Linear Programming

Chapter 3

Why LP?
® Most popular optimization technique
® LP software packages are readily available

® A lot of work on specialized algorithms for
solving specific LP problems (EXCEL-SOLVER,
XPRESS-MP, GAMS, LINDO, LINGO, AMPL,
MINOS, TORA, etc.)

® Many problems can be converted to a LP
formulation

(]

History of LP

1928 — John von Neumann published related central theorem of game
theory

1944 — Von Neumann and Morgenstern published Theory of Games and
Economic Behavior

1936 — W.W. Leontief formulated a linear model without objective
function.

1939 — Kantoravich (Russia) actually formulated and solved a LP problem
1941 — Hitchcock poses transportation problem (special LP)

WW II — Allied forces formulate and solve several LP
problems related to military

A breakthrough occurred in 1947...

History of LP Contd...

e US Air Force investigate applying mathematical techniques to
military budgeting and planning
® George Dantzig proposed LP model

® Air Force initiated project SCOOP (Scientific Computing of
Optimum Programs) and SCOOP began in June 1947,
Dantzig and associates developed:

® An initial mathematical model of the general linear
programming problem

® A general method of solution called the simplex method.
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Simplex Today
® A large variety of Simplex-based algorithms exist

e Other algorithms have been developed for solving LP
problems:

® Khachian algorithm (1979)
® Kamarkar algorithm (AT&T Bell Labs, mid 80s)
* Etc..

e Simplex (in its various forms) is and will most likely
remain the most dominant LP algorithm in actual
practical applications for at least the near future

LP Assumption

® a definite objective that can be mathematically represented in
an equation format exist.

¢ Constraints are always limiting the use of the available
resources.

¢ There different alternative or solutions for the problem at
hand, and for each solution there is a specific value for the
objective function.

¢ The preferred solution is the one that optimizes the objective
and satisfies the constraints.

¢ All relationships between variables are linear.

® Linear programming assumes confident in all gathered data.

Linear Programming
® Mathematical Model

® Decision variables

e Linear objective function
maximization
minimization

® linear constraints
equations =
Inequalities LE or GE

o Non—ncgativity constraints

Guideline for Model Formulation

1. Understand the problem thoroughly.

2. Write a verbal statement of the objective function and each

constraint.
3. Define the decision variables.

4. Write the objective function in terms of the decision
variables.

Write the constraints in terms of the decision variables.

[}
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Formulation of LP Problems

The key terms of linear programming model are resources,
m, and activities, n, where m denotes the number of different
kinds of resources that can be used and n denotes the number
of activities being considered.

Assume: Z= value of overall measure of performance

°x= level of activity j (j=1,2, .....,n)

® ¢, = increase in Z that result from each unit increase in activity j

® b, = amount of resource i that is available to activity j (i=1, 2,..., m)

® a; = amount of resource i consumed by each unit of activity j.

General mathematical model of LP

¢ The general form of allocating resources to activities

Resources usage per unit of activity
Resource 2 gep Ta Amount of resource available
1 ajp; ag ... ajn by
2 az an ... am ba
" - Am2 e A by
Contribution to Z [ ) €n

Typical resources are money, equipment, personnel, etc.
Sample activities include specific products, investing in particular
projects, shipping goods, etc.

Formulation of LP Problem

® Formulation of LP Problems : clearly define the decision

variables, objective, and constraints.

® An Example of LP model:

maximize -y 3y — 313
subject to 3z, Ty — 2@y <7
—2x 4y + 4dx3 < 3
T — 2r3 < 4
—2z 209 + x3 = 8
3y <5
Ty, Ty, 3 = 0.

Standard form

=maximize Z=cx;+cx,+...+cx,
= constraints
s.t. agx;tapx,+...+a,x,<b
ayX, + a,x, + ... +a,x, <b,
amlxl + am2x2 +...+ amnxns bm

Note: by, b,, ..b,, are non negative RHS values

= Non-negative variables
egx1,x2>0
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Other forms

¢ Can be rewritten in standard form
1. Minimization problems
 Convert by changing the signs of the variables of the objective
function from min to max problems.
Min z=0.4x; + 0.5x, is equivalent to
Max -2 = -0.4x, -0.5x,
2. Problems with constraints on alternative forms,
® The direction of an inequality is reversed by multiplying both
sides by (-1)
3. Problems involving negative RHS variables

® Multiplying both sides by (-1), makes the right-hand side positive

Graphical Method

Graphical method

® For a model with only two variables, it is possible to
solve the problem by drawing the feasible region and
determining how the objective is optimized on that
region

e gives you intuition and understanding of linear
programming models and their solution.

e A feasible solution is a solution for which all the
constraints are satisfied. An infeasible solution is a

solution for which at least one constraint is violated.

Example-1 LP model formulation

Two crops are grown on a land of 200 ha. The cost of

rmsmg crop 1 is 3 unit/ha, while for crop 2 it is 1 unit/ha. The benefit from

crop 1 is 5 unit/ha and from crop 2, it is 2 unit/ha. A total of 300 units of
money is available for raising both crops. What should be the cropping plan
(how much area for crop 1 and how much for crop 2) in order to maximize
the total net benefits?
Solution:

The net benefit of raising crop 1 = 5 — 3 = 2 unit/ha

The net benefit of raising crop 2 =2 - 1 = 1 unit/lia

Let x; be the area of crop 1 in hectares and x, be that of crop 2, and z, the”

total net benefit.

Then the net benefit of raising both crops is 2x; + x,. However, there are
two constraints. One limits the total cost of raising the two crops to 300, and
the other limits the total area of the two crops to 200 ha. These two are the
resource constraints. Thus the complete formulation of the problem is
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Graphical method

® Problem is to maximize revenue from two crops,
given constraints on available land and capital
¢ LP model formulation:
e OF max. Z = 2x, + x, ( maximize the net benefit)
s.t. 3%, +x, <300 (limit on total cost)
x, +x, <200 (limit on land)

x; >=0,x, > 0 (cannot plant a negative arca)

Solution

Slope = -3

3%y + X =300

X1 + Xp = 200
Z=2X1+ Xp =40
Slope = -2

In general, the optimal solution lies at one of the corner points

@of the feasible region.

Solution (some notes)
® Map the feasible region (region OAPD)

® A corner-point feasible (CPF) solution is a solution that
lies at a corner of the feasible region.

® Any point within or on the boundary of the feasible region is
a feasible solution

® Solutions:
P (0,200) Z =200
P(50,150) Z =250
P (100,0) Z= 200
P(0,0) Z=0
® An optimal solution is a feasible solution that has the most favorable

value of the objective function. (largest value for maximization and the
smallest value for minimization problems).

Solution (some notes)

® Plot the objective function, Z, on the same graph.

¢ Determine the direction for moving Z within the
feasible range

e Shift the objective function line in the direction of
improvement until it last intersected the feasible
region

* Consider a line for the OF for an arbitrary value of ¢
Say c=40

® P(50,150) is the farthest point from the origin
representing the optimal solution Z=250
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LP assumptions

o Proportionality

® The contribution to the objective function from each decision

variable is proportional to the value of the decision variable
* Additivity
® The value of objective function is the sum of the contributions
from each decision variables
* Divisibility
® Each decision variable is allowed to assume fractional values.
¢ Certainty

® Each parameter is known with certainty

LP Solutions

® Whenever a linear programming model is formulated
and solved, the result will be one of four characteristic

solution types:

® 1) unique optimal solution,

¢ 2) alternate optimal solutions,
® 3) no-feasible solution, and

¢ 4) unbounded solutions.

Unique optimal solution

X

X

Alternate optimal solutions

¢ The intersection of the objective function line and the feasible

region at optimality becomes a line segment

x %
n
8
%
4
2
n

400 = 140x; + 140x;
4@ BN

(6.4)

%mgm of alternate optima \
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No feasible solution

® This may occur when 1

IU\

one another. (over N

constraints conflict with

constrained)

/
—»
—
—
—

® Assume the following set :
of constraints ! >\)7> »
Sx, + 55,< 50 2 ~N?

;28 0 \\

x,26 0 2 4 6 H 10

® No feasible region

formed

Unbounded solutions

¢ A situation where the problem is under constrained.
* Assume the following set of constraints
® 5xi+ 5x 250
o y<§ 12
*x>6

10

—~—

N6

[ Sx;+ Su;2 50

Unbounded feasible region

=g

/e

Objective function line
z \\
o b
o 2 4 6 8 10 12

Example 2

® An aggregate mix of sand and gravel must contain no less
than 20% no more than 30% of gravel. The in situ soil
contains 40% gravel and 60% sand. Pure sand may be
purchased and shipped to site at 5 units of money / m3. A
total mix of at least 1000 m? is required. There is no charge
for using in situ material.

The objective is to minimize the cost
Draw the feasible region

Determine the optimum solution by the graphical method

Solution

* Total quantity of material needed = 1000 m?
® Min. quantity of gravel in the mix = 0.20 x 1000 = 200 m’
® Max. quantity of gravel in the mix = 0.30 x 1000 = 300 m’
® Let the decision variables be as follows:

Xp: anntit)/ Qf'materia]fmm in situ

x, : Quantity of material from outside
® The objective is to minimize the cost, z,

Min z = 5%x,

® The constraints are:

x; +x, > 1000

0.4x, > 200

0.4x, <300
x,x%,20
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Solution

1400 .=

® Optimum solution:
x, =750
x, =250 1000

1200

® Amount of gravel = 300
m3 from in situ

® Amount of sand = 700 m?;
450 m? from in situ and <00

250 m? from outside. - (120,230,

(500, 500)

T T T T T X
1] 200 400 800 800 1000 1200

Simplex Method

Understanding Simplex Method

® Useful in several ways

® Give insights into what commercial linear
programming software packages actually do.

® Able to identify when a problem has alternate

optimal solutions, unbounded solution, etc.

Gauss-Jordan Elimination for Solving
Linear Equations

® It works one variable at a time, eliminating it in all rows but
one, and then moves on to the next variable. Example

®x +2X_,+x3 =4 (1)
® 2x,- x, +3x;,=3 2)
°x, +x, -x; =3 (3)

¢ In the first step of the procedure, we use the first equation to
eliminate x, from the other two. Specifically, in order to
eliminate x, from the second equation, we multiply the first
equation by 2 and subtract the result from the second
equation. Similarly, to eliminate x; from the third equation,
we subtract the first equation from the third.
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Gauss-Jordan Elimination

Such steps are called elementary row operations.We keep the first
equation and the modified second and third equations.

The resulting equations are:

°x, +2x,+x;=4(1)

°Sx,+x; =5 (2

°x, -2x; =-1 (3)

Note that only one equation was used to eliminate x, in all the
others. This guarantees that the new system of equations has

exactly the same solution(s) as the original one.

Gauss-Jordan Elimination

Second step: divide the second equation by -5 to make the

coefficient of x, equal to 1.

Then, use this equation to eliminate xzftom equations | and 3.

This yields the following new system of equations:

ox, +7/5x, =2(I)
X, —1/5x; =1 (2
o I1/5x =0 (3

Gauss-Jordan Elimination

Only one equation was used to eliminate x, in all the others
and that guarantees that the new system has the same
solution(s) as the original one.

In the last step, we use equation 3 to eliminate x; in equations
I and 2.

x, =2 (1)
n=1 (2
=0 (3)

So, there is a unique solution.

Sometimes, linear systems of equations do not always have a

unique solution (no solution, multiple solution)

Gauss-Jordan Elimination

® Example: (No solution)

°x, +2x,+x; =4 (1)
°ex,+x,+2x; =1 (2)
®2x, +3x,+3x;=2 (3)

¢ Example : (infinitely many solutions)

°x, +2x,+x; =4 (1)
°x, +x,+2x; =1 (2)
®2x, t3x,+3x,=5 (3)
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Essence of the Simplex Method
® Consider the graph model of example-1

® Corner-point feasible solutions (CPF solutions)
¢ Corner-point infeasible solutions

¢ Identify them

Properties of the CPF solutions

e If there is exactly one optimal solution, then it must be a CPF
solution.

¢ If there are multiple optimal solutions, then at least two must
be adjacent CPF feasible solutions.

¢ There are only a finite number of CPF solutions.

e If'a CPF solution has no adjacent CPF solution that are
better as measured by the objective function, then there are

no better CPF solutions anywhere; i.e., it is optimal.

General structure of the simplex method

® Thus, in any linear programming problem that possesses at least
one optimal solution, if a CPF solution has no adjacent CPF
solutions that are better (as measured by the objective function),
then it must be an optimal solution.

Initialization (Set up to start iterations, finding an initial solution)
Optimality test (Is the current CPF solution optimal?)
Yes (Stop)
No
Iteration

=

Simplex Method

Extreme point (or Simplex filter) theorem:

If the maximum or minimum value of a linear function defined over a
polygonal convex region exists, then it is to be found at the boundary of|
the region.

General Simplex LP model:
Simplex only

min (or max)z = X ¢ X; el .
eals wit

s.t. Ax=b

equalities
x>0 1

4/17/2019

10



Slack/surplus variables

¢ Each of the inequality constraints can be converted to an
equality constraint by adding a slack variable to the LHS

® The coefficient of this slack variable in the OF will be zero

e slack, if x <b, then x + slack =b

e surplus, if x2b, then x - surplus =b

Example of LP

Maximize 5x, + 7x,
sit. x < 6
2x;+3x, < 19
x+ x, < 8
X X, >0
Standard form with equality constraints:
Max 5x; + 7x,+ 0s,+ 0s,+ 0s;

s.t. x +s = 6
2x;+3x,+ s, = 19
xt+t x,+ s = 8

Xy X5, 815 8,,85 >0

Standard form

® A total of n+m variables (n decision variables and m slack
variables) and a constraint set of m equations

¢ These equations can be solved uniquely for any set of m
variables

® Simplex method : the starting solution start by assuming

all decision variables to be zero => Z=0

e Iterations are performed on this starting solution for
better values of OF till optimality reached

Some definitions

Feasible and infeasible solutions:

Basis and basic variables: the number of basic variables is
equal to the number of constraints. The variables in the basis
only can be non negative values.

Non basic variables: variables which are outside the basis

Basic feasible solution: Assume there are a total of n + m
variables (n decision and m slack variables). Then a basic solution
is one that has m number of basic variables and n number of
non-basic variables. All non basic variables are zeros.

Basic feasible solution: a basic solution which is also feasible
is a basic solution.

4/17/2019
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Basic feasible solution: Example

* Find all basic feasible solutions of the following system:
Max P = 5x; + 6x,

S.t. 4x, + 2x, <200
x; + 3%, <150

=20 =0

e First add slack variables so that our new constraints are
4x, + 2x, + 5, =200
x + 3x, +s, =150

20 =0 520 520

Basic feasible solution

¢ In this example we have 2 equations and 4 variables. We find

basic solutions by setting 2 variables at a time equal to zero.

0 0 200 150 1. feasible
0 100 0 -150 2. Not feasible

0 50 100 0 3. feasible
500 0 100 4. feasible
150 0  -400 0 5. Not feasible
30 40 0 0 6. feasible

Basic feasible solution

¢ To solve the L.P. problem we need to evaluate the objective

function at each of the basic feasible solutions.
® However, in practice this becomes impractical. Say for
example we had an L.P. problem with 3 decision variables

and 3 constraints (hence 3 slack variables). The number of

basic feasible solutions: 6! ~20
33
® For 4 decision variables and 5 constraints, we have:
I
9 _12
5141
° ... and so on

Solution of Example-1

e Maximize Z = 2x; + x, .
s.t. 3x; +x, <300 .
x; + x, < 200

x,>=0,%x,>0
e max Z = 2x; + x,+ 0x; + 0x,
s.t. 3x; T x, + x5 - 300
x +x,+x, -200

X Xy, X3, %4 >0

(%1 Xp 5 X35 Xy )

(25, 25, 200, 150) is
feasible but not a
basic solution

(100, 25, 0, 0) is
basic but infeasible
(0, 0, 300, 200) is
basic and feasible
solution

4/17/2019
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All slack basic feasible solution
® Models involving < (LE inequality) with non-negative RHS
offer convenient all slack starting basic feasible solution

® Models involvingZ and = constraints have different

solution procedure. (not discussed here)

® Read the Book by Taha for problems involving > and =

constraints

Solution using Simplex tableau

In principle one can start from any basic feasible solution

Let’s identify x; and x, as basic and x, and x, as non-basic variables
(assumes zero value)

We shall now start with the initial basic feasible solution (0, 0, 300,
200) with z=0

Table 2.1 4 Starting Solution

Céeﬁ‘icient of
~Basis - x; Xy Xg - x; - -RHS . Ratio
Row 1 3 1 0 7300 300/3 = 100 {«—Departing
Row 2 Xq 1 1 0 1 200 200/1 =200 | variable
Row z z —2 -1 0 o 0

Entering variable

@Note that OF as basic variable: Z - 2x; - X, - 0x5 - 0x, = 0

Entering and Departing variable

Given any basis we move to an adjacent extreme point
(another basic feasible solution) of the solution space by

exchanging one of the columns that is in the

basis for a column that is not in the basis

Two things to determine:

1) which (non-basic) column of should be brought into the
basis so that the solution improves?

2) which column can be removed from the basis such that
the solution stays feasible?

Entering and Departing variable

® Entering variable: the variable entering the
basis is the one with the most negative
coefficient in the z-row X,. It will contribute to
the increase of OF most. The column x, is now
the pivotal column.

® The one basic variable to leave is the one which
gives the minimum ratio test by applying those
pivot column coef. That are strictly positive..

4/17/2019
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Solution Contd..

We determine that x; replaces x5 in the new solution which
has (x;, x, ) as the basis. However, the coefficients in the
Simplex table should be worked out using Gauss-Jordan
transformation:

The new pivot row (row 1) is obtained:
New pivot row = old pivot row/pivot coefficient

The rows other than the pivot row are transformed in the
iteration:

New row = old row — (pivot column coeff)*(New pivot

row)

Solution Contd..

Table 2.1 i Starting Solution

Coefficient of
- Basis Xy Xy Xy oo Xgoo RgJS - - Ratio .
Row 1 X3 3 1 1 0 7300 300/3 = 100 («Departing
Row 2 X4 1 0 1 200 200/1 =200 | variable
Row z z —2 -1 0 0 0
Entlring variable
Tteration 1 i
RHS Ratio

Basis  x; X5 X3 %4

Solution Contd..

Note:

In Iteration 1 the OF value increased from O to

200

This solution would have been optimal if all the
coeff. of the Z row were non-negative

Another iteration is needed. X, is entering and
X, is the departing variables

Row 1 X; 1 173 1/3 0 100 100/(1/3)=300 )
Row 2 x4 0 2/3 -1/3 1 100 100/(2/3)=150 *—Degartmg
Rowz z 0 -3 23 0 200 variable
@ EnteTring varjable
Solution Contd..
Teration | - - — — — —
Basis  x; X X3 *;  RHS Ratio
Rowl x 1 3 3 0 100  100/1/3)=300
Row2 x 0 23 -1/3 1 100  100A2/3)=150 |~ Departing
Row z z 0 -1/3 230 200 variable
o _Emiﬂng_ va.ﬁab]e_
Iteration 2 (solution)
Basis  x; X x; Xy RHS  Rario
Row 1 x 1 0 172 -1/2 . 50
Row 2 X 0 1 -1/2 32 " 150
Rowz  z 0 0] [z 12 Optimal Soluio

4/17/2019
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Models involving “=" and ‘>’ constraints

¢ Simplex method for LP problem with ‘greater-than-equal-to’
(2) and ‘equality’ (=) constraints needs a modified

approach.
® Big-M method

¢ The LPP is transformed to its standard form by incorporating

a large coefficient M

Big-M method

Step 1 One ‘artificial variable’ is added to each of the (2) and (=)
constraints to ensure an initial basic feasible solution

Step 2 Artificial variables are ‘penalized’ in the objective function
by introducing a large negative (positive) coefficient for
maximization (minimization) problem.

Step 3 Cost coefficients, which are supposed to be placed in the Z-
row in the initial simplex tableau, are transformed by ‘pivotal
operation’ considering the column of artificial variable as ‘pivotal
column’ and the row of the artificial variable as ‘pivotal row’.

If there are more than one artificial variables, the last step is
repeated for all the artificial variables one by one (repeat step 1 to

3)

CENG 6602 lecture notes Dereje Hailu,
AAIT, AAU

e CENG 6602 lecture notes Dereje Hailu,
AAIT, AAU
Example - 2
Maximize
Z = 3%, +5X%,
s.t.
X <4
2x2 <12 Constraints, note one of
them is equality constraint
3x, +2x, =18 quallty
|
=0 Non-negativity of decision
X, > 0 variables

CENG 6602 lecture notes Dereje Hailu,
AAIT, AAU

Example - 2 (Contd.)

The problem is converted to standard LP form

Maximize Z = 3x, +5X,

st X <4 _) X +X =4

2X, <12 _) 2X, + X, =12
3%, +2X, =18 =) 3x,+2X, =18

X >0 X 2>0; x,>0
X, >0 X >0; x, >0
n= no. of variables = 4; m = no. of constraints =3

CENG 6602 lecture notes Dereje Hailu,
AAIT, AAU

4/17/2019
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Example - 2 (Contd.) Example - 2 (Contd.)
No initial basic feasible solution is available for this Z-3%-5%+MxA =0
problem. 3x,+2x, +A =18
Add artificial variable to constraint 3 X1 Xo X3 X4 A b;
Z-3%-5%+MxA =0 —
v A E, 3 5 0 0 M 0
3 +2x,+ A =18
E, | 3 2 0 0 1 18
Transformation of coefficients in row-Z
J7 Pivotal operation E1 —M x E2
-3M-3  -2M-5 0 0 0 -18M
CENG 6602 lecture notes Dereje I lailu, .
AAIT, AAU CENG 6602 lecture notes Dereje Hailu, AAIT, AAU
Example - 1 (Contd.) Example - 1 (Contd.)
o teration-1  Entering variable Iteration-2 Entering variable
Ko} 1 |
8 1) . v
Cg Basis | Row X1 X, X3 Xy A b; bi/a; Basis | Row X X2 X3 X4 Ay b; bi/a;
=4
i Z 0 3M-3| -2m-5 0 0 0o |-18m| = % z 0 0 -2M-5 [3M+3 0 0 [-6M+12 -
] <
o) 5
O>x | 1 @ 0 1 0 o0 | 4| 4 S I 1 0 1 o o| 4 -
1 g’
X | 2 // 0 2 0 1 o | 12| - Sl % | 2 0 2 0 1 0| 12 6
g
A 3 3 2 0 0 1 18 6 > A 3 0 2 -3 0 1 6 3
CENG 6602 lecture notes Dereje Hailu,
PiVot point J @ e
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Example - 1 (Contd.) Example - 1 (Contd.)
Iteration-3 Entering variable lteration-4
|
¢ Basis | Row | Z X X X. X, A b;
% Basis | Row | X, X X X A b; bifay; ! 2 8 4 ! '
©
s z 0 1 0 0 0 32 M+l 36
S| z 0 0 0 |[-92| 0o M+52| 27 -
2
= X 1 |0 1 0 0 13 13 2
S| x 1 1 0 1 0 0 4 4 !
o
2 |o 0 0 1 13 -13 2
O,y | 2 0 0 3| 1 a 6 2 %
1 112
X | 3 0 1 |32l 0 12| 3 - % 3|0 0 o v 0 6
5 6602 lecture notes ereje Hailu, 5 6602 lecture notes ereje Hailu,
Q ¢ e © ¢ o

Example - 1 (Contd.) Multiple artificial variables

Since all coefficients in the Z-row are non-negative this is
the optimal solution. * In case of multiple artificial variables, carryout the

transformation one by one.

Z =36
X =2 Note that this is the same _ o
1 solution with the » Use the transformed Z-row in the initial simplex
X, =6 constraint 3%, +2X, <18 table.
Xy =2
X =0 Binding (tight)
A=0 constraint

CENG 6602 lecture notes Dereje Hailu, CENG 6602 lecture notes Dereje Hailu,
AAIT, AAU j AAIT, AAU
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Example-2

Consider the following problem

Example-2

After incorporating the artificial variables

Maximize Z =3x, +5x, —Ma, —Ma,
X+ X, =X +a, =2

X, +X, =6

subject to

3%, +2x,+a, =18
X, %, =0

where X; is surplus variable, x, is slack variable and a, and a, are the
artificial variables

CENG 6602 lecture notes Dereje Hailu,
AAIT, AAU

Maximize Z =3X, +5X,
subject to X+ X, =2
X, <6
3%, +2x, =18
X, X, 20
@ (\I\l\lf,\(;t:)) lecture notes Dereje Hailu,
Example-2

Considering the objective function and the first constraint

Pivotal Row

Pivotal Column

By the pivotal operation E, —M xE, the cost coefficients are modified as

Z-(B+M)x —(5+M)x, + Mx, +0a, + Ma, = —2M

CENG 6602 lecture notes Dereje Hailu,
AAIT, AAU

Example-2

Considering the modified objective function and the third constraint

Pivotal Row \ Pivotal Column

By the pivotal operation E, — M x E, the cost coefficients are modified as

Z-(3+4M)x, —(5+3M)x, + Mx, +0a, +0a, = —20M

CENG 6602 lecture notes Dereje Hailu,
AAIT, AAU

4/17/2019
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Example-2 Simplex Tableau

Corresponding simplex tableau

Variables h
Iteration  Basis 7 b -
/\\ X, B X, a, a;y En

z 1 f=3-4M Y -5-3M M 0 0 0 - 200 -

a0, ] @ 1 -1 0 1 0 2 2

1
X, (] 0 1 (] 1 0 0 6
ay ] 3 2 (] 0 0 1 18 6

Pivotal row, pivotal column and pivotal elements are shown as earlier

CENG 6602 lecture notes
AAIT, AAU

Dereje Hailu,

Example-2
Variables b
Iteration  Basis 7 b, -
X, X x X, a, a s
Z 1 0 0 0 M 1+ M 36
2 1
¥, 0 I 0 0 = 0 - 2
4
Xy 0 0 1 0 1 ] 0 6
1 1
X 0 0 0 1 - 1 - 6
3 3
Check using software :

After four iterations Optimality has reached.

Optimal solution is Z = 36 with x, =2 and x, = 6

CENG 6602 lecture notes
AAIT, AAU

Dereje Hailu,

Special cases

Cases for a tie : Entering variable

® [ntering variable: tie can be broken by arbitrarily (optimal solution

will be reached eventually regardless of the variable chosen)

® max x; +x,
® S.t.
L[]

2x,+x,<4
x, + 2x,<3
XIZO;XZZO

Table 3.6: Tie of entering basic variables

. . Coefficient of Right-hand side
Basic variables — )
z xi | x| 5 52 (solution)
z 1 -1 (-1 (0 0|0
51 0 2 1 1 0 |4 42=2
52 0 1 2 0 1 |3 31=3

4/17/2019
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Cases for a tie: Departing variable

® Departing variable: a tie for the departing variable.

¢ One variable can be arbitrarily selected as the departing
variable.

® This results in a degenerate solution. Degeneracy reveals
that there is at least one redundant constrain.

® In some cases, degeneracy may lead to “cycling”,i.e. a
sequence of pivots that goes through the same tableaus

and repeats itself indefinitely.

Example

® max

2%, +x,

St 3x, +x,<6

° x,-x, <2

. x, <3

. x,20;x,20

Basic variabl Coefficient of Right-hand side
asic variables T T - o - - (solution)

z 1 -2 -1 0 0 0 1]
51 0 3 1 0 0 6:6/3=2
52 0 1 -1 0 1 0 2:211=2
53 0 0 1 0 0 1 3

Example : Multiple solution

Initialize, do first iteration and iteration 2
yields optimal solution

Maximize Z = 2x, + x,
s.t 3%, +x, <300
4x, + 2x, < 500

x; >=0,%x,>0

X; has 0 coeff in z-row= multiple solution

(%5 %) = (50,150) and (0,250) and any point
on a line joining the two is a solution

Iteration 2 Optimal solution
Basis x; X, X3 Xy RHS Ratio
X 1 0 1 -1/2 50
X5 0 1 -2 3/2 150
z 0 0 0 1/2 250
Iteration 3 Alternate solution
Basis x; X5 Xz B RHS Ratio
X3 1 0 1 -1/2 50
Xy 2 1 0 /2 ——— 250
z 0 0 0 172 250
CENG 6602 lecture notes Dereje Hailu, AAIT, AAU

Multiple solutions

* Existence of multiple solution

is indicated by the presence of a

max x, +1/2x,

L]
zero in the z-row under a basic S.t.
. . . . ® 2x, +x,54
variable in the final simplex 1T
®x, +2x,<3

table. New solution in the next
iteration by choosing this non-
basic variable as the entering

®x,20;x,20

variable.
Basic variables Coefficient of R_lghr—hafld side
z x; | x2 51 52 (solution)
z 1 0|0 ¥ - 2
X1 0 1 0 23 | -173 |53
x2 0 0 1 |-13 | 273 [2/3

4/17/2019
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Sensitivity Analysis

Sensitivity analysis

® A change in the data of original problem may affect
optimality or feasibility of the current solution.

® Parameters Sensitivity
® LP assumes certainty of the model parameters, but are

are only estimates.

® Sensitivity analysis is to identify the sensitive
parameters, to try to estimate these parameters
more closely, and then to select a solution that
remains a good one over the range of likely values of
the sensitive parameters.

Sensitivity analysis

1. RHS sensitivity analysis
® measures how sensitive is the optimal solution to the change in
the resources values i.e., by changing the resource limits, would
the optimal solution be changed and to what limit.
2. OF sensitivity analysis.
® The coefficients of the OF could be based on uncertain data or
subjective judgment of the decision maker.
® changes in the values of the coefficients that multiply the
decision variables in the objective function.

Sensitivity analysis in LP

® Sensitivity analysis is an exercise of obtaining a new
solution corresponding to a change in the data of
the original problem, given the original problem
and the final simplex table, without solving afresh

the new problem with changed data.

° Example: EXCEL-SOLVER sensitivity outputs

4/17/2019
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Duality

Dual Problem

® Every primal LP problem will have its dual.

® Sometimes it is easier to formulate the dual
problem, rather than the primal problem, and
thereby determine the solution of the primal.

¢ The solution of dual is extremely handy if the
primal problem has a small number of decision
variables and a large number of constraints

Primal __J

Dual

Example

Maximize 1=2x+ Xy
subjectto - 3x; + x, < 300
X1+ xy < 200
2x; + 5x, < 900
Sx; + 2x, < 600
Xy, X >0

Minimize 7" = 300y; + 200y, + 900y, + 600y,
subject to 3y; + yp + 2y; + Sy > 2
Y1+ Yo+ 3y + 2y, > 1
Y Y2 Y3 ¥a > 0

Dual Example -2

* Maximize Z = 2x; + x,

s.t. 3%, +x, <300 (constraint 1)
x; + x, <200 (constraint 2)
X, X, >0

e For every primal constraint there is a dual variable and for
every primal variable there is a dual constraint
® Two dual variables y, and y, corresponding to constraint 1 and
2)
® There will be two constraints in the dual, one each

corresponding to x; and x,.

¢ Optimization Problem is reversed: Minimization

4/17/2019
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Example-2 Contd..
® The OF 7’ for the dual is:
* Minimize 2z’ = 300y, + 200y,
°S.t. 3y, ty,22
Nyl
Y1 Y220

¢ some differences between the primal simplex and
the dual simplex methods

Dual Simplex method

¢ The primal simplex method starts from a non optimal
feasible solution and moves towards the optimal solution,
maintaining feasibility every time

¢ Dual simplex method starts with an infeasible basic solution
and strives to achieve feasibility, while satisfying optimality
criterion every time.

¢ The dual simplex method has rules for the
® entering variable,
¢ departing variable

® and testing the feasibility of a solution.

Example
e Minimize z’ = 300y, + 200y,
° St 3y, +y,22
ity,21

Y, ¥, 20
® Solution of the Dual:

® Writing the dual in the standard form with equality

COMSETANGS,  \roximize  (oz') = —300y; — 200y,
or’ (-2) + 300y, + 200y, = 0
' Bnty-y=2 0
or Sty -wm=1

Vi ¥2: ¥3, ¥4 20

Example

® Writing the problem in a way to facilitate a starting basic
infeasible solution for dual simplex method:

(=) + 300y, + 200y, =0
=3y =Yty =2
Y=Yty =-1

¥is Y2 V3 ¥4 20

Starting solution

[ Basis ¥y Y2 Y3 Ya RHS
¥s o3 -1 1 S0 2
Vs -1 -1 : 0 R | to-1
) 300 200 -0 0 0
f .
Ratio 300/3 200/1
=100 =200

4/17/2019
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Example

¢ The departing basic variable is identified first as one with the
most negative value (Row)

¢ The entering variable: For each nonbasic variable,
determine the absolute value of the minimum ratio.

(column)

® Jteration 1.....

Iteration 2 Feasible and optimal solution
Basis Vi ¥ V. Ya RHAS
y, 1 o . an 12 12
¥z 0 1 - 1/2 =312 1/2
(G4 0 0 50 150 -250

Solution: y; = 1/2, ¥, = 1/2, (-z') = -250, or 7’ = 250.

Example

¢ Note that the dual variables from the optimal solution are y,
=1/2andy, =1/2.

¢ The optimal value of x; in the primal can be identified by the
coefficient of the slack variable y; in the corresponding dual

constraint, which is equal to 50.

¢ Thus x; = 50 and similarly x, =150.

Dual Example-2

® Consider the following primal problem

Maximize

Z = 12x, + 4x,
subject to:

4x, + Tx, < 56

2x; + 5x, > 20

5xy + 4x, = 40
x; >0
x, >0

The first inequality requires no modification. But the
second and the third constraint have to be modified

Dual Example-2 contd..

¢ The second inequality can be changed to the less-than-or-

equal-to type by multiplying both sides by -1 that is,

—2x, — 5x, < —20

® The equality constraint can be replaced by the following two
inequality constraints:

S5x, + 4x, < 40
5x, +dx, > 40

4/17/2019

24



Dual Example-2 contd..

¢ The primal problem can now take the following standard

form:

Maximize

Z = 12x, + 4x,
subject to:

4x, + Tx, < 56

—2x, — 5x, < —20
5x, +4x, < 40
—5x, — 4x, < —40
x> 0

X, = 0

Dual Example-2 contd..

¢ The dual of this problem can now be obtained as follows:

Minimize
P = 56y, — 20y, + 40y, — 40y,
subject to:
4yy — 29, + 5y — Sy, = 12
Tyy — Spa+4y; — 4y, > 4
ally,> 0

Primal -Dual relationship

Primal Problem Dual Problem

Maximize Minimize

Z =cix, + ex, P=0by; + by, + b3y,
subject to: subject to:

kyyxy + kyax, < by kuyi +kay, ks = ¢

karxy + kapxy < by ki2ys + kaays + kseys >0

kyixy + kypx, < by ally, >0

all x, >0

LP in Matrix form

4/17/2019
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Matrix form

¢ Matrix form expression facilitate understanding of the simplex operations
® maximize c'x

subject to Ax < b, x>0

Maximize z=CX
subject to A, DX=b
X220
where I is (m x m) identify matrix, X is a column vector and C, a row vector

given by
X = (g, X, 07, Ky
C=(cp, € ooy Cpum)s
and A is (m X n) matrix, b is a column vector given by

ay Gy - O b

A=|%1 G2 - Oy b= by

B

@ Ani Oy o Gy by,

W Consider the LP problem
Maximize z=4x; + 5x,

subject to 2x;+ 3x, < 12
4x; +2x, < 16
X +x <8
X1, X 20
The problem is written in the standard form first.
Maximize z=4x; + 5xy + 0.x3 + O.xy + O.xs
subject to 2%+ 3xy + x5 =12

4x; + 2xy + x4 =16

X+ xy+x5=8

X1, Xp, X3, Xgy X5 2 0
The problem is expressed in the matrix form as

A Example in
2 .
Maximize z=(4 570 070) % matrix form
v Iy
X5
X1
: 2310 0)x| 12
subject to 4 2 0 1 0)|x!=|16
1100 1fx |18
st
%20 j=1,2 ,5

4/17/2019

Non-linearity

Piecewise Linearization

® LP can be used with some modification to solve non-
linear problems, if the nonlinear expression can be
expressed as piecewise linear segments.

® Requires additional variables and constraints

¢ Consider a maximization problem of a concave nonlinear
function f(x).

¢ F(x) can be expressed as a piecewise linear function
consisting of segments, with slope of the function in each

reducing as X increases.

26



Piecewise Linearization cont.

fla) F=—————————
flag) F——~—

f(ay) -

f(ay)

|
|
!
|
!
I
|
I
I
|
!
a

4 —>X
Method 2

Let the slopes of the linear segments be sy, s,, ..., where 57> 5,> 55 ...

Then the problem is to
Maximize SO =511+ 8 Xy + 53 %3 + ... = Zs,x,
subject to a +xtx+...=x
x; < a;,; —a; for all segments j.

¢

LP in Construction Management

® Linear programming can be used in construction
management to solve many problems such as:
® Optimizing use of resources
® Determining most economic product mix
¢ Transportation and routing problems

¢ Location of new production plants, offices and
warehouses

® Personnel assignment

¢ Determining Optimum size of bid

LP applications in other areas

¢ Developing a production schedule that will satisfy future
demands for a firm’s product and at the same time minimize

total production and inventory costs.

Selecting the product mix in a factory to make best use of
machine- and labor-hours available while maximizing the

firm’s profit

Picking blends of raw materials in feed mills to produce

finished feed combinations at minimum costs

Determining the distribution system that will minimize total

shipping cost

LP practical applications

¢ Scheduling school buses to minimize total distance
traveled

® Allocating police patrol units to high crime areas in
order to minimize response time to (911) calls

® Scheduling tellers at banks so that needs are met during
cach hour of the day while minimizing the total cost of
labor.

° Allocating space for a tenant mix in a new shopping mall
so as to maximize revenues to the leasing company

® Etc..

4/17/2019
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Integer and Mixed-Integer Problems

® An LP problem in which all the decision variables must have
integer values is called an integer programming problem.
(IP)

® A problem in which only some of the decision variables must
have integer values is called a mixed-integer
programming problem. (MIP)

® Sometimes, some (or all) of the decision variables must have
the value of either 0 or 1. Such problems are then called
zero-one mixed-integer programming problems.

e Simplex method cannot be used to such problems. Advanced
methods are available for this purpose

Software

* Numerous Computer programs to solve LP problems are
widely available.

*Most large LP problems can be solved with just a few minutes
of computer time

*Most computer-based LP packages use the simplex method

EXCEL-Solver, LINDO/LINGO, GAMS, XPRESS-MP are very
popular . Others exist too : TORA , AMPL, etc..

Solving using Excel Solver

¢ Solver uses standard spreadsheets together with an interface
to define variables, objective, and constraints to define a
linear program.

® Solver, while not a state of the art code is a reasonably
robust, easy-to-use tool for linear programming,

® Excel Solver add-in optimizes linear and integer problems
using the simplex and branch and bound methods.

® Solver does sensitivity analysis automatically

Solver

e Start with entering the data into spreadsheet and Create the model in

a separate part of the worksheet.

¢ Solve the previous example-1 using SOLVER

Input data

x1 x2 equations |Limits
objective 2 1 0
constraint 1 3 1 0 LE 300
constraint 2 1 1 0 LE 200
Result x1 x2 z
optimal
solution 0 0 0

4/17/2019
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Sensitivity Analysis

How sensitive the results are to parameter
changes

* Change in the value of coefficients

* Change in a right-hand-side value of a constraint
Trial-and-error approach

Analytic post-optimality method
EXCEL-SOLVER Output for Example-1

Sensitivity Report

Microsoft Excel 12.0 Sensitivity Report

[Worksheet: [test.xIsx]Sheet1 [

Report Created: 05/12/2009 18:36:46
‘ ‘ [ The solution values }—
[Adjustable Cells .
Final | Redugéd | Objective | Allowable | Allowable
Cell Name Value ost | Cocfficient | Increase | Decrease
$B$10 |optimal solution x1 50 0 2 1 1
$C$10 |optimal solution x2 150 0 1 1 0.33333333
(Constraints
Final Shadow | Constraint | Allowable | Allowable
Cell Name Value Price R.H.Side | Increase | Decrease
$D$5 _|constraint 1 trail soln. | 300 |4 0.5 300 300 100
$D$6 |constraint 2 trail soln. | 200 0.5 200 100 100

If we use one more Unit of money, the net benefit will increase by 0.5 unit of money.This is true
up to 300 more units. Net benefit will fall by 0.5 for each decrease , down as low as 100 units

Sensitivity report

The solution/ course of action changes with a change in
values of the objective function coefficients within the range
of allowable increase and decrease. The result (course of
action) will not change (remains constant) if the coefficients

values are outside the range.

The net benefit changes within the range of allowable
increase and decrease with a change of the RHS value of a
constraint. The net benefit remains constant for values
outside the range. Availing more resource doesn’t improve

the solution.

Changes in Resources limits

The RHS values of constraint equations may change as
resource availability changes

The shadow price of a constraint is the change in the
value of the objective function resulting from a one-
unit change in the right-hand-side value of the
constraint

Shadow prices are often explained as answering the
question “How much would you pay for one
additional unit of a resource?”

4/17/2019
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LINDO/LINGO

See presentation

Integer/binary programming

* Assumption of divisibility

¢ All the software packages in our Courseware (Excel,
LINGO/LINDO, and TORA) include an algorithm for

solving (pure or mixed) algorithm for solving IP models

where variables need to be integer but not binary.

® When using the Excel Solver, the procedure is basically the

same as for linear pro

¢ Ina LINDO model, the binary or integer constraints are
inserted after the END statement.

¢ In Excel solver “int” and “bin” options

AMPL

* A Mathematical Programming Language

® algebraic modeling language for linear and nonlinear
optimization problems, in discrete or continuous variables.

¢ Developed at Bell Laboratories http://www.ampl.com

® General and natural syntax for arithmetic, logical, and
conditional expressions;

GAMS

® GAMS (General Algebraic Modeling System)

® Www. gams.com

4/17/2019
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TORA

¢ TheTemporary-Ordered Routing Algorithm (TORA) —An
Operations Research Software

® TORA is menu-driven and Windows-based (low screen
resolution)

¢ Operation Research Book 8th Edition By Hamdy A.Taha
(with CD)

e Old version???

TORA

® TORA software deals with the following algorithms:
@ Solution of simultaneous linear equations
® Linear programming
e Transportation model
® Integer programming
e Network models
® Project analysis by CPM/PERT
® Poisson queuing models

® Zero-sum games

4/17/2019

31



