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Foreword

In the first decade of the twenty first century, remote sensing has undergone a rapid
development, boosting many new or improved application possibilities. This is due
to higher spatial resolution of satellite image data as well as better data availabil-
ity regarding quality, frequency and coverage. On the other hand, the scientific de-
velopment of image and signal processing has lead to more powerful and reliable
methods, which in turn result in better and faster evaluation of the huge amounts of
data sets using fully automatic procedures. The book at hand contributes to this de-
velopment by combining methods from image processing and electrical engineering
stimulated by computer science and computer vision technologies.

There have been many publications in journals and also books on the mentioned
topics, but in most cases they show certain specializations either on theory or on
applications. The special value of this book is that it presents a complete chain of
image processing methods to derive reliable information for land use, especially in
residential areas. The authors know very well how to combine a theoretical frame-
work like graph formalism with very practical applications. They use well known
methods (e.g., NDVI) together with new techniques from computer vision to arrive
at a system which allows detecting single objects like houses and streets in very
high resolution optical images (e.g., IKONOS) effectively. The presented system
can be applied for change detection as well as other quantitative analysis of urban
development.

Due to the fast growth of the remote sensing market, automatic image processing
methods exhibit an increasing potential for more and more applications. Through
tailoring the described methods for fitting his task, the reader will be able to set up
his own system to extract the desired information or develop new methods based on
the given techniques. Therefore, I hope the book will be a further milestone from
scientific remote sensing to practical applications.

Prof. Dr. Peter ReinartzWessling, Germany
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Preface

As the resolution of satellite images increased, more detailed analysis on them be-
came possible. On the other hand, the time required to manually analyze them be-
came prohibitive. Hence, the need for automated systems for such analysis tasks
emerged. This book is about such an end-to-end image analysis system to under-
stand land development from satellite images. Our focus is on residential regions.
The main building blocks of the proposed system are as follows.

We benefit from vegetation and shadow–water indices in summarizing the mul-
tispectral information in the proposed system. Vegetation indices have been used
extensively to estimate the vegetation density from satellite and airborne images for
many years. We focus on the normalized difference vegetation index (NDVI) and
introduce a statistical framework to analyze and extend it. Using the established
statistical framework, we introduce new a group of shadow–water indices. We use
these as the source of multispectral information in land use classification and house
and street network detection in residential regions.

Next, we introduce a set of measures based on straight lines to assess land devel-
opment levels in high resolution satellite images. Urban areas exhibit a preponder-
ance of straight line features. Rural areas produce line structures in more random
spatial arrangements. We use this observation to perform an initial triage on the
image to restrict the attention of subsequent, more computationally intensive anal-
yses. We then extend our straight line based measures by developing a synergistic
approach that combines structural and multispectral information. In particular, the
structural features serve as cue regions for multispectral features.

After the initial classification of regions, we introduce computationally more ex-
pensive but more precise graph-theoretical measures over panchromatic images to
detect residential regions. The graphs are constructed using straight lines as vertices,
while graph edges encode their spatial relationships. We introduce a set of measures
based on various properties of the graph. These measures are monotonic with in-
creasing structure (organization) in the image. We present a theoretical basis for the
measures. In a similar manner, we developed a novel method using feature based
grouping to detect residential regions.

Having detected the residential regions, we introduce a novel subsystem to detect
houses and street networks in these. This system is composed of four main blocks:
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x Preface

detecting possible house and street pixels by the help of multispectral information;
grouping these candidate pixels using a variant of k-means clustering; decomposing
the clustering results by a novel balloon algorithm; and finally, representing the
balloons in a graph formalism to detect houses and the street network.

We statistically evaluated the performance of the proposed system step by step
and obtained very promising results. Especially, the performance in house and street
network detection in residential regions is noteworthy. These results indicate the
functionality of our satellite image understanding system.

The brief summary above indicates that this book may be useful for both remote
sensing and computer vision communities. For the remote sensing community, it
proposes a novel end-to-end system to analyze multispectral satellite images. Hence,
it may be counted as one of the pioneering works for future automated satellite and
aerial image understanding systems. For the computer vision community, the book
emphasizes that many new and fruitful research problems are waiting to be solved.
For both communities, the book clearly shows that more collaboration between both
disciplines is mandatory for developing techniques to improve human life.

Cem Ünsalan
Kim L. Boyer

Istanbul, Turkey
Troy, NY, USA
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Chapter 1
Introduction

Cities are evolving and districts are changing their characteristics faster than ever
before. Although the evolution is slow in the central parts of most cities, it is typi-
cally fairly fast in outlying regions. Yesterday’s forested or rural regions around the
city become tomorrow’s residential regions (These observations are especially valid
in North America). These changes cause many problems for policy makers and gov-
ernment agencies. They affect the public and private utility networks. Maps become
less reliable around these regions. As a result, emergency plans based on these maps
become unreliable.

Konecny and Schiewe [1] summarize some facts regarding manual map genera-
tion. According to their analysis, 33.5% of the world was mapped at 1:25000 scale
(around one meter per pixel resolution) as of 1993. This resolution is vital for map-
ping most mature cities (such as European cities) because their buildings and road
networks are in close proximity. For this scale, the annual manual map generation
rate is around 2.8%. Similarly, the annual manual map updating rate is around 4.9%.
Konecny and Schiewe summarize the urgency to automate map generation:

“On average, maps of 1:25 000-scale are 20 years out of date and 1:50 000-scale
sheets may be 40 (or more) years old.”

Considering that a house can be built less than a year (and destroyed in minutes),
and larger buildings can be built within two to three years, the inadequacy of current
map updating rates is evident.

Besides affecting utility networks and maps, these changes also affect tax as-
sessment information and demographics. The update rate of census information
(10 years in the United States, for example) is insufficient to adequately track these
changes.

While the advent of commercially available, high-resolution satellite imagery
addresses the data collection issue, the rate at which these sensors provide data
currently far exceeds the rate at which those data can be analyzed. To assist ex-
perts, planners, policy makers, and civil defense organizations, automated systems
are needed.

In this book, we propose such an automated multispectral satellite image under-
standing system on Ikonos images. Our system has modules on land use classifica-
tion, residential region detection, house and street network extraction. In developing

C. Ünsalan, K.L. Boyer, Multispectral Satellite Image Understanding,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-0-85729-667-2_1, © Springer-Verlag London Limited 2011
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2 1 Introduction

automated methods for each part of the system, we extensively benefit from novel
or existing computer vision and pattern recognition techniques. These techniques
can also be used in future more advanced automated systems. In the following para-
graphs, we provide a brief introduction to each part of our system. Then, we explore
each method as well as related concepts in detail in the following chapters.

In the first part of the book, we provide detailed information on remote sensing
satellites that are either operational now or that have been used extensively in the
past. Since our system is based on satellite images, understanding their characteris-
tics in the first place is mandatory. Besides, having an idea about possible satellite
image sources is also necessary. This part also aims to emphasize that, more satellite
images will become available in the future with higher resolution and better spectral
ranges.

The second part of the book is about summarizing the multispectral information
in satellite images. We focus on a set of vegetation and shadow-water indices since
we use them as the source of multispectral information for land use classification
and house and street network detection. Vegetation indices have been used exten-
sively to estimate the vegetation density from satellite and airborne images for many
years. We provide a thorough literature review on vegetation indices first. Then, we
focus on one of the most popular vegetation indices, the normalized difference veg-
etation index (NDVI) and introduce a statistical framework to analyze it.

We propose a solution to the saturation problem of the NDVI based on our statisti-
cal framework. As the vegetation density increases, the corresponding NDVI values
start to saturate and cannot represent highly vegetated regions reliably. By testing
our method on real images, we show that we can obtain a linearized (and more re-
liable) index than the NDVI. We also investigate the relationship of this index with
the ratio vegetation index (RVI), another popular vegetation index.

As we know, the NDVI uses only red and near-infrared bands. Using the estab-
lished statistical framework, we introduce a new set of vegetation indices using blue
and green bands in addition to the red and the near-infrared. We compare these in-
dices with the measure obtained from the NDVI on real images and comment on the
results.

The framework for the NDVI also serves as a basic tool for introducing a set of
shadow-water indices. These indices can be extensively used to detect shadow re-
gions in satellite images. At the same time, they can indicate water bodies in satellite
images such as rivers, ponds, lakes, and the sea. In detecting house and street net-
works, we benefit from this index to locate lakes in residential regions.

The third part of the book focuses on methods for land use classification. The
first chapter of this part summarizes and analyzes the work on land use classifica-
tion from different perspectives. The reader may benefit from this information in
two ways: observing the general picture in land use classification studies and infer-
ring possible future directions for research. In the following chapters of this part,
we propose novel features based on structural, multispectral, hybrid, and graph the-
oretical methods for land use classification. Next, we provide a brief introduction to
these.

In land use classification, because the volume of data—and the size of individ-
ual images—is so great, we first focus on a “triage” in which urban and non-urban
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classes are first identified with (relatively) minimal processing. Therefore, we intro-
duce a set of structural features based on straight lines to assess land development
levels in high resolution (one meter) satellite images. Urban areas exhibit a prepon-
derance of straight line features, generally appearing in fairly simple, quasiperiodic
organizations. Wilderness and rural areas produce line structures in more random
spatial arrangements. We use this observation to perform an initial triage on the im-
age to restrict the attention of subsequent, more computationally intensive analyses.
Statistical measures based on straight lines guide the analysis. We base these fea-
tures on orientation, length, contrast, periodicity, and location. We trained and tested
parametric and non-parametric classifiers using this feature set. These tests were for
a two-class problem (urban vs. rural).

Although structural information can be used for land use classification alone; if
multispectral information is available, it may improve the classification accuracy.
Therefore, in the second chapter of part three, we benefit from vegetation indices
which summarize the multispectral information in the image. We use them to im-
prove the land use classification results. We also developed a synergistic approach
that combines structural and multispectral information. In particular, the structural
features serve as cue regions for multispectral features. We call these methods as
hybrid to indicate that they benefit from both structural and multispectral informa-
tion.

After the initial urban vs. rural classification of regions, we introduce computa-
tionally more expensive but more precise graph theoretical measures over panchro-
matic images especially to detect residential regions in the last chapter of part three.
The graphs are constructed using straight lines (obtained from line support regions)
as vertices, while graph edges encode their spatial relationships. We then introduce a
set of measures based on various properties of the graph. These measures are mono-
tonic with increasing structure (organization) in the image. Thus, increased cul-
tural activity and land development are indicated by increases in these measures—
without explicit extraction of street networks, buildings, residences, etc. These latter,
time consuming tasks can be restricted only to “promising” image regions, accord-
ing to our measures. We present a theoretical basis for the measures followed by
extensive experimental results in which the measures are first compared to manual
evaluations of land development.

In part four of the book, we extend land use classification ideas to address the
problem of detecting residential regions (as the ultimate goal). To do so, some use
of spatial coherence is required. Therefore, we introduce two methods. The first is
based on a decision system to perform residential region classification via an over-
lapped voting method for consensus discovery. This method is called as feature
based grouping throughout the book. The second method is based on graph theoret-
ical measures introduced in the previous part. We then present and test a method to
focus on, and (pre)extract, suburban-style residential areas. These are of particular
importance in many applications, and particularly difficult to detect.

The fifth part of the book is about building and road detection. We first summa-
rize and categorize the relevant literature on these problems. As in land use classi-
fication, this information may itself be useful to infer the future research directions
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for building and road network detection studies. In our multispectral satellite im-
age understanding system, we detect houses and the street network as representative
subcategories of buildings and the road network. We focused on these two subcate-
gories since our aim is analyzing residential regions.

Our house and street network detection subsystem comprises four main parts.
First, we introduce a measure on multispectral images to detect regions of possible
human activity. On this measure, we introduce a variation of the k-means clustering
algorithm to extract possible houses and street networks by combining both spatial
and spectral features. This combination of information improves the final clustering
results. From clustering, we obtain a binary image containing possible street net-
work fragments and houses. We then decompose this binary image using a balloon
algorithm based on mathematical morphology. Having obtained the decomposition,
we represent the balloons in a graph theoretical framework. Balloons serve as ver-
tices and their neighborhood information is encoded by weighted edges in the graph.
The street network is extracted from the graph by using the unary and binary con-
straints. The remaining vertices (balloons) are assigned as possible houses in the
region.

In the final part of the book, we summarize the performance of the overall mul-
tispectral satellite image understanding system. We also provide key ideas for each
part. These may help the reader to improve the existing methods and introduce new
automated satellite image understanding systems.

At the end of each chapter, there are review questions. These serve for two pur-
poses. The first is to improve understanding the method(s) presented in the chapter.
The second is leading the reader to more advanced methods through open ended
questions. Hence, the reader will have a chance to use the proposed system as well
as its novel building blocks to develop an automated satellite image understanding
system for his or her needs.

Reference

1. G. Konecny, J. Schiewe, ISPRS J. Photogramm. Remote Sens. 51, 173 (1996)
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Sensors





Chapter 2
Remote Sensing Satellites and Airborne Sensors

To develop an automated satellite image understanding system, the properties of
satellite images should be known in advance. Therefore, this chapter introduces var-
ious remote sensing satellites and airborne systems. In almost all cases, the sensors
on these satellites and airborne systems are called by the same name as the satellite
or the airborne program. We follow the same convention.

The remote sensing satellites (sensors) we consider are Landsat, SPOT, IRS,
AVHRR, Ikonos, Quickbird, FORMOSAT, CARTOSAT, Worldview, Alos, and
Geoeye; the aerial sensors (programs) we consider are Daedalus, AVIRIS, HYDICE,
and DAIS 7915. Wherever possible, we give a brief historical development of the
sensor family with the operation dates, resolution, and revisit interval. We also give
the spectral properties of the latest sensor for each family. We tabulate this informa-
tion as a sensor selection guide. At the last section, we summarize and compare the
properties of these sensors and their usage through time to give a brief information
to the potential user.

2.1 Landsat

One of the best known families of remote sensing satellites is Landsat. This is a
US based sensor family that has evolved over time. The first satellite in this fam-
ily, launched in 1972, was Landsat 1. It had two sensors, the Return Beam Vidicon
(RBV) and the Multi Spectral Scanner (MSS). RBV was a television camera, re-
placed by the Thematic Mapper (TM) in Landsat 4 and 5. In the last two satellites,
there are panchromatic (pan), Enhanced Thematic Mapper (ETM) and Enhanced
Thematic Mapper Plus (ETM+) sensors (Table 2.1). This family remains active;
its average resolution is around 15 meters with a 16 day revisit interval. Table 2.2
summarizes the spectral properties of the latest family member, Landsat 7.

C. Ünsalan, K.L. Boyer, Multispectral Satellite Image Understanding,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-0-85729-667-2_2, © Springer-Verlag London Limited 2011
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Table 2.1 History of the Landsat family

Satellite Launch date End of service Resolution (m) Rev. int. (days)

Landsat 1 7/23/1972 1/6/1978 RBV 80; MSS 80 18

Landsat 2 1/22/1975 2/25/1982 RBV 80; MSS 80 18

Landsat 3 3/5/1978 3/31/1983 RBV 30; MSS 80 18

Landsat 4 7/16/1982 TM 30; MSS 80 16

Landsat 5 3/1/1984 TM 30; MSS 80 16

Landsat 6 10/5/1993 10/5/1993 Pan 15; ETM 30 16

Landsat 7 4/15/1999 Pan 15; ETM+ 30 16

Table 2.2 Landsat 7 spectral
range Band Spectral range (µm) Resolution (m)

1 0.450 to 0.515 30

2 0.525 to 0.605 30

3 0.630 to 0.690 30

4 0.750 to 0.900 30

5 1.550 to 1.750 30

6 10.400 to 12.500 60

7 2.090 to 2.350 30

Pan 0.520 to 0.900 15

Table 2.3 History of the
SPOT family Satellite Launch date Resolution (m) Rev. int. (days)

SPOT 1 2/22/1986 Pan 10; MS 20 26

SPOT 2 1/22/1990 Pan 10; MS 20 26

SPOT 3 9/26/1993 Pan 10; MS 20 26

SPOT 4 3/4/1998 Pan 10; MS 20 26

SPOT 5 5/4/2002 Pan 2.5 or 5; MS 10 26

2.2 SPOT

SPOT is a French–Belgian–Swedish joint remote sensing satellite family. SPOT 1,
launched in 1986, offered 10 meter panchromatic (pan) and 20 meter multispectral
(ms) images with a 26 day revisit interval. The newest member of the family has the
same revisit interval with 2.5 or 5 meter panchromatic and 10 meter multispectral
image resolution (Table 2.3). See Table 2.4 for the spectral properties of SPOT 5,
the latest SPOT in the sky.
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Table 2.4 SPOT 5 spectral
range Band Spectral range (µm) Resolution (m)

1 0.50 to 0.59 10

Pan 0.48 to 0.71 2.5 or 5

Table 2.5 The history of the IRS family

Satellite Launch date End of service Resolution (m) Rev. int. (days)

IRS 1A 3/17/1988 1992 72.5 22

IRS 1B 8/29/1991 1999 72.5 22

IRS 1C 12/28/1995 1997 Pan 5.8; MS 23.5 24

IRS 1D 9/29/1997 1997 Pan 5.8; MS 23.5 24

IRS 2A 2000 Pan 5–10; MS 23.5–70.5 24

IRS P2 10/15/1994 1997 Pan 5.8; MS 36.25 22

IRS P3 3/21/1996 1997 Pan 189; MS 523 5

Table 2.6 IRS spectral range
Band Spectral range (µm) Resolution (m)

1 0.50 to 0.59 23.5

2 0.62 to 0.68 23.5

3 0.77 to 0.86 23.5

4 1.55 to 1.70 70.5

Pan 0.50 to 0.75 5.8

2.3 IRS

IRS is the Indian remote sensing satellite family, first launched in 1988 with 72.5
meter resolution. Although other Indian remote sensing satellites were launched
prior to IRS, this was the first Indian family to see extensive use. The latest family
member, IRS 2A, has 5 to 10 meter panchromatic and 23.5 to 70 meter multispectral
image resolution (Table 2.5). The spectral properties of the latest family member
appear in Table 2.6.

2.4 AVHRR

Another US based sensor is the Advanced Very High Resolution Radiometer
(AVHRR). This sensor family differs from previous sensors in both resolution and
intended application. It has a fairly low resolution (around 1.1 km) and is basi-
cally used for vegetation and forestry studies (Table 2.7). The latest AVHRR sensor,
NOAA-16, has 6 bands covering the visible, near-infrared, and thermal infrared.
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Table 2.7 History of the
AVHRR family Satellite Launch date End of service Resolution (km)

NOAA-6 6/79 11/86 1.1

NOAA-7 8/81 6/86 1.1

NOAA-8 5/83 10/85 1.1

NOAA-9 2/85 11/88 1.1

NOAA-10 11/86 9/91 1.1

NOAA-11 11/88 9/94 1.1

NOAA-12 5/91 12/94 1.1

NOAA-14 12/94 1.1

NOAA-15 5/98 1.1

NOAA-16 9/00 1.1

Table 2.8 History of the Ikonos family

Satellite Launch date End of service Resolution (m) Rev. int. (days)

Ikonos 1 4/27/1999 4/27/1999 Pan 1; MS 4 3

Ikonos 2 9/24/1999 Pan 1; MS 4 3

Table 2.9 Ikonos spectral
range Band Spectral range (µm) Resolution (m)

1 0.45 to 0.52 4

2 0.51 to 0.60 4

3 0.63 to 0.70 4

4 0.76 to 0.85 4

Pan 0.45 to 0.90 1

2.5 Ikonos

Ikonos is the first US based commercial remote sensing satellite. It has one of the
highest image resolution publicly available, with one meter panchromatic and four
meter multispectral images (Table 2.8). See Table 2.9 for the spectral properties of
Ikonos 2.

2.6 Quickbird

Quickbird is another US based commercial remote sensing satellite. Quickbird,
launched on 10/18/2001, offers 0.61 meter panchromatic (pan) and 2.44 meter mul-
tispectral (ms) images with a three day revisit interval. See Table 2.10 for the spec-
tral properties of Quickbird.
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Table 2.10 Quickbird
spectral range Band Spectral range (µm) Resolution (m)

1 0.45 to 0.52 2.44

2 0.52 to 0.60 2.44

3 0.63 to 0.69 2.44

4 0.76 to 0.90 2.44

Pan 0.45 to 0.90 0.61

Table 2.11 FORMOSAT
spectral range Band Spectral range (µm) Resolution (m)

1 0.45 to 0.52 8

2 0.52 to 0.60 8

3 0.63 to 0.69 8

4 0.76 to 0.90 8

Pan 0.45 to 0.90 2

2.7 FORMOSAT

FORMOSAT-2 is a Chinese remote sensing satellite launched on 05/21/2004. It
offers two meter panchromatic (pan) and eight meter multispectral (ms) images with
a one day revisit interval. See Table 2.11 for the spectral properties of FORMOSAT.

2.8 CARTOSAT

CARTOSAT is a recent India based remote sensing satellite launched on 05/05/2005.
It only offers 2.5 meter panchromatic (pan) images with five day revisit interval.

2.9 Worldview

Worldview is a recent US based commercial remote sensing satellite family. The first
member of this family offers 0.55 meter panchromatic images. The second member
of this family offers 0.46 meter panchromatic and 1.8 meter multispectral images
(Table 2.12). See Table 2.13 for the spectral properties of Worldview 2.

2.10 ALOS

ALOS is a Japanese remote sensing satellite launched on 01/24/2006. It offers 2.5
meter panchromatic (pan) and 10 meter multispectral (ms) images with a two day
revisit interval. See Table 2.14 for the spectral properties of ALOS.
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Table 2.12 History of the Worldview family

Satellite Launch date End of service Resolution (m) Rev. int. (days)

Worldview 1 9/18/2007 Pan 0.55 1.7

Worldview 2 10/08/2009 Pan 0.46; MS 1.8 1.1

Table 2.13 Worldview 2
spectral range Band Spectral range (µm) Resolution (m)

1 0.400 to 0.450 1.8

2 0.450 to 0.510 1.8

3 0.510 to 0.580 1.8

4 0.585 to 0.625 1.8

5 0.630 to 0.690 1.8

6 0.705 to 0.745 1.8

7 0.770 to 0.895 1.8

8 0.860 to 1.040 1.8

Pan 0.450 to 0.800 0.46

Table 2.14 ALOS spectral
range Band Spectral range (µm) Resolution (m)

1 0.42 to 0.50 10.0

2 0.52 to 0.60 10.0

3 0.61 to 0.69 10.0

4 0.76 to 0.89 10.0

Pan 0.52 to 0.77 2.5

2.11 Geoeye

Geoeye is yet another US based commercial remote sensing satellite family. The ac-
tive member of this family, launched on 09/06/2010, with a three day revisit interval
offers 0.41 meter panchromatic and 1.65 meter multispectral images. The second
member of this family has not been launched, yet. However, it is expected to of-
fer 0.25 meter panchromatic images. See Table 2.15 for the spectral properties of
Geoeye 1.

2.12 Airborne Image Sensors

There are various airborne sensors available to supplement satellites for remote sens-
ing applications. These sensors have resolutions comparable to satellite based sen-
sors. Their superiority is the range of the spectrum they sweep and the number of
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Table 2.15 Geoeye 1
spectral range Band Spectral range (µm) Resolution (m)

1 0.450 to 0.520 1.65

2 0.520 to 0.600 1.65

3 0.625 to 0.695 1.65

4 0.760 to 0.900 1.65

Pan 0.450 to 0.900 0.41

Table 2.16 Airborne sensors

Program Resolution (m) Spectral range (µm) Total # of bands

Daedalus 25 0.42 to 14.00 12

DAIS 7915 3 to 20 0.40 to 12.60 79

HYDICE 1 to 4 0.40 to 2.45 210

AVIRIS 17 0.40 to 2.45 224

Table 2.17 Daedalus
spectral range Band Spectral range (µm) Resolution (m)

1 0.42 to 0.45 25

2 0.45 to 0.52 25

3 0.52 to 0.60 25

4 0.60 to 0.62 25

5 0.63 to 0.69 25

6 0.69 to 0.75 25

7 0.76 to 0.90 25

8 0.91 to 1.05 25

9 1.55 to 1.75 25

10 2.08 to 2.35 25

11 (High gain) 8.50 to 14.00 25

12 (Low gain) 8.50 to 14.00 25

spectral bands. However, they are limited by range and time. We summarize these
sensors in Table 2.16 and give the spectral properties of the Daedalus sensor in Ta-
ble 2.17.

2.13 Summary of the Chapter

Although sensor information is probably known to most readers, we include it here
for two main reasons. First, to give a review of the sensor technology. Second, most
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Table 2.18 Summary of the sensor properties

Sensor Resolution (m) Spectral range (µm) Rev. int. (days)

Landsat 15 0.45 to 2.35 16

SPOT 2.5 0.50 to 1.75 5

IRS 5 0.50 to 1.70 5

Ikonos 1 0.45 to 0.85 3

Quickbird 0.61 0.45 to 0.90 3

FORMOSAT 2 0.45 to 0.90 1

CARTOSAT 2.5 N/A 5

Worldview 0.46 0.40 to 1.04 1.1

ALOS 2.5 0.42 to 0.89 2

Geoeye 0.41 0.45 to 0.90 3

Airborne 1 to 25 0.42 to 14.00 N/A

feature extraction methods directly depend on the resolution and spectrum the sen-
sor offers. Therefore, an improvement in the sensor may lead to new methods in
multispectral satellite image understanding. Let us first summarize (Table 2.18) and
compare the latest family members of these sensors.

This table suggests the following conclusions. Worldview 2 and Geoeye have
the highest resolution. Worldview 1 and Quickbird have the next highest resolution,
followed by Ikonos and Airborne sensors. If the resolution is the most important
parameter in system design, Worldview 2 seems to be the best choice available.

However, these sensors also differ in spectral range. Airborne sensors in general
have the widest spectral range available. Landsat, SPOT, IRS, and Worldview 2 fol-
low them. Although airborne sensors offer superior spectral range, they suffer from
range and time (as mentioned previously). Therefore, Landsat is the optimal choice
if the spectral and operational ranges are considered. However, if a higher spectral
range is required, airborne sensors can be used for small geographic locations.

Worldview 2 is also superior in terms of revisit interval, followed by FOR-
MOSAT, ALOS, Geoeye, and Ikonos. For applications requiring frequent updates,
Worldview 2 offers the best solution; Landsat is the worst. Although Worldview 2
has a narrower spectral range than Landsat, its resolution and revisit interval makes
this sensor attractive for most applications.

So, the potential user has a wide range of choices on the resolution, spectral
range, and revisit interval he or she desires. Next, we group and count the published
papers by the sensors they used in Fig. 2.1 in three year time intervals, starting from
1967 to 2002. This records the popularity of these sensors over time.

This figure indicates the popularity of the Landsat family through time, and there
are many reasons for this popularity. One main reason is the high spectral range and
moderate resolution Landsat offers. Another reason may be the availability of its im-
ages. Besides Landsat, airborne sensors and SPOT have also been used extensively.
Since Ikonos, Quickbird, Worldview 2, and Geoeye 1 have been launched recently,
they are not shown here. However, based on the above comparison these satellites
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Fig. 2.1 Sensor usage in
three year time intervals from
1967 to 2002

offer great promise for future remote sensing studies. The final, somewhat obvious,
observation we can make is that overall use and study of remote sensing platforms
shows near-exponential growth.

2.14 Problems

2.1 Summarize the satellite vs the country of origin.

2.2 What are the differences between satellite and airborne image capturing?

2.3 Based on the information provided in this chapter, plot

(a) The resolution of each satellite image vs its launch date.
(b) The revisit interval of each satellite vs its launch date.

2.4 (Open ended question) Using the plots in the previous problem, make projec-
tions on the properties of future satellites. Comment on your projections.
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Chapter 3
Linearized Vegetation Indices

Most remote sensing satellite sensors offer multispectral images besides panchro-
matic images. This multispectral information is extremely valuable to detect various
objects in the image. In this book, we summarize the multispectral information via
vegetation and shadow–water indices. In the following chapters, we benefit from
these indices in land use classification and house and street network detection. In
this chapter, we start with vegetation indices.1

Nearly all plants need sunlight to survive, using chlorophyll to convert radiant
energy from the sun into organic energy. Chlorophyll exhibits unique absorption
characteristics, absorbing wavelengths around the visible red band (645 µm) while
being transparent to wavelengths in the near-infrared (700 µm). These characteris-
tics of chlorophyll are commonly used to design indices to estimate the local vege-
tation density in multispectral satellite or airborne imagery.

In this chapter, we consider the popular vegetation index based on the above
observations, the normalized difference vegetation index (NDVI). Although there
have been many indices proposed in the literature, the NDVI remains one of the
most popular in remote sensing applications. Other well-known vegetation indices
can be found in [2–10]. Most of these represent attempts to overcome deficiencies
in the NDVI.

Previous studies have compared vegetation indices based on various crite-
ria [11–19], yet no clear winner has emerged. In some experiments, the NDVI out-
performs all other indices; for others it is less successful. It is clear that, despite
many attempts to develop alternatives, the NDVI remains one of the most effective
indicators of vegetation density.

Since its introduction, the NDVI has been used in a wide variety of stud-
ies including those on global vegetation [20–23], crop estimation and vegeta-
tion growth [24–28], land cover [29–38], early famine detection [39], and cli-
mate [40, 41].

1The figures in this chapter are obtained from our previous work [1]. Here, they appear with the
kind permission of IEEE.

C. Ünsalan, K.L. Boyer, Multispectral Satellite Image Understanding,
Advances in Computer Vision and Pattern Recognition,
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Nevertheless, two main objections have been raised with respect to the NDVI.
First, it has been argued that the NDVI is ad-hoc [42, 43], and our extensive literature
review failed to turn up any evidence to the contrary. Second, the NDVI is highly
nonlinear, saturating for highly vegetated areas. Many authors have mentioned this
saturation problem [7, 44–48]. Although used extensively in practice, these two
problems limit scientific confidence in the NDVI.

We address these two problems in this chapter. We first introduce a statistical
framework for the NDVI. We then propose a solution to the nonlinearity (saturation)
problem based on this statistical explanation. For completeness, we then apply the
same framework to the 3D and 4D feature spaces of blue, green, red, and near-
infrared bands. We work with Ikonos multispectral satellite imagery in this chapter.

3.1 Background and Historical Development

The pioneering work of Shull [49] examined the reflectance and absorption charac-
teristics of leaves. Rabideau et al. [50], Billings and Morris [51], and Federer and
Tanner [52] conducted experiments that indicated the same reflectance-absorption
characteristics. Weidner et al. [53] conducted experiments on various types of plants
(plants having thick leaves, thin leaves, dark green leaves, and desert plants) to show
that these absorption characteristics are highly consistent across plant types.

Based on these observations, Jordan [54] introduced the ratio vegetation index
(RVI) to estimate the vegetation density in a given region. Since absorption is high
in the red band and low in the near-infrared, Jordan assessed vegetation density
using the ratio

RVI = ρnir

ρred
, (3.1)

where ρnir and ρred are reflectance values in near-infrared and red bands, respec-
tively. Colwell [55, 56] applied the RVI to grass canopies and found it useful for
estimating biomass. One of the drawbacks of the RVI is that it diverges to infinity
when ρred goes to zero.

Nalepka et al. [57] used the square root of the RVI, (SRRVI)

SRRVI = √
RVI =

√
ρnir

ρred
. (3.2)

This index is more linear than the RVI. Similarly, Rouse et al. [58] introduced the
transformed vegetation index (TVI)

TVI = √
RVI + 0.5. (3.3)

In 1974, Rouse et al. [58] introduced the normalized difference vegetation in-
dex (NDVI). This index, given in (3.4), remains one of the most popular vegetation
indices of all:

NDVI = ρnir − ρred

ρnir + ρred
. (3.4)
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Huete [3] recognized that the NDVI represents a slope. He then introduced a soil
adjusted vegetation index (SAVI) using this characteristic:

SAVI = ρnir − ρred

ρnir + ρred + L
(1 + L), (3.5)

where L is an adjustment factor explained in detail in [3]. SAVI is another (ad hoc)
attempt to address the saturation problem of the NDVI, which we will discuss in
more detail below. Baret and Guyot [59] also observed the slope nature of the NDVI
while studying the leaf area index.

Another vegetation index was introduced by Kauth and Thomas [2]. They intro-
duced a transformation using four Landsat MSS bands (d4, d5, d6, d7). Band 5 (d5)
is red; bands 6 and 7 (d6, d7) are near-infrared. The Kauth–Thomas transformation
is as follows:⎡

⎢⎢⎣
b

g

y

n

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.433 0.632 0.586 0.264
−0.290 −0.562 0.600 0.491
−0.829 −0.522 −0.039 0.194
0.223 0.012 −0.543 0.810

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

d4
d5
d6
d7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

32
32
32
32

⎤
⎥⎥⎦ . (3.6)

In the transformed space, b stands for ‘brightness’, g stands for ‘greenness’, y stands
for ‘yellowness’, and n stands for ‘nonesuch’. Greenness is taken as a vegetation in-
dex from this transformation. In his comprehensive analysis of Landsat range and
biomass monitoring, Deering [60] mentioned that the NDVI and the TVI are more
significant than the vegetation index obtained from the Kauth–Thomas transforma-
tion. Jackson [61] extended the ideas of Kauth and Thomas by using n-bands. His
method depends on the Gram–Schmidt orthogonalization process [62].

These transformation methods, especially that involving Gram–Schmidt orthogo-
nalization, are the closest in philosophy to ours. However, we obtain our transforma-
tion matrices through a statistical analysis, which explains Huete’s slope definition.
We then compute (and normalize) the corresponding angle from this slope to obtain
vegetation indices less susceptible to saturation. To lay the theoretical groundwork,
we first review some pertinent statistical concepts.

3.2 Statistical Preliminaries

In this section, we briefly explain two key ideas from statistics. The first is principal
components analysis (PCA), which we will use to decorrelate the random variables
by an orthonormal transformation. The second is the entropy, which we will use as
a basis for comparing different indices.

3.2.1 Principal Components Analysis (PCA)

PCA performs a linear transformation on a set of correlated random vectors to repre-
sent them in a new space such that they are uncorrelated. The new coordinate space
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is related to the original by a rotation about the origin, such that the new coordinate
axes are aligned with the dominant directions of dispersion (the principal compo-
nents) of the data, as inferred from its covariance matrix. Our description here is
necessarily terse; for more detail, see [63].

Let the original (correlated) random vectors be x1,x2, . . . ,xn. The linear trans-
formation matrix A is calculated as follows. First, we form the data matrix X:

X = (x1,x2, . . . ,xn). (3.7)

X is therefore a d × n matrix, where d is the dimensionality of the measurement
space (the number of sensor bands in use, in our case), and n is the number of data
vectors (observations). From this, we obtain the sample covariance matrix Cx :

Cx = E
[
(X − μx)(X − μx)

T
]
, (3.8)

where μx is the sample mean vector, given by 1
n

∑
i xi .

We then find the eigenvectors ei of the sample covariance matrix, which satisfy:

Cxei = λiei , i = 1,2, . . . , d. (3.9)

In accordance with standard practice, we index the eigenvalue–eigenvector pairs
so that λ1 ≥ λ2 ≥ · · · ≥ λd . We also normalize the eigenvectors so that ||ei || = 1 ∀ i.
The value of λi corresponds to the mean-square excursion of the data (with respect
to its mean) along the direction of ei . The d × d transformation matrix A is then
formed by stacking the eigenvectors, one per row:

A =

⎡
⎢⎢⎢⎢⎣

eT
1

eT
2
...

eT
d

⎤
⎥⎥⎥⎥⎦ . (3.10)

Applying this transformation to any given data vector xj is simply a matter of
projecting xj onto each eigenvector:

pj = A(xj − μx). (3.11)

For our derivations, we shift the principal components by transformed means as
follows:

pcj = Axj , (3.12)

where pcj = pj + Aμx; we therefore work in non-centered spaces.

3.2.2 Entropy

To compare different vegetation indices, we use the concept of entropy. The entropy
measures the amount of information obtained, on average, in drawing samples from
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a given distribution. In effect, this captures the uncertainty, or randomness, in the
experiment. Therefore, the entropy increases as the distribution becomes more uni-
form.

To use this property in comparison, we pick test images (such as residential re-
gion images) having high contrast between their vegetated and non-vegetated re-
gions. Then, we obtain the approximate probability mass function (pmf) of each
vegetation index for such an image. We expect a fairly uniform pmf since we se-
lected a high contrast image. Finally, we calculate the entropy of each pmf corre-
sponding to different vegetation indices. The higher the entropy, the better we expect
that index to perform.

Let an approximate pmf be given as h(i) for i = 1, . . . ,N , N being the total
number of quantization levels. The corresponding entropy E is:

E = −
N∑

i=1

[
h(i) log

(
h(i)

)]
. (3.13)

3.3 Exploring the NDVI with a Statistical Framework

Our initial goal was to construct a new vegetation index from uncorrelated variables
defined in the red–near-infrared space. We expected this new index to be more rep-
resentative than the NDVI. However, we arrived at the NDVI via this construction,
but gained valuable insight in the process.

3.3.1 Estimated PCA Transformation Matrix

In estimating the PCA transformation matrix, we use four meter resolution multi-
spectral Ikonos satellite imagery. We have 5905 non-overlapping images each hav-
ing 200 × 200 pixels in blue, green, red, and near-infrared bands; we only use red
and near-infrared in this section. We estimated the PCA transformation matrix A
based on these samples to obtain:

A =
[−0.707 0.707

0.707 0.707

]
, (3.14)

which corresponds to a π/4 radian rotation of the coordinate system. To illustrate
the PCA transformation, we give the scatter plot of a sample image with eigen-
vectors in Fig. 3.1. In this figure, we rescaled the eigenvectors for illustration. The
corresponding eigenvalues are λ1 = 1.1408, λ2 = 0.8592. The eigenvectors indicate
the dominant (orthogonal) scatter directions for the data. Representing the data in
the coordinate system defined by the eigenvectors statistically decorrelates the com-
ponents. That is, the projections along e1 and e2 are uncorrelated random variables,
while those along ρred and ρnir are statistically correlated.
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Fig. 3.1 Scatter plot and
eigenvectors for the NDVI

Fig. 3.2 Rotation diagram
for the PCA transformation

3.3.2 Statistical Construction of the NDVI

We begin with A. Uncorrelated random variables pc1 and pc2, the projections along
e1 and e2, respectively, are calculated as follows:

[
pc1
pc2

]
= A ×

[
ρred
ρnir

]
. (3.15)

Figure 3.2 represents this transformation graphically. We see a π/4 radian rotation
from (ρred, ρnir) space to (pc1,pc2) space under this transformation.

From the construction of the PCA, we know that pc1 and pc2 are statistically
uncorrelated. We can define a slope α in the new decorrelated space as:

α = pc1

pc2
. (3.16)
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If we rewrite the slope α in terms of ρred and ρnir, we obtain

α = ρnir − ρred

ρnir + ρred
. (3.17)

This slope definition directly corresponds to the definition of the NDVI given
in (3.4). This derivation proves that the NDVI is, in fact, the slope defined with
respect to the decorrelated vector space.

3.3.3 Saturation of the NDVI

To this point we have (re)derived the NDVI by way of PCA. To our knowledge, this
is the first attempt to put the NDVI onto a rigorous statistical footing. This derivation
also suggests a solution to the saturation problem of the NDVI.

We begin by defining an angle φ corresponding to the slope value which is, of
course, the NDVI:

φ = arctan(NDVI). (3.18)

Next we normalize this angle by π/4 to measure vegetation density as follows:

θ = 4

π
φ = 4

π
arctan(NDVI). (3.19)

This gives a measure normalized over ±1. Equation (3.19) indicates that θ is a
nonlinear transformation of the NDVI. By applying this nonlinear transformation,
we can offset the nonlinearity of the saturation. We will show by simulation and
experiments on real images how this method mitigates the saturation problem.

3.3.4 Experimental Results for the NDVI and θ

This section compares the normalized angle measure θ with the NDVI with respect
to linearity. Ideally, one would want ground truth for comparison but, unfortunately,
such data is simply unavailable to us. Therefore, we turn to indirect methods. We
first evaluate the measures using a leaf area index (LAI) simulation. Although LAI
is not strictly the same as vegetation density, one expects these quantities to be pos-
itively correlated under typical conditions. Then we use four real images for quali-
tative comparison. Finally, we quantify the comparison via three different criteria.

In future work, researchers may be able to check these methods under more-
controlled conditions, should ground truth be available. Lacking this information,
these criteria can assist other researchers in evaluating indices that they may de-
velop.
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Fig. 3.3 The NDVI and angle
θ vs. LAI

3.3.4.1 The LAI Simulation

Bégué [44] compared the NDVI and the LAI for various parameters and observed
that it saturates. Here, we reconstruct one of the NDVI vs. the LAI curves of Bégué
(represented in terms of percentages) and obtain θ from it. We give the reconstructed
curve and θ in Fig. 3.3. Although the NDVI saturates as the LAI increases, θ remains
highly linear.

3.3.4.2 Real Images

Here, we compare the NDVI with the angle θ on four real images, representing var-
ious degrees of vegetation. For visual comparison, we provide color coded images
(blue corresponds to the lowest vegetation value; red the highest). We also plotted
the normalized histograms (pmfs) of the NDVI and θ for all images.

We begin with the Maryland image (Fig. 3.4). It contains almost no vegetation,
except for two separate blocks (small parks). This is a typical downtown image of
buildings and a street network, so the NDVI and θ values are low, as captured in their
histograms. When the vegetation density is low, the measures respond similarly.
That is, there is no consistent bias in the response of θ versus NDVI.

Our next example is the New Mexico image (Fig. 3.5). This image represents a
typical residential region. The vegetation level is higher than that of the Maryland
image, and houses and a road network are present, as well. Therefore, we expect
reasonable contrast in the index value between the vegetated and non-vegetated re-
gions of this image, suggesting an expanded dynamic range and a more uniform
pmf for the better vegetation index. The figure shows that θ is, in fact, more uni-
formly distributed, with a wider dynamic range. The measures are highly similar in
low-vegetation response, while θ shows a stronger high-vegetation response. This
leads to our second conclusion: As the vegetation increases, our measure is more
representative of the situation than the NDVI.
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Fig. 3.4 The Maryland image results

Fig. 3.5 The New Mexico image results
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Fig. 3.6 The Minnesota image results

Next is the Minnesota image (Fig. 3.6) containing both vegetation and bare soil.
This image reveals the contrast between these two types of regions in the two mea-
sures. Both histograms are fairly bimodal, in keeping with the image content. The
θ histogram again shows greater dynamic range with an extended high-vegetation
response, while for bare soil the measures give similar responses. That is, in light
vegetation the responses are nearly the same; in heavy vegetation they diverge as
the NDVI saturates while θ remains highly linear.

Our last example is the Oregon image (Fig. 3.7). This is a densely forested re-
gion, one of the most heavily-vegetated in our data set. Comparing the normalized
histograms of the two indices for this image, we see that θ responds more strongly
to the forested region than does the NDVI. This indicates, again, that θ is more linear
than the NDVI; as the NDVI saturates, θ continues to increase over that range.

For Figs. 3.5 and 3.6 the higher responses for θ versus NDVI occur only for
vegetated areas; there is no consistent bias, as verified by Fig. 3.4.

3.3.4.3 Quantifying the Difference Between the NDVI and θ

In this section, we present quantitative comparisons between the measures. We an-
ticipate a low average response to the Maryland image; the Oregon image should
show high average response. The NDVI and θ responses are 0.0061 and 0.0072, re-
spectively, for the Maryland image; 0.6387 and 0.7217, respectively, for the Oregon
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Fig. 3.7 The Oregon image results

image. These results are in agreement with our expectations, again showing consis-
tent behavior in low vegetation, while revealing the additional headroom available
in the θ response as the vegetation increases.

Next, we introduce four new images (California 1, California 2, California 3,
and Maryland 2), given in Fig. 3.8, along with the New Mexico and Minnesota im-
ages. All six of these images show high contrast between their vegetated and non-
vegetated regions and cover a wide dynamic range. The entropies in the responses
for these images should be indicative of index performance. The corresponding en-
tropies are tabulated in Table 3.1. On all six images, our measure reveals higher
entropy than the NDVI. Because both measures range over [0,1], the higher entropy
indicates that the distribution of θ over the image (set) is more uniform than that
of the NDVI. That is, θ makes better use of its available numerical range. In large
part, this is because NDVI reaches unity only when ρred = 0 and ρnir �= 0, which is
an extremely rare occurrence, regardless of vegetation level. Therefore, the entropy
test underscores the superior linearity of our measure with respect to the NDVI.

3.4 Using the Statistical Framework to Develop New Indices

Having such a powerful statistical framework to analyze the NDVI suggests that
more vegetation indices (or indices for other ground covers) may be defined via
the same process. The framework offers a straightforward mechanism for exploring
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Fig. 3.8 Additional images
for entropy comparison

Table 3.1 Entropy
comparison (bits) ENDVI Eθ

California 1 4.9145 5.1858

California 2 4.8242 5.0849

New Mexico 4.9825 5.2148

Minnesota 4.4330 4.6091

California 3 4.9156 5.1755

Maryland 2 5.1361 5.2844

Average 4.8677 5.0924

index possibilities in spaces of higher dimensionality. The NDVI uses only the red
and near-infrared bands. To these, we now add the blue and green bands to discover
whether we can obtain more (or better) information from them.

We start by adding the blue band to the red and near-infrared to compute a trans-
formation in this 3D space. We then replace the blue band with the green and repeat
the process. Finally, we consider all four bands to determine whether a better vege-
tation index results in the 4D space. All measures are normalized between ±1 as is
θ . In this section, we compare each new index with θ on six images.

We cannot offer a physical explanation for the new indices introduced in this
section at present. Our main focus is on the statistical framework as a means of “in-
dex discovery”. We believe that this can provide another perspective to the remote
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Fig. 3.9 Scatter plot and
eigenvectors for the blue, red,
and near-infrared bands; the
eigenvectors are rescaled for
illustration; the third
eigenvector is obscured

sensing community in developing vegetation (or other) indices. Of course, phys-
ical explanations are desirable (perhaps even preferred), but are not (necessarily)
essential for the discovery of effective indices.

3.4.1 Using the Blue, Red, and Near-Infrared Bands

To reduce atmospheric effects, many authors include the blue band in their vegeta-
tion indices. To see how this could be used in our approach, we introduced the blue
band alongside the red and near-infrared bands. That is, we estimated a new PCA
transformation matrix, and applied this to the three dimensional space as we did for
the NDVI derivation to arrive at the transformed space:

⎡
⎣pc21

pc22
pc23

⎤
⎦ =

⎡
⎣−0.596 −0.603 −0.530

0.417 0.332 −0.846
0.686 −0.725 0.054

⎤
⎦ ×

⎡
⎣ρblue

ρred
ρnir

⎤
⎦ . (3.20)

Figure 3.9 gives the scatter plot of a sample image in blue–red–near-infrared
space with eigenvectors. The eigenvectors are rescaled for illustration. The corre-
sponding eigenvalues are λ1 = 1.9734, λ2 = 0.9741, and λ3 = 0.0525. Since the
first two eigenvalues are much greater than the third, the data scatter primarily over
a 2D manifold in �3. Thus, even in 3D, this is essentially a 2D problem. However,
the 2D space in question is not spanned by ρred and ρnir; it is spanned by two lin-
ear combinations of ρblue, ρred and ρnir. Inspired by the NDVI (and experimentally
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Fig. 3.10 Scatter plot and
eigenvectors for the green,
red, and near-infrared bands;
the eigenvectors are rescaled
for illustration; the third
eigenvector is obscured

checking its performance compared to other combinations), we choose the angle
between the second eigenvector and the sum vector as a new vegetation index in
this space:

θ2 = 4

π
arctan

( −pc22√
pc2

21 + pc2
22 + pc2

23

)
. (3.21)

This index is similar to the θ formulation we obtained from the NDVI. The ratio
inside the arctangent is again a slope in the transformed space. By using the angle
representation instead of this slope, we again linearize the resulting index.

3.4.2 Using the Green, Red, and Near-Infrared Bands

Following the same procedure, we obtain the transformed space:

⎡
⎣pc31

pc32
pc33

⎤
⎦ =

⎡
⎣−0.599 −0.600 −0.531

0.384 0.367 −0.847
0.703 −0.711 −0.011

⎤
⎦ ×

⎡
⎣ρgreen

ρred
ρnir

⎤
⎦ . (3.22)

Figure 3.10 presents the scatter plot of a sample image with (rescaled) eigenvec-
tors in this space. The corresponding eigenvalues are λ1 = 2.0226, λ2 = 0.9511, and
λ3 = 0.0263; similar observations regarding the scatter (2D manifold in �3) apply.
In this space, the difference between the first two eigenvalues is greater. The last
eigenvalue is also smaller than for the previous space. We again choose the angle
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between the second eigenvector and the sum vector as a new index in this space:

θ3 = 4

π
arctan

( −pc32√
pc2

31 + pc2
32 + pc2

33

)
. (3.23)

This index exhibits characteristics similar to those of θ2.

3.4.3 Using All Four Bands

Finally, we use all four bands to obtain yet another vegetation index. In doing so,
we hope to tap all the information these multispectral images can provide. Applying
the statistical framework to this space, we obtain:

⎡
⎢⎢⎣

pc41
pc42
pc43
pc44

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−0.519 −0.526 −0.525 −0.422
0.309 0.211 0.209 −0.903
0.703 −0.043 −0.706 0.067
0.375 −0.823 0.426 0.035

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

ρblue
ρgreen
ρred
ρnir

⎤
⎥⎥⎦ . (3.24)

The eigenvalues are λ1 = 2.9636, λ2 = 0.9756, λ3 = 0.0538, and λ3 = 0.0070.
There are again two dominant principal components, with fairly large eigenvalues.
The difference between the first and the second eigenvalue has increased compared
to the three dimensional transformations. The third eigenvalue is similar in value
to those of the three dimensional transformations. The fourth eigenvector is fairly
insignificant. This is still a 2D problem, even in a 4D space. For the vegetation index,
we reason as before to get

θ4 = 4

π
arctan

( −pc42√
pc2

41 + pc2
42 + pc2

43 + pc2
44

)
. (3.25)

This index also exhibits characteristics similar to those of θ2 and θ3.

3.5 Comparing the Vegetation Indices

To this point, we have introduced a linearized vegetation index θ based on the NDVI,
followed by three new vegetation indices: θ2 and θ3 defined in 3D spaces, and θ4 de-
fined in the full 4D space. Here, we compare these four indices using three different
criteria. The first criterion is the dynamic range, assessed both qualitatively (visual
comparison of pseudocolor images) and through normalized response histograms.
The second criterion considers the entropy for the six high contrast images given in
Sect. 3.3.4. The third criterion is the computational cost.
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Fig. 3.11 Comparison of vegetation indices on real images

3.5.1 Visual Comparison and Dynamic Range

This section compares the indices on the Maryland, New Mexico, Minnesota, and
Oregon images (Figs. 3.4, 3.5, 3.6, 3.7). As mentioned above, these images were
selected and sorted based on the relative degree of vegetation. We give the color-
coded responses (blue corresponds to the lowest vegetation value, red corresponds
the highest) of all four vegetation indices in Fig. 3.11. In the colormap, negative
index values (caused by some vegetation-free surfaces such as ice, rock, or concrete)
are all mapped to 0. This reduces the visual dynamic range and makes some of
the differences among the indices difficult to discern by visual inspection alone.
Nevertheless, some trends can be observed.

Figure 3.11 shows that all four indices respond reasonably to vegetation. Those
indices not using the blue band, θ and θ3, do not respond as well in the shadowed
areas of the Maryland and Oregon images. That is, vegetation in shadow confuses
these indices to some degree. The other two, θ2 and θ4, suggest the presence of
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Fig. 3.12 Comparison of histograms for the four vegetation indices to compare their dynamic
ranges (solid—θ , dot—θ2, dash and dot—θ3, dash—θ4)

shadows (see the Maryland and Oregon images) by virtue of their low responses
to them. Their responses to shadows increase the contrast between the vegetated
and non-vegetated (especially shadowed) regions. (This is not easily seen in the
pseudocolors because of the truncation of negative responses.) So it appears that an
index having the blue band in its formulation (θ2 or θ4) may offer some advantage
in dealing with shadows. As we will see below, θ4 will prove unsuitable from a
dynamic range standpoint.

To compare the dynamic range of these four vegetation indices, we consider the
normalized histograms. Figure 3.12 gives the histograms for the four images; the
solid curve represents θ , the dotted curve θ2, the dashed and dotted curve θ3, and
the dashed curve θ4.

In comparing these histograms, we see that θ4 has the lowest dynamic range,
except for the nearly vegetation-free Maryland image. In the two high contrast im-
ages (New Mexico, and Minnesota) θ shows the greatest dynamic range. For these
images, θ2 and θ3 give similar responses. For the Oregon image, θ has a lower dy-
namic range, but this is a low-contrast image of heavily-vegetated terrain. The range
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Table 3.2 Comparison of the
four vegetation indices on the
Maryland and Oregon images

μθ μθ2 μθ3 μθ4

Maryland 0.0072 −0.0658 −0.0743 0.1835

Oregon 0.7217 0.5286 0.5861 0.2903

Table 3.3 Comparison of the
entropies on six images for
the four vegetation indices

Eθ Eθ2 Eθ3 Eθ4

California 1 5.1858 5.2388 5.1323 4.0726

California 2 5.0849 4.9506 4.9629 3.0714

New Mexico 5.2148 5.1381 5.1487 3.5988

Minnesota 4.6091 4.4696 4.4801 3.6012

California 3 5.1755 5.2649 5.1696 3.6369

Maryland 2 5.2844 5.0725 5.2083 3.9555

Average 5.0924 5.0224 5.0170 3.6561

of θ response close to one, as it should be. Again, for this image θ2 and θ3 respond
similarly. θ4 performed poorly, giving the weakest response on this image.

Next, we focus on the two extremes (Maryland and Oregon) to compare the re-
sponses of the four vegetation indices by their sample means, μ. Because the Mary-
land image has almost no vegetation, the proper response to this image should be
near zero. The Oregon image has the greatest vegetation density, so a strong re-
sponse is expected. We give these comparisons in Table 3.2.

According to the results in Table 3.2, we sort the indices from best to worst
as: θ , θ3, θ2, and θ4. In particular, even the dramatic difference in vegetation con-
tent between the two images produces little difference in the response of θ4, while
(somewhat) diminished sensitivity is observed for θ3 and θ2.

3.5.2 Comparison by the Entropy on High Contrast Images

Next, we compare the four indices based on the entropy of the response for the six
high contrast images of Sect. 3.3.4 in Table 3.3. This table indicates that θ has the
highest average entropy over these six images. The entropy for θ2 and θ3 are very
similar, in the mid-range. Finally, θ4 is noteworthy in having significantly lower
entropy. Based on this criterion, we sort these indices: θ , θ2, θ3, and θ4, from best to
worst.

3.5.3 Computational Cost

There is a computational cost associated with each index. Our first measure, θ , needs
only the red and near-infrared bands. Indices θ2 and θ3 need three bands, while θ4
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requires four. As we mentioned, if atmospheric effects are considered θ2 may be the
best measure since it uses the blue band and performs about as well as θ in other
conditions.

To summarize, θ and θ2 are the most promising two vegetation indices considered
in this chapter. The ultimate selection of a “best” measure will depend to some extent
on the application. To recap, we give these two most promising indices below:

θ = 4

π
arctan

(
ρnir − ρred

ρnir + ρred

)
, (3.26)

θ2 = 4

π
arctan

(−0.4167ρblue − 0.3317ρred + 0.8464ρnir√
ρ2

blue + ρ2
red + ρ2

nir

)
. (3.27)

3.6 Summary of the Chapter

In this chapter, we first introduced a statistical framework for the NDVI, to provide
it with a rigorous theoretical basis. Although the original definition seems to have
been somewhat ad hoc, we were able to provide a sound theoretical justification
for the index. To our knowledge, there have been no prior studies establishing a
statistical foundation for the NDVI.

We then propose a solution to the nonlinearity (saturation) problem based on this
statistical development. By representing the NDVI as a slope and using its inverse
tangent, we could linearize the measure to yield a new index. We presented simula-
tions and real image results to substantiate our claim.

For completeness, we applied our statistical framework to 3D and 4D feature
spaces of blue, green, red, and near-infrared bands. The 2D feature space used in
developing the NDVI was based on physical arguments alone. We developed vege-
tation indices based on slope definitions in the 3D and 4D transformed spaces sim-
ilar to the NDVI although these new indices were not as powerful as the linearized
NDVI. However, with these new indices we can use information in the blue band to
mitigate the atmospheric effects observed by many authors. We also point out that
our investigation of candidate slopes in the 3D and 4D transformed spaces is not
exhaustive; other slope definitions may yet be found in these spaces that outperform
θ2, θ3, and θ4, respectively.

If we check other popular vegetation indices in the literature, we observe that
most of them are based on ratios, as is the NDVI. These indices can also be viewed
as slopes in transformed spaces. Therefore, the transformations corresponding to
these vegetation indices are possible candidates to be explored by our statistical
framework.

3.7 Problems

3.1 Can RVI, TVI, SRV I be written in terms of NDVI?
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3.2 What is the most popular vegetation index in the literature? Why?

3.3 Does PCA depend on a linear or a nonlinear transformation?

3.4 Why is saturation and linearity of a vegetation index important?

3.5 Which linearized vegetation index gives the best result?

3.6 (Open ended question) Instead of using PCA in the linearized vegetation index
derivation, does using independent components analysis (ICA), or another nonlinear
transformation, lead to a stronger vegetation index?

References

1. C. Ünsalan, K.L. Boyer, IEEE Trans. Geosci. Remote Sens. 42(4), 907 (2004)
2. R.J. Kauth, G.S. Thomas, in Proceedings of the Symposium Machine Processing of Remote

Sensing Data, LARS, Purdue (1976)
3. A.R. Huete, Remote Sens. Environ. 25, 295 (1988)
4. D. Tanré, B.N. Holben, Y.J. Kaufman, IEEE Trans. Geosci. Remote Sens. 30(2), 231 (1992)
5. Y.J. Kaufman, D. Tanré, IEEE Trans. Geosci. Remote Sens. 30(2), 261 (1992)
6. H.Q. Liu, A.R. Huete, IEEE Trans. Geosci. Remote Sens. 33(2), 457 (1995)
7. A.R. Huete, H.Q. Liu, K. Batcily, W.V. Leeuwen, Remote Sens. Environ. 59, 440 (1997)
8. A.R. Huete, C. Justice, W.V. Leeuwen, MODIS Vegetation Index (MOD13), EOS MODIS

Algorithm. Theoretical basis document, NASA Goddard Space Flight Center, Greenbelt, MD
(1996)

9. B. Pinty, M.M. Verstraete, Vegetatio 101, 15 (1992)
10. M.M. Verstraete, B. Pinty, IEEE Trans. Geosci. Remote Sens. 34(5), 1254 (1996)
11. G. Rondeaux, M. Steven, F. Baret, Remote Sens. Environ. 55, 95 (1996)
12. K. McGwire, T. Minor, L. Fenstermaker, Remote Sens. Environ. 72, 360 (2000)
13. A.J. Elmore, J.F. Mustard, S.J. Manning, D.B. Lobell, Remote Sens. Environ. 73, 87 (2000)
14. C.D. Elvidge, Z. Chen, Remote Sens. Environ. 54, 38 (1995)
15. A.R. Huete, H.Q. Liu, IEEE Trans. Geosci. Remote Sens. 32(4), 897 (1994)
16. V. Jayaraman, S.K. Srivastava, D.K. Raju, U.R. Rao, IEEE Trans. Geosci. Remote Sens. 38(1),

587 (2000)
17. R.L. Lawrence, W.J. Ripple, Remote Sens. Environ. 64, 91 (1998)
18. M. Roderick, R. Smith, S. Cridland, Remote Sens. Environ. 56, 57 (1996)
19. N.H. Broge, E. Leblanc, Remote Sens. Environ. 76, 156 (2000)
20. S.N. Goward, C.J. Tucker, D.G. Dye, Vegetatio 64, 3 (1985)
21. C.J. Tucker, P.J. Sellers, Int. J. Remote Sens. 7, 1395 (1986)
22. J.P. Malingreau, C.J. Tucker, N. Laporte, Int. J. Remote Sens. 10, 855 (1989)
23. J.R.G. Townshend, C.O. Justice, D. Skole, Int. J. Remote Sens. 15, 3417 (1994)
24. R.B. Myneni, G. Asrar, D. Tanré, B.J. Choudhury, IEEE Trans. Geosci. Remote Sens. 30(2),

302 (1992)
25. P.S. Thenkabail, R.B. Smith, E. De Pauw, Remote Sens. Environ. 71, 158 (2000)
26. G.B. Senay, R.L. Elliot, For. Ecol. Manag. 128, 83 (2000)
27. T.N. Carlson, D.A. Ripley, Remote Sens. Environ. 62, 241 (1997)
28. C.O. Justice, J.R.G. Townshend, B.N. Holben, C.J. Tucker, Int. J. Remote Sens. 6, 1271

(1985)
29. J.R.G. Townshend, C. Justice, W. Li, C. Gurney, J. McManus, Remote Sens. Environ. 35, 243

(1991)



References 39

30. V. Caselles, E. Valor, Remote Sens. Environ. 57, 167 (1996)
31. J. Symnazik, R.R. Griffiths, L. Gillies, in Proceedings of the Statistical Computing Section

and Section on Statistical Graphics (2000), pp. 10–19
32. Y.J. Kaufman, L.A. Remer, IEEE Trans. Geosci. Remote Sens. 32(3), 672 (1994)
33. T. Fung, in Proceedings of IGARSS, vol. 2 (1997), pp. 836–838
34. J.M.C. Pereira, IEEE Trans. Geosci. Remote Sens. 37(1), 217 (1999)
35. P.R. Coppin, M.E. Bauer, IEEE Trans. Geosci. Remote Sens. 32(4), 918 (1994)
36. D.F. Lozano-Garcia, R.N. Fernández, C.J. Johannsen, IEEE Trans. Geosci. Remote Sens.

29(2), 331 (1991)
37. T. Ishiyama, S. Tanaka, K. Uchida, S. Fujikawa, Y. Yamsahita, M. Kato, Adv. Space Res.

28(1), 183 (2001)
38. P.M. Teillet, K. Staenz, D.J. Willimas, Remote Sens. Environ. 61, 139 (1997)
39. F.N. Kogan, Adv. Space Res. 15(11), 91 (1995)
40. P.J. Sellers, C.J. Tucker, G.J. Collatz, Int. J. Remote Sens. 15, 3519 (1994)
41. Z. Li, M. Kafatos, Remote Sens. Environ. 71, 239 (2000)
42. J.C. Price, IEEE Trans. Geosci. Remote Sens. 31(3), 727 (1993)
43. W.C. Bausch, J.C. Price, Remote Sens. Environ. 52, 55 (1995)
44. A. Bégué, Remote Sens. Environ. 46, 45 (1993)
45. D.G. Brown, in GIS and Remote Sensing Applications in Biogeography and Ecology, ed. by

A. Millington, S.J. Walsh, P. Osborne (Kluwer, Dordrecht, 2001), pp. 7–22
46. C.L. Wiegand, S.J. Mass, J.K. Aase, J.L. Hatfield, P.J.J. Pinter, R.D. Jackson, E.T. Kanemasu,

R.L. Lapitan, Remote Sens. Environ. 42, 1 (1992)
47. T. Miura, A.R. Huete, H. Yoshioka, IEEE Trans. Geosci. Remote Sens. 38(3), 1399 (2000)
48. R.K. Gupta, T.S. Prasad, D. Vijayan, Adv. Space Res. 26(7), 1047 (2000)
49. C.A. Shull, Bot. Gaz. 87(5), 583 (1929)
50. G.S. Rabideau, C.S. French, A.S. Holt, Am. J. Bot. 33(10), 769 (1946)
51. W.D. Billings, R.J. Morris, Am. J. Bot. 38(5), 327 (1951)
52. C.A. Federer, C.B. Tanner, Ecology 47(4), 555 (1966)
53. D.M. Gates, J.C.S. Keegan, V.R. Weidner, Appl. Opt. 4(1), 11 (1965)
54. C.F. Jordan, Ecology 50(4), 663 (1969)
55. J.E. Colwell, Remote Sens. Environ. 3, 175 (1974)
56. J.E. Colwell, Bidirectional spectral reflectance of grass canopies for determination of above

ground standing biomass. PhD thesis, University of Michigan (1973)
57. R.F. Nalepka, C.E. Colwell, D.P. Rice, Forecasts of winter wheat yield and production using

LANDSAT data. Final Report 114800-38-F, NASA CR/ERIM (1977)
58. J.W. Rouse, R.H. Haas, J.A. Schell, D.W. Deering, J.C. Harlan, Monitoring the vernal ad-

vancement of natural vegetation. Final report, NASA/GCSFC, Greenbelt, MD (1974)
59. F. Baret, G. Guyot, Remote Sens. Environ. 35, 161 (1991)
60. D.W. Deering, Rangeland reflectance characteristics measured by aircraft and spacecraft sen-

sors. PhD thesis, Texas AM University, College Station, Texas (1978)
61. R.D. Jackson, Remote Sens. Environ. 13, 409 (1983)
62. G. Strang, Linear Algebra and Its Applications, 3rd edn. (Harcourt College Publishers,

Florida, 1986)
63. I.T. Joliffe, Principal Component Analysis, 2nd edn. (Springer, New York, 2002)





Chapter 4
Linearized Shadow and Water Indices

The next set of indices we introduce within the same statistical framework used in
the previous chapter are the shadow–water indices (SWI). We benefit from these
indices to detect lakes in residential regions in the following chapters. Therefore,
they also provide valuable information in analyzing multispectral images.

We were unable to find a focused work on water detection in satellite imagery.
However, the closest matches in the literature are [1–3]. Shadows (clouds) also have
photometric characteristics similar to water. Shadow (cloud) detection studies in-
clude [4–10]. Simpson and Stitt [7] worked on cloud shadow detection in AVHRR
imagery. To detect shadows, they used geometric and optical constraints on a pixel
basis in multispectral images. They discarded water regions to focus on clouds.

In the Ikonos spectrum, water shows an increasing response curve until the blue
band, it reaches the maximum in this region and then decreases monotonically to
the near-infrared [11]. So a representative shadow–water index should be composed
of high blue values first. Ideally, it should also consider the green and red bands,
but the green band also responds strongly to vegetation and this impairs the shadow
or water observation. Hence, the index should include blue and red bands at least.
To obtain such an index, we applied the same framework we used for the NDVI
derivation using principal components analysis with the blue, red, and near-infrared
bands. Based on the combinatorial search (and trying to maximize blue and red band
coefficients) we obtain the best performing shadow–water index for each dimension.

We start with a two-dimensional space. Since we plan to have the blue band in a
candidate SWI, we replace the red band with the blue in the NDVI formulation. We
obtain our first index as:

γ1 = 4

π
arctan

(
ρnir − ρblue

ρnir + ρblue

)
. (4.1)

For the three- and four-dimensional spaces, we observe that the third principal
component has the shadow information in all the transformed spaces. Shadows and
water are relatively uncommon in our training data, so the mean-square energy in
that component will be less than of two—but not least of four—components. We
give the corresponding shadow–water indices γ2, γ3, and γ4 obtained from the trans-
formation spaces given in (3.20), (3.22), and (3.24) as:
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γ2 = 4

π
arctan

( −pc23√
pc2

21 + pc2
22 + pc2

23

)
, (4.2)

γ3 = 4

π
arctan

( −pc33√
pc2

31 + pc2
32 + pc2

33

)
, (4.3)

γ4 = 4

π
arctan

( −pc43√
pc2

41 + pc2
42 + pc2

43 + pc2
44

)
. (4.4)

4.1 Comparing the Shadow-Water Indices

Similar to Sect. 3.5, we compare the four SWI (γ1, γ2, γ3, and γ4) in this section.
Here, we only use the first two criteria, since computation costs for the SWI are the
same as for the corresponding vegetation indices.

4.1.1 Comparison by the First Criterion (Visual Comparison and
Dynamic Range)

To compare these SWI on real images, we pick four regions from Maryland, Oregon,
Indiana, and Florida given in Fig. 4.1. The Maryland image (again) represents a
typical urban area and contains shadows cast by tall buildings. The Oregon image
is of a forested region with tree shadows. There is a small lake in the middle of the
Indiana image. Finally, the Florida image is of the ocean. We give the color-coded
responses (blue corresponds to the lowest value, and red corresponds to the highest)
of the four SWI with respect to each image in Fig. 4.2.

Our first observation is that γ3, which uses the green, red, and near-infrared
bands, performs poorly in responding to shadows compared to γ1, γ2, and γ4. This
is expected since it does not have the blue band in its formation, and we know that
the blue band bears the shadow and water information. Nevertheless, γ3 represents
the best one can expect should only green, red, and near-infrared bands be available.

If we compare γ2 with γ4, we conclude that γ2 outperforms γ4 in representing the
shadow and water density, while using only the blue, red, and near-infrared bands.
So we need just three bands instead of four (as for the γ4) to compute it.

Finally, if we compare γ1 with γ2, for the Oregon image γ1 cannot detect shadows
on the trees. However, it performs better on the Indiana and Florida images. The
main reason for γ1’s better performance on the Indiana image is that it responds
low to vegetated regions in this image. Finally, for the Maryland image, both γ1 and
γ2 perform well. Based on these observations γ2 seems more robust in detecting
shadows and water sources.

To compare the dynamic range of these four SWI, we next obtain the normalized
histograms on the four images. In Fig. 4.3, we give these histograms in which the
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Fig. 4.1 Sample images to
compare the four SWI

Table 4.1 Comparison of the
four SWI on the New Mexico
and Florida images

μγ1 μγ2 μγ3 μγ4

The New Mexico image −0.1896 0.1051 0.1649 0.0904

The Florida image 0.6939 0.5147 0.5021 0.3895

solid curve represents γ1, the dotted curve represents γ2, the dashed and dotted curve
represents γ3, and the dashed curve represents γ4.

If we compare these histograms, we see that γ1 has the highest dynamic range es-
pecially on the Oregon and Indiana images. This is again because of its low response
to vegetated regions. All other indices have similar dynamic ranges.

Next, let us focus on the two extremes (New Mexico and Florida) to compare
responses of the four SWI by their sample means, μ. As we recall, the New Mexico
image has neither shadow nor water regions, so the best index response to this image
should be a value around zero. The Florida image is of the ocean, so the best index
should have the highest response to it. We give these comparisons in Table 4.1.

As seen from the first row of Table 4.1, all indices except γ3 performed fairly well
when responding to the New Mexico image. The γ1 index has a negative response to
this image. This is again because of its low response to vegetation. For the Florida
image (given in the second row of Table 4.1), γ1 outperformed all other indices
by having the highest value. γ2 and γ3 have the second and third highest values.
γ4 performed poorly. Based on this criterion, we can sort these indices as γ1, γ2,
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Fig. 4.2 Color-coded responses of the four SWI to the sample images

γ3, and γ4 from best to worst. However, γ1 has a tendency to respond weakly to
vegetated regions, even if they contain shadows.

4.1.2 Comparison by the Second Criterion (Entropy on High
Contrast Images)

Next, let us compare these four SWI based on their entropy on the three images
containing shadow or water regions. We label images as imgi for i = 1,2,3 in the
order of Maryland, Oregon, and Indiana. We give the results in Table 4.2.

This table indicates that γ1 has the highest average entropy on the three images
considered. Again this is because of its low response to vegetated regions in these
images. γ2 has the second highest entropy. γ4 and γ3 have the third and fourth
highest entropies on these images. Based on this criterion, we can sort these indices
as γ2, γ4, and γ3 from best to worst, excluding γ1 (since its high entropy is, in fact,
because of low response to vegetation).

Finally, we conclude that γ2 is the most suitable index to measure shadow and
water densities in multispectral images. Although γ1 outperformed γ2 on some ex-
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Fig. 4.3 Comparison of histograms for the four SWI to compare their dynamic range. (solid – γ1,
dot – γ2, dash and dot – γ3, dash – γ4)

Table 4.2 Comparison of the
entropies on three images for
the four SWI

img1 img2 img3 Mean value

Eγ1 5.3427 5.1407 5.1733 5.2189

Eγ2 4.6923 3.8475 3.5557 4.0318

Eγ3 3.9121 3.4243 2.8545 3.3970

Eγ4 4.3985 3.5483 3.4500 3.7989

periments, it has a problem in detecting shadows in vegetated regions. Moreover,
its superior numerical performance is artificially high due to that low response in
vegetated regions. We next give γ2 in a simplified form:

γ2 = 4

π
arctan

(
0.6864ρblue + 0.7253ρred + 0.0537ρnir√

ρ2
blue + ρ2

red + ρ2
nir

)
. (4.5)
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4.2 Summary of the Chapter

In this chapter, we introduced shadow and water indices based on the statistical
framework used in the previous chapter. We benefit from these indices to detect
water bodies like lakes in residential regions in the following chapters. Although
used extensively in computer vision, there has been little work on detecting water
regions and shadows from multispectral imagery. Therefore, the indices introduced
in this chapter may be of use in computer vision community.

4.3 Problems

4.1 Why do researchers need an index to detect the water regions in a satellite
image?

4.2 Why is separating the shadow and water information hard in multispectral im-
ages?

4.3 Which shadow–water index gives the best result?

4.4 (Open ended question) As in the previous chapter, does using ICA (or another
nonlinear transformation) lead to a stronger shadow–water index?
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Part III
Land Use Classification





Chapter 5
Review on Land Use Classification

Land use classification covers a wide range of applications from general land
cover determination to specific crop type detection. Many approaches have been
developed to infer land usage from satellite and aerial images. Our multispectral
satellite image understanding system starts with land use classification. Therefore,
it is reasonable to analyze the existing literature on this problem first. To do so,
we investigate trends in land use classification between years 1967 and 2002 by
reviewing the related literature. We consider the seminal work of Fu et al. [1] to be
the beginning of automated land use classification. We did not attempt to cover the
whole literature; however, we tried to explore a significant and influential portion of
it. Specifically, we focused on feature extraction methods using passive sensors and
excluded work on classifiers, neural networks, and fuzzy logic.

To investigate the trends in solving this problem, we reviewed over 90 influential
papers published in refereed journals. To identify trends, we grouped papers based
on their major contribution. We grouped these papers according to their major con-
tribution. One paper could belong to many groups, but we chose to assign each paper
to only one “best” group. We summarize key papers in each group and tabulate each
study by the type of image used, geographical location considered, and the average
performance obtained. To clarify image types used in the literature, we include a
section summarizing remote sensing satellites and airborne equipment.

Unfortunately, the results given in most of the papers we reviewed are based on
just one (or a very few) images. It is rarely the case that one finds two papers using
the same image(s) to evaluate their methods. For this reason, we were unable to
compare the performances of these methods directly. Nevertheless, we report their
performances to give the reader some idea of their relative performance. In reporting
performance, we used the average classification rate as a benchmark. If the method
was applied to several images, we report the mean of the average classification rate
for each image.
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Fig. 5.1 Taxonomy of the feature extraction methods

5.1 Overview of Feature Extraction Methods

Before explaining each feature extraction method in depth, we summarize them in a
tree as in Fig. 5.1. Here, we group feature extraction methods into three main cate-
gories: basic methods, methods using contextual information, and methods summa-
rizing the multidimensional information. In this figure, we provide the time interval
over which each method has been used and the sensors their results are reported on.

In the following sections, we discuss these methods in depth. We also suggest
future research directions based on these methods. Let us start with the basic fea-
ture extraction methods since they offered an initial approach to solve the land use
problem.

5.2 Basic Feature Extraction Methods

We consider two basic methods of land use classification in this section. These are
based on pixel and texture analysis for feature extraction. These methods repre-
sent the earliest approaches to the land use classification problem. In fact, pixel
based classification was the first approach explored by researchers. Texture analy-
sis, introduced later, is still used as a powerful feature extraction method. The main
similarity between these methods is that most systems based on them are fast and
simple compared to the approaches that followed. Unlike later developments, these
two approaches do not use spatial information explicitly.
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5.2.1 Pixel Based Methods

The term “pixel” has a different context in the remote sensing domain than in com-
puter vision and image processing. It can represent a large area with diverse char-
acteristics. For example, AVHRR images capture a 1.21 km2 area in a single pixel.
This area may contain many different objects such as buildings, roads segments,
and different soil types and covers. Although recent sensors have around 1 m reso-
lution, each pixel may still cover multiple objects or surfaces. For individual object
recognition, this may cause problems because the sampling is effectively below the
Nyquist limit; however, in land use classification the aim is to classify a region. Thus
instead of separate objects, their cumulative (spectral) characteristic is deemed most
important. Because a large region is summarized in each pixel, pixel-based meth-
ods assume that the gray level or multispectral response at a given pixel suffices for
general (average) land use classification.

Fu et al. [1] considered agricultural data in remotely sensed images. Although
studies on aerial and satellite images may have appeared prior to this paper, we take
it as the first key paper trying to automate the process. Fu et al. used spectral values
of pixel values directly as features. They had 12 bands (each taken as a separate
feature) in the 0.4–1.0 µm spectral range. To obtain the most representative features,
they applied feature selection methods. Finally, they used standard parametric and
non-parametric statistical classifiers to obtain the class labels. They also mentioned
the importance of spatial information; however, they did not use it in their system.

As a first attempt to solve the land use classification problem, they pointed out
all the important steps to be taken, such as feature extraction, feature selection (data
dimensionality reduction), classification, and the importance of spatial information.
So, this work set the research direction to be followed for the future researchers.

Following Fu’s seminal work, there were numerous other pixel based classifica-
tion studies, for example, [2–8] (Table 5.1). Comparing the performances of these
studies directly is not scientifically sound because each uses a different image type
and geographical location. But generally, pixel classification rates lie in the mid 80%
to mid 90% range. The popularity of pixel based classification methods peaked in
the 1980s when image resolution was insufficient for other approaches. Recent pixel

Table 5.1 Pixel based classification

Year Author Image type Geo. location Performance

1967 Fu et al. [1] Airborne Indiana 94.3%

1980 Landgrebe [2] Landsat Indiana 94.1%

1987 Khorram et al. [3] Landsat North Carolina 83.9%

1990 Etchegorry [4] Landsat, SPOT Indonesia –

1990 Lloyd [5] AVHRR Earth –

1994 De Fries and Townshend [6] AVHRR New York 86.8%

1996 Hoffbeck and Landgrebe [7] AVIRIS Nevada 96.4%

2001 Bandyopadhyay et al. [8] SPOT India 88.9%
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based classification algorithms use additional information, setting them apart from
the initial studies.

5.2.2 Texture Analysis Based Methods

The next group of papers frame the problem in terms of texture analysis. Since satel-
lite and aerial images contain many objects while the main objective is to classify
regions, researchers have turned to texture analysis methods. Texture analysis has
been studied in the computer vision literature for many years. Several “definitions”
of texture have been formulated by researchers, and there is no general consensus
that can be formalized mathematically. Some definitions are perceptually motivated,
others are driven completely by the application at hand. One early and influential
definition is due to Haralick:

“The image texture we consider is non-figurative and cellular . . . An image tex-
ture is described by the number and types of its (tonal) primitives and the spatial
organization or layout of its (tonal) primitives . . . A fundamental characteristic of
texture: It cannot be analyzed without a frame of reference of tonal primitive being
stated or implied. For any smooth gray-tone surface, there exists a scale such that
when the surface is examined, it has no texture. Then as resolution increases, it takes
on a fine texture and then a coarse texture.” [9].

For the interested reader, we recommend two excellent review papers by
Tuceryan and Jain [10] and Wezska et al. [11]. In nearly all texture analysis meth-
ods used for land use classification, an operation performed on an image region
produces a representative number for use in classification.

Irons and Petersen [12] applied texture analysis methods to a Landsat image of
Clearfield County, Pennsylvania, using the mean, variance, skewness, kurtosis, and
the mean of the maximum gray level difference as features. They conclude that these
first-order statistical features are not very useful for land use classification. Although
their results were not encouraging, applying texture analysis as a feature extraction
method in land use classification was the main contribution of their paper.

In another study, Conners et al. [13] applied the Grey Level Cooccurrence Ma-
trix (GLCM) features to a Sunnyvale, California, image. GLCM features are ex-
tracted based on (estimated) conditional probabilities of neighboring grey level val-
ues [14, 15]. These features are second-order statistics. Being a powerful feature
extraction method in texture analysis, GLCM has been applied extensively in land
use classification. Conners et al. were the first to provide this method to solve the
land use classification problem.

Many researchers have applied texture analysis methods to land use classification
[16–24] (Table 5.2). As Table 5.2 shows, the classification rates are in the 80–90%
range. These methods grew in popularity during the late 1990s as the resolution of
satellite images increased and simple pixel based classification became obsolete.
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Table 5.2 Texture analysis based classification

Year Author Image type Geo. location Performance

1981 Irons and Petersen [12] Landsat Pennsylvania –

1984 Conners et al. [13] Airborne California 83.4%

1990 Marceau et al. [16] SPOT Canada 80.0%

1991 Lee and Philpot [17] Landsat New York 80.0%

1992 Sali and Wolfson [18] SPOT New York –

1995 Baraldi and Parmiggiani [19] AVHRR Antarctica –

1999 Smits and Annoni [20] IRS Italy 90.0%

2000 Karathanassi et al. [21] SPOT Greece 89.6%

2001 Shaban and Dikshit [22] SPOT India, Egypt 80.2%

2001 Cihlar et al. [23] Landsat Canada –

2002 Parinello and Vaughan [24] AVHRR Scotland –

5.3 Methods Using Contextual Information

Another major category of research focuses on the use of contextual information in
land use classification. We divided these studies into four subgroups: spatial coher-
ence, Markov Random Fields (MRF), geographic information systems, and expert
systems. These methods account for spatial interactions between neighboring pixels
and regions in classification to improve performance.

5.3.1 Spatial Coherence

When seen from overhead, similar land types tend to be more or less contiguous,
that is, neighboring pixels have a high probability of belonging to the same land
class; pixels lying on a border between two different classes are relatively rare. This
observation has led researchers to exploit spatial coherence in land use classifica-
tion.

Kettig and Landgrebe [25] were among the first researchers to use this con-
straint. They grouped contiguous pixels into homogeneous sets and then classified
the groups. They applied their algorithm to two Landsat and two airborne images
and observed an improvement in the classification performance. Their paper pro-
vides as a key contribution in the use of spatial coherence.

Baraldi and Parmiggiani [26] used a SPOT image from Modena, Italy, to test a
classifier for urban areas, using textural features and a region growing algorithm as
the contextual classifier. They concluded that the contextual classifier was perform-
ing as desired, but that textural features are not satisfactory for SPOT imagery. Us-
ing region growing as a grouping method for land use classification was the unique
feature of this paper.



54 5 Review on Land Use Classification

Table 5.3 Classification using spatial information

Year Author Image type Geo. location Performance

1976 Kettig and Landgrebe [25] Landsat – –

1980 Thomas [30] Landsat New Zealand –

1980 Fu and Yu [31] Landsat Indiana 89.2%

1982 Tilton et al. [32] Landsat Kansas, Indiana 86.0%

1982 Richards et al. [28] – – 81.0%

1982 Wharton [33] Simulation – 88.0%

1983 Gurney and Townshend [34] Landsat UK 70.0%

1987 Cushnie [35] – – –

1990 Khazenie and Crawford [36] Simulation – 87.3%

1990 Jensen [27] Landsat Bangkok –

1990 Kusaka et al. [37] SPOT Japan 78.0%

1990 Baraldi and Parmiggiani [26] SPOT Italy –

1991 Kim and Crawford [38] SPOT Texas –

1991 Alonso and Soria [39] Landsat Spain 70.4%

1992 Gong and Howarth [40] SPOT Canada 61.6%

1992 Gong and Howarth [41] SPOT Canada 72.2%

1996 Barnsley and Barr [42] SPOT England 97.1%

1997 Lobo [43] Landsat Spain 84.5%

1998 Kertikeyan et al. [44] IRS – 91.0%

1998 Sharma and Sarkar [45] Landsat India 89.5%

Jensen [27] used the contextual classification idea with the GLCM features. In
this way he combined both methods. He tested on a 30 meter resolution Landsat
image of Bangkok and gave a visual interpretation. Unfortunately, this interpreta-
tion is inconclusive for assessing the power of the method. However, combining the
GLCM features with contextual classification was the extension, this paper offered.

Richards et al. [28] applied probabilistic relaxation to inject spatial information
into the classification process. Probabilistic relaxation is a labeling method tak-
ing into account interactions between neighboring pixels [29]. Richards et al. first
obtained the Maximum Likelihood (ML) classification labeling and applied relax-
ation to these labels to include spatial coherence. Using relaxation (which proved
its power in a wide range of applications) instead of other spatial information pro-
cessing systems was the key contribution of this paper.

Other work in this area includes [30–45] (Table 5.3). As Table 5.3 shows, the
classification rate for these methods lie in the range of 70% to 97%. Although most
popular in the mid-1990s, they survive in different forms, as we mention next.
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Table 5.4 MRF based classification

Year Author Image type Geo. location Performance

1990 Zhang et al. [47] Landsat Virginia 77.0%

1992 Jeon and Landgrebe [48] Landsat Indiana 82.8%

1996 Jhung and Swain [49] Landsat Indiana 86.2%

1996 Solberg et al. [50] Landsat Norway 96.9%

1999 Yamazaki and Gingras [51] Landsat Canada 78.2%

1999 Tso and Mather [52] Landsat Sudan 81.0%

1999 Kerfoot and Bresler [53] Landsat Illinois –

1999 Yu et al. [54] SPOT France –

2002 Sarkar et al. [55] IRS – 95.0%

5.3.2 Markov Random Fields

Another popular tool to imbed contextual information into classification is the
Markov Random Fields (MRF). This method models the joint statistics of a small
neighborhood of pixels. Its popularity for texture analysis initiated its application to
land use classification. The seminal work of Geman and Geman [46] provides an ex-
cellent development of this method. We consider MRFs to be part of the continuum
of spatial information based methods.

The method can be briefly summarized as follows. The brightness level at an
image point is highly dependent on (and therefore correlated with) the brightness
level of neighboring points, assuming the image is of a real coherent scene and not
merely random noise. The MRF provides a precise model for this dependence.

Zhang et al. [47] introduced the MRF as a contextual classification algorithm.
They captured the correlation between neighboring pixels by MRF models then ap-
plied stochastic relaxation to obtain the final class labels. They applied this method
on subwindows of test images with four spectral bands. Zhang’s work showed the
usefulness of MRF modeling in capturing the context information for land use clas-
sification problem. Different from the spatial information, this method used stochas-
tic modeling via MRF.

Other researchers also used MRFs in their systems [48–55] (Table 5.4). As Ta-
ble 5.4 shows, the classification performance for the MRF-based systems ranges
from 77% to 97%. Publication dates indicate that MRF based methods gained ac-
ceptance in the late 1990s.

5.3.3 Geographical Information Systems

Another class of methods to exploit contextual information are those using Geo-
graphical Information Systems (GIS) and topological maps in classification. In this
case, the contextual information derives from prior knowledge of a specific region,
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Table 5.5 GIS

Year Author Image type Geo. location Performance

1991 Pedley and Curran [56] SPOT – 62.1%

1993 Wang [57] Landsat Canada 83.8%

2000 De Bruin and Gorte [58] Landsat Spain 79.5%

2000 De Bruin [59] Landsat Spain –

2001 Baban and Yusof [60] Landsat Malaysia 92.0%

rather than generic observations regarding spatial coherence in land use. As such,
these systems are geared to land use updating rather than raw classification.

One of the first applications of this idea is by Pedley and Curran [56]. They
grouped pixels according to the GIS data and classified these groups. Compared
to pixel classification, Pedley and Curran obtained improved performance. Since
recently GIS has been used extensively, Pedley and Curran’s work can be taken one
of the most effective tools in updating land use classification. However, their method
requires a prior classification which limits its application.

The work in this area includes [57–60] (Table 5.5). As Table 5.5 shows, the
classification performance ranges from 62% to 92% for these methods. Although
researchers started using these methods around 1991 they are becoming popular
nowadays as GIS databases become more prevalent and populated. Indeed, we ex-
pect most future systems—using all available prior contextual information and spa-
tial coherence—to incorporate such databases, as well.

5.3.4 Expert Systems

Expert systems cover a large range of methods such as artificial intelligence, rule
based systems, knowledge based representations, Bayesian belief networks, and
case based reasoning. Jackson’s text [61] represents a good introductory reference
on this subject.

There have been numerous studies in land use classification using expert systems
in which the rule base encapsulates the contextual information. To our knowledge,
the initial work of Wharton [62] in 1987 was the first study to use expert systems in
land use classification (but not in remote sensing).

He considered spectral values of pixels (as in previous studies) as features. He
then used a knowledge based approach to capture the spectral relationships between
classes. To assign the final class labels, he iteratively updated class labels based on
the knowledge base till the class labels stabilize (till most of the pixels satisfy the
neighborhood rules).

Wharton’s approach was another perspective for contextual information process-
ing. Unlike previous three approaches, he captured the context information by defin-
ing rules on the neighborhood regions. This way, his approach takes the perspective
of artificial intelligence.
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Table 5.6 Expert systems

Year Author Image type Geo. location Performance

1980 Nagao and Matsuyama [70] Airborne Japan –

1987 Wharton [62] Landsat Maryland 85.0%

1991 Ton et al. [63] Landsat Michigan 86.0%

1995 Kartikeyan et al. [64] IRS – 92.0%

1997 Jensen [65] Landsat, SPOT Ghana –

2000 Casasnovas [66] Landsat Spain 81.4%

2000 Barr and Barnsley [67] Daedalus UK 82.4%

2001 Stefanov et al. [68] Landsat Arizona 85.0%

2002 Datcu et al. [69] Daedalus UK, Germany 88.8%

Ton et al. [63] also used a complex knowledge-based system to classify Landsat
images. They extracted major land types using a hierarchical classifier, followed by
a rule-based clustering algorithm to obtain fine classification. They obtained promis-
ing results, albeit with a limited test set. A rule based clustering algorithm is also
another powerful approach to obtain the final class labels.

Other research in this area includes [64–69] (Table 5.6). Table 5.6 indicates the
increasing popularity of these systems with their performance ranging from 81% to
92%.

5.4 Methods Summarizing Multidimensional Information

The following papers focus on the dimensionality of the data to help (or replace)
feature extraction and the inclusion of spatial information. Either by reducing the
dimensionality of the data or by fusing different representations of the same pixel,
they aim to improve performance. We divide these papers into two subgroups: data
dimensionality reduction and data-decision fusion.

5.4.1 Data Dimensionality Reduction

In land use classification, the same scene is often imaged at multiple wavelengths
(bands). For multispectral images this representation is around four to seven bands;
hyperspectral images may go up to 240 bands (dimensions). Therefore, each pixel
in these images is represented as a multidimensional vector, having four to 240
entries. Not all of these bands are equally useful for classification, depending on
the application. Therefore, the data dimension may be reduced either by selecting
useful bands (optimal band selection) or by transforming the original space to one
of lower dimension (principal components analysis and spectral unmixing).
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Table 5.7 Optimal band selection

Year Author Image type Geo. location Performance

1990 Mausel et al. [71] Airborne Texas 92.2%

2002 Tsai and Philpot [72] AVIRIS California 69.0%

Table 5.8 PCA

Year Author Image type Geo. location Performance

1994 Harsyani and Chang [74] AVIRIS Nevada –

1999 Jia and Richards [75] AVIRIS California 97.8%

2000 Kuplich et al. [76] Landsat Brazil 94.8%

2000 Ren and Chang [77] Landsat, SPOT Virginia –

2001 Kumar et al. [78] AVIRIS Florida 95.0%

5.4.1.1 Optimal Band Selection

Mausel et al. [71] compared four optimum band selection methods for land use
classification. Their paper serves as a good reference for researchers planning to use
these band selection techniques. Unlike dimension reduction by transforming the
original space, these methods serve as feature selection criteria in the original space.
Tsai and Philpot’s [72] paper is another work on optimal band selection (Table 5.7).

5.4.1.2 Principal Components Analysis

Principal Components Analysis (PCA) performs a linear transformation on a set of
(possibly) correlated random vectors to represent them in a new space such that they
are uncorrelated. The new coordinate space is related to the original by a rotation
about the origin, such that the new coordinate axes are aligned with the dominant
directions of dispersion (the principal components) of the data, as inferred from its
covariance matrix. For a thorough treatment, see [73].

Harsyani and Chang [74] considered an extended version of the PCA to re-
duce data dimensionality. As we recall, in hyperspectral images a pixel may be
represented by (up to) a 240 dimensional vector. For such high dimensional data,
PCA and similar transformations are needed for reliable classification. Harsyani
and Chang aimed to reduce the data dimensionality while retaining most of the
discriminating information via their method. This paper pointed to another power-
ful research area for data dimension reduction. Similar studies on PCA and related
transformation methods include [75–78] (Table 5.8).
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Table 5.9 Spectral unmixing

Year Author Image type Geo. location Performance

1998 Chang et al. [79] AVIRIS Nevada –

1999 Chang and Brumbley [80] SPOT USA –

2000 Chang and Ren [81] HYDICE Maryland 95.0%

2001 Small [82] Landsat New York –

2001 Roessner et al. [83] DAIS 7915 Germany 80.0%

2002 Chang [84] AVIRIS, HYDICE Nevada –

2002 Verhoeye and De Wulf [85] SPOT Nigeria 91.0%

5.4.1.3 Spectral Unmixing

To overcome problems in PCA, many researchers considered spectral unmixing
techniques. Chang et al. [79] describe spectral unmixing as:

“Linear spectral unmixing is widely used approach in multispectral/hyperspectral
imagery to determine and quantify individual spectral signatures in a mixed pixel.”

Chang et al. also showed the usefulness of spectral unmixing in land use classi-
fication. Papers using spectral unmixing methods include [80–85] (Table 5.9).

As we consider Tables 5.7, 5.8, and 5.9, we notice that data dimension reduction
has a positive effect on classification performance. The publication dates suggest
that these methods are growing more popular.

5.4.2 Data and Decision Fusion

In decision fusion, decisions of different classifiers are combined in such a way
that the final classification performance is improved. There have been many meth-
ods proposed for this purpose, and an excellent review paper on this subject is by
Kittler et al. [86].

Instead of data dimension reduction, all of the bands are used in decision fusion.
However, classification is applied to each band separately, and the assigned class
labels are fused. In a way, this is the dual of data dimension reduction, in that the
order of dimension reduction and classification is replaced.

Jeon and Landgrebe [87] proposed two decision fusion based classifiers. With
their method they reported a 5% improvement in performance. This improvement
itself indicates the usefulness of the idea.

In a related study, Solberg et al. [88] applied data fusion on pixel basis and ob-
tained superior performance. The goal of data fusion is to obtain a useful represen-
tation from the multidimensional data set. Clark and Yuille’s book [89] is a very
good reference on this subject.

Decision fusion have been studied by many authors in land use classification
[90–94] (Table 5.10). As Table 5.10 shows, these methods have been considered
since 1994 and most studies are quite new (by looking at their publication dates).
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Table 5.10 Decision fusion

Year Author Image type Geo. location Performance

1994 Solberg et al. [88] Landsat Norway 95.0%

1997 Benediktsson et al. [90] Landsat Colorado 75.0%

1999 Jeon and Landgrebe [87] Landsat Indiana 83.6%

1999 Bennediktsson et al. [91] Landsat Portugal, Iceland 86.0%

1999 Jimenez et al. [92] AVIRIS Indiana 96.0%

2000 Steele [93] Landsat Idaho, Montana 68.0%

2002 Smits [94] Landsat Netherlands 95.0%

Fig. 5.2 Number of papers
published in three year time
intervals from 1967 to 2002

5.4.3 Summary of the Methods

In the previous sections, we grouped studies in land use classification to three main
categories. Initial research in the area started with basic methods [1, 13]. The next
class of studies dealt with contextual information [47, 62]. The last group of studies
dealt with data dimension reduction and decision fusion [74, 79, 87]. These key
papers summarize the main trends in land use classification since 1967. Next, we
plot the number of papers published in three year intervals from 1967 to 2002 in
Fig. 5.2 to summarize the popularity of these methods.

Figure 5.2 points to the following conclusions. After their introduction, methods
on contextual information dominated basic methods. This indicates the importance
of contextual information in land use classification. Although introduced later, work
on multidimensional information has recently taken the lead in the number of pa-
pers published. This indicates that the main trend nowadays is towards multidimen-
sional information processing. The next most promising direction is in contextual
information processing. If we consider these main groups in detail, we observe the
following.
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Within basic methods, texture analysis is becoming more popular than pixel
based techniques. If we check the usage of sensors, almost all of them have been
used for basic methods category. One important point is that AVHRR finds use in
basic methods only. Its limited resolution renders it unsuitable for the more sophis-
ticated techniques that have followed.

Methods using contextual information can be sorted based on their recent publi-
cation dates into: expert systems, GIS, MRF, and spatial coherence. In this category
expert systems are becoming more popular. As we mentioned, GIS based systems
are likely to take the lead from expert systems in the near future. Sensors used in this
category are dominantly Landsat and SPOT. The properties of these sensors seem
suitable for capturing the context.

We can sort the methods summarizing the multidimensional information by their
recent publication dates into: spectral unmixing, PCA, and data and decision fu-
sion. Spectral unmixing, proposed to overcome the shortcomings of PCA is pop-
ular nowadays, and PCA based data dimension reduction techniques follow. Sen-
sors used in this category are dominantly airborne for data dimension reduction and
Landsat for decision fusion. Since data dimension reduction techniques are pro-
posed for high dimensional data, it is self-evident that they find use with airborne
sensors producing hyperspectral data. As for decision fusion, Landsat seems to be
the most suitable sensor based on the current publications in this area.

5.5 Summary of the Chapter

In this chapter, we identified dominant trends in land use classification by reviewing
a large and influential portion of the literature. We also considered publication dates
in these major research areas to gain an idea of the life span of each method. Here,
we try to project our observations to estimate the future research directions.

As we mentioned in Chap. 2, the resolution of satellite and airborne sensors
is increasing. Commercially available satellite data have around 0.45 m resolution
per pixel. Therefore, the basic assumption in pixel based land use classification no
longer holds. So, basic pixel based feature extraction is not the most effective use of
these sensors. Since we still observe texture on these commercially available satel-
lite data, texture analysis may still be feasible for land use classification. Texture
analysis as a feature extraction method in decision fusion is a promising research
area to be explored.

As for systems using contextual information, Bayesian networks [95] and per-
ceptual inference networks [96] can be considered for future research. Both meth-
ods take context information into account and proved to be useful for other research
areas. We introduced a feature based grouping method (perceptual organization) as
a spatial information processing method [97]. This method has a good performance.
In the following chapters we will investigate it further.

For multidimensional information processing, there are many possible research
areas to be explored. One area is applying projection pursuit to data dimensional-
ity reduction. Ifarraguerri and Chang [98] studied this approach for general remote
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sensing applications. It may also be used as a powerful tool in data dimensional-
ity reduction. Similarly, independent components analysis [99] can be used for data
dimension reduction.

One other fruitful approach may be using decision fusion with contextual in-
formation in succession. Similarly, applying data dimension reduction, followed by
decision fusion on the remaining bands or band combinations may be fruitful.

Besides the existing categories, one emerging new category is the usage of struc-
tural information in land use classification. Up to now, structural approaches have
not been considered by researchers. We consider these methods in the following
chapters.

Satellite image resolution, especially images from Ikonos, permit the detection
of objects (such as houses and road networks) in the scene. This allows researchers
to infer surface characteristics directly from the objects and to classify regions based
on this information. This, we believe, will lead to the extensive use of techniques
from computer vision in land use classification. We will cover a set of techniques
on this problem in the following chapters.

Research on land use classification is still growing, and the field continues to ma-
ture. With different perspectives it offers great promise to researchers in the future.
Hopefully, this review chapter will be of assistance to researchers working on this
problem, by serving as a guide for the past achievements and suggesting possible
avenues for future studies.

5.6 Problems

5.1 Based on the information provided in this chapter, discuss the relationship be-
tween the image resolution and the land use classification method used.

5.2 Why is land use classification important for researchers?

5.3 What are the basic trends for land use classification?

5.4 Using the same taxonomy in this chapter, add recent research papers on land
use classification.

5.5 (Open ended question) Which land use classification method seems most
promising for future applications?
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Chapter 6
Land Use Classification using Structural
Features

After a thorough survey on land use classification, we begin with a set of measures
based on straight lines for Ikonos images in this chapter. Subsequent detailed analy-
ses (counting and classifying dwellings, for example) can then be confined to devel-
oped areas in the following chapters. Straight line structures will be more prevalent
and more organized in developed areas than in wilderness or rural areas. However,
for our measures we only need this assumption to hold locally. Since most buildings
are rectangular (or formed of rectangular blocks), and as we observe their layout
locally (in 400 × 400 m2 windows) we expect this assumption to hold even if it is
not satisfied for the overall image (and for most cases it does not). Four of our most
promising measures (based on length and contrast) do not depend heavily on this
assumption. On the other hand, our remaining measures (orientation, line spacing,
and periodicity) depend on this assumption heavily. As expected, this later group
could not perform as well as the length and contrast measures experimentally.1

Our objective at this stage is the (rough) classification of the image into regions
of little or no development (wilderness or rural) and developed regions (urban or res-
idential). We applied Bayes, Parzen window, and nearest neighbor (NN) classifiers
to label each image region. Initially, we defined a two-class problem to discrimi-
nate “urban” and “not urban” regions and obtained excellent results (roughly 87%
correct classification).

Although there has been extensive work on land use classification, no structural
approaches to this problem have been reported. Our approach, being totally based on
straight lines, offers the first such solution, to our knowledge. This approach shows
very promising results in extensive testing over a wide variety of land development
patterns. We extract straight lines via line support regions as explained next.

1The figures in this chapter are obtained from our previous work [1]. Here, they appear with the
kind permission of IEEE.

C. Ünsalan, K.L. Boyer, Multispectral Satellite Image Understanding,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-0-85729-667-2_6, © Springer-Verlag London Limited 2011
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6.1 Line Support Regions (LSR) and Straight Line Extraction

Burns et al. [2] introduced the concept of line support regions, constructed by group-
ing contiguous pixels of consistent gradient orientation. His gradient calculation
used simple 2 × 2 masks, which creates many false alarms in our high resolution
data. Therefore, we turned to the scale-controllable IIR edge detection filter pro-
posed by Sarkar and Boyer [3] to compute an optimally smoothed gradient. Then,
instead of marking edges in the usual way, we organized the image into line support
regions in a manner reminiscent of Burns’ work.

We calculated the scale-controllable gradients for the x and y components, Gx

and Gy , by convolving the image in the x and y directions with the Sarkar–Boyer
filter. This is achieved as follows. Two non-causal filters, the projection filter h(n)

and the edge detection filter e(n), are successively applied to rows and columns of
the image. Impulse responses for these filters for n > 0 are given in (6.1) and (6.2):

h(n) = −e−αn cos(βαn + π/2), (6.1)

e(n) = e−αn

α

(
−cos(βαn + π/2) − β sin(αβn + π/2)

1 + β2

)
, (6.2)

where n is either x or y, depending on orientation. The derivation of these impulse
responses is beyond the scope of this book; see [3].

The projection filter smoothes the image to lower the noise. The edge detection
filter is designed to respond optimally to step edges in the image. In effect, two (sep-
arable) 2D impulse responses are created. The first consists of the projection filter in
the y direction and the detection filter in x; the second is orthogonal to the first. The
projection filter is the integral of the edge detection filter, which greatly simplifies
implementation. We used the IIR implementation of these filters as suggested by
Sarkar and Boyer.

After extensive testing, we selected a fairly small scale parameter (α = 1) to re-
solve buildings in close proximity. The scale of the filter is directly related to the
resolution of the image. Since we are working on satellite images, the scale param-
eter should be adjusted in accordance with the size of ground features of interest (in
pixels) and their spacing. A small scale parameter resolves small and closely located
features. On the other hand, a large scale parameter captures general characteristics
of the image. This adjustment capability (absent in Burns’ implementation) allows
users to apply this method to a wide variety of image resolutions. Therefore, our
system responds to changes to this parameter. Similarly, we set β = 70 for imple-
mentation. Our system is less sensitive to this parameter, which controls a tradeoff
among localization, signal-to-noise ratio out of the filter, and spurious responses
(see [3] for details). The impulse responses of projection and edge detection filters
with these parameters are given in Fig. 6.1.

Let f (x, y) be the image and let Gx(x, y) = {e(x)h(y)} ∗ f (x, y) be the x

component of the smoothed gradient, computed by convolving the image with the
projection filter (in y) and the detection filter (in x). Similarly, let Gy(x, y) =
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Fig. 6.1 Impulse responses for the projection and edge detection filters

{e(y)h(x)} ∗ f (x, y) be the y component. Then, the smoothed gradient direction
at (x, y) is:

G(x,y) = arctan

(
Gx(x, y)

Gy(x, y)

)
. (6.3)

We discard pixels having gradient magnitude smaller than a given threshold
(10 here) to suppress noise. Following Burns et al., we then used two quantizers
and a voting method to obtain longer and more consistent line support regions. Each
quantizer has eight bins of angular resolution π/4 radians, the second one rotated
by π/8 radians. Two quantizers with shifted bin centers can accommodate candi-
date line support regions that would be broken in a single quantizer due to minor
perturbations.

Burns et al. extracted the lines by intersecting a horizontal plane with the best fit
plane to the local image surface. Following Tan [4], we improve on this approach
by fitting an ellipse to each line support region perimeter using a Fourier descriptor
approximation. The long axis of the ellipse (which requires only the first order de-
scriptors) defines the straight line. This method is faster and more robust than plane
fitting. We obtain the best fitting ellipse as follows. A complex periodic function,
u(k) = u(k + rT ), for any integer values of k and r represents the outer boundary
of the line support region. T is the total number of points in the contour. Thus, the
complex periodic contour can be approximated by a Fourier series as [5]:

û(k) =
T −1∑
n=0

Une
j 2πnk

T , (6.4)

where j = √−1 and

Un = 1

T

T −1∑
k=0

u(k)e−j 2πnk
T . (6.5)



68 6 Land Use Classification using Structural Features

If we insert the complex representation u(k) = x(k) + jy(k) into (6.5), then

Un = 1

T

T −1∑
k=0

x(k)e−j 2πnk
T + j

1

T

T −1∑
k=0

y(k)e−j 2πnk
T . (6.6)

Applying Euler’s formula, we get

Un = 1

T

T −1∑
k=0

x(k)

(
cos

(
2πnk

T

)
− j sin

(
2πnk

T

))

+ j
1

T

T −1∑
k=0

y(k)

(
cos

(
2πnk

T

)
− j sin

(
2πnk

T

))
, (6.7)

Un = αn + jβn, (6.8)

with

αn = 1

T

(
T −1∑
k=0

x(k) cos

(
2πnk

T

)
+

T −1∑
k=0

y(k) sin

(
2πnk

T

))
, (6.9)

βn = 1

T

(
T −1∑
k=0

y(k) cos

(
2πnk

T

)
−

T −1∑
k=0

x(k) sin

(
2πnk

T

))
. (6.10)

For our statistical features defined below, we need the center of mass μxy , the
length l, and the orientation o of each straight line. Fortunately, from just three
Fourier coefficients, (α−1, β−1), (α0, β0), and (α1, β1), we can obtain these quanti-
ties from (6.11), (6.12), and (6.13), respectively:

μxy = (α0, β0), (6.11)

l = 2
(√

α2
1 + β2

1 +
√

α2−1 + β2−1

)
, (6.12)

o = 1

2

(
arctan(β1/α1) + arctan(β−1/α−1)

)
. (6.13)

Three sample images and the lines extracted from them for rural, residential, and
urban areas are given in Fig. 6.2. The relative degree of organization over the three
images is evident in their respective line structures.

6.2 Statistical Feature Extraction

We extract statistical features over 400 × 400 pixel windows, with 50% overlap in
each direction. This degree of overlap represents a compromise in the interest of
computational effort. Therefore, an organization lying partly in one window will
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Fig. 6.2 First column (from top to down): rural, residential, and urban regions. Second column:
lines extracted from them

likely lie totally inside a neighboring window. To evaluate performances of the fea-
tures, we extracted the ground truths accordingly.

If a line extends beyond the window, that part is truncated and does not enter the
calculations for this window. We discard straight lines shorter than five pixels (five
meters); such objects can not be approximated robustly due to low signal-to-noise
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ratios in the contour approximation and certainly do not offer strong evidence for
“straightness”.

Before defining the statistical measures, we give two definitions that we will use
repeatedly. The first is the sample mean μ̄; we assume this is self-explanatory. The
second is the entropy E of an approximate probability mass function (pmf). Let the
approximate pmf be given as h(i) for i = 1, . . . ,N . We calculate the entropy based
on (3.13).

For each feature we extract, we obtain an approximate probability mass function
from which we compute the sample mean and the entropy. We set the histogram bin
size for each feature experimentally; they are not especially critical.

In this chapter, we considered seven statistical features. The most promising of
these were:

• Mean line length, μ̄l

• Entropy of line length, El

• Mean line contrast, μ̄c

• Entropy of line contrast, Ec.

For completeness, we summarize the other features in Sect. 6.5.

6.2.1 Length

The dominant shape of the buildings and street segments in urban regions is rect-
angular (or compositions of rectangles). This assumption is valid only locally (such
as in 400 × 400 windows) for most cities but this suffices because we calculate our
measures over local regions. In wilderness (or rural) regions, due to the absence
of human activity, we expect shorter and more randomly distributed straight lines.
This observation motivates two statistical features to grade land development by the
length of straight lines. The first is the sample mean of the length of straight lines,
μ̄l , in the given image window.

The second feature measures the entropy in the distribution of line lengths, El , in
the given image window. According to our hypothesis, not only will image features
be shorter in undeveloped areas, they should also be more randomly distributed in
length. Therefore, the distribution of the lengths in a given window can also provide
useful information for grading land development and we capture the randomness in
the entropy. We obtain the entropy of the length distribution as follows. We form a
histogram of 37 bins (with binwidth = 4 pixels), where the first bin is centered at
5 pixels and the last at 150 pixels. The maximum bin value represents the longest
line segment such that the corresponding bin has significant probability and was
obtained experimentally. The binwidth is picked to obtain a fairly smooth histogram.
These values are not critical in feature extraction. Therefore, our system has a robust
characteristics to their small variations.

The histogram is normalized to approximate a probability mass function. Let the
normalized vote for bin i be hl(i) for i = 1, . . . ,37. The entropy of line length is
then obtained from (3.13).
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6.2.2 Contrast

Contrast provides another indicator of the level of development in a given area. In
urban regions, for example, we encounter greater variation in the color of buildings,
sharp dark-light transitions between asphalt roads and shiny roofs, and the juxtapo-
sition of buildings and vegetation. Such high contrast variations are less likely in
wilderness (or rural) regions. This observation lets us define two features based on
contrast.

We define the contrast for each line support region from the gradient calculations
as follows. Let pixels in a given line support region form a set LS; (x, y) ∈ LS
represents a pixel in that line support region. The contrast value for the line support
region, clsr, is the maximum directional derivative magnitude over the region as
given in (6.14):

clsr = max
(x,y)∈LS

(
max

d∈{x,y} |Gd(x, y)|
)
. (6.14)

Our tests of the true directional derivative magnitude produced similar classifica-
tion performances; for simplicity, we confine our attention to the x and y directions.

We also tested the average directional derivative magnitude, but the classifica-
tion results based on this definition were not encouraging because when averaging,
low contrast values dominate. The maximum directional derivative definition is bi-
ased towards high contrast values, which helps in classification. We obtain our first
contrast-based feature, the sample mean μc, from clsr values.

Our second feature is the line contrast entropy Ec. To compute it, we quantize
the contrast range to 31 bins (with binwidth = 95), where the first bin is centered
at 5 and the last bin at 3000. These values are obtained experimentally as in length
histograms, and found not to be critical. To build the histogram, each line support
region votes with a weight proportional to the length of the line it represents. We
then normalize the histogram as usual. Let the normalized vote for bin i be hc(i) for
i = 1, . . . ,31. Then the contrast entropy is obtained from (3.13).

6.3 Experimental Results

We applied several classification approaches to both the urban–rural two-class prob-
lem and the direct detection of suburban areas using the features described, as well
as spatial coherence. We implemented Bayes, Parzen window, and nearest neigh-
bor (NN) classifiers [6]. To focus on the most promising classification approach,
we consider only the Bayes classifier in this section. For complete results for all
classifiers in different feature spaces, see Sect. 6.5.
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6.3.1 Dataset and Feature Space

Our data set consists of 28 one-meter Ikonos panchromatic images, 18 drawn from
across North America, 10 from different locations around the world. Table 6.1 sum-
marizes the images used in this chapter; they encompass a wide range of cultures
and development patterns.

An exhaustive search over the full feature set (all singles, pairs, triples, etc. as in
Sect. 6.5) reveals that the best performance is obtained in the (μ̄c–Ec) feature space
for the Bayes classifier. We used 48 rural and 48 urban image windows selected at
random from the overall data set to train each classifier. We tested 2014 new region
samples to ascertain the performance of the classifier. A caveat on ground truth:

Table 6.1 Test images
Geographic location Image size

Colorado, USA 2002×2002

Dubai, UAE 763×953

California, USA 640×799

Colorado, USA 4177×3733

New Mexico, USA 3996×6006

California, USA 2001×2001

Sydney, Australia 2003×2003

Colorado, USA 641×801

Mississippi, USA 1992×1995

Maryland, USA 7849×3107

New York, USA 2000×1997

Rome, Italy 1993×1993

Sanaa, Yemen 1841×2109

California, USA 1992×1996

Taipei, Taiwan 2101 ×2101

Tokyo, Japan 1989×2010

Guayaquil, Ecuador 1999 ×1999

California, USA 2000×2000

Cairo, Egypt 2104×2104

London, UK 2000×2000

California, USA 2103×2110

Sydney, Australia 1430×1539

Arizona, USA 1671×1062

Colorado, USA 1121×1112

Arizona, USA 2007×2007

California, USA 1093×1158

California, USA 1156×1160

North Carolina, USA 1100×772
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Some windows straddle transitions from developed to undeveloped areas, and some
others encompass lightly developed regions, parkland, and other types of terrain that
are hard to classify, even manually.

6.3.2 Two-Class Results

With the given feature space and the Bayes classifier, we obtain a 92.0% correct
classification for the rural regions over 905 test samples. Similarly, we obtain a
83.0% correct classification for the urban samples over 1109 test samples. The over-
all classification performance is 87.0%.

In an attempt to exploit spatial coherence in the two-class case, we applied prob-
abilistic relaxation [7, 8] (to be explained fully in the following chapter). We obtain
a 91.2% and 86% correct classification rates for the rural and urban scenes, with a
maximum of 88.3% overall correct classification percentage. Introducing spatial in-
formation via probabilistic relaxation improved the correct detection rates slightly;
the overall improvement is just 1.3%. More importantly, however, probabilistic re-
laxation results in more acceptable errors in classification by reducing misses of the
urban class.

6.3.3 Capabilities and Limitations

To test the limitations of our assumptions regarding the impact of human activity
on the emergence of straight lines, we compared results for two highly different re-
gions: downtown San Diego, California and the outskirts of Cairo, Egypt (Fig. 6.3).
These two images have almost the same size and the same number of windows
(64 in each). This test uses Bayes classification on decidedly the best feature space
(μ̄c–Ec) and makes no use of relaxation or feature based grouping.

For the California image, almost all windows are urban, the remainder are shore-
line. The correct classification rate for this image is 98.4%. One “rural” region was
classified as urban, but it straddles the shoreline. Therefore, even the “ground truth”
classification for this window is somewhat debatable.

On the other hand, the Egypt image differs from most of our remaining images.
The residential regions in this image are not exactly suburbia. They are not as regu-
lar as North American residential regions. The rural regions in this image are formed
of sand (unlike any of our training data). For this image, we have a 59.4% correct
classification rate. Over 25 rural regions, three of them are labeled as urban. The
main reason for this is the region in the upper left corner of the image. Although, it
does not show any residential (or urban) characteristics, it has some regularity. It is
clearly a collection of man-made structures, but they are too small to be houses or
buildings. Over 39 urban regions, 23 are labeled as rural. The reasons for such a high
error rate are as follows. Residential regions in this image are not well-structured as
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Fig. 6.3 Testing the system on specific images

assumed (in the design phase). Some residential regions (around the pyramids) con-
tain demolished houses (ruins), which further decrease the regularity in the region.
In transition regions, we see errors due to their mixed characteristics. Also, three-
fourths of our data set come either from North America or “North America like”
regions (e.g., Australia), so the Egypt results are not surprising. Besides, our classi-
fication rate is still above the chance line even for this image.

These two images provide clues regarding the performance capabilities of our
classification system. For well-organized regions, it produces very high classifica-
tion rates. Transitions in urban–rural regions cause classification errors, due to their
mixed characteristics. Finally, semi-organized (“old-world”) residential regions are
more difficult to classify.

6.4 Summary of the Classification System

In the previous sections, we discussed each step separately, together with their pa-
rameter values. Here, we tabulate the parameters with respect to their nominal values
and relative influence on the final performance (sensitivity) in Table 6.2.

Although there are eight parameters in the system, only the value of the gradient
scale parameter α has a major impact. If the lines cannot be extracted effectively,
all remaining calculations are compromised. The binsize in pixel grouping (in line
extraction step) has a medium effect through its influence on the lines extracted.
Binsizes in the feature extraction step have only a weak impact on the final classi-
fication result because statistical measures summarize these histograms as a whole;
no individual entry is critical.
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Table 6.2 Summary of the system parameters

Step Section Parameter Value Influence

Line extraction gradient calculation α (scale) 1 high

Line extraction gradient calculation β (spurious response) 70 low

Line extraction pixel grouping binsize π/4 medium

Feature extraction length binsize 37 low

Feature extraction contrast binsize 95 low

Classification Bayes classifier training set 96 medium

6.5 Additional Results

For completeness, we now present the full range of features and feature spaces con-
sidered, as well as other classifier designs.

6.5.1 Additional Features

We considered three features beyond those of Sect. 6.2. These are less powerful than
the length and contrast based features and require more computation. Their primary
limitation is that they depend heavily on city models that do not necessarily hold.
However, they do provide reasonable classification performance and may be more
useful in specific domains.

6.5.1.1 Orientation

The orientation feature Ro is the cross-correlation between the histogram of straight
line orientations in a given image window with an idealized bimodal density func-
tion model for local urban areas, having two Gaussian modes separated by π/2
radians. Since the feature is calculated over a window, this assumption need not
to hold for the overall image as is in the previous features. This idealized model
works well as long as there is no single dominant mode in street direction in the
image window. We build a weighted (based on line length) orientation histogram.
We use weighted voting because lines obtained from small line support regions do
not have reliable orientations. The orientation range is quantized to 32 bins (with
binwidth = 0.03π radians), where the first bin is centered at −π/2 radians and the
last bin at π/2 radians. As in the length and contrast features, the bin size is not
crucial.

Let the normalized vote for bin i be ho(i) for i = 1, . . . ,32. We cross-correlate
the normalized orientation histogram with the bimodal density function model g(t):

g(t) = 1

2
√

0.2π

(
e

−1
2 (

t+π/4
0.1 )2 + e

−1
2 (

t−π/4
0.1 )2)

. (6.15)
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The denominator of 0.1 in the bimodal density function (actually the standard
deviation for each unimodal part) provides a tolerance for the parallelness of straight
lines in the image window. This value is obtained from the layout of the buildings
in images.

The cross-correlation value given in (6.16) indicates the similarity of the image
window to the idealized urban region model while the shift t at which the maximum
correlation occurs indicates the dominant street grid orientation. This could prove
useful in subsequent analyses.

Ro = max
t

{
g(t) ⊗ ho(t)

}
. (6.16)

6.5.1.2 Line Spacing

This feature captures the spatial distribution of lines in the image window. We rep-
resent each line by its center of mass and obtain an entropy measure from the distri-
bution of line spacings. For each line, we locate the centers of mass of the nearest
two lines of similar length (±3 pixels). The spacing between the original line and
each neighbor is taken to be the Euclidean distance between their centers of mass.
We repeat this calculation for all lines in the given window.

We compute the histogram of line spacings over 70 bins (with binwidth = 2 pix-
els), with the first bin centered at 2 pixels and the last at 140 pixels. Let the normal-
ized vote for bin i be hdcom(i) for i = 1, . . . ,70. The entropy of line spacing, Es , is
then obtained from (3.13).

6.5.1.3 Periodicity

Most urban regions (since the early twentieth century) are constructed in accordance
with a (set of) zoning plan(s). Therefore, we expect more grid-like structures (such
as blocks of buildings) and more periodic substructures in urban regions. This as-
sumption is often violated for older cities, especially outside North America. There-
fore, this feature is not a strong one, in general. However, if one’s attention is con-
fined to North America (or Australia) where land development continues apace, this
feature may prove useful.

Straight lines extracted from well-organized structures should exhibit some form
of periodicity in their placement. We infer periodicity through the projection of the
line segments onto each of four axes: y = 0, y = x, x = 0, and y = −x; the origin
is at the center of the window. To make the discussion concrete, let us consider the
case for the x = 0 (that is, the y) axis. The intersection point of each straight line
segment (or its extension) with the line x = 0 is identified. A function is defined
along this axis whose value at each line segment intersection point is the number
of pixels in the line segment(s) projecting to that point. Non-intersection points
(points not projected to by any line segment in the window) are assigned the value 0.
Figure 6.4 illustrates the procedure for the case of three line segments, one of length
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Fig. 6.4 An example of the projection of lines

L1 projecting to location y = y1 on the x = 0 axis, and two each of length L2
projecting to y = y2 and y = y3, respectively.

The resulting set of four projection functions are then analyzed for periodicity.
Because projections along directions highly oblique to the axis are unreliable, we
consider four axes (as mentioned above) and limit the set of projecting line segments
to be those oriented within ±45° of the direction orthogonal to the current projection
axis.

We use the periodicity transform introduced by Sethares and Staley [9] to
measure the periodicity of the projection function. They project the given one-
dimensional signal onto non-orthogonal periodic subspaces using an M-best peri-
odic decomposition algorithm. We find that the transform coefficient for the first
periodic subspace sufficiently represents the periodicity in the projection function.
The maximum periodicity P among the four projection functions is taken as the
periodicity of the image window.

6.5.2 Other Feature Spaces and Classifiers

Now, we summarize two additional sets of findings with respect to classification.
First, we consider the Bayes, Parzen window, and nearest neighbor (NN) classifiers.
Then, we compare their performances on the overall feature space. These results
will support our decision to use the Bayes classifier with the feature space (μ̄c–Ec)
in Sect. 6.3.

We start by tabulating the best classification performances of each classifier in
different spaces in Tables 6.3, 6.4, and 6.5. In these tables, each row gives the best
set of n features (the best n–D feature space) for n ∈ [1,7].

We see that there is a different best feature space for each classifier, but the per-
formances of the classifiers are not statistically different from one another. However,
the computational costs of the classifiers, and of the best features for each, do vary.
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Table 6.3 Performances for
best feature spaces for the
Bayes classifier

Feature combination Performance

Ec 86.0

Ec, μ̄c , 87.0

Ec, μ̄c , Ro 86.6

Ec, μ̄c , Ro, Es 86.5

Ec, μ̄c , Ro, Es , El , 86.6

Ec, μ̄c , Ro, Es , El , P , 86.6

Ec, μ̄c , Ro, Es , El , P , μ̄l 86.4

Table 6.4 Performances for
best feature spaces for the
Parzen window classifier

Feature combination Performance

Ec 87.1

Ec, El 87.3

μ̄c, Es , P 83.5

Ec, μ̄c , El , μ̄l 75.4

Ec, μ̄c , El , μ̄l , Es 81.5

Ec, μ̄c , El , Es , P , Ro 82.8

Ec, μ̄c , El , μ̄l , Es , P , Ro 82.3

Table 6.5 Performances for
best feature spaces for the NN
classifier

Feature combination Performance

Ec 87.6

Ec, El 87.8

Ec, Es , Ro 84.5

El , Es , Ro, μ̄c 84.0

Ec, El , Ro, μ̄c , P 83.2

Ec, El , Ro, μ̄c , P , Es 83.2

Ec, El , Ro, μ̄c , P , Es , μ̄l 82.8

We can use computational cost and performance together to select the best feature
space–classifier combination.

Next, we tabulate the classification performances for all 1D and 2D feature
spaces for each classifier in Tables 6.6, 6.7, and 6.8. In these tables, diagonal cells
represent the classification performance of each feature alone, off-diagonal cells
represent the classification performance of the corresponding 2D feature space.

These tables show that the length and contrast based features are highly effec-
tive for classification. However, although they perform above the chance line, the
rotation and projection features perform poorly relative to the others.

Finally, we provide the classification performance (rural, urban, and overall) as
well as the best feature space for each classifier separately in Table 6.9.
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Table 6.6 The Bayes
classification results in
percentages for all 1D and 2D
feature spaces

μ̄c Ec μ̄l El Es P Ro

μ̄c 85.8 87.0 83.9 85.9 79.7 80.5 82.4

Ec 86.0 84.0 86.0 79.1 77.9 84.5

μ̄l 82.7 83.9 83.5 83.3 84.1

El 86.0 84.5 86.4 84.9

Es 72.4 77.1 73.3

P 68.2 68.6

Ro 67.8

Table 6.7 The Parzen
window classification results
in percentages for all 1D and
2D feature spaces

μ̄c Ec μ̄l El Es P Ro

μ̄c 84.7 86.8 83.4 85.5 81.2 81.5 78.3

Ec 87.1 85.4 87.3 83.2 82.3 83.9

μ̄l 78.3 81.6 79.7 79.2 72.8

El 82.7 83.5 84.2 76.5

Es 72.9 73.3 72.6

P 65.9 62.5

Ro 58.8

Table 6.8 The NN
classification results in
percentages for all 1D and 2D
feature spaces

μ̄c Ec μ̄l El Es P Ro

μ̄c 85.8 85.9 85.9 85.9 85.9 85.9 85.9

Ec 87.6 84.4 87.8 87.1 76.2 88.0

μ̄l 81.6 81.7 82.6 79.6 81.4

El 85.0 83.7 71.4 83.6

Es 72.4 68.7 74.1

P 61.2 63.3

Ro 63.7

Table 6.9 Performance
comparison Classifier Best feature

space
Performance (%)

Rural Urban Average

Bayes μ̄c–Ec 92.0 83.0 87.0

Parzen window Ec–El 89.3 85.7 87.3

NN Ec–El 91.0 85.2 87.8
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Each classifier presents both benefits and shortcomings. The Bayes classifier
comes at low computational cost, but assumes a parametric model for the data dis-
tribution, nearly always Gaussian. If the data represent such a characteristic, the
classifier performs well. If not, it may be possible to model the data as a mixture of
multiple Gaussians; we have not pursued this additional complexity in this chapter.
The Parzen window and NN classifiers do not assume any particular a priori dis-
tribution; they model the data distribution locally. The main drawback of these two
methods is their computational cost. Although they may represent non Gaussian dis-
tributions more robustly than the Bayes classifier, they did not perform appreciably
better on our data. Therefore, we recommend the Bayes classifier in this domain.

6.6 Summary of the Chapter

We have presented a new approach to assess the degree of land development.
While spectral signatures have been exploited for years in land use classification,
our objective was to learn what information regarding land development could be
extracted—efficiently—from the photometric structure in the image. We based the
assessment on the photometric and geometric characteristics of straight line seg-
ments. Although edge detection may be used to extract lines, we used a more robust
straight line extraction method based on regions of consistent gradient orientation.

Among several features we developed, those based on length and contrast proved
to be the most promising for classification. The strength of these features is that they
do not depend heavily on the city model; they apply to most cities around the world,
particularly over 400 m2 windows. The weaker features are those more dependent
on a specific city model as described in Sect. 6.5. The model assumes a high(er)
degree of organization, which may not hold for many old world cities. However, if
one’s focus were on urban and rural discrimination in North America (and Australia,
for example), then these features may prove more useful.

We tested both parametric (Bayes) and non-parametric (Parzen window and
nearest-neighbor) classifiers. Although these classifiers differ in their assumptions
with respect to the underlying data distribution, they offer similar performance on
our data. However, once trained, the Bayes classifier requires the least computation;
the nearest neighbor the most. Therefore, we would recommend the Bayes classi-
fier for a production system using this type of data. With probabilistic relaxation
we obtained slightly improved classification performance. However, this improve-
ment is marginal considering its additional computational cost, and we would not
recommend it. Next, we will add multispectral information to classify land use.

6.7 Problems

6.1 Why is structural information important for land use classification?



References 81

6.2 What is the most time-consuming part in LSR method?

6.3 How is LSR different from other line extraction methods?

6.4 What is the main limitation for structural features in general?

6.5 Sort the classifiers used in this chapter based on their computation load.

6.6 Sort the structural features in this chapter based on their computation load.

6.7 (Open ended question) What may be other candidate structure information to
be used as a feature?
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Chapter 7
Land Use Classification via Multispectral
Information

In Chap. 6, our land use classification approach was based on the organization of
straight lines (structure) in panchromatic images. It is well-known that multispec-
tral information also offers a great deal of information for land use classification.
This chapter describes an approach to combining structural information, obtained
from 1 m panchromatic Ikonos images with spectral information, obtained from the
corresponding 4 m multispectral images with application to identifying areas of sig-
nificant land development. There are several contributions in the literature in which
spatial and spectral features have been combined in land use classification and re-
lated problems. However, none to date use the line support region structural feature,
as we do.1

Finally, we introduce additional spatial information, over a broader area than the
structural information captured in the line support regions, by means of probabilis-
tic relaxation. Although relaxation improves classification slightly, the improvement
comes at substantial computational cost. Therefore, we recommend that this ap-
proach be used only in applications where improvement is absolutely necessary.

7.1 Introduction

It is well-known that multispectral sensing offers a great deal of information for land
use classification; see, for example, [1–10]. These contributions all extract and/or
classify individual features (in the cartographic sense) or regions by fusing spectral
and spatial information, but do not combine the information into hybrid features (in
the statistical pattern recognition sense) as we do. That is, the combination of infor-
mation from the spectral and spatial domains occurs late in the process in the prior
work; we combine the information earlier in the analysis. Also, our spatial (more
specifically, structural) features are based on consistent gradient orientation in the

1The figures in this chapter are obtained from our previous work [14]. Here, they appear with the
kind permission of IEEE.

C. Ünsalan, K.L. Boyer, Multispectral Satellite Image Understanding,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-0-85729-667-2_7, © Springer-Verlag London Limited 2011
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panchromatic image in a manner not used in the work cited above. In this chap-
ter, we use NDVI and θ considered in Chap. 3. The multispectral features capture
statistical properties of the NDVI and θ measures.

7.2 Statistical Feature Extraction

Before defining our statistical measures, let us give the definitions we will use re-
peatedly. Besides the ones defined in Chap. 6, we have the sample variance σ 2,
the sample skewness γ1, and the sample kurtosis γ2; we assume these to be self-
explanatory.

7.2.1 Structural Features

We introduced these features in the previous chapter where we explored a wide
range of possibilities. Based on those results, we extract four features based on the
statistical properties of the lines in panchromatic images:

• Mean line length, μl

• Entropy of line length, El

• Mean line contrast, μc

• Entropy of line contrast, Ec.

where the above reference and Sect. 6.1 explain how to extract these features in
detail.

7.2.2 Multispectral Features

To summarize the multispectral information, we use the NDVI and θ . Most wilder-
ness regions have high vegetation density. As we move from wilderness to the city
center, we encounter less and less vegetation. The NDVI and θ therefore offer evi-
dence for the level of development.

The top row of Fig. 7.1 presents three sample images from our dataset, one each
from urban, residential, and wilderness regions. We give the extracted straight lines
from each image in the second row. The relative degree of organization over the
three images is evident in their respective line structures. We also give the NDVI
and θ representations of these images in the bottom two rows. In these figures, blue
corresponds to the lowest NDVI value and red corresponds to the highest. Similar to
the organization of the lines, we can see a separation among these three regions in
the NDVI and θ images according to the degree and spatial distribution of vegetated
regions.
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Fig. 7.1 First row (from left to right): Rural, residential, and urban regions. Second row: Lines ex-
tracted from them. Third row: Corresponding NDVI images. Fourth row: Corresponding θ images

As multispectral features, we introduce the well-known statistics obtained from
the overall vegetation index representation of the image. These are the mean μ, vari-
ance σ 2, skewness γ1, and the kurtosis γ2 of the index representation. We compute
these values both for the NDVI and θ (linearized version of the NDVI) separately.
The multispectral features we extract are:

• Mean of the vegetation index, μndvi and μθ

• Variance of the vegetation index, σ 2
ndvi and σ 2

θ• Skewness of the vegetation index, γ1,ndvi and γ1,θ

• Kurtosis of the vegetation index, γ2,ndvi and γ2,θ .
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7.2.3 Hybrid Features

The following two hybrid features combine structural and multispectral information.
As the first hybrid feature, we compute the conditional mean of the vegetation index
(NDVI or θ ), given that the index pixels are on a line support region. Our reasoning
for this feature is that line support regions are strong indicators of the transitions in
an image. If these transitions occur in urban regions, we expect less vegetation in
this transition region. In wilderness (and rural) regions, we expect more. This can
provide a constraint on our mean value to separate rural and urban regions more
robustly. Using reasoning similar to the above, we also calculate the conditional
entropy of the vegetation index. The hybrid features we extract are:

• Conditional mean of the vegetation index, Hμndvi and Hμθ

• Conditional entropy of the vegetation index, HEndvi and HEθ .

7.3 Exploiting Spatial Coherence: Probabilistic Relaxation

Traditional classifiers treat each window as a distinct entity without regard to its
neighbors. Yet, levels of development in neighboring areas are not statistically in-
dependent. Cities tend to grow from a core outwards; apart from the intervention
of natural barriers such as water and mountains, land development expands more
or less coherently. Based on similar reasoning, Kettig and Landgrebe [11] (among
others) worked on adding spatial information to land cover classification. To exploit
this observation, we implemented probabilistic relaxation.

Probabilistic relaxation is a method that allows adjoining regions to influence one
another’s label probabilities by means of compatibility constraints. These compat-
ibility constraints encode the relative (in)consistency of adjoining label-pairs. For
example, regions of a common type are more likely to be neighbors than regions
of different types, especially, say rural–urban. A detailed discussion of probabilistic
relaxation labeling is beyond the scope of this book; see [12].

To initialize the relaxation, we use the output of the original classifier. If the
Parzen window classifier is in use, we set the initial membership value in a given
class equal to the corresponding (relative) weight in the Parzen window. For the
Bayesian classifier, we begin with the corresponding likelihood functions Mu (ur-
ban) and Mr (rural):

Mu = exp
[
(x − x̄u)�

−1
u (x − x̄u)

T − ln |�u|
]
, (7.1)

Mr = exp
[
(x − x̄r )�

−1
r (x − x̄r )

T − ln |�r |
]
, (7.2)

where x̄ is the sample mean and � the covariance matrix for that class. We ob-
tain the normalized class membership value for each sample by dividing its class
membership by the sum of its membership values.
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In probabilistic relaxation, the label probabilities for each object are updated
based on the conditional probabilities of occurrences of neighboring pairs. The ob-
ject label probabilities are updated iteratively until a globally consistent set of labels
is obtained or (usually) until the label probabilities stabilize. The effect of neigh-
boring objects is encoded through compatibility coefficients, rd(λ,λ′), where λ is
a candidate label on the center region and λ′ is a candidate label on the adjacent
region in direction d . Since any rural region can be in any direction from any urban
region, our compatibility coefficients rd(λ,λ′) are independent of direction, even
though the formalism permits it to be direction dependent. rd(λ,λ′) is positive for
label pairs that are likely (mutually supportive) and negative for those that are mu-
tually inhibitory. We used Yamamoto’s method [13] to construct the compatibility
coefficients from the prior and conditional label probabilities as follows:

rd(λ,λ′) =
⎧⎨
⎩

1
1−p(λ)

(1 − p(λ)
pd(λ|λ′) ) if p(λ)p(λ′) < p(λ,λ′),

pd(λ|λ′)
p(λ)

− 1 otherwise.
(7.3)

We assume equal priors: p(λ) = 1/2 for λ ∈ {urban, rural} prior to any mea-
surement computation. Label probabilities are then updated in a parallel-iterative
fashion as:

p
(k+1)
i (λ) = pi(λ)[1 + q

(k)
i (λ)]∑

λ′ {p(k)
i (λ′)[1 + q

(k)
i (λ′)]}

, (7.4)

qk
i (λ) = 1

4

∑
d∈(N,S,E,W)

∑
λ′

rd(λ,λ′)p(k)
d (λ′), (7.5)

where p
(k)
d (λ′) is the kth estimate of the probability of label λ′ occurring at the ad-

jacent region in the direction d . Similar to rd , in our case pd is the same for all
directions. The conditional label-pair probabilities pd(λ|λ′) were estimated manu-
ally from the same training data used earlier. The effect of (7.5) is to compute an
adjustment to the probability of label λ on region i according to the compatibilities
and current estimates of label probabilities on neighboring regions. Equation (7.4)
renormalizes the label probabilities after all adjustments have been applied.

We applied the probabilistic relaxation algorithm to the two-class problem as fol-
lows. Class label probabilities were taken as normalized class membership values as
obtained (initially) from the μθ ,σ

2
θ , γ2,θ ,Hμθ ,HEθ feature space. After exhaus-

tive search over all feature combinations, this gave the best Bayes classifier. These
label probabilities were then adjusted by the repeated action of (7.4) and (7.5) un-
til they stabilize. We then applied a maximum a posteriori (MAP) decision to the
probabilistic relaxation algorithm results for the final labeling.

For demonstration, we first take the Colorado image in Fig. 7.2, which is com-
posed mostly of rural (or wilderness) regions. Fig. 7.3 gives the probabilistic relax-
ation results for the Colorado image at four stages of the process. In these figures,
only the regions labeled as urban are given, the rest is labeled as white. We ob-
serve that the region initially labeled as urban shrinks as the relaxation proceeds,
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Fig. 7.2 The Colorado image

Fig. 7.3 The Colorado image, probabilistic relaxation iterations

correctly. Since we had pockets of (erroneous) urban labels among a large block
of rural (wilderness) regions, and since such an arrangement is punished in the re-
laxation, the labeling improves. If we compare the initial and the final images, we
observe that the urban region false alarms are greatly reduced.

Two more examples of probabilistic relaxation are the Rome image given in
Fig. 7.4 and Ecuador image given in Fig. 7.6. For the Rome image, the region ini-
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Fig. 7.4 The Rome image

Fig. 7.5 The Rome image, probabilistic relaxation results

tially labeled as rural expands as the relaxation proceeds, given in Fig. 7.5, as de-
sired. Similarly, for the Ecuador image, the region initially labeled as rural shrinks
and the region initially labeled as urban expands as the relaxation proceeds, given
in Fig. 7.7, as desired.

7.4 Experimental Classification Results

This section considers the experiment setup for this chapter. The first subsection
deals with the data set used in experiments. In the second subsection, we summarize
the classifiers used in the experiments. We tested our features using the standard
classifiers (Bayes, Parzen window, and the nearest neighbor (NN)), and a relaxation
based MAP decision. We tabulated the classification performances of structural,
multispectral, and hybrid features separately so that we could compare them. For
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Fig. 7.6 The Ecuador image

Fig. 7.7 The Ecuador image, probabilistic relaxation results

each set of features (structural, multispectral, and hybrid), we applied an exhaustive
search over the full feature set (all singles, pairs, triples, etc.) to obtain the best per-
forming feature space. Based on the classification results obtained, we compared the
performance of structural, multispectral, and hybrid features. To observe the effect
of vegetation index linearization, we also compared the classification performances
of the NDVI and θ based features separately. The last subsection summarizes the
sources of error and possible ways to eliminate them.

7.4.1 Data Set Specifications

Our data set is composed of one meter resolution panchromatic and the correspond-
ing four meter resolution multispectral Ikonos satellite images of North American
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regions. Table 7.1 lists all of the images forming this data set. These test images
are labeled by authors. Unfortunately, we were unable to obtain a labeled data set
by experts. Therefore, our results may not represent the ideal classification results.
However, our labeling of the data set is consistent and true, to the best of our knowl-
edge. As for problems on labeling, some windows straddle transitions from devel-
oped to undeveloped areas, and some others encompass lightly developed regions,
parkland, and other types of terrain that are hard to classify, even manually.

We extract the features over 800 × 800 meter windows and discard straight lines
shorter than five pixels (five meters); such objects cannot be approximated robustly
due to low signal-to-noise ratios in the contour approximation and certainly do not
offer strong evidence for “straightness”. In the following results, each 800 × 800
meter window is considered as a whole for feature extraction.

For the present experiments, we fixed the window size experimentally. However,
before deploying a production system, one would want to do a throughout experi-
mental investigation to determine the optimal window size. Fortunately, the results
are not highly sensitive to the window size selection, except that the window size
must bear some relationship to the size of physical features on the ground, in particu-
lar, urban areas. The size of the typical city block and the width of city or residential
streets, for instance, entered our “calculations” when considering the issue.

7.4.2 Classifier Design

We give the feature spaces, and number of training and test samples for each classi-
fier separately. Each classifier has benefits and shortcomings.

7.4.2.1 Bayes Classifier Specifications

To train the Bayes classifier, we used 112 rural and 136 urban image windows se-
lected at random from the overall data set. We then tested 5657 new region samples
(3903 rural, 1754 urban) to ascertain the classification performances. We give the
results in Table 7.2 for the best-performing feature space for each feature set.

7.4.2.2 Parzen Window Classifier Specifications

To train the Parzen window classifier, we used 419 rural and 419 urban image win-
dows selected at random from the overall data set. We then tested 5160 new region
samples (3449 rural, 1611 urban) to ascertain the classification performances. We
give the results in Table 7.3 for the best-performing feature space for each feature
set.
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Table 7.1 Test images
Geographic location Acquisition date Image size (m2)

Arizona 7/23/00 5:55 PM 6508×6500

Arizona 8/14/00 5:57 PM 5588×4696

California 4/5/00 6:16 PM 11372×8992

California 3/15/00 6:48 PM 22092×13312

California 3/18/00 6:59 PM 19608×15488

California 3/18/00 6:59 PM 11264×15544

California 3/18/00 6:59 PM 10868×15580

California 3/18/00 6:59 PM 23344×13808

California 3/18/00 6:59 PM 12544×13860

California 3/18/00 6:59 PM 12544×13860

California 3/26/00 6:51 PM 13824×12972

California 3/26/00 6:51 PM 13596×12972

California 8/18/00 6:40 PM 16772×12456

Florida 5/20/00 3:44 PM 7424×6760

Idaho 5/30/00 6:21 PM 5188×7176

Indiana 5/24/00 4:25 PM 6436×6448

Indiana 5/24/00 4:24 PM 6492×6284

Indiana 7/1/00 4:12 PM 8160×8140

Indiana 6/1/00 4:17 PM 5100×5092

Indiana 9/27/00 4:22 PM 6436×6448

Indiana 8/14/00 4:17 PM 6436×6448

Kansas 5/11/00 4:50 PM 11436×11196

Maryland 6/3/00 3:50 PM 11348×11132

Maryland 4/1/00 3:52 PM 10000×10000

Minnesota 2/16/00 4:47 PM 5916×8660

Minnesota 4/25/00 5:03 PM 5916×8660

Mississippi 7/26/00 4:25 PM 5316×7008

Mississippi 7/21/00 4:43 PM 6172×4008

Mississippi 8/3/00 4:17 PM 5076×5084

Mississippi 9/27/00 4:23 PM 5076×5084

Mississippi 7/21/00 4:43 PM 5216×4996

Missouri 2/29/00 4:25 PM 7340×7360

Missouri 2/29/00 4:25 PM 7340×7360

New Mexico 5/23/00 5:28 PM 10500× 10776

Oklahoma 5/22/00 4:52 PM 11324×11004

Oregon 8/8/00 7:14 PM 11128×11092

South Dakota 5/20/00 5:16 PM 11420×11260

Wyoming 6/26/00 6:06 PM 14068×10188
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Table 7.2 Comparison of performances for the Bayes classifier

Method Feature space Performance (%)

rural urban average

Structural μc,Ec 79.6 69.4 76.5

Multispectral (NDVI) μndvi , σ
2
ndvi 83.0 71.6 79.4

Multispectral (θ ) μθ ,σ
2
θ 82.1 76.1 80.2

Hybrid μθ ,σ
2
θ , γ2,θ ,Hμθ ,HEθ 86.1 86.2 86.1

MAP decision μθ ,σ
2
θ , γ2,θ ,Hμθ ,HEθ 89.4 84.8 88.0

Table 7.3 Comparison of performances for the Parzen window classifier

Method Feature space Performance (%)

rural urban average

Structural μc,Ec 88.7 54.6 75.3

Multispectral (NDVI) μndvi , σ
2
ndvi , γ1,ndvi , γ2,ndvi 91.7 70.2 84.7

Multispectral (θ ) μθ ,σ
2
θ , γ1,θ , γ2,θ 92.2 71.4 85.5

Hybrid μθ ,σ
2
θ , γ2,θ ,Hμθ ,HEθ 92.6 72.7 86.2

MAP decision μθ ,σ
2
θ , γ2,θ ,Hμθ ,HEθ 87.5 83.7 86.4

Table 7.4 Comparison of performances for the NN classifier

Method Feature space Performance (%)

rural urban average

Structural μc,Ec 86.8 56.4 76.2

Multispectral (NDVI) μndvi , σ
2
ndvi , γ1,ndvi 91.0 68.3 83.6

Multispectral (θ ) μθ ,σ
2
θ , γ1,θ 91.5 69.4 84.3

Hybrid μθ ,σ
2
θ , γ2,θ ,Hμθ ,HEθ 92.6 72.3 86.0

7.4.2.3 Nearest Neighbor (NN) Classifier Specifications

To train the NN classifier, we used 419 rural and 419 urban image windows selected
at random from the overall data set. We then tested 5160 new region samples (3411
rural, 1649 urban) to ascertain the classification performances. We give the results
for the best-performing feature space for each feature set in Table 7.4.

7.4.3 Comparison of Classification Results

In this section, we compare classification results from different perspectives. They
may give insight about the multispectral and hybrid features.
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7.4.3.1 Comparison of Structural, Multispectral, and Hybrid Features

We tabulate the classification performances of structural, multispectral (NDVI and θ

separately), hybrid features (with additional multispectral features), and MAP deci-
sions (for Bayes and Parzen window) in Fig. 7.8. In these figures, we provide the av-
erage classification performances and urban classification performances separately.
By average classification we mean the correct classification rates of urban and rural
test samples together. Urban classification performance is the correct classification
of urban test samples only. For our application, miss rates in urban region detection
are more important than false alarms. False alarms can be detected in subsequent
processing while misses can not be recovered easily.

As can be seen, we achieve a clear improvement at each step for urban and av-
erage classification performances. This information appears in tabular form in Ta-
ble 7.5.

To compare our hybrid features with the structural or multispectral features alone,
we take the multispectral feature performance for each classifier as a benchmark

Fig. 7.8 Improvements in classification for the Bayes, Parzen window, and NN classifiers. Dark
bars correspond to urban performances, light bars correspond to average performances
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Table 7.5 Comparison of detection performances for structural, multispectral, and hybrid features

Classifier/Features Performance (%)

Structural Multispectral Hybrid

urban average urban average urban average

Bayes 69.4 76.5 71.6 79.4 86.2 86.1

Parzen window 54.6 75.3 70.2 84.7 72.7 86.2

NN 56.4 76.2 68.3 83.6 72.3 86.0

(The structural features provide slightly poorer performance than the multispectral).
The improvements in average classification rate are 8.6%, 1.7%, and 2.5% for the
Bayes, Parzen window, and NN classifiers, respectively. The respective improve-
ments in urban region classification are 14.6%, 12.4%, and 4.0%.

The 8.6% improvement via hybrid features by the Bayes classifier shows the
strength of our data fusion method. In the Parzen window and NN classifiers, we
again have improvements. Therefore, we can conclude that our hybrid features give
better performance independent of the classifier used. In addition, if the Bayes clas-
sifier is used, we get even better performance. Since we have dominant structure in
urban regions, fusing them with multispectral information gives even better results,
namely 14.6% improvement.

Table 7.5 shows that multispectral features perform better than the structural fea-
tures. The main reason for the relatively poor performance of the structural features
is their sensitivity to the window size. In the previous chapter, using only panchro-
matic images, the window size was 400 × 400 pixels; here it is 800 × 800 pixels
owing to the lower resolution of the multispectral images.

7.4.3.2 Comparison of NDVI and θ Features

To compare the NDVI and θ features, we tabulate their performances in Table 7.6.
For the average classification performance, we have around 1% improvement for
all three classifiers. These improvements may not seem significant; however, there
is virtually no cost to achieve them. We simply take the arctangent of the NDVI to
obtain the θ representation. If we focus on urban region detection rates, we see sig-
nificant improvements, in the range of 1.1–4.5%. These results indicate that the lin-
earized θ representation improves classification performance compared to the NDVI.

7.4.3.3 Comparison of Statistical and MAP Classifiers

Finally, let us consider the effect of injecting spatial information into the classifi-
cation process. We achieve this by taking MAP decision after relaxation explained
in Sect. 7.3. The average classification rates show 1.8% and 0.2% improvements
by using the MAP decision over the hybrid features for the Bayes and the Parzen
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Table 7.6 Comparison of
detection performances for
the NDVI and θ based
features

Classifier/Features Performance (%)

NDVI θ

urban average urban average

Bayes 71.6 79.4 76.1 80.2

Parzen window 70.2 84.7 71.4 85.5

NN 68.3 83.6 69.4 84.3

window (pre)classifiers. These improvements are marginal when we take the com-
putational cost of relaxation into account. For urban region detection rates, we see
a drop of 1.4% for the Bayes classifier, but an 11.1% improvement for the Parzen
window classifier. Although we suffer a deterioration in the Bayes classifier, the im-
provement in the Parzen window classifier result is remarkable. This improvement
is mainly due to the characteristics of the Parzen window classifier, and the feature
space it has.

7.4.4 Analysis of Misclassification Results

One of the main source of misclassification for all three classifiers is the transitions
between urban and rural regions. Unfortunately, some of our images lie on these
transition regions. However, for an automatic region classification system this prob-
lem is unavoidable, since the land property is unknown a priori. A sliding window
approach with an intelligent feature assignment strategy could mitigate this prob-
lem. This lies beyond the scope of this book.

The second main source of misclassification is the phantom structure formations
due to shadows in satellite images. These phantom structures have significant effect
on structural features extracted from rural regions. Also for the multispectral feature
extraction, there may be rock formations having similar characteristics as in urban
regions. There may also be highways and farms (taken as rural for our problem) in
rural regions, misclassified due to the definition of urban and rural regions for our
purposes.

7.5 Summary of the Chapter

In this chapter, we improved our previous results in assessing the degree of land
development in three steps. Our first step was to use the linearized NDVI, which
we call θ , as the source of measurement for multispectral information. Our second
step was to combine the structural and the multispectral information by conditioning
the extraction of vegetation indices on the presence of a corresponding line support
region in the panchromatic image. Our last step was to enforce spatial coherence in
classification through probabilistic relaxation.
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Our most promising features are the hybrid features, combining the structural and
multispectral information. These two information sources reflect different properties
of the image they depend on. Therefore, their combination improves classification.

Compared to the NDVI, the normalized angle θ also improved classification. Be-
sides being more linear, this classification improvement also indicates the usefulness
of θ for general vegetation index studies.

By using parametric (Bayes) and non-parametric (Parzen window and NN) clas-
sifiers, we were able to distinguish developed areas with high confidence. Of course,
our ground truth may reflect the actual development imperfectly because of human
inconsistencies in assessing the ground truth labels. (A single individual provided
all “ground truth” labels to minimize the inconsistencies as much as possible.) We
speculate that our results could be better than given here, were the ground truth to
be constructed by expert image analysts adhering to a strictly-defined standard.

Use of the spatial information by relaxation further improved the classification
performances. However, this improvement comes at an additional computational
cost. Therefore, relaxation should be confined to where the performance is of utmost
importance.

7.6 Problems

7.1 Where does probabilistic relaxation fit within the groups of land use classifica-
tion?

7.2 How is Mahalanobis distance different from the Euclidean distance?

7.3 Compare structural, multispectral, and hybrid features in terms of performance,
computation cost, and data requirements.

7.4 What is the main misclassification reason for features in this chapter?

7.5 Why does θ have a better performance than the NDVI?

7.6 (Open ended question) Can other hybrid features be introduced based on the
information in this chapter?
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Chapter 8
Graph Theoretical Measures for Land
Development

In the previous chapters, we concentrated on land use classification. This chapter
extends this problem and casts it as measuring organization on land. Therefore, we
introduce graph theoretical measures over panchromatic images here.1

We extract primitives from the image, calculate measures on these primitives,
and fuse these measures to determine the final region type. Our primitives are lines
extracted by line support regions; see Chap. 6). We represent each straight line seg-
ment as a vertex in a graph and define a neighborhood tolerance to construct edges
between these vertices. We then compute measures on these graphs to infer the type
of region. These measures generally increase with respect to the degree of organi-
zation in the image. To form these measures, we first consider unweighted graphs
and use the circuit rank and degree (valency) sequence. Then, we consider weighted
graphs and introduce measures based on graph partitioning and the graph spectrum.

For our purposes, the level of development (or, roughly, the degree of organi-
zation) is based on the type and density of construction (buildings, streets, etc.)
and its geometric regularity. Our measures are defined to infer this indirectly from
the organization of lines in the image. We consider rural areas without buildings
to be the least developed, proceeding through sparse residential, dense residential,
commercial, industrial, to urban centers. We concede that the concept of “degree of
organization” is not mathematically precise. This chapter represents a step toward
quantifying this notion.

We conducted an experimental investigation to evaluate these measures. The ex-
periment is designed to verify their approximately monotonic behavior. Because the
notion of “ground truth” is speculative, at best, in this setting, we asked 90 people
to sort a set of 20 test images according to their assessment of the degree of or-
ganization. We then compare our measures to the average ordering. Although each
measure performed reasonably well on its own, performance improved when the
measures were fused, as we describe below.

1The figures in this chapter are obtained from our previous work [1]. Here, they appear with the
kind permission of IEEE.

C. Ünsalan, K.L. Boyer, Multispectral Satellite Image Understanding,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-0-85729-667-2_8, © Springer-Verlag London Limited 2011
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There exists relatively little prior work in the direct assessment of land develop-
ment from overhead views based on image structure, as opposed to pixel by pixel ra-
diometry. Among the more notable—and philosophically most similar—is the work
of Sarkar and Boyer [2] in change detection from graph spectra. Because they were
looking at smaller areas such as construction sites, and because their images were
not metric orthophotos (as ours are), they faced a somewhat different environment.
Our graphs are simpler to construct, and our measures are potentially more discrim-
inating.

8.1 Graph Construction and Consensus Ordering

In abstracting the image to a graph, we make the following observations. First, the
impact of human activity, especially development, is manifested in the emergence
of straight and smoothly curved contours. Second, the spatial density and regular-
ity of these contours increases with increasing development. Here, the straight line
segments defined above correspond to the vertices of the graph.

Vertices may be attributed by the length, orientation, contrast (defined in (6.14)),
and centroid location of the corresponding straight line segment. Edges connect ver-
tices corresponding to lines that are sufficiently close to one another. For the purpose
of edge construction, the distance between two lines is the minimum distance be-
tween their point sets. We tested neighborhood tolerances of 3, 5, and 10 meters
(pixels); experimentally we have found that 5 pixels works well. We consider the
effect of different tolerance values below. An edge may be weighted according to
some function of the attributes of the vertices it joins.

Each image in our data set is 800 × 800 pixels; we have hundreds of test images
at hand. Of these, we selected 20 representatives covering the range of development
from wilderness/open water to dense urban. These representative images appear in
Fig. 8.1, and their extracted lines in Fig. 8.2. The geographical location and the type
of each sample test image is summarized in Table 8.1.

The image supplier has geometrically corrected them prior to distribution. The
correction process removes image distortions introduced by the collection geome-
try and resamples the imagery to a uniform ground sample distance (GSD) and a
specified map projection.

We asked 90 people to sort the images from least organized (score = 1) to most
(score = 20). We provided no further definition or clarification of what was meant
by “organized”. We defined the consensus ordering according to the median scores.
For regions with discernible development activity, the responses were fairly con-
sistent. For regions with little to no development, the human subjects were less in
agreement—but they were consistent in ranking these images below those showing
development. Admittedly, this hardly constitutes “ground truth” in a proper scien-
tific sense, but it does provide a reference frame for evaluation. Substituting “regu-
larity” for “organized” may produce a different consensus.

For the sample images, we obtain the score distributions represented by the box-
and-whisker plots in Fig. 8.3. The box has lines at the lower quartile, median, and
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Fig. 8.1 Sample test images arranged in increasing order by consensus ordering

upper quartile values. The whiskers are lines extending from each end of the box to
show the extent of the rest of the data under a Gaussian assumption. Data values be-
yond the whiskers correspond to outliers. We note a clear distinction in organization
scores between the sixth and seventh images.

8.2 Measures Based on Unweighted Graphs

For our first investigation, we consider unweighted graphs. The first measure derived
from these graphs is based on the circuit rank; the second is based on the degree
sequence, using a random graph formulation to model the effect of noise. These
measures quantify, in some sense, the underlying structure of the graph.
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Fig. 8.2 Lines extracted from the sample test images

8.2.1 Circuit Rank

Lines produced by the same house or building are likely to produce a cycle in the
graph. A cycle is a closed path of alternating vertices and edges. Thus, cycles will
be prevalent in graphs constructed from dense urban regions (or in the correspond-
ing subgraphs), but rare in graphs (subgraphs) constructed from unpopulated areas.
Therefore, we expect the circuit rank to increase as we move from rural regions to
the city center.

Berge [3] defines the circuit rank (cyclomatic number) of graph G as

R(G) = m − n + c, (8.1)

where n is the number of vertices, m is the number of edges, and c is the number
of separate connected components in the graph. He proved that the circuit rank is
equal to the maximum number of independent cycles. Therefore, we take the circuit
rank of a graph as our first measure mcr = R(G).
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Table 8.1 Geographical
locations and types of the
sample test images

Image # Image name Image type

1 Idaho Rural

2 Minnesota Forest

3 Kansas Rural

4 Minnesota Rural

5 Oregon Forest

6 Florida Sea

7 Oklahoma Farmland

8 Oklahoma Farmland

9 South Dakota Sparse residential

10 Maryland Sparse residential

11 Indiana Sparse residential

12 New Mexico Sparse residential

13 California Dense residential

14 California Commercial

15 Missouri Dense residential

16 California Industrial

17 California Dense residential

18 Maryland City center

19 Arizona Dense residential

20 California City center

Fig. 8.3 Consensus ordering
and the score distribution in
terms of box-and-whisker
plots. Each box presents lines
at the lower quartile, median,
and upper quartile values. The
whiskers are lines extending
from each end of the box to
show the extent of the rest of
the data under a Gaussian
assumption. Data points
(crosses) beyond the whiskers
are considered to be outliers
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8.2.2 The Degree Sequence

As a region becomes more densely developed, we expect the number of connections
in the graph representing it to increase. The connections may also increase in simi-
larity, since we will have similar substructures repeated over the image. We endeavor
to model this effect using the degree sequence in a random graph formulation.

Let G be a graph with vertex set V = {v1, v2, . . . , vn}. The number of edges
incident on a given vertex vi is called the degree of vi and is denoted by deg(vi).
The list of numbers (deg(v1),deg(v2), . . . ,deg(vn)) is called a degree sequence of
G. Bollobas [4] studied random graphs to obtain the distribution of their degree
sequences. Following Bollobas, we use the random graph model G(n,P (edge) =
p). The model consists of all graphs with vertex set V for which edges are chosen
independently and with probability p. Our motivation for this measure is that as the
region becomes more organized and more densely developed, the edge formation
probability p increases along with the number of vertices n.

Bollobas proved that the degree of a vertex in a random graph has a binomial
distribution b(k;n − 1,p) with parameters n − 1 and p. Based on this and the fol-
lowing constraints, he obtained the distribution of the degree sequence for a random
graph.

Theorem 8.1 (Bollobas) Let ε > 0 be fixed, εn−3/2 ≤ p = p(n) ≤ 1 − εn−3/2, let
k = k(n) be a natural number, let Xk be the number of vertices of degree k, and set
λk = λk(n) = nb(k;n − 1,p). Then, the following assertions hold:

(i) If limn→∞ λk(n) = 0, then limn→∞ P(Xk = 0) = 1.
(ii) If limn→∞ λk(n) = ∞, then limn→∞ P(Xk ≥ t) = 1 for every fixed t .

(iii) If 0 < lim supn→∞ λk(n) ≤ lim infn→∞ λk(n) < ∞ then Xk is asymptotically
Poisson distributed with mean λk :

P(Xk = r) ≈ e−λkλr
k

r! for every fixed r. (8.2)

For the proof of this theorem, see [4].
The conditions in the theorem hold as n goes to infinity. In our domain, n is

sufficiently large to find an approximate distribution. We will see the effect of this
approximation while forming the actual (normalized) degree sequence histograms
next.

For our problem n ≈ 2000, k ≈ 20 (typical vertex has degree 20), and p � 1.
Therefore, we can use the Poisson approximation for the binomial distribution for
the λk (mean of the Poisson distribution for the number of vertices of degree k) as:

λk = nb(k;n − 1,p) ≈ ne−λpλk
p

k! , (8.3)

where λp = (n− 1)p, λp is the mean of the Poisson distribution of λk divided by n.
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To construct the measure, we need the edge probability p. To estimate p from
the distribution of Xk , we use the expectation:

E
[
E[Xk/λk]

] = nλp = n(n − 1)p. (8.4)

Using the conditional expectation in (8.4), we obtain the product of n(n− 1) and
p. Since each offers some indication of the organization in the graph, their product
serves as the first of two measures based on the degree sequence.

Four sample degree sequence distributions are shown in Fig. 8.4. These images
cover the full range of development. The normalized degree sequence histograms we
obtain are very close to the Poisson distribution. In these figures, we give the nor-
malized histogram of the degree sequence of each image and the best Poisson dis-
tribution fit. To fit the Poisson distribution, we search for the distribution mean that
minimizes the squared error between the theoretical distribution and the histogram.
In these figures, filled circles indicate the actual normalized histogram values and

Fig. 8.4 Sample degree sequence histograms and their best Poisson distribution fits. Filled cir-
cles—actual histograms, empty circles—Poisson distribution values
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the empty circles represent the corresponding theoretical Poisson distribution val-
ues.

The normalized histograms and the Poisson distributions fit fairly well. This in-
dicates that Bollobas’ theorem applies reasonably well to our case (although n does
not go to infinity). Therefore, our first measure derived from the degree sequence
mdsf is the mean of the Poisson distribution as calculated from a least squares fit.

Although this measure is reasonably informative, we have observed that if we
estimate this mean by sample moments, we get better agreement with the human or-
dering. We can estimate the mean of the Poisson distribution by dividing the square
of the first moment by the second central moment. This ratio simplifies to the mean
for the Poisson distribution. Therefore, the second measure derived from the degree
sequence mds is:

mds = μ2
deg

σdeg
. (8.5)

This estimate of the mean is slightly superior to the other. One reason for this
may be that this calculation also accounts for fit errors, using all the data more
effectively. Another benefit of this measure is that it does not require a search for
the least squares fit to the Poisson distribution.

8.3 Measures Based on Weighted Graphs

To this point we have considered only unweighted graphs. In this section, we ex-
tend the development to weighted graphs. Given a graph G = (V ,E), suppose
there is a positive number wij , called the weight of the edge between vertex i

and j , associated with each edge eij ∈ E. The graph G, together with the function
w : E → (0,∞), is called a weighted graph.

Shapiro and Brady [5] defined the weight of an edge based on the attribute values
of the vertices joined by that edge. Sarkar and Boyer [2] and Shi and Malik [6]
defined similar weighting methods. In the same spirit, we define the weight of an
edge eij between two vertices vi, vj to be:

wij = exp

(−β(vi, vj )

α

)
, (8.6)

where β(vi, vj ) = β(vj , vi) is a function of the vertex attributes and α is a scale
parameter.

Among the attributes assigned to our vertices, edge weighting according to length
disparity seems to capture the degree of organization most effectively. As devel-
opment proceeds, buildings appear, the aspect ratios of which are generally not
extreme. Thus, nearby line segments of similar length tend to associate with one
another more commonly than nearby segments of highly different lengths. Basing
the edge weights on the similarity in length between the two corresponding line
segments captures this observation. So, we set β(vi, vj ) = |li − lj | where li is the
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length attribute of vertex vi . After extensive testing, we settled on α = 50 as a suit-
able scale parameter. (Recall that we deal with metric images, so a fixed scale is
suitable.) We explored the performance of different attributes, as well as the effect
of the scale α, on the final result in the following sections.

The weighted adjacency matrix of G is the n × n matrix A = [wij ]. The eigen-
values and eigenvectors of G are those of A. If λ1, . . . , λn are the eigenvalues of G,
the spectrum of the graph is defined as sp(G) = [λ1, . . . , λn].

The degree matrix D is a diagonal matrix with
∑

j wij of vertex i at position
(i, i). The Laplacian matrix of the graph G is defined as L = D − A. The Laplacian
matrix is explained in detail in [7].

8.3.1 Graph Partitioning by the Laplacian Cut

We next introduce three measures derived from graph partitioning, all based on a
common idea: As development occurs, the number of edges in the graph (relative
to the number of vertices) is expected to increase, as more linear structures in the
image appear in mutual proximity. In rural regions, graph vertices are, to a great
extent, isolated; indeed, the graph may consist largely of small disjoint subgraphs.
Therefore, we anticipate a few large vertex clusters in urban areas versus many
small(er) clusters in rural areas.

We obtain graph clusters from the Laplacian cut. Fiedler [8–10] introduced graph
partitioning using the eigenvector corresponding to the second smallest eigenvalue
of the Laplacian matrix; this eigenvector is called the Fiedler vector in the literature.

Before giving Fiedler’s theorems on partitioning, we review other work using
graph partitioning by eigenvectors from the computer vision literature. Sarkar and
Boyer [2] used a graph partitioning method based on the adjacency matrix for
change detection. Perona and Freeman [11] used a similar idea for image segmen-
tation. Shi and Malik [6] introduced the normalized cuts method, based on the nor-
malized Laplacian matrix, for image segmentation. Weiss [12] compared existing
graph theory based segmentation algorithms. Gdalyahu et al. [13] worked on image
segmentation with a similar methodology. In recent work, Pavan and Pelillo [14]
have developed a framework for image segmentation based on a new graph-theoretic
clustering formulation. They propose a novel combinatorial concept, the dominant
set, that generalizes the notion of a maximal clique to weighted graphs.

For our application, the Laplacian cut is easy to compute and produces good re-
sults. Eigenclustering may be considered a sort of “dual” approach (in that it groups,
but does not cut per se) [2]. In the present case, the Laplacian cut can be computed
in less than 1% of the time required for eigenclustering, and is no less informative.

We next present Fiedler’s theorems on graph partitioning. Fiedler defines the
second smallest eigenvalue of the Laplacian matrix as the algebraic connectivity of
the graph.
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Theorem 8.2 (Fiedler) Let the second smallest eigenvalue a(G) of the Laplacian
graph G, L(G), be called its algebraic connectivity. It satisfies

a(G) = min
x∈S

xT L(G)x,

where S = {x = (x1, . . . , xn)
T ∈ Rn,

∑n
i=1 xi = 0,

∑n
i=1 x2

i = 1}, Rn is the space of
all real column vectors with n coordinates.

The proof follows immediately from the Courant theorem [15] since the smallest
eigenvalue of L(G) is zero and the corresponding eigenvector is e. Thus S consists
of all unit vectors orthogonal to e, which means that a(G), as the second smallest
eigenvalue, is the minimum of xT L(G)x on S.

Fiedler also proved that a weighted connected graph can be partitioned into two
connected subgraphs based on algebraic connectivity:

Theorem 8.3 (Fiedler) Let G be a finite connected graph with n vertices 1, . . . , n

to every edge (i, k) of which a positive number wik is assigned. Let y = yi be a
characteristic valuation (eigenvector corresponding to the algebraic connectivity) of
G. For any r ≥ 0, let M(r) = {i ∈ N |yi + r ≥ 0}. Then the subgraph G(r) induced
by G on M(r) is connected.

Remark A similar statement can be proved for r ≤ 0 and the set M ′(r) of all those
i’s for which yi + r ≤ 0. For the proof of this theorem, see [10].

Our graphs satisfy the above constraints and we define the Laplacian of a graph as
Fiedler does. Therefore, Fiedler’s theorems are directly applicable to our problem.

Although Fiedler did not give an optimal value of r for partitioning, the median
of the Fiedler vector entries has been extensively used in the literature for this pur-
pose. In this chapter, we use this value to cut the graph into two parts. We apply
the successive partitioning method suggested by Shi and Malik to obtain the final
partitioning. In our implementation, the partitioning operation stops as the sum of
the weights on the Fiedler vector exceeds a certain limit. We check for the energy
of the Fiedler vector by calculating the median value of the weights on them. If the
median of the Fiedler vector is smaller than 0.71, we stop partitioning.

8.3.1.1 The First Measure on Graph Partitioning

The first of our measures based on graph partitioning is related to the size of the
partitions (number of vertices in each). For well organized regions, we expect fewer
clusters with more vertices in each. For rural regions, we expect more clusters with
fewer vertices in each. As we checked the cluster count for graphs obtained from
rural regions (with sparse lines), we observed that the largest cluster has approxi-
mately 20 vertices on average. Therefore, we define clusters having more than 20
vertices as large. We explore the robustness of the proposed measure on this constant
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in the following sections. The first measure mlc1 is the fraction of vertices appearing
in large clusters:

mlc1 =
∑K

i=1 |vc(i)|
n

, (8.7)

where |vc(i)| is the number of vertices in cluster i and |vc(i)| > 20 for i =
1,2, . . . ,K . Here K is the number of large clusters, and n is the total number of
vertices.

8.3.1.2 Second and Third Measures on Graph Partitioning

Our second and third measures combine structural (cluster) information with the
unary attributes assigned to vertices. We use length and contrast attributes to form
the measures mlc2 and mlc3:

mlc2 =
∑n

i=1 l(i)

Np

, (8.8)

mlc3 =
∑n

i=1 c(i)

Np

, (8.9)

where Np is the number of partitions, l(i) is the length assigned to vertex vi , and c(i)

the contrast (given in (6.14)) assigned to vertex vi . These measures are motivated
by the following observation: As development ensues, line segments grow longer
and exhibit greater contrast, while being grouped into a smaller number of (larger)
clusters.

8.3.2 Singular Values of the Adjacency Matrix

Our last two measures use the singular values of the weighted adjacency matrix. The
first measure considers the distribution of the singular values; the second considers
the energy of the graph.

Since the adjacency matrix A is symmetric, its singular values are equal to the
absolute values of its eigenvalues. Considering the size of our matrices, calculating
singular values is more computationally stable than calculating eigenvalues.

8.3.2.1 Circularity of the Singular Value Distribution

Wigner [16–18] introduced “the semicircle law”, proving that the eigenvalue dis-
tribution of a random symmetric matrix approaches a semicircular shape as the di-
mension of the matrix goes to infinity. Arnold [19, 20] extended Wigner’s work and
obtained the same law for deterministic symmetric matrices.
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Theorem 8.4 (Arnold) Let An = (aij ), 1 ≤ i, j ≤ n, be the nth section of an infinite

Hermitian matrix, {λ(n)
k }1≤k≤n its eigenvalues, and {u(n)

k }1≤k≤n the corresponding
(orthonormalized column) eigenvectors. Let v∗

n = (an1, an2, . . . , an,n−1), put

Xn(t) = [
n(n − 1)

]−1/2
(n−1)t∑
k=1

∣∣v∗
nun−1

k

∣∣2
, 0 ≤ t ≤ 1

(bookkeeping function for the length of the projections of the new row v∗ of An onto
the eigenvectors of the preceding matrix An−1), and let finally

Fn(x) = n−1 (
number of λ

(n)
k ≤ x

√
n,1 ≤ k ≤ n

)
(empirical distribution function of the eigenvalues of An/

√
n ). Suppose

(i) limn→∞ ann(t)/
√

n = 0.
(ii) limn→∞ Xn(t) = Ct , where 0 ≤ C ≤ ∞, 0 ≤ t ≤ 1.

Then limn→∞ Fn = W(·,C), where W is absolutely continuous with (semicircle)
density

w(x,C) =
{

(2Cπ)−1(4C − x2)1/2 if |x| ≤ 2
√

C,

0 if |x| > 2
√

C.
(8.10)

For the proof of this theorem, see [20].
Shen [21] generalized the semicircle law to singular values (absolute values of

the eigenvalues). Instead of the semicircle, one obtains a quarter circle when con-
sidering singular values.

The theorem holds as n goes to infinity, and our typical graph size of n ≈ 2000
is sufficient to observe similar characteristics unless the graph is sparse. If the graph
is sparse, the distribution shows two peaks, around zero and one, in addition to the
quarter circle shape. From these observations, our hypothesis for the first measure
is that a graph obtained from rural regions (with sparse adjacency matrices) will
display more sharply peaked singular value distributions than that of the denser city
center. We also expect a more quarter circle like shape for singular value distribu-
tions obtained from more organized regions.

To assess “quarter circularity”, we calculate a functional fit error. Let the actual
distribution (histogram) for the singular values be f (λ). We approximate the quarter
circle function by a parabola f̂ (λ) as:

f̂ (λ) =
{

a + bλ + cλ2 if 0 ≤ λ ≤ 3,

0 if λ > 3,
(8.11)

where polynomial parameters a, b, and c are obtained by least squares. We justify
approximating the quarter circle function by a parabola as follows. The distribution
function in (8.10) is more precisely an ellipse; we do not need the exact shape to
construct the measure; it is much easier to fit a parabola than an ellipse.
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Fig. 8.5 Normalized singular value distributions (solid curves) and corresponding approximations
(dashed curves) for four sample images

We give normalized histograms f (λ) (solid curves) and the corresponding ap-
proximations f̂ (λ) (dashed curves) of singular values λ for four sample images in
Fig. 8.5. These images cover the full range of development. For the rural region (im-
age 6) there are two dominant peaks around zero and one owing to the sparseness of
the graph. The histograms of more organized regions (images 16 and 19) look more
like quarter circles, as we expect. Farkas et al. [22] obtained similar distributions for
small world graphs [23, 24].

The measure we propose based on quarter circularity is the negative fit error to
singular value distributions:

mf e = −∥∥f (λ) − f̂ (λ)
∥∥, (8.12)

where f (λ) is the distribution of singular values and f̂ (λ) its approximation. In this
formulation, the least squares fit also (inversely) captures the impact of the (0,1)

peaks on the overall distribution. As the actual distribution becomes more like a
quarter circle, this measure increases.
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8.3.2.2 The Unit Energy

The second singular value based measure is the unit energy, developed from the
energy of a graph E(G) as defined by Gutman and Polansky [25]:

E =
n∑

j=1

|λj |. (8.13)

They introduced this definition for graphs used in organic chemistry, and it has roots
in the chemical properties of molecules. Cvetkovic et al. [26] followed the same
definition for general graphs.

Based on this energy definition, the unit energy measure, or energy per vertex, is:

mueg = E

n
. (8.14)

We expect the unit energy of a graph to increase as it becomes more heavily con-
nected. This measure is derived from Sarkar and Boyer’s similar measure using the
sum of positive eigenvalues of the attribute graph, defined in the following section.

Although we also tested the total energy as a measure, the unit energy performed
better in our experiments. The unit energy of the graph can also be taken as the
sample mean of the singular values. This observation relates our second measure on
singular values to the first.

8.4 Fusing Measures

We have defined several measures, based on different graph properties, in an attempt
to capture the degree of organization and, thereby, land development. It is certainly
true that “organization” and, for that matter, land development, are more than scalar
quantities. For that reason, we would not use any measure alone. Therefore, we fuse
them. We applied a global search over the full feature set, including all possible
combinations, to construct a fused measure as consistent with human assessment
as possible. (We will explain the role of the non-graph based measures Ec and μc

below.) We found that the set of the degree sequence measure mds(i), Laplacian
cut measure mlc3(i), and the distribution of singular values mf e(i) outperformed
all other combinations.

To fuse measures having different dynamic ranges, we first normalize each mea-
sure to [0,1] by hard limiting. A hard limiter function for each measure is con-
structed from the training samples by first linearly mapping the minimum value of
the training set to 0.25 and the maximum value to 0.75. Using the so derived func-
tion for mapping the testing data, we then impose a hard limiter such that all values
are restricted to the 0–1 range for input to the fusion operation. The final fused
measure mf (i) is then the median of the normalized, limited measures.

The entropy of contrast Ec is not fused directly with the graph theoretical mea-
sures. Rather, it is used in a preclassification step (below) to remove images having
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very little or no development (wilderness, water) from further consideration. This
is certainly not optimal, and requires further investigation, but we offer this as an
illustration of the different types of image assessment provided by the earlier non-
graph theoretical measures versus the graph theoretical measures that are the focus
of this chapter. It is a limitation of the graph theoretical measures that, while effec-
tive in grading development in regions that are, in fact, developed to some degree,
they can be misled by the textures present in wave patterns and treetops under uni-
directional solar illumination. The non-graph theoretical measures Ec and μc are
better at discriminating developed from undeveloped regions, but are less effective
at distinguishing, for instance, suburban regions from city centers.

8.5 Experimental Results

We now present an experiments on these measures, comparing them with a (collec-
tive) human assessment of organization. It is fair to say that the human notion of
organization is apt to be richer than what our measures capture, but the experiments
show reasonable agreement, suggesting that these measures can be effective.

To compare these measures to human assessment of organization, we selected 20
images (Fig. 8.1) covering the range from (effectively) wilderness to dense urban.
We note that humans are inconsistent in ranking the least developed areas—there
were six such images among the 20—so a comparison against our measures would
be meaningless for these six (and we have non-graph based, structural measures to
eliminate these). For the remaining 14 images, 90 people demonstrated reasonable
consensus—but not unanimously. For comparison, we define two types of error:
deviation and false alarm. We define the deviation for each image to be 1/2 of the
absolute difference (to avoid double counts) in the ordinal position (1 through 14)
as assigned by the measure versus that of the human consensus. The sum of the
per-image deviations over the set provides the score for the measure.

Since we are also interested in distinguishing rural from non-rural images, we
define a false alarm to be the event in which a rural image (by human classifica-
tion) is assigned a ranking above the lowest non-rural image. The consequence of
a false alarm in practice is nonfatal; it simply means that we will expend additional
computation on a region that will ultimately prove uninteresting.

Table 8.2 shows the deviation and false alarm counts with respect to the consen-
sus ordering. The fused measure mF presents the best performance with respect to
deviation; mlc3 provides the best performance with respect to the false alarm rate.

In Fig. 8.6, we plot each measure versus consensus ordering for all 20 images,
including the first six for which the humans exhibited no real consensus. If there
were perfect agreement between the consensus ranking and a measure, its curve
would be monotonic. Because we are most interested in non-rural regions, it is re-
ally the monotonicity for images 7 through 20 that matters. Over this range most
measures perform fairly well. Notably, mF performs better than the rest. Image 15
is consistently rated as less organized than 14 by the measures, but is scored slightly
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Table 8.2 False alarms and
deviations for measures Measure Origin False alarms Deviation

mcr circuit rank 3 6

mdsf degree sequence (l.s. fit) 4 5

mds degree sequence (moments) 4 4

mlc1 first partition measure 3 5

mlc2 second partition measure 3 4

mlc3 third partition measure 2 4

mf e distribution of singular values 4 3

mueg unit energy of a graph 3 4

mF fusion of mds , mlc3, mf e 4 2

Fig. 8.6 Ordering of sample images, versus human assessment, based on all of the graph theoret-
ical measures



8.5 Experimental Results 115

Fig. 8.7 Eliminating the first
six sample images by the
entropy of contrast measure
Ec , heavy dashed
line—decision boundary

higher by human observers. Images 13 through 15 are very nearly equal in human
assessment, so this result is not surprising.

It is instructive to consider the appearance of those “high scoring” images among
the first six. These are forested regions showing phantom structure due to shadows.
In these images, the sun provides unidirectional illumination imposing a fairly reg-
ular photometric structure on the image. Therefore, the edge structures in these im-
ages are nearly as regular as in residential regions. And, it is not uncommon to find
significant number of trees in mature residential areas.

Figure 8.7 demonstrates a preclassifier based on the entropy of contrast Ec, used
to eliminate the first six images. The decision boundary (shown as a heavy dashed
line) indicates that a simple classifier can be used for this purpose. This is just a
simple demonstration of the idea; we would be more conservative in a working
system.

8.5.1 Sensitivity to Parameter Changes

In this section, we consider the impact of parameter selection. For each parameter,
we identify the measure most directly affected by it and tabulate the corresponding
effect on the monotonicity of the measure with respect to the human ordering. This
is, of course, not an exhaustive investigation of the parameter space, but provides
some rationale for the values selected for these experiments and some indication of
the sensitivity, vis-a-vis the human consensus.

We start with the proximity tolerance. We tabulate its effect on mds in Table 8.3.
A proximity tolerance value of 5 pixels seems a reasonable choice. Other tolerance
values result in higher false alarms and deviations.

In another experiment, we consider the rectangularity of the cycles. Since most
man-made structures comprise rectangular shapes, it is reasonable to explore such
a constraint on cycle formation. We imposed a constraint that neighboring lines can
participate in cycles only if they are perpendicular within a tolerance, denoted the
rectangularity angle in Table 8.4.

The rectangularity constraint degrades the performance relative to the uncon-
strained case because we generally do not obtain precise building boundaries. The
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Table 8.3 The effect of
graph neighborhood tolerance
on mds

Tolerance False alarms Deviation

3 5 5

5 4 4

10 6 10

Table 8.4 The effect of
rectangularity constraint on
mcr

Rectangularity angle False alarms Deviation

π/32 1 13

π/16 1 10

π/8 2 8

π/4 2 7

no rectangularity 3 6

Table 8.5 The effect of large
cluster size on mlc1

Large cluster threshold False alarms Deviation

5 3 5

10 4 5

15 3 6

20 3 5

25 3 7

30 3 7

40 3 9

50 3 10

100 2 10

image resolution is very good, but not quite good enough for smaller structures such
as single-family houses to be found this way reliably, especially when overhanging
trees are present.

Implicit in our definition of mlc1 is a threshold on the number of vertices defining
a large cluster. Our baseline value for this parameter is 20. Table 8.5 presents results
for a range of values; the measure is not overly sensitive over a reasonable range,
and 20 provides the best results among the values tested on our data.

In forming the weighted graph, we must select a value for α, the normalization
constant in (8.6). Table 8.6 presents the effect of this constant on mlc3; α ≥ 50 shows
good performance, and little sensitivity.

The other consideration in the construction of the weighted graph is the selec-
tion of attributes to enter the calculation in (8.6). In Table 8.7, we consider a range
of attribute spaces; perhaps surprisingly, (the disparity in) the length of two line
segments leads to the most effective weighting function.
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Table 8.6 The effect of α on
mlc3

α False alarms Deviation

10 4 16

20 3 15

30 3 8

40 3 6

50 2 4

60 2 5

70 2 4

80 2 5

90 2 5

100 2 5

Table 8.7 The effect of
different attributes on mlc3

Attribute(s) False alarms Deviation

Length 2 4

Contrast 3 7

Slope 2 7

Distance 0 9

Length and Contrast 3 10

Contrast, Slope, and Distance 1 15

Length, Contrast, Slope, and Distance 1 18

8.5.2 Comparison with Sarkar and Boyer’s Measures

The measures of Sarkar and Boyer, used for change detection, are perhaps the clos-
est to ours to be found in the literature. In this section, we compare their measures
with those proposed in this chapter. Sarkar and Boyer define their graphs on con-
stant curvature edge segments in the image (unlike our straight lines). They obtain
the weights in the graph by Gestalt-inspired relationships among vertices.

Instead of partitioning the graph as we did, they define their measures on eigen-
clusters of the adjacency matrix. An eigencluster is a collection of nodes corre-
sponding to the nonzero components of a positive eigenvector (xi such that all the
components have the same sign).

Their first measure is I c
tot:

I c
tot = N

∑Nc
i=1(

∑ni
j=1 lij )

Nc

, (8.15)

where lij is the length of the j th edge segment in the ith eigencluster, N is the total
number of edge segments, and Nc is the total number of eigenclusters. This measure
captures the degree to which edge points appear in eigenclusters.
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Table 8.8 False alarms and
deviations for Sarkar and
Boyer measures

Measure False alarms Deviation

I c
tot 4 6

−Nc 1 14

λ+ 4 10

Fig. 8.8 Ordering of sample images based on three Sarkar and Boyer measures

Their second measure is the total number of eigenclusters Nc. For our purposes,
the fewer eigenclusters a graph has, the more organized it is (assuming that the
eigenclusters are also getting larger). Therefore, we use the negative of this measure
for comparison.

Their last measure is the sum of the positive eigenvalues λ+. This corresponds to
a half of the energy E, as given in (8.13) [27].

To compare these measures with ours, we implemented the eigenclustering algo-
rithm on our weighted graphs. Because their nodes correspond to constant-curvature
arcs of edge points and ours to straight line segments, and because they account for
scale and we need not, a one-to-one comparison between the two sets of measures
is not possible. We are, in effect, using their measures in a manner for which they
were not designed. It is nevertheless interesting to see how the Sarkar–Boyer mea-
sures behave in our situation. We give the false alarm and deviation counts for these
measures in Table 8.8.

Not surprisingly, these measures are not as effective in this setting. In Fig. 8.8,
we plot Sarkar and Boyer’s measures versus consensus ordering for all 20 images.

8.6 Summary of the Chapter

In this chapter, we introduced and tested several graph theoretical measures to assess
land development in overhead imagery. Our objective was to develop measures that
increase monotonically with respect to the organization (development) in images,
and we can report significant progress on this front. Although each measure per-
formed fairly well on its own, the measure obtained by fusing them performed the
best of all with respect to deviation from human assessment of relative organization.



8.7 Problems 119

Clearly, this chapter represents only a preliminary exploration of the possible
leverage to be realized using graph-theoretical measures in a domain such as this.
More sophisticated graph construction and attribution, as well as additional mea-
sures, may provide improved performance. Especially interesting, and important,
would be subclass discrimination into different types of residential areas, or into
industrial versus commercial developments. Graph embedding techniques in which
the graphs are represented as points in a linear vector space also merit investigation
in this domain.

8.7 Problems

8.1 What is the main advantage of graph representation for land use classification?

8.2 Why is Theorem 8.1 applicable to the problem in this chapter?

8.3 Discuss the properties of the Poisson distribution.

8.4 What is the relation between singular values and the eigenvalues of a matrix?

8.5 What is the main advantage of SVD on the PCA?

8.6 Sort the graph measures introduced in this chapter based on their computation
load.

8.7 (Open ended question) Can more graph-theoretical measures be introduced
using the methods in this chapter?
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Chapter 9
Feature Based Grouping to Detect Suburbia

In this and the following chapter, we focus on detecting suburban regions among
others. Although it is part of land use classification problem, we had to introduce
specific methods to detect these regions in a robust manner. The direct three class
classification (urban, rural, residential) approach was less successful in this case,
largely because suburban regions bridge the other two in our feature space much
as they do on the ground. Therefore, in an attempt to extract suburban regions, we
introduced an enhancement based on the principles of perceptual organization.

Perceptual organization is that process, or a set of processes, by which a vision
system (natural or artificial) organizes detected features in images based on various
Gestaltic clues [1]. Perceptual organization is therefore the ability to impose struc-
tural regularity on sensory data, grouping sensory primitives having a common un-
derlying cause. We introduced a spatial coherence constraint and performed group-
ing in the feature space. Via this novel perceptual grouping approach, the results
improved significantly. Hence, besides the structural approach to land classifica-
tion, our new spatial coherence method based on perceptual organization principles
also offers very promising results by combining the feature and image spaces.

9.1 Feature Based Grouping

Levels of development in neighboring areas are not statistically independent. Cities
tend to grow from a core outwards, apart from the intervention of natural barriers
such as water and mountains, and land development expands more or less coher-
ently. These observations indicate the importance of spatial information in classifi-
cation.

To recover suburban regions, we developed a grouping and classification method
motivated by principles from perceptual organization. To define the suburban, or
residential class, we begin by considering the distribution of training data depicted
in Fig. 9.1. This space proved to be the most effective for Bayes classification (dis-
cussed next). Clearly, the residential areas, in which we are most interested, bridge
the urban and rural areas in feature space, much as they do on the ground. This
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Fig. 9.1 Sample distribution
in μc–Ec space

makes the direct detection of such areas difficult, but we have been able to make
significant inroads on the problem that at least suffice for our “triage”.

Our attempt to build a three way Bayes classifier did not give promising results.
We suspect that the feature distributions of the urban and rural classes are poorly ap-
proximated as single Gaussians. While it is theoretically possible to model these dis-
tributions as collections of multiple Gaussians (mixture models), one still needs to
know how many Gaussians (subclasses) to fit, and the solution to that problem is far
from obvious in the present case. Therefore, we developed an alternative approach
to detect suburban regions by framing the problem as one of perceptual grouping.

Perceptual grouping is the process by which vision systems (natural or machine)
impose organization on sensory data. The objective is to identify image regions (or
features) arising from a common underlying cause. This exploits the fact that the
world is not visually chaotic; it has structure and organization. Rather than making
hard window by window decisions, we group windows together having compatible
(similar) feature values into contiguous regions, and classify them together. Thus,
we discover natural groupings of areas having similar developmental characteris-
tics, as measured in the (μ̄c,Ec) feature space. The roots of this approach go back
to Wuescher and Boyer’s [2] robust contour decomposition method. Srikantiah et
al. [3] implemented a 2D version of this idea to segment the surfaces of 3D free
form objects. We apply this idea to more general feature spaces here.

In grouping, we first construct a 2D voting space for the feature vectors over
the image. Each window votes into all bins satisfying a compatibility constraint.
This compatibility constraint takes the form of a 2D footprint in the feature space;
any window having feature values in the range covered by this footprint are con-
sidered to be compatible with the current (voting) window in that they have similar
features. We then interrogate the voting result to extract contiguous regions having
compatible features, from largest to smallest. The extracted collections of windows
are called segments.
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Fig. 9.2 The Colorado image and segments obtained from feature based grouping

In these experiments, the voting spaces are of 16 bins each, uniform over the
observed range of the corresponding feature value over the training data. The com-
patibility constraint is three bins, roughly 20% of the range. Therefore, of the
16 × 16 = 256 cells in the 2D voting space, each window votes for 9 cells in a
3 × 3 block: that corresponding to its own (quantized) feature vector plus the 8
adjoining cells. At the “corners” of the voting space, the compatibility footprint is
simply truncated.

To illustrate the results of the spatial grouping algorithm, we give the Colorado,
Sydney, New Mexico, and Ecuador images and the coherent segments obtained from
them in Figs. 9.2, 9.3, 9.4, and 9.5.

The feature based grouping method works reasonably well in extracting homo-
geneously developed regions in these images. However, there are some design (and
presentation) limitations. Homogeneity is computed only over square windows and
is defined in the feature space. Therefore, some groupings may seem inappropri-
ate owing to this spatial quantization. Moreover, the images are printed at different
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Fig. 9.3 The Sydney image and segments obtained from feature based grouping

scales (due to their differing sizes). This can be misleading when evaluating the
grouping visually.

To assign the final class membership to each segment, we begin by estimating
the mean vector x̄ and covariance matrix Kx of the suburban class in feature space
(green points in Fig. 9.1) assuming a bivariate Gaussian distribution. We compute
the Mahalanobis distance between each window to be classified and this distribu-
tion:

DM = (x − x̄)K−1
x (x − x̄)T . (9.1)

The degree of membership of a given window (or feature vector x) is then computed
as:

M = e−(
DM
20 ), (9.2)

where the value 20 was selected experimentally for convenience.
We then classify a segment using M. However, a segment’s (net) feature vector

is that corner of its range corresponding to each feature at its maximum. Although
one might expect the average or median value of the feature range to be more rep-
resentative (as we did), the “upper right” corner value performs better. The reasons
are as yet unclear. All windows in the segment then receive the same degree of
membership and classification.
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Fig. 9.4 The New Mexico image and segments obtained from feature based grouping

9.2 Suburban Area Detection Results

We tested the feature based grouping approach over the full data set to detect sub-
urban regions using the membership parameter M. For comparison, we first calcu-
lated the class membership for each sample without grouping. We used a Neyman–
Pearson decision rule (specifying the false alarm rate, then obtaining the correspond-
ing best detection rate) [4], yielding the receiver operating characteristic (ROC) la-
beled “Before grouping” in Fig. 9.6. This ROC was obtained by testing all of our
samples. Although formulated as a two-class problem (suburbs, or not), this is re-
ally a three-class issue with fairly unequal priors (suburbs are relatively rare in this
dataset), and so the ROC—while not spectacular—is far better than chance. It also
makes no use (yet) of spatial coherence.

Next, we applied feature based grouping. Again, using a Neyman–Pearson de-
cision rule, we obtained the “After grouping” ROC curve in Fig. 9.6 which reveals
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Fig. 9.5 The Ecuador image and segments obtained from feature based grouping

Fig. 9.6 ROC curves for the
detection of suburban regions,
with and without feature
based grouping

substantially better detection rates for all false alarm rates specified. This compari-
son shows the improvement available from feature based grouping.

The area under a ROC curve gives a single number for quality and improvement,
and for the perfect case it would be one. If we compare areas under these two ROC
curves, we obtain 0.6688 from the before grouping ROC curve and 0.8165 from the
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after grouping ROC curve. This indicates an improvement of approximately 22%
by applying feature based grouping. However, it remains difficult achieving high
detection rates without significant false alarms.

9.3 Summary of the Chapter

The detection of suburban residential regions is highly challenging. Nevertheless,
a novel feature based grouping method produced highly encouraging results. This
suggests that methods based on principles from perceptual organization may ulti-
mately have significant impact on these types of problems. Although our test set is
large and diverse in location and development pattern, we can distinguish developed
areas with high confidence. Our results indicate that image structure, as captured by
the spatial organization of its straight lines, does provide an effective indicator of
land development activity.

9.4 Problems

9.1 How can feature based grouping method be labeled based on the grouping in
the land use classification chapter?

9.2 What is the main hypothesis in feature based grouping?

9.3 What do ROC curves represent?

9.4 What are the best and worst ROC curve shapes?

9.5 Based on the previous two questions, what is the quality of ROC curves in this
chapter?

9.6 (Open ended question) Can the feature based grouping method be improved?
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Chapter 10
Detecting Residential Regions
by Graph-Theoretical Measures

We next consider a more specific land class type, namely “detecting residential re-
gions”, in this chapter of the book. Unfortunately, spatial coherence based method
introduced in the previous chapter is not sufficient for such fine classification. Our
graph-theoretical measures, explained in Chap. 8 in full detail, can be used directly
to solve this hard problem.

We focused on sparse residential areas here. These areas, often including large,
overhanging trees, exhibit forest-like characteristics and present a significant chal-
lenge. Yet, they are also of particular importance because it is often in these areas
that growth most rapidly occurs. To detect these regions, we implemented and tested
two strategies. In the first, we developed a Neyman–Pearson decision system based
on the Mahalanobis distance to the center of the residential region’s distribution in
our graph theoretical feature space. The second approach is to define a three-class
problem (rural, residential, urban) with a Bayes classifier. We obtained very good
results in both cases. It is particularly noteworthy that the residential regions show
a low miss rate.

We tested 295 images taken from different parts of the US, representing a wide
range of regions, climates, and terrain. We will first consider the problem of detect-
ing residential regions only (i.e., residential vs. nonresidential classification). Then
we will recast the problem as a three-way classification into rural, residential, and
urban. To form (our best guess at) the ground truth, we took the consensus ordering
(Fig. 8.3) as a benchmark, and labeled the test images accordingly. Unfortunately,
we do not have a data set professionally labeled by experts, which would be the best
way to evaluate our results. However, this labeling is true and unbiased, to the best
of our knowledge and ability.

Before giving the one- and three-class classification results, let us look at some
2D histograms of the measures, given in Fig. 10.1. We label rural, residential, and
urban distributions with blue, black, and red, respectively. For each figure, the y axis
corresponds to the first measure and the x axis corresponds to the second measure,
as given in the caption.

The residential region distributions lie between those of rural and urban regions,
as is the case for these regions in real space. Residential regions can be separated
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Fig. 10.1 Histograms in 2D spaces, blue—rural region, black—residential region, red—urban
region

easily in spaces including the graph-theoretical measures. In the purely structural
feature space (Fig. 10.1(a)), residential regions overlap significantly with rural and
urban regions. We will see the effect of this overlap below. In most of the feature
spaces, the urban regions exhibit subclusters. We do not yet know, but it will be in-
teresting to discover, whether these subclusters correspond to meaningful subclasses
of urban development.

10.1 One-Class Problem

Here, we formulate the problem using only residential region training data. We begin
by estimating the mean vector x̄ and covariance matrix Kx of the residential region
class in feature space assuming a bivariate Gaussian distribution. We then compute
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Table 10.1 Area under ROC
curves Feature space Area

Ec, μc 0.7476

Ec, mcr 0.7937

Ec, mds 0.8318

Ec, mlc1 0.8257

Ec, mlc2 0.8659

Ec, mlc3 0.8677

Ec, mf e 0.8428

Ec, mueg 0.8061

Ec, mF 0.9347

the Mahalanobis distance between each image to be classified and this distribution:

DM = (x − x̄)K−1
x (x − x̄)T . (10.1)

The relative probability that a feature vector x belongs to a residential region is then
computed as:

M = e
−(

DM

10−3 )
, (10.2)

where the normalization factor 10−3 is comparable with the Mahalanobis distances
we observe.

We use a Neyman–Pearson decision rule. We trained the classifier using just four
representative residential samples, and tested 91 residential and 190 non-residential
samples. Figure 10.2 presents the receiver operating characteristic (ROC) curves
for the various two dimensional feature spaces. We obtained the ROC curves by
shifting the decision boundaries in the classifier. In these spaces, one dimension
corresponds to the entropy of contrast Ec, given in (3.13), which works well in sep-
arating rural and non-rural regions; the second dimension corresponds to one of the
graph based measures, which are effective at distinguishing urban from residential
regions. To compare our results with the non-graph based structural feature space
(μc , Ec) alone, we also include its ROC curve as the dashed plot in each subfigure.

Spaces of more than two dimensions performed no better; we attained our best
results in the two-dimensional (Ec, mf ) feature space. Table 10.1 shows the area un-
der the ROC curve for each 2D feature space. The area under a ROC curve provides
a general indication of the overall performance of that feature space. The area under
a perfect ROC curve is, of course, unity. The ROC curves obtained in any space
including one of the graph-theoretical measures are superior to the best available
using only structural features, which is μc, Ec.
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Fig. 10.2 ROC curves obtained by shifting the Bayesian decision boundary for residential region
detection for the one class problem

10.2 Three-Class Problem

We next constructed a Bayes classifier, assuming equal priors, to label each image
as rural, residential, or urban. We tested the classifier on 90 rural, 89 residential, and
91 urban images. We used five rural, four residential, and six urban representative
samples for training. The training samples were chosen to cover a range of region
types within each class.

Classification results using the structural features μc, Ec alone appear in Ta-
ble 10.2. The overall correct classification rate in this space is 75.2%. We then con-
ducted an exhaustive study of all possible feature spaces drawn from the full set
of graph theoretical and structural measures (all singles, pairs, triples, etc.). Inter-
estingly, the top three performing spaces are all two-dimensional, each consisting
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Table 10.2 Three class
classification results in the
(μc , Ec) space

Percentage classified as

rural residential urban

90 rural samples 75.6 23.3 1.1

91 residential samples 16.5 71.4 12.1

89 urban samples 0.0 21.3 78.7

Table 10.3 Three class
classification results in the
(Ec , mds ) space

Percentage classified as

rural residential urban

90 rural samples 97.8 0.0 2.2

91 residential samples 13.2 78.0 8.8

89 urban samples 0.0 27.0 73.0

Table 10.4 Three class
classification results in the
(Ec , mF ) space

Percentage classified as

rural residential urban

90 rural samples 77.8 22.2 0.0

91 residential samples 4.4 93.4 2.2

89 urban samples 0.0 27.0 73.0

Table 10.5 Three class
classification results in the
(μc , mds ) space

Percentage classified as

rural residential urban

90 rural samples 85.6 13.3 1.1

91 residential samples 6.6 82.4 11.0

89 urban samples 0.0 27.0 73.0

of one structural feature and one graph-theoretical (or the fused) feature. They are
(Ec , mds ) (83.0% overall classification rate, Table 10.3); (Ec, mF ) (81.5% over-
all classification rate, Table 10.4); and (μc, mds ) (80.4% overall classification rate,
Table 10.5). It is not clear that these differences are statistically significant.

While the (Ec, mds ) space provides the highest overall classification perfor-
mance in these tests, the (Ec, mF ) space is far better at detecting residential regions
(93.4%), at the cost of greater false alarms from urban and rural areas. In our par-
ticular application, detecting residential areas, the (Ec, mds ) space would therefore
be preferred. For us, a false alarm is far less damaging than a miss. But for other
applications, another space may prove superior.

Table 10.6 gives the difference (�) between Tables 10.4 and 10.2 to highlight
the performance differences offered by the fused graph theoretical measure. A neg-
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Table 10.6 Change in
classification performance for
the (Ec,mF ) space relative to
the (μc,Ec) space

Percentage classified as

rural residential urban

90 rural samples 2.2 −1.1 −1.1

91 residential samples −12.1 22.0 −9.9

89 urban samples 0.0 5.7 −5.7

ative value in a diagonal entry, or a positive value in an off-diagonal entry, indicates
a reduction in classification performance in moving from the “original” (μc , Ec)
space to the (mE , mF ) space. The urban region detection rate decreases using the
graph based measures, yet there is a clear 22.4% improvement in residential region
classification.

10.3 Summary of the Chapter

Our objective in this chapter was to detect residential regions which are difficult to
discriminate. We first cast this as a one-class problem and obtained a clear and def-
inite improvement by using graph-theoretical and structural features together over
structural ones alone. This indicates that, for fine classification, structural features
alone are inadequate. Besides the photometric structure in the scene, the spatial re-
lationships of these structures, as captured by a graph and expressed in our measures
here, are also needed.

Finally, we built a three-class classifier. For the three-class case, we obtained
classification results superior to those reported anywhere over a similar number of
test samples. Again, the results underscore the effectiveness of graph-theoretical
measures for fine(r) classification. With these very high detection rates, our ap-
proach can be used to detect residential regions automatically.

10.4 Problems

10.1 How do one- and three-class problems differ?

10.2 What does the area below an ROC curve represent?

10.3 Based on Tables 10.2, 10.3, and 10.4, which classes interfere more?

10.4 Do graph-theoretical measures make a difference?

10.5 (Open ended question) Can there be other methods to extract the residential
regions using graph-theoretical measures?
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Chapter 11
Review on Building and Road Detection

In this chapter, we briefly review the literature on building and road detection. We
group previous studies as follows: building detection (alone), road detection (alone),
and combined building and road detection. The last group of studies exploits the
mutual information between buildings and road networks to improve detection.

11.1 Building Detection

Mayer [1] surveyed object detection systems from aerial images, focusing on build-
ing detection. In his excellent survey, he classified building detection systems
based on their complexity (in data, building model, and system strategy). Follow-
ing Mayer’s format (in simplified form), we add missing and new papers published
after his survey in Table 11.1. Besides the performance measures, Shufelt and McK-
eown [2] offer another survey on aerial building detection.

In Table 11.1, data complexity summarizes the resolution of the input image, rel-
ative location of the buildings, and the complexity of the scene. As for image types,
some researchers used satellite images (such as Landsat, SPOT, and IRS) with reso-
lutions in the 5 to 30 meter range. Others used aerial images with resolutions in the
0.3 to 1 meter range. Still others have used Digital Elevation Map (DEM) or Digi-
tal Surface Model (DSM) data. Finally, some have used Synthetic Aperture Radar
(SAR) images. Each of these representations has its own benefits and shortcomings.

Model complexity characterizes the building model used. It may be a simple 2D
rectangle, a 2D polynomial, or a 3D surface. The model should serve the system’s
application. If only detection is required, a simple rectangle as a building model may
suffice. However, if a detailed site model is required, 3D surface models as well as
polynomial representations are necessary.

System strategy captures the complexity of the system. Perceptual organization,
Bayesian networks, and graph-theoretical methods are some of the approaches used
in building detection systems.

Neither Mayer nor Shufelt and McKeown provided the classification perfor-
mances of the systems they reviewed. Here, we fill this gap by providing reported
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Table 11.1 Building detection review, in Mayer’s format

Approach Data Model Strategy

Huertas and Nevatia [4] low-medium simple medium

Shufelt and McKeown [5] low-medium medium medium

Krishnamachari and Chellappa [6] low-medium simple medium

Maloof et al. [7] low-medium medium medium

Brunn and Weidner [8] high medium high

Zhang [9] high simple simple

Kim and Muller [10] low simple medium

Stassopoulou and Caelli [11] low medium high

Gamba et al. [12] high medium simple

Noronha and Nevatia [13] low simple high

Fradkin et al. [14] medium high medium

Krishnamoorthy et al. [15] medium medium medium

Jaynes et al. [16] medium high high

Peng et al. [17] high medium medium

Katartzis and Sahli [18] medium high high

Karantzalos and Paragios [19] medium medium high

Sirmacek and Ünsalan [20] medium simple high

Sirmacek and Ünsalan [21] medium simple high

classification performances in Table 11.2. In accordance with Lin and Nevatia [22],
we cite probability of detection and branching factor. Probability of detection, Pd ,
is the percentage of the ground truth buildings detected. Branching factor, Bf , is the
number of non-building objects (not pixels) labeled as buildings divided by the total
number of objects labeled as buildings.

For the systems reported, Pd varies from 41.5% to 100.0%, with Bf in the 0.0%
to 46.0% range. The performance depends on the resolution of the image, the den-
sity of buildings in the scene, and finally the size of the buildings to be detected.
In most of these papers, the ground truth, such as the number and size of the build-
ings, has not been reported in detail. Also, the definitions of successful detection
vary, ranging from simple detection of any part of a building [13], to complete de-
lineation [23]. Any comparison of the numbers in Table 11.2 must be done in light
of these caveats.

The size of the buildings to be detected affects the performance. For example,
Kim and Muller [10] reported Pd = 79.1% for house detection over 12 houses,
which is far less than the maximum Pd obtained. Krishnamoorthy et al. [15] ob-
served that most of their errors originate from house detection.
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Table 11.2 Building
detection review, reported
performances. Criteria for
success vary; see text

Approach Pd (%) Bf (%)

Shufelt and McKeown [5] 49.8–86.6 12.8–32.2

Maloof et al. [7] 90.0–91.6

Lin and Nevatia [22] 71.9 6.7

Collins et al. [23] 89.0 46.0

Kim and Muller [10] 76.3

Stassopoulou and Caelli [11] 97.6 12.0

Noronha and Nevatia [13] 96.4 0.0

Fradkin et al. [14] 80.3 1.0

Krishnamoorthy et al. [15] 41.5–86.9

Jaynes et al. [16] 99.5

Peng et al. [17] 83.6

Katartzis and Sahli [18] 100.0

Karantzalos and Paragios [19] 98

Sirmacek and Ünsalan [20] 88.4 14.4

Sirmacek and Ünsalan [21] 93.4 17.9

11.2 Road Detection

There is another excellent survey paper by Mayer et al. [3] on road detection in
aerial images. As in the previous section, we add unreported papers in this survey
following the same format (simplified) in Table 11.3. For each paper, we provide
(if available) the data complexity, representation, and the resolution in meters per
pixel.

As Table 11.3 shows, images with various complexities are used to detect road
networks, including airborne, satellite, and SAR. Topology, parametric models,
snakes, and semantic networks are the most popular representation methods. Res-
olution varies from 0.5 meters to 75 meters for these studies. In the low resolution
(greater than 30 m/pixel) images only highways can be detected. There is also an-
other review paper by Mena [40] summarizing road detection work till 2003.

In their survey, Mayer et al. did not provide road detection performances. As in
building detection, we provide the reported road detection performances in terms of
probability of detection Pd and probability of false alarm Pf in Table 11.4.

In Table 11.4, Pd varies from 72.0% to 100.0%; Pf varies from 1.0% to 10.6%.
In these studies, the performance depends on the type of road to be detected, whether
it is a highway with six lanes, a street in a city, or a road in a rural region. A method
designed for a specific road type may not be useful for other types. Based on these,
Table 11.4 gives a general idea about performance, but is not a conclusive test to
pick the best method among them.
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Table 11.3 Road detection review

Approach Data complexity Representation Resolution (m)

Bajcsy and Tavakoli [24] low topology 79

Wang and Newkirk [25] medium semantic network 10

Fiset and Cavayas [26] medium-high topology, tracking 30

Netanyahu et al. [27] medium parametric 1–3

Tupin et al. [28] high semantic network

Karathanassi et al. [29] medium-high topology, parametric 6.25, 10

Laptev et al. [30] low snakes 0.5

Jeon and Hong [31] low grouping, snakes

Shi and Zhu [32] high topology 1

Stoica et al. [33] medium point processes 5

Mena and Malpica [34] low texture 0.5

Zhang and Couloigner [35] low texture 1

Hu et al. [36] medium tracking 1

Yang and Wang [37] low perceptual organization 1

Peng et al. [38] high variational model 0.6

Movaghati et al. [39] low particle, Kalman filtering 1

Table 11.4 Road detection
review, reported
performances. Criteria for
success vary; see text

Approach Pd (%) Pf (%)

Bajcsy and Tavakoli [24] 85.0–100.0

Wang and Newkirk [25] 87.7 10.6

Fiset and Cavayas [26] 79.3–81.3

Karathanassi et al. [29] 92.0

Laptev et al. [30] 72.0–84.0 1.0–5.0

Jeon and Hong [31] 92.2 1.6

Shi and Zhu [32] 91.5–92.1 1.6

Stoica et al. [33]

Mena and Malpica [34] 70.0

Zhang and Couloigner [35] 84.0

Hu et al. [36] 94.0

Yang and Wang [37] 90.2 10.3

Peng et al. [38] 89.1

Movaghati et al. [39] 98.0

11.3 Combined Building and Road Detection

Some researchers have designed systems to detect both buildings and road networks
simultaneously. Because buildings and road networks are not independent of each
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other, this strategy may improve the detection of both. Nagao et al. [41] and Na-
gao and Matsuyama [42] introduced such a system. Similarly, Hwang et al. [43]
introduced a hypothesis generation and testing method to detect houses and road
segments. In the next chapter, we also detect houses and street networks simultane-
ously.

11.4 Problems

11.1 Where can road and building detection results be used?

11.2 Why is detecting roads and buildings together more promising than detecting
each alone?

11.3 Besides using panchromatic images, what other sources of data can be used to
detect buildings and road segments?

11.4 (Open ended question) What are the possible future trends for road segment
and building detection?
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Chapter 12
House and Street Network Detection
in Residential Regions

In the previous chapters, we introduced several methods to detect residential regions
starting from land use classification. In this chapter, we introduce a novel subsystem
(of our multispectral satellite image understanding system) to detect houses and the
street network in residential regions. Detecting houses is far more challenging than
detecting larger buildings for several reasons. First, their relatively small size (in
onemeter resolution Ikonos images) makes their detection difficult. Second, occlu-
sion by nearby trees is common. Third, in some neighborhoods, houses may come in
fairly complex shapes. Analogous problems (small cross-section, overhanging trees,
and winding curves) present challenges for street detection in residential regions.1

Our house and street network detection subsystem comprises four main parts.
We first introduce measures on multispectral images to detect regions of possible
human activity. On these measures, we introduce a variation of the k-means cluster-
ing algorithm to extract possible houses and the street network by combining both
spatial and spectral features. This combination of information improves the final
clustering results. From clustering, we obtain a binary image containing possible
street network fragments and houses. We then decompose this binary image using a
balloon algorithm based on binary mathematical morphology. Having obtained the
decomposition, we represent them in a graph theoretical framework. Balloons serve
as vertices and their neighborhood information is encoded as edges in the graph.
The street network is extracted from the graph by using the unary and binary con-
strains. The remaining vertices (balloons) are assigned as possible houses in the
region. Next, we explore each part in detail.

12.1 Using Multispectral Information

Most prior work on building and road detection uses either panchromatic images
or DSM data. Besides panchromatic images, we have additional multispectral in-

1The figures in this chapter are obtained from our previous work [3]. Here, they appear with the
kind permission of Elsevier.
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Fig. 12.1 Ω example

formation, but no surface or site models. We use this information to infer cultural
activity (such as houses and street networks) and water (such as lakes).

12.1.1 A Derived Index to Detect Human Activity

We can use vegetation indices, given in Sect. 3.3, to detect human activity in mul-
tispectral images. The NDVI and its linearized version θ respond with a low value
(around 0) to rocks, stones, and their derivatives [1]. These materials are used exten-
sively for building and road construction, thereby indicating possible human activity
(actual rock outcroppings in residential regions are rarely large enough to be seen in
Ikonos data). Also, θ achieves high values in areas of significant vegetation density,
while returning negative values for cloud, shadow, and snow. Therefore, to measure
possible building or street pixels in residential regions, we use the following derived
index:

Ω = 1 − |θ | (12.1)

Ω is normalized between 0 (suggesting low human activity) and 1 (usually meaning
high human activity). Any rock outcroppings that may be detected in residential ar-
eas are easily eliminated in subsequent processing based on their irregular footprint.

To illustrate Ω , we use a part of the New Mexico image given in Fig. 12.1(a).
This neighborhood shows characteristics typical of a mature residential region. Each
house has its own garden; they are well-spaced; and there are mature trees nearby.
If we consider Fig. 12.1(a), we can appreciate the challenging nature of the house
and street detection problem in residential regions. Even human observers find it
difficult to decide whether there are houses in some parts of the image without using
context, such as partial knowledge of the street layout, driveways, and so on. We give
the corresponding color-coded (blue corresponds to the lowest and red corresponds
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to the highest values) Ω image in Fig. 12.1(b). Houses and the street network are
represented by high index values (in red) in this image.

12.1.2 Using a Shadow–Water Index to Eliminate Lakes

While high Ω values indicate possible house and street network pixels, they may
also correspond to water regions such as rivers, lakes, or ponds. Because such fea-
tures can appear in residential regions, we eliminate them using a method we intro-
duce in this section.

In the Ikonos spectrum, water shows an increasing response curve until the blue
band. It reaches a maximum in this region and then decreases monotonically to the
near-infrared [1]. So, a representative shadow water index should be composed of
high blue values first. Ideally, it should also consider the green and red bands, but the
green band also responds strongly to vegetation and this impairs the shadow or water
observation. Hence, the index should at least include blue and red bands. Under
the light of these observations, we use the shadow–water index, γ2, introduced in
Chap. 4.

Because this index is unable to discriminate water from shadows, we use θ and
γ2 in conjunction to distinguish the water regions. To do so, we first obtain a binary
image from the γ2 image. Our tests indicate that pixels having γ2 values higher than
0.3 are possible shadows or water regions. Therefore, we threshold the γ2 image at
this value. We then use connected components analysis to extract eight-connected
regions in this binary image. We eliminate regions smaller than 75 pixels, consider-
ing them to be insignificant (neither a significant body of water nor a shadow region
that will impact subsequent processing). Because water gives a strong γ2 response,
but a low θ response, while shadows generally cover at least some vegetation, we la-
bel a region (as segmented from the Ω image, details below) as water if its θ median
is less than 0.2 and its γ2 median is greater than 0.3.

Water detection was applied to the 44 images at hand, and all bodies of water
covering more than 75 pixels (19 in all) were detected. There were no false positives.
As an example, Fig. 12.2 shows an Indiana image containing a lake in the middle
of the scene. We give its panchromatic image, color-coded (blue corresponds to the
lowest value, red corresponds to the highest value) γ2 image, and the water region
detected. The lake is correctly detected in the middle of the residential region.

12.2 Segmenting the Ω Image

Although Ω indicates possible human activity, we need a binary image for subse-
quent processing. In this binary image, possible human activity will be labeled as
foreground. This section introduces an extension of the k-means clustering algo-
rithm that exploits spatial coherence via connected components for segmentation.
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Fig. 12.2 Detecting water regions

Algorithm 1: K-means clustering
Begin
n = number of samples (pixels)
c = number of classes
μi = mean vector for class i

Initialize n, c, μ1, μ2, . . . ,μc

repeat
classify n samples according to nearest μi

recompute μi

until no change in μi

return μ1, μ2, . . . ,μc

End.

12.2.1 K-means Clustering with Spatial Coherence

K-means clustering (KMC) is a standard iterative technique in pattern recognition to
extract natural clusters in the data [2, 4]. Standard k-means appears as Algorithm 1.
In standard k-means clustering, the Euclidean distance is used in the classification
step. Jain et al. [5] suggested using the Mahalanobis distance instead. No spatial
information is used in either case.

As the zoomed (New Mexico) Ω image (Fig. 12.3) illustrates, houses and street
segments are connected via driveways. The street network is also connected. To use
this information, we extend the k-means clustering algorithm by introducing spatial
information derived from connected components analysis. We call this algorithm
k-means clustering with spatial coherence (KMC-SC).

Our application of k-means clustering with spatial coherence is as follows. On
the Ω image, we define an initial segmentation threshold ts (we show below that this
value is not critical). Pixels for which Ω > ts are the initial object (foreground) pix-
els (possible human activity); the rest are the initial background pixels. These serve
as input to the class-conditional sample mean and covariance calculations. K-means
clustering using the Mahalanobis distance is then applied to the data to update the
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Fig. 12.3 Ω example, zoomed

object and background hypotheses. Here, the use of spatial coherence begins. The
current object pixel hypotheses are decomposed into eight-connected sets. Those
sets intersecting with the initial set of object pixels (at the beginning of this iter-
ation) form the final object segment for this iteration. This maintains object class
coherence throughout clustering; no new, isolated object segments can be created.
We apply the spatial coherence constraint only to the foreground. A new iteration
starts by updating the sample mean and covariance calculations. The iteration ter-
minates when the absolute value of the difference between the current and previous
object (total) pixel counts falls below a threshold. The details appear in Algorithm 2.

We present iteration steps for this algorithm on the Indiana image in Fig. 12.4.
After initial thresholding, some parts of the object segments have been obtained. As
the algorithm iterates, it adds remaining object pixels to the initial object segment.
Finally, most of the object segments have been labeled correctly. Importantly, pixels
added early in the process present greater Ω values than those added later.

We demonstrate the algorithm on four images from different regions. For
each case, we give the panchromatic image and the binary segment (Co) in
Fig. 12.5, 12.6. On all test images, our clustering method was able to converge
in a reasonable number of iterations (approximately 10 to 12 iterations on average).
These experiments show that our clustering method works fairly well on different
residential regions and varying environmental conditions including changes in veg-
etation cover and soil type.

12.2.2 Comparison with Other Methods

We will now compare our modified clustering method with standard k-means clus-
tering, Otsu’s method [6], and region growing [7, 8]. We also tested fuzzy k-means
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Algorithm 2: K-means clustering with spatial coherence
Begin
n = number of samples (pixels)
m = iteration number; m := 1
te = stopping threshold
Co = object class, man made objects like street networks and houses (image space)
Cb = background class, vegetation and bare soil (image space)
|Co| = total number of object class pixels in the image
ts = initial Co level, ts := 0.8
Co(1) := Ω > ts
Cb(1) := (Co(1))c

μi = sample mean feature vector for class i ∈ {b, o}
�i = sample covariance matrix for class i ∈ {b, o} (feature space)
DM = (x − μi)�

−1
i (x − μi)

T , x a sample vector to be classified
compute μi, �i, i ∈ {b, o}
repeat

m := m + 1
classify n samples according to nearest class via Mahalanobis distance DM

find Co(m) in image space
find k connected components of Co(m), Co

j (m) j = 1,2, . . . , k

Co(m) := ⋃
j∈{1,2,...,k} Co

j (m) such that Co(m − 1)
⋂

Co
n(m) �= ∅

Cb(m) := (Co(m))c

recompute μi , �i , i ∈ {b, o}
until ||Co(m)| − |Co(m − 1)|| < te
return Co(m)

End.

clustering [2] but the performance was similar to k-means clustering; therefore, we
omit it here.

Otsu formulates the optimum threshold by maximizing the between-class vari-
ance assuming a bimodal histogram such that one peak corresponds to the object
and the other to the background. This method depends on the histogram only. Al-
though it is extremely fast, the results become less reliable if the bimodal histogram
assumption is not satisfied.

In region growing, initial seed points are selected by some appropriate process.
Then, nearby points are added to these seed points such that they do not exceed
a threshold in variance or another homogeneity criterion. Here, we obtained the
seed points by thresholding, and for homogeneity we used the variance threshold.
One shortcoming of region growing is its heavy dependence on seed points. Also,
as the region area grows, the incursion of false pixels to clusters becomes more
probable [8].

We compare these four methods in Fig. 12.7. Here, we use four different residen-
tial regions from Indiana, Maryland, New Mexico, and South Dakota. Segmentation
by standard k-means clustering (KMC) performed worst of all. We see the effects of
heavy dependence on the seed points in region growing on the Indiana and Maryland
images. The method cannot recover regions having no seed points. Finally, KMC-
SC performed well on all four images. We also quantify these results in Table 12.1.
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Fig. 12.4 Sample iterations on the Indiana image by Algorithm 2, KMC-SC

As Table 12.1 shows, KMC-SC has the highest Pd over three images. It falls be-
hind Otsu’s method only in the New Mexico image. Otsu’s method, however, pro-
duces a significant number of disconnected segments because it invokes no spatial
coherence constraint. Region growing has the lowest Pf for three images except
South Dakota. However, for these three images, it has Pd values far below KMC
with spatial coherence. Overall, KMC-SC is the best segmentation method among
these four for our application.
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Fig. 12.5 Test images and binary segments Co returned by Algorithm 2, KMC-SC, Part I

12.2.3 Dependence on Initial Conditions

The only free parameter in KMC-SC is the initial segmentation threshold ts . This
also serves as the seed point extraction step in region growing. Here, we test the
stability of our method with respect to this initial threshold value. We consider three
different initial segmentation thresholds ranging from ts very large to very small.
We give the initial and the final segments in Fig. 12.8. We also provide the total
pixel count in the segment versus the iteration number, showing that convergence is
nearly exponential.

The results show that the selection of ts is not highly critical. If the segmentation
threshold is high (fewer seed points), the method is able to recover most of the
missing parts. If the segmentation threshold is low (seed points cover more area
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Fig. 12.6 Test images and binary segments Co returned by Algorithm 2, KMC-SC, Part II

Table 12.1 Comparison of performances, in percentages

Indiana Maryland New Mexico South Dakota

Pd Pf Pd Pf Pd Pf Pd Pf

KMC 78.0 49.0 86.3 38.7 20.2 56.9 96.2 34.1

Otsu’s method 91.9 6.4 85.3 1.6 96.7 36.6 98.2 7.9

Region growing 26.8 2.1 25.4 0.2 74.0 6.7 96.9 6.6

KMC-SC 94.4 5.6 96.4 1.0 95.3 13.2 98.7 3.3
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Fig. 12.7 Comparison of segmentation algorithms. First row: Indiana image; second row: Mary-
land image; third row: New Mexico image; fourth row: South Dakota image. First column: KMC;
second column: Otsu’s method; third column: region growing; fourth column: KMC-SC

than the actual shape), the method is able to eliminate most extra parts. Of course,
if a reasonable threshold is selected we get the best performance. The threshold can
also be calculated by another algorithm (such as Otsu’s method); however, we found
no significant gain in doing so. Since the Ω image is scaled, a fixed threshold for all
images suffices; we set it to 0.8.

The case of Fig. 12.8(h) is interesting in that the lake was eliminated by KMC-
SC, prior to the explicit water elimination step described above. This was simply
the outcome of KMC-SC for this case. Because water regions present intermediate
θ values, the cluster which they will appear in is unpredictable. This observation
motivated the water elimination technique presented above.
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Fig. 12.8 The Indiana image, segmentation results with different ts values

12.3 Shape Decomposition of the Foreground: The Binary
Balloon Algorithm

We next decompose the binary segment Co (representing possible houses and the
street network) into subsets such that each either represents a structure (a house or
a street segment), or a combination represents such a structure. From this point on,
Co represents a binary segment without lakes and water regions. We discussed how
to discard these regions in Sect. 12.1.2.
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For decomposition, we introduce a binary balloon algorithm. Balloons are de-
formable models that are fitted to a target object in an image using external and
internal constraints [9]. External constraints are provided by image (photometric)
gradients, while the internal constraints are smoothness and bending forces designed
to limit the balloon’s shape complexity. Balloon algorithms have been used exten-
sively for shape fitting in computer vision.

The extent of the objects in Co motivates us to introduce a new balloon algorithm
tailored to our domain. We construct the binary balloons by set morphology oper-
ations. Mathematical morphology is a well-known tool to extract regions based on
their shapes [8, 10]. We now provide a very brief review of elementary mathemati-
cal morphology. Mathematical morphology (more properly, Minkowski algebra) is
based on logical operations over, in our case, sets in Z2. We need three basic mor-
phology set operations: translation, dilation, and erosion. We consider each in turn.
Let the points (vectors) be p = (p1,p2), a = (a1, a2), b = (b1, b2). Let A be a set
of points, not necessarily connected, in the plane.

The translation of set A by p is:

(A)p = {c|c = a + p,a ∈ A}. (12.2)

The dilation of set A by set B is:

A ⊕ B =
⋃
b∈B

(A)b. (12.3)

The erosion of set A by set B is:

A � B =
⋃
b∈B

(A)−b. (12.4)

The set B as used in (12.3), and (12.4) is commonly referred to as the “structuring
element”. It is a sort of template for the analysis of the shape of the set A.

12.3.1 Constructing Initial Balloons

Our primary goal in decomposing the binary image Co is to identify its elongated
subsets such that they represent possible street segments (non-elongated segments
will represent other structures, including houses). For this purpose, we use lines as
initial balloons in Co. We extract lines by applying erosion and dilation operations,
respectively. We define four linear structuring elements (one could use more, but
we found no advantage in doing so): horizontal, vertical, the two diagonals. If we
take x and y as coordinates in the image space, horizontal corresponds to a constant
y, vertical corresponds to a constant x, diagonal-1 corresponds to a line segment
y = x + b, b being the y-intercept, and diagonal-2 corresponds to a line segment
y = −x + c, c being the y-intercept.
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Algorithm 3: Algorithm to construct initial balloons
Begin
l = length of the structuring element
M = binary image (in our case obtained from segmentation)
S(l) = structuring element
l := maximum length
while l > 0 do

E := M � S(l)

if E �= ∅ then
D := E ⊕ S(l)

Call the binary balloon algorithm (Algorithm 4) [input = D,M ; output = B]
M := M \ B

else
l := l − 1

end if
end while
End.

To extract initial balloons for each structuring element, we apply Algorithm 3.
The procedure is briefly described as follows. We set the length of the structuring
element to the maximum image size to detect the longest initial balloon possible. We
then decrease the length of the structuring element until we detect an instance of it in
the image. This structuring element is taken as an initial balloon. Then, we expand
the initial balloon to construct the corresponding binary balloon and eliminate its
pixels from the image via set subtraction. By decreasing the size of the structuring
element, we continue to detect initial balloons and expand the corresponding binary
balloons. Since we discard the points in each binary balloon before extracting the
next, the final set of balloons will be disjoint.

12.3.2 Inflating the Binary Balloons

Once we obtain an initial balloon, we construct the corresponding binary balloon.
We expand the initial balloon to fit into a region similar to standard balloon algo-
rithms. However, unlike other algorithms, ours does not use a parametric form for
the balloon. Instead, we expand each balloon by adding neighboring points satisfy-
ing a smoothness condition. This is a unique feature of our binary balloon algorithm;
standard balloon algorithms perform poorly in our domain owing to the extreme as-
pect ratios of streets and roads, and small house sizes.

We start with a binary balloon obtained from Algorithm 3. The outer boundary
points (eight-connected neighbors in the object class) of the initial balloon are la-
beled as candidate points. If there are no such foreground pixels, the balloon expands
no more. Therefore, the balloon can never expand outside the object region. We
group the candidate pixels into eight-connected candidate sets by connected com-
ponents analysis. To ensure a smooth boundary, each added candidate set should be
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Algorithm 4: The binary balloon algorithm
Begin
D = initial balloon obtained by Algorithm 3
M = binary image modified by Algorithm 3
to = overlap threshold
m = iteration number; m := 1
B = binary balloon (a region in image space)
P = three by three pixel square set
|B| = total number of “on” pixels in set B

B := D

C(0) := D

while A �= ∅ do
C(m) := (C(m − 1) ⊕ P ) ∩ M

A := C(m) \ C(m − 1)

An := connected components of A; n = 1,2, . . . , k

for n = 1 to k do
if |B ∩ (An ⊕ P )| > to then

B := B ∪ An

end if
end for
m := m + 1

end while
return B

End.

similar to the balloon locally. That is, we want the added set to be elongated along
the same axis. This will be our internal constraint. Since all pixels in each candi-
date set are eight-adjacent to the current balloon, larger sets are more consistent
in shape (orientated elongation) with the current balloon than are the smaller sets.
Therefore, we define a size threshold to to control the boundary smoothness; this is
set to a fixed fraction of the number of pixels in the initial balloon. If we keep this
threshold high, the decomposition of Co will consist of more elongated balloons
with smoother boundaries; if we keep it low, fewer, less elongated balloons with
rougher boundaries will result. Only if the total number of adjoining pixels exceeds
to, which we set to equal to one-half the number of pixels in the initial balloon, do
we add the candidate set to the balloon. We update the balloon, and iterate until the
balloon expands no more.

Initial additions will be lines, since we start with a line. As the balloon starts
to take the shape of the object, curved lines can be added. At every step, the size
threshold will force the shape to remain smooth. The binary balloon construction
algorithm appears in Algorithm 4.

To clarify these steps, we demonstrate them on a small example in Fig. 12.9.
Here, dashed blue lines represent candidate points, and red points represent the ex-
tracted balloon for each iteration. We start with the initial horizontal balloon (labeled
red) in Fig. 12.9(b). Two candidate sets (labeled in green) exceed to (separately) at
the first iteration, and therefore will be added to the balloon. Two candidate sets
(labeled yellow) could not exceed to at the second iteration. At this point, there are
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Fig. 12.9 Extracting the binary balloon, an example

no more candidate object pixels and the iteration stops. The final balloon extracted
is labeled in red in Fig. 12.9(d).

Next, we demonstrate binary balloon extraction on the South Dakota image. To
obtain the decomposition for Co in this image, we obtain all the binary balloons
in Co with the four structuring elements separately as illustrated in Fig. 12.10. For
demonstration purposes, we applied a greedy graph-coloring algorithm in all these
figures, such that no two neighboring balloons have the same color [11]. In this
figure, gray levels have no meaning except as labels to distinguish one balloon from
another.

In Fig. 12.10(a), the decomposition of Co into horizontal balloons is shown. In
this decomposition, there are around 200 horizontal non-intersecting balloons cov-
ering Co. Horizontal Co sections are represented by a few large balloons; curved
sections are represented by many small balloons. This is also the case for vertical
and diagonal decompositions with respect to their initial balloons. All balloons have
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Fig. 12.10 The South Dakota image, decomposition of Co

smooth boundaries because of the size threshold (internal constraint) is kept high.
Most of them are also elongated. Next, we combine these four representations.

12.3.3 Combining Balloons via Voting

As we apply the decomposition method, each pixel in Co belongs to at least one
balloon. These multiple representations result in many overlapping and redundant
balloons, none of which (usually) captures a complete ground feature on its own.
To merge the balloons and eliminate redundancy as much as possible, we apply a
voting method mentioned in Sect. 6.1. Each pixel votes for the largest balloon of
which it is a member. As votes are summed, those balloons receiving votes exceed-
ing 80% of their areas are selected and retained. The rest are deleted as redundant
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Fig. 12.11 The South
Dakota image, combination
of balloons

since they do not convey new information. The merging does not result in a per-
fectly disjoint balloon set. The balloons may overlap somewhat around connecting
regions; however, this overlap does not impair subsequent processing.

Applying the combination method to the initial balloons in Fig. 12.10, we ob-
tain the final balloons shown in Fig. 12.11. This figure serves two purposes. First,
it shows that the combination method is effective in eliminating most of the redun-
dant balloons. Second, in obtaining elongated structures, our binary balloons work
well even in such a complex environment. With the balloons in place, we are now
prepared to abstract the description of the street network and houses, as discussed
next.

12.3.4 Abstracting the Scene: Attributed Balloons

To build an abstract representation of the scene, we attribute each balloon with the
following properties: boundary, spine, length (of the spine), center of mass, and av-
erage width. We represent the outer boundary of each balloon using Fourier descrip-
tors. Let a complex periodic function, u(t) = x(t) + jy(t) = u(t + rT ), j = √−1
for any integer values of t and r , represent the outer boundary of the balloon. T is
the total number of points in the contour. The complex periodic contour can be ap-
proximated by a Fourier series as given in Chap. 6. In this chapter, we use the fourth
order Fourier series representation to filter the boundary shape prior to computing
its features below.

To obtain the spine of the balloon we use its curvature. The curvature is a
differential geometric entity giving a measure of how rapidly the curve deviates
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Fig. 12.12 Spine extraction

from its tangent line [12]. We find the curvature of the filtered boundary (û(t) =
x̂(t) + j ŷ(t)) as

K(t) =
dx̂(t)
dt

d2ŷ(t)

dt2 − dŷ(t)
dt

d2x̂(t)

dt2(
(
dx̂(t)
dt

)2 + (
dŷ(t)
dt

)2
)3/2 . (12.5)

Given the balloon construction and filtering above, the extremal points of this
curvature correspond to the endpoints, e1 and e2, of the spine (on the boundary) to
be extracted. There is no algebraic solution to obtain the roots of (12.5) directly; we
solve it numerically.

With e1 and e2 corresponding to the curvature extreme (spine endpoints) on the
contour, we split the contour function into two parts at these points. These are ar-
bitrarily labeled the upper and lower contours, xu + jyu and xl + jyl , respectively.
Both are reindexed to run from e1 to e2 and interpolated to have the same number
of points. Then the spine of the balloon is defined as

s(k) = 1

2

[(
xu(k) + xl(k)

) + j
(
yu(k) + yl(k)

)]
, (12.6)

for k = [0, e2 − e1).
To demonstrate the construction of the spine of a balloon, let us consider a hori-

zontal balloon from the South Dakota image. We first obtain the filtered version of
the boundary by a fourth order fit as in Fig. 12.12(a). We give the corresponding
curvature in Fig. 12.12(b). And we find the extremal points of this curvature (e1, e2
labeled on both the boundary and the curvature). As can be seen, the extremal points
of the curvature are distinct and easy to extract. We finally obtain the spine curve
(represented by a dashed curve) in Fig. 12.12(a).

We keep the boundary and the spine in parametric form for further processing
(such as street extraction). We take the length of the spine to be its arc length. The



12.4 Street Network and House Detection 163

number of pixels on the spine could also be considered to be its length. However,
the arc length is robust to non-uniform pixel placements along the spine. If the spine
is given as s(k) = x(k) + jy(k), then its arc length is

l =
∫ e2

e1

√(
dx(k)

dk

)2

+
(

dy(k)

dk

)2

dk. (12.7)

The center of mass of each balloon is the centroid of its point set. To compute the
average width of the balloon, we compute the distance from each contour point to
the spine along the direction orthogonal to the spine. The average of these distances
is taken as the width of the balloon.

12.4 Street Network and House Detection

This section describes how we extract the street network and houses from the bal-
loons. We first eliminate balloons showing neither street nor house characteristics.
Then, we construct a graph over the remaining balloons. Using graph-theoretical
techniques and size information as discussed below, we jointly extract street net-
works and houses.

12.4.1 Eliminating Balloons Corresponding to Large Structures

In residential regions, we may also encounter large buildings such as shopping malls
and schools, along with their parking lots. Therefore, some balloons produced in the
previous step may represent these structures. We identify and discard these balloons
by their morphology.

To discard balloons representing possible large buildings and parking lots, we
use their area and compactness. Compactness is defined as the ratio of a region’s
area to the square of its perimeter, normalized by 4π [8].

Ours are metric images with the same resolution on the ground (4 meters/pixel
multispectral) over the entire image set; so area is a reliable feature. A typical house
is far smaller than a shopping mall or a parking lot. Road networks encompass
large areas, of course, but they are highly non-compact. Therefore, we calculate
compactness as a second feature. Balloons possibly belonging to the street network
have low compactness values; balloons representing a house are highly compact and
of small area. We eliminate balloons having area > 75 and compactness > 4π/60
as being neither part of the street network nor a house.
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12.4.2 Forming a Graph to Represent the Balloon Neighborhoods

We extract the street network and houses using methods rooted in graph theory. For
our previous methods, we also benefit from graph theory in Chap. 8. In this chapter,
we follow the same notation for graphs.

We construct the balloon graph as follows. Each balloon is associated with a
vertex in the graph. Therefore, each vertex vi has three properties: arc length l(vi),
width w(vi), and the center of mass c(vi) = (xi, yi). There is an edge between
two vertices if their corresponding balloons have a common boundary section. The
weight assigned to this edge is the distance between these two balloons. To calculate
this distance let vi and vj be two adjacent balloons having a common boundary. Let
the center of mass of the common boundary be cc = (xc, yc). The distance between
these two balloons (the weight of the edge connecting them) is

w(i, j) = ∥∥c(vi) − cc

∥∥ + ∥∥cc − c(vj )
∥∥. (12.8)

Since we use distance as a weight and will compute the shortest paths to recover
the street segments, it is reasonable to use this definition. This weight definition
approximates the distance between the two adjacent vertices along the spines of
the corresponding balloons from one centroid to the next. Next, we consider the
distance between two (not necessarily adjacent) vertices.

Berge [13] defines the distance d(i, j) between two (not necessarily adjacent)
vertices (i, j ) in a weighted graph to be the length of the shortest path from vertex i

to vertex j .

Theorem 12.1 (Berge) d(i, j) satisfies

1. d(i, i) = 0,
2. d(i, j) + d(j, k) ≥ d(i, k).

In addition, if the graph is symmetric, we have

3. d(i, j) = d(j, i).

This function is therefore a true metric in the topological sense.

We obtain the distance between any two vertices by means of Dijkstra’s short-
est path algorithm given in Algorithm 5 [14]. This algorithm is one of the standard
shortest paths algorithms used in graph optimization problems. It can also be im-
plemented in parallel, since at each step it finds the shortest path between any two
given vertices.

12.4.3 The Detection Step

Now, we turn our attention to street network and house detection, introducing a
novel algorithm based on graph theory. With this algorithm, we first extract the
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Algorithm 5: Dijkstra’s shortest path algorithm
Begin
w(a,b) = distance between two neighbor vertices a and b

X = vertex set of a graph G; X = 1,2, . . . ,m

s = initial vertex
t = final vertex
d(s, x) = the shortest path between vertex s and vertex x, x ∈ X

d(s, s) := 0
d(s, x) := ∞ ∀ x �= s; x ∈ X

y = last vertex that was labeled
y := s

while ((d(s, t) has not been found) or (d(s, t) �= ∞)) do
for each unlabeled vertex x do

d(s, x) := min{d(s, x), d(s, y) + w(y,x)}
end for
if d(s, x) = ∞ for all unlabeled vertices then

d(s, t) = ∞;
end if
y := arg minx(d(s, x))

end while
return d(s, t)

End.

street network (via balloons) and label the remaining balloons as houses. To extract
the street network, we have unary and binary constraints. Unary constraints are used
to detect balloons that could represent a street segment by themselves. Binary con-
straints are used to lace together balloons that could represent a street segment if
considered in conjunction with their neighbors.

We assume that a balloon represents either a part of a house or a street segment
at this point, based on the method and constraints of their construction. There are
general house and street characteristics (at least for North America) that lead to a
street network and house detection algorithm from the balloon graph. These are as
follows.

• In residential regions, houses are connected to the street network via driveways.
Since we take driveways as belonging to the street network, houses are located at
its endpoints. In some cases, short, wide driveways may be assigned to the street
network. This is not a major problem.

• Compared to an elongated street segment, the aspect ratio of a house is small.
Therefore, a ratio threshold can help in discriminating house and street balloons
to a great extent.

• A street network is topologically connected, with straight and curved sections.
Straight sections produce fewer, longer balloons; curved sections produce more,
shorter balloons.

We apply these observations to obtain the street network and houses from the
balloon graph. For each vertex (balloon), we calculate its aspect ratio. This ratio
will indicate the likelihood of that balloon belonging to a street network. We take
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balloons having a ratio greater than 7.5 to be street segments. This unary constraint
initiates street segment extraction.

We then consider binary constraints to complete the extraction of the street net-
work. We first discard any vertex of aspect ratio smaller than tr (tr = 5, here) and
having at most one neighbor. As we mentioned, such vertices are more likely to rep-
resent a house than a street segment. For vertices (balloons) having more than two
adjacent vertices to belong to a street segment, their combination should exhibit the
geometric characteristics of a street. Therefore, we retain paths of balloons (each
member has at least two neighbors and an aspect ratio of at least five), with dis-
tances between their furthest vertices larger than a threshold td (taken as five pixels,
or 20 meters here). The underlying assumption is that a path of more than 20 meters
length is more likely to be a street segment than a house group. In curved sections
of the street network, we will have many balloons with more than one neighbor and
aspect ratio less than five, but by chaining them together we can extract the street(s).
Balloons not assigned to the street network are labeled as houses.

This algorithm may seem (too) simple; however, it exists in the context of a larger
system. We have restricted our choices to a street segment or a house by earlier
processing. We have similarly restricted the region under analysis to be residen-
tial. Such regions have relatively strict rules in terms of house and street locations.
Houses and street networks lie in close proximity, but a street cannot pass through
a house. Therefore, this relatively simple graph theoretical street network extraction
method works well. The street network and house detection algorithm is given in
Algorithm 6.

12.4.4 Road Tracking by Prediction

Some street segments may be occluded by overhanging trees, be labeled as houses,
or be eliminated as too small. To recover these missing street segments, we apply
a prediction based road tracking method. Our method is similar to the correlation
based road tracking methods summarized in [15].

We apply road tracking by prediction only to those street balloons having a single
neighbor (deg(vi) = 1). Therefore, we track possible streets only from endpoints of
the balloon graph. We recall the parametric representation of their spines and for
each spine representation we apply the following method.

Let r(t) = (x(t), y(t)) be the spine of a balloon with deg(vi) = 1. It can be rep-
resented by a kth order polynomial on n points:

x(t) =
k∑

i=0

ait
i , y(t) =

k∑
i=0

bi t
i (12.9)

with t = [1,2, . . . , n]. Coefficients ai and bi are obtained from the least squares fit;
we take k to be one. The number of interpolated points n is set to the least common
multiple of the number of points in each half-contour.
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Algorithm 6: Street network and house detection algorithm
Begin
aspect ratio(vi ) := l(vi)/w(vi) such that vi ∈ V

tr = threshold for aspect ratio; tr := 5
td = threshold for distance; td := 5
R = street vertices; R := ∅
H = house vertices; H := ∅
for v := v1 to vm do

if ratio(v) > 1.5 × tr then
R := R ∪ {v} (Unary constraint)

end if
end for
p(vi , vj ) = path connecting vi and vj ; set of vertices
G1 := G \ vi ∀ vi such that ratio(vi) < tr and deg(vi ) < 2
G1 = (V1,E1); V1 = v1, v2, . . . , vk

for i = 1 to k do
for j = (i + 1) to k do

if d(vi, vj ) ≥ td then
R := R ∪ p(vi , vj ) (Binary constraint)

end if
end for

end for
H := V \ R

return H, R
End.

Our prediction of the next point is r̂1(n+1) = (x̂(n+1), ŷ(n+1)), extrapolating
the polynomial fit. We also pick two neighbors of r̂1(n + 1), lying in the directions
orthogonal to the spine curve, tagged r̂2(n + 1) and r̂3(n + 1). The next street point
chosen is then r̂(n + 1) = arg maxr̂∈{r̂1,r̂2,r̂3} Ω{r̂} where Ω is the index of human
activity (see (12.1)). We then fit a polynomial to the most recent n points, and repeat
the prediction. Tracking continues until maxr̂∈{r̂1,r̂2,r̂3} Ω{r̂} drops below a threshold
tp , discussed next.

We want road tracking to continue only for pixels having sufficiently high Ω .
Therefore, we calculate tp in a Bayesian decision framework between object (high
Ω values, Co) and background (low Ω values, Cb) classes for each image separately
(tp is therefore adaptive). We first obtain the conditional sample Ω distributions
for object and background classes. We then set tp equal to the optimal Bayesian
decision boundary value between these two classes. Rarely, this threshold may not
be sufficiently strong to stop iteration. To handle these cases, we insert a control,
checking the length of the extracted street segment. If the length exceeds the sum
of the image width and height, we discard that prediction block. We assume that
the prediction should encounter another road or the image perimeter within that
distance. This constraint rarely comes into play.

We illustrate this method on the South Dakota image in Fig. 12.13. Although
most of the street segment balloons have been labeled correctly, some were dis-
carded while combining balloons and applying size constraints. One of the actual
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Fig. 12.13 The South Dakota image, street network extraction. Green sections are obtained by the
graph theoretical method; red sections are obtained by street tracking

street segment balloons is also labeled as a house. To correct these errors, we apply
the road tracking algorithm. Figure 12.13(b) presents the street network extracted
before tracking in green. The street network as extended by the road tracking algo-
rithm is given in red. As can be seen, almost all missing street segments have been
recovered by the tracking method.

12.4.5 Summary of System Parameters

Table 12.2 summarizes the system parameters and how they are set. Eleven out of
13 parameters are fixed, as explained above, while two are adaptive (ratios). This
number of parameters is not excessive when one considers the complexity of the
task, and given that the system comprises several modules. As we have pointed out,
all of these parameters have been carefully set in accordance with the metric and
normalized nature of the images we consider, and none are particularly sensitive.

12.5 Results and Discussion

We tested our methods on 44 residential Ikonos images (each panchromatic image
being 800 × 800 pixels, with 200 × 200 multispectral representations) taken from
different locations around North America.

We first tested KMC-SC to extract possible house and street network pixels. Our
house and street detection methods depend directly on this initial step. Next, we
evaluated the house and street network detection steps separately. We offer four
examples to show the system performance for four different residential region types.
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Table 12.2 Summary of system parameters

System level Parameter Value

Eliminating lakes region size > 75 pixels

Eliminating lakes median of θ < 0.2

Eliminating lakes median of γ2 < 0.3

Segmenting the Ω image initial threshold ts < 0.8

Constructing binary balloons overlap threshold to 50% of initial balloon size

Combining balloons voting percentage 80%

Abstracting the scene Fourier series fit order 4

Eliminating balloons area > 75

Eliminating balloons compactness < 4π/60

Detection step aspect ratio tr (street) > 7.5

Detection step distance threshold td 5 pixels

Road tracking by prediction fit level 1

Road tracking by prediction tracking threshold tp adaptive, Bayesian

12.5.1 Pixel Based Classification

In classification, we take house or street pixels (Co) as one group and the back-
ground pixels (Cb) as another group. We have 44 × 200 × 200 pixels since we are
using the multispectral representation. We obtain 97.8% and 94.5% correct classifi-
cation rates for the background and house or street pixels with an average classifica-
tion performance of 97.3%. The errors in this section are mostly due to overhanging
trees.

12.5.2 House Detection

Our image set includes a total of 6803 houses. Depending on the region, houses
have different characteristics. Size, shape, and the setback from the street all vary,
as does the spacing between them. To evaluate house detection performance, we
report probability of detection Pd and branching factor Bf , as used in Table 11.2.
Here, we assume that a house is detected if any part of it is detected as in [16].
Because of the way we form overlapped balloons, very small (one or two pixel)
house detections are virtually impossible. So we consider this approach to scoring
the results to be reasonable. We obtain Pd = 92.9% with Bf = 9.5% under these
circumstances, confirming the effectiveness of our house detection methodology.
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12.5.3 Street Network Detection

In our 44 residential test images, the total length of street networks is 55442 pixels
(55442 × 4 meters). Similar to Table 11.4, we provide Pd and Pf ; we define Pd in
terms of length. In this section, we also evaluate the quality of road tracking by the
prediction technique.

The street detection algorithm achieved Pd = 89.9% with Pf = 3.8% before pre-
diction. Road tracking increased both: Pd = 94.8%, Pf = 8.0%. It improved Pd by
4.9%, at the cost of roughly doubling Pf . Although somewhat application depen-
dent, we consider the improvement in detection worth the increase in false alarm
rate, at these levels. Therefore, tracking by prediction is an integral part of the sys-
tem.

12.5.4 Some Detection Examples

We present house and street network detection results for four images (Indiana,
Maryland, South Dakota, and South Dakota II). To demonstrate house and street
network detection performance, we followed the same color code for both (green
corresponds to a correct detection, blue corresponds to a miss, and red corresponds
to a false alarm in subfigures (b) and (c)). We also provided the overall detection
for each image (in subfigures (d)). Driveways are ignored in scoring because they
could be considered part of the street network, part of a house, or neither. We have
not attempted to resolve driveways as distinct entities.

The first result is for the Indiana image (Fig. 12.14). This residential region repre-
sents three distinctive characteristics. It has a mature region with well-spaced houses
and trees nearby. There is a lake in the middle of the scene. The region in the up-
per left is a construction zone with new houses. Therefore, this scene is one of the
hardest to process. There are 170 houses in the scene of which 165 are correctly
localized with 12 false alarms. False alarms originate mostly from the spacing be-
tween houses and street segments. Some locations near street segments are falsely
recognized as houses. Houses in the mature area are difficult to detect even for a hu-
man observer; nevertheless, the system was able to locate most of them. The 1525
pixel length street network is extracted except for a 10 pixel section, with a 90 pixel
false alarm. Most false alarms occurred in the road tracking step, extending drive-
ways for one or two extra pixels owing to the dense configuration of houses and
street segments. The missing street segment could not be recovered by road track-
ing, since some portions of it were completely obscured by overhanging trees. The
remaining street network is correctly detected with high accuracy for this scene.

The Maryland image (Fig. 12.15) depicts another type of residential region. It
presents well-spaced and similar houses. Although there are trees in the scene, they
are not close to the houses. This indicates that the neighborhood is newly con-
structed in a previously forested region. There are 151 houses in the scene, of which
145 are correctly located, with three false alarms. The well-spaced houses in this
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Fig. 12.14 The Indiana image, street network and house detection

scene give rise to a low false alarm rate. For this image, the entire 1133 pixel street
network is extracted but for a 46 pixel section. The majority of the missing street
section is near the top, occluded by trees.

The third result is for the South Dakota image (Fig. 12.16). This residential re-
gion represents low density housing, with minor or no occlusions on the houses
and streets. There is also little vegetation in the scene. Almost all houses and the
street network can be seen clearly. This region is one of the easiest to process. In
this residential region with 69 houses, 67 are correctly located with one false alarm.
1258 pixels of the 1276 pixel street network are detected correctly, with a 73 pixel
false alarm. Although road tracking was able to recover most of the missing seg-
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Fig. 12.15 The Maryland image, street network and house detection

ments for this image, it also increased the false alarm rate, mostly because of the
low vegetation cover (causing extra one or two iterations).

The South Dakota II image (Fig. 12.17) is similar to the Indiana image. It is
composed of both mature and newly constructed regions. Although there are fewer
houses in the scene, the occlusion by overhanging trees is more prevalent than in
the Indiana image. The spacing of the houses is similar to that of the Maryland im-
age. For this region, 141 of 147 houses are correctly located, with six false alarms.
The 1411 pixel length street network is detected with 193 pixels missing. Two main
street segments are missing, the first being at the top of the scene, the second being
near the middle. A street segment at the top left of the image was missed in the
KMC-SC process. There is a heavy local occlusion that blocks the extension of the
detected segment into this (wide, clear) region via the only possible path. Mean-
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Fig. 12.16 The South Dakota image, street network and house detection

while, a smaller, partly obscured street section nearby is captured in the extension
process because it connects to the (initially) detected network in four locations, any
one of which would suffice. The false alarm count for street extraction in this image
is 68 pixels.

As we observe these four results, we can comment on possible weaknesses of our
system. First, as a region becomes more congested, the house and street network
detection performance decreases. This is to be expected. Road tracking increases
the false alarm rate considerably in street detection. Our detection system, without
higher level perceptual reasoning, cannot overcome significant occlusion by trees.
Therefore, if a house or a street segment is totally occluded by trees, it will not
be detected. At the level of pixel classification, of course, this is not an error. This
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Fig. 12.17 The South Dakota II image, street network and house detection

could be probably addressed by introducing a higher-level reasoning process to in-
fer missing street segments. Even fairly simple collinearity or smooth continuation
constraints may correct many of these errors [17].

These are the minor problems the system exhibits. On the other hand, these four
different types of regions show the robustness of our house and street detection
system to different conditions. In these four images, most of the houses and street
network were detected correctly. For the Indiana and South Dakota II images, it is
extremely difficult for a human observer to detect the houses in the mature (wooded)
sections. Even in these regions, the system was able to detect and locate most houses
correctly.
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12.6 Summary of the Chapter

This chapter introduced a system to detect street networks and houses in residential
regions via satellite images. The system comprises four parts: multispectral infor-
mation processing, segmentation, decomposition, and graph theoretical analysis.

To locate possible human activity, we used the linearized vegetation index, θ ,
which gives a low response to rock derivatives. Since these are the basic blocks for
most of the houses and streets in residential regions, their presence indicates possible
human activity. And this was the case for our test images. Because surface water
responds similarly, we introduced a shadow–water index, and used the combination
of these indices to eliminate water regions. We believe other applications exist for
these indices.

Having successfully identified the areas of human activity, we introduced a mod-
ified k-means clustering algorithm to extract a binary segment representing possible
houses, street networks, schools, malls, and parking lots. The novelty in our algo-
rithm is the introduction of spatial coherence to clustering via connected compo-
nents analysis.

To extract houses and street networks on this binary segment, we introduced a
decomposition algorithm inspired by balloon algorithms. Our aim was to extract
elongated structures (representing possible street segments) via this algorithm. To
represent the binary image reliably (covering the curved regions, specifically), we
have multiple balloon representations for the same region. We were able to over-
come redundancy by applying a voting method. This overall scheme worked well.

We represented these balloons with a weighted a graph to extract street networks
and houses. At this step, we eliminated balloons representing neither a street nor a
house structure. Therefore, at this step, a balloon in the graph is either representing
a house or a street segment. By invoking simple unary and binary constraints, we
were able to detect houses and street networks.

We finally tested our system with 44 residential images. Our performance on
such a diverse and large test set is noteworthy. The overall system may ultimately
find use as an automatic map generation system specialized for residential regions.

12.7 Problems

12.1 How do vegetation indices help when detecting buildings and street segments
in residential regions?

12.2 How can shadow and water pixels be separated in the SWI image?

12.3 What is the main difference between KMC and KMC with spatial coherence?

12.4 What basic assumption does Otsu’s thresholding method depend on?

12.5 Compare the standard balloon algorithm with the binary balloon algorithm
introduced in this chapter.
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12.6 How can the method introduced in this chapter be labeled based on the group-
ing in the previous chapter?

12.7 (Open ended question) Can there be more unary and binary constraints em-
bedded into the graph in detecting buildings and street segments?
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Chapter 13
Final Comments

In this book, we proposed an end-to-end multispectral satellite image understanding
system. Our system starts with land use classification and ends with house and street
network detection in residential regions. In this final chapter, we summarize what
has been done in each chapter and emphasize important observations.

In the first part of the book, we summarized the remote sensing satellite families
as well as their properties. Based on the launching dates of these satellites, we can
infer that more and more remote sensing satellites with improved resolution and
spectral ranges will be available in the future. Therefore, the need for more intelli-
gent and fast automated systems to analyze the images from these satellites will be
enormous.

In the second part of the book, we examined vegetation and shadow–water in-
dices as possible methods for summarizing the multispectral information. We con-
sidered the best known vegetation index in the remote sensing literature, NDVI, and
developed a rigorous statistical justification for it by using the principal components
analysis. As we observed, the NDVI, in fact, corresponds to a slope in the statisti-
cally decorrelated vector space. Armed with this interpretation, we then proposed
a solution to the saturation problem of the NDVI. Simulations and experiments on
real images show that our proposed measure overcomes the saturation problem.

Next, we considered the relationship between the NDVI and the RVI and showed
that these two indices, in fact, capture the same information. With the statistical
framework at hand, we considered more bands and introduced new vegetation and
shadow–water indices. We compared these new vegetation indices with the angle
measure we derived from the NDVI on real images. We conclude that while all of
the indices introduced can be used to detect vegetation successfully none clearly
outperforms θ , based on the original NDVI ratio. We also compared shadow–water
indices on real images and found that γ2 based on the blue, red and near-infrared
bands works best.

The third part of the book was about land use classification. We first reviewed the
literature to observe the trends and performances in land use classification. Since,
most of the papers reported performances over a single image, we could not reach a
conclusion on their relative performances. However, we observed that none of these
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studies were based on the structural properties of the panchromatic images which
we believe is the most promising direction for the publicly-available high resolution
satellite images.

To that end, we first presented a new approach to assess the degree of land de-
velopment. While spectral signatures have been exploited for years in land use clas-
sification, our objective was to learn what information regarding land development
could be efficiently extracted from the photometric structure in the image. We based
the assessment on the photometric and geometric characteristics of straight line seg-
ments. Although edge detection may be used to extract lines, we used a more robust
straight line extraction method based on regions of consistent gradient orientation.

Among several features we developed, those based on length and contrast proved
to be the most promising for classification. The strength of these features is that
they do not depend heavily on the city model; they apply to most cities around
the world, particularly over 400 × 400 m2 windows. The weaker features are those
more dependent on a specific city model. The model assumes a high(er) degree
of organization, which may not hold for many old world cities. However, if one’s
focus were on urban and rural discrimination in North America (and Australia, for
example), then these features may prove more useful.

We tested both parametric (Bayes) and non-parametric (Parzen window and
nearest-neighbor) classifiers. Although these classifiers differ in their assumptions
with respect to the underlying data distribution, they offer similar performance on
our data. However, once trained, the Bayes classifier requires the least computation;
the nearest neighbor the most. Therefore, we would recommend the Bayes classi-
fier for a production system using this type of data. With probabilistic relaxation,
we obtained slightly improved classification performance. However, this improve-
ment is marginal considering its additional computational cost, and we would not
recommend it.

With the help of this multispectral information, we improved our previous results
in discriminating urban and non-urban areas in three steps. Our first step was to
include the linearized NDVI as multispectral information. Our second step was a
synergistical combination of the structural and the multispectral information. Our
last step was using the spatial information in classification. Our most promising
features are those using the combination of structural and multispectral information.
By using parametric and non-parametric classifiers, we were able to distinguish
developed areas with high confidence.

Next, we introduced and tested several graph-theoretical measures to assess land
development in overhead imagery. Our first objective was to develop measures that
increase monotonically with respect to the organization (development) in images.
The third measure on graph partitioning performed the best among others, in terms
of false alarm rate. The main reason for this is the contrast information it has. Other
contrast based structural features also proved to be useful as structural features. Al-
though each measure performed fairly well alone, the measure obtained by fusing
them performed best of all with respect to deviation (this measure matches the hu-
man opinion quite well). It captures different properties of the scene by different
measures, and these seem to compensate each other.
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Although our test set is large and diverse in location and development pattern,
we can distinguish developed areas with high confidence. Our results indicate that
image structure, as captured by the spatial organization of its straight lines, does
provide an effective indicator of land development activity.

Our next objective was detecting sparse residential regions which are difficult
to discriminate. In the fourth part of the book, we focused on this problem. The
detection of suburban residential regions is highly challenging. Nevertheless, a novel
feature based grouping method produced highly encouraging results. This suggests
that methods based on principles from perceptual organization may ultimately have
significant impact on these types of problems.

In terms of graph-theoretical measures, we first cast this as a one-class problem
and tested it with 281 samples. We obtained a clear and definite improvement by
using graph based features over structural ones. This indicates that for fine classifi-
cation, structural features alone are not enough. Besides the structure in the scene,
neighborhood information of these structures (captured by a graph here) are also
needed.

Finally, we built a three-class classifier and tested it with 270 samples. For the
three-class case, we obtained classification results superior to those reported any-
where over such a number of test samples. Again, this test indicates the necessity
of graph-theoretical measures for fine classification. With these very high detection
rates, our approach can be used to detect residential regions automatically.

In the fifth part of the book, we introduced a subsystem to detect street networks
and houses in extracted residential regions. Our subsystem comprises four parts:
multispectral information processing, segmentation, decomposition, and graph-
theoretical analysis.

We started from the multispectral images to locate possible human activity. We
used the properties of θ for this purpose. This index (and the NDVI, of course) re-
sponds low to rock derivatives. Since these are the basic blocks for most of the
houses and streets in residential regions, their presence would indicate possible hu-
man activity. And this was the case for our test images. Unfortunately, lakes and
shadows also respond like rocks to this index. To overcome this problem, we used
the shadow–water index, and then eliminated only water regions. This human ac-
tivity index, as well as water region extraction method can be used for applications
other than ours.

Having successfully identified the areas of human activity, we introduced a mod-
ified k-means clustering algorithm to extract a binary segment representing possible
houses, street networks, schools, malls, and their parking lots. The novelty in our
algorithm is its introduction of spatial coherence to clustering via connected com-
ponents analysis.

To extract houses and street networks on this binary segment, we introduced a
decomposition algorithm inspired by balloon algorithms. Our aim was to extract
elongated structures (representing possible street segments) via this algorithm. To
represent the binary image reliably (covering the curved regions, specifically) we
have multiple balloon representations for the same region. We were able to over-
come redundancy by applying a voting method. This overall scheme worked fairly
well in decomposing binary images we have.
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Then, we represented these balloons in a graph framework to extract street net-
works and houses. At this step, we eliminated balloons representing neither a street
nor a house structure. Therefore, at this step, a balloon in the graph is either repre-
senting a house or a street segment. By unary and binary constraints, we were able
to detect houses and street networks on this graph.

We tested our house and street network detection system with 44 residential im-
ages. Our performance on such a diverse and large test set is noteworthy. We plan
to use the spatial constraints (formalizing them as of either probabilistic relaxation
or Bayesian networks) to refine our house and the street network labels. The over-
all system hence may be of use as an automatic map generation system focused on
residential regions.

Finally, the overall system works fairly well. We justified this by the statisti-
cal performance of each step. This system may be used to generate maps labeling
houses and the street network in residential regions, as well as locating these neigh-
borhoods.
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