possible to predict what solar radiation will be in the future, and recourse is made to use of
past data to predict what solar processes will do.

We have presented methods (and commented on their limitations) for the estimation
of solar radiation information in the desired format from the data that are available. This
includes estimation of beam and diffuse radiation from total radiation, time distribution
of radiation in a day, and radiation on surfaces other than horizontal. We introduced the
concept of utilizability, a solar radiation statistic based on levels of radiation available
above critical levels. Determination of critical radiation levels for collectors will be treated
in Chapters 6 and 7, and the utilizability concepts will be the basis for most of Part III, on
design of solar energy processes.
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Selected Heat Transfer Topics

This chapter is intended to review those aspects of heat transfer that are important in the
design and analysis of solar collectors and systems. It begins with a review of radiation
heat transfer, which is often given cursory treatment in standard heat transfer courses.
The next sections review some convection correlations for internal flow and wind-induced
flow.

The role of convection and conduction heat transfer in the performance of solar
systems is obvious. Radiation heat transfer plays a role in bringing energy to the earth,
but not so obvious is the significant role radiation heat transfer plays in the operation of
solar collectors. In usual engineering practice radiation heat transfer is often negligible.
In a solar collector the energy flux is often two orders of magnitude smaller than in
conventional heat transfer equipment, and thermal radiation is a significant mode of heat
transfer.

3.1 THE ELECTROMAGNETIC SPECTRUM

138

Thermal radiation is electromagnetic energy that is propagated through space at the speed
of light. For most solar energy applications, only thermal radiation is important. Thermal
radiation is emitted by bodies by virtue of their temperature; the atoms, molecules, or
electrons are raised to excited states, return spontaneously to lower energy states, and in
doing so emit energy in the form of electromagnetic radiation. Because the emission results
from changes in electronic, rotational, and vibrational states of atoms and molecules, the
emitted radiation is usually distributed over a range of wavelengths.

The spectrum of electromagnetic radiation is divided into wavelength bands. These
bands and the wavelengths representing their approximate limits are shown in Figure 3.1.1.
The wavelength limits associated with the various names and the mechanism producing
the radiation are not sharply defined. There is no basic distinction between these ranges of
radiation other than the wavelength A; they all travel with the speed of light C and have a
frequency v such that

C="2=h (3.1.1)

where C,, is the speed of light in a vacuum and # is the index of refraction.

The wavelengths of importance in solar energy and its applications are in the ultraviolet
to near-infrared range, that is, from 0.29 to approximately 25 pm. This includes the visible
spectrum, light being a particular portion of the electromagnetic spectrum to which the

Solar Engineering of Thermal Processes, Fourth Edition. John A. Duffie and William A. Beckman
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Figure 3.1.1 The spectrum of electromagnetic radiation.

human eye responds. Solar radiation outside the atmosphere has most of its energy in the
range of 0.25 to 3 wm, while solar energy received at the ground is substantially in the
range of 0.29 to 2.5 um as noted in Chapters 1 and 2.

3.2 PHOTON RADIATION

For some purposes in solar energy applications, the classical electromagnetic wave view
of radiation does not explain the observed phenomena. In this connection, it is necessary to
consider the energy of a particle or photon, which can be thought of as an ‘‘energy unit”’
with zero mass and zero charge. The energy of the photon is given by

E=hy (3.2.1)

where % is Planck’s constant (6.6256 x 1073* J's). It follows that as the frequency v
increases (i.e., as the wavelength A decreases), the photon energy increases. This fact is
particularly significant where a minimum photon energy is needed to bring about a required
change (e.g., the creation of a hole—electron pair in a photovoltaic device). There is thus
an upper limit of wavelength of radiation that can cause the change.

3.3 THE BLACKBODY: PERFECT ABSORBER AND EMITTER

By definition, a blackbody is a perfect absorber of radiation. No matter what wavelengths
or directions describe the radiation incident on a blackbody, all incident radiation will
be absorbed. A blackbody is an ideal concept since all real substances will reflect some
radiation.

Even though a true blackbody does not exist in nature, some materials approach a
blackbody. For example, a thick layer of carbon black can absorb approximately 99% of
all incident thermal radiation. This absence of reflected radiation is the reason for the name
given to a blackbody. The eye would perceive a blackbody as being black. However, the
eye is not a good indicator of the ability of a material to absorb radiation, since the eye
is only sensitive to a small portion of the wavelength range of thermal radiation. White
paints are good reflectors of visible radiation, but most are good absorbers of infrared
radiation.
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A blackbody is also a perfect emitter of thermal radiation. In fact, the definition of
a blackbody could have been put in terms of a body that emits the maximum possible
radiation. A simple thought experiment can be used to show that if a body is a perfect
emitter of radiation, then it must also be a perfect absorber of radiation. Suppose a small
blackbody and small nonblackbody are placed in a large evacuated enclosure made from a
blackbody material. If the enclosure is isolated from the surroundings, then the blackbody,
the real body, and the enclosure will in time come to the same equilibrium temperature. The
blackbody must, by definition, absorb the entire radiation incident on it, and to maintain
a constant temperature, the blackbody must also emit an equal amount of energy. The
nonblackbody in the enclosure must absorb less radiation than the blackbody and will
consequently emit less radiation than the blackbody. Thus a blackbody both absorbs and
emits the maximum amount of radiation.

3.4 PLANCK’S LAW AND WIEN’S DISPLACEMENT LAW

Radiation in the region of the electromagnetic spectrum from approximately 0.2 to
approximately 1000 um is called thermal radiation and is emitted by all substances by
virtue of their temperature. The wavelength distribution of radiation emitted by a blackbody
is given by Planck’s law! (Richtmyer and Kennard, 1947):

_ 27hC}
~ MS[exp(hC,/AkT) — 1]

E,, (3.4.1)

where £ is Planck’s constant and k is Boltzmann’s constant. The groups Znth and
hC,/k are often called Planck’s first and second radiation constants and given the symbols
C, and C,, respectively.” Recommended values are C; = 3.7405 x 108 W um*/m? and
C, = 14,387.8 um K.

It is also of interest to know the wavelength corresponding to the maximum intensity
of blackbody radiation. By differentiating Planck’s distribution and equating to zero, the
wavelength corresponding to the maximum of the distribution can be derived. This leads
to Wien’s displacement law, which can be written as

A T =2897.8 um K (3.4.2)

max

Planck’s law and Wien’s displacement law are illustrated in Figure 3.4.1, which
shows spectral radiation distribution for blackbody radiation from sources at 6000, 1000,
and 400 K. The shape of the distribution and the displacement of the wavelength of
maximum intensity are clearly shown. Note that 6000 K represents an approximation of
the surface temperature of the sun so the distribution shown for that temperature is an
approximation of the distribution of solar radiation outside the earth’s atmosphere. The other

The symbol E,, represents energy per unit area per unit time per unit wavelength interval at wavelength A. The
subscript b represents blackbody.
2Sometimes the definition of C | does not include the factor 2.
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Figure 3.4.1 Spectral distribution of blackbody radiation.

two temperatures are representative of those encountered in low- and high-temperature
solar-heated surfaces.

The same information shown in Figure 3.4.1 has been replotted on a normalized linear
scale in Figure 3.4.2. The ordinate on this figure, which ranges from O to 1, is the ratio of
the spectral emissive power to the maximum value at the same temperature. This clearly
shows the wavelength division between a 6000 K source and lower temperature sources at
1000 and 400 K.

3.5 STEFAN-BOLTZMANN EQUATION

Planck’s law gives the spectral distribution of radiation from a blackbody, but in engineering
calculations the total energy is often of more interest. By integrating Planck’s law over all
wavelengths, the total energy emitted per unit area by a blackbody is found to be

o0
E, = fo E,, d.=0oT* (3.5.1)

where o is the Stefan-Boltzmann constant and is equal to 5.6697 x 108 W/m? K*. This
constant appears in essentially all radiation equations.
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Figure 3.4.2 Normalized spectral distribution of blackbody radiation.

3.6 RADIATION TABLES

Starting with Planck’s law (Equation 3.4.1) of the spectral distribution of blackbody
radiation, Dunkle (1954) has presented a method for simplifying blackbody calculations.
Planck’s law can be written as

E,, = €y
M )5 lexp(Cy/AT) — 1]

(3.6.1)

Equation 3.6.1 can be integrated to give the radiation between any wavelength limits. The
total emitted from zero to any wavelength X is given by

A

Substituting Equation 3.6.1 into 3.6.2 and noting that by dividing by o T* the integral can
be made to be only a function of AT,

Ey 7 _ /” €y d@1) 3.63)
0

Joor = oT* o (AT)>[exp(C,/2T) — 1]

The value of this integral is the fraction of the blackbody energy between zero and AT.
Sargent (1972) has calculated values for convenient intervals and the results are given in
Tables 3.6.1a and b. (Note that when the upper limit of integration of Equation 3.6.3 is
infinity, the value of the integral is unity.)

For use in a computer, the following polynomial form of Equation 3.6.3 has been
given by Siegel and Howell (2002):

15 K [e™ (5 32 6y 6
== LA 3.6.4
fO—)LT |: » <V + » + + I’l3>i| ( )

T4
n=1

where y = C,/AT. In practice the summation to 10 terms is sufficient.
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Table 3.6.1a Fraction of Blackbody Radiant Energy between Zero and AT for Even Increments
of AT

AT, um K Jooar AT, um K Joour AT, um K Josr
1,000 0.0003 4,500 0.5643 8,000 0.8562
1,100 0.0009 4,600 0.5793 8,100 0.8601
1,200 0.0021 4,700 0.5937 8,200 0.8639
1,300 0.0043 4,800 0.6075 8,300 0.8676
1,400 0.0077 4,900 0.6209 8,400 0.8711
1,500 0.0128 5,000 0.6337 8,500 0.8745
1,600 0.0197 5,100 0.6461 8,600 0.8778
1,700 0.0285 5,200 0.6579 8,700 0.8810
1,800 0.0393 5,300 0.6693 8,800 0.8841
1,900 0.0521 5,400 0.6803 8,900 0.8871
2,000 0.0667 5,500 0.6909 9,000 0.8899
2,100 0.0830 5,600 0.7010 9,100 0.8927
2,200 0.1009 5,700 0.7107 9,200 0.8954
2,300 0.1200 5,800 0.7201 9,300 0.8980
2,400 0.1402 5,900 0.7291 9,400 0.9005
2,500 0.1613 6,000 0.7378 9,500 0.9030
2,600 0.1831 6,100 0.7461 9,600 0.9054
2,700 0.2053 6,200 0.7541 9,700 0.9076
2,800 0.2279 6,300 0.7618 9,800 0.9099
2,900 0.2506 6,400 0.7692 9,900 0.9120
3,000 0.2732 6,500 0.7763 10,000 0.9141
3,100 0.2958 6,600 0.7831 11,000 0.9318
3,200 0.3181 6,700 0.7897 12,000 0.9450
3,300 0.3401 6,800 0.7961 13,000 0.9550
3,400 0.3617 6,900 0.8022 14,000 0.9628
3,500 0.3829 7,000 0.8080 15,000 0.9689
3,600 0.4036 7,100 0.8137 16,000 0.9737
3,700 0.4238 7,200 0.8191 17,000 0.9776
3,800 0.4434 7,300 0.8244 18,000 0.9807
3,900 0.4624 7,400 0.8295 19,000 0.9833
4,000 0.4809 7,500 0.8343 20,000 0.9855
4,100 0.4987 7,600 0.8390 30,000 0.9952
4,200 0.5160 7,700 0.8436 40,000 0.9978
4,300 0.5327 7,800 0.8479 50,000 0.9988
4,400 0.5488 7,900 0.8521 00 1.

Example 3.6.1
Assume that the sun is a blackbody at 5777 K.

a  What is the wavelength at which the maximum monochromatic emissive power
occurs?

b What is the energy from this source that is in the visible part of the electromagnetic
spectrum (0.38 to 0.78 pum)?
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Table 3.6.1b  Fraction of Blackbody Radiation Energy between Zero and AT for Even Fractional

Increments

AT at AT at
Joar AT, pm K Midpoint Joar AT, pm K Midpoint
0.05 1,880 1,660 0.55 4,410 4,250
0.10 2,200 2,050 0.60 4,740 4,570
0.15 2,450 2,320 0.65 5,130 4,930
0.20 2,680 2,560 0.70 5,590 5,350
0.25 2,900 2,790 0.75 6,150 5,850
0.30 3,120 3,010 0.80 6,860 6,480
0.35 3,350 3,230 0.85 7,850 7,310
0.40 3,580 3,460 0.90 9,380 8,510
0.45 3,830 3,710 0.95 12,500 10,600
0.50 4,110 3,970 1.00 00 16,300
Solution

a The value of AT at which the maximum monochromatic emissive power occurs is
2897.8 um K, so the desired wavelength is 2897.8/5777, or 0.502 pm.

b From Table 3.6.1a the fraction of energy between zero and AT = 0.78 x 5777 =
4506 um K is 56%, and the fraction of the energy between zero and AT = 0.38 x 5777 =
2195 pm K is 10%. The fraction of the energy in the visible is then 56% minus 10%, or
46%. These numbers are close to the values obtained from the actual distribution of energy
from the sun as calculated in Example 3.6.1. [ ]

3.7 RADIATION INTENSITY AND FLUX

Thus far we have considered the radiation leaving a black surface in all directions; however,
it is often necessary to describe the directional characteristics of a general radiation field in
space. The radiation intensity is used for this purpose and is defined as the energy passing
through an imaginary plane per unit area per unit time and per unit solid angle whose
central direction is perpendicular to the imaginary plane. Thus, in Figure 3.7.1, if AE
represents the energy per unit time passing through AA and remaining within Aw, then
intensity is>
. AE

= lim ——

A0 AA Aw

Aw—0

I (3.7.1)

The intensity / has both a magnitude and a direction and can be considered as a vector
quantity. For a given imaginary plane in space, we can consider two intensity vectors that are
in opposite directions. These two vectors are often distinguished by the symbols I+ and I~

The radiation flux is closely related to the intensity and is defined as the energy passing
through an imaginary plane per unit area per unit time and in all directions on one side
of the imaginary plane. Note that the difference between intensity and flux is that the

3The symbol 7 is used for intensity when presenting basic radiation heat transfer ideas and for solar radiation
integrated over an hour period when presenting solar radiation ideas. The two will seldom be used together.
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AA NORMAL TO PLANE

Aw
IMAGINARY PLANE Figure 3.7.1 Schematic of radiation intensity.

differential area for intensity is perpendicular to the direction of propagation, whereas the
differential area for flux lies in a plane that forms the base of a hemisphere through which
the radiation is passing.

The intensity can be used to determine the flux through any plane. Consider an
elemental area AA on an imaginary plane covered by a hemisphere of radius r as shown in
Figure 3.7.2. The energy per unit time passing through an area AA’ on the surface of the
hemisphere from the area AA is equal to

/

AA
AQ =1 AA(cos 6) —5- (3.7.2)
r

Where AA’/r? is the solid angle between AA and AA’ and AA cos 6 is the area
perpendicular to the intensity vector. The energy flux per unit solid angle in the 6, ¢
direction can then be defined as

!/

Ag= Tim 22 _ fcos ) 22 (3.7.3)
1= A% aa =13 "

The radiation flux is then found by integrating over the hemisphere. The sphere incremental
area can be expressed in terms of the angles 6 and ¢ so that

2 /2
q :f / I cos 0 sin 6 dO d¢ (3.7.4)
o Jo

It is convenient to define & = cos 6 so that

2 1
q= / / I dup do (3.7.5)
0 0

AA’

$=0
/ AA— —~ A Acosg
¢

Figure 3.7.2 Schematic of radiation flux.



146 Selected Heat Transfer Topics

Two important points concerning the radiation flux must be remembered. First, the
radiation flux is, in general, a function of the orientation of the chosen imaginary plane.
Second, the radiation flux will have two values corresponding to each of the two possible
directions of the normal to the imaginary plane. When it is necessary to emphasize which
of the two possible values of the radiation flux is being considered, the superscript + or —
can be used along with a definition of the positive and negative directions.

Thus far, radiation flux and intensity have been defined at a general location in space.
When it is desired to find the heat transfer between surfaces in a vacuum, or at least in
radiative nonparticipating media, the most useful values of radiative flux and intensity
occur at the surfaces. For the special case of a surface that has intensity independent of
direction, the integration of Equation 3.7.5 yields

q=ml (3.7.6)

Surfaces that have the intensity equal to a constant are called either Lambertian or
diffuse surfaces. A blackbody emits in a diffuse manner, and therefore the blackbody
emissive power is related to the blackbody intensity by

E]? :]Tlh (3.7.7)

The foregoing equations were written for total radiation but apply equally well to
monochromatic radiation. For example, Equation 3.7.7 could be written in terms of a
particular wavelength A:

E,,=nl, (3.7.8)

3.8 INFRARED RADIATION EXCHANGE BETWEEN GRAY SURFACES

The general case of infrared radiation heat transfer between many gray surfaces having
different temperatures is treated in a number of textbooks (e.g., Hottel and Sarofim, 1967;
Siegel and Howell, 2002). The various methods all make the same basic assumptions,
which for each surface can be summarized as follows:

1. The surface is gray. (Radiation properties are independent of wavelength.)

2. The surface is diffuse or specular diffuse (see Section 4.3).

3. The surface temperature is uniform.

4. The incident energy over the surface is uniform.

Beckman (1971) also utilized these basic assumptions and defined a total exchange

factor between pairs of surfaces of an N-surface enclosure such that the net heat transfer
to a typical surface i is*

N
0= e AFyo(TH—T} (3.8.1)
j=1

4The emittance ¢ is defined by Equation 4.1.8.
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The factor i*"\,j is the total exchange factor between surfaces i and j and is found from
the matrix equation .
[Fyl = [8; — o Ey) ™' [Ey] (3.8.2)

where Ej;, the specular exchange factor, accounts for radiation going from surface i
to surface j directly and by all possible specular (mirrorlike) reflections and p; is
the diffuse reflectance of surface j. Methods for calculating E;; are given in advanced
radiation texts. When the surfaces of the enclosure do not specularly reflect radiation, the
specular exchange factors of Equation 3.8.2 reduce to the usual view factor (configuration
factor) Fj;.

The majority of heat transfer problems in solar energy applications involve radiation
between two surfaces. The solution of Equations 3.8.1 and 3.8.2 for diffuse surfaces with
N =2is

o(T4—T%)
1 —¢ 1 1l —e
eA, " A Fpy " €24,

0,=-0,=

(3.8.3)

Two special cases of Equation 3.8.3 are of particular interest. For radiation between two
infinite parallel plates (i.e., as in flat-plate collectors) the areas A; and A, are equal and
the view factor F, is unity. Under these conditions Equation 3.8.3 becomes

T4 — T4
% - 401( 2 D (3.8.4)
—+— -1
& &
The second special case is for a small convex object (surface 1) surrounded by a large
enclosure (surface 2). Under these conditions, the area ratio A;/A, approaches zero, the

view factor F, is unity, and Equation 3.8.3 becomes
Q) =¢A0(Ty—TY) (3.8.5)

This result is independent of the surface properties of the large enclosure since virtually
none of the radiation leaving the small object is reflected back from the large enclosure. In
other words, the large enclosure absorbs all radiation from the small object and acts like a
blackbody. Equation 3.8.5 also applies in the case of a flat plate radiating to the sky (i.e., a
collector cover radiating to the surroundings).

3.9 SKY RADIATION

To predict the performance of solar collectors, it will be necessary to evaluate the radiation
exchange between a surface and the sky. The sky can be considered as a blackbody at
some equivalent sky temperature 7, so that the actual net radiation between a horizontal
flat plate and the sky is given by Equation 3.8.5. The net radiation from a surface with
emittance ¢ and temperature 7 to the sky at 7 is

0 =¢eAo(T* - T?) (3.9.1)
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The equivalent blackbody sky temperature of Equation 3.9.1 accounts for the facts that
the atmosphere is not at a uniform temperature and the atmosphere radiates only in certain
wavelength bands. The atmosphere is essentially transparent in the wavelength region from
8 to 14 pum, but outside of this ‘‘window’’ the atmosphere has absorbing bands covering
much of the infrared spectrum. Several relations have been proposed to relate 7 for clear
skies to measured meteorological variables. Swinbank (1963) relates sky temperature to
the local air temperature, Brunt (1932) relates sky temperature to the water vapor pressure,
and Bliss (1961) relates sky temperature to the dew point temperature. Berdahl and Martin
(1984) used extensive data from the United States to relate the effective sky temperature
to the dew point temperature, dry bulb temperature, and hour from midnight ¢ by the
following equation.

T, = T,[0.711 + 0.0056T,, 4 0.0000737,, + 0.013 cos(15:)]"/* (3.9.2)

where T and 7, are in degrees Kelvin and 7, is the dew point temperature in degrees
Celsius. The experimental data covered a dew point range from —20°C to 30°C. The range
of the difference between sky and air temperatures is from 5°C in a hot, moist climate to
30°C in a cold, dry climate.

Clouds will tend to increase the sky temperature over that for a clear sky. It is
fortunate that the sky temperature does not make much difference in evaluating collector
performance. However, the sky temperature is critical in evaluating radiative cooling as a
passive cooling method.

3.10 RADIATION HEAT TRANSFER COEFFICIENT

To retain the simplicity of linear equations, it is convenient to define a radiation heat
transfer coefficient. The heat transfer by radiation between two arbitrary surfaces is found
from Equation 3.8.3. If we define a heat transfer coefficient so that the radiation between
the two surfaces is given by

Q=Ah(T,-T) (3.10.1)

then it follows that
o (T3 +T(T, + T))

h. =
r 1—¢ 1 1—¢,)A
L +( DA

(3.10.2)

€1 Fi, &4,

If the areas A, and A, are not equal, the numerical value of &, depends on whether it is to
be used with A, or with A,.
When 7| and 7, are close together, the numerator of Equation 3.10.2 can be expressed

=3 —.
as 40T, where T is the average temperature:

T = XT3+ T+ T (3.10.3)
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It is not difficult to estimate 7 without actually knowing both 7; and 7,. Once T is
estimated, the equations of radiation heat transfer are reduced to linear equations that can
be easily solved along with the linear equations of conduction and convection. If more
accuracy is needed, a second or third iteration may be required. Most of the radiation
calculations in this book use the linearized radiation coefficient.

Example 3.10.1

The plate and cover of a flat-plate collector are large in extent, are parallel, and are spaced
25 mm apart. The emittance of the plate is 0.15 and its temperature is 70°C. The emittance
of the glass cover is 0.88 and its temperature is 50°C. Calculate the radiation exchange
between the surfaces and a radiation heat transfer coefficient for this situation.

Solution

Exact and approximate solutions are possible for this problem. The exact solution is based
on Equations 3.8.4 and 3.10.1. The radiation exchange is given by Equation 3.8.4:

343% — 3234
% — —"1( 1 ) 246 W/m?

0.15 * 0.88
Then from the defining equation for the radiation coefficient (Equation 3.10.1),

24.6

L= =1232W/m?>°C
70 — 50

(The use of Equation 3.10.2 produces the identical result.)
We can also get an approximate solution using the average of the two plate tempera-
tures, 60°C or 333 K, in Equation 3.10.3: Then

4 x 333° .
By = T = 1231 W/m °C
015 088
This result is essentially the same as that calculated by the defining equation. |

3.11 NATURAL CONVECTION BETWEEN FLAT PARALLEL PLATES
AND BETWEEN CONCENTRIC CYLINDERS

The rate of heat transfer between two plates inclined at some angle to the horizon is
of obvious importance in the performance of flat-plate collectors. Free-convection heat
transfer data are usually correlated in terms of two or three dimensionless parameters: the
Nusselt number Nu, the Rayleigh number Ra, and the Prandtl number Pr. Some authors
correlate data in terms of the Grashof number, which is the ratio of the Rayleigh number
to the Prandtl number.
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The Nusselt, Rayleigh, and Prandtl numbers are given by>

KL

Nu=— G.11.1)
"AT L3
Ra= P ATL (3.11.2)
Vo
V
Pr=_ (3.11.3)
o

Where h = heat transfer coefficient [W/m? K]

L = plate spacing [m]

k = thermal conductivity [W/m K]

g = gravitational constant [m/s?]
B’ = volumetric coefficient of expansion (for an ideal gas, 8 = 1/T) [1/K]

AT = temperature difference between plates [K]
v = kinematic viscosity [m?/s]
o = thermal diffusivity [m?/s]

For parallel plates the Nusselt number is the ratio of a pure conduction resistance
to a convection resistance [i.e., Nu = (L/k)/(1/h)] so that a Nusselt number of unity
represents pure conduction.

Tabor (1958) examined the published results of a number of investigations and
concluded that the most reliable data for use in solar collector calculations as of 1958 were
contained in Report 32 published by the U.S. Home Finance Agency (1954).

In a more recent experimental study using air, Hollands et al. (1976) give the
relationship between the Nusselt number and Rayleigh number for tilt angles from 0 to 75°
as

1708(sin 1.88)"° 1708 7F R 173
Nu= 141441 TO8CIn 18H) Ty, 1708 |7 (Racos f)7T
Ra cos Ra cos B 5830

+

(3.11.4)
where the meaning of the + exponent is that only positive values of the terms in the square
brackets are to be used (i.e., use zero if the term is negative).

For horizontal surfaces, the results presented by Tabor compare favorably with the
correlation of Equation 3.11.4. For vertical surfaces the data from Tabor approximate the
75° tilt data of Hollands et al. (1976). Actual collector performance will always differ from
analysis, but a consistent set of data is necessary to predict the trends to be expected from
design changes. Since a common purpose of this type of data is to evaluate collector design
changes, the correlation of Hollands et al. (1976) is considered to be the most reliable.

Equation 3.11.4 is plotted in Figure 3.11.1. In addition to the Nusselt number, there is a
second scale on the ordinate giving the value of the heat transfer coefficient times the plate
spacing for a mean temperature of 10°C. The scale of this ordinate is not dimensionless
but is mm W/m? °C. For temperatures other than 10°C, a factor F,, the ratio of the

SFluid properties in the convection relationships of this chapter should be evaluated at the mean temperature.
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Figure 3.11.1 Nusselt number as a function of Rayleigh number for free-convection heat transfer
between parallel flat plates at various slopes.
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Figure 3.11.2  Air property corrections F; and F, for use with Figure 3.11.1. From Tabor (1958).
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thermal conductivity of air at 10°C to that at any other temperature, has been plotted as
a function of temperature in Figure 3.11.2. Thus to find A/ at any temperature other than
10°C, it is only necessary to divide F,hl as read from the chart by F, at the appropriate
temperature.®

The abscissa also has an extra scale, F; AT [ 3. To find AT I3 at temperatures other
than 10°C, it is only necessary to divide F; AT I> by F,, where F, is the ratio of
1/Tva at the desired temperature to 1/Tva at 10°C. The ratio F| is also plotted in
Figure 3.11.2.

Example 3.11.1

Find the convection heat transfer coefficient between two parallel plates separated by
25 mm with a 45° tilt. The lower plate is at 70°C and the upper plate is at 50°C.

Solution

At the mean air temperature of 60°C air properties are k = 0.029 W/m K, T = 333 K so
B =1/333, v =188 x 107> m?/s, and @ = 2.69 x 107> m?/s. (Property data are from
EES; www.fchart.com.) The Rayleigh number is

9.81 x 20 x (0.025)°

Ra = = 1.82 x 10*
333 x 1.88 x 107 x 2.69 x 107

From Equation 3.11.4 or Figure 3.11.1 the Nusselt number is 2.4. The heat transfer
coefficient is found from
k24 x0.029

h=Nu— =

=2.78 W/m?> K
L 0.025

As an alternative, the dimensional scales of Figure 3.11.1 can be used with the
property corrections from Figure 3.11.2. At 60°C, F; = 0.49 and F, = 0.86. Therefore,
F, AT IP = 0.49 x 20 x 25° = 1.53 x 10° mm?> °C. From the 45° curve in Figure 3.11.1,
F,hl = 59. Finally, h = 59/(0.86 x 25) = 2.74 W/m? K.

Even with the substantially reduced radiation heat transfer resulting from the low
emittance in Example 3.6.1, the radiation heat transfer is about one-half of the convection
heat transfer. |

It is recommended that the 75° correlation of Figure 3.11.1 be used for vertical
surfaces. The correlation given by Equation 3.11.1 does not cover the range from 75 to
90°, but comparisons with other correlations suggest that the 75° represents the vertical
case adequately. Raithby et al. (1977) have examined vertical surface convection data from
a wide range of experimental investigations. They propose a correlation that includes the
influence of aspect ratio A, that is, the ratio of plate height to spacing. Their correlation
is plotted in Figure 3.11.3 for aspect ratios of 5, 60, and infinity. For comparison, other
correlations that do not show an aspect ratio effect are also plotted on this figure and
correspond approximately to the Raithby et al. correlation with an aspect ratio of between
10 and 20.

%The lowercase letter / is used as a reminder that the units are millimeters instead of meters.
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Figure 3.11.3 Nusselt number as a function of Rayleigh number for free-convection heat transfer
between vertical flat plates.

Most of the experiments utilize a guarded hot-plate technique that measures the heat
transfer only at the center of the test region. Consequently the end effects are largely
excluded. However, Randall et al. (1977) used an interferometric technique that allowed
determination of local heat transfer coefficients from which averages were determined,;
they could not find an aspect ratio effect, although a range of aspect ratios from 9 to 36
was covered. The Raithby et al. (1977) correlation also includes an angular correction for
angles from 70 to 110° which shows a slight increase in Nusselt number over this range of
tilt angles consistent with the trends of Figure 3.11.1 (Randall et al., 1977).

It is unusual to find a collector sloped at angles between 75° and 90°; if they are
to be that steep, they will probably be vertical. Windows and collector-storage walls are
essentially always vertical. For vertical surfaces the four correlations shown in Figure 3.11.3
[with A = 15 for the Raithby et al. (1977) result] agree within approximately 15% with
the 75° correlation of Hollands et al. (1976) in Figure 3.11.1. Vertical solar collectors will
have an aspect ratio on the order of 60, but at this aspect ratio the Raithby et al. result falls
well below other correlations. Consequently, the 75° correlation of Figure 3.11.1 will give
reasonable or conservative predictions for vertical surfaces.

Heat transfer between horizontal concentric cylinders is important in linear concen-
trating collectors (see Section 7.3). Raithby and Hollands (1975) [as reported by Incropera
and DeWitt (2002)] propose the following correlation to account for the free convection:

ket Pr x Ra*\!/*
— =max | 1, 0380 ——— (3.11.5)
k 0.861 + Pr
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where .
[In(D,/D;)]
=5 | prifys

i

Ra* = (3.11.6)
L3(D
and the Rayleigh and Prandtl numbers are defined by Equations 3.11.1 and 3.11.2. The
characteristic length L is the distance between the inner and outer cylinders. The range
of validity of this correlation is Ra* < 107. At Ra* < 100 Equation 3.11.5 yields k. = k,
indicating the free convection is suppressed and the heat transfer is by conduction.

As the pressure in the annulus is reduced, the conduction heat transfer is unaffected
until the pressure is such that the mean free path of the molecules is on the order of the
characteristic dimension of the annulus. The following equation from Ratzel et al. (1979)
covers the range from pure conduction to free molecular heat transfer:

-1
@ = |:1 + (2~ a)Ocy/e, =) <L + L):| (3.11.7)
k a(c,/c,+1) In(D,/D;) \D, D,

1

where A is the mean free path of the gas molecules given by

kT

and where k is Boltzmann’s constant (1.381 x 10738 /K), P is the pressure in pascals, and
8 is the molecular diameter of the annulus gas (3.5 x 107'9 m for air and 2.4 x 1071 m
for hydrogen). The parameter a is an accommodation coefficient that when set equal to 1
provides an upper bound on the free molecular heat transfer: The ratio of specific heats is
close to 1.4 for both air and hydrogen.

A general expression for the effective gas conductivity in an annulus is to take the
maximum value of either the part of Equation 3.11.5 that contains the Rayleigh number
or3.11.7.

3.12 CONVECTION SUPPRESSION

One of the objectives in designing solar collectors is to reduce the heat loss through the
covers. This has led to studies of convection suppression by Hollands (1965), Edwards
(1969), Buchberg et al. (1976), Arnold et al. (1977, 1978), Meyer et al. (1978), and
others. In these studies the space between two plates, with one plate heated, is filled with
a transparent or specularly reflecting honeycomb to suppress the onset of fluid motion.
Without fluid motion the heat transfer between the plates is by conduction and radiation.
Care must be exercised since improper design can lead to increased rather than decreased
convection losses, as was first shown experimentally by Charters and Peterson (1972) and
later verified by others.

For slats, as shown in Figure 3.12.1, the results of Meyer et al. (1978) can be expressed
as the maximum of two numbers as

Nu = max[1.1C,C, Ra)?® 1] (3.12.1)
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Figure 3.12.1 Slats for suppression of convection. From Meyer et al. (1978).

where C; and C, are given in Figure 3.12.2 and the subscript L indicates that the plate
spacing L is the characteristic length. Note that the coefficient C; has a maximum near an
aspect ratio of 2.

To assess the magnitude of the convection suppression with slats, it is possible to
compare Equation 3.12.1 with the correlation of Randall et al. (1977) obtained from data
taken on the same equipment. Although the Randall correlation uses an exponent of 0.29
on the Rayleigh number, the correlation can be slightly modified to have an exponent of
0.28. The ratio of the two correlations is then

Vo (LG, R ] (3.12.2)
Nuno slats max[0.13 RaL' [cos('B — 45)]0.58’ 1]

As long as fluid motion is not suppressed (i.e., as long as Nu > 1), the ratio of the two
Nusselt numbers is independent of the Rayleigh number.

At a collector angle of 45°, the addition of slats will reduce convection as long as
the aspect ratio is less than approximately 0.5 (i.e., C; = 0.12, C, = 1.0). At an aspect
ratio of 0.25, the slats reduce convection by one-third. At a Rayleigh number of 5800
and a tilt of 45°, fluid movement is just beginning with an aspect ratio of 0.25, and
the Nusselt number is 1.0. From Randall’s correlation without slats and with a Rayleigh
number of 5800, the Nusselt number is 1.47, a nearly 50% reduction in convection heat
transfer.

Arnold et al. (1977, 1978) experimentally investigated cores with aspect ratios between
0.125 and 0.25 but with additional partitions that produced rectangular honeycombs having
horizontal aspect ratios (width-to-plate spacing) ranging from 0.25 to 6.25. The results of
these experiments, using silicone oil as the working fluid to suppress thermal radiation,
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Figure 3.12.2 Coefficients C; and C, for use in Equation 3.12.1. From Meyer et al. (1978).

can be correlated within & 15% with the following equation:

Ral + Ra2 +
Nu=1+1I151———| +125|1 - ———— (3.12.3)
Ra cos B Ra cos B
for
0<pBp<60, Racos p<Ra;, 4<L/H<8 1<W/H<24
where

_ (a + bk)3

Ra,
ay
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1
@ =a,+ by, by = (km +0.85)?%, k=123

om0 | (5)
a,=| ———— +18( — —
1+ L/(7D) w H

For vertical orientation (8 = 90°), the results can be correlated by

—4 4.65

Nu = 10/ Ra'/3 (3.12.4)
1+ 5(H/W)*

for the same L/H and W/H limits as given for Equation 3.12.3.

These equations show little effect on heat transfer of horizontal aspect ratios beyond
unity. Consequently, the results of Meyer et al. (1978) for slats should be directly
comparable. At an angle of 45° and a Rayleigh number of 4 x 10* both experiments give a
Nusselt number of approximately 1.7, but the slope of the data on a Nusselt-Rayleigh plot
from Arnold et al. (1977) is approximately 0.48 and the slope from Meyer et al. is 0.28.
Since the Rayleigh number range of the two experiments was not large, these two very
different correlations give similar Nusselt numbers, but extrapolation beyond the range of
test data (i.e., Ra > 10°) could lead to large differences.

This discrepancy points out a problem in estimating the effect of collector design
options based on heat transfer data from two different experiments. It is the nature of heat
transfer work that sometimes significant differences are observed in carefully controlled
experiments using different equipment or techniques. Consequently, in evaluating an option
such as the addition of honeycombs, heat transfer data with and without honeycombs
measured in the same laboratory will probably be the most reliable.

The addition of a honeycomb in a solar collector will modify the collector’s radiative
characteristics. The honeycomb will certainly decrease the solar radiation reaching the
absorbing plate of the collector. Hollands et al. (1978) have analyzed the solar trans-
mittance’ of a square-celled honeycomb and compared the results with measurements
at normal incidence. For the particular polycarbonate plastic configuration tested, the
honeycomb transmittance at normal incidence was 0.98. Its transmittance decreased in a
nearly linear manner with incidence angle to approximately 0.90 at an angle of 70°.

The infrared radiation characteristics will also be affected in a manner largely
dependent upon the honeycomb material. If the honeycomb is constructed of either
an infrared transparent material or an infrared specularly reflective material, then the
infrared radiative characteristics of the collector will not be significantly changed. If
the honeycomb material is constructed of a material that is opaque in the infrared, then
the radiative characteristics of the collector will approach that of a blackbody. As will be
shown in the next two chapters, this is undesirable.

Transparent aerogels can be used to eliminate convection heat transfer. Properly made
silica aerogels transmit most solar radiation. They consist of very fine silica particles
and micropores that are smaller than the mean free path of air molecules; convection is

"Transmittance of cover systems is discussed in Chapter 5.
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suppressed and conduction is less than that of still air. Thermal stability and weatherability
may be problems.

3.13 VEE-CORRUGATED ENCLOSURES

Vee-corrugated absorber plates with the corrugations running horizontally have been
proposed for solar collectors to improve the radiative characteristics of the absorber plate
(see Section 4.9). Also, this configuration approximates the shape of some concentrating
collectors (see Chapter 7). One problem with this configuration is that the improved
radiative properties are, at least in part, offset by increased convection losses. Elsherbiny
et al. (1977) state that free-convection losses from a vee-corrugated surface to a single
plane above is as much as 50% greater than for two plane surfaces at the same temperatures
and mean plate spacing.

Randall (1978) investigated vee-corrugated surfaces and correlated the data in terms
of the Nusselt and Rayleigh numbers in the form

Nu = max[(C Ra"), 1] (3.13.1)
where the values of C and n are given in Table 3.13.1 as functions of the tilt angle g

and the vee aspect ratio A’, the ratio of mean plate spacing [ to vee height 4 shown in
Figure 3.13.1.

Table 3.13.1 Constants for Use in Equation 3.13.1

B A’ C n
0 0.75 0.060 0.41
1 0.060 0.41
2 0.043 0.41
45 0.75 0.075 0.36
1 0.082 0.36
2 0.037 0.41
60 0.75 0.162 0.30
1 0.141 0.30
2 0.027 0.42
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Figure 3.13.1 Section of vee-corrugated absorber and plane cover.
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3.14 HEAT TRANSFER RELATIONS FOR INTERNAL FLOW

Heat transfer coefficients for common geometries are given in many heat transfer books
(e.g., McAdams, 1954; Kays and Crawford, 1980; Incropera and DeWitt, 2002). For fully
developed turbulent liquid flow inside tubes (i.e., 2300 < Re = pVD,/u < 5 x 10 and
0.5 < Pr < 2000), Gnielinski, as reported in Kakag et al. (1987), suggests

4= (/8 Re — 1000)Pr <i>
T 1.07 + 127F8®R - 1) \ i,

where n is 0.11 for heating and 0.25 for cooling and the Darcy friction factor f for smooth
pipes is given by

(3.14.1)

f =(0.79 In Re — 1.64)72 (3.14.2)

For gases, the viscosity ratio in Equation 3.14.1 should be replaced by (7,,/T)". For
noncircular tubes the hydraulic diameter can be used for the characteristic length in the
preceding two equations. The hydraulic diameter is defined as

4(flow area)
D= ——"— (3.14.3)
wetted perimeter

For short tubes with L/D > 1.0 and a sharp-edged entry, McAdams (1954) recommends
that the Nusselt number be calculated from

N D 0.7
lshort _ |4 4 (—) (3.14.4)
NulOng L

For laminar flow in tubes the thermal boundary condition is important. With fully
developed hydrodynamic and thermal profiles, the Nusselt number is 3.7 for constant wall
temperature and 4.4 for constant heat flux. In a solar collector the thermal condition is
closely represented by a constant resistance between the flowing fluid and the constant-
temperature environment.® If this resistance is large, the thermal boundary condition
approaches constant heat flux, and if this resistance is small, the thermal boundary
condition approaches constant temperature. Consequently, the theoretical performance
of a solar collector should lie between the results for constant heat flux and constant
temperature. Since a constant-wall-temperature assumption yields somewhat lower heat
transfer coefficients, this is the recommended assumption for conservative design.

For short tubes the developing thermal and hydrodynamic boundary layers will result
in a significant increase in the heat transfer coefficient near the entrance. Heaton et al.
(1964) present local Nusselt numbers for the case of constant heat rate. Their data are well
represented by an equation of the form

a(Re Pr D, /L)™
® " 1+4b(RePr D,/L)"

Nu = Nu (3.14.5)

where the constants a, b, m, and n are given in Table 3.14.1.

8This will become apparent in Chapter 6.
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Table 3.14.1 Constants for Equation 3.14.5 for Calculation of
Local Nu for Circular Tubes with Constant Heat Rate

Prandtl Number a b m n
0.7 0.00398 0.0114 1.66 1.12
10 0.00236 0.00857 1.66 1.13
00 0.00172 0.00281 1.66 1.29
Nu,, =44

Goldberg (1958), as reported by Rohsenow and Choi (1961), presents average Nusselt
numbers for the case of constant wall temperature. The results for Prandtl numbers of 0.7,
5, and infinity are shown in Figure 3.14.1. The data of this figure can also be represented
by an equation of the form of Equation 3.14.5 but with values of a, b, m, n, and Nu,
given in Table 3.14.2.
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Figure 3.14.1 Average Nusselt numbers in short tubes for various Prandtl numbers.

Table 3.14.2 Constants for Equation 3.14.5 for Calculation of
Average Nu for Circular Tubes with Constant Wall Temperature

Prandtl Number a b m n
0.7 0.0791 0.0331 1.15 0.82
5 0.0534 0.0335 1.15 0.82
00 0.0461 0.0316 1.15 0.84
Nu. =3.7

oo
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Example 3.14.1

What is the heat transfer coefficient inside the tubes of a solar collector in which the tubes
are 10 mm in diameter and separated by a distance of 100 mm? The collector is 1.5 m wide
and 3 m long and has total flow rate of water of 0.075 kg/s. The water is at 80°C.

Solution

The collector has 15 tubes so that the flow rate per tube is 0.005 kg/s. The Reynolds number

1S
VD  4m 4 x 0.005
v 7D 7 x0.01 x 3.6 x 10~*

which indicates laminar flow. The Prandtl number is 2.2 so that

Re Pr D, 1800 x 2.2 x 0.01

= 13
L 3

From Figure 3.14.1 the average Nusselt number is 4.6 so the average heat transfer

coefficient is
. Nu & B 4.6 x 0.67

D 0.01

h =308 W/m? °C

In the study of solar air heaters and collector-storage walls it is necessary to know the
forced-convection heat transfer coefficient between two flat plates. For air the following
correlation can be derived from the data of Kays and Crawford (1980) for fully developed
turbulent flow with one side heated and the other side insulated:

Nu = 0.0158 Re®8 (3.14.6)

where the characteristic length is the hydraulic diameter (twice the plate spacing). For flow
situations in which L/D,, is 10, Kays and Crawford indicates that the average Nusselt
number is approximately 16% higher than that given by Equation 3.14.6. At L/D,, = 30,
Equation 3.14.6 still underpredicts by 5%. At L/D;, = 100, the effect of the entrance
region has largely disappeared.

Tan and Charters (1970) have experimentally studied flow of air between parallel
plates with small aspect ratios for use in solar air heaters. Their results give higher heat
transfer coefficients by about 10% than those given by Kays and Crawford with an infinite
aspect ratio.

The local Nusselt number for laminar flow between two flat plates with one side
insulated and the other subjected to a constant heat flux has been obtained by Heaton et al.
(1964). The results have been correlated in the form of Equation 3.14.5 with the constants
given in Table 3.14.3.

For the case of parallel plates with constant temperature on one side and insulated
on the other side, Mercer et al. (1967) obtained the average Nusselt numbers shown
in Figure 3.14.2. They also correlated these data into the form of Equation 3.14.7 for
0.1 < Pr < 10:
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Table 3.14.3 Constants for Equation 3.14.5 for Calculation of
Local Nu for Infinite Flat Plates: One Side Insulated and Constant
Heat Flux on Other Side

Prandtl Number a b m n
0.7 0.00190 0.00563 1.71 1.17
10 0.00041 0.00156 2.12 1.59
(9 0.00021 0.00060 2.24 1.77
Nu,, =54
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Figure 3.14.2 Average Nusselt numbers in short ducts with one side insulated and one side at
constant wall temperature for various Prandtl numbers.

0.0606(Re Pr D, /L)'

Nu=49 + 0T
1 4 0.0909(Re Pr D,,/L)%7 Pr”-

(3.14.7)

The results of Sparrow (1955) indicate that for Re Pr D, /L < 1000 and for Pr = 10 the

Nusselt numbers are essentially the same as for the case when the hydrodynamic profile is
fully developed.

Example 3.14.2

a Determine the convective heat transfer coefficient for airflow in a channel 1 m wide

by 2 m long. The channel thickness is 15 mm and the air flow rate is 0.03 kg/s. The average
air temperature is 35°C.

b  If the channel thickness is halved, what is the heat transfer coefficient?

¢ If the flow rate is halved, what is the heat transfer coefficient?
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Solution

a At a temperature of 35°C the viscosity is 1.88 x 107> m?/s and the thermal conduc-
tivity is 0.0268 W/m K. The hydraulic diameter D,, is twice the plate spacing ¢, and the
Reynolds number can be expressed in terms of the flow rate per unit width m/W. The
Reynolds number is then

VD, pVuW 2 2 % 0.03
_ PV P X 3000

Re = — =
w W Wi 1x188x107°

so that the flow is turbulent. From Equation 3.14.6 the Nusselt number is
Nu = 0.0158(3200)** = 10.1

and the heat transfer coefficient is h = Nuk/D, =9 W/m? K. Since L/D, <
100, 9 W/m? °C is probably a few percent too low.

b  If the channel thickness is halved, the Reynolds number remains the same but the heat
transfer coefficient will double to 18 W/m? K.

¢ If the flow rate is halved, the Reynolds number will be 1600, indicating laminar
flow. Equation 3.14.7 or Figure 13.14.2 should be used. The value of Re Pr D, /L is
1600 x 0.7 x 0.03/2 = 16.8 so the Nusselt number is 6.0 and the heat transfer coefficient
is 6.2 W/m? K. -

3.15 WIND CONVECTION COEFFICIENTS

The heat loss from flat plates exposed to outside winds is important in the study of
solar collectors. Sparrow et al. (1979) did wind tunnel studies on rectangular plates at
various orientations and found the following correlation over the Reynolds number range
of 2 x 10* to 9 x 10*:

Nu = 0.86 Re'/? pr'/? (3.15.1)

where the characteristic length is four times the plate area divided by the plate perimeter.
For laminar flow (i.e., Re < 10°, the critical Reynolds number for flow over a flat plate)
over a very wide flat plate at zero angle of attack, the analysis of Pohlhausen (Kays and
Crawford, 1980) yields a coefficient for Equation 3.15.1 of 0.94.°

This agreement at low Reynolds numbers suggests that Equation 3.15.1 may be
valid at Reynolds numbers up to 10° where direct experimental evidence is lacking. This
extrapolation is necessary since a solar collector array 2 m x 5 m has a characteristic length
of 2.9 m and Reynolds number of 9.4 x 10° in a 5-m/s wind. From Equation 3.15.1, the
heat transfer coefficient under these conditions is approximately 7 W/m? K.

McAdams (1954) reports the data of Jurges for a 0.5-m? plate in which the convection
coefficient is given by the dimensional equation

h=57+38V (3.15.2)

To be consistent with Equation 3.15.1, the characteristic length in the Pohlhausen solution must be changed to
twice the plate length. This changes the familiar coefficient of 0.664 to 0.94.
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where V is the wind speed in m/s and /4 is in W/m? K. It is probable that the effects of
free convection and radiation are included in this equation. For this reason Watmuff et al.
(1977) report that this equation should be

h=28+3.0V (3.15.3)

For a 0.5-m? plate, Equation 3.15.1 yields a heat transfer coefficient of 16 W/m? K at
5 m/s wind speed and a temperature of 25°C. Equation 3.15.3 yields a value of 18 W/m? K
at these conditions. Thus there is agreement between the two at a characteristic length
of 0.5m. It is not reasonable to assume that Equation 3.15.3 is valid at other plate
lengths.

The flow over a collector mounted on a house is not always well represented by
wind tunnel tests of isolated plates. The collectors will sometimes be exposed directly
to the wind and other times will be in the wake region. The roof itself will certainly
influence the flow patterns. Also, nearby trees and buildings will greatly affect local flow
conditions. Mitchell (1976) investigated the heat transfer from various shapes (actually
animal shapes) and showed that many shapes were well represented by a sphere when the
equivalent sphere diameter is the cube root of the volume. The heat transfer obtained in
this manner is an average that includes stagnation regions and wake regions. A similar
situation might be anticipated to occur in solar systems. Mitchell suggests that the wind
tunnel results of these animal tests should be increased by approximately 15% for outdoor
conditions. Thus, assuming a house to be a sphere, the Nusselt number can be expressed as

Nu = 0.42 Re%® (3.15.4)

where the characteristic length is the cube root of the house volume.

When the wind speed is very low, free-convection conditions may dominate. Free-
convection data for hot inclined flat plates facing upward are not available. However,
results are available for horizontal and vertical flat plates. For hot horizontal flat plates
with aspect ratios up to 7:1, Lloyd and Moran (1974) give the following equations:

0.76 Ra'/*  for 10* < Ra < 10’ (3.15.5)
Nu
0.15Ra!/?  for 10’ Ra < 3 x 10'° (3.15.6)

where the characteristic length is four times the area divided by the perimeter. (The original
reference used A/ P.) For vertical plates McAdams (1954) gives

0.59 Ra'/*  for 10* < Ra < 10° (3.15.7)
Nu =
0.13 Ra'?  for 10° < Ra < 10'? (3.15.8)

where the characteristic length is the plate height.

For large Rayleigh numbers, as would be found in most solar collector systems,
Equations 3.15.6 and 3.15.8 apply and the characteristic length drops out of the calculation
of the heat transfer coefficient. The heat transfer coefficients from these two equations are
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nearly the same since the coefficient on the Rayleigh numbers differ only slightly. This
means that horizontal and vertical collectors have a minimum heat transfer coefficient (i.e.,
under free-convection conditions) of about SW/m? K for a 25°C temperature difference
and a value of about 4 W/m? K at a temperature difference of 10°C.

From the preceding discussion it is apparent that the calculation of wind-induced heat
transfer coefficients is not well established. Until additional experimental evidence becomes
available, the following guidelines are recommended. When free and forced convection
occur simultaneously, McAdams (1954) recommends that both values be calculated and
the larger value used in calculations. Consequently, it appears that a minimum value of
approximately 5 W/m? °C occurs in solar collectors under still-air conditions. For forced-
convection conditions over buildings the results of Mitchell (1976) can be expressed as

_ 8.6V0°

hw—W

(3.15.9)

The heat transfer coefficient (in W/m? K) for flush-mounted collectors can then be
expressed as

(3.15.10)

8.6V00
hw = max |:5, W}

where V is wind speed in meters per second and L is the cube root of the house volume
in meters. At a wind speed of 5m/s (which is close to the world average wind speed)
and a characteristic length of 8 m, Equation 3.15.10 yields a heat transfer coefficient of
10 W/m? K.

For flow of air across a single tube in an outdoor environment the equations
recommended by McAdams (1954) have been modified to give!”

0.40 + 0.54 Re®>?  for 0.1 < Re < 1000 (3.15.11)
Nu =
0.30 Re%° for 1000 < Re < 50,000 (3.15.12)

3.16 HEAT TRANSFER AND PRESSURE DROP IN PACKED BEDS
AND PERFORATED PLATES

In solar air heating systems the usual energy storage media is a packed bed of small rocks or
crushed gravel. The heat transfer and pressure drop characteristics of these storage devices
are of considerable interest and have been extensively reviewed by Shewen et al. (1978).
Although many correlations were found for both heat transfer coefficients and friction
factors in packed beds, none of the correlations were entirely satisfactory in predicting the
measured performance of their experimental packed bed. The following relationships are
based on the recommendations of Shewen et al.

10To account for outdoor conditions, the original coefficients have been increased by 25%.
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The physical characteristics of pebbles vary widely between samples. Three quantities
have been used to describe pebbles, the average particle diameter D, the void fraction ¢,
and the surface area shape factor «. The void fraction can be determined by weighing
pebbles placed in a container of volume V before and after it is filled with water. The void
fraction is then equal to

g = —wlw (3.16.1)

where m,, is the mass of water and p,, is the density of water. The density of the rock

material is then
m

= V=D (3.16.2)

Pr

where m is the mass of the rocks alone. The average particle diameter is the diameter of a
spherical particle having the same volume and can be calculated from

6m \'?
D= (n N> (3.16.3)
Py

where N is the number of pebbles in the sample. The surface area shape factor « is the
ratio of the surface area of the pebble to the surface area of the equivalent sphere and
is difficult to evaluate. For smooth river gravel o appears to be independent of pebble
size and approximately equal to 1.5. For crushed gravel o varies with the pebble size and
decreases linearly from approximately 2.5 at very small sizes to approximately 1.5 for
50-mm-diameter particles. However, large scatter is observed.

The three pebble bed parameters D, &, and « do not fully take into account all the
observed behavior of packed-bed storage devices. However, exact predictions are not
needed since the performance of a solar system is not a strong function of the storage unit
design as long as certain criteria are met.'! When measurements of the void fraction & and
the surface area shape factor « are available, the pressure drop relationship recommended
by Shewen et al. (1978) is that of McCorquodale et al. (1978):

_LGY (1-8a

= - 3.16.4
pairD g3/ ( )

Ap

[4.74—{-166 -oa u }

&2 G,D

where G, is the mass velocity of the air (air mass flow rate divided by the bed frontal area)
and L is the length of the bed in the flow direction. When measurements of « and ¢ are not
available, Shewen et al. (1978) recommend the equation of Dunkle and Ellul (1972):

LG?
Ap= =20 (21+1750 L) (3.16.5)
pairD G,D

o

1See Table 13.2.1 and Section 8.5.
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For heat transfer Shewen et al. (1978) recommend the L6f and Hawley (1948) equation

0.7
h, = 650(%) (3.16.6)

where h, is the volumetric heat transfer coefficient in W/m* K, G, is the mass velocity
in kg/m? s, and D is the particle diameter in meters. The relationship between volumetric
heat transfer coefficient /2, and area heat transfer coefficient 4 is

o
h,=6h(l —¢&) — 3.16.7
v d-e 5 ( )

Example 3.16.1

A pebble bed is used for energy storage in a solar heating system. Air is the working
fluid and flows vertically through the bed. The bed has the following dimensions and
characteristics: depth 2.10m, length and width 4.0 and 3.7 m, equivalent diameter of
pebbles 23.5mm, and void fraction 0.41. The superficial air velocity is 0.143 m/s. The
average air temperature is 40°C. Estimate the pressure drop through the bed and the
volumetric heat transfer coefficient.

Solution

Use Equation 3.16.5. From EES, for air at 40°C, p = 1.127 kg/m? and pu = 1.90 x
107> Pa s. The mass velocity is then

G, =0.143 x 1.127 = 0.161 kg/m* s

Using the Dunkle and Ellul (1972) correlation,

2.10(0.161)? 1.90 x 107
p= OO ) 50 LIOXI0T ) (o py
1.127 x 0.0235 0.161 x 0.0235

Use Equation 3.16.6 to estimate the volumetric heat transfer coefficient:

0.161 \*’
h, = 650(—) = 2500 W/m® K

0.0235 L

The heat transfer coefficient and pressure drop for air flowing through a perforated
plate is of particular interest in the design of transpired solar collectors as described in
Section 6.14. Kutscher (1994) developed the following correlation for air flowing through
a close-packed array of holes (arranged as equilateral triangles):

—1.21
Nu, = 2.75<5> Rel;? (3.16.8)
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3.17

where P is the hole pitch (the distance between the holes) and D is the hole diameter. The
velocity in the Reynolds number is the average air velocity in the hole. The correlation was
experimentally verified over the range of P/D from 5 to 40. The data used in developing
the correlation covered the following range:

P —1.21
0.25 < (—) Re%® < 1.4
D

The pressure drop through the holes was well correlated with the following:

Ap -0\’ o 0236
V3= 6.82( — Rej, (3.16.9)
P

where o is the porosity defined as the hole area to the collector area. The correlation was
tested over the range

1— 2
0 < ( 0) Re;"? < 052

EFFECTIVENESS-NTU CALCULATIONS FOR HEAT EXCHANGERS

It is convenient in solar process system calculations to use the effectiveness-NTU (number
of transfer units) method of calculation of heat exchanger performance. A brief discussion
of the method is provided here, based on the example of a countercurrent exchanger. The
working equation is the same for other heat exchanger configurations; the expressions for
effectiveness vary from one configuration to another (Kays and London, 1964).

A schematic of an adiabatic countercurrent exchanger with inlet and outlet temperatures
and capacitance rates of the hot and cold fluids is shown in Figure 3.17.1. The overall heat
transfer coefficient—area product is UA. The maximum possible temperature drop of the
hot fluid is from 7}, to T,;; the heat transfer for this situation would be

Qmax = (mcp)h(Th[ - Tc[) (3.17.1)

The maximum possible temperature rise of the cold fluid would be from 7, to 7};. The
corresponding maximum heat exchange would be

Omax = (mC ) (Ty; — T,) (3.17.2)

The maximum heat transfer that could occur in the exchanger is thus fixed by the lower of
the two capacitance rates, (mC )y, and

Qmax = (mcp)min (Th[ - Tci) (3173)
The actual heat exchange Q is given by

0 = (C,)(T,, — T,) = (1 C ), (T — Ty) (3.17.4)
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Thi )
Tho = (mCp)p

mc, »>T
( p)c Tl co

Figure 3.17.1 Schematic of an adiabatic counterflow heat exchanger showing temperatures and
capacitance rates of the hot and cold fluids.

Effectiveness ¢ is defined as the ratio of the actual heat exchange that occurs to the
maximum possible, Q/Q .«» SO

oo O _ BT Ty (hC)T, ~T,) .
Qmax (mcp)min (Thi - Tci) (mcp)min (Thi - Tu)

Since either the hot or cold fluid has the minimum capacitance rate, the effectiveness can
always be expressed in terms of the temperatures only. The working equation for the heat
exchanger is

Q =emCp)yin (Ty; — 1) (3.17.6)

For a counterflow exchanger, the effectiveness is given by

1 — e~ NTU(1-CY)

if C* #£1
1 — C* e—NTU(1—C¥) if C* # (3.17.7a)
E =
NTU
T — if C* = 7.
T NTU i (3.17.7b)
where NTU is the number of transfer units, defined as
UA
NTU = ——— (3.17.8)
(mcp)min
and the dimensionless capacitance rate is given by
mC )
o = 1€ pmin (3.17.9)

0C )

Kays and London (1964) give equations and graphs for effectivenesses for many heat
exchanger types.

The utility of this approach to heat exchanger calculations will be evident in Chapter 10,
where the temperatures of streams entering exchangers between collectors and storage
tanks and between storage tanks and loads are known.

Example 3.17.1

A heat exchanger like that in Figure 3.17.1 is located between a collector and a storage
tank. The fluid on the collector side is an antifreeze, a glycol-water mixture with
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C, = 3850 J/kg K. Its flow rate is 1.25kg/s. The fluid on the tank side is water, and its
flow rate is 0.864 kg/s. The UA of the heat exchanger is estimated to be 6500 W/K.

If the hot glycol from the collector enters the exchanger at 62°C and the cool water
from the tank enters at 35°C, what is the heat exchange rate and what are the outlet
temperatures?

Solution
First calculate the capacitance rates on the hot (collector) and cold (tank) sides of the heat
exchanger and C*. Use the symbols C;, and C, for the hot- and cold-side capacitance rates:
C, = 1.25 x 3850 = 4812 W/K
C.=0.864 x 4180 = 3610 W/K

The cold-side capacitance rate is the minimum of the two, and from Equation 3.17.9,

o — 3610 075
T 4812 0

From Equation 3.17.8,

UA 6500
NITU = — = —— =1.80
C 3610

min
The effectiveness is now calculated from Equation 3.17.7:
| — ¢~ 1:8(1-075)

T 10750181075

£ 0.69

The heat transfer is now calculated from Equation 3.17.6:

0 = 0.69 x 3610(62 — 35) = 67,300 W

The temperatures of the fluids leaving the exchanger can also be calculated using Equation
3.17.4. The leaving-water temperature is

67,300 o
T,, =35 =53.6C
« + 3610
and the leaving-glycol temperature is
67,300 o
T, = 62 — = 48.
ho =02 ey =480C u
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Radiation Characteristics
of Opaque Materials

This chapter begins with a detailed discussion of radiation characteristics of surfaces. For
many solar energy calculations only two quantities are required, the solar absorptance and
the long-wave or infrared emittance, usually referred to as just absorptance and emittance.
Although values of these two quantities are often quoted, other radiation properties may be
the only available information on a particular material. Since relationships exist between
the various characteristics, it may be possible to calculate a desired quantity from available
data. Consequently, it is necessary to understand exactly what is meant by the radiation
terms found in the literature, to be familiar with the type of information available, and to
know how to manipulate these data to get the desired information. The most common type
of data manipulation is illustrated in the examples, and readers may wish to go directly
to Section 4.5.

The names used for the radiation surface characteristics were chosen as the most
descriptive of the many names found in the literature. In many cases, the names will seem
to be cumbersome, but they are necessary to distinguish one characteristic from another. For
example, both a monochromatic angular-hemispherical reflectance and a monochromatic
hemispherical-angular reflectance will be defined. Under certain circumstances, these two
quantities are identical, but in general they are different, and it is necessary to distinguish
between them.

Both the name and the symbol should be aids for understanding the significance
of the particular characteristic. The monochromatic directional absorptance o, (1, ¢) is
the fraction of the incident energy from the direction w, ¢ at the wavelength A that
is absorbed.! The directional absorptance o (i, ¢) includes all wavelengths, and the
hemispherical absorptance « includes all directions as well as all wavelengths. We will
also have a monochromatic hemispherical absorptance «; which is the fraction of the
energy incident from all directions at a particular wavelength that is absorbed. Thus by
careful study of the name the definition should be clear.

The middle sections of the chapter are concerned with calculation of broadband
properties from spectral properties. The last part of the chapter is concerned with selective
surfaces that have high absorptance in the solar energy spectrum and low emittance in the
long-wave spectrum. Agnihotri and Gupta (1981) have reviewed this topic extensively,
and Lampert (1990) provides an overall review of optical properties of materials for solar
energy applications.

'The angles 6 and ¢ are shown in Figure 3.7.2; u = cos 6.
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174 Radiation Characteristics of Opaque Materials

4.1 ABSORPTANCE AND EMITTANCE

The monochromatic directional absorptance is a property of a surface and is defined as the
fraction of the incident radiation of wavelength A from the direction i, ¢ (where p is the
cosine of the polar angle and ¢ is the azimuthal angle) that is absorbed by the surface. In
equation form

L o (1, @)
L (1, @)

where subscripts a and i represent absorbed and incident.

The fraction of all the radiation (over all wavelengths) from the direction &, ¢ that is
absorbed by a surface is called the directional absorptance and is defined by the following
equation:

o (1, §) = (4.1.1)

/0 a)\ (/’Ls (p) I)\,i (I/L, ¢) d)\'

o0
/ I, ; dx
b

1 o
- L)L (, @) dr 4.1.2
T, ¢)/0 o, (u, @) I ; (s @) (4.1.2)

a(pu, ¢) =

Unlike the monochromatic directional absorptance, the directional absorptance is not a
property of the surface since it is a function of the wavelength distribution of the incident
radiation.?

The monochromatic directional emittance of a surface is defined as the ratio of the
monochromatic intensity emitted by a surface in a particular direction to the monochromatic
intensity that would be emitted by a blackbody at the same temperature:

L, (1, ¢)

(4.1.3)
Ly

& (1, ¢) =
The monochromatic directional emittance is a property of a surface, as is the directional
emittance, defined by>

/e(u,@lmdx .
e, ¢) = = — | e(u. ¢) 1, dr (4.1.4)

0 =
/ I, dx Iy Jo
0

In words, the directional emittance is defined as the ratio of the emitted total intensity in the
direction 1, ¢ to the blackbody intensity. Note that & (1, ¢) is a property, as its definition
contains the intensity /,,, which is specified when the surface temperature is known. In

2 Although « (i1, ¢) and some other absorptances are not properties in that they depend upon the wavelength
distribution of the incoming radiation, we can consider them as properties if the incoming spectral distribution is
known. As the spectral distribution of solar radiation is essentially fixed, we can consider solar absorptance as
a property.

3Both the numerator and denominator could be multiplied by 7 so that the definition of & (i, ¢) could have been
in terms of ¢, and ¢, .
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contrast, the definition of « (i, ¢) contains the unspecified function I; ; (i, ¢) and is
therefore not a property. It is important to note that these four quantities and the four to
follow are all functions of surface conditions such as temperature, roughness, cleanliness,
and so on.

From the definitions of the directional absorptance and emittance of a surface, the
corresponding hemispherical properties can be defined. The monochromatic hemispherical
absorptance and emittance are obtained by integrating over the enclosing hemisphere, as
was done in Section 3.7:

21 1
/0 /0 o, (w, @) I; (i, ¢) udu de

a; L 4.1.5)
/ / L (, ) dp do
0 0
2 1
/ / g (1, @) Ly (1, ) dpn
_JO 0
8. = 2w Al
/ / Ly, (i, @) du d
0 0
2 1
/ / &, (1, @) Ly (1, ) di d
=20 JO (4.1.6)

Ep

The monochromatic hemispherical emittance is thus a property. The monochromatic
hemispherical absorptance is not a property but is a function of the incident intensity.

The hemispherical absorptance and emittance are obtained by integrating over all
wavelengths and are defined by

00 2 1
/ / / & (1t $) L (s $)p due dp di
) 0 0

oo p2m 1
/ / / L (n, &)p dp d¢ da
0 0 0

oo p2m 1 00
/ / / & (1, @)L, (1, ¢)p dp dg di / &,E;; di
— 0 0 0 — 0

o0 2 1 Eb
/0 /0 /0 L, (i, @) din dep di

Again the absorptance (in this case the hemispherical absorptance) is a function of the
incident intensity whereas the hemispherical emittance is a surface property.

If the monochromatic directional absorptance is independent of direction [i.e.,
a, (1, @) = «, ], then Equation 4.1.7 can be simplified by integrating over the hemisphere

to yield o
/ ®,q; ; dr
a=% 4.1.9)

o0
/ i da
0

(4.1.7)

4.1.8)
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where g, ; is the incident monochromatic radiant energy. If the incident radiation in either
Equation 4.1.7 or 4.1.9 is radiation from the sun, then the calculated absorptance is called
the solar absorptance.

4.2 KIRCHHOFF’S LAW

A proof of Kirchhoff’s law is beyond the scope of this book. [See Siegel and Howell (2002)
for a complete discussion.] However, a satisfactory understanding can be obtained without
a proof. Consider an evacuated isothermal enclosure at temperature 7. If the enclosure is
isolated from the surroundings, then the enclosure and any substance within the enclosure
will be in thermodynamic equilibrium. In addition, the radiation field within the enclosure
must be homogeneous and isotropic. If this were not so, we could have a directed flow of
radiant energy at some location within the enclosure, but this is impossible since we could
then extract work for an isolated and isothermal system.

If we now consider an arbitrary body within the enclosure, the body must absorb the
same amount of energy as it emits. An energy balance on an element of the surface of the
body yields

ag =¢E, “4.2.1)

If we place a second body with different surface properties in the enclosure, the same
energy balance must apply, and the ratio ¢/ E, must be constant:
g4 _&a_% 4.2.2)
E, a o
Since this must also apply to a blackbody in which ¢ = 1, the ratio of ¢ to « for any
body in thermal equilibrium must be equal to unity. Therefore, for conditions of thermal
equilibrium
E=u (4.2.3)

It must be remembered that « is not a property, and since this equation was developed for
the condition of thermal equilibrium, it will not be valid if the incident radiation comes
from a source at a different temperature (e.g., if the source of radiation is the sun). This
distinction is very important in the performance of solar collectors.

Equation 4.2.3 is sometimes referred to as Kirchhoff’s law, but his law is much more
general. Within an enclosure the radiant flux is everywhere uniform and isotropic. The
absorptance of a surface within the enclosure is then given by Equation 4.1.7 with 7, ; (i, ¢)
replaced by [, and the emittance is given by Equation 4.1.8. Since the hemispherical
absorptance and emittance are equal under conditions of thermal equilibrium, we can
equate Equations 4.1.7 and 4.1.8 to obtain

00 2 1
/0 Ly, fo /0 [oy (i, §) — &, (1. §)lu dpu dp di = 0 4.2.4)

It is mathematically possible to have this integral equal to zero without o, (1t, ¢) being
identical to &, (1, ¢), but this is a very unlikely situation in view of the very irregular
behavior of o, (1, ¢) exhibited by some substances. Thus we can say

8A(I’L9 ¢) = aA(Ms ¢) (425)
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This result is true for all conditions, not just thermal equilibrium, since both «;, (1, ¢) and
&, (1, ¢) are properties.*

If the surface does not exhibit a dependence on the azimuthal angle, then Equation
4.2.5 reduces to

o (W) = &, (1) (4.2.6)

and if the dependence on polar angle can also be neglected, then Kirchhoff’s law further
reduces to
o, =¢& 4.2.7)

Finally, if the surface does not exhibit a wavelength dependency, then the absorptance « is
equal to the emittance €. This is the same result obtained for any surface when in thermal
equilibrium, as given by Equation 4.2.3.

4.3 REFLECTANCE OF SURFACES

Consider the spatial distribution of radiation reflected by a surface. When the incident
radiation is in the form of a narrow ‘‘pencil’’ (i.e., contained within a small solid angle),
two limiting distributions of the reflected radiation exist. These two cases are called
specular and diffuse. Specular reflection is mirrorlike, that is, the incident polar angle is
equal to the reflected polar angle and the azimuthal angles differ by 180°. On the other
hand, diffuse reflection obliterates all directional characteristics of the incident radiation
by distributing the radiation uniformly in all directions. In practice, the reflection from a
surface is neither all specular nor all diffuse. The general case along with the two limiting
situations is shown in Figure 4.3.1.

In general, the magnitude of the reflected intensity in a particular direction for a given
surface is a function of the wavelength and the spatial distribution of the incident radiation.
The biangular reflectance or reflection function is used to relate the intensity of reflected
radiation in a particular direction by the following equation:

ol (e, @)
p)L(I’Lrs (prs M, ¢l) = lim )hi

4.3.1)
Awi=0 L ;u; Aw;

The numerator is 7 times the intensity reflected in the direction p,., ¢, when an energy flux
of amount /; ;u; Aw; is incident on the surface from the direction p;, ¢;. The factor 7 has

A ~ ~

SPECULAR DIFFUSE GENERAL

Figure 4.3.1 Reflection from surfaces.

#Kirchhoff’s law actually applied to each component of polarization and not to the sum of the two components
as implied by Equation 4.2.5.
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NORMAL

#; 180- ¢,

Figure 4.3.2 Coordinate system for the reflection function.

been included so that the numerator ‘‘looks like’” an energy flux. The physical situation is
shown schematically in Figure 4.3.2.

Since the energy incident in the solid angle Aw; may be reflected in all directions,
the reflected intensity in the direction u,, ¢, will be of infinitesimal size compared to the
incident intensity. By multiplying the incident intensity by its solid angle (which must be
finite in any real experiment) and the cosine of the polar angle, we obtain the incident
radiation flux which will have values on the same order of magnitude as the reflected
intensity. The biangular reflectance can have numerical values between zero and infinity;
its values do not lie only between zero and 1.

From an experimental point of view, it is not practical to use the scheme depicted in
Figure 4.3.2 since all the radiation quantities would be extremely small. An equivalent
experiment is to irradiate the surface with a nearly monodirectional flux (i.e., with a
small solid angle Aw;) as shown in Figure 4.3.3. The reflected energy in each direction
is measured. This measured energy divided by the measurement instrument solid angle
(Aw,) will be approximately equal to the reflected intensity. The incident flux will be on
the same order and can be easily measured.

Two types of hemispherical reflectances exist. The angular-hemispherical reflectance
is found when a narrow pencil of radiation is incident on a surface and all the reflected radi-
ation is collected. The hemispherical-angular reflectance results from collecting reflected
radiation in a particular direction when the surface is irradiated from all directions.

The monochromatic angular-hemispherical reflectance will be designated by
P (i, @;), where the subscript i indicates that the incident radiation has a specified
direction. This reflectance is defined as the ratio of the monochromatic radiant energy
reflected in all directions to the incident radiant flux within a small solid angle Aw;.
The incident energy I, ;it; Aw; that is reflected in all directions can be found using the
reflection function:

1 2w 1
q}\,r = ;\/0 /(; px(lﬁr, ¢r7 Mis ¢i)l)\,i“’i Awi My d:u’r d¢r (432)

MEASURING
INSTRUMENT

Dy Py

Qw; s
). |
Figure 4.3.3 Schematic representation of
an experiment for measuring the reflection
<

function.
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The monochromatic angular-hemispherical reflectance can then be expressed as

CIA,r 1

2 1
L) = — = — ., i, GO, du,. d 433
o5 (1is ;) 1o Aa, N/O /O 05 (ys Gps s G, A, dip, (4.3.3)

Examination of Equation 4.3.3 shows that p, (i;, ¢;) is a property of the surface. The
angular-hemispherical reflectance, p(u;, ¢;), can be found by integrating the incident
and reflected fluxes over all wavelengths, but it is not a property as it depends upon the
wavelength distribution of the incoming radiation.

The monochromatic hemispherical-angular reflectance is defined as the ratio of the
reflected monochromatic intensity in the direction u,, ¢, to the monochromatic energy
from all directions divided by 7 (which then looks like intensity). The incident energy can
be written in terms of the incident intensity integrated over the hemisphere:

2w 1
0 0

and the monochromatic hemispherical-angular reflectance is then

Ik,r (,er, ¢r)

4.3.5
f]x,i/ﬂ ( )

o (ys &) =

where the subscripts 7 in p, (i, ¢,) are used to specify the reflected radiation as being
in a specified direction. In terms of the reflectance function, Equation 4.3.5 can be
written as

2w 1
/0 /0 ooty By s B Ty bty Ay A,

2 1
/ / L iy dp; dg;
o Jo

Since p, (i,, ¢,) is dependent upon the angular distribution of the incident intensity,
it is not a surface property. For the special case when the incident radiation is diffuse,
the monochromatic hemispherical-angular reflectance is identical to the monochromatic
angular-hemispherical reflectance. To prove the equality of p, (i,, ¢,) and p, (i;, ¢;)
under the condition of constant I, ;, it is necessary to use the symmetry of the reflection
function as given by

Py (e $,) = (4.3.6)

10)L (:u“i’ ¢i’ Mr» ¢r) = 10)\ (,er, ¢r’ M[9 ¢1) (437)

and compare Equation 4.3.6 (with I, ; independent of incident direction) with Equation
4.3.3. The proof of Equation 4.3.7 is beyond the scope of this book [see Siegel and
Howell (2002)].

The equality of p; (u;, ¢;) and p, (i1,, ¢,) when I, ; is uniform is of great importance
since the measurement of p, (i,, ¢,) is much easier than p, (1;, ¢;). This is discussed in
Section 4.7.
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Both p, (1;, ¢;) and p, (i,, ¢,) can be considered on a total basis by integration over
all wavelengths. For the case of the angular-hemispherical reflectance, we have

oo
/ qk,r da
0

p(“’is ¢1) = %)
/ L i Aw; di
0

1 oo p2m pl
= ﬁ‘/(; /(; /(; Py (:u'i’ ¢i’ My ¢r) I)Lyil"Lr d“‘r d¢r da (438)

which, unlike the monochromatic angular-hemispherical reflectance, is not a property since
it depends upon the nature of the incoming radiation.

When a surface element is irradiated from all directions and all the reflected radiation
is measured, we characterize the process by the monochromatic hemispherical reflectance,
defined as

_ QA,r

B qx.j

o 43.9)

The reflected monochromatic energy can be expressed in terms of the reflection function
and the incident intensity by

2 1 2 1
Py \HKys ¢r’ Mis ¢i
Dr = / / |:/ / - ( )Ik,iui du; d¢i:| ty d, dp, (4.3.10)
0 0 0 0 44

The incident energy, expressed in terms of the incident intensity, is

2 1
9i = /0 /O L iy du; doy; 4.3.11)

Division of Equation 4.3.10 by 4.3.11 yields the monochromatic hemispherical reflectance.
For the special case of a diffuse surface (i.e., the reflection function is a constant), the
monochromatic hemispherical reflectance is numerically equal to the reflection function
and is independent of the spatial distribution of the incident intensity.

The hemispherical reflectance is found by integration of Equations 4.3.10 and 4.3.11
over all wavelengths and finding the ratio

00
q, » dx
pzq_r_/o A

- o0
7 / qy..i da
0

The hemispherical reflectance depends on both the angular distribution and wavelength
distribution of the incident radiation.

For low-temperature applications that do not include solar radiation, a special form
of the hemispherical reflectance (often the name is shortened to ‘‘reflectance’’) will be
found to be the most useful. The special form is Equation 4.3.12, which is based on the

(4.3.12)
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assumption that the reflection function is independent of direction (diffuse approximation)
and wavelength (gray approximation). The diffuse approximation for the hemispherical
reflectance has already been discussed and was found to be equal to p, (1;, ¢;, 1, ;).
When the gray approximation is made in addition to the diffuse approximation, the surface
reflectance becomes independent of everything except possibly the temperature of the
surface, and even this is usually neglected.

4.4 RELATIONSHIPS AMONG ABSORPTANCE, EMITTANCE,
AND REFLECTANCE

Itis now possible to show that it is necessary to know only one property, the monochromatic
angular-hemispherical reflectance, and all absorptance and emittance properties for opaque
surfaces can be found.

Consider a surface located in an isothermal enclosure maintained at temperature 7.
The monochromatic intensity in a direction u, ¢ from an infinitesimal area of the surface
consists of emitted and reflected radiation and must be equal to 7,

])Lb = Ik,emitted (,LL, ¢) + IA,reﬂected (H” ¢) (441)

The emitted and reflected intensities are

L emived (W, @) = &, (1, @) L (4.4.2)
I)L,reﬂected (Ma ¢) = P, (,er, ¢r) I)Jy (443)

but p, (i,, ¢,) is equal to the monochromatic angular-hemispherical reflectance, p; (u;,
¢,), since the incident intensity is diffuse. Since /,; can be canceled from each term, we
have

&, (s @) =1 —p; (i ¢;) (4.4.4)

But from Kirchhoff’s law

&) (1, ¢) = o, (u, @) =1- P, (IJ«,‘, ¢,) 4.4.5)

Thus the monochromatic directional emittance and the monochromatic directional absorp-
tance can both be calculated from knowledge of the monochromatic angular-hemispherical
reflectance. Also, all emittance properties (Equations 4.1.4, 4.1.6, and 4.1.8) can be found
once p, (i;, ¢;) is known. The absorptances (Equations 4.1.2, 4.1.5, and 4.1.7) can be
found if the incident intensity is specified.

The relationship between the reflectance and absorptance’® of Equation 4.4.5 can be
considered as a statement of conservation of energy. The incident monochromatic energy

23 ¢

SThere are no generally accepted names used in the literature except for the simple ‘“absorptance,’” *‘emittance,”’
and ‘‘reflectance,”” which, for clarity, were prefixed with the name hemispherical. In the remainder of this book,
the modifier hemispherical will generally be omitted since most available data are hemispherical. If it is necessary
to distinguish directional quantities, then the full name will be used.
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from any direction is either reflected or absorbed. Similar arguments can be used to relate
other absorptances to reflectances. For example, for an opaque surface, energy from all
directions, either monochromatic or total, is either absorbed or reflected so that

o+, =p+¢e =1 (4.4.6)

and
p+a=1 4.4.7)

4.5 BROADBAND EMITTANCE AND ABSORPTANCE

The concepts and analyses of the previous sections are greatly simplified if it is assumed
that there is no directional dependence of & or «. Figure 4.5.1 shows monochromatic
emission as a function of wavelength for a blackbody and for a real surface, both at the
same surface temperature. The monochromatic emittance at wavelength A is E, /E,,,, the
ratio of the energy emitted at a wavelength to what it would be if it were a blackbody, that
is, the ratio A/B.

The total emittance is found by integrating over wavelengths from zero to infinity:

oo o0
/ &, E,, di / & E,p, dA
0 _Jo

ES = 4
/ E,, da of
0

This is the same as Equation 4.1.8. If the nature of the surface (i.e., €, ) and its temperature
are known, the emittance ¢ can be determined. Since ¢ is not dependent on any external
factors, it is a property of the surface.

Monochromatic absorptance is the fraction of the incident radiation at wavelength A
that is absorbed. This is shown in Figure 4.5.2, where the incident energy spectrum 1, ;
is shown as an arbitrary function of A. The symbol «;, is the monochromatic absorptance
at A, the ratio C/D, or I, ,/I, ;. The total absorptance for this surface for the indicated

e — 45.1)

E;p, blackbody spectrumat T
Ey

B E;.atT

OO A

Figure 4.5.1 Monochromatic emission E, versus wavelength for a black surface and a real surface,
both at the same temperature.
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1,;, incident spectrum
h
D /5, absorbed
)
0 0 2

Figure 4.5.2 Monochromatic incident and absorbed energy.

incident spectrum is found by integration over wavelengths from zero to infinity:

o0
/ a, [, ; di
o :

O — (4.5.2)
f I, d
L

This is the same as Equation 4.1.9. In contrast to emittance, which is specified by
the nature of the surface and its temperature, absorptance depends on an external fac-
tor, the spectral distribution of incident radiation. A specification of « is meaningless
unless the incident radiation is described. In the context of solar energy we are usu-
ally interested in absorptance for solar radiation [as described by a terrestrial solar
energy spectrum (Table 2.6.1), the extraterrestrial spectrum (Table 1.3.1), or an equiva-
lent blackbody spectrum (described by a temperature and Table 3.6.1)]. For usual solar
energy applications, the terrestrial solar spectrum of Table 2.6.1 provides a realistic
basis for computation of «, and henceforth in this book reference to absorptance without
other specification of the incident radiation means absorptance for the terrestrial solar
spectrum.

4.6 CALCULATION OF EMITTANCE AND ABSORPTANCE

The data that are generally available are measurements of monochromatic reflectance p, .
This is related to «r; and ¢, by Equation 4.4.6. With these data, we can conveniently divide
the spectrum (the blackbody spectrum for emittance or the incident energy spectrum for
absorptance) into segments and numerically integrate to obtain « or €.

Consider first the calculation of emittance. As shown in Figure 4.6.1, for a segment
Jj of the blackbody spectrum at the surface temperature 7, there is a ‘‘monochromatic’’
emittance &, ; that is the ratio of the shaded area to the total area. The ratio E, /E;, at an
appropriate wavelength in the segment (often its energy midpoint) is taken as characteristic
of the segment. The energy increment A f; in the blackbody spectrum can be determined
from Table 3.6.1 as the difference in f,_,; at the wavelengths defining the segment. The
contribution of the jth increment to € is &; A f;.
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E;

Figure 4.6.1 The jth segment in the emission

0 spectrum for which the monochromatic emit-
0 AA./' A

tance is &, ;.

Thus the emittance is

=Y & Af (4.6.1)
j=1
or in terms of reflectance
8=Z(l—pj)AJ;=1—ijAfj (4.6.2)
j=1 j=1

If the energy increments A f; are equal,

l ¢ 1 ¢
= ;Zgj =1- ;ij (4.6.3)
j=1 j=1

The calculation of absorptance is similar, except that the incident radiation must
be specified. In general, it will not be blackbody radiation, and other information must
be available on which to base the calculation. As our interest is in absorptance for
solar radiation, Table 2.6.1 provides this information for calculation of « for terrestrial
applications.

The incident radiation is divided into increments, and the contributions of these
increments are summed to obtain « for that incident radiation. For an increment in incident
radiation A f;, the contribution to « is « f A ]j Summing,

a_Za Af= Z(l PHAf=1- ZpJAJ; (4.6.4)

j=1

and if the energy increments A f; are equal,

1 1 |
=;ZO{]~=;Z(1—,{)]~)=1—;Z,0]- (4.6.5)
j=1 j=1 j=1

The calculations of « and ¢ are illustrated in the following example, where the incident
radiation is taken as the terrestrial solar spectrum of Table 2.6.1.
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Example 4.6.1

Calculate the absorptance for the terrestrial solar spectrum and emittance at 177°C (450 K)
of the surface having the monochromatic reflectance characteristics shown in the figure.

1.0 T
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Solution

First calculate the emittance using five equal increments of blackbody radiation from
Table 3.6.1b. For each increment, A jT at the midpoint is determined from the table,
the midpoint wavelength A; for that increment is calculated from A;T/7T, and p, ; is
determined at A ; from the figure. For the first increment, which has wavelength limits of 0
and 2680/450 = 5.96 um, the midpoint A ;7" = 2200 um K, A ; = 2200/450 = 4.89 pum,
and p, = 0.83. Tabulating for the five equal increments results in the following:

Increment, Afj Aj T 4> hmK Ajymid, um P
0.0-0.2 2200 4.89 0.83
0.2-0.4 3120 6.93 0.87
0.4-0.6 4110 9.13 0.94
0.6-0.8 5590 12.42 0.94
0.8-1.0 9380 20.84 0.94

Y =452

Using Equation 4.6.3, since all increments are equal,

4.52

Note that if 10 increments are used, the emittance is calculated to be 0.09. As there is no
change of p, with A at wavelengths beyond 10 wm, smaller increments (perhaps A f; = 0.1)
could be used for A < 10 um and a single large increment for A > 10 zem.
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The calculation of absorptance for the terrestrial solar spectrum is similar. Taking 10
equal energy increments from Table 2.6.1, the results of these calculations are as follows:

Increment, A]? Amid> MM P
0.0-0.1 0.426 0.04
0.1-0.2 0.508 0.05
0.2-0.3 0.581 0.06
0.3-0.4 0.653 0.06
0.4-0.5 0.732 0.06
0.5-0.6 0.822 0.07
0.6-0.7 0.929 0.08
0.7-0.8 1.080 0.10
0.8-0.9 1.300 0.14
0.9-1.0 1.974 0.55

Y =121
And from Equation 4.6.5,« = 1 — 1.21/10 = 0.88. |

4.7 MEASUREMENT OF SURFACE RADIATION PROPERTIES

In the preceding discussion many radiation surface properties have been defined. Unfortu-
nately, in much of the literature the exact nature of the surface being reported is not clearly
specified. This situation requires that caution be exercised.

Many of the reflectance data reported in the literature have been measured by a
method devised by Gier et al. (1954).° In this method a cool sample is exposed to
blackbody radiation from a high-temperature source (a hohlraum), and the monochromatic
radiation reflected from the surface is compared to monochromatic blackbody radiation
from the cavity. The data are thus hemispherical-angular monochromatic reflectances (or
angular-hemispherical monochromatic reflectances since they are equal for diffuse incident
radiation). A hohlraum is shown schematically in Figure 4.7.1. In many systems the angle

| Water-cooled
~sample at ~30C

Heated cavity
at ~1000C

— Angle of measured
reflected radiation

Figure 4.7.1 Schematic of a hohlraum for measurement of monochromatic hemispherical-angular
reflectance. Radiation A is blackbody radiation reflected from the sample. Radiation B is blackbody
radiation from the cavity. The ratio A, /B, is p, (i, ¢).

See Agnihotri and Gupta (1981) for a more extensive review of methods of measurement of absorptance and
emittance.
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between the surface normal and the measured radiation is often fixed at a small value so
that measurements can be made at only one angle (approximately normal). In some designs
the sample can be rotated so that all angles can be measured. With measurements of this
type, emittance and absorptance values can be found from the equations of Section 4.6.
Table 4.7.1 gives data on surface properties for a few common materials. The data are
total hemispherical or total normal emittances at various temperatures and normal solar
absorptance at room temperature. Most of these data were calculated from monochromatic
data as was done in Example 4.6.1. Table 4.7.1 was compiled from Volumes 7, 8, and

Table 4.7.1 Radiation Properties

Emittance
Material Type® Temperature? Absorptance®
0.102 0.130 0.113
Alumi s H , , 0.09-0.10
ummnum, pure 573 ' 773 ' 873
. . 0.842 0.720 0.669
Aluminum, anodized H , R 0.12-0.16
206 484 574
0.366 0.384 0.378
Aluminum, SiO, coated H , R 0.11
263 293 324
. s 0.83
Carbon black in acrylic binder H 78 0.94
. 0.290 0.355 0.435
Chromium N , s 0.415
722 905 1072
0.041 0.036 0.039
Copper, polished H 0.35

338 ' 463 ' 803
.02 .04 .04

Gold H 00 5, 0.0 0, 0.048 0.20-0.23
275 468 = 668

0.071 0.110 0.175

I H 44
ron 199 468 668 0
0.89
Lampblack i N — 0.96
ampblack in epoxy 208
0.73 0.68 0.53
Magnesium oxide H — ., == 0.14
380 491 755
.1 N 12
Nickel H M w 0— 0.36-0.43
310 468 668
Paint
0.981 0.981
Parson’s black H _— — 0.98
240~ 462
0.90
Acrylic white H — 0.26
298
0.929 0.926 0.889
White (ZnO) H 0.12-0.18

295 7 478 7 646

“H is total hemispherical emittance; N is total normal emittance.
bThe numerator is the emittance at the temperature (K) of the denominator.
“Normal solar absorptance.
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9 of Touloukian et al. (1970, 1972, 1973). These three volumes are the most complete
reference to radiation properties available today. In addition to total hemispherical and
normal emittance, such properties as angular spectral reflectance, angular total reflectance,
angular solar absorptance, and others are given in this extensive compilation.

4.8 SELECTIVE SURFACES

Solar collectors must have high absorptance for radiation in the solar energy spectrum.
At the same time, they lose energy by a combination of mechanisms,’ including thermal
radiation from the absorbing surface, and it is desirable to have the long-wave emittance of
the surface as low as possible to reduce losses. The temperature of this surface in most flat-
plate collectors is less than 200°C (473 K), while the effective surface temperature of the
sun is approximately 6000 K. Thus the wavelength range of the emitted radiation overlaps
only slightly the solar spectrum. (Ninety-eight percent of the extraterrestrial solar radiation
is at wavelengths less than 3.0 um, whereas less than 1% of the blackbody radiation from
a 200°C surface is at wavelengths less than 3.0 um.) Under these circumstances, it is
possible to devise surfaces having high solar absorptance and low long-wave emittance,
that is, selective surfaces.®

The concept of a selective surface is illustrated in Figure 4.8.1. This idealized surface
is called a semigray surface, since it can be considered gray in the solar spectrum (i.e., at
wavelengths less than approximately 3.0 um) and also gray, but with different properties,
in the infrared spectrum (i.e., at wavelengths greater than approximately 3.0 um). For
this idealized surface, the reflectance below the cutoff wavelength is very low. For an
opaque surface «; = 1 — p,, so in this range «; is very high. At wavelengths greater
than A, the reflectance is nearly unity, and since ¢, = «; = 1 — p,, the emittance in this
range is low.

The absorptance for solar energy and emittance for long-wave radiation are determined
from the monochromatic reflectance data by integration over the appropriate spectral
range. The absorptance for solar radiation, usually designated in the solar energy literature
simply as «, and the emittance, usually designated simply as ¢, are calculated as shown
in Section 4.6. For normal operation of flat-plate solar collectors, the temperatures

1 T
&
| pr =095
W
&
I
n A =3um
" s =0.10 ¢TI
Q

0 ]

0 Wavelength, A

Figure 4.8.1 A hypothetical selective surface with the cutoff wavelength at 3 um.

"This will be discussed in detail in Chapter 6.
8 Agnihotri and Gupta (1981) provide a very extensive coverage of selective surfaces.
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will be low enough that essentially all energy will be emitted at wavelengths greater
than 3 pem.

Example 4.8.1

For the surface shown in Figure 4.8.1, calculate the absorptance for blackbody radiation
from a source at 5777 K and the emittance at surface temperatures of 150 and 500°C.

Solution

The absorptance for radiation from a blackbody source at 5777 K is found by Equation
4.6.4 with the incident radiation g, ; given by Planck’s law, Equation 3.4.1.

For this problem, «; has two values, o in the short wavelengths below A, and o/ in
the long wavelengths:

a=agfo,r+ oL (L= fo_ur)

where f,_, 7 is the fraction of the incident blackbody radiation below the critical wavelength
and is found from Table 3.6.1 at AT = 3 x 5777 = 17,331. Therefore the absorptance is

a = (1-0.10)(0.979) + (1 — 0.95)(1 — 0.979) = 0.88

The emittances at 150 and 500°C are found with Equation 4.6.1. Again Table 3.6.1 is used
in performing this integration. Equation 4.6.1 reduces to the following:

e =¢egfounr + e (L — fo_ur)

where fy_,7 is now the fraction of the blackbody energy that is below the critical
wavelength but at the surface temperature rather than the source temperature, as was used
in calculating the absorptance. For a surface temperature of 150°C (423 K), AT = 1269
and f_,7 = 0.004. The emittance at 150°C is then

&150 = (1 —0.10)(0.004) + (1 — 0.95) (0.996) = 0.05
at a surface temperature of 500°C, f,,_,; = 0.124 and the emittance at 500°C is
e5090 = (1 —0.10)(0.124) + (1 — 0.95) (0.876) = 0.16 [ |

In practice, the wavelength dependence of p, does not approach the ideal curve of
Figure 4.8.1. Examples of p, versus X for several real surfaces are shown in Figures 4.8.2
and 4.8.3. Real selective surfaces do not have a well-defined critical wavelength A, or
uniform properties in the short- and long-wavelength ranges. Values of emittance will
be more sensitive to surface temperature than those of the ideal semigray surface of
Figure 4.8.1. The integration procedure is the same as in Examples 4.6.1 and 4.8.1, but
smaller spectral increments must be used.

Example 4.8.2

Calculate the solar absorptance and the emittance at 100°C for the surface shown in curve
C of Figure 4.8.2.



190 Radiation Characteristics of Opaque Materials

00— T T T T IR S Y S S ——
o c
W
80 n
® gor- A .
] \ A Polished zinc on polished
2 aluminum
] 8 o )
= B Galvanized iron, 22 mil, B
& 401 commercial finished.
Cc Tabor solar collector
chem. treatment of
galvanized iron
20~ N
C
ol T Scolechange —~ | | 111
025 050075 10 20 30 40 50 60 70 90 1l 13 15 17 19 21 23 25

Wavelength, xm

Figure 4.8.2 Spectral reflectance of several surfaces. From Edwards et al. (1960).
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Figure 4.8.3 Spectral reflectance of black chrome on nickel before and after humidity tests. From
Lin (1977).

Solution

The solar absorptance o« should be calculated from Equation 4.6.5, with the incident
radiation ¢, ; having the spectral distribution of solar radiation at the collector surface.
Assume that the spectral distribution of Table 2.6.1 for air mass 2 represents the distribution
of solar radiation. The table that follows gives the midpoints of the spectral bands that
each contains 10% of the extraterrestrial solar radiation. The monochromatic reflectances
of the selective surface corresponding to these midpoint wavelengths are shown. The
monochromatic absorptances are just 1 — p, and are assumed to hold over their wavelength
intervals. Since the intervals are all the same, the solar absorptance is the sum of these
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values divided by the number of intervals as in Equation 4.6.5. The result of the calculation
isa = 0.89.

The emittance at a temperature of 100°C is found in the same manner as described in
Example 4.6.1, but here 10 increments are used rather than 5 increments. The midpoint AT
of each increment is found from Table 3.6.1b, the wavelength is determined from AT with
T = 373 K, and the monochromatic reflectance is read from the curve of Figure 4.8.2. The
value of monochromatic emittance at wavelengths beyond 25 pm is assumed to be 0.13.
Using Equation 4.6.3, this procedure leads to an emittance of 0.16.

The details of the « and ¢ calculations are shown in the following table:

Incident Spectrum Emitted Spectrum

Increment in A at a, = AT at Aat g, =
Spectrum Midpoint Midpoint 1—p, Midpoint T =373 K 1 —p,
0.0-0.1 0.05 0.43 0.95 1,880 5.0 0.43
0.1-0.2 0.15 0.51 0.93 2,450 6.6 0.24
0.2-0.3 0.25 0.58 0.91 2,900 7.8 0.16
0.3-0.4 0.35 0.65 0.96 3,350 9.0 0.14
0.4-0.5 0.45 0.73 0.96 3,830 10.3 0.11
0.5-0.6 0.55 0.82 0.93 4,410 11.8 0.10
0.6-0.7 0.65 0.93 0.86 5,130 13.8 0.09
0.7-0.8 0.75 1.08 0.78 6,150 16.5 0.08
0.8-0.9 0.85 1.30 0.72 7,850 21.0 0.10
0.9-1.0 0.95 1.97 0.90 12,500 335 0.13
Average 0.89 Average 0.16

The reflectance of this surface for solar radiation is 1 —« = 0.11. The infrared
emittance at a surface temperature of 373 K is 0.16. The figure shows the infrared
emittance for surface temperatures between 300 and 800 K. For the range of normal
flat-plate collector surface operating temperatures (275 to 375 K) assuming the surface
emittance to be 0.16 would be a reasonable approximation.
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The potential utility of selective surfaces in solar collectors was inferred by Hottel and
Woertz (1942) and noted by Gier and Dunkle (1958) and Tabor (1956, 1967) and Tabor
et al. (1964). Interest in designing surfaces with a variety of p,-versus-A characteristics
for applications to space vehicles and to solar energy applications resulted in considerable
research and compilation of data (e.g., Martin and Bell, 1960; Edwards et al., 1960;
Schmidt et al., 1964). Tabor (1967, 1977) reviewed selective surfaces and presents several
methods for their preparation. Buhrman (1986) presents a review of the physics of these
surfaces. Selective surfaces are in commercial use.

4.9 MECHANISMS OF SELECTIVITY

Several methods of preparing selective surfaces have been developed which depend on
various mechanisms or combinations of mechanisms to achieve selectivity.

Coatings that have high absorptance for solar radiation and high transmittance for
long-wave radiation can be applied to substrates with low emittance. The coating absorbs
solar energy, and the substrate is the (poor) emitter of long-wave radiation. Coatings
may be homogeneous or have particulate structure; their properties are then the inherent
optical properties of either the coating material or the material properties and the coating
structure. Many of the coating materials used are metal oxides and the substrates are metals.
Examples are copper oxide on aluminum (e.g., Hottel and Unger, 1959) and copper oxide
on copper (e.g., Close, 1962). A nickel—zinc sulfide coating can be applied to galvanized
iron (Tabor, 1956).

Black chrome selective surfaces have been widely adopted for solar collectors. The
substrate is usually nickel plating on a steel or copper base. The coatings are formed
by electroplating in a bath of chromic acid and other agents.” In laboratory specimens,
absorptances of 0.95 to 0.96 and emittances of 0.08 to 0.14 were obtained, while the
average properties of samples of production run collector plates were @ = 0.94and ¢ = 0.08
(Moore, 1976). Reflectance properties of these surfaces are described by McDonald (1974,
1975) and others. The surfaces appear to have good durability on exposure to humid
atmospheres, as shown in Figure 4.8.3. Many references are available on preparation of
chrome black surfaces, for example, Benning (1976), Pettit and Sowell (1976), and Sowell
and Mattox (1976). The structure and properties of black chrome coatings have been
examined by Lampert and Washburn (1979). They found the wavelengths of transition
from low to high reflectance to be in the 1.5- to 5-um range, with increasing thickness of
the coating shifting the transition to longer wavelengths. The coatings are aggregates of
particles and voids, with particles of 0.05 to 0.30 um diameter that are combinations
of very much smaller particles of chromium and an amorphous material that is probably
chromium oxide.

Selective surfaces have been in use on Israeli solar water heaters since about 1950.
A base of galvanized iron is carefully cleaned and a black nickel coating is applied by
immersion of the plate as the cathode in an aqueous electroplating bath containing nickel
sulfate, zinc sulfate, ammonium sulfate, ammonium thiocyanate, and citric acid. Details of
this process are provided by Tabor (1967).

9Plating bath chemicals are available from Harshaw Chemical Co. (Chromonyx chromium process) and du Pont
Company (Durimir BK black chromium process).
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Copper oxide on copper selective blacks is formed on carefully degreased copper plates
by treating the plates for various times in hot (140°C) solutions of sodium hydroxide and
sodium chlorite, as described by Close (1962). Similar proprietary blackening processes
have been used in the United States under the name Ebanol.

Absorptance of coatings can be enhanced by taking advantage of interference phe-
nomena. Some coatings used on highly reflective (low-¢) substrates are semiconductors
which have high absorptance in the solar energy spectrum but have high transmittance for
long-wave radiation. Many of these materials also have a high index of refraction and thus
reflect incident solar energy. This reflection loss can be reduced by secondary antireflective
coatings. It has been shown by Martin and Bell (1960) that three-layer coatings such as
Si0,-Al-SiO, on substrates such as aluminum could have absorptances for solar energy
greater than 0.90 and long-wave emittances less than 0.10. The selectivity of surfaces using
silicon and germanium with antireflecting coatings has been demonstrated by Seraphin
(1975) and Meinel et al. (1973).

Vacuum sputtering processes for selective surfaces in evacuated tube collectors have
been studied by Harding (1976) and Harding et al. (1976). The sputtering can be done in
inert atmospheres (argon) to make metal coatings or in reactive atmospheres (argon plus 1
to 2% methane) to produce metal and metal carbide coatings. These coatings reportedly
have extremely low emittances (¢ = 0.03) but moderate absorptance (o ~ 0.8); higher
absorptances are optimum in most applications.

Sputtering processes are used in the application of cermet selective surfaces on the
receivers of Luz concentrating collectors, which operate at temperatures between 300
and 400°C (Harats and Kearney, 1989). Four layers are deposited on the steel pipe
receiving surface: an antidiffusing oxide layer to prevent diffusion of molecules of the
steel substrate into the coatings, an infrared reflective layer (to provide low emittance), the
cermet absorbing layer, and an antireflective oxide layer. These surfaces, which are used
in vacuum jackets, have absorptance for solar radiation of 0.96 and design emittance for
long-wave radiation of 0.16 at 350°C. The stability is excellent at temperatures well above
400°C. [The process used in making these surfaces is based on the work of Thornton and
Lamb (1987).]

The surface structure of a metal of high reflectance can be designed to enhance its
absorptance for solar radiation by grooving or pitting the surface to create cavities of
dimensions near the desired cutoff wavelength of the surface. The surface acts as an array
of cavity absorbers for solar radiation, thus having reduced reflectance in this part of the
spectrum. The surface radiates as a flat surface in the long-wave spectrum and thus shows
its usual low emittance. Desirable surface structures have been made by forming tungsten
dendritic crystal in substrates by reduction of tungsten hexafluoride with hydrogen (Cuomo
et al., 1976) or by chemical vapor deposition of dendritic nickel crystals from nickel
carbonyl (Grimmer et al., 1976). Intermetallic compounds, such as Fe,Als, can be formed
with highly porous structures and show some selectivity (Santala, 1975). The degree of
selectivity obtainable by this method is limited, and the emittances obtained to date have
been 0.5 or more. However, roughening the substrate over which oxide (or other) coatings
are applied can result in improved absorptance.

Directional selectivity can be obtained by proper arrangement of the surface on a
large scale. Surfaces of deep V-grooves, large relative to all wavelengths of radiation
concerned, can be arranged so that radiation from near-normal directions to the overall
surface will be reflected several times in the grooves, each time absorbing a fraction of the
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beam. This multiple absorption gives an increase in the solar absorptance but at the same
time increases the long-wavelength emittance. However, as shown by Hollands (1963),
a moderately selective surface can have its effective properties substantially improved
by proper configuration. For example, a surface having nominal properties of o = 0.60
and ¢ = 0.05, used in a fixed optimally oriented flat-plate collector over a year, with
557 grooves, will have an average effective a of 0.90 and an equivalent ¢ of 0.10.
Figure 4.9.1 illustrates the multiple absorptions obtained for various angles of incidence
of solar radiation on a 30° grooved surface. Figure 4.9.2 shows the variation of average
yearly solar absorptance as a function of angle of the grooves and the absorptance of the
plane surface.

Angle of Incidence of Radiation

30°
4a5° 60°

30

Folded Reflecting Metoal Sheet

Figure 4.9.1 Absorption of radiation by successive reflections on folded metal sheets. Adapted
from Trombe et al. (1964).
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Table 4.9.1 Properties of Some Selective Surfaces

Surface o e Reference
Black chrome on Ni-plated steel 0.95 0.09 Maretal. (1976), Lampert and
Washburn (1979), and others

Sputtered cermet coating on steel 0.96 0.16 Harats and Kearney (1989)
““Nickel black’” on galvanized steel 0.81 0.17 Tabor et al. (1964)
““Cu black™ on Cu, by treating Cu with solution

of NaOH and NaClO, 0.89 0.17 Close (1962)
Ebanol C on Cu; commercial Cu-blackening

treatment giving coatings largely CuO 090 0.16 Edwards etal. (1962)

The physical structure of coatings on reflective substrates will affect the reflectance of
the surface. Williams et al. (1963) showed that the reflectance of coatings of lead sulfide
is a function of the structure of the coating and that finely divided particulate coatings
of large void fraction have a low effective refractive index and a low reflectance in the
solar spectrum. [The black chrome surfaces of Lampert and Washburn (1979) have a
similar structure, in that they are particulates in voids.] This phenomenon is the basis
for experimental studies of selective paints, in which binders transparent (insofar as is
possible) to solar radiation are used to provide physical strength to the coatings. For
example, PbS coatings of void fraction 0.8 to 0.9 on polished pure (99.99) aluminum
substrates showed o of 0.8 to 0.9 and ¢ of 0.2 to 0.3 without a binder and ¢ = 0.37
with a silicone binder. Lin (1977) has reported studies of a range of pigments (mostly
metal oxides) and binders on aluminum substrates and notes the best laboratory results
obtained for an iron—manganese—copper oxide paint with a silicone binder are @ = 0.92
and ¢ = 0.13. Quality control on application to substrates is a difficult problem (thickness
of a coating has a strong effect on « and ¢) that remains to be solved before these selective
paints become practical for applications.

A critical consideration in the use of selective surfaces is their durability. Solar
collectors must be designed to operate essentially without maintenance for many years, and
the coatings and substrates must retain useful properties in humid, oxidizing atmospheres
and at elevated temperatures. Data from Lin (1977) and Mar et al. (1976) and from other
sources, plus experience with chrome black in other kinds of applications, suggest that
this surface will retain its selective properties in a satisfactory way. Years of experience
with Israeli nickel black, Australian copper oxide on copper coatings, and more recently
chrome blacks have shown that these coatings can be durable.

Table 4.9.1 shows absorptance for solar radiation and emittance for long-wave
radiation of surfaces that have been produced by commercial processes.

4.10 OPTIMUM PROPERTIES

In flat-plate collectors, it is generally more critical to have high absorptance than low
emittance.'? It is a characteristic of many surfaces that there is a relationship between o

10This will become evident in Chapter 6.



196 Radiation Characteristics of Opaque Materials

100 T T T T
/ Absorptance o
801 -
6 . 60 ]
QQ
(=g £
2E sl 2 ]
<° o
20+ l —
Emittance
0 | 1 1 N
0 20 40 60 80 100

Coulombs/cm?

Figure 4.10.1 Variations of « and ¢ with the product of plating current density and time for chrome
black. Adapted from Sowell and Mattox (1976).

and ¢ as typified by data shown in Figure 4.10.1. In the case of the chrome black surface,
the optimum plating time (coating thickness) is obvious. For other selective surfaces
the optimum mass per unit area or other measure of coating physical properties is not
immediately obvious. The best combination must ultimately be selected on the basis of
the effects of properties o and ¢ on the annual operation of the complete solar energy
system.!! But the generalization can be made that « should be near its maximum for best
performance.

4.11 ANGULAR DEPENDENCE OF SOLAR ABSORPTANCE

The angular dependence of solar absorptance of most surfaces used for solar collectors
is not available. The directional absorptance for solar radiation of ordinary blackened
surfaces (such as are used for solar collectors) is a function of the angle of incidence
of the radiation on the surface. An example of this dependence of absorptance on angle
of incidence is shown in Figure 4.11.1. The limited data available suggest that selective
surfaces may exhibit similar behavior (Pettit and Sowell, 1976). A polynomial fit to the
curve of Figure 4.11.1 is

2 Z 1 - 1.5879 x 10720+ 2.7314 x 107467 —2.3026 x 1073 63

*p

+9.0244 x 10776* — 1.8000 x 107867 +1.7734 x 107106°
—6.9937 x 107397 (4.11.1)

"Methods for this evaluation are in Chapter 14.
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4.12 ABSORPTANCE OF CAVITY RECEIVERS

Some solar energy applications require that solar radiation be absorbed in cavities rather
than on flat surfaces. The effective absorptance of a cavity without a cover on its aperture,
that is, the fraction of incident radiation that is absorbed by the cavity,'? is a function of
the absorptance of the inner surfaces of the cavity and the ratio of the areas of the cavity
aperture and inner surfaces. It is approximated by

o

- i 412.1
Tl =+ (1 —a) A, /A, @.12.1)

where «; is the absorptance of the inner surface of the cavity, A, is the area of the aperture
of the cavity, and A; is the area of the inner surface. As an approximation, «; can be
evaluated at the effective angle of incidence of diffuse radiation, about 60°.

Example 4.12.1

A cylindrical cavity receiver has its length the same as its diameter. The aperture is in
the end of the cylinder and has a diameter of two-thirds of that of the cylinder. The inner
surface of the cavity has an absorptance at normal incidence of 0.60. Estimate the effective
absorptance of the cavity.

12The presence of a transparent cover over the aperture of a cavity (such as a window in a room acting as a cavity
receiver in passive heating) modifies Equation 4.12.1. See Section 5.11.
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Solution

Assume that the angular dependence of «; is as shown in Figure 4.11.1. At an incident
angle of 60°, ; /&, = 0.93 and o; = 0.93 x 0.60 = 0.56.
The ratio A, /A;, if d is the diameter of the cavity, is

A, (0.667)% wd? /4 _ 0667 e
A, 2-066T)7d2 /4 +7d>  (2—0.667%)+4
The effective absorptance of the cavity is then
0.56
%ell = .56 + (1 — 0.56) 0.080 =

4.13 SPECULARLY REFLECTING SURFACES

Concentrating solar collectors require the use of reflecting materials (or possibly refracting
materials) to direct the beam component of solar radiation onto a receiver. This requires
surfaces of high specular reflectance for radiation in the solar spectrum.

Specular surfaces are usually metals or metallic coatings on smooth substrates. Opaque
substrates must be front surfaced. Examples are anodized aluminum and rhodium-plated
copper. The specular reflectivity of such surfaces is a function of the quality of the substrate
and the plating.

Specular surfaces can also be applied to transparent substrates, including glass or
plastic. If back-surface coatings are applied, the transparency of the substrate is important,
as the radiation will pass through the equivalent of twice the thickness of the substrate and
twice through the front surface-air interface. (See Chapter 5 for discussion of radiation
transmission through partially transparent media.) If front-surface coatings are used on
these substrates, the nature of the substrate, other than its smoothness and stability, is
unimportant.

Specular reflectance is, in general, wavelength dependent, and in principle, monochro-
matic reflectances should be integrated for the particular spectral distribution of incident
energy. Thus, the monochromatic specular reflectance is defined as

s (4.13.1)

where [, is the specularly reflected monochromatic intensity and I,; is the incident
monochromatic intensity. Then the specular reflectance is

00
/ Phs I)»s da
0

Py = 7%
f I, dA
0

Typical values of specular reflectance of surfaces for solar radiation are shown in
Table 4.13.1. The table includes data on front-surface and second-surface reflectors.

(4.13.2)
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Table 4.13.1 Normal Specular Solar Reflectances of Surfaces

Surface P

Back-silvered low-reflectance glass 0.94
Electroplated silver, new 0.96
High-purity Al, new clean 0.91
Sputtered aluminum optical reflector 0.89
Brytal processed aluminum, high purity 0.89
Back-silvered water white plate glass, new, clean 0.88
Al, SiO coating, clean 0.87
Aluminum foil, 99.5% pure 0.86
Back-aluminized 3M acrylic, new 0.86
Back-aluminized 3M acrylic* 0.85
Commercial Alzac process aluminum 0.85

“Exposed to equivalent of 1 yr solar radiation.

Back-silvered glass can have excellent specular reflectance, and if the reflective coatings
are adequately protected, durability is excellent. The aluminized acrylic film is one of a
number of aluminized polymeric films that have been evaluated for durability in weather,
and it appears to be the best of those reported by the University of Minnesota and Honeywell
(1973). Many other such materials have short lifetimes (on the order of weeks or months)
under practical operating conditions.

Maintenance of high specular reflectance presents practical problems. Front-surface
reflectors are subject to degradation by oxidation, abrasion, dirt, and so on. Back-surface
reflectors may lose reflectance because of dirt or degradation of the overlying transparent
medium or degradation of the reflecting coating.

Front-surface reflectors may be covered by thin layers of protective materials to
increase their durability. For example, anodized aluminum is coated with a thin stable layer
of aluminum oxide deposited by electrochemical means, and silicon monoxide has been
applied to front-surface aluminum films. In general, each coating reduces the initial value
of specular reflectance but may result in more satisfactory levels of reflectance over long
periods of time.
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Radiation Transmission through
Glazing: Absorbed Radiation

The transmission, reflection, and absorption of solar radiation by the various parts of a
solar collector are important in determining collector performance. The transmittance,
reflectance, and absorptance are functions of the incoming radiation, thickness, refractive
index, and extinction coefficient of the material. Generally, the refractive index n and
the extinction coefficient K of the cover material are functions of the wavelength
of the radiation. However, in this chapter, all properties initially will be assumed to
be independent of wavelength. This is an excellent assumption for glass, the most
common solar collector cover material. Some cover materials have significant optical
property variations with wavelength, and spectral dependence of properties is considered
in Section 5.7. Incident solar radiation is unpolarized (or only slightly polarized). However,
polarization considerations are important as radiation becomes partially polarized as it
passes through collector covers.

The last sections of this chapter treat the absorption of solar radiation by collectors,
collector-storage walls, and rooms on an hourly and on a monthly average basis.

Reviews of important considerations of transmission of solar radiation have been
presented by Dietz (1954, 1963) and by Siegel and Howell (2002).

5.1 REFLECTION OF RADIATION

202

For smooth surfaces Fresnel has derived expressions for the reflection of unpolarized
radiation on passing from medium 1 with a refractive index n, to medium 2 with refractive
index n,:

sin® (6, — 6,)

=2 1° 5.1.1

sin® (6, + 6,) G-1LD
tan® (0, — 6,)

n=-—3—= (5.1.2)
tan (6, 4+ 6,)
I

P Lt (5.1.3)
I; 2

where 0, and 6, are the angles of incidence and refraction, as shown in Figure 5.1.1.
Equation 5.1.1 represents the perpendicular component of unpolarized radiation r |, and

Solar Engineering of Thermal Processes, Fourth Edition. John A. Duffie and William A. Beckman
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h2

Medium 2

Figure 5.1.1  Angles of incidence and refraction in
6> media with refractive indices n; and n,.

Equation 5.1.2 represents the parallel component of unpolarized radiation r. (Parallel
and perpendicular refer to the plane defined by the incident beam and the surface
normal.) Equation 5.1.3 then gives the reflection of unpolarized radiation as the average
of the two components. The angles 6, and 6, are related to the indices of refraction by
Snell’s law,

ny sin 6, = n, sin 6, (5.14)

Thus if the angle of incidence and refractive indices are known, Equations 5.1.1 through
5.1.4 are sufficient to calculate the reflectance of the single interface.

For radiation at normal incidence both 0, and 6, are zero, and Equations 5.1.3 and
5.1.4 can be combined to yield

2

o Ir . ny —ny

r0) = L = L2 (5.1.5)
I; ny+n,

L

If one medium is air (i.e., a refractive index of nearly unity), Equation 5.1.5 becomes

0) = n—1)? 516
r()_(n——l—l) (5.1.6)

Example 5.1.1

Calculate the reflectance of one surface of glass at normal incidence and at 60°. The
average index of refraction of glass for the solar spectrum is 1.526.

Solution

At normal incidence, Equation 5.1.6 can be used:

0.526\ >
r0) = —=—) =0.0434
2.526

At an incidence angle of 60°, Equation 5.1.4 gives the refraction angle 6, :

in 60
6, = sin”! <Sm ) — 34.58

1.526
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From Equation 5.1.3, the reflectance is

r(60) = -
(60) sin®(94.58) tan2(94.58)

1 |:sin2 (=25.42)  tan?(—25.42)
2

1
} = — (0.185 +0.001) = 0.093
2 m

In solar applications, the transmission of radiation is through a slab or film of material
so there are two interfaces per cover to cause reflection losses. At off-normal incidence,
the radiation reflected at an interface is different for each component of polarization, so
the transmitted and reflected radiation becomes partially polarized. Consequently, it is
necessary to treat each component of polarization separately.

Neglecting absorption in the cover material shown in Figure 5.1.2 and considering for
the moment only the perpendicular component of polarization of the incoming radiation,
(1 —r,) of the incident beam reaches the second interface. Of this, (1 —r l)2 passes
through the interface and r| (1 — r ) is reflected back to the first, and so on. Summing the
transmitted terms, the transmittance for the perpendicular component of polarization is

[ee]

0 _ 1—r))? -

= = 5.1.7
1—ri 1471 o4

1 =0-r)?
n=0

Exactly the same expansion results when the parallel component of polarization is
considered. The components r; and r are not equal (except at normal incidence), and
the transmittance of initially unpolarized radiation is the average transmittance of the two

components,
1 (1—=r 1 —
=- — 4 (5.1.8)
2 l + V” 1 + rl

where the subscript r is a reminder that only reflection losses have been considered.
For a system of N covers all of the same materials, a similar analysis yields

: Sk I (5.1.9)
T = — .
NT2\1+@N-Dry  1+@N-1Dr,

1 r 1—n? (1—n?%°

v

\ \ \ Figure 5.1.2 Transmission through one nonabsorbing
1=n? =032 0-n%"  over.
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Example 5.1.2

Calculate the transmittance of two covers of nonabsorbing glass at normal incidence and
at 60°.

Solution

At normal incidence, the reflectance of one interface from Example 5.1.1 is 0.0434. From
Equation 5.1.9, with both polarization components equal, the transmittance is

1 —0.0434

— 085
1 + 3(0.0434)

7,(0) =

Also from Example 5.1.1 but at a 60° incidence angle, the reflectances of one interface
for each component of polarization are 0.185 and 0.001. From Equation 5.1.9, the

transmittance is

1 |: 1 —0.185 1 —0.001

(60) = -
% (60) 1+3(0.185 © 14 3(0.000)

=0.76
2 }

The solar transmittance of nonabsorbing glass, having an average refractive index of
1.526 in the solar spectrum, has been calculated for all incidence angles in the same manner
illustrated in Examples 5.1.1 and 5.1.2. The results for from one to four glass covers are
given in Figure 5.1.3. This figure is a recalculation of the results presented by Hottel and
Woertz (1942).

The index of refraction of materials that have been considered for solar collector
covers are given in Table 5.1.1. The values correspond to the solar spectrum and can be
used to calculate the angular dependence of reflection losses similar to Figure 5.1.3.

I.O 1L 0 S 0 S N S L
- l ]
F 2 3
o8k \\ .
d 4 ]
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o - OF % ]
¥ oeF COVERS ]
] g 3
c o ]
5 - n
E o 3
2 04fF \ ]
2 F ]
g0 \ :
o2t & ]
0:1|||||||n Ao d gl aa g aay

[o] 20 40 60 80

Angle of incidence
Figure 5.1.3 Transmittance of 1, 2, 3, and 4 nonabsorbing covers having an index of refraction of
1.526.
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Table 5.1.1 Average Refractive Index n in Solar
Spectrum of Some Cover Materials

Cover Material Average n
Glass 1.526
Polymethyl methacrylate 1.49
Polyvinylfluoride 1.45
Polyfluorinated ethylene propylene 1.34
Polytetrafluoroethylene 1.37
Polycarbonate 1.60

5.2 ABSORPTION BY GLAZING

The absorption of radiation in a partially transparent medium is described by Bouguer’s
law, which is based on the assumption that the absorbed radiation is proportional to the
local intensity in the medium and the distance x the radiation has traveled in the medium:

dI = —IK dx (5.2.1)

where K is the proportionality constant, the extinction coefficient, which is assumed to
be a constant in the solar spectrum. Integrating along the actual pathlength in the medium
(i.e., from zero to L/cos 6,) yields

I . KL
T, = transmitted __ exp (_ ) (5.2.2)

Iincident cos 62

where the subscript a is a reminder that only absorption losses have been considered. For
glass, the value of K varies from approximately 4 m~! for ‘‘water white’* glass (which
appears white when viewed on the edge) to approximately 32 m~! for high iron oxide
content (greenish cast of edge) glass.

5.3 OPTICAL PROPERTIES OF COVER SYSTEMS

The transmittance, reflectance, and absorptance of a single cover, allowing for both
reflection and absorption losses, can be determined either by ray-tracing techniques similar
to that used to derive Equation 5.1.7 or by the net radiation method as described by Siegel
and Howell (2002). For the perpendicular component of polarization, the transmittance 7,
reflectance p |, and absorptance «; of the cover are

1—r,)? 1— 1—r2
g =W mr) ”[ 1 } (5.3.1)

L= (ryr)*  “ 147 l—(mfa)z

2 2

21 —r))
= AL S 532
PLET I gy T ) 032

1—r
a, =(-1,) (ﬁ) (5.3.3)
1 *a
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Similar results are found for the parallel component of polarization. For incident unpolarized
radiation, the optical properties are found by the average of the two components.

The equation for the transmittance of a collector cover can be simplified by noting
that the last term in Equation 5.3.1 (and its equivalent for the parallel component of
polarization) is nearly unity, since t, is seldom less than 0.9 and r is on the order of
0.1 for practical collector covers. With this simplification and with Equation 5.1.8, the
transmittance of a single cover becomes

T=T,T, (5.3.4)
This is a satisfactory relationship for solar collectors with cover materials and angles of
practical interest.

The absorptance of a solar collector cover can be approximated by letting the last term
in Equation 5.3.3 be unity so that

a=1-r1, (5.3.5)
Although the neglected term in Equation 5.3.3 is larger than the neglected term in Equation
5.3.1, the absorptance is much smaller than the transmittances so that the overall accuracy

of the two approximations is essentially the same.
The reflectance of a single cover is then found from p = 1 — o — 7, so that

p=r,(l-1t)=1,—-1 (5.3.6)

The advantage of Equations 5.3.4 through 5.3.6 over Equations 5.3.1 through 5.3.3
is that polarization is accounted for in the approximate equations through the single term
7, rather than by the more complicated expressions for each individual optical property.
Example 5.3.1 shows a solution for transmittance by the exact equations and also by the
approximate equations.

Example 5.3.1

Calculate the transmittance, reflectance, and absorptance of a single glass cover 2.3 mm
thick at an angle of 60°. The extinction coefficient of the glass is 32 m~!.

Solution

At an incidence angle of 60°, the extinction coefficient—optical pathlength product is

KL 32x0.0023
cos 6,  cos 34.58

= 0.0894

where 34.58 is the refraction angle calculated in Example 5.1.1. The transmittance 7, from
Equation 5.2.2 is then

7, = exp(—0.0894) = 0.915
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Using the results of Example 5.1.1 and Equation 5.3.1, the transmittance is found by
averaging the transmittances for the parallel and perpendicular components of polarization,

0915 [ 1—0.185 1 —0.185?
T =
2 1+0.185 \ 1 — (0.185 x 0.915)?

N 1 —0.001 ( 1 —0.001? )]
14+0.001 \1—(0.001 x 0.915)?

= 0.5(0.625 4+ 0.912) = 0.768

The reflectance is found using Equation 5.3.2 for each component of polarization and
averaging:
p = 0.5[0.185 (1 + 0.915 x 0.625) + 0.001(1 + 0.915 x 0.912)]
= 0.5(0.291 4 0.002) = 0.147

In a similar manner, the absorptance is found using Equation 5.3.3:

1 -0915 1 —0.185 + 1 —0.001
o =
2 1 -0.185x 0915 1—-0.001 x 0915
0.085

= (0.981 + 1.000) = 0.085

Alternate Solution

The approximate equations can also be used to find these properties. From Equations 5.3.4
and 5.1.8 the transmittance is

o 0915 [1—0.185 N 1 —0.001
2 14+0.185 14 0.001

> =0.771

From Equation 5.3.5, the absorptance is
a=1-0.915=0.085
and the reflectance is then
p=1—-0.771 —-0.085 = 0.144

Note that even though the incidence angle was large and poor-quality glass was used in
this example so that the approximate equations tend to be less accurate, the approximate
method and the exact method are essentially in agreement. |

Although Equations 5.3.4 through 5.3.6 were derived for a single cover, they apply
equally well to identical multiple covers. The quantity 7, should be evaluated from
Equation 5.1.9 and the quantity 7, from Equation 5.2.2 with L equal to the total cover
system thickness.
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Example 5.3.2

Calculate the solar transmittance at incidence angles of zero and 60° for two glass covers
each 2.3 mm thick. The extinction coefficient of the glass is 16.1 m~!, and the refractive
index is 1.526.

Solution

For one sheet at normal incidence,

KL =16.1 x 2.3/1000 = 0.0370
The transmittance T, is given as

7,(0) = exp[—2(0.0370)] = 0.93

The transmittance accounting for reflection, from Example 5.1.2, is 0.85. The total
transmittance is then found from Equation 5.3.4:

7(0) = 7,(0)7, (0) = 0.85(0.93) = 0.79
From Example 5.1.1, when 6, = 60°, 6, = 34.57°, and

2 (0.0370)) ool

%(60) = exp ( cos 34.57

and the total transmittance (with 7, = 0.76 from Example 5.1.2) becomes
7(60) = 1,.(60)7,(60) = 0.76(0.91) = 0.69 |

Figure 5.3.1 gives curves of transmittance as a function of angle of incidence for
systems of one to four identical covers of three different kinds of glass. These curves were
calculated from Equation 5.3.4 and have been checked by experiments (Hottel and Woertz,
1942).

In a multicover system, the ray-tracing technique used to develop Equation 5.1.7 can
be used to derive the appropriate equations. Whillier (1953) has generalized the ray-tracing
method to any number or type of covers, and modern radiation heat transfer calculation
methods have also been applied to these complicated situations (e.g., Edwards, 1977;
Siegel and Howell, 2002). If the covers are identical, the approximate method illustrated
in Example 5.3.2 is recommended, although the following equations can also be used.

For a two-cover system with covers not necessarily identical the following equations
are for transmittance and reflectance, where subscript 1 refers to the top cover and
subscript 2 to the inner cover:

1 1 T, T,
T=3 (T, +1) = 3 150 + T o0 (5.3.7)
P1P2/ 1 P1P2 /)

1 1 TP,T TP,T
p==(p +p) =7 (01+ - 1) +<p1+ 2 1) (5.3.8)
2 T, 1 T, I

\e]
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Figure 5.3.1 Transmittance (considering absorption and reflection) of one, two, three, and four
covers for three types of glass.

The reflectance of a cover system depends upon which cover is on top. In these equations
the subscripts L and || apply to all terms in the corresponding parentheses.

Example 5.3.3

Calculate the optical properties of a two-cover solar collector at an angle of 60°. The
outer cover is glass with K = 16.1 m~! and thickness of 2.3 mm. The inner cover is
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polyvinyl fluoride with refractive index equal to 1.45. The plastic film is thin enough so
that absorption within the plastic can be neglected.

Solution

The optical properties of the glass and plastic covers alone, as calculated from Equations
5.3.1 through 5.3.3, are

Glass: 7, = 0.953, 7, =0.655
py=0.002, p, =0.302
oy =0.044, o) =0044

Plastic: 7, =0.995, 7, =0.726
p;=0.005  p, =0274
o =0.000, o, =0.000

Equations 5.3.4 through 5.3.6 could have been used with each component of polarization
to simplify the calculation of the preceding properties.
The transmittance of the combination is found from Equation 5.3.7:

T =

2 \1-0302x0274 * 1 —0.002 x 0.005
=0.5(0.518 +0.948) = 0.733

1 ( 0.655 x 0.726 0.953 x 0.995 >

The reflectance, with the glass first, is found from Equation 5.3.8:

0.726 0.995
= 0.5(0.430 + 0.007) = 0.219

1 0.518 x 0.274 x 0.655 0.948 x 0.005 x 0.953
p=5 0302+ +0.002 +

The absorptance is then
a=1-0.219—-0.733 = 0.048 |

Equations 5.3.7 and 5.3.8 can be used to calculate the transmittance of any number
of covers by repeated application. If subscript 1 refers to the properties of a cover system
and subscript 2 to the properties of an additional cover placed under the stack, then
these equations yield the appropriate transmittance and reflectance of the new system.
The reflectance p; in Equation 5.3.7 is the reflectance of the original cover system from
the bottom side. If any of the covers exhibit strong wavelength-dependent properties,
integration over the wavelength spectrum is necessary (see Section 5.6).

5.4 TRANSMITTANCE FOR DIFFUSE RADIATION

The preceding analysis applies only to the beam component of solar radiation. Radiation
incident on a collector also consists of scattered solar radiation from the sky and possibly
reflected solar radiation from the ground. In principle, the amount of this radiation that
passes through a cover system can be calculated by integrating the transmitted radiation
over all angles. However, the angular distribution of this radiation is generally unknown.
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For incident isotropic radiation (i.e., independent of angle), the integration can be
performed. The presentation of the results can be simplified by defining an equivalent
angle for beam radiation that gives the same transmittance as for diffuse radiation. For a
wide range of conditions encountered in solar collector applications, this equivalent angle
is essentially 60°. In other words, a cover has the same transmittance for isotropic diffuse
radiation as it does for beam radiation incident at an angle of 60°.

Circumsolar diffuse radiation can be considered as having the same angle of incidence
as the beam radiation. Diffuse radiation from the horizon is usually a small contribution to
the total and as an approximation can be taken as having the same angle of incidence as
the isotropic diffuse radiation.

Solar collectors are usually oriented so that they ‘‘see’’ both the sky and the ground.
If the diffuse radiation from the sky and the radiation reflected from the ground are both
isotropic, then the transmittance of the glazing systems can be found by integrating the
beam transmittance over the appropriate incidence angles. This integration has been done
by Brandemuehl and Beckman (1980); the results are presented in Figure 5.4.1 in terms

OTT T T T 7T T T T T T 7 7T 7T [ T7

85

Effective incidence angle, 0,

Diffuse from sky

15 30 45 60 75 90
Slope, §
Figure 5.4.1 Effective incidence angle of isotropic diffuse radiation and isotropic ground-reflected
radiation on sloped surfaces. From Brandemuehl and Beckman (1980).
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of a single effective incidence angle. Thus all of the diffuse radiation can be treated as
having a single equivalent angle of incidence, and all of the ground-reflected radiation
can be considered as having another equivalent angle of incidence. The shaded region
includes a wide range of glazings. The upper curve is for a one-cover polyfluorinated
ethylene propylene glazing with no internal absorption, whereas the lower curve represents
a two-cover glass glazing with extinction length KL = 0.0524. All one- and two- cover
systems with indices of refraction between 1.34 and 1.526 and extinction lengths less than
0.0524 lie in the shaded region.
The dashed lines shown in Figure 5.4.1 are given for ground-reflected radiation by

0, o =90 —0.5788p + 0.002693 8> (54.1)
and for diffuse radiation by

6,4 = 59.7 — 0.13888 + 0.001497° (5.4.2)

5.5 TRANSMITTANCE-ABSORPTANCE PRODUCT

To use the analysis of the next chapter, it is necessary to evaluate the transmittance-
absorptance product (ta).! Of the radiation passing through the cover system and incident
on the plate, some is reflected back to the cover system. However, all this radiation is not
lost since some of it is, in turn, reflected back to the plate.

The situation is illustrated in Figure 5.5.1, where 7 is the transmittance of the cover
system at the desired angle and « is the angular absorptance of the absorber plate. Of
the incident energy, to is absorbed by the absorber plate and (1 — «)7 is reflected back
to the cover system. The reflection from the absorber plate is assumed to be diffuse (and
unpolarized) so the fraction (1 — )t that strikes the cover system is diffuse radiation
and (1 —a)tp, is reflected back to the absorber plate. The quantity p, refers to the
reflectance of the cover system for diffuse radiation incident from the bottom side and can
be estimated from Equation 5.3.6 as the difference between 7, and 7 at an angle of 60°.%

Y Incident solar

Cover system

(t-a)r (|'ﬂ)zfpd
T (1-a)tp, (-afep?
5 AV
T TN . N
ra ra(l-a)pd ra(l-a) Py . - o
Absorber Figure 5.5.1 Absorption of solar radiation by
plate absorber plate under a cover system.

I'The transmittance-absorptance product (zer) should be thought of as a property of a cover-absorber combination
rather than the product of two properties.

2For single covers of the three kinds of glass of Figure 5.3.1, p, at 60° is 0.16 (for KL = 0.0125), 0.15 (for
KL = 0.0370), and 0.15 (for KL = 0.0524). For two covers, the corresponding values are 0.23, 0.22, and 0.21.
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If the cover system consists of two (or more) covers of dissimilar materials, p,; will be
different (slightly) from the diffuse reflectance of the incident solar radiation (see Equation
5.3.8). The multiple reflection of diffuse radiation continues so that the fraction of the
incident energy ultimately absorbed is’

ad T
(ta) = (1 —a)py]" = ——F—— (5.5.1)
To To ; o) Py —(—ap,

Example 5.5.1

For a two-cover collector using glass with KL = 0.0370 per plate and an absorber plate
with ¢ = 0.90 (independent of direction), find the transmittance-absorptance product at an
angle of 50°.

Solution

From Figure 5.3.1, 7 at 50° is 0.75 and 7 at 60° (the effective angle of incidence of radiation
reflected back to the cover) is 0.69. From Equation 5.2.2 with 6, = 34.58°, 7, = 0.91.
From Equation 5.3.6, p;, = 0.91 — 0.69 = 0.22. From Equation 5.5.1

0.75 x 0.90
(ra) = x —0.69
1= (1-0090) 022

Note that it is also possible to estimate p; = 1 — 1,, where 7, can be estimated from
Figure 5.1.3 at 60°. For two covers, 7, = 0.77, so p, = 0.23. |

The value of (r«) in this example is very nearly equal to 1.01 times the product of t
times «. This is a reasonable approximation for most practical solar collectors. Thus,

(ta) = 1.0l (5.5.2)

can be used as an estimate of (t«) in place of Equation 5.5.1.

5.6 ANGULAR DEPENDENCE OF (ra)

The dependence of absorptance and transmittance on the angle of incidence of the incident
radiation has been shown in Sections 4.11 and 5.1 to 5.4. For ease in determining (o)
as a function of angle of incidence 0, Klein (1979) developed a relationship between
(ta)/(rar), and 6 based on the angular dependence of o shown in Figure 4.11.1 and on
the angular dependence of t for glass covers with KL = 0.04. The result is not sensitive to
KL and can be applied to all covers having a refractive index close to that of glass. Klein’s
curves are shown in Figure 5.6.1. The results obtained by using this figure are essentially
the same as those obtained by independently finding the angular dependence of t and « as
illustrated in examples to follow in this chapter.

3The absorptance « of the absorber plate for the reflected radiation should be the absorptance for diffuse radiation.
Also, the reflected radiation may not all be diffuse, and it may be partially polarized. However, the resulting
errors should be negligible in that the difference between to and (t«r) is small.
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Figure 5.6.1 Typical (ta)/(ta), curves for one to four covers. Adapted from Klein (1979).

5.7 SPECTRAL DEPENDENCE OF TRANSMITTANCE

Most transparent media transmit selectively; that is, transmittance is a function of wave-
length of the incident radiation. Glass, the material most commonly used as a cover material
in solar collectors, may absorb little of the solar energy spectrum if its Fe,O5 content is
low. If its Fe,O5 content is high, it will absorb in the infrared portion of the solar spectrum.
The transmittance (including reflection losses) of several glasses of varying iron content is
shown in Figure 5.7.1. These show clearly that ‘‘water white’” (low-iron) glass has the best
transmission; glass with high Fe,O5 content has a greenish appearance and is a relatively
poor transmitter. Note that the transmission is not a strong function of wavelength in
the solar spectrum except for the ‘‘heat-absorbing’’ glass. Glass becomes substantially
opaque at wavelengths longer than approximately 3 wm and can be considered as opaque
to long-wave radiation.

Some collector cover materials may have transmittances that are more wavelength
dependent than low-iron glass, and it may be necessary to obtain their transmittance
for monochromatic radiation and then integrate over the entire spectrum. If there is no
significant angular dependence of monochromatic transmittance, the transmittance for
incident radiation of a given spectral distribution is calculated by an equation analogous to
Equation 4.6.4:

n
T = er Af; (5.7.1)
j=1
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Figure 5.7.1 Spectral transmittance of 6-mm-thick glass with various iron oxide contents for
incident radiation at normal incidence. From Dietz (1954).

If there is an angular dependence of t,, the total transmittance at angle 6 can be
written as

/ h 7,(0)1,,(0) da.
0

T(0) = 5
/ 1,;(0) da
0

(5.7.2)

where 7, (0) is calculated by the equations of the preceding section using monochromatic
values of the index of refraction and absorption coefficient and I,;(0) is the incident
monochromatic intensity arriving at the cover system from angle 6.

Example 5.7.1

For the glass of Figure 5.7.1, having an iron oxide content of 0.50%, estimate the
transmittance at normal incidence for terrestrial solar radiation.

Solution

Use Table 2.6.1 to represent the spectral distribution of the incident radiation and
Equation 5.7.1 to calculate 7. Dividing the spectrum into 10 equal increments, the
increments, the wavelength at the energy midpoints of the increments, and t, at the
midpoints of the increments are shown in the table below. The sum of the third and sixth
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columns is 3.89. Since 10 equal increments were chosen, the transmittance is the average
of the 7,. Thus the transmittance of the glass at normal incidence is 0.39.

Increment Apigs MM ) mid Increment Apigs MM ) mid
0.0-0.1 0.416 0.76 0.5-0.6 0.786 0.19
0.1-0.2 0.492 0.80 0.6-0.7 0.885 0.11
0.2-0.3 0.559 0.74 0.7-0.8 1.140 0.05
0.3-0.4 0.627 0.60 0.8-0.9 1.257 0.07
0.4-0.5 0.700 0.38 0.9-1.0 1.750 0.19

n

If the absorptance of solar radiation by an absorber plate is independent of wavelength,
then Equation 5.5.1 can be used to find the transmittance-absorptance product with the
transmittance as calculated from Equation 5.7.1 or 5.7.2. However, if both the solar
transmittance of the cover system and the solar absorptance of the absorber plate are
functions of wavelength and angle of incidence, the fraction absorbed by an absorber plate
is given by

/0 7,(0)a, (0) 1,,(6) dx

f 1,,(0) dx
0

To account for multiple reflections in a manner analogous to Equation 5.5.1, it would
be necessary to evaluate the spectral distribution of each reflection and integrate over all
wavelengths. Itis unlikely that such a calculation would ever be necessary for solar collector
systems, since the error involved by directly using Equation 5.7.3 with Equation 5.5.1
would be small if « is near unity.

In a multicover system in which the covers have significant wavelength-dependent
properties, the spectral distribution of the solar radiation changes as it passes through each
cover. Consequently, if all covers are identical, the transmittance of individual covers
increases in the direction of propagation of the incoming radiation. If the covers are not
all identical, the transmittance of a particular cover may be greater or less than other
similar covers in the system. Equations 5.7.1 to 5.7.3 account for this phenomenon. At any
wavelength A, the transmittance is the product of the monochromatic transmittances of the
individual covers. Thus for N covers

Ta (0) = (5.7.3)

/0 7,.10) 7, 20) - -7, y(0) ay (0) 1;;(0) dA

/ - 1,(6) di
0

If a cover system has one cover with wavelength-independent properties (e.g., glass)
and one cover with wavelength-dependent properties (e.g., some plastics), then a simplified
procedure can be used. The transmittance and reflectance of each cover can be obtained

T () =

(5.7.4)
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Figure 5.7.2 Infrared spectral transmittance of Tedlar film. Courtesy of du Pont.

separately, and the combined system transmittance and reflectance can be obtained from
Equations 5.3.7 and 5.3.8.

For most plastics, the transmittance will also be significant in the infrared spectrum
at A > 3 um. Figure 5.7.2 shows the transmittance curve for a polyvinyl fluoride (Tedlar)
film for wavelengths longer than 2.5 ym. Whillier (1963) calculated the transmittance
of a similar film using Equation 5.7.2. The incident radiation /,; was for radiation from
blackbody sources at temperatures from 0 to 200°C. He found that transmittance was 0.32
for radiation from the blackbody source at 0°C, 0.29 for the source at 100°C, and 0.32 for
the source at 200°C.

5.8 EFFECTS OF SURFACE LAYERS ON TRANSMITTANCE

If a film of low refractive index is deposited at an optical thickness of A/4 onto a
transparent slab, radiation of wavelength A reflected from the upper and lower surfaces
of the film will have a phase difference of m and will cancel. The reflectance will be
decreased, and the transmittance will be increased relative to the uncoated material. This
is the principal type of coating used on camera lenses, binoculars, and other expensive
optical equipment.

Inexpensive and durable processes have been developed for treating glass to reduce
its reflectance by the addition of films having a refractive index between that of air and
the transparent medium (e.g., Thomsen, 1951). The solar reflectance of a single pane
of untreated glass is approximately 8%. Surface treatment, by dipping glass in a silica-
saturated fluosilic acid solution, can reduce the reflection losses to 2%, and a double-layer
coating can, as shown by Mar et al. (1975), reduce reflection losses to less than 1%.
Such an increase in solar transmittance can make a very significant improvement in the
thermal performance of flat-plate collectors. Figure 5.8.1 shows typical monochromatic
reflectance data before and after etching. Note that unlike unetched glass, it is necessary to
integrate monochromatic reflectance over the solar spectrum to obtain the reflectance for
solar radiation.

Experimental values for the angular dependence of solar transmission for unetched
and etched glass are given in Table 5.8.1. Not only does the etched sample exhibit higher
transmittance than the unetched sample at all incidence angles, but also the transmittance
degrades less at high incidence angles.
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Figure 5.8.1 Monochromatic reflectance of one sheet of etched and unetched glass. From Mar
et al. (1975).

Table 5.8.1 Solar Transmittance for Etched and Unetched Glass as Function of Incidence Angle®

Transmittance by Incidence Angle

Type of Glass 0° 20° 40° 50° 60° 70° 80°
Etched 0.941 0.947 0.945 0.938 0.916 0.808 0.562
Unetched 0.888 0.894 0.903 0.886 0.854 0.736 0.468

“From Mar et al. (1975).

Glass is treated by other means to decrease its emittance for use as transparent
insulation for glazing applications. These treatments also change the transmittance, in
many cases decreasing it substantially.

5.9 ABSORBED SOLAR RADIATION

The prediction of collector performance requires information on the solar energy absorbed
by the collector absorber plate. The solar energy incident on a tilted collector can be
found by the methods of Chapter 2. This incident radiation has three different spatial
distributions: beam radiation, diffuse radiation, and ground-reflected radiation, and each
must be treated separately. The details of the calculation depend on which diffuse-sky model
(Sections 2.14 to 2.16) is used. Using the isotropic diffuse concept on an hourly basis,
Equation 2.15.1 can be modified to give the absorbed radiation S by multiplying each term
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by the appropriate transmittance-absorptance product:

S = I,R,(ta), + I,(ta), (W) +p,I(za), <#> (5.9.1)

where (1 4+ cos B)/2 and (1 — cos B)/2 are the view factors from the collector to the sky
and from the collector to the ground, respectively. The subscripts b, d, and g represent
beam, diffuse, and ground. For a given collector tilt, Figure 5.4.1 gives the effective
angle of incidence of the diffuse and ground-reflected radiation, and Figures 4.11.1 and
5.4 can be used to find the proper absorptance and transmittance values. Equation 5.5.1
or 5.5.2 can then be used to find (ta), and (ta),. The angle 6 for the beam radiation,
which is needed in evaluating R,, is used to find (r«),. Alternatively, (o), can be
found from the properties of the cover and absorber and Figure 5.6.1 can be used at
the appropriate angles of incidence for each radiation stream to determine the three
transmittance-absorptance products.

The results of the preceding sections are summarized in the following example in
which the solar radiation absorbed by a collector is calculated.

Example 5.9.1

For an hour 11 to 12 AM on a clear winter day, I = 1.79 MJ/mz, I, =138 MJ/mZ, and
I, =041 MJ /mz. Ground reflectance is 0.6. For this hour, 6 for the beam radiation is
7° and R, = 2.11. A collector with one glass cover is sloped 60° to the south. The glass
has KL = 0.0370, and the absorptance of the plate at normal incidence, «,,, is 0.93. Using
the isotropic diffuse model (Equation 5.9.1), calculate the absorbed radiation per unit area
of absorber.

Solution

Two approaches to the solution are possible. The angular dependence of 7 and « can be
individually determined or the angular dependence of (t«) can be determined.

In the first method, use Figure 4.11.1 to get angular dependence of o and Figure 5.3.1
to get angular dependence of t. For the 60° slope, from Figure 5.4.1, the effective angle
of incidence of the diffuse radiation is 57° and that of the ground-reflected radiation
is 65°

For the beam radiation, at 8 = 7°;

From Figure 4.11.1, o/, = 0.99

From Figure 5.3.1, T = 0.88

(ta), = 1.01 x 0.88 x 0.99 x 0.93 = 0.82
For the (isotropic) diffuse radiation, at = 57°:

From Figure 4.11.1, a/at,, = 0.94
From Figure 5.3.1, T = 0.83
(t);, = 1.01 x 0.83 x 0.94 x 0.93 = 0.73
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For the ground-reflected radiation, at 6 = 65°:
From Figure 4.11.1, o/, = 0.88
From Figure 5.3.1, 7 = 0.76
(ta), = 1.01 x 0.76 x 0.88 x 0.93 = 0.63

Equation 5.9.1 is now used to calculate S:

|
S =138 x 2.11 x 0.82 + 0.41 x 0.73 (ﬂ)
T 179 x 0.6 x 0.63 <w>

=2.39+40.22+0.17 = 2.78 MJ/m>

In the second method, use Figure 5.6.1 to get the angular dependence of (t«)/(tw),.
The effective angles of incidence of the diffuse and ground-reflected radiation are 57° and
65°, as before. From Figure 5.3.1, 7, = 0.88, «, = 0.93 (given), so

(ta), = 1.01 x 0.88 x 0.93 = 0.83

From Figure 5.6.1 with the beam radiation at 0 = 7°, (ra)/(ra), = 0.99 and

(ta), = 0.83 x 0.99 = 0.82
From Figure 5.6.1 with the diffuse radiation at = 57°, (t«)/(r), = 0.87 and

(ta); = 0.83 x 0.87 = 0.72
From Figure 5.6.1 with the ground-reflected radiation at § = 65°, (t«)/(ta),, = 0.76 and

(ta), = 0.83 x 0.76 = 0.63
These are essentially identical to the results of the first solution. |

The calculation of absorbed radiation using the HDKR model of diffuse radiation

(Equation 2.16.7) is similar to that based on the isotropic model except that the circumsolar
diffuse is treated as an increment to the beam radiation, horizon brightening is considered,
and the diffuse component is correspondingly reduced. It is assumed that the angle of
incidence of the circumsolar diffuse is the same as that of the beam and that the angle of

incidence of the diffuse from the horizon is the same as the isotropic. The energy absorbed
by the absorbing surface is given by

S = (I, + I;A) R, (ta), + I,(1 — A)(ta), (ﬂ) |:1—|—fsin3 (g)}

1—cos B
+ 1p,(ta), <T) (5.9.2)
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Example 5.9.2
Redo Example 5.9.1 using the HDKR model. For this hour 7, = 2.40 MJ/m?.

Solution

The calculations of the transmittance-absorptance products are the same as in Example
5.9.1. The anisotropy index is calculated from Equation 2.16.3:

1.
A =238 s
2.40

I 138
f=y2=/-2 =088
V179

Then using Equation 5.9.2, S can be calculated:

Using Equation 2.16.6,

S =(138+40.41 x 0.58) x 2.11 x 0.82

1+ cos 60 .3 (60
4+ 041 x (1 —-058) —— 1 4+ 0.88 sin 5 x 0.73

2
1 —cos 60
+ 179 % 0.6 (%) % 0.63
=2.8040.10 + 0.17 = 3.07 MJ/m? |

Under the clear-sky conditions of these two examples, the HDKR sky model leads to
substantially higher estimates of absorbed radiation, as much of the diffuse radiation is
taken as circumsolar and added to the beam radiation.

In these two examples, each radiation stream on the collector is treated separately. At
times it is convenient to define an average transmittance-absorptance product as the ratio
of the absorbed solar radiation S to the incident solar radiation /. Thus,

S = (ta), Iy (5.9.3)

This is convenient when direct measurements are available for /. In Example 5.9.2, S,
the solar radiation absorbed by the collector for the hour 11 to 12, is 3.07 MJ/m?, and
I; = 3.81 MJ/m?. The average transmittance-absorptance product for this hour is then
0.80, which is slightly less than the value of (t«), = 0.82. When the beam fraction is high,
as in these examples, (ta),, is close to (ta),. When the diffuse fraction is high, using
the value of (t«), for (ta),, may be a reasonable assumption. As will be seen in Chapter
6, useful energy gain by the collector is highest when beam radiation is high, and as an
approximation when I data are available, the following can be assumed:

(tar),, = 0.96(tr),, (5.9.4)

(Comparisons of the measured and calculated operation of solar processes are often made,
with the incident solar radiation measured on the plane of the collector, /. Equation 5.9.4
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provides a convenient way to estimate the absorbed radiation S under these circumstances.
This S is then used in the performance calculations.)

As will be seen in Sections 6.16 and 6.17, the concept of an incidence angle modifier
(called variously the IAM or K, ) is useful in describing collector test data. Here, K,
is defined for each solar radiation stream (i.e., beam, sky, and ground-reflected solar
radiation) as the ratio of the transmittance-absorptance product at some angle to the
transmittance-absorptance product at normal incidence.

5.10 MONTHLY AVERAGE ABSORBED RADIATION

Methods for the evaluation of long-term solar system performance® require that the average
radiation absorbed by a collector be evaluated for monthly periods. The solar transmittance
and absorptance are both functions of the angle at which solar radiation is incident on
the collector. Example 5.9.1 illustrated how to calculate the absorbed solar radiation for
an hour. This calculation can be repeated for each hour of each day of the month, from
which the monthly average absorbed solar radiation can be found. Klein (1979) calculated
the monthly average absorbed solar radiation in this manner using many years of data. He
defined a monthly average transmittance-absorptance product® which when multiplied by
the monthly average radiation incident on a collector yields the monthly average absorbed
radiation S:

(Ta) = (5.10.1)

EH ol
3

T

The following methods, analogous to the hourly evaluations of S, can be used to find S.
Using the isotropic diffuse assumption, Equation 2.19.1 becomes

o - 1+cos B - I —cos B
S=H,R, ta), + H; (Ta), (f) + Hp, (Ta), <T) (5.10.2)

For the diffuse and ground-reflected terms, (Te),; and (Ter) ¢ can be evaluated using
the effective incidence angles given in Figure 5.4.1. These are functions of the properties
of the cover and absorber and S, the collector slope, and so do not change with time for
collectors mounted at fixed 8. The hourly and monthly values are thus the same, and they
can be written with or without the overbars.

For the monthly average beam radiation, Klein (1979) has worked out the monthly
average (equivalent) beam incident angle 6, as a function of collector slope, month,
latitude, and azimuth angle. These are shown in Figures 5.10.1(a—f). These values of 5;,
were evaluated using the angular distribution of (t«)/(r«), shown in Figure 5.6.1.

The Klein and Theilacker equations can also be used to calculate S, the product
(Ta)R H. Each of the R equations 2.20.4a and 2.20.5a includes three terms: the first

4See Chapters 20 to 22.
SThis could be designated as (ta),,. as it is a time-weighted and energy-weighted average. Common usage is to
designate it as (Ta).
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Figure 5.10.1 Monthly average beam incidence angle for various surface locations and orientations. For southern
hemisphere interchange months as shown in Figure 1.8.2. From Klein (1979).

is multiplied by (7@),, the second by (Ta),, and the third by (Ta),, as was shown in

Equation 5.10.2. For surfaces with surface azimuth angles other than zero (or 180° in the

southern hemisphere), the use of the modified Equation 2.20.5a is recommended.
Calculation of § is illustrated in the following example.

Example 5.10.1

Estimate S for a south-facing vertical collector-storage wall at Springfield, Illinois, 40° N
latitude. The wall consists of double glazing with a black-finished absorbing surface behind
the glass with « at normal incidence of 0.90. The monthly average daily radiation on a
horizontal surface H, in megajoules per square meter, is shown in the table that follows.
The ground reflectance is assumed to be 0.3 for all months. The angular dependence of
(ta) for the two-cover glazing is as shown in Figure 5.6.1. The glass has KL = 0.0125.
Calculate the monthly radiation on the wall ﬁT, the monthly absorbed radiation S, and the
monthly average (T«).
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Figure 5.10.1 (Continued)

Solution

The calculations are shown in detail for January, and the results for all months are shown
in the table.

For these two covers, from Figure 5.3.1 at normal incidence, the transmittance is 0.83.
With the absorber normal-incidence absorptance of 0.90, (7a),, = 1.01 x 0.83 x 0.90 =
0.754. For the vertical collector the effective incidence angle of both the diffuse and
the ground-reflected radiation is 59° from Figure 5.4.1. From Figure 5.6.1 at 59°,
(Ta)/(rar),, = 0.83 so that (Tar),; = (Tar), = 0.83 x 0.754 = 0.626. These values apply
to all months.

For January, from Figure 5.10.1(b), at 40° latitude and 90° slope, 6, = 41°. From
Figure 5.6.1, (ta), /(t),, = 0.96 for the two-cover system. Thus (Ta), = 0.96 x 0.754 =
0.724.

For January, H, = 15.21 MJ/m?, so K ; = 6.63/15.21 = 0.436. For the mean day of
the month, from Table 1.6.1, § = —20.9°. Thus

w, = cos” [ tan(—20.9) tan 40] = 71.3°
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Figure 5.10.1 (Continued)

Equation 2.12.1 is used to calculate the diffuse fraction. For January this gives H,/H =
0.458. Then

H,; =6.63 x 0.458 = 3.04 MJ/m”

and o
H, = 3.59 MJ/m?

From Equation 2.19.3, R, = 2.32.
We can now calculate H, with Equation 2.19.1 based on the isotropic diffuse
assumption:

_ 1 90 1 — cos 90
Hy = 3.59 x 232 +3.04 (“%) 1663 %03 (%)

=833+ 1.52 + 0.99 = 10.84 MJ/m>
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With the transmittance-absorptance products determined above, again using the isotropic
assumption (Equation 5.10.2),

S =3.59 x 2.32 x 0.724 + 3.04 x 0.626 (

1 — cos 90
+ 6.63 x 0.3 x 0.626 (%)

= 6.03 +0.95 + 0.62 = 7.60 MJ/m’

1+ cos 90

2

The average transmittance-absorptance product for the month is then

)

. S 7.60
(TO{) =—=—--=0.70
Hp 10.84
The monthly results are as follows:
Absorbed Radiation, MJ/m?

Month H K; H, (ta), Beam Diffuse Gr. Refl. N (Ta)
Jan. 6.63 0.44 10.84 0.72 6.03 0.95 0.62 7.60 0.70
Feb. 9.77 0.48 12.59 0.69 6.28 1.27 0.92 8.47 0.67
Mar. 12.97 0.47 11.65 0.63 4.25 1.85 1.22 7.32 0.63
Apr. 17.20 0.50 11.03 0.51 2.41 2.33 1.62 6.36 0.58
May 21.17 0.53 10.59 0.38 1.22 2.64 1.99 5.84 0.55
June 23.80 0.57 10.52 0.26 0.68 2.72 2.23 5.63 0.54
July 23.36 0.57 10.79 0.27 0.83 2.64 2.19 5.66 0.53
Aug. 20.50 0.56 11.69 0.44 2.11 2.39 1.92 6.42 0.55
Sep. 16.50 0.55 13.18 0.59 4.45 1.98 1.55 7.98 0.61
Oct. 12.13 0.54 14.23 0.67 6.72 1.49 1.14 9.35 0.66
Nov. 7.68 0.47 12.09 0.72 6.70 1.02 0.72 8.44 0.70
Dec. 5.57 0.40 9.46 0.72 5.22 0.86 0.52 6.61 0.70
The Klein and Theilacker equations could have been used for this calculation. [ |

For collectors that face the equator, Klein (1976) found that (Ta), could be approx-
imated by (7o) evaluated at the incidence angle that occurs 2.5h from solar noon
on the average day of the month. This angle can be calculated from Equation 1.6.7a
(or Equation 1.6.7b for the southern hemisphere) or obtained from Figure 5.10.2. This rule
leads to acceptable results for solar space heating systems for which it was derived, but
inaccurate results are obtained for other types of systems. Klein also found that the value of
(ta)/(ra), during the winter months is nearly constant and equal to 0.96 for a one-cover
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Figure 5.10.2 Monthly mean incidence angle for beam radiation for surfaces facing the equator
in the northern hemisphere for space heating systems. For the southern hemisphere, interchange the
two inequality signs. From Klein (1979).

collector and suggests using this constant value for collectors tilted toward the equator
with a slope approximately equal to the latitude plus 15° in heating system analysis. For
two-cover collectors a constant value of 0.94 was suggested.

It is useful to be able to calculate (Ter) from (rw), and the information on
(ta)/(ra), in Figure 5.6.1, where (T) is defined by Equation 5.10.1. Dividing by (r«),,,
we have .

(ta) S
(ta), ﬁT (ta),

(5.10.3)
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The appropriate equation for S is substituted in this relationship to provide a useful working
equation. If the isotropic model is used, Equation 5.10.3 becomes

(ta) H,R, (tTa), H, (Ta), (1 + cos ,3) H p, (Ta), <1 — cos ,3)
fr — + f—— p—
(ta), H; (ta), H; (ta), 2 H,; (ta), 2

(5.10.4)
In Equation 5.10.4, the (To)/(r),, ratios are obtained from Figure 5.6.1 for the beam
component at the effective angle of incidence 6, from Figure 5.10.1 and for the diffuse and
ground-reflected components at the effective angles of incidence at 8 from Figure 5.3.1.

The Klein and Theilacker equations can be used in a similar manner.

5.11 ABSORPTANCE OF ROOMS

Direct-gain passive solar heating depends on absorption of solar radiation in rooms or
sunspaces which are cavity receivers with apertures (windows) covered with one or more
glazings. Equation 4.12.1 can be modified to give the fraction of the incident solar energy
on the glazing that is absorbed by such a receiver,

o

! (5.11.1)
o + (1 =)t A, + A

Tellefr = Te

Here 7, is the transmittance of the glazing for the incident solar radiation; 7, is the
transmittance of the glazing for isotropic diffuse solar radiation (the solar radiation
reflected from the inner walls of the cavity), which is at an effective angle of incidence
of about 60°; A, is the area of the aperture (the window); A; is the area of the inside of
the room; and «; is the absorptance for diffuse radiation of the inner surface of the cavity.
A room may have various surfaces on floor, walls, ceiling, and furnishings, and a mean
value of «; can be used.

Example 5.11.1

Calculate .o, the fraction of solar radiation incident on a window which is absorbed in
a room that has dimensions 5 x 4 x 2.5 m. The double glazed window is 1.5 x 3 m. The
mean absorptance of the surfaces in the room is 0.45. The transmittance of the glazing for
incident radiation 7, = 0.87. The glass has KL = 0.0125 per glazing.

Solution

The area of the window, A,,is 1.5 x 3 =4.5 m?. The area of the room, A; (not including
the window), is 2(5 x 4 +5 x 2.5+ 4 x 2.5) — 4.5 = 80.5 m?. From Figure 5.3.1, the
transmittance of the glazing for diffuse radiation t; at an effective angle of incidence of
60° is 0.74. Therefore,

0.45
—0.87 —0.87 x 0.95 = 0.83
Teetf 0.45 + (1 — 0.45) 0.74 (4.5/80.5) x

Thus this room will absorb 0.83 of the incident solar radiation (and 0.95 of the solar energy
that is transmitted into it by the glazing). |
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Example 5.11.2

A direct-gain passive heating system is to be located in Springfield, Illinois (¢ = 40°).
The receiver (the window) and the space in which solar radiation is to be absorbed
have dimensions and characteristics described in the previous example (i.e., an effective
absorptance of 0.95). For January, calculate S, the absorbed radiation per unit area of
window, if the window is not shaded. (This problem is the same as Example 5.10.1, except
that the energy is absorbed in the room rather than on the black surface of an absorbing
wall behind the glazing.)

Solution

For the cavity receiver the calculations are similar to those of Example 5.10.1, but
the absorptance is constant and the transmittance-absorptance product is given by to.
(The correction factor of 1.01 from Equation 5.5.2 is not used, as the radiation reflected
back into the cavity from the cover is accounted for in the calculation of «.) From Example
5.10.1, the month’s average beam radiation incidence angle is 41° and the mean incidence
angle of both the diffuse and the ground-reflected radiation is 59°.

For the beam radiation, from Figure 5.3.1 at & = 41°, the transmittance is 0.82. Then

(tar);, = 0.82 x 0.95 = 0.78
For the diffuse and ground-reflected radiation, from Figure 5.3.1 at & = 59°, the transmit-
tance is 0.74, and
(Ta), = (Ta), = 0.74 x 0.95 = 0.70
Again assuming isotropic diffuse and using monthly average radiation calculations from

Example 5.10.1,

§ =3.59 x 2.32 x 0.78 + 3.04 x 0.70 < 5

| — cos 90
+ 6.63 x 0.7 x 0.70 <%>

= 6.50 4+ 1.06 + 1.62 = 9.18 MJ/m?

1 + cos 90)

We can calculate a month’s average (ta) as S/H,. Thus for January, with H, =
12.2 MJ/m?,

9.18
Ta) = ——=0.75
0 =13
So 75% of the radiation incident on this window in January is absorbed in this room.
Calculations for other months are done the same way as those for January. |

Examples 5.10.1 and 5.11.2 will be the basis of passive system performance calcula-
tions to be shown in Chapter 22. Many receivers (windows) of passive heating systems are
partially shaded by overhangs or wingwalls, and these shading devices must be taken into
account in estimating the incident radiation.
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5.12  ABSORPTANCE OF PHOTOVOLTAIC CELLS

As shown in Chapter 23, the major factor affecting the power output from a photovoltaic
(PV) device is the solar radiation absorbed on the cell surface, S, which is a function
of the incident radiation, air mass, and incidence angle. Similar to the situation with
thermal collectors the needed radiation data are not normally known on the plane of the
PV panel, so it is necessary to estimate the absorbed solar radiation using horizontal
data and incidence angle information. The effective absorbed solar radiation S for a PV
system consists of beam, diffuse, and ground-reflected components and a spectral effect.
Equation 5.12.1 (which is identical to Equation 5.9.1 with the exception of the factor M)
provides a method of estimating S assuming that both diffuse and ground-reflected radiation
are isotropic®:

1+4cos B 1 —cos B
S=M GbRb(Ia)b + Gd(TOl)d f + Gpg(‘l:a)g T

1+cos B 1 —cos B
= ('L'O[)n M GbRbKTDl,b + GdKTDl,d T + GIOgKTO[,g f (5.12.1)

where K, , = (ta),/(ta), is the incidence angle modifier at the beam incidence angle,
K.y qand K, , are the incidence angle modifiers at effective incidence angles for isotropic
diffuse and ground-reflected radiation, and M is an air mass modifier. Selective absorption
by species in the atmosphere causes the spectral content of the solar radiation to change,
altering the spectral distribution of the radiation incident on the PV panel and thus the
generated electricity. King et al. (2004) developed an empirical relation to account for
changes in the spectral distribution resulting from changes in air mass from the reference
air mass value of 1.5 (i.e., at sea-level reference conditions the air mass is equal to 1.5 and
Mref =1

4
M =" a;,(AM) (5.12.2)
0

where AM is the air mass and the a; are constants for different PV materials. However,
as reported by DeSoto et al. (2006), if one set of constants is chosen and used for all
cell types, the difference in the results obtained is small for zenith angles less than about
70°. For monocrystalline silicon cells, as reported by Fanney et al. (2002), the values of
ay, ..., a, are 0.935823, 0.054289, —0.008677, 0.000527, —0.000011.

As discussed in Section 23.2, the ratio of the absorbed radiation S to the absorbed
radiation at a reference radiation, S,.; = MG s(T®),, is needed and is conveniently
represented as

S G, G,
=M | — RbeamKra,b + G— Kra,d 7 G IOKta,g 2

1 +cos B G 1 — cos ,6)
- 4 - =
Sref Gref ref

ref

(5.12.3)

SHere the isotropic sky (Liu and Jordan) method is used but any of the anisotropic methods of Section 2.16 could
have been used.
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where G is the solar radiation at a reference condition (1000 W /m? for most PV systems)
at normal incidence so that (), cancels out and M ; = 1.

The incidence angle modifier for a PV panel differs somewhat from that of a flat-plate
solar collector in that the glazing is bonded to the cell surface, thereby eliminating one
air-glazing interface and the glazing surface may be treated so as to reduce reflection
losses. Sjerps-Koomen et al. (1996) have shown that the transmission of a PV cover system
is well represented by a simple air-glazing model. Snell’s, Fresnel’s, and Bougher’s laws
(Section 5.1) are used to calculate the radiation absorbed by a cell with a glass cover as

1 (sin®> (9, —6) tan? @, — 6
Ta (0) = e~ (KL/cos 6 | | _ _ Sl.n2 ( r ) + an2 ( r ) (5.12.4)
2 \sin® (6, +60) tan* (6, —0)

where 6 and 6, are the incidence and refraction angles (called 0, and 6, in Section 5.2),
K is the glazing extinction coefficient, and L is the glazing thickness. For most PV systems
a typical value for K is 4 m™!, the value for ‘‘water white’* glass, a typical value for the
glazing thickness is 2 mm, and the refractive index is set to 1.526, the value for glass.

To obtain the incidence angle modifier (K, ), Equation 5.12.3 needs be evaluated for
incidence angles of 0° and 0. The ratio of these two transmittances yields the incidence
angle modifier:

Ta (6)
a (0)

K, 6) = (5.12.5)

Separate incidence angle modifiers are needed for beam, diffuse, and ground-reflected
radiation, but each can be calculated in the same way. Average angles for isotropic diffuse
and ground-reflected radiation are provided as a function of the slope of the surface by
Figure 5.4.1. Although these average angles for diffuse radiation were obtained for thermal
collectors, they were found to yield reasonable results for PV systems.

A plot of the incidence angle modifier calculated using Equation 5.12.4 as a function of
incidence angle is shown in Figure 5.12.1. Incidence angle modifiers in the form of fourth-
order polynomial fits provided by Fanney et al. (2002) [following the recommendation of
King et al. (2004)] for four different cell types are shown in the figure with dotted lines.
The plots are all similar out to about 70° to 75° with the curve-fit nature of four of the
curves clearly visible. Differences are apparent at high incidence angles, but the incident
radiation is often low at these high angles and the uncertainty in the experimental values
of the incidence angle modifier is large at these conditions.

When the beam and diffuse components of the horizontal radiation are known, the
evaluation of Equation 5.12.2 is straightforward. However, the usual circumstance is to
know only the total horizontal radiation G so it is necessary to estimate the beam and
diffuse components. Erb’s hourly diffuse fraction correlation (Equation 2.10.1) can be used
to estimate G;/G as a function of the clearness index. Sometimes the radiation is known
on the inclined surface and a more complicated process is needed; this process is illustrated
in the following example.

Example 5.12.1

The instantaneous measured radiation on a south-facing surface at a tilt of 45° at sea level
and at latitude 39.22° on June 1 is 648.3 W/m?. Photovoltaic cells with a typical glass
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Figure 5.12.1 Incidence angle modifier k_,, as a function of incidence angle 6 calculated using
Equation 5.12.4 (solid line). The dotted lines are curve fits to experimentally determined incidence

angle modifiers for four different cell types.

cover are mounted at the same orientation. Estimate the ratio of absorbed radiation S to the
absorbed radiation for a reference condition of 1000 W /m? at normal incidence.

Solution

Since the total radiation G; is known on an inclined surface, it is first necessary to
estimate the beam and diffuse components of the horizontal radiation. The zenith angle
is 17.24° from Equation 1.6.5 and the incidence angle is 27.87° from Equation 1.6.2.
From Equation 1.8.1, R, = cos 27.87/cos 17.24 = 0.9256. The extraterrestrial radiation
G, = 1268 W/m? from Equation 1.10.1. For an assumed ground reflectance of 0.2 the
radiation on an inclined surface is found from Equation 2.15.1 in terms of the beam and
diffuse components of horizontal radiation as

648.3 = G, 0.9256 + G, 0.854 + (G, + G,) 0.029
From the definition of k,
G, +Gy
T 1268

For radiation on a horizontal surface the beam and diffuse breakup can be estimated using
Equation 2.10.1:

G
——4 = 09511 — 0.1604k, + 4.388k% — 16.638k% + 12.3361#
G, + G,
where it is assumed (and later checked and found to be true) that k; is between 0.22

and 0.80. Solving the above three equations simultaneously results in k; = 0.5776,
G, =3718 W/m?, G, = 329.6 W/m?, and G = 707.4 W/m?.
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The next step is to evaluate Equation 5.12.5 at three different angles: 27.87° for the
beam radiation, 69.45° for the ground-reflected radiation (from Equation 5.4.1), and 56.49°
for the diffuse radiation (from Equation 5.4.2). The incident angle modifier for the beam
radiation will be used to illustrate the calculations. At an incidence angle of 27.87° the
refraction angle is 17.84° from Equation 5.1.4. With K =4 m~! and L = 0.002 m we
have

(@), = e~ (O008/ cos 1789 [1 1 <sin2 (17.84 —28.87)  tan® (17.84 — 28.87))}

2 \ sin? (17.84 +28.87)  tan? (17.84 + 28.87)
=0.9475

At normal incidence

1.526 — 1\?
—0.008
— 1—(—==—) | =0.9490
(te)y = e [ <1.526+1>:|

so that K, , = 0.9475/0.9490 = 0.998. In the same manner K, ;, = 0.962 and K, ,
0.867. The air mass AM = 1/cos 17.24 = 1.047 so the air mass modifier M is equal to
0.9837 from Equation 5.12.2. The desired result is found from Equation 5.12.1:

= 0.9837 3296 0.926 x 0.998 + o778 0.962 x 0.854
7 1000 1000

ref

707.
+— 0.2 x 0.867 x 0.146)
1000

=0.622 -

5.13 SUMMARY

This chapter includes several alternative methods for calculating important parameters.
For purposes of calculating radiation absorbed on surfaces that face toward the equator
or nearly so, it is suggested that the hourly absorbed radiation is adequately estimated by
Equation 5.9.1 and the monthly absorbed radiation by Equation 5.10.2 (both based on the
isotropic model). (The HDKR model for S is almost as easy to use as the isotropic, leads
to less conservative estimates of S, and is a useful alternative.) For surfaces that face other
than toward the equator (e.g., for calculating winter radiation on north-facing windows),
anisotropic models should be used.
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Flat-Plate Collectors

A solar collector is a special kind of heat exchanger that transforms solar radiant energy
into heat. A solar collector differs in several respects from more conventional heat
exchangers. The latter usually accomplish a fluid-to-fluid exchange with high heat transfer
rates and with radiation as an unimportant factor. In the solar collector, energy transfer
is from a distant source of radiant energy to a fluid. The flux of incident radiation is,
at best, approximately 1100 W/m? (without optical concentration), and it is variable.
The wavelength range is from 0.3 to 3 um, which is considerably shorter than that of
the emitted radiation from most energy-absorbing surfaces. Thus, the analysis of solar
collectors presents unique problems of low and variable energy fluxes and the relatively
large importance of radiation.

Flat-plate collectors can be designed for applications requiring energy delivery at
moderate temperatures, up to perhaps 100°C above ambient temperature. They use both
beam and diffuse solar radiation, do not require tracking of the sun, and require little
maintenance. They are mechanically simpler than concentrating collectors. The major
applications of these units are in solar water heating, building heating, air conditioning,
and industrial process heat. Passively heated buildings can be viewed as special cases of
flat-plate collectors with the room or storage wall as the absorber. Passive systems are
discussed in Chapter 14.

The importance of flat-plate collectors in thermal processes is such that their thermal
performance is treated in considerable detail. This is done to develop an understanding of
how the component functions. In many practical cases of design calculations, the equations
for collector performance are reduced to relatively simple forms.

The last sections of this chapter treat testing of collectors, the use of test data, and
some practical aspects of manufacture and use of these heat exchangers. Costs will be
considered in chapters on applications.

6.1 DESCRIPTION OF FLAT-PLATE COLLECTORS

236

The important parts of a typical liquid heating flat-plate solar collector, as shown in
Figure 6.1.1, are the ‘‘black’” solar energy-absorbing surface with means for transferring
the absorbed energy to a fluid, envelopes transparent to solar radiation over the solar
absorber surface that reduce convection and radiation losses to the atmosphere, and back
insulation to reduce conduction losses. Figure 6.1.1 depicts a water heater, and most of
the analysis of this chapter is concerned with this geometry. Air heaters are fundamentally
the same except that the fluid tubes are replaced by ducts. Flat-plate collectors are almost

Solar Engineering of Thermal Processes, Fourth Edition. John A. Duffie and William A. Beckman
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Black Quter cover Inner cover
absorber
plate

Insulation Fluid conduit Collector box

Figure 6.1.1 Cross section of a basic flat-plate solar collector.

always mounted in a stationary position (e.g., as an integral part of a wall or roof structure)
with an orientation optimized for the particular location in question for the time of year in
which the solar device is intended to operate.

6.2 BASIC FLAT-PLATE ENERGY BALANCE EQUATION

In steady state, the performance of a solar collector is described by an energy balance that
indicates the distribution of incident solar energy into useful energy gain, thermal losses,
and optical losses. The solar radiation absorbed by a collector per unit area of absorber S is
equal to the difference between the incident solar radiation and the optical losses as defined
by Equation 5.9.1. The thermal energy lost from the collector to the surroundings by
conduction, convection, and infrared radiation can be represented as the product of a heat
transfer coefficient U; times the difference between the mean absorber plate temperature
T, and the ambient temperature 7,. In steady state the useful energy output of a collector
of area A_. is the difference between the absorbed solar radiation and the thermal loss:

0, =AlS - U (T, —T,)] (6.2.1)

The problem with this equation is that the mean absorber plate temperature is difficult
to calculate or measure since it is a function of the collector design, the incident solar
radiation, and the entering fluid conditions. Part of this chapter is devoted to reformulating
Equation 6.2.1 so that the useful energy gain can be expressed in terms of the inlet
fluid temperature and a parameter called the collector heat removal factor, which can be
evaluated analytically from basic principles or measured experimentally.

Equation 6.2.1 is an energy rate equation and, in ST units, yields the useful energy gain
in watts (J/s) when S is expressed in W/m? and U; in W/m? K. The most convenient
time base for solar radiation is hours rather than seconds since this is the normal period for
reporting of meteorological data. (For example, Table 2.5.2 gives solar radiation in J/m?
for 1-h time periods.) This is the time basis for S in Equation 5.9.1 since the meaning of
I is hourly J/m?. We can consider S to be an average energy rate over a 1-h period with
units of J/m? h, in which case the thermal loss term U (T, — T,) must be multiplied by
3600 s/h to obtain numerical values of the useful energy gain in J/h. The hour time base
is not a proper use of SI units, but this interpretation is often convenient. Alternatively,
we can integrate Equation 6.2.1 over a 1-h period. Since we seldom have data over time



238 Flat-Plate Collectors

periods less than 1h, this integration can be performed only by assuming that S, 7,,,,, and
T, remain constant over the hour. The resulting form of Equation 6.2.1 is unchanged except
that both sides are multiplied by 3600 s/h. To avoid including this constant in expressions
for useful energy gain on an hourly basis, we could have used different symbols for rates
and for hourly integrated quantities (e.g., Q . and Q,). However, the intended meaning is
always clear from the use of either G or / in the evaluation of S, and we have found it
unnecessary to use different symbols for collector useful energy gain on an instantaneous
basis or an hourly integrated basis. From a calculation standpoint the 3600 must still be
included since S will be known for an hour time period but the loss coefficient will be in
SI units.

A measure of collector performance is the collection efficiency, defined as the ratio of
the useful gain over some specified time period to the incident solar energy over the same

time period:
[ ouar
(6.2.2a)

n=——F
AC/GTdt

If conditions are constant over a time period, the efficiency reduces to

n = Qu (6.2.2b)

The design of a solar energy system is concerned with obtaining minimum-cost energy.
Thus, it may be desirable to design a collector with an efficiency lower than is technologi-
cally possible if the cost is significantly reduced. In any event, it is necessary to be able to
predict the performance of a collector, and that is the basic aim of this chapter.

6.3 TEMPERATURE DISTRIBUTIONS IN FLAT-PLATE COLLECTORS

The detailed analysis of a solar collector is a complicated problem. Fortunately, a relatively
simple analysis will yield very useful results. These results show the important variables,
how they are related, and how they affect the performance of a solar collector. To illustrate
these basic principles, a liquid heating collector, as shown in Figure 6.3.1, will be examined
first. The analysis presented follows the basic derivation by Whillier (1953, 1977) and
Hottel and Whillier (1958).

To appreciate the development that follows, it is desirable to have an understanding
of the temperature distribution that exists in a solar collector constructed as shown in
Figure 6.3.1. Figure 6.3.2(a) shows a region between two tubes. Some of the solar energy
absorbed by the plate must be conducted along the plate to the region of the tubes. Thus
the temperature midway between the tubes will be higher than the temperature in the
vicinity of the tubes. The temperature above the tubes will be nearly uniform because of
the presence of the tube and weld metal.

The energy transferred to the fluid will heat the fluid, causing a temperature gradient
to exist in the direction of flow. Since in any region of the collector the general temperature
level is governed by the local temperature level of the fluid, a situation as shown in
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Figure 6.3.1 Sheet-and-tube solar collector.
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Figure 6.3.2 Temperature distribution on an absorber plate. From Duffie and Beckman (1974).

Figure 6.3.2(b) is expected. At any location y, the general temperature distribution in the x
direction is as shown in Figure 6.3.2(c), and at any location x, the temperature distribution
in the y direction will look like Figure 6.3.2(d).

To model the situation shown in Figure 6.3.2, a number of simplifying assumptions
can be made to lay the foundations without obscuring the basic physical situation. These
assumptions are as follows:

1. Performance is steady state.
Construction is of sheet and parallel tube type.
The headers cover a small area of collector and can be neglected.

The headers provide uniform flow to tubes.

A

There is no absorption of solar energy by a cover insofar as it affects losses from
the collector.
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Heat flow through a cover is one dimensional.
There is a negligible temperature drop through a cover.

The covers are opaque to infrared radiation.

» L3

There is one-dimensional heat flow through back insulation.

10. The sky can be considered as a blackbody for long-wavelength radiation at an
equivalent sky temperature.

11. Temperature gradients around tubes can be neglected.

12. The temperature gradients in the direction of flow and between the tubes can be
treated independently.

13. Properties are independent of temperature.

14. Loss through front and back are to the same ambient temperature.
15. Dust and dirt on the collector are negligible.

16. Shading of the collector absorber plate is negligible.

In later sections of this chapter many of these assumptions will be relaxed.

6.4 COLLECTOR OVERALL HEAT LOSS COEFFICIENT

The equations developed in the remainder of this text are often coupled nonlinear algebraic
and/or differential equations. The equations are presented in a manner that is convenient
for solving by hand or by programming in structured languages such as FORTRAN,
Pascal, or C. Typically this means nonlinear equations are linearized, differential equations
are discretized, and iterative solutions are required. A number of computer programs
are available that can solve systems of algebraic and differential equations; it is only
necessary to write the equations in a natural form and let the program organize the solution.
The authors use Engineering Equation Solver (EES)! to check solutions to the example
problems, to solve the homework problems in Appendix A, and to carry on research with
their colleagues and graduate students.

It is useful to develop the concept of an overall loss coefficient for a solar collector
to simplify the mathematics. Consider the thermal network for a two-cover system shown
in Figure 6.4.1. At some typical location on the plate where the temperature is 7, solar
energy of amount S is absorbed by the plate, where S is equal to the incident solar radiation
reduced by optical losses as shown in Section 5.9. This absorbed energy S is distributed
to thermal losses through the top and bottom and to useful energy gain. The purpose of
this section is to convert the thermal network of Figure 6.4.1 to the thermal network of
Figure 6.4.2.

The energy loss through the top is the result of convection and radiation between
parallel plates. The steady-state energy transfer between the plate at 7/, and the first cover
at T, is the same as between any other two adjacent covers and is also equal to the energy
lost to the surroundings from the top cover. The loss through the top per-unit area is then

"Engineering Equation Solver information is available at www.fchart.com.
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Figure 6.4.1 Thermal network for a two-cover flat-plate collector: (a) in terms of conduction,
convection, and radiation resistances; (b) in terms of resistances between plates.
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Figure 6.4.2

Equivalent thermal network for flat-plate solar collector.
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equal to the heat transfer from the absorber plate to the first cover:

Qoss,top = hc,pfcl(Tp - Tcl) + ﬁ (641)

where i, ,_., is the convection heat transfer coefficient between two inclined parallel plates
from Chapter 3. If the definition of the radiation heat transfer coefficient (Equation 3.10.1)
is used, the heat loss becomes

Q1oss.top = (hc,pfcl + hr,pfcl)(Tp - T.) (64.2)
where ) 5
o(T,+T,)(T, +T3)
hy p_c1 = I I (6.4.3)
—+——1
gp el
The resistance R; can then be expressed as
1
Ry=———— (6.4.4)
hc,p—cl + hr,p—c]

A similar expression can be written for R,, the resistance between the covers. In
general, we can have as many covers as desired, but the practical limit is two and most
collectors use one.

The resistance from the top cover to the surroundings has the same form as
Equation 6.4.4, but the convection heat transfer coefficient %,, is given in Section 3.15.
The radiation resistance from the top cover accounts for radiation exchange with the sky
at T;. For convenience, we reference this resistance to the ambient temperature 7, so that
the radiation heat transfer coefficient can be written as

T, + T)(T% + T2)(T, — T,
ho = 086( c2 + Y)( c2 + s )( c2 s) (645)
r,c2—a T —T
2 a

C

The resistance to the surroundings R, is then given by

o 1
" h,+h

r,c2—a

(6.4.6)

For this two-cover system, the top loss coefficient from the collector plate to the ambient

is
1

U=—— (6.4.7)

The procedure for solving for the top loss coefficient using Equations 6.4.1 through

6.4.7 is necessarily an iterative process. First a guess is made of the unknown cover

temperatures, from which the convective and radiative heat transfer coefficients between

parallel surfaces are calculated. With these estimates, Equation 6.4.7 can be solved for
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the top loss coefficient. The top heat loss is the top loss coefficient times the overall
temperature difference, and since the energy exchange between plates must be equal to
the overall heat loss, a new set of cover temperatures can be calculated. Beginning at the
absorber plate, a new temperature is calculated for the first cover. This new first cover
temperature is used to find the next cover temperature, and so on. For any two adjacent
covers or plate, the new temperature of plate or cover j can be expressed in terms of the
temperature of plate or cover i as

u(r, —T
T, =T, - U, — 1) (6.4.8)
heiojthpioj

The process is repeated until the cover temperatures do not change significantly between
successive iterations. The following example illustrates the process.

Example 6.4.1

Calculate the top loss coefficient for an absorber with a single glass cover having the
following specifications:

Plate-to-cover spacing 25 mm
Plate emittance 0.95
Ambient air and sky temperature 10°C
Wind heat transfer coefficient 10 W/m?°C
Mean plate temperature 100°C
Collector tilt 45°
Glass emittance 0.88

Solution

For this single-glass-cover system, Equation 6.4.7 becomes

—1
U - 1 n 1
t hc,pfc + hr,pfc hw + hr,cfa
. can be found using the

The convection coefficient between the plate and the cover &, ,_.
methods of Section 3.11. The radiation coefficient from the plate to the cover h,. ,_ . is

A _ o(Tp+TH(T,—T,)
r.p=c I 1
—+—=—1

&, &

The radiation coefficient for the cover to the air &, ., is given as
hr,c—a = SCU(TCZ + Tsz)(Tc + Ts)
The equation for the cover glass temperature is based on Equation 6.4.8:

T =T _ Ut(Tp_Ta)
T

c,p—c
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The procedure is to estimate the cover temperature, from which 4. ,_., h, ,_. and
h,. ._, are calculated. With these heat transfer coefficients and 4, the top loss coefficient
is calculated. These results are then used to calculate 7, from the preceding equation. If
T, is close to the initial guess, no further calculations are necessary. Otherwise, the newly
calculated T, is used and the process is repeated.

With an assumed value of the cover temperature of 35°C, the two radiation coefficients
become

h., .=760W/m*°C, h,. ,=516W/m>°C

r,

Equation 3.11.4 is used to calculate the convection coefficient between the plate and
the cover. The mean temperature between the plate and the cover is 67.5°C so the air
properties are v = 1.96 x 1073 mz/s, k=0.0293 W/m °C, T = 340.5 K, and Pr = 0.7.
The Rayleigh number is

_9.81(100 — 35)(0.025)*(0.7)

=533 x 10*
340.5(1.96 x 1075)2

and from Equation 3.11.4 the Nusselt number is 3.19. The convective heat transfer
coefficient is

h = Nu 7= 319 ———— =373 W/m?> °C

(The same result is obtained from Figures 3.11.1 and 3.11.2. From Figure 3.11.2,
F, =0.46 and F, = 0.84. The value of F, AT I’ is 4.7 x 10°. From Figure 3.11.1,
F,hl = 78. Then h = 3.7 W/m? °C.) The first estimate of U, is then

1 1 -
U, = = 6.49 W/m? °C
’ (3.73 760 506+ 10.0) /m

The cover temperature is

6.49 x 90
T. =100 — — 7" _485°C
3.73 + 7.60
With this new estimate of the cover temperature, the various heat transfer coefficients
become
h., .=803W/m*°C, h,.,=553W/m"°C, h,, . =352W/m*°C

and the second estimate of U, is
U, = 6.62 W/m* °C

When the cover glass temperature is calculated with this new top loss coefficient, it is
found to be 48.4°C, which is essentially equal to the estimate of 48.5°C.

The following shows the solution to this example using EES. The small difference
between U, obtained by EES and U, in the above solution is due only to property differences
(the EES solution properties being more accurate).
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Equations
Knowns — units set to J, K, kPa, and degrees

L =0.025[m]; ¢, =095 T, =283 [K]; h, =10 [W/m2 KI; Py, = 101.3 [kPa]

Tp = 373 [K]; B = 45[deg]; g = 0.88; 0 = sigma#; g = g#

Definition of top loss coefficient and rate equations:
q=U/T,—T,)

o(T)—T%)
l/e, +1/e. =1
q=h,T,—T,)+o0e,(Te—T,)

q=h,(T,—T,)+

Get properties at 7,
;s _D+T
" 2
p = viscosity(air, T = T,,); k = conductivity(air, T —T,,)

C p = specheat(air, T = T,,); p = density(air, T =T,,)
v=u/p; a=k/(pC,)

Rayleigh and Nusselt numbers

T,—T,)L? hL
Ra# = M; Nu# = —¢
T, va k
1708(sin 1.88)"° 1708 7
Nu#t=1+144|1- 1—
Ra# cos B Ra# cos B
" Ra# cos B 13 ] "
5830
T.over = CovnertTemp(K, C, T,)
Solution
a = 0.0000284 [m?/s] C, = 1008 [J/kg K] h, = 3.44 [W/m? K]
k =0.0291 [W/m K] w = 0.0000207 [kg/m s] v = 0.00002035 [m?/s]
Nu# = 2.96 g = 593.5 [W/m?] Ra# = 39542
p = 1.017 [kg/m?] T, =321.1 [K] Toover = 48.1 [C]
T, =347.1 [K] U, = 6.59 [W/m? K]
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The results of heat loss calculations for four different solar collectors, all with the
same plate and ambient temperatures, are shown in Figure 6.4.3. The cover temperatures
and the heat flux by convection and radiation are shown for one and two glass covers and
for selective and nonselective absorber plates. Note that radiation between plates is the
dominant mode of heat transfer in the absence of a selective surface. When a selective
surface having an emittance of 0.10 is used, convection is the dominant heat transfer mode
between the selective surface and the cover, but radiation is still the largest term between
the two cover glasses in the two-cover system.

For most conditions the use of a blackbody radiation sky temperature that is not equal
to the air temperature will not greatly affect the top loss coefficient or the top heat loss.
For example, the top loss coefficient based on the plate-to-ambient-temperature difference
for condition (a) of Figure 6.4.3 is increased from 6.62 to 6.76 W/m? °C when the sky
temperature is reduced from 10 to 0°C. For condition (b) the top loss coefficient is increased
from 3.58 to 3.67 W/m? °C.

As illustrated by Example 6.4.1, the calculation of the top loss coefficient is a tedious
process. To simplify calculations of collector performance, Figures 6.4.4(a—f) have been
prepared. These figures give the top loss coefficient for one, two, and three glass covers
spaced 25 mm apart; ambient temperatures of 40, 10, and —20°C; wind heat transfer
coefficients of 5, 10, and 20 W/m2 °C; plates having an emittance of 0.95 and 0.10, a
slope of 45°, and a range of plate temperatures.

Even though the top loss coefficients of Figures 6.4.4 are for a plate spacing of
25 mm, they can be used for other plate spacings with little error as long as the spacing is

( q wing = 214 g‘Inad=108

————————————— T=484 —_—,—————— e e - T =314

( g conv = 182 $‘3Rad:414 ( 9 Cony = 262 s 9 Rad = 60
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(a) (b)
( Q wina = 232 ?QRadIIIQ ( Qwing = 147 ?q Rad = 712
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————————————— =703 2T 1T so0s
( 9 conv = 90 3‘1 Rad = 261 ( Qconv = 172 gq Rad = 47
AN NN Ty, OO

(c) (d)

Figure 6.4.3 Cover temperature and upward heat loss for flat-plate collectors operating at 100°C
with ambient and sky temperature of 10°C, plate spacing of 25 mm, tilt of 45°, and wind heat transfer
coefficient of 10 W/m2 °C: (a) one cover, plate emittance 0.95, U, =6.6 W/m2 °C; (b) one cover,
plate emittance 0.10, U, = 3.6 W/m2 °C; (c) two covers, plate emittance 0.95, U, =39 W/m2 °C;
(d) two covers, plate emittance 0.10, U, = 2.4 W/m? °C. All heat flux terms in watts per square
meter.
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Figure 6.4.4 Top loss coefficient for slope of 45° and a plate spacing of 25 mm.
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greater than about 15 mm. Figure 6.4.5 illustrates the dependence of the top loss coef-
ficient on plate spacing for selective and nonselective one- and two-cover collectors.
For very small plate spacings convection is suppressed and the heat transfer mechanism
through the gap is by conduction and radiation. In this range the top loss coefficient
decreases rapidly as the plate spacing increases until a minimum is reached at about
10- to 15-mm plate spacing. When fluid motion first begins to contribute to the heat
transfer process, the top loss coefficient increases until a maximum is reached at approx-
imately 20 mm. Further increase in the plate spacing causes a small reduction in the
top loss coefficient. Similar behavior occurs at other conditions and for other collector
designs.

Figures 6.4.4 was prepared using a slope 8 of 45°. In Figure 6.4.6 the ratio of the top
loss coefficient at any tilt angle to that of 45° has been plotted as a function of slope.

The graphs for U, are convenient for hand calculations but they are difficult to use
on computers. An empirical equation for U, that is useful for both hand and computer
calculations was developed by Klein (1979) following the basic procedure of Hottel and
Woertz (1942) and Klein (1975). This relationship fits the graphs for U, for mean plate
temperatures® between ambient and 200°C to within £0.3 W/m? °C:

Top loss coefficient U,, W/m2C

2
T, =30
N=2 ¢ = 0.1
1+ .
Collector tilt = 45°
0 ! | I
¢} 10 20 30 40

Plate spacing, mm

Figure 6.4.5 Typical variation of top loss coefficient with plate spacing.

2 A method for estimating 7'

o is given in Section 6.9.
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Figure 6.4.6 Dependence of top loss coefficient on slope.
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U= < (Tpm -7, Cohy,
Tow | (N+ 1)
N o (T + T2, + T2 6.4.9)
1 LN A - TH0133, o
e, +0.00591N#h,, £,

where N = number of glass covers
f= (1+0.089%,, — 0.1166h,,,)(1 + 0.07866N)
C = 520(1 — 0.00005182) for 0° < B < 70°; for 70° < B < 90°, use B = 70°
e=0.430(1 —100/7,,)
B = collector tilt (deg)
¢, = emittence of glass (0.88)

g
&, = emittence plate

p
T,, = ambient temperature (K)
T,,, = mean plate temperature (K)

pm
h,, = wind heat transfer coefficient (W/m? °C)

Example 6.4.2

Determine the collector top loss coefficient for a single glass cover with the following
specifications:

Plate-to-cover spacing 25 mm
Plate emittance 0.95
Ambient temperature 10°C
Mean plate temperature 100°C
Collector tilt 45°

Wind heat transfer coefficient 10 W/m? °C
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Solution

From the definitions of f, C, and e in Equation 6.4.9

S =11.0+4+0.089(10) — 0.1166(10)(0.95)](1 + 0.07866) = 0.844
C = 520[1 — 0.000051(45)*] = 466

100
e=0430(1—-—)=0315
373
From Equation 6.4.9
1 11!
_ 035 T 10
U,=| 466 (373 —283 10
373 \ 1+ 0.844
5.67 x 1078(373 + 283)(373% + 283?)
+ T 240844 -T10133x095
0.95 +0.00591 x 1 x 10 0.88
=298 +3.65=6.6 W/m? °C
which is very nearly the same as found in Example 6.4.1. |

The energy loss through the bottom of the collector is represented by two series
resistors, R, and Rs, in Figure 6.4.1, where R, represents the resistance to heat flow
through the insulation and R represents the convection and radiation resistance to the
environment. The magnitudes of R, and R5 are such that it is usually possible to assume
Rs is zero and all resistance to heat flow is due to the insulation. Thus, the back loss
coefficient U, is approximately? |

b L _k
PR, L

(6.4.10)

where k and L are the insulation thermal conductivity and thickness, respectively.

For most collectors the evaluation of edge losses is complicated. However, in a
well-designed system, the edge loss should be small so that it is not necessary to predict it
with great accuracy. Tabor (1958) recommends edge insulation of about the same thickness
as bottom insulation. The edge losses are then estimated by assuming one-dimensional
sideways heat flow around the perimeter of the collector system. The losses through the
edge should be referenced to the collector area. If the edge loss coefficient—area product is

w/ A)edge, then the edge loss coefficient, based on the collector area A, is
(UA)
U, = T°dge (6.4.11)

c

31t is often assumed that the back losses are to a sink at the same temperature as the front losses. This may not be
the case.
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If it is assumed that all losses occur to a common sink temperature 7,,, the collector
overall loss coefficient U, is the sum of the top, bottom, and edge loss coefficients:

U, =U,+U,+U, (6.4.12)

Example 6.4.3

For the collector of Example 6.4.2 with a top loss coefficient of 6.6 W/m? °C, calculate
the overall loss coefficient with the following additional specifications:

Back-insulation thickness 50 mm
Insulation conductivity 0.045 W/m °C
Collector bank length 10m
Collector bank width 3m
Collector thickness 75 mm
Edge insulation thickness 25 mm

Solution

The bottom loss coefficient is found from Equation 6.4.10:

_— k 0045 — 0.9 W/m? °C
7L T 0050 "

The edge loss coefficient for the 26-m perimeter is found from Equation 6.4.11:

0.045/0.025) x 26 x 0.075 o
y, = (0045/0.025) > 26 x = 0.12 W/m? °C
30
The collector overall loss coefficient is then
U, =6.6+09+0.1=7.6W/m>°C ™

The edge loss for this 30-m? collector array is a little over 1% of the total losses. Note,
however, that if this collector were 1 x 2 m, the edge losses would increase to over 5%.
Thus, edge losses for well-constructed large collector arrays are usually negligible, but for
small arrays or individual modules the edge losses may be significant. Also note that only
the exterior perimeter was used to estimate edge losses. If the individual collectors are not
packed tightly together, significant heat loss may occur from the edge of each module.

The preceding discussion of top loss coefficients, including Equation 6.4.9, is based
on covers like glass that are opaque to long-wavelength radiation. If a plastic material
is used to replace one or more covers, the equation for U, must be modified to account
for some infrared radiation passing directly through the cover. For a single cover that is
partially transparent to infrared radiation, the net radiant energy transfer directly between
the collector plate and the sky is

t.e,0(TH— T}
Gy poy = ——L—— T — 10 (6.4.13)
’ 1—p,p.
prc
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where 7. and p, are the transmittance and reflectance of the cover for radiation from 7,
and from 7 (assuming that the transmittance is independent of source temperature or that
T, and T are nearly the same) and ¢, and p,, are the emittance and reflectance of the plate
for long-wave radiation. The top loss coefficient then becomes

—1
U = Jom ! + ! (6.4.14)
e Tp - Ta hc,pfc + hr,pfc hw + hr,cfs‘ o

The evaluation of the radiation heat transfer coefficients in Equation 6.4.14 must take
into account that the cover is partially transparent. The net radiation between the opaque
plate and the partially transparent cover is given by

oe e (T*—T?
g=—"1—~r__° Ty = Tc) (6.4.15)
I —p,p.

The radiation heat transfer coefficient between the plate and cover is just the net heat
transfer divided by the temperature difference:

oe, e (T, +T)T?*+T?
hypo=—> Ty + 1Ty +10) (6.4.16)
’ l_pppc

Whillier (1977) presents top loss coefficients for collector cover systems of one glass
cover over one plastic cover, two plastic covers, and one glass cover over two plastic
covers.

6.5 TEMPERATURE DISTRIBUTION BETWEEN TUBES AND THE COLLECTOR
EFFICIENCY FACTOR

The temperature distribution between two tubes can be derived if we temporarily assume
the temperature gradient in the flow direction is negligible. Consider the sheet-tube
configuration shown in Figure 6.5.1. The distance between the tubes is W, the tube
diameter is D, and the sheet is thin with a thickness §. Because the sheet material is a good
conductor, the temperature gradient through the sheet is negligible. We will assume the
sheet above the bond is at some local base temperature 7. The region between the centerline
separating the tubes and the tube base can then be considered as a classical fin problem.

The fin, shown in Figure 6.5.2(a), is of length (W — D)/2. An elemental region of
width Ax and unit length in the flow direction is shown in Figure 6.5.2(b). An energy
balance on this element yields

- <—k8 g)
X

where S is the absorbed solar energy defined by Equation 5.9.1. Dividing through by Ax
and finding the limit as Ax approaches zero yield

&er U, N
—=t(r-1,- = 6.5.2
dx2 k8 ( ¢ UL> 6-52)

=0 6.5.1)

dr
SAx—U, AX(T —T,) + | —ks —
x+Ax

dx
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Figure 6.5.2 Energy balance on fin element.

The two boundary conditions necessary to solve this second-order differential equation

are symmetry at the centerline and the known base temperature:

dr
_ =0,
dx x=0

Tlicw—py2 =T,

For convenience, we can define two variables, m and W :

Yy
kd
yor_7,_ 5
a UL
and Equation 6.5.2 becomes
ey,
w2 =0

which has the boundary conditions

dy

=0,
dx

x=0

Vieew-pyp =T, — T,

The general solution is
Y = C, sinh mx+ C, cosh mx

(6.5.3)

(6.5.4)

(6.5.4b)

(6.5.5)

0 (6.5.6)

(6.5.7)
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The constants C; and C, can be found by substituting the boundary conditions into the
general solution. The result is
r-T1T,—-S/U, _ cosh mx
T,—T,—S/U,  cosh m(W — D)/2

(6.5.8)

The energy conducted to the region of the tube per unit of length in the flow direction
can now be found by evaluating Fourier’s law at the fin base:

dT
L= ks
fin dx

— (k 5’") 1S— U, (1, — )] tanh " =P 65,
U, 2

x=(W—-D)/2
but k §m/U; is just 1/m. Equation 6.5.9 accounts for the energy collected on only one
side of a tube; for both sides, the energy collection is

tanh m(W — D)/2

9in = W = DS = UL (T, = 1)1 — "o (6.5.10)

It is convenient to use the concept of a fin efficiency to rewrite Equation 6.5.10 as
Gfn = (W = D)F[S — U (T, — T,)] (6.5.11)
where

_ tanh[m(W — D)/2]
~ m(W—=D)/)2

(6.5.12)

The function F is the standard fin efficiency for straight fins with rectangular profile and
is plotted in Figure 6.5.3.

The useful gain of the collector also includes the energy collected above the tube
region. The energy gain for this region is

qt/ube = D[S - UL(Tb - Ta)] (6513)

and the useful gain for the tube and fin per unit of length in the flow direction is the sum of
Equations 6.5.11 and 6.5.13:

q, =[(W—D)F+ D][S — U (T, — T,)] (6.5.14)
Ultimately, the useful gain from Equation 6.5.14 must be transferred to the fluid. The

resistance to heat flow to the fluid results from the bond and the tube-to-fluid resistance.
The useful gain can be expressed in terms of the two resistances as

T,—T
g, = —2 1 (6.5.15)
u T

hﬁ]TDl Cb

where D; is the inside tube diameter and £ is the heat transfer coefficient between the
fluid and the tube wall. The bond conductance C,, can be estimated from knowledge of the
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Figure 6.5.3 Fin efficiency for tube-and-sheet solar collectors.

bond thermal conductivity k,,, the average bond thickness y, and the bond width 5. On a
per-unit-length basis,

C, =2 (6.5.16)

The bond conductance can be very important in accurately describing collector
performance. Whillier and Saluja (1965) have shown by experiments that simple wiring
or clamping of the tubes to the sheet results in low bond conductance and significant loss
of performance. They conclude that it is necessary to have good metal-to-metal contact so
that the bond conductance is greater than 30 W/m °C.

We now wish to eliminate 7}, from the equations and obtain an expression for the useful
gain in terms of known dimensions, physical parameters, and the local fluid temperature.
Solving Equation 6.5.15 for 7, substituting it into Equation 6.5.14, and solving the result
for the useful gain, we obtain

4y =WF'[S—U,(T; — T))] (6.5.17)
where the collector efficiency factor F’ is given as

F/ — 1/UL

(6.5.18)

1 1 1
W -
[UL D+W-DFl G n'Dihﬁj|
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A physical interpretation for F’ results from examining Equation 6.5.17. At a particular
location, F’ represents the ratio of the actual useful energy gain to the useful gain that
would result if the collector absorbing surface had been at the local fluid temperature. For
this and most (but not all) geometries, another interpretation for the parameter F’ becomes
clear when it is recognized that the denominator of Equation 6.5.18 is the heat transfer
resistance from the fluid to the ambient air. This resistance will be given the symbol 1/U,,.
The numerator is the heat transfer resistance from the absorber plate to the ambient air.
Thus F' is the ratio of these two heat transfer coefficients:

U,
=2 (6.5.19)
UL

F/

The collector efficiency factor is essentially a constant for any collector design and
fluid flow rate. The ratio of U, to C, the ratio of U, to hy, and the fin efficiency parameter
F are the only variables appearing in Equation 6.5.18 that may be functions of temperature.
For most collector designs F is the most important of these variables in determining F’.
The factor F’ is a function of U, and h, each of which has some temperature dependence,
but it is not a strong function of temperature.

The evaluation of F’ is not a difficult task. However, to illustrate the effects of various
design parameters on the magnitude of F’, Figure 6.5.4 has been prepared. Three values of
the overall heat transfer coefficient U; were chosen (2, 4, and 8 W/m2 °C) which cover
the range of collector designs from a one-cover nonselective to a two-cover selective.
(See Figure 6.4.4 for other combinations that yield these same overall loss coefficients.)
Instead of selecting various plate materials, the curves were prepared for various values
of k6, the product of the plate thermal conductivity and plate thickness. For a copper
plate 1 mm thick, k8 = 0.4 W /°C; for a steel plate 0.1 mm thick, k§ = 0.005 W/°C. Thus,
the probable range of &£§ is from 0.005 to 0.4. The bond conductance was assumed to be
very large (i.e., 1/C, = 0) and the tube diameter was selected as 0.01 m. Three values
were chosen for the heat transfer coefficient inside the tube to cover a range from laminar
flow to highly turbulent flow: 100, 300, and 1000 W/m2 °C. Note that increasing hﬁ
beyond 1000 W/m? °C for this diameter tube does not result in significant increases in F’.
As expected, the collector efficiency factor decreases with increased tube center-to-center
distances and increases with increases in both material thickness and thermal conductivity.
Increasing the overall loss coefficient decreases F’.

Example 6.5.1

Calculate the collector efficiency factor for the following specifications:

Overall loss coefficient 8.0 W/m? °C
Tube spacing 150 mm
Tube diameter (inside) 10 mm
Plate thickness 0.5 mm
Plate thermal conductivity (copper) 385 W/m °C
Heat transfer coefficient inside tubes 300 W/m? °C

Bond conductance oo W/m °C
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Figure 6.5.4 Collector efficiency factor F” versus tube spacing for 10-mm-diameter tubes: (a) i ;=
100 W/m? °C; (b) hy =300 W/m? °C; (c) h; = 1000 W/m? °C.

7

Solution

The fin efficiency factor F, from Equations 6.5.4a and 6.5.12, is determined as follows:

3 12
"= <385 %5 % 10—4) = 645 [1/ml]

_ tanh[6.45(0.15 — 0.01)/2]
~ 6.45(0.15-0.01)/2

=0.937
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Figure 6.5.4 (Continued)
The collector efficiency factor F’ is found from Equation 6.5.18:
F = 1/8 = 0.841

1 1 1
0.15 L
[8[0.01 +F(0.15-001)0937] T o0 7 x 00l x 300]

The same result is obtained from Figure 6.5.4(b).



6.6 Temperature Distribution in Flow Direction 261

o kS, W/C
. T e T O oo
B NS S e e Ny e 1
= N \Y >~ \‘§ 0.1
0.9 \\\\Q\\\\\\\\\\ 8:82
Ly, = 2w/m?cC \ \\\\§\> 0.04
Y 0.03
0s B \\ \\ s 0.025
B \)\005 0.01 \0.015Y 902
10 \m
n _—
AN

0.9 \

Collector efficiency factor, F
I

0.8 B 0005\ \ N ‘\\\\
AN

ETINNNNSN =
sl NN ANANNG

0005\ \ NN
_lll L1 lll\]l\ll\l\\\(\l LN

0 2 4 6 8 10 12 14 16 18 20
Tube spacing, cm
(c)

Figure 6.5.4 (Continued)

6.6 TEMPERATURE DISTRIBUTION IN FLOW DIRECTION

The useful gain per unit flow length as calculated from Equation 6.5.17 is ultimately
transferred to the fluid. The fluid enters the collector at temperature 7j; and increases in
temperature until at the exit it is 7j,. Referring to Figure 6.6.1, we can express an energy
balance on the fluid flowing through a single tube of length Ay as

S)E Tl = () €Tyl iy + Ay, =0 (6.6.1)
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Figure 6.6.1 Energy balance on fluid element.

where m is the total collector flow rate and » is the number of parallel tubes. Dividing
through by Ay, finding the limit as Ay approaches zero, and substituting Equation 6.5.17
for g}, we obtain

4Ty )
mC, —- —nWF'[S = U, (T; = T)] =0 (6.6.2)
dy

If we assume that F’ and U, are independent of position,* then the solution for the fluid
temperature at any position y (subject to the condition that the inlet fluid temperature is
7}7) is
T, —T,—S/U U nWF’
f“—/L — ex _M (6.6.3)
I;,—T,-S/U, mC,
If the collector has a length L in the flow direction, then the outlet fluid temperature 7}, is
found by substituting L for y in Equation 6.6.3. The quantity nWL is the collector area:

T, — T, — S/U U, A F
Tp=Ta =500 _ Bt (6.6.4)
T, — T, - S/U, mC,

6.7 COLLECTOR HEAT REMOVAL FACTOR AND FLOW FACTOR

It is convenient to define a quantity that relates the actual useful energy gain of a collector
to the useful gain if the whole collector surface were at the fluid inlet temperature. This
quantity is called the collector heat removal factor F. In equation form it is

mcp(z}o - T‘ﬁ)

Fp= (6.7.1)
FALS —ULT - T
The collector heat removal factor can be expressed as
mC, T, — Ty
Fr= fo .
AU, | S/U, —(T; - T,)
_ Gy [ [8/UL = (T = T)] ~ [S/Up — (T, — T)) 672
AU, S/U, — (T, — T,) o

“Dunkle and Cooper (1975) have assumed U ;. is a linear function of Tf =T,
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or
mC S/u, — (T, — T,
Fe=—2= |1- /U= (1 ) (6.7.3)
AU, S/U, —(T; = T,)
which from Equation 6.6.4 can be expressed as
mC AU F'
Fp=—2|1—exp|——E— (6.7.4)
AU, mC,

To present Equation 6.7.4 graphically, it is convenient to define the collector flow
factor F” as the ratio of Fy to F’. Thus

F mC AU, F
F’ =R L [1 —exp (-iﬂ (6.7.5)

T F T AUF mC,

This collector flow factor is a function of the single variable, the dimensionless collector
capacitance rate mC,/A U, F', and is shown in Figure 6.7.1.

The quantity F is equivalent to the effectiveness of a conventional heat exchanger,
which is defined as the ratio of the actual heat transfer to the maximum possible heat
transfer. The maximum possible useful energy gain (heat transfer) in a solar collector occurs
when the whole collector is at the inlet fluid temperature; heat losses to the surroundings
are then at a minimum. The collector heat removal factor times this maximum possible
useful energy gain is equal to the actual useful energy gain Q,, :

0, = A FglS — U (T, — T,)] (6.7.6)
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Figure 6.7.1 Collector flow factor F” as a function of mC,/A U F'.
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This is an extremely useful equation’ and applies to essentially all flat-plate collectors.
With it, the useful energy gain is calculated as a function of the inlet fluid temperature.
This is a convenient representation when analyzing solar energy systems, since the inlet
fluid temperature is usually known. However, losses based on the inlet fluid temperature
are too small since losses occur all along the collector from the plate and the plate has
an ever-increasing temperature in the flow direction. The effect of the multiplier F is
to reduce the useful energy gain from what it would have been had the whole collector
absorber plate been at the inlet fluid temperature to what actually occurs. As the mass flow
rate through the collector increases, the temperature rise through the collector decreases.
This causes lower losses since the average collector temperature is lower and there is a
corresponding increase in the useful energy gain. This increase is reflected by an increase
in the collector heat removal factor Fj as the mass flow rate increases. Note that Fj
can never exceed the collector efficiency factor F’. As the flow rate becomes very large,
the temperature rise from inlet to outlet decreases toward zero but the temperature of
the absorbing surface will still be higher than the fluid temperature. This temperature
difference is accounted for by the collector efficiency factor F’.

Many of the equations of Sections 6.6 and 6.7 contain the ratio of the collector mass
flow rate to collector area. This ratio is a convenient way to express flow rate when collector
area is a design variable since increasing both in proportion will maintain a nearly constant
value of Fj.

Example 6.7.1

Calculate the daily useful gain and efficiency of an array of 10 solar collector modules
installed in parallel near Boulder, Colorado, at a slope of 60° and a surface azimuth of 0°.
The hourly radiation on the plane of the collector /;, the hourly radiation absorbed by the
absorber plate S, and the hourly ambient temperature 7, are given in the table at the end
of this example. The methods of Sections 2.15, 2.16, and 5.9 can be used to find /; and §
knowing the hourly horizontal radiation, the collector orientation, and the collector optical
properties. For the collector assume the overall loss coefficient U; to be 8.0 W/m? °C and
the plate efficiency factor F’ to be 0.841 (from Example 6.5.1). The water flow rate through
each 1 x 2-m collector panel is 0.03 kg/s and the inlet water temperature remains constant
at 40°C. Assume a controller turns off the water flow whenever the outlet temperature is
less than the inlet temperature.

Solution
The dimensionless collector mass flow rate is
mC » 0.03 x 4190

AU F" 2x8x0.841

so that the collector flow factor, from Equation 6.7.5 (or Figure 6.7.1), is

1
F" =935 |:1 — exp (_ﬁ)} = 0.948

SThis is the most important equation in the book. The subscript f on the fluid inlet temperature has been dropped;
whenever the meaning is not clear, it will be reintroduced.
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and the heat removal factor is

Fr=F'F'"=0.841 x 0.948 = 0.797

The average loss rate for the hour 10 to 11, based on an inlet temperature of 40°C, is

U, (T, — T,) = 8(40 — 2) x 3600 = 1.09 MJ/m* h
and the average useful energy gain per unit of collector area is

q, = % =0.797(3.29 — 1.09) x 10° = 1.76 MJ/m> h

c

The collector efficiency for this hour is found from Equation 6.2.2:

1.
Qu _du 176 45
LA, I, 392

n:

c

and the day-long collector efficiency is

Y4, 757

nday = - -
Z I, 1979
The daily useful energy gain of the 10 collector modules in the array is

> 0,=10x2x757x10° = 150 MJ

265

Ta IT S UL(TI - Ta) qu
Time ‘0 (MJ/m? h) (MJ/m? h) (MJ/m? h) (MJ/m? h) n
7-8 —11 0.02 0.01 1.46 0.00 0.00
8-9 -8 043 0.35 1.38 0.00 0.00
9-10 -2 0.99 0.82 1.21 0.00 0.00
10-11 2 3.92 329 1.09 1.76 0.45
11-12 3 3.36 2.84 1.07 1.42 0.42
12-1 6 4.01 3.39 0.98 1.93 0.48
1-2 7 3.84 321 0.95 1.81 0.47
2-3 8 1.96 1.63 0.92 0.57 0.29
3-4 9 1.21 0.99 0.89 0.08 0.07
4-5 7 _0.05 0.04 0.95 0.00 0.00
Sum 19.79 7.57
|

A number of general observations can be made from the results of Example 6.7.1.
The estimated performance is typical of a one-cover nonselective collector, although in
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most systems the inlet temperatures will vary throughout the day.® The losses are both
thermal and optical, and during the early morning and late afternoon the radiation level
was not sufficient to overcome the losses. The collector should not be operated during
these periods.

Daily efficiency may also be based on the period while the collector is operating.
The efficiency calculated in this manner is 7.57/18.39, or 41%. Reporting in this manner
gives a higher value for collector efficiency. As the collector inlet temperature is reduced,
these two day-long efficiencies will approach one another. Collector efficiency is a single
parameter that combines collector and system characteristics and generally is not reliable
for making comparisons.

The fluid temperature rise through the collector (from AT = Q,/mC,) varies from
a high of 8.5°C between 12 and 1 to a low of 2.5°C between 2 and 3. This relatively
modest temperature rise is typical of liquid heating collectors. The temperature rise can
be increased by reducing the flow rate, but this will reduce the useful energy gain (if the
inlet fluid temperature stays the same). If the flow rate were halved and if F’ remained
the same (in fact, hﬁ would decrease, which would reduce F’), then F would decrease to
0.76 and the temperature rise during the hour 12 to 1 would be 16.2°C, which is less than
twice the original temperature rise. The efficiency during this hour would be reduced from
48 to 46%.”

6.8 CRITICAL RADIATION LEVEL

In Chapter 2, the concept of utilizability was developed without concern for how critical
radiation levels were defined. With Equation 6.7.6 established, we can now determine the
critical radiation level Gy, for flat-plate collectors. It is convenient to rewrite Equation
6.7.6 in the following form:

0, = AlFp(ta), Gy — FRU, (T, — T)] (6.8.1)

The critical radiation level is that value of G that makes the term in the brackets identically
zero, that is, where the absorbed radiation and loss terms are equal:
_ FRUL(T —T)

Gr. = Fo(ra) (6.8.2)

It is convenient to retain F in the equation for reasons that will be clear in later sections.
The collector output can now be written in terms of the critical radiation level:

0, = A Fp(ta),(Gy — Gp)* (6.8.3)

The equations for Q,, indicate that for the collector to produce useful output, that is, for
Q, > 0, the absorbed radiation must exceed the thermal losses and G, must be greater

Temperature fluctuations are considered in Chapter 10.
"It will be seen in later chapters that when a system with a thermally stratified tank is considered, a reduction in
flow rate may lead to reduced 7}; and thus to increased Q, even though Fy, is decreased.
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than G,.. In Equations 6.7.6 and 6.8.3, only positive values of the terms in parentheses are
considered. This implies that there is a controller on the collector that shuts off the flow of
fluid when the value in parentheses is not positive.

6.9 MEAN FLUID AND PLATE TEMPERATURES

To evaluate collector performance, it is necessary to know the overall loss coefficient
and the internal fluid heat transfer coefficients. However, both U; and hﬁ are to some
degree functions of temperature. The mean fluid temperature can be found by integrating
Equation 6.6.3 from zero to L :

1 L
T =1 / T dy 69.1)

Performing this integration and substituting Fp from Equation 6.7.4 and Q, from
Equation 6.7.6, the mean fluid temperature was shown by Klein et al. (1974) to be

Q./Ac

R™L

(1—F") (6.9.2)

T =T+

This is the proper temperature for evaluating fluid properties.

When a collector is producing useful energy, the mean plate temperature will always
be greater than the mean fluid temperature due to the heat transfer resistance between the
absorbing surface and the fluid. This temperature difference is usually small for liquid
heating collectors but may be significant for air collectors.

The mean plate temperature can be used to calculate the useful gain of a collector,

0,=AlS-U.(T,,—T,] (6.9.3)

If we equate Equations 6.9.3 and 6.7.6 and solve for the mean plate temperature, we have

0,/A.
T, =T,+ ——— (1 — Fy) (6.9.4)
pm fi FRUL R

Equation 6.9.4 can be solved in an iterative manner with Equation 6.4.9. First an
estimate of the mean plate temperature is made from which U; is calculated. With
approximate values of Fg, F”, and Q,, a new mean plate temperature is obtained from
Equation 6.9.4 and used to find a new value for the top loss coefficient. The new value
of U, is used to refine F and F”, and the process is repeated. With a reasonable initial
guess, a second iteration is seldom necessary. A reasonable first guess for 7, for liquid
heating collectors operated at typical flow rates of 0.01 to 0.02 kg/m? s is T; + 10°C. For
air heaters a reasonable first estimate is 7j; + 20°C.

Example 6.9.1

Find the mean fluid and plate temperatures for the hour 11 to 12 of Example 6.7.1.
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Solution

Assume U; = 8.0 W/m? °C, F” =0.948, Fp =0.797, and g, = 1.42 MJ/m?> h. We
have from Equation 6.9.2

1.42 x 10°/3600

T, =40
Jim T T8 0797

(1 —0.948) = 43°C

The mean plate temperature is found from Equation 6.9.4:

T = qpy 142 10°/3600 (1 —0.797) = 53°C
pm 8 x 0.797 ' B [ ]

In this example U; was assumed to be independent of temperature. If the temperature
dependence of U, is considered, an iterative process would have been necessary.

6.10 EFFECTIVE TRANSMITTANCE-ABSORPTANCE PRODUCT

In Section 5.5, the product of cover transmittance times plate solar absorptance was
discussed. In Section 6.4 the expressions for U; were derived assuming that the glazing
did not absorb solar radiation. To maintain the simplicity of Equation 6.7.6 and account
for the reduced thermal losses due to absorption of solar radiation by the glass, an effective
transmittance-absorptance product (t«), will be introduced. It will be shown that (t«), is
slightly greater than (t«).

All of the solar radiation that is absorbed by a cover system is not lost, since this
absorbed energy tends to increase the cover temperature and consequently reduce the
thermal losses from the plate. Consider the thermal network of a single-cover system
shown in Figure 6.10.1. Solar energy absorbed by the cover is Gr«,., where «,. is the cover

GT o= GT (1_Ta)

No absorption T - / Absorption

in cover c c in cover

1/

pc

(@) (b)
Figure 6.10.1 Thermal network for top losses for a single-cover collector with and without
absorptance in the cover.
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absorptance and G is the incident radiation. From Equation 5.3.5 the cover absorptance
can be replaced by 1 — 7,. The loss for (a), without absorption, is U,_.(T, — T.), and
the loss for (b), with absorption, is U p_C(Tp — T!). Here we have assumed that the small
amount of absorption in the cover and consequent increased cover temperature do not
change the values of U,_.. and U,_,. The difference D in the two loss terms is

D=U, [(T,—T,)—(T,—T))] (6.10.1)

The temperature difference 7, — 7. can be expressed as

u(r,—-r1,
T,—T, =2 <« (6.10.2)
P Up—c
where U, is the top loss coefficient and is equal to U,,_ .U,_,/(U,_. + U._,).
The temperature difference 7, — T/ can be expressed as
u._,T,—T,) —Gra,
T, T, = L d (6.10.3)
Up*L' + UC*LI
Therefore
v, Uu._,r,—-T,) G;U,_.(1—ra)
D=U(T,—T,) — -2 L L (6.10.4)
r Upfc + Ucfa Upfc + Ucfa
o G U,(1—1,)
p=2r2 "% (6.10.5)
Uc—a

The quantity D represents the reduction in collector losses due to absorption in the
cover but can be considered an additional input in the collector equation. The useful gain
of a collector is then

GrU, (1 -1,)
q,=Fr|S+ — - U, (T, —T,) (6.10.6)

c—a

In general the quantity G, has three components, beam, diffuse, and ground-reflected
radiation. Each of these terms is multiplied by a separate value of (t«) to determine S [i.e.,
(ta)p, (ta) 4, 01 (toe)g, as shown in Section 5.8]. We can divide the radiation absorbed in the
cover into these same three components. By defining the quantity (te) + (1 — 7,) U,/U,._,
as the effective transmittance-absorptance product for each of the three components, the
simplicity of Equation 6.7.6 can be maintained. For this one-cover system

(ta), = (ra) + (1 — 1,) UU’ (6.10.7)

c—a

When evaluating S, the appropriate value of (r«), should be used in place of (to). As
noted below, (ta), is on the order of 1% greater than (r«) for a typical single-cover
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collector with normal glass. For a collector with low-iron (water-white) glass, (ro), and
(tw) are nearly identical.
A general analysis for a cover system of n identical plates yields

(t@), = (ta) + (1 —7) Y _ar’™ (6.10.8)
i=1

where q; is the ratio of the top loss coefficient to the loss coefficient from the ith cover
to the surroundings and 7, is the transmittance of a single cover from Equation 5.2.2.
This equation was derived assuming that the transmittance to the ith cover could be
approximated by the transmittance of a single cover raised to the i — 1 power.

For a cover system composed of different materials (e.g., a combination of glass and
plastic) the effective transmittance-absorptance product is

(ta), = (t) + (1 — 7, Da; + (1 — 1, )at + (1 — 7, 3)a37, + -+ (6.10.9)
where 7; is the transmittance of the cover system above the i + 1 cover and 7, ; is the
transmittance due to absorption for the ith cover. The angular dependence of (r«), can be
evaluated using the proper angular dependency of (t«), T and 7,,.

The values of a; actually depend upon the plate temperature, ambient temperature,
plate emittance, and wind speed. Table 6.10.1 gives values of a; for one, two, and three
covers and for plate emittances of 0.95, 0.50, and 0.10. These values were calculated using a
wind heat transfer coefficient of 24 W/m? °C, a plate temperature of 100°C, and an ambient
air and sky temperature of 10°C. The dependence of a; on wind speed may be significant.
However, lower wind heat transfer coefficients will increase the a; values, leading to
slightly higher useful energy gains. Since the total amount absorbed by the glass is small,
relatively large errors in a; will not cause a significant error in the calculation of Q,,.

Although the value of (ra), can be calculated from Equation 6.10.9 with some
precision, (t«), is seldom more than 1 to 2% greater than (r«). For a one-cover
nonselective collector, a; = 0.27. If the cover absorbs 4% of the incident radiation, that
is, the cover is ordinary glass with KL of about 0.03, then (r«), is 1% greater than
(). For a one-cover selective collector with this glass, the difference is 0.5%. For a
one-cover selective collector with low-iron glass with KL about 0.01, (r«), is about
0.1% greater than (r«). For a two-cover nonselective system (to), is almost 2% greater

Table 6.10.1 Constants for Use in Equations 6.10.8 and 6.10.9

Number of

Covers a; ¢, =0.95 ¢, =0.50 ¢, =0.10

1 a, 0.27 0.21 0.13
a, 0.15 0.12 0.09
a, 0.62 0.53 0.40

3 a, 0.14 0.08 0.06
a, 0.45 0.40 0.31

as 0.75 0.67 0.53
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than (ra). As discussed in Section 5.5, (ra) is approximately 1% greater than the
product of 7 and «. Since surface radiation properties are seldom known to within 1%,
the effective transmittance-absorptance product can be approximated for collectors with
ordinary glass by

(ta), = 1.027«x (6.10.10a)

and for collectors with covers with negligible absorption by

(ta), = 1.017x (6.10.10b)

6.11 EFFECTS OF DUST AND SHADING

The effects of dust and shading are difficult to generalize. Data reported by Dietz (1963)
show that at the angles of incidence of interest (0 to 50°) the maximum reduction of
transmittance of covers due to dirt was 2.7%. From long-term experiments on collectors
in the Boston area, Hottel and Woertz (1942) found that collector performance decreased
approximately 1% due to dirty glass. In a rainless 30-day experiment in India, Garg (1974)
found that dust reduced the transmittance by an average of 8% for glass tilted at 45°. To
account for dust in temperate climates, it is suggested that radiation absorbed by the plate
be reduced by 1%; in dry and dusty climates, absorbed radiation can be reduced by 2%.

Shading effects can also be significant. Whenever the angle of incidence is off normal,
some of the collector structure will intercept solar radiation. Some of this radiation will be
reflected to the absorbing plate if the sidewalls are of a high-reflectance material. Hottel
and Woertz (1942), based on experiments with two-cover collectors, recommend that the
radiation absorbed by the plate be reduced by 3% to account for shading effects if the net
(unobstructed) glass area is used in all calculations. The net glass area accounts for the
blockage by the supports for the glass. Most modern collectors use one cover, and module
areas are larger, both of which reduce shading effects. A reduction of S of 1% may be a
more appropriate correction for these collectors.

Example 6.11.1

In Example 6.7.1, the effects of dust, shading, and absorption by the cover were all
neglected. Reevaluate the daily performance taking these quantities into account. The
single glass cover has KL = 0.037 and the plate has a flat-black (nonselective) absorbing
surface.

Solution

This glass (KL = 0.037) absorbs approximately 4% of the incident radiation and, according
to Table 6.10.1 and Equation 6.10.8, 27% of this is not lost. Thus (re), is 1.01 x (ra).
The effects of dust and shading each reduce the absorbed radiation by 1%; the net effect is
to decrease S by 1%. The table that follows gives new values for S and the hourly energy
gains with Fx = 0.8 and U; = 8.0 W/m? °C. The daily efficiency is reduced from 38
to 37%.
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Iy S T q,
Time (MJ/m?) (MJ/m?) &) (MJ/m?) n
7-8 0.02 0.00 —11 0.00 0.00
8-9 043 0.34 -8 0.00 0.00
9-10 0.99 0.80 -2 0.00 0.00
10-11 3.92 3.22 2 1.70 0.43
11-12 3.36 2.78 3 1.37 0.41
12-1 4.01 3.32 6 1.87 0.47
1-2 3.84 3.15 7 1.76 0.46
2-3 1.96 1.60 8 0.54 0.27
3-4 1.21 0.97 9 0.06 0.05
4-5 0.05 0.00 7 0.00 0.00
19.79 7.30
7.30
W= — =037

Taay = 1979

[ |

6.12 HEAT CAPACITY EFFECTS IN FLAT-PLATE COLLECTORS

The operation of most solar energy systems is inherently transient; there is no such thing
as steady-state operation when one considers the transient nature of the driving forces.
This observation has led to numerical studies by Klein et al. (1974), Wijeysundera (1978),
and others on the effects of collector heat capacity on collector performance. The effects
can be regarded in two distinct parts. One part is due to the heating of the collector from
its early morning low temperature to its final operating temperature in the afternoon. The
second part is due to intermittent behavior during the day whenever the driving forces such
as solar radiation and wind change rapidly.

Klein et al. (1974) showed that the daily morning heating of the collector results in a
loss that can be significant but is negligible for many situations. For example, the radiation
on the collector of Example 6.11.1 before 10 am was 1.44 MJ/m?. The calculated losses
exceeded this value during this time period because these calculated losses assumed that
the fluid entering the collector was at 40°C. In reality, no fluid would be circulating and the
absorbed solar energy would heat the collector without reducing the useful energy gain.

The amount of preheating that will occur in a given collector can be estimated by
solving the transient energy balance equations for the various parts of the collector. Even
though these equations can be developed to almost any desired degree of accuracy, the
driving forces such as solar radiation, wind speed, and ambient temperature are usually
known only at hour intervals. This means that any predicted transient behavior between
the hourly intervals can only be approximate, even with detailed analysis. Consequently, a
simplified analysis is warranted to determine if more detailed analysis is desirable.

To illustrate the method, consider a single-cover collector. Assume the absorber plate,
the water in the tubes, and one-half of the back insulation are all at the same temperature.
Also assume that the cover is at a uniform temperature that is different from the plate
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temperature. An energy balance on the absorber plate, water, and one-half of the back
insulation yields

dr
(mC), d—t" =AlS-U,

_(T, = T))] (6.12.1)
The subscripts ¢ and p represent cover and plate; U,,_. is the loss coefficient from the plate
to the cover and ¢ is time. An energy balance on the cover yields

dT,

(mC), dtc =AU, (T, —-T)+U._,(T, = T))] (6.12.2)

where U,._,, is the loss coefficient from the cover to the ambient air and 7, is the ambient
temperature. It is possible to solve these two equations simultaneously; however, a great
simplification occurs if we assume (7. — T,,)/(T,, — T,) remains constant at its steady-state
value. In other words, we must assume that the following relationship holds®:

Ucfa(Tc - Ta) = UL(Tp - Ta) (6123)
Differentiating Equation 6.12.3, assuming 7}, is a constant, we have

ar., U, dT,
—f=_L 7 (6.12.4)
dr U, dt

c—a

Adding Equation 6.12.1 to 6.12.2 and using Equation 6.12.4, we obtain the following
differential equation for the plate temperature:

U, dr,
(mC), + = O, | P = ALS = UL(T, = T,)] (6.12.5)

c—a

The term in square brackets on the left-hand side represents an effective heat capacity of
the collector and is written as (mC),. By the same reasoning, the effective heat capacity of
a collector with n covers would be

(mC), = (mC), + Y a;(mC),; (6.12.6)

i=1

where ¢; is the ratio of the overall loss coefficient to the loss coefficient from the cover in
question to the surroundings. This is the same quantity presented in Table 6.10.1.
If we assume that S and 7, remain constant for some period ¢, the solution to

Equation 6.12.5 is
S - UL(Tp - Ta) (AL‘ULt)
=ex
S = U (T, initias — 1) (mQ),

6.12.7)

The simplification introduced through the use of Equation 6.12.3 is significant in
that the problem of determining heat capacity effects has been reduced to solving one

8The back and edge losses are assumed to be small.
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differential equation. The error introduced by this simplification is difficult to assess
for all conditions without solving the set of differential equations. Wijeysundera (1978)
compared this one-node approximation against a two-node solution and experimental data
and found good agreement for single-cover collectors. For two- and three-cover collectors
the predicted fractional temperature rise was less than 15% in error.

The collector plate temperature 7T}, can be evaluated at the end of each time period
by knowing S, U, T,, and the collector plate temperature at the beginning of the time
period. Repeated application of Equation 6.12.7 for each hour before the collector actually
operates serves to estimate the collector temperature as a function of time. An estimate
of the reduction in useful gain can then be obtained by multiplying the collector effective
heat capacity by the temperature rise necessary to bring the collector to its initial operating
temperature.

A similar loss occurs due to collector heat capacity whenever the final average collector
temperature in the afternoon exceeds the initial average temperature. This loss can be easily
estimated by multiplying collector effective heat capacity times this temperature difference.

Finally, Klein et al. (1974) showed that the effects of intermittent sunshine, wind speed,
and ambient air temperature were always negligible for normal collector construction.

Example 6.12.1

For the collector described in Example 6.11.1, estimate the reduction in useful energy gain
due to heat capacity effects. The plate and tubes are copper. The collector has the following

specifications:
Plate thickness 0.5 mm
Tube inside diameter 10.0 mm
Tube spacing 150.0 mm
Glass cover thickness 3.5 mm
Back-insulation thickness 50.0 mm

The collector materials have the following properties:

C, ki/kg °C o, kg/m?
Copper 0.48 8800
Glass 0.80 2500
Insulation 0.80 50

Solution

Since the collector operates with a constant inlet temperature, only the early morning
heating will influence the useful gain. The collector heat capacity includes the glass, plate,
tubes, water in tubes, and insulation. The heat capacity of the glass is

0.0035 m x 2500 kg/m* x 0.8 kJ/kg °C = 7 kJ/m® °C

For the plate, tubes, water in tubes, and insulation, the heat capacities are 2, 1, 2, and
2 kJ/m? °C, respectively. The insulation exposed to the ambient remains near ambient
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temperature so that the effective insulation heat capacitance is one-half of its actual value.
The effective collector capacity is thus 2+ 142+ 1 +0.27 x 7 = 8 kJ/m? °C. From
Equation 6.12.7, the collector temperature at the end of the period from 8 to 9, assuming
that the initial collector temperature is equal to the ambient temperature, is

N s AUt
TH=T,+— |[1—exp( L
U, (mC),

0.34 x 10°/3600 8 x 3600 .
T - 22" |=3C

=-8
- 8 8000

For the second-hour period, the initial temperature is 3°C and the temperature at 10:00 AM
becomes

S S AUt
TH=T + > |2 (T.-T <L
p =l [UL (7 “)} exp( (mC>e>

0.79 x 10%/3600 | 0.79 x 10°/3600 8 x 3600
+ — — 342 | exp| ———

=-2

8 8 8000
=25°C

By 10:00 am, the collector has been heated to within 15°C of its operating temperature
at 40°C. The reduction in useful gain is the energy required to heat the collector the last
15°C, or 120 kJ/m?. Thus the useful energy gain from 10 to 11 should be reduced from
1.65 to 1.53 MJ/m?. Note that this collector responds quickly to the various changes as the
exponential term in the preceding calculation was small. [The collector ‘‘time constant’’
is (mC),/A U, which is approximately 15 min. The time constant with liquid flowing is
on the order of 1 to 2 min, as shown in Section 6.17.1 [ |

6.13 LIQUID HEATER PLATE GEOMETRIES

In the preceding sections, we have considered only one basic collector design: a sheet-and-
tube solar water heater with parallel tubes on the back of the plate. There are many different
designs of flat-plate collectors, but fortunately it is not necessary to develop a completely
new analysis for each situation. Hottel and Whillier (1958), Whillier (1977), and Bliss
(1959) have shown that the generalized relationships developed for the tube-and-sheet
case apply to most collector designs. It is necessary to derive the appropriate form of the
collector efficiency factor F’, and Equations 6.7.5 and 6.7.6 then can be used to predict the
thermal performance. Under some circumstances, the loss coefficient U; will have to be
modified slightly. In this and the next section the analyses of the basic design are applied
to other configurations.

Figure 6.13.1 shows seven different liquid heater designs. The first three have parallel
tubes (risers) thermally fastened to a plate and connected at the top and bottom by headers
to admit and remove the liquid. The first of these is the basic design discussed in the
previous sections; the important equations for F, F’, and U, are shown. The design shown
in (b) is the same, except that the tubes are mounted on top of the plate rather than under it.
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Figure 6.13.1 (a—g) Liquid heater designs and collector efficiency factor equations.
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Figure 6.13.1 (a—g) (Continued)

A design shown in (c) has the tubes centered in the plane of the plate forming an integral
part of the plate structure.

In types (d), (e), and (f), long, narrow, flat absorbers are mounted inside evacuated
glass tubes.” Convective heat losses from collectors are usually significant, but they can be
reduced or eliminated by evacuating the space between the absorber and the cover. As the
pressure is reduced to a moderately low level, convection ceases but conduction through
the gas remains constant until the mean free path of the molecules is on the order of the
characteristic spacing. There are flat-plate collectors built with seals at the edges, posts to
support the cover, and evacuated spaces above (and below) the absorber plate. However,
most practical designs have been based on evacuated tubes, which provide the structural
strength to withstand the pressure differences.

The collector type shown in (d) is constructed with a single fin and tube with glass-
to-metal seals at both ends; with this configuration, bellows are used to accommodate
differential expansion of the glass envelope and the metal fin and tube. This configuration
is similar to type (a) with a single riser tube.

Liquid flow in the type (e) collector is ‘‘down and back,”” with a U-tube joining the
two conduits. Two glass-to-metal seals are provided at the same end of the tube. The two
flow conduits down and back are in close proximity; with this arrangement, it is necessary
that the thermal resistance between the two conduits be high, that is, that the two streams
be thermally decoupled. If the resistance were zero, the two conduits would be at the same
temperature, and collection would be zero. Ortabasi and Buehl (1975) constructed such a
collector with the plate split into two parts to avoid the coupling problem. If coupling is
not significant, the analysis of type (e) collectors is basically the same as for the types (a),
(b), or (¢) even though the inlet and outlet manifolds are at the same end of the tubes.

Heat pipes can be used to extract energy from evacuated collectors, as shown in
Figure 6.13.1(f). In the arrangement shown, the portion of the heat pipe in contact with
the fin is the boiler portion. The condenser is a short section in good thermal contact with
the pipe or duct through which the fluid to be heated is pumped; the condenser is shown

9The first evacuated tubular collector was built by Speyer (1965). The design shown in Figure 6.13.1(e) is similar
to Speyer’s.
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fastened with a conducting clamp to the pipe carrying the fluid to be heated. These designs
have the advantage that they have only one seal, at one end of the tube, and the fin and
heat pipe are free to expand inside the evacuated space. In contrast to most other flat-plate
collectors, the temperature gradients along the length of the heat pipe will be small, but
there will be gradients along the header from one heat pipe connector to the next.

There are important differences between flat-plate collectors with flat covers such as
types (a) to (¢) and cylindrical covers such as types (d) to (f). The fin width (or diameter)
must be less than the tube diameter, so the absorbing surface will have projected areas less
than that of the tube. The tubes are usually closely packed. The planes of the absorbers
may be different from the plane of the tube arrays. The angular dependence of solar
transmittance will be different from that of a flat cover.!® Manifold designs vary widely,
and manifold losses may be important. And metal-to-glass seals must be provided.

Other important collector geometries exist for which F’ and Fj cannot easily be
expressed in a simple form. The risers in (a), (b), and (c) are all parallel tubes; an
alternative design is the serpentine tube arrangement shown in Figure 6.13.1(g). If a
thermal break is made midway between the tubes, for example, by cutting through the
absorber plate, then the collector can be analyzed as a conventional collector. If a break
is not provided, reduced performance can be expected and a more complicated analysis is
necessary.

Abdel-Khalik (1976) analytically solved the case of a single bend, and Zhang and
Lavan (1985) obtained solutions for three and four bends. For a single bend, Zhang
and Lavan show that the solution for Fj is given by Equation 6.13.1 in terms of three
dimensionless parameters F|, F,, and F; (the parameters F,, Fy, and Fg are functions of
F, only):

Fp = F,F;F;5
Fy exp [— 1-— F22/F3i| + Fj

-1 (6.13.1)

The parameters F| through Fg are given by

R(1 21—y —«R
Fo=_X_ Rdty) e (6.13.22)
UW [kR(1+y)—1]* — (kR)

1

F, = 6.13.2b
2T kRA+9y) —1—y —«kR ( )
mC
Fy=—-"— (6.13.2¢)
F,U, A,
1 — F2 1/2
F, = 2 6.13.2d
1
Fs=—+F,—1 (6.13.2¢)
FZ

10See Section 6.19 for further information on angular dependence of (ra) of evacuated-tube collectors.
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(6.13.2f)

(6.13.2g)

(6.13.2h)

(6.13.21)

Zhang and Lavan (1985) point out that Equation 6.13.1 is valid for any number of bends if
the group mC,/F,U; A, is greater than about 1.0. For smaller values of this group, their

paper should be consulted.

Example 6.13.1

Determine the heat removal factor for a collector with a serpentine tube having the

following specifications [see Figure 6.13.1(g)]:

Length of one serpentine segment L

Distance between tubes W
Number of segments N
Plate thickness 8

Tube outside diameter D
Tube inside diameter D;
Plate thermal conductivity &
Overall loss coefficient U,
Fluid mass flow rate m
Fluid specific heat C,,

Fluid-to-tube heat transfer coefficient hﬁ

Bond conductance C,

Solution

From Equation 6.13.2(g):

(211 x 0.0015 x 5)1/2

K =

From Equation 6.13.2(h):

5 12
— 2 cosh | (0.1-0.0075)( —— ) |-
v o8 {( ) <211 X 0.0015) ]

5 1/2
sinh | (0.1 —0.0075) [ ——————
211 x 0.0015

1.2m

0.1 m

6

1.5 mm

7.5 mm

6.5 mm

211 W/m °C
5W/m? °C
0.014 kg/s
3352 J/kg °C
1500 W/m? °C
0o W/m °C

=3.346 W/m °C

0.0075 x 5
3.346

= —2.148
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From Equation 6.13.2(i):

|
R = =0.032 °
% 0.0065 x 1500  0326m C/W

Then kR = 3.346 x 0.0326 = 0.1091. From Equation 6.13.2(a):

3346 0.1091(1 — 2.148)> — 1 +2.148 — 0.1091

= = 6.310
5x 0.1  [0.1091(1 — 2.148) — 1]2 — (0.109)2

From Equation 6.13.2(b):
1

F, = = 0.84
2711827 0-846

The collector area NWL = 6 x 0.1 x 1.2 = 0.72 m?. From Equation 6.13.2(c) the dimen-
sionless capacitance rate is

0.014 x 3352

=TT 2066
376309 x 5 x 0.72

From Equations 6.13.2(d) to 6.13.2(f), F, = 0.631, F5 = 0.814, and Fy = 0.449. Finally
from Equation 6.13.1,

F
FR =0.148 and Fj =0.148 x 6.310 = 0.93

|
1

The most common liquid solar heater is uncovered and used for low-temperature
applications such as swimming pool heating. These collectors are typically made from
plastics such as stabilized polyolefin. The parallel-flow channels either are in direct contact
with one another or are connected by very short fins. The short fins are necessary due to
the low thermal conductivity of the plastic material. The same basic equations apply for
these collectors, but the lack of a cover means that estimating the collector loss coefficient
is very uncertain.

6.14 AIR HEATERS

Figure 6.14.1 shows six designs for air heating collectors. Also on this figure are equations
for the collector efficiency factors that have been derived for these geometries. For (e) and
(f), the Lof overlapped glass plates and the matrix air heater, the analyses to date have not
put the results in a generalized form. For these two situations, it is necessary to resort to
numerical techniques for analysis. Selcuk (1971) has analyzed the overlapped glass plate
system. Chiou et al. (1965), Hamid and Beckman (1971), and Neeper (1979) have studied
the matrix-type air heaters. Hollands and Shewen (1981) have analyzed the effects of flow
passage geometry on si; and F .

To illustrate the procedure for deriving F’ and U, for an air heater, we derive the
equation for type (a) of Figure 6.14.1. Although type (b) is the more common design for
an air heater, type (a) is somewhat more complicated to analyze. Also, type (a) is similar
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Figure 6.14.1 (a—f) Air heater designs and efficiency factors. In (b), (c), and (d) it is assumed that
back losses are from a source at the same temperature as top losses.
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to a collector-storage wall in a passive heating system. A schematic of the collector and
thermal network is shown in Figure 6.14.2. The derivation follows that suggested by Jones
(1979).

At some location along the flow direction the absorbed solar energy heats up the plate
to a temperature 7),. Energy is transferred from the plate to the ambient air at 7, through the
back loss coefficient U, to the fluid at Tf through the convection heat transfer coefficient
h,, and to the bottom of the cover glass through the linearized radiation heat transfer
coefficient h,. Energy is transferred to the cover glass from the fluid through the heat
transfer coefficient /1;. Energy is lost to the ambient air through the combined convection
and radiation coefficient U,. Note that U, can account for multiple covers.

Energy balances on the cover, the plate, and the fluid yield the following equations:

U, (T, = T.) +h (T, —T,) +h(T; —T,) =0 (6.14.1)
S+ Uy(T, — T,) + hy(Ty — T,) + h (T, = T,) =0 (6.14.2)
h(T, = T)) +hy(T, — T)) =g, (6.14.3)

These three equations are solved so that the useful gain is expressed as a function of
U, hihy, h,, Ty, and T,. In other words, T, and 7, must be eliminated. The algebra is
somewhat tedious and only a few of the intermediate steps are given. Solving the first two
equations for TI7 — Tf and 7, — Tf,

S, + h, +hy) — (T; — T,)(Uh, + U,U,, + Uyh, + Uyhy)

T,—T, = 6.14.4
oS (U, 4 h, + h) Uy + hy + h,) — h2 ( )
T Sh, — Ty = T,)(Uhy + U, U, + Ush, + Uyh,) (6.14.5)
© (U, +h, +h)(U, +hy +h,) = h} o
Substituting these into the equation for ¢,, and rearranging, we obtain
q,=F'[S — U (Ty —T)] (6.14.6)

Uy
COVER 1 Te
—_——— — = S
w 't
FLOW o't

i
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N p PLATE
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Figure 6.14.2 Type (a) solar air heater and thermal network.
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where
ey + Uiy + hohy + by . (6.14.7)
(U, +h, + (U, + hy + h,) — h2
and
y, = Wort UDChohy o hoh + hihy) + UyUy Gy + o) (6.14.8)

oy + Uhy + hoh, + hihy

Note that U; for this collector is not just the top loss coefficient in the absence of back
losses but also accounts for heat transfer between the absorbing surface and the bottom of
the cover. Whenever the heat removal fluid is in contact with a transparent cover, U; will
be modified in a similar fashion.

The equations for type (b) air heaters are derived in a similar manner, but the working
fluid does not contact the cover system. For simplicity, back losses are assumed to occur
from the absorber plate temperature. The following example shows calculation of the
performance of a type (b) air heater.

Example 6.14.1

Calculate the outlet temperature and efficiency of a single-cover type (b) air heater of
Figure 6.14.1 at a 45° slope when the radiation incident on the collector is 900 W/m?. The
plate-to-cover spacing is 20 mm and the air channel depth is 10 mm. The collector is 1 m
wide by 4 m long. The absorber plate is selective with an emittance of 0.1 and the effective
transmittance-absorptance product is 0.82. The inlet air temperature is 60°C, the ambient
air temperature is 10°C, and the mass flow rate of the air is 0.056 kg/s. The wind heat
transfer coefficient is 10 W/m? °C and the sum of the back and edge loss coefficients is
1.0 W/m? °C (see Example 6.4.3). The emittances of the surfaces of the inside of the duct,
¢, and ¢,, are both 0.95.

Solution

From Figure 6.4.4(e) with an assumed average plate temperature of 70°C, the top loss
coefficient is 3.3 W/m? °C, and with the back and edge loss coefficient of 1.0 W/m? °C,
the overall loss coefficient is 4.3 W/m? °C. The radiation coefficient between the two
air duct surfaces is estimated by assuming a mean radiant temperature equal to the mean
fluid temperature. With an estimated mean fluid temperature of 70°C,"! we have, from
Equations 3.10.2 and 3.10.3,

40T 4x567x 1075 x 343

h, = = =83 W/m?>°C
1/, +1/e, — 1 2/0.95 — 1

The heat transfer coefficients between the air and two duct walls will be assumed to be
equal. The characteristic length is the hydraulic diameter, which for flat plates is twice the

Section 6.9 suggests a first estimate of the mean fluid temperature as 20°C above the inlet fluid temperature.
Here we have used a smaller increment to illustrate the iterative solution to the problem.
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plate spacing. The Reynolds number, at an assumed average fluid temperature of 70°C, is

_pVD, mD, _ 0.056(2 x 0.01)

Re = = 3
n A (0.01 x 1)2.04 x 10~

= 5490

The length-to-diameter ratio is
L

= =200
D,  2x001

Since Re > 2100 and L/D, is large, the flow is turbulent and fully developed. From
Equation 3.14.6
Nu = 0.0158(5490)"% = 15.5

The heat transfer coefficients inside the duct, /2, and h,, are then

B =155 k 15.5 x 0.029 22 W/m? °C
= . _— ——_—=— m
D, 2 x 0.01
From Figure 6.14.1(b), with h; = h, = h,
u My 4.3 -
F’:|:1+ L 1} = ’ 1 1 =0.87
h+[1/h)+ (1/h)] T\»ntes
The dimensionless capacitance rate is
mC 0.056 x 1009
P = . =378

AU F 4x43x087

From Equation 6.7.5 or Figure 6.7.1,

F" =3.78[1 —e /378 = 0.88
or
Fp=F"F =088 x 0.87 =0.77

The useful gain, from Equation 6.7.6, is
0, =4 x0.77[900 x 0.82 — 4.3(60 — 10)] = 1610 W

The outlet temperature is
1610 o
T,=T + Qu =60+ —— =89C

mC, 0.056 x 1009

It is now necessary to check the assumed mean fluid and absorber plate temperatures. The
mean plate temperature is found from Equation 6.9.4,

1610/4

T,,=60+—-—
o * 4.3 x0.77

(1-0.77) = 88°C
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and the mean fluid temperature is found from Equation 6.9.2,

1610/4

T, =60+ ————
fin 13 %077

(1-0.88) =74°C

Since the initial guess of the plate and fluid temperatures was 70°C, another iter-
ation is necessary. With a new assumed average plate temperature of 88°C, U, =
3.4 W/m? °C and U; = 4.4 W/m? °C. The radiation heat transfer coefficient between the
two duct surfaces is 8.7 W/m2 °C (with T assumed to be the same as Tﬁn, or 348 K), the
Reynolds number is 5400, and the heat transfer coefficient is 23 W/m? °C. The parameters
F', F”, and F are unchanged so that the useful energy gain remains at 1610 W. Note that
even though the first iteration used an estimate of the plate temperature that was 18°C in
error, only minor changes resulted from the second iteration.

The efficiency is

0, _ 1610

= = =045, 45%
AGr  4x900

n o

A novel uncovered air heating collector has been studied both analytically and
experimentally by Kutscher et al. (1993), Kutscher (1994), and Summers (1995). These
transpired systems consist of a dark (solar-absorbing) building facade that is perforated
and sealed around the edges. A fan draws outside air in through the perforations and into
the space between the absorber and the building wall. The air is heated as it passes over
the front surface, through the holes, and along the backside of the collector. The heated air
is then ducted into a building or into another heater to bring the temperature to the desired
level. These systems are often very large, and as a result the convection loss from the
surface is very small (if the suction flow rate per unit area is sufficiently large, convection
losses only occur at the edges). Consequently, the collector losses consist primarily of
radiation to the surroundings. The collector useful gain is the difference between the
absorbed radiation and the radiation losses:

Q,=AlS—e0F, (Tt —T}) —eo(l—F,_ )(Ti— Tyl (6.14.9)
where F._, is the view factors from collector to ground (equal to % for a vertical collector)
and ¢ is the collector infrared emittance. The collector temperature is found from an
effectiveness relating the collector useful energy gain to the maximum possible energy
gain:

Q.

h (Ac - Aholes)
e, (T, — T,)

=1—exp(—=NTU) =1 —exp |:— " C
m

] (6.14.10)

p

where m is the mass flow rate through the collector holes, Ay is the area of the holes, and
h is the heat transfer coefficient found from Equation 3.16.8 The collector useful energy
gain O, can be eliminated between Equations 6.14.9 and 6.14.10, resulting in a single
nonlinear equation for the collector temperature 7,. With 7, known the useful energy gain
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can be determined from either Equation 6.14.9 or 6.14.10 and the outlet temperature can
be calculated from
Q,=mc,(T,-T,) (6.14.11)

Example 6.14.2

Determine the useful energy gain, the collector efficiency, the outlet temperature, and the
pressure drop of a transpired collector 10 m wide by 3 m high. The holes are close packed
(equilateral triangles) with a spacing between holes of 18 mm and a hole diameter of
1.6 mm. The mass flow rate through the collector per unit of collector area is 0.05 kg/m? s.
The collector surface is painted with a nonselective paint with an infrared emittance and a
solar absorptance of 0.90. The ambient temperature is 300 K and the sky temperature is
292 K. The solar energy incident on the surface is 800 W/m?.

Solution

At a temperature of 300 K, p = 1.176 kg/m?, k = 0.0257 W/m K, ¢, = 1007 J/kg K,
and u = 1.857 x 107> kg/m s. For equilateral triangles with holes at the corners one-half
of a hole is associated with each triangle. The porosity o, the ratio of hole area to triangle
area (which is the same as the area of all holes to the collector area), is then

A A D\’ 0.0016)>
5, = —Abole _ Aboles _ T (_) :0.907<—> =0.00717
Agiange  Ac 243 \P 0.018

resulting in A . = 0.215 m?. The velocity through the holes is then

_005x A, 0.05x30
holes — pAholeS T 1.176 x 0.215

=593 m/s

and the Reynolds number is

_ pVhoesD 1176 x 5.93 x 0.0016

Re =601
0.00001857

The heat transfer coefficient is found from Equation 3.16.8:

0.0257 0.018 \ !
h=—"1275( —— 194 =379 W/m? K
0.0016 5(0.0016) 60 37.9 W/m

resulting in
h(A, — Apoies)  37.9(30 — 0.215)

me, ~0.05 x 30 x 1007

NTU = =0.747

The view factor from the collector to the ground is 0.5. From Equations 6.14.9 and 6.14.10
a nonlinear equation for the collector temperature is

(Ta4 + Ts‘lty)

m _
3 =—c,(I.—T)(1 —e )

c

S—eo | TH—
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Everything but 7, is known. Solving, 7, = 321.4 K. The useful gain from Equation 6.14.9
is

T4+ T4
0, =A, |:S—50 (TC4 - ”T‘kyﬂ

300% 4 2924
=30 [0.9 x 800 — 0.90 x 5.67 x 1078 (321.44 e

= 17,000 W
)]

and the outlet temperature from Equation 6.14.11 is

0, 17,000 .
T, =T, + =300+-——— =311.3 K=238C

° “ me, 0.05 x 30 x 1007

The collector efficiency is the useful energy gain divided by the incident solar, or

17,000

=—— =071
30 x 800

n

The approach velocity is V,,, = m/(pA,) = 0.05/1.176 = 0.0425 m/s. The pressure drop

across the plate is found from Equation 3.16.9:

5 2
Ap = P Vapp 6.82 l—o, Re; 02
2 o

1.176 x 0.04252 1 —0.0071
_ x 0.0425 68 0.00717
2 0.00717

2
) 60179236 = 307 Pa

This pressure drop and other pressure losses in the flow path must be made up by the
system fan to produce the desired airflow rate. |

Transpired collectors have some operating characteristics that are generally opposite
to those of conventional collectors. Kutscher (1994) shows that wind will increase the heat
transfer coefficient somewhat leading to increased collector performance. Kutscher also
provides a correlation for the heat transfer coefficient that includes the effect of wind. The
plate thermal conductivity has little influence on the collector performance so that the plate
could be made from metal or plastic. And finally, as the ambient temperature decreases,
the heat loss by radiation decreases, resulting in an increase of the collector efficiency
(a conventional air heater heating outside air will also exhibit an increase in efficiency with
decreasing ambient temperature).

Kutscher (2005) suggests the following design guidelines for transpired solar collec-
tors: The minimum approach velocity should be 0.020 m/s and the minimum hole pressure
drop should be 25 Pa.

6.15 MEASUREMENTS OF COLLECTOR PERFORMANCE

The first detailed experimental study of the performance of flat-plate collectors, by Hottel
and Woertz (1942), was based on energy balance measurements on an array of collectors



288 Flat-Plate Collectors

on an experimental solar-heated building. The analysis was basically similar to that of
the previous sections, but with performance calculations based on mean plate temperature
rather than on inlet temperature and F. They developed a correlation for thermal losses
which was a forerunner of Equation 6.4.9. Their experimental data were for time periods of
many days, and calculated and measured performance agreed within approximately 13%
before effects of dust and shading were taken into account.

Tabor (1958) modified the Hottel and Woertz loss calculation by use of new correlations
for convection transfer between parallel planes and values of emittance of glass lower
than those used by Hottel and Woertz. These modifications permitted estimation of loss
coefficients for collectors with selective surfaces. Tabor found equilibrium (no fluid flow)
temperatures from experiment and theory for a particular collector to be 172 and 176°C,
indicating satisfactory agreement. He also recalculated the results of Hottel and Woertz
using his modified heat loss coefficients and found calculated and measured losses for two
sets of conditions to be 326 versus 329 W/m? °C and 264 versus 262 W/m? °C, again
indicating excellent agreement. Moore et al. (1974) made extensive comparisons of the
performance of a flat-plate liquid heating collector with results predicted by use of the
original Hottel and Woertz method. The operating conditions were similar to those of
Hottel and Woertz, and agreement was good.

As shown by these examples and by many other m