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Chapter 3

1

Linear Programming

Why LP?

2

 Most popular optimization technique

 LP software packages are readily available

 A lot of work on specialized algorithms for
solving specific LP problems (EXCEL-SOLVER,
XPRESS-MP, GAMS, LINDO, LINGO, AMPL,
MINOS,TORA, etc. )

 Many problems can be converted to a LP
formulation

History of LP

3

1928 – John von Neumann published related central theorem of game
theory

1944 – Von Neumann and Morgenstern published Theory of Games and
Economic Behavior

1936 – W.W. Leontief formulated a linear model without objective
function.

1939 – Kantoravich (Russia) actually formulated and solved a LP problem
1941 – Hitchcock poses transportation problem (special LP)

WW II – Allied forces formulate and solve several LP
problems related to military

A breakthrough occurred in 1947...

History of LP Contd...

4

 US Air Force investigate applying mathematical techniques to
military budgeting and planning

 George Dantzig proposed LP model

 Air Force initiated project SCOOP (Scientific Computing of
Optimum Programs) and SCOOP began in June 1947,
Dantzig and associates developed:

 An initial mathematical model of the general linear
programming problem

 A general method of solution called the simplex method.
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Simplex Today

5

 A large variety of Simplex-based algorithms exist

 Other algorithms have been developed for solving LP
problems:

 Khachian algorithm (1979)

 Kamarkar algorithm (AT&T Bell Labs, mid 80s)

 Etc..

 Simplex (in its various forms) is and will most likely
remain the most dominant LP algorithm in actual
practical applications for at least the near future

LP Assumption

6

 a definite objective that can be mathematically represented in 
an equation format exist.

 Constraints are always limiting the use of the available 
resources.

 There different alternative or solutions for the problem at 
hand, and for each solution there is a specific value for the 
objective function. 

 The preferred solution is the one that optimizes the objective 
and satisfies the constraints.

 All relationships between variables are linear.
 Linear programming assumes confident in all gathered data.

Linear Programming

7

 Mathematical Model 

Decision variables
 Linear objective function
maximization
 minimization

 linear constraints
 equations      =
 Inequalities LE or GE

Non-negativity constraints

Guideline for Model Formulation  

8

1. Understand the problem thoroughly. 

2. Write a verbal statement of the objective function and each 
constraint. 

3. Define the decision variables. 

4. Write the objective function in terms of the decision 
variables. 

5. Write the constraints in terms of the decision variables. 
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Formulation of LP Problems

9

 The key terms of linear programming model are resources, 
m, and activities, n, where m denotes the number of different 
kinds of resources that can be used and n denotes the number 
of activities being considered.

 Assume: Z= value of overall measure of performance
 xj = level of activity j (j=1, 2, ….. , n)

 cj = increase in Z that result from each unit increase in activity j

 bi = amount of resource i that is available to activity j (i=1, 2,…, m)

 aij = amount of resource i consumed by each unit of activity j.

General mathematical model of LP

10

 The general form of allocating resources to activities

Typical resources are money, equipment, personnel, etc. 
Sample activities include specific products, investing in particular 
projects, shipping goods, etc. 

Formulation of LP Problem

11

 Formulation of LP Problems :  clearly define the decision 
variables, objective, and constraints.

 An Example of LP model:

Standard form

12

maximize Z= c1x1 + c2x2 + … + cnxn

 constraints
s.t. a11x1 + a12x2 + … + a1nxn < b1

a21x1 + a22x2 + … + a2nxn < b2

am1x1 + am2x2 + … + amnxn < bm

Note: b1, b2, ..bm are non negative RHS values

 Non-negative variables
e.g. x1, x2 > 0
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Other forms

13

 Can be rewritten in standard form

1. Minimization problems
 Convert by changing the signs of the variables of the objective 

function from min to max problems.
 Min z = 0.4x1 + 0.5x2 is equivalent to 

 Max -z = -0.4x1 -0.5x2 

2. Problems with constraints on alternative forms, 
 The direction of an inequality is reversed by multiplying both 

sides by (-1)

3. Problems involving negative RHS variables 
 Multiplying both sides by (-1), makes the right-hand side positive

Graphical Method

14

Graphical method 

15

 For a model with only two variables, it is possible to 
solve the problem by drawing the feasible region and 
determining how the objective is optimized on that 
region

 gives you intuition and understanding of linear 
programming models and their solution.

 A feasible solution is a solution for which all the 
constraints are satisfied. An infeasible solution is a 
solution for which at least one constraint is violated.

Example-1 LP model formulation

16
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Graphical method 

17

 Problem is to maximize revenue from two crops, 
given constraints on available land and capital

 LP model formulation:
 OF   max. Z = 2x1 + x2 ( maximize the net benefit)

s.t. 3x1 + x2 < 300 (limit on total cost)

x1 + x2 < 200 (limit on land)

x1 >= 0, x2 > 0 (cannot plant a negative area)

Solution

18

In general, the optimal solution lies at one of the corner points 
of the feasible region.

Solution (some notes)

19

 Map the feasible region (region OAPD)
 A corner-point feasible (CPF) solution is a solution that 

lies at a corner of the feasible region.
 Any point within or on the boundary of the feasible region is 

a feasible solution
 Solutions:

 P (0,200)     Z = 200
 P(50,150)    Z = 250
 P (100,0 )    Z =  200
 P(0,0) Z = 0

 An optimal solution is a feasible solution that has the most favorable 
value of the objective function. (largest value for maximization and  the 
smallest value for minimization problems).

Solution (some notes)

20

 Plot the objective function, Z, on the same graph. 
 Determine the direction for moving Z within the 

feasible range
 Shift the objective function line in the direction of 

improvement until it last intersected the feasible 
region

 Consider a line for the OF for an arbitrary value of c 
Say c=40

 P(50,150) is the farthest point from the origin 
representing the optimal solution  Z=250
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LP assumptions

21

 Proportionality
 The contribution to the objective function from each decision 

variable is proportional to the value of the decision variable 

 Additivity
 The value of objective function is the sum of the contributions 

from each decision variables 

 Divisibility 
 Each decision variable is allowed to assume fractional values. 

 Certainty 
 Each parameter is known with certainty

LP Solutions

22

 Whenever a linear programming model is formulated 
and solved, the result will be one of four characteristic 
solution types: 
 1) unique optimal solution, 
 2) alternate optimal solutions, 
 3) no-feasible solution, and 
 4) unbounded solutions.

Unique optimal solution

23

x1

x2

Alternate optimal solutions 

24

 The intersection of the objective function line and the feasible 
region at optimality becomes a line segment

x1

x2



4/17/2019

7

No feasible solution

25

 This may occur when 
constraints conflict with 
one another. (over 
constrained) 

 Assume the following set 
of constraints

 5x1 + 5x2 ≤ 50

 x1 ≥ 8

 x2 ≥ 6

 No feasible region 
formed

Unbounded solutions

26

 A situation where the problem is under constrained.
 Assume the following set of constraints
 5x1 + 5x2  ≥ 50
 x1 ≤ 8
 x1 ≥ 6

Example 2

27

 An aggregate mix of sand and gravel must contain no less 
than 20% no more than 30% of gravel. The in situ soil 
contains 40% gravel and 60% sand. Pure sand may be 
purchased and shipped to site at 5 units of money /m3. A 
total mix of at least 1000 m3 is required. There is no charge 
for using in situ material. 

 The objective is to minimize the cost
Draw the feasible region
Determine the optimum solution by the graphical method

Solution

28

 Total quantity of material needed  = 1000 m3

 Min. quantity of gravel in the mix = 0.20 x 1000 = 200 m3

 Max. quantity of gravel in the mix = 0.30 x 1000 = 300 m3

 Let the decision variables be as follows:
x1 : Quantity of material from in situ
x2 : Quantity of material from outside

 The objective is to minimize the cost, z,
Min z = 5*x2

 The constraints are:
x1 + x2 ≥ 1000
0.4x1 ≥ 200
0.4x1 ≤ 300

x1, x2 ≥ 0
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Solution

29

 Optimum solution:
x1 = 750

x2 = 250

 Amount of gravel = 300 
m3 from in situ

 Amount of sand = 700 m3; 
450 m3 from in situ and 
250 m3 from outside.

Simplex Method

30

Understanding Simplex Method

31

 Useful in several ways
 Give insights into what commercial linear 

programming software packages actually do. 
 Able to identify when a problem has alternate 

optimal solutions, unbounded solution, etc.

Gauss-Jordan Elimination for Solving 
Linear Equations 

32

 It works one variable at a time, eliminating it in all rows but 
one, and then moves on to the next variable. Example
 x1 + 2x2 + x3   = 4 (1)
 2x1 - x2 + 3x3 = 3 (2)
 x1 +  x2   - x3       = 3 (3)

 In the first step of the procedure, we use the first equation to 
eliminate x1 from the other two. Specifically, in order to 
eliminate x1 from the second equation, we multiply the first 
equation by 2 and subtract the result from the second 
equation. Similarly, to eliminate x1 from the third equation, 
we subtract the first equation from the third.
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Gauss-Jordan Elimination

33

 Such steps are called elementary row operations. We keep the first 
equation and the modified second and third equations. 

 The resulting equations are:
 x1 + 2x2 + x3 = 4 (1) 

 -5x2 + x3 = -5 (2) 

 -x2      - 2x3 = -1 (3) 

 Note that only one equation was used to eliminate x1 in all the 
others. This guarantees that the new system of equations has 
exactly the same solution(s) as the original one.

Gauss-Jordan Elimination

34

 Second step: divide the second equation by -5 to make the 
coefficient of x2 equal to 1. 

 Then, use this equation to eliminate x2 from equations 1 and 3.

 This yields the following new system of equations:
 x1 + 7/5x3 = 2 (1) 

 X2 – 1/5x3 = 1 (2) 

 -11/5x3 = 0 (3) 

Gauss-Jordan Elimination

35

 Only one equation was used to eliminate x2 in all the others 
and that guarantees that the new system has the same 
solution(s) as the original one. 

 In the last step, we use equation 3 to eliminate x3 in equations 
1 and 2.

 x1 = 2 (1) 

 x2 = 1 (2) 

 x3 = 0 (3) 

 So, there is a unique solution.

 Sometimes, linear systems of equations do not always have a 
unique solution (no solution, multiple solution)

Gauss-Jordan Elimination

36

 Example:  (No solution)
 x1 + 2x2 + x3 = 4    (1)

 x1 + x2 + 2x3 = 1    (2)

 2x1 + 3x2 + 3x3 = 2    (3)

 Example : (infinitely many solutions)
 x1 + 2x2 + x3 = 4 (1) 

 x1 + x2 + 2x3 = 1       (2) 

 2x1 + 3x2 + 3x3 = 5      (3) 
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Essence of the Simplex Method

37

 Consider the graph model of example-1

 Corner-point feasible solutions (CPF solutions)

 Corner-point infeasible solutions

 Identify them

Properties of the CPF solutions

38

 If there is exactly one optimal solution, then it must be a CPF 
solution.

 If there are multiple optimal solutions, then at least two must 
be adjacent CPF feasible solutions.

 There are only a finite number of CPF solutions.

 If a CPF solution has no adjacent CPF solution that are 
better as measured by the objective function, then there are 
no better CPF solutions anywhere; i.e., it is optimal.

General structure of the simplex method

39

 Thus, in any linear programming problem that possesses at least 
one optimal solution, if a CPF solution has no adjacent CPF 
solutions that are better (as measured by the objective function), 
then it must be an optimal solution.

Simplex Method

40

General Simplex LP model:

min (or max) z =  ci xi

s.t. A x = b

x  0

Simplex only
deals with
equalities

Extreme point (or Simplex filter) theorem:

If the maximum or minimum value of a linear function defined over a
polygonal convex region exists, then it is to be found at the boundary of
the region.
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Slack/surplus variables

41

 Each of the inequality  constraints can be converted to an   
equality constraint by adding a slack variable to the LHS

 The coefficient of this slack variable in the OF will be zero   

 slack, if x  b, then x + slack = b

 surplus, if x  b, then x - surplus = b

Example of LP

42

Maximize       5x1 + 7x2

s.t.    x1 < 6
2x1 + 3x2 < 19

x1 +   x2 < 8
x1, x2 > 0

Standard form with equality constraints:
Max     5x1 + 7x2 + 0s1 + 0s2 + 0s3

s.t.          x1 +  s1 =    6
2x1 + 3x2+  s2 =  19
x1 +   x2  +  s3 =   8

x1, x2 , s1 , s2 , s3 > 0

Standard form

43

 A total of n+m variables (n decision variables and m slack 
variables)  and a constraint set of m equations

 These equations can be solved uniquely for any set of m
variables

 Simplex method : the starting solution start by assuming 
all decision variables to be zero => Z=0 

 Iterations are performed on this starting solution for 
better values of OF till optimality reached

Some definitions

44

 Feasible and infeasible solutions:

 Basis and basic variables: the number of basic variables is
equal to the number of constraints. The variables in the basis
only can be non negative values.

 Non basic variables: variables which are outside the basis

 Basic feasible solution: Assume there are a total of n + m
variables (n decision and m slack variables). Then a basic solution
is one that has m number of basic variables and n number of
non-basic variables.All non basic variables are zeros.

 Basic feasible solution: a basic solution which is also feasible
is a basic solution.
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Basic feasible solution: Example

45

 Find all basic feasible solutions of the following system:

 First add slack variables so that our new constraints are

Max P = 5x1 + 6x2

S.t. 4x1 + 2x2 ≤ 200

x1 + 3x2 ≤ 150

x1≥ 0 x2≥ 0

4x1 + 2x2 + s1 = 200

x1 + 3x2 + s2 = 150

x1≥ 0 x2≥ 0 s1≥ 0 s2≥ 0

Basic feasible solution

46

 In this example we have 2 equations and 4 variables. We find 
basic solutions by setting 2 variables at a time  equal to zero.

0        0        200       150 1. feasible

0       50       100         0 3. feasible

0      100        0        -150 2. Not feasible

50       0          0        100
4. feasible

150      0       -400        0 5. Not feasible

30       40         0         0 6. feasible

Basic feasible solution

47

 To solve the L.P. problem we need to evaluate the objective 
function at each of the basic feasible solutions.

 However, in practice this becomes impractical.  Say for 
example we had an L.P. problem with 3 decision  variables 
and 3 constraints (hence 3 slack variables). The number of 
basic  feasible solutions:  

 For 4 decision variables and 5 constraints, we have:

 ….. and so on 

6!
3!3!

 20

9!
5!4!

126

Solution of Example-1

48

 Maximize  Z = 2x1 + x2

s.t. 3x1 + x2 < 300
x1 + x2 < 200
x1 >= 0, x2 > 0

 max  Z = 2x1 + x2 + 0x3 + 0x4

s.t. 3x1 + x2 + x3  = 300
x1 + x2 + x4    = 200
x1, x2 , x3, x4 > 0

• (x1, x2 , x3, x4 )

• (25, 25, 200, 150) is 
feasible but  not a 
basic solution

• (100, 25, 0, 0) is 
basic but infeasible

• (0, 0, 300, 200) is 
basic and feasible 
solution
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All slack basic feasible solution

49

 Models involving < (LE inequality) with non-negative RHS 
offer convenient all slack starting basic feasible solution

 Models involving ≥ and   =    constraints have different 
solution procedure. (not discussed here)

 Read the Book by Taha for problems involving ≥ and   =    
constraints

Solution using Simplex tableau

50

• In principle one can start from any basic feasible solution

• Let’s identify x3 and x4 as basic and x1 and x2 as non-basic variables
(assumes zero value)

• We shall now start with the initial basic feasible solution (0, 0, 300,
200) with z=0

Note that OF as basic variable:  Z - 2x1 - x2 - 0x3 - 0x4 = 0

Entering and Departing variable

51

Given any basis we move to an adjacent extreme point
(another basic feasible solution) of the solution space by
exchanging one of the columns that is in the
basis for a column that is not in the basis

Two things to determine:

1) which (non-basic) column of should be brought into the
basis so that the solution improves?

2) which column can be removed from the basis such that
the solution stays feasible?

Entering and Departing variable

52

 Entering variable: the variable entering the
basis is the one with the most negative
coefficient in the z-row X1. It will contribute to
the increase of OF most. The column x1 is now
the pivotal column.

 The one basic variable to leave is the one which
gives the minimum ratio test by applying those
pivot column coef.That are strictly positive..
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Solution Contd..

53

We determine that x1 replaces x3 in the new solution which
has (x1, x4 ) as the basis. However, the coefficients in the
Simplex table should be worked out using Gauss-Jordan
transformation:

The new pivot row (row 1) is obtained:

New pivot row = old pivot row/pivot coefficient

The rows other than the pivot row are transformed in the
iteration:

New row = old row – (pivot column coeff)*(New pivot
row)

Solution Contd..

54

Solution Contd..

55

Note:

In Iteration 1 the OF value increased from 0 to
200

This solution would have been optimal if all the
coeff. of the Z row were non-negative

Another iteration is needed. X2 is entering and
X4 is the departing variables

Solution Contd..

56

Optimal Solution
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Models involving “=” and ‘≥ ’ constraints

57

 Simplex method for LP problem with ‘greater-than-equal-to’ 
( ≥ ) and ‘equality’ (=) constraints needs a modified 
approach. 

 Big-M method

 The LPP is transformed to its standard form by incorporating 
a large coefficient M

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU

Big-M method

58

Step 1 One ‘artificial variable’ is added to each of the (≥) and (=) 
constraints to ensure an initial basic feasible solution
Step 2  Artificial variables are ‘penalized’ in the objective function 
by introducing a large negative (positive) coefficient  for 
maximization (minimization) problem. 
Step 3 Cost coefficients, which are supposed to be placed in the Z-
row in the initial simplex tableau, are transformed by ‘pivotal 
operation’ considering the column of artificial variable as ‘pivotal 
column’ and the row of the artificial variable as ‘pivotal row’.
If there are more than one artificial variables,  the last step is 
repeated for all the artificial variables one by one  (repeat step 1 to 
3)

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU

Example – 2

Maximize

Z  3x1  5x2

s.t.

Constraints, note one of 
them is equality constraint 

Non-negativity of decision 
variablesx2  0

x1  0

x1  4
2x2 12
3x1  2x2 18

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU59

x1  x3  4 
2x2  x4 12

3x1  2x2 18
x1  0; x2  0
x3  0; x4  0

m = no. of constraints =3

Example – 2 (Contd.)

The problem is converted to standard LP form

s.t.

n= no. of variables = 4;

Z  3x1  5x2Maximize

x1  4
2x2 12
3x1  2x2 18
x1  0
x2  0

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU60
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61

Example – 2 (Contd.)

No initial basic feasible solution is available for this 
problem.

Add artificial variable to constraint 3

Z 3x1 5x2 M  A1  0 

3x1  2x2  A1 18

Transformation of coefficients in row-Z

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU

Example – 2 (Contd.)

Z 3x1 5x2  M  A1  0 
3x1  2x2  A1 18

x1 x2 x3 x4 A bi

-3 -5 0 0 M 0

3 2 0 0 1 18

-3M-3 -2M-5 0 0 0 -18M

CENG  6602  lecture notes                    Dereje Hailu, AAiT, AAU

62

E1

21 EME Pivotal operation

E2

Example – 1 (Contd.)

Iteration-1

Basis Row x1 x2 x3 x4 A1 bi bi/aij

Z 0 -3M-3 -2M-5 0 0 0 -18M –

x3 1 1 0 1 0 0 4 4

x4 2 0 2 0 1 0 12 –

A1 3 3 2 0 0 1 18 6

Pivot point

D
ep

ar
tin

g
va

ria
bl

e Entering variable

63

Example – 1 (Contd.)

Iteration-2

Basis Row x1

0 1 0 0 4 –

x4 2 0 2 0 1 0 12 6

A1 3 0 2 -3 0 1 6 3D
ep

ar
tin

g
va

ria
bl

e

Entering variable

x2 x3 x4 A1 bi bi/aij

Z 0 0 -2M-5 3M+3 0 0 -6M+12 –

x1 1 1

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU64
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Example – 1 (Contd.)

Iteration-3

Basis Row x1 x2

1 0 1 0 0 4 4

x4 2 0 0 3 1 -1 6 2

x2 3 0 1 -3/2 0 1/2 3 –

D
ep

ar
tin

g
va

ria
bl

e

Entering variable

x3 x4 A1 bi bi/aij

Z 0 0 0 -9/2 0 M+5/2 27 –

x1 1

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU65

Example – 1 (Contd.)

Iteration-4
Basis Row Z x1 x2 x3 x4 A1 bi

Z 0 1 0 0 0 3/2 M+1 36

x1 1 0 1 0 0 -1/3 1/3 2

x3 2 0 0 0 1 1/3 -1/3 2

x2 3 0 0 1 0 1/2 0 6

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU66

Example – 1 (Contd.)

Since all coefficients in the Z-row are non-negative this is 
the optimal solution.

Z  36
Note that this is the samex1  2

x2  6
x3  2
x4  0
A1  0

solution with the
constraint 3x1  2x2 18

Binding (tight) 
constraint

10
CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU67

Multiple artificial variables

• In case of multiple artificial variables, carryout the 
transformation one by one.

• Use the transformed Z-row in the initial simplex 
table.

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU68
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69

Example-2

Consider the following problem

1 2

1 2

2

1 2

1 2

Maximize 3 5
subject to 2

6
3 2 18

, 0

Z x x
x x
x
x x

x x

 
 

 


CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU 70

Example-2

After incorporating the artificial variables

where x3 is surplus variable, x4 is slack variable and  a1 and a2 are the 

artificial variables

1 2 1 2

1 2 3 1

2 4

1 2 2

1 2

Maximize 3 5
subject to 2

6
3 2 18

, 0

Z x x Ma Ma
x x x a
x x
x x a

x x

   
   
 
  


CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU
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Example-2

Considering the objective function and the first constraint

 
 

1 2 1 2 1

1 2 3 1 2

3 5 0

2

Z x x Ma Ma E

x x x a E

    

   

Pivotal Column

Pivotal Row

By the pivotal operation 21 EME  the cost coefficients are modified as

    MMaaMxxMxMZ 2053 21321 

CENG  6602  lecture notes                    Dereje Hailu, 
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Example-2

Considering the modified objective function and the third constraint

By the pivotal operation the cost coefficients are modified as

     
 

1 2 3 1 2 3

1 2 2 4

3 5 0 2

3 2 18

Z M x M x Mx a Ma M E

x x a E

        

  

Pivotal ColumnPivotal Row

43 EME 

    MaaMxxMxMZ 20003543 21321 

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU
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Example-2 Simplex Tableau
Corresponding simplex tableau

Pivotal row, pivotal column and pivotal elements are shown as earlier

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU 74

Check using software : 
After four iterations Optimality has reached. 
Optimal solution is Z = 36 with x1 = 2 and x2 = 6 

Example-2

CENG  6602  lecture notes                    Dereje Hailu, 
AAiT, AAU

Special cases

75

Cases  for a tie : Entering variable

76

 max x1 + x2

 S.t. 2x1 + x2 ≤ 4 
 x1 + 2x2 ≤ 3 

 x1 ≥ 0; x2 ≥ 0 

 Entering variable: tie can be broken by arbitrarily (optimal solution 
will be reached eventually regardless of the variable chosen)
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Cases for a tie: Departing variable

77

 Departing variable: a tie for the departing variable. 

 One variable can be arbitrarily selected as the departing 
variable. 

 This results in a degenerate solution. Degeneracy reveals 
that there is at least one redundant constrain. 

 In some cases, degeneracy may lead to “cycling”, i.e. a 
sequence of pivots that goes through the same tableaus 
and repeats itself indefinitely.

Example

78

 max 2x1 +x2 

 S.t.  3x1 + x2 ≤ 6 
 x1 -x2 ≤ 2 
 x2 ≤ 3 
 x1 ≥ 0; x2 ≥ 0 

Example : Multiple solution

CENG  6602  lecture notes                    Dereje Hailu, AAiT, AAU
79

Maximize  Z = 2x1 + x2

s.t 3x1 + x2 < 300
4 x1 + 2x2 < 500
x1 >= 0, x2 > 0

Initialize, do first iteration and iteration 2 
yields optimal solution

X3 has 0 coeff in z-row= multiple solution

(x1, x2) = (50,150) and (0,250) and any point 
on a  line joining the two is a solution

Multiple solutions

80

 Existence of multiple solution 
is indicated by the presence of a 
zero in the z-row under a basic 
variable in the final simplex 
table. New solution in the next 
iteration by choosing this non-
basic variable as the entering 
variable. 

 max x1 +1/2x2

 S.t. 
 2x1 + x2 ≤ 4
 x1 +2x2 ≤ 3
 x1 ≥ 0; x2 ≥ 0

0
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Sensitivity Analysis

81

Sensitivity analysis

82

 A change in the data of original problem may affect 
optimality or feasibility of the current solution.

 Parameters Sensitivity
 LP assumes certainty of the model parameters, but are  

are only estimates.
 Sensitivity analysis is to identify the sensitive 

parameters, to try to estimate these parameters 
more closely, and then to select a solution that 
remains a good one over the range of likely values of 
the sensitive parameters.

Sensitivity analysis

83

1.  RHS sensitivity analysis
 measures how sensitive is the optimal solution to the change in 

the resources values i.e., by changing the resource limits, would 
the optimal solution be changed and to what limit.

2.  OF sensitivity analysis.
 The coefficients of the OF could be based on uncertain data or 

subjective judgment of the decision maker.
 changes in the values of the coefficients that multiply the 

decision variables in the objective function.

Sensitivity analysis in LP

84

 Sensitivity analysis is an exercise of obtaining a new 
solution corresponding to a change in the data of 
the original problem, given the original problem 
and the final simplex table, without solving afresh 
the new problem with changed data.

 Example:   EXCEL-SOLVER sensitivity outputs
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Duality

85

Dual Problem

86

 Every primal LP problem will have its dual.
 Sometimes it is easier to formulate the dual 

problem, rather than the primal problem, and 
thereby determine the solution of the primal.

 The solution of dual is extremely handy if the 
primal problem has a small number of decision 
variables and a large number of constraints

Example

87

Primal

Dual

Dual Example -2

88

 Maximize  Z = 2x1 + x2

s.t. 3x1 + x2 < 300 (constraint 1)
x1 + x2 < 200 (constraint 2)

x1, x2 > 0
 For every primal constraint there is a dual variable and for 

every primal variable there is a dual constraint 
 Two dual variables y1 and y2 corresponding to constraint 1 and 

2)
 There will be two constraints in the dual, one each 

corresponding to x1 and x2.

 Optimization Problem is reversed:  Minimization
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Example-2  Contd..

89

 The OF z’ for the dual is:
Minimize  z’ = 300y1 + 200y2

 S.t. 3y1 + y2 ≥ 2
y1 + y2 ≥ 1 

y1, y2 > 0 
 some differences between the primal simplex and 

the dual simplex methods

Dual Simplex method

90

 The primal simplex method starts from a non optimal 
feasible solution and moves towards the optimal solution, 
maintaining feasibility every time

 Dual simplex method starts with an infeasible basic solution 
and strives to achieve feasibility, while satisfying optimality 
criterion every time.

 The dual simplex method has rules for the
 entering variable, 
 departing variable
 and testing the feasibility of a solution.

Example

91

 Minimize  z’ = 300y1 + 200y2
 S.t. 3y1 + y2 ≥ 2

y1 + y2 ≥ 1 

y1, y2 > 0 

 Solution of the Dual:

 Writing the dual in the standard form with equality 
constraints,

Example

92

 Writing the problem in a way to facilitate a starting basic 
infeasible solution for dual simplex method:
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Example

93

 The departing basic variable is identified first as one with the 
most negative value (Row)

 The entering variable:  For each nonbasic variable,  
determine the absolute value of the minimum ratio. 
(column)

 Iteration 1…..

Example

94

 Note that the dual variables from the optimal solution are yl

= 1/2 and y2 = 1/2.

 The optimal value of xl in the primal can be identified by the 
coefficient of the slack variable y3 in the corresponding dual 
constraint, which is equal to 50.

 Thus xl = 50 and similarly x2 =150.

Dual Example-2

95

 Consider the following  primal problem

The first inequality requires no modification.  But  the 
second and the third constraint have to be modified

Dual Example-2 contd..

96

 The second inequality can be changed to the less-than-or-
equal-to type by multiplying both sides by -1 that is, 

 The equality constraint can be replaced by the following two 
inequality constraints:
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Dual Example-2 contd..

97

 The primal problem can now take the following standard 
form:

Dual Example-2 contd..

98

 The dual of this problem can now be obtained as follows:

Primal –Dual relationship

99

LP in Matrix form

100
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Matrix form

101

 Matrix form expression facilitate understanding of the simplex operations

 maximize cTx

subject to Ax < b, x > 0

102

Example in 
matrix form

Non-linearity

103

Piecewise Linearization

104

 LP can be used with some modification to solve non-
linear problems, if the nonlinear expression can be 
expressed as piecewise linear segments.

 Requires additional variables and constraints

 Consider a maximization problem of a concave nonlinear 
function f(x). 

 F(x) can be expressed as a piecewise linear function 
consisting of segments, with slope of the function in each 
reducing as x increases.
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105

Piecewise Linearization cont.
LP in Construction Management

106

 Linear programming can be used in construction 
management to solve many problems such as: 
 Optimizing use of resources
 Determining most economic product mix
 Transportation and routing problems
 Location of new production plants, offices and 

warehouses
 Personnel assignment
 Determining Optimum size of bid

LP applications in other areas

107

 Developing a production schedule that will satisfy future 
demands for a firm’s product and at the same time minimize 
total production and inventory costs.

 Selecting the product mix in a factory to make best use of 
machine- and labor-hours available while maximizing the 
firm’s profit 

 Picking blends of raw materials in feed mills to produce 
finished feed combinations at minimum costs

 Determining the distribution system that will minimize total 
shipping cost

LP practical applications

108

 Scheduling school buses to minimize total distance 
traveled 

 Allocating police patrol units to high crime areas in 
order to minimize response time to (911) calls

 Scheduling tellers at banks so that needs are met during 
each hour of the day while minimizing the total cost of 
labor.

 Allocating space for a tenant mix in a new shopping mall 
so as to maximize  revenues to the  leasing company

 Etc..
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Integer and Mixed-Integer Problems 

109

 An LP problem in which all the decision variables must have 
integer values is called an integer programming problem. 
(IP)

 A problem in which only some of the decision variables must 
have integer values is called a mixed-integer 
programming problem. (MIP)

 Sometimes, some (or all) of the decision variables must have 
the value of either 0 or 1. Such problems are then called 
zero-one mixed-integer programming problems.

 Simplex method cannot be used to such problems. Advanced 
methods are available for this purpose

Software

110

• Numerous Computer programs to solve LP problems are 
widely   available. 

•Most large LP problems can be solved with just a few minutes 
of computer time

•Most computer-based LP packages use the simplex method

EXCEL-Solver,  LINDO/LINGO,  GAMS,  XPRESS-MP are very 
popular . Others exist too :  TORA , AMPL, etc.. 

Solving using Excel Solver

111

 Solver uses standard spreadsheets together with an interface 
to define variables, objective, and constraints to define a 
linear program.

 Solver, while not a state of the art code is a reasonably 
robust, easy-to-use tool for linear programming. 

 Excel Solver add-in optimizes linear and integer problems 
using the simplex and branch and bound methods.

 Solver does sensitivity analysis automatically

Solver

112

 Start with entering the data into spreadsheet and Create the model in 
a separate part of the worksheet.

 Solve the previous example-1 using SOLVER

Input data

x1 x2 equations Limits
objective 2 1 0
constraint 1 3 1 0 LE 300
constraint 2 1 1 0 LE 200

Result x1 x2 z
optimal 
solution 0 0 0
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Sensitivity Analysis

• How sensitive the results are to parameter 
changes

• Change in the value of coefficients

• Change in a right-hand-side value of a constraint

• Trial-and-error approach

• Analytic post-optimality method

• EXCEL-SOLVER Output for Example-1

113

Sensitivity Report

114

Microsoft Excel 12.0 Sensitivity Report
Worksheet: [test.xlsx]Sheet1
Report Created: 05/12/2009 18:36:46

Adjustable Cells
Final Reduced Objective Allowable Allowable

Cell Name Value Cost Coefficient Increase Decrease

$B$10 optimal solution x1 50 0 2 1 1

$C$10 optimal solution x2 150 0 1 1 0.33333333

Constraints
Final Shadow Constraint Allowable Allowable

Cell Name Value Price R.H. Side Increase Decrease

$D$5 constraint 1 trail soln. 300 0.5 300 300 100

$D$6 constraint 2 trail soln. 200 0.5 200 100 100

The solution values

If we use one more Unit of money, the net benefit will increase by 0.5 unit of money. This is true 
up to 300 more units.  Net benefit will fall by 0.5 for each decrease , down as low as 100 units

Sensitivity report

115

 The solution/course of action changes with a change in 
values of the objective function coefficients within the range 
of allowable increase and decrease. The result (course of 
action) will not change (remains constant) if the coefficients 
values are outside the range.

 The net benefit changes within the range of allowable 
increase and decrease with a change of the RHS value of a 
constraint. The net benefit remains constant for values 
outside the range. Availing more resource doesn’t improve 
the solution.

Changes in Resources limits

• The RHS values of constraint equations may change as 
resource availability changes

• The shadow price of a constraint is the change in the 
value of the objective function resulting from a one-
unit change in the right-hand-side value of the 
constraint

• Shadow prices are often explained as answering the 
question “How much would you pay for one 
additional unit of a resource?”

116
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LINDO/LINGO

See presentation

117

Integer/binary programming

118

 Assumption of divisibility

 All the software packages in our Courseware (Excel, 
LINGO/LINDO, and TORA) include an algorithm for 
solving (pure or mixed) algorithm for solving IP models 
where variables need to be integer but not binary.

 When using the Excel Solver, the procedure is basically the 
same as for linear pro

 In a LINDO model, the binary or integer constraints are 
inserted after the END statement.

 In Excel solver “int” and “bin” options

AMPL
 A Mathematical Programming Language

 algebraic modeling language for linear and nonlinear 
optimization problems, in discrete or continuous variables.

 Developed at Bell Laboratories http://www.ampl.com

 General and natural syntax for arithmetic, logical, and 
conditional expressions;

119

GAMS

120

 GAMS  (General Algebraic Modeling System)

 www.gams.com
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TORA
 The Temporary-Ordered Routing Algorithm (TORA) – An 

Operations Research Software

 TORA is menu-driven and Windows-based  (low screen 
resolution)

 Operation Research Book 8th Edition By Hamdy A.Taha
(with CD)

 Old version???

121

TORA
 TORA software deals with the following algorithms:
 Solution of simultaneous linear equations
 Linear programming 
 Transportation model 
 Integer programming 
 Network models 
 Project analysis by CPM/PERT 
 Poisson queuing models 
 Zero-sum games
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