

Why LP?

- Most popular optimization technique
- LP software packages are readily available
- A lot of work on specialized algorithms for solving specific LP problems (EXCEL-SOLVER, XPRESS-MP, GAMS, LINDO, LINGO, AMPL, MINOS, TORA, etc.)
- Many problems can be converted to a LP formulation

History of LP

1928 - John von Neumann published related central theorem of game theory
1944 - Von Neumann and Morgenstern published Theory of Games and Economic Behavior
1936 - W.W. Leontief formulated a linear model without objective function.
1939 - Kantoravich (Russia) actually formulated and solved a LP problem
1941 - Hitchcock poses transportation problem (special LP)
WW II - Allied forces formulate and solve several LP problems related to military
A breakthrough occurred in 1947...

History of LP Contd...

- US Air Force investigate applying mathematical techniques to military budgeting and planning
- George Dantzig proposed LP model
- Air Force initiated project SCOOP (Scientific Computing of Optimum Programs) and SCOOP began in June 1947, Dantzig and associates developed:
- An initial mathematical model of the general linear programming problem
- A general method of solution called the simplex method.

Simplex Today

- A large variety of Simplex-based algorithms exist
- Other algorithms have been developed for solving LP problems:
- Khachian algorithm (1979)
- Kamarkar algorithm (AT\&T Bell Labs, mid 80s)
- Etc..
- Simplex (in its various forms) is and will most likely remain the most dominant LP algorithm in actual practical applications for at least the near future

LP Assumption

- a definite objective that can be mathematically represented in an equation format exist.
- Constraints are always limiting the use of the available resources.
- There different alternative or solutions for the problem at hand, and for each solution there is a specific value for the objective function.
- The preferred solution is the one that optimizes the objective and satisfies the constraints.
- All relationships between variables are linear.
- Linear programming assumes confident in all gathered data.

Linear Programming

- Mathematical Model

Guideline for Model Formulation

- Decision variables

1. Understand the problem thoroughly.

- Linear objective function
- maximization

2. Write a verbal statement of the objective function and each constraint.

- minimization

3. Define the decision variables.
4. Write the objective function in terms of the decision variables.

- linear constraints

5. Write the constraints in terms of the decision variables.

- equations =
- Inequalities LE or GE
- Non-negativity constraints

Formulation of LP Problems

- The key terms of linear programming model are resources, m, and activities, n, where m denotes the number of different kinds of resources that can be used and n denotes the number of activities being considered.
- Assume: $Z=$ value of overall measure of performance
- $x_{j}=$ level of activity $j(j=1,2, \ldots \ldots, n)$
- $c_{j}=$ increase in Z that result from each unit increase in activity j
- $b_{i}=$ amount of resource i that is available to activity $j(i=1,2, \ldots, m)$
- $a_{i j}=$ amount of resource i consumed by each unit of activity j.

General mathematical model of LP

- The general form of allocating resources to activities

Typical resources are money, equipment, personnel, etc.
Sample activities include specific products, investing in particular
projects, shipping goods, etc.

Formulation of LP Problem

- Formulation of LP Problems : clearly define the decision variables, objective, and constraints.
- An Example of LP model:

$$
\begin{array}{lrl}
\text { maximize } & \begin{aligned}
&-x_{1}+3 x_{2}-3 x_{3} \\
& \text { subject to } 3 x_{1}-x_{2}-2 x_{3}
\end{aligned} \leq 7 \\
-2 x_{1}-4 x_{2}+4 x_{3} & \leq 3 \\
x_{1} & -2 x_{3} & \leq 4 \\
-2 x_{1}+2 x_{2}+x_{3} & \leq 8 \\
3 x_{1} & \leq 5 \\
& x_{1}, x_{2}, x_{3} & \geq 0 .
\end{array}
$$

Standard form

- maximize $\quad Z=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$

- Constraints

s.t. $a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1}$

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m}
$$

Note: $b_{1}, b_{2}, . . b_{m}$ are non negative RHS values

- Non-negative variables
e.g. $\mathrm{x} 1, \mathrm{x} 2 \geq 0$

Other forms

- Can be rewritten in standard form

1. Minimization problems

Graphical Method

- Convert by changing the signs of the variables of the objective function from min to max problems.
- Min $z=0.4 x_{1}+0.5 x_{2} \quad$ is equivalent to
- Max $-z=-0.4 x_{1}-0.5 x_{2}$

2. Problems with constraints on alternative forms,

- The direction of an inequality is reversed by multiplying both sides by (-1)

3. Problems involving negative RHS variables

- Multiplying both sides by (-1), makes the right-hand side positive

Graphical method

- For a model with only two variables, it is possible to solve the problem by drawing the feasible region and determining how the objective is optimized on that region
- gives you intuition and understanding of linear programming models and their solution.
- A feasible solution is a solution for which all the constraints are satisfied. An infeasible solution is a solution for which at least one constraint is violated.

Example-1 LP model formulation

Exampe 2.2n量 Two crops are grown on a land of 200 ha. The cost of raising crop 1 is 3 unit/ha, while for crop 2 it is 1 unit/ha. The benefit from crop 1 is 5 unit/ha and from crop 2, it is 2 unit/ha. A total of 300 units of money is available for raising both crops. What should be the cropping plan (how much area for crop 1 and how much for crop 2) in order to maximize the total net benefits?
Solution:
The net benefit of raising crop $1=5-3=2$ unit/ha
The net benefit of raising crop $2=2-1=1$ unit/ha
Let x_{1} be the area of crop 1 in hectares and x_{2} be that of crop 2, and z, the total net benefit.
Then the net benefit of raising both crops is $2 x_{1}+x_{2}$. However, there are two constraints. One limits the total cost of raising the two crops to 300 , and the other limits the total area of the two crops to 200 ha. These two are the resource constraints. Thus the complete formulation of the problem is

Graphical method

- Problem is to maximize revenue from two crops, given constraints on available land and capital
- LP model formulation:
- OF max. $\mathbf{Z}=2 \mathbf{x}_{1}+\mathbf{x}_{2}$ (maximize the net benefit)
s.t. $3 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 300 \quad$ (limit on total cost)
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 200 \quad$ (limit on land)
$x_{1}>=0, x_{2} \geq 0$ (cannot plant a negative area)

Solution

In general, the optimal solution lies at one of the corner points of the feasible region.

Solution (some notes)

- Map the feasible region (region OAPD)
- A corner-point feasible (CPF) solution is a solution that lies at a corner of the feasible region.
- Any point within or on the boundary of the feasible region is a feasible solution
- Solutions:
- $P(0,200) \quad Z=200$
- $\mathrm{P}(50,150) \quad \mathrm{Z}=250$
- $\mathrm{P}(100,0) \mathrm{Z}=200$
- $\mathrm{P}(0,0) \quad \mathrm{Z}=0$
- An optimal solution is a feasible solution that has the most favorable value of the objective function. (largest value for maximization and the smallest value for minimization problems).

Solution (some notes)

- Plot the objective function, Z , on the same graph.
- Determine the direction for moving Z within the feasible range
- Shift the objective function line in the direction of improvement until it last intersected the feasible region
- Consider a line for the OF for an arbitrary value of c Say c=40
- $\mathrm{P}(50,150)$ is the farthest point from the origin representing the optimal solution $Z=250$

LP assumptions

- Proportionality
- The contribution to the objective function from each decision variable is proportional to the value of the decision variable
- Additivity
- The value of objective function is the sum of the contributions from each decision variables
- Divisibility
- Each decision variable is allowed to assume fractional values.
- Certainty
- Each parameter is known with certainty

LP Solutions

- Whenever a linear programming model is formulated and solved, the result will be one of four characteristic solution types:
- 1) unique optimal solution,
-2) alternate optimal solutions,
-3) no-feasible solution, and
-4) unbounded solutions.

Unique optimal solution

x_{1}

Alternate optimal solutions

- The intersection of the objective function line and the feasible region at optimality becomes a line segment

No feasible solution

- This may occur when constraints conflict with one another. (over constrained)
- Assume the following set of constraints
- $5 x_{1}+5 x_{2} \leq 50$
- $x_{1} \geq 8$
- $x_{2} \geq 6$
- No feasible region
formed

Unbounded solutions

- A situation where the problem is under constrained.
- Assume the following set of constraints
- $5 x_{1}+5 x_{2} \geq 50$
- $x_{1} \leq 8$

Example 2

- An aggregate mix of sand and gravel must contain no less

Solution

 than 20% no more than 30% of gravel. The in situ soil contains 40% gravel and 60% sand. Pure sand may be purchased and shipped to site at 5 units of money $/ \mathrm{m}^{3}$. A total mix of at least $1000 \mathrm{~m}^{3}$ is required. There is no charge for using in situ material.- The objective is to minimize the cost

Draw the feasible region
Determine the optimum solution by the graphical method

- Total quantity of material needed $=1000 \mathrm{~m}^{3}$
- Min. quantity of gravel in the mix $=0.20 \times 1000=200 \mathrm{~m}^{3}$
- Max. quantity of gravel in the mix $=0.30 \mathrm{x} 1000=300 \mathrm{~m}^{3}$
- Let the decision variables be as follows:
x_{1} : Quantity of material from in situ
x_{2} : Quantity of material from outside
- The objective is to minimize the cost, z , $\operatorname{Minz}=5 *_{X_{2}}$
- The constraints are:
$x_{1}+x_{2} \geq 1000$
$0.4 x_{1} \geq 200$
$0.4 x_{1} \leq 300$
$x_{1}, x_{2} \geq 0$

Solution

- Optimum solution: $x_{1}=750$
$x_{2}=250$
- Amount of gravel $=300$ m3 from in situ
- Amount of sand $=700 \mathrm{~m}^{3}$; $450 \mathrm{~m}^{3}$ from in situ and $250 \mathrm{~m}^{3}$ from outside.

Understanding Simplex Method

- Useful in several ways
- Give insights into what commercial linear programming software packages actually do.
- Able to identify when a problem has alternate optimal solutions, unbounded solution, etc.

Simplex Method

Gauss-Jordan Elimination for Solving
 Linear Equations

- It works one variable at a time, eliminating it in all rows but one, and then moves on to the next variable. Example
- $x_{1}+2 x_{2}+x_{3}=4$
- $2 x_{1}-x_{2}+3 x_{3}=3$
- $x_{1}+x_{2}-x_{3}=3$
- In the first step of the procedure, we use the first equation to eliminate x_{1} from the other two. Specifically, in order to eliminate x_{1} from the second equation, we multiply the first equation by 2 and subtract the result from the second equation. Similarly, to eliminate x_{1} from the third equation, we subtract the first equation from the third.

Gauss-Jordan Elimination

- Such steps are called elementary row operations. We keep the first equation and the modified second and third equations.
- The resulting equations are:
- $x_{1}+2 x_{2}+x_{3}=4$ (1)
- $-5 x_{2}+x_{3}=-5 \quad$ (2)
- $-x_{2}-2 x_{3}=-1 \quad$ (3)
- Note that only one equation was used to eliminate x_{1} in all the others. This guarantees that the new system of equations has exactly the same solution(s) as the original one.

Gauss-Jordan Elimination

- Second step: divide the second equation by -5 to make the coefficient of x_{2} equal to 1 .
- Then, use this equation to eliminate x_{2} from equations 1 and 3 .
- This yields the following new system of equations:
- $x_{1}+7 / 5 x_{3}=2(1)$
- $x_{2}-1 / 5 x_{3}=1$ (2)
- $\quad-11 / 5 x_{3}=0$ (3)

Gauss-Jordan Elimination

- Only one equation was used to eliminate x_{2} in all the others and that guarantees that the new system has the same solution(s) as the original one.
- In the last step, we use equation 3 to eliminate x_{3} in equations 1 and 2.

$$
\begin{aligned}
\cdot x_{1}=2 & \text { (1) } \\
-x_{2}=1 & \text { (2) } \\
\cdot x_{3}=0 & \text { (3) }
\end{aligned}
$$

Gauss-Jordan Elimination

- Example: (No solution)
- $x_{1}+2 x_{2}+x_{3}=4$ (1)
- $x_{1}+x_{2}+2 x_{3}=1 \quad$ (2)
- $2 x_{1}+3 x_{2}+3 x_{3}=2$ (3)
- Example : (infinitely many solutions)
- $x_{1}+2 x_{2}+x_{3}=4 \quad$ (1)
- $x_{1}+x_{2}+2 x_{3} \quad=1 \quad$ (2)
- $2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+3 \mathrm{x}_{3}=5$
- Sometimes, linear systems of equations do not always have a unique solution (no solution, multiple solution)

Essence of the Simplex Method

Properties of the CPF solutions

- Consider the graph model of example-1
- If there is exactly one optimal solution, then it must be a CPF solution.
- Corner-point feasible solutions (CPF solutions)
- If there are multiple optimal solutions, then at least two must be adjacent CPF feasible solutions.
- There are only a finite number of CPF solutions.
- If a CPF solution has no adjacent CPF solution that are better as measured by the objective function, then there are no better CPF solutions anywhere; i.e., it is optimal.

General structure of the simplex method

- Thus, in any linear programming problem that possesses at least one optimal solution, if a CPF solution has no adjacent CPF solutions that are better (as measured by the objective function),

If the maximum or minimum value of a linear function defined over a then it must be an optimal solution. the region.

Simplex Method

Extreme point (or Simplex filter) theorem:

polygonal convex region exists, then it is to be found at the boundary of

General Simplex LP model:		
$\min ($ or $\max) \mathrm{z}=\Sigma \mathrm{c}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	Simplex	only
s.t. $\quad \mathrm{Ax}=\mathrm{b}$	deals	with
	$\mathrm{x} \geq 0$	equalities

Slack/surplus variables

- Each of the inequality constraints can be converted to an equality constraint by adding a slack variable to the LHS
- The coefficient of this slack variable in the OF will be zero
- slack, if $\mathrm{x} \leq \mathrm{b}$, then $\mathrm{x}+$ slack $=\mathrm{b}$
- surplus, if $\mathrm{x} \geq \mathrm{b}$, then x - surplus $=\mathrm{b}$

Example of LP

$$
\begin{aligned}
\text { Maximize } & 5 x_{1}+7 x_{2} \\
\text { s.t. } \quad x_{1} & \leq 6 \\
2 x_{1}+3 x_{2} & \leq 19 \\
x_{1}+\quad x_{2} & \leq 8 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Standard form with equality constraints:

$$
\begin{aligned}
& \text { Max } \quad 5 x_{1}+7 x_{2}+0 s_{1}+0 s_{2}+0 s_{3} \\
& \text { s.t. } \quad x_{1}+s_{1}=6 \\
& 2 x_{1}+3 x_{2}+s_{2}=19 \\
& x_{1}+x_{2}+s_{3}=8 \\
& x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0
\end{aligned}
$$

Standard form

Some definitions

- Feasible and infeasible solutions:
- Basis and basic variables: the number of basic variables is equal to the number of constraints. The variables in the basis only can be non negative values.
- Non basic variables: variables which are outside the basis
- Basic feasible solution: Assume there are a total of $n+m$ variables (n decision and m slack variables). Then a basic solution is one that has m number of basic variables and n number of non-basic variables. All non basic variables are zeros.
- Basic feasible solution: a basic solution which is also feasible is a basic solution.

Basic feasible solution: Example

Basic feasible solution

- Find all basic feasible solutions of the following system:
- In this example we have 2 equations and 4 variables. We find

$$
\begin{array}{cl}
\text { Max } P=5 x_{1}+6 x_{2} \\
\text { S.t. } & 4 x_{1}+2 x_{2} \leq 200 \\
& x_{1}+3 x_{2} \leq 150 \\
& x_{1} \geq 0 \quad x_{2} \geq 0
\end{array}
$$

- First add slack variables so that our new constraints are

$$
\begin{aligned}
& 4 x_{1}+2 x_{2}+s_{1}=200 \\
& x_{1}+3 x_{2}+s_{2}=150 \\
& x_{1} \geq 0 \quad x_{2} \geq 0 \quad s_{1} \geq 0 \quad s_{2} \geq 0
\end{aligned}
$$ basic solutions by setting 2 variables at a time equal to zero.

0	0	200	150	1. feasible
0	100	0	-150	2. Not feasible
0	50	100	0	3. feasible
50	0	0	100	4. feasible
150	0	-400	0	5. Not feasible
30	40	0	0	6. feasible

Basic feasible solution

- To solve the L.P. problem we need to evaluate the objective function at each of the basic feasible solutions.

Solution of Example-1

- However, in practice this becomes impractical. Say for example we had an L.P. problem with 3 decision variables and 3 constraints (hence 3 slack variables). The number of basic feasible solutions:

$$
\frac{6!}{3!3!}=20
$$

- For 4 decision variables and 5 constraints, we have:

$$
\frac{9!}{5!4!}=126
$$

- and so on

All slack basic feasible solution

- Models involving \leq (LE inequality) with non-negative RHS offer convenient all slack starting basic feasible solution

Solution using Simplex tableau

```
- In principle one can start from any basic feasible solution
```

- Models involving \geq and $=$ constraints have different solution procedure. (not discussed here)
- Let's identify x_{3} and x_{4} as basic and x_{1} and x_{2} as non-basic variables (assumes zero value)
- Read the Book by Taha for problems involving \geq and $=$
- We shall now start with the initial basic feasible solution ($0,0,300$, 200) with $\mathrm{z}=0$ constraints

Table 2.1 Starting Solution

Given any basis we move to an adjacent extreme point (another basic feasible solution) of the solution space by exchanging one of the columns that is in the basis for a column that is not in the basis

Two things to determine:

1) which (non-basic) column of should be brought into the basis so that the solution improves?
2) which column can be removed from the basis such that the solution stays feasible?

Entering and Departing variable

50 Note that OF as basic variable: $\mathbf{Z}-2 \mathbf{x}_{1}-\mathbf{x}_{2}-\mathbf{0} \mathbf{x}_{3}-\mathbf{0} \mathbf{x}_{4}=0$

Entering and Departing variable

- Entering variable: the variable entering the basis is the one with the most negative coefficient in the z -row X_{1}. It will contribute to the increase of OF most. The column x_{1} is now the pivotal column.
- The one basic variable to leave is the one which gives the minimum ratio test by applying those pivot column coef. That are strictly positive..

Solution Contd..

Solution Contd..

Table 2.1 Starting Solution
has ($\mathrm{x}_{1}, \mathrm{x}_{4}$) as the basis. However, the coefficients in the Simplex table should be worked out using Gauss-Jordan transformation:

The new pivot row (row 1) is obtained:
New pivot row $=$ old pivot row $/$ pivot coefficient
The rows other than the pivot row are transformed in the iteration:
New row $=$ old row $-($ pivot column coeff $) *($ New pivot row)

Solution Contd..

Note:

In Iteration 1 the OF value increased from 0 to 200

This solution would have been optimal if all the coeff. of the Z row were non-negative

Another iteration is needed. X_{2} is entering and X_{4} is the departing variables

Solution Contd..

Models involving " $=$ " and ' \geq ' constraints

- Simplex method for LP problem with 'greater-than-equal-to' (\geq) and 'equality' ($=$) constraints needs a modified approach.
- Big-M method
- The LPP is transformed to its standard form by incorporating a large coefficient M

CENG 6602 lecture notes
Derge Hailu,
AAiT, AAU

Example - 2

Example - 2 (Contd.)

The problem is converted to standard LP form
Maximize $Z=3 x_{1}+5 x_{2}$

$$
\begin{array}{ll}
\text { s.t. } & x_{1} \leq 4 \\
2 x_{2} \leq 12 \\
3 x_{1}+2 x_{2}=18 \longrightarrow & \begin{array}{l}
x_{1}+x_{3}=4 \\
2 x_{2}+x_{4}=12 \\
x_{1} \geq 0 \\
x_{2} \geq 0
\end{array} \\
3 x_{1}+2 x_{2}=18 \\
x_{1} \geq 0 ; x_{2} \geq 0 \\
x_{3} \geq 0 ; x_{4} \geq 0
\end{array}
$$

$n=$ no. of variables $=4 ; \quad m=n o$. of constraints $=3$
59 CENG 6602 lecture notec
Derge Hailu,
AAIT, AAU

Big-M method

Step 1 One 'artificial variable' is added to each of the (\geq) and ($=$) constraints to ensure an initial basic feasible solution
Step 2 Artificial variables are 'penalized' in the objective function by introducing a large negative (positive) coefficient for maximization (minimization) problem.
Step 3 Cost coefficients, which are supposed to be placed in the Zrow in the initial simplex tableau, are transformed by 'pivotal operation' considering the column of artificial variable as 'pivotal column' and the row of the artificial variable as 'pivotal row'.
If there are more than one artificial variables, the last step is repeated for all the artificial variables one by one (repeat step 1 to 3)

58 CENG 6602 lecture notes
Dercje Hailu,
CENG 6002
AAit, AAU

Maximize

$$
Z=3 x_{1}+5 x_{2}
$$

s.t.

$$
\begin{array}{ll}
x_{1} \leq 4 & \\
2 x_{2} \leq 12 & \begin{array}{l}
\text { Constraints, note one of } \\
\text { them is equality constraint }
\end{array} \\
3 x_{1}+2 x_{2}=18 & \\
\left.x_{1} \geq 0 \quad\right\} & \begin{array}{l}
\text { Non-negativity of decision } \\
x_{2} \geq 0
\end{array} \\
\text { variables }
\end{array}
$$

CENG 6602 lecture notes
Dercje Hailu,
AAIT, AAU

Example - 2 (Contd.)

No initial basic feasible solution is available for this

 problem.Add artificial variable to constraint 3

$$
\begin{aligned}
& Z-3 x_{1}-5 x_{2}+M \times A_{1}=0 \\
& 3 x_{1}+2 x_{2}+A_{1}=18
\end{aligned}
$$

Transformation of coefficients in row-Z

CENG 6602 lecture notec
AAiT, AAU
Dereje Hailu,

Example - 1 (Contd.)

Iteration-4

| Basis | Row | Z | x_{1} | x_{2} | x_{3} | x_{4} | A_{1} | b_{i} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Z | 0 | 1 | 0 | 0 | 0 | $3 / 2$ | $\mathrm{M}+1$ | 36 |
| x_{1} | 1 | 0 | 1 | 0 | 0 | $-1 / 3$ | $1 / 3$ | 2 |
| x_{3} | 2 | 0 | 0 | 0 | 1 | $1 / 3$ | $-1 / 3$ | 2 |
| x_{2} | 3 | 0 | 0 | 1 | 0 | $1 / 2$ | 0 | 6 |

Multiple artificial variables

- In case of multiple artificial variables, carryout the transformation one by one.
the optimal solution.

$$
\begin{array}{ll}
Z=36 & \begin{array}{l}
\text { Note that this is the same } \\
\text { solution with the } \\
x_{1}=2
\end{array} \\
x_{2}=6 & \begin{array}{l}
\text { constraint } 3 x_{1}+2 x_{2} \leq 18 \\
x_{3}=2
\end{array} \\
x_{4}=0 & \text { Binding (tight) } \\
A_{1}=0 & \text { constraint }
\end{array}
$$

CENG 6602 lecture notes
AAit, AAL
68 CENG 6602 lecture noté

Example-2

Example-2

Consider the following problem
After incorporating the artificial variables

$$
\begin{array}{ll}
\text { Maximize } & Z=3 x_{1}+5 x_{2} \\
\text { subject to } & x_{1}+x_{2} \geq 2 \\
& x_{2} \leq 6 \\
& 3 x_{1}+2 x_{2}=18 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

69 CENG 6602 lecture notes
AAit, AAU

$$
\begin{array}{ll}
\text { Maximize } & Z=3 x_{1}+5 x_{2}-M a_{1}-M a_{2} \\
\text { subject to } & x_{1}+x_{2}-x_{3}+a_{1}=2 \\
& x_{2}+x_{4}=6 \\
& 3 x_{1}+2 x_{2}+a_{2}=18 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

where x_{3} is surplus variable, x_{4} is slack variable and a_{1} and a_{2} are the artificial variables

CENG 6602 lecture notes
AAiT
AAit, AAU

```
Dereje Hailu,
```


Example-2

By the pivotal operation $E_{1}-M \times E_{2}$ the cost coefficients are modified as

$$
Z-(3+M) x_{1}-(5+M) x_{2}+M x_{3}+0 a_{1}+M a_{2}=-2 M
$$

$71 \begin{aligned} & \text { CENG } 6602 \text { lecture notes } \\ & \text { AAiT, AAU }\end{aligned}$
Derge Hailu,
AAit, AAU

Considering the modified objective function and the third constraint

By the pivotal operation $E_{3}-M \times E_{4}$ the cost coefficients are modified as

$$
Z-(3+4 M) x_{1}-(5+3 M) x_{2}+M x_{3}+0 a_{1}+0 a_{2}=-20 M
$$

72 CENG 6602 lecture notes

Dereje Hailu,
AAit, AAU
.

Example-2 Simplex Tableau

Example-2

Iteration	Basis	Z		Variables							b_{r}	$\frac{b_{r}}{c_{r s}}$
				x_{1}	x_{2}		x_{3}	x_{4}	a_{1}	a_{2}		
4	Z	1	1	0	0	0		3	M	$1+M$	36	--
	x_{1}	0	0	1	0	0		$-\frac{2}{3}$	0	$\frac{1}{3}$	2	--
	x_{2}	0	0	0	1	0		1	0	0	6	--
	x_{3}	0	0	0	0	1		$\frac{1}{3}$	-1	$\frac{1}{3}$	6	--

Check using software :
After four iterations Optimality has reached.
Optimal solution is $\mathrm{Z}=36$ with $x_{1}=2$ and $x_{2}=6$
CENG 6602
AAiT, AAU
Dercje Hailu,
-
Corresponding simplex tableau

Pivotal row, pivotal column and pivotal elements are shown as earlier

CENG 6602 lecture notes
AAiT, AAU
Dercje Hailu,
AAit, AAU

Cases for a tie : Entering variable

- Entering variable: tie can be broken by arbitrarily (optimal solution will be reached eventually regardless of the variable chosen)
- $\max x_{1}+x_{2}$
- S.t. $2 x_{1}+x_{2} \leq 4$
- $x_{1}+2 x_{2} \leq 3$
- $\quad x_{1} \geq 0 ; x_{2} \geq 0$

Table 3.6: Tie of entering basic variables

Basic variables	Coefficient of					Right-hand side (solution)
	z	$\boldsymbol{x}_{\boldsymbol{1}}$	\boldsymbol{x}_{2}	s_{1}	s_{2}	0
\mathbf{z}	1	$\mathbf{- 1}$	$\mathbf{- 1}$	0	0	0
s_{1}	0	$\mathbf{2}$	$\mathbf{1}$	1	0	$4 ; 4 / 2=2$
s_{2}	0	$\mathbf{1}$	$\mathbf{2}$	0	1	$3 ; 3 / 1=3$

Cases for a tie: Departing variable

- Departing variable: a tie for the departing variable.
- One variable can be arbitrarily selected as the departing variable.
- This results in a degenerate solution. Degeneracy reveals that there is at least one redundant constrain.
- In some cases, degeneracy may lead to "cycling", i.e. a sequence of pivots that goes through the same tableaus and repeats itself indefinitely.

Example : Multiple solution

$\begin{gathered} \text { Maximize } Z=2 x_{1}+x_{2} \\ \text { s.t } 3 x_{1}+x_{2} \leq 300 \\ 4 x_{1}+2 x_{2} \leq 500 \\ x_{1}>=0, x_{2} \geq 0 \end{gathered}$			Initialize, do first iteration and iteration 2 yields optimal solution			
			X_{3} has 0 coeff in z-row= multiple solution			
			$\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=(50,150)$ and $(0,250)$ and any poi on a line joining the two is a solution			
Iteration 2			Optimal solution			
Basis	x_{1}	x_{2}	x_{3}	x_{4}	RHS	Ratio
x_{1}	1	0	1	-1/2	50	
x_{2}	0	1	-2	3/2	150	
z	0	0	0	1/2	250	

Iteration 3	Alternate solution					
Basis	x_{1}	x_{2}	x_{3}	x_{4}	RHS	Ratio
x_{3}	1	0	1	$-1 / 2$	50	
x_{2}	2	1	0	$1 / 2$	250	
z	0	0	0	$1 / 2$	250	

Example

- max $2 x_{1}+x_{2}$
- S.t. $3 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 6$
- $x_{1}-x_{2} \leq 2$
- $x_{2} \leq 3$
- $\quad x_{1} \geq 0 ; x_{2} \geq 0$

Basic variables	Coefficient of						$\begin{aligned} & \hline \text { Right-hand side } \\ & \text { (solution) } \end{aligned}$
	z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	
z	1	-2	-1	0	0	0	0
s_{1}	0	3	1	1	0	0	6; 6/3 = $\mathbf{2}$
s_{2}	0	1	-1	0	1	0	2; $2 / 1=\mathbf{2}$
s_{3}	0	0	1	0	0	1	

Multiple solutions

- Existence of multiple solution is indicated by the presence of a zero in the z-row under a basic variable in the final simplex table. New solution in the next

$$
\text { - } \max x_{1}+1 / 2 x_{2}
$$

- S.t.
- $2 x_{1}+x_{2} \leq 4$
- $x_{1}+2 x_{2} \leq 3$
- $x_{1} \geq 0 ; x_{2} \geq 0$ iteration by choosing this non- basic variable as the entering variable

| Basic variables | Coefficient of | | | | | Right-hand side

 (solution) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | x_{1} | x_{2} | s_{1} | s_{2} | 0 | 2 |
| x_{1} | 1 | 0 | 0 | $1 / 2$ | 0 | $2 / 3$ |
| x_{2} | 0 | 1 | 0 | $2 / 3$ | $-1 / 3$ | $5 / 3$ |

Sensitivity Analysis

Sensitivity analysis

1. RHS sensitivity analysis

- measures how sensitive is the optimal solution to the change in the resources values i.e., by changing the resource limits, would the optimal solution be changed and to what limit.

2. OF sensitivity analysis.

- The coefficients of the OF could be based on uncertain data or subjective judgment of the decision maker.
- changes in the values of the coefficients that multiply the decision variables in the objective function.

Sensitivity analysis

- A change in the data of original problem may affect optimality or feasibility of the current solution.
- Parameters Sensitivity
- LP assumes certainty of the model parameters, but are are only estimates.
- Sensitivity analysis is to identify the sensitive parameters, to try to estimate these parameters more closely, and then to select a solution that remains a good one over the range of likely values of the sensitive parameters.

Sensitivity analysis in LP

- Sensitivity analysis is an exercise of obtaining a new solution corresponding to a change in the data of the original problem, given the original problem and the final simplex table, without solving afresh the new problem with changed data.
- Example: EXCEL-SOLVER sensitivity outputs

Dual Problem

- Every primal LP problem will have its dual.
- Sometimes it is easier to formulate the dual problem, rather than the primal problem, and thereby determine the solution of the primal.
- The solution of dual is extremely handy if the primal problem has a small number of decision variables and a large number of constraints

Dual Example -2

- Maximize $Z=2 \mathbf{x}_{1}+\mathbf{x}_{2}$
s.t. $3 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 300 \quad$ (constraint 1)
$\mathrm{x}_{1}+\mathrm{x}_{2} \leq 200 \quad$ (constraint 2)
$x_{1}, x_{2} \geq 0$
- For every primal constraint there is a dual variable and for every primal variable there is a dual constraint
- Two dual variables y_{1} and y_{2} corresponding to constraint 1 and 2)
- There will be two constraints in the dual, one each corresponding to x_{1} and x_{2}.
- Optimization Problem is reversed: Minimization

Example-2 Contd..

- The OF z' for the dual is:
- Minimize $z^{\prime}=300 y_{1}+200 y_{2}$
- S.t. $3 y_{1}+y_{2} \geq 2$

$$
\mathrm{y}_{1}+\mathrm{y}_{2} \geq 1
$$

$$
\mathrm{y}_{1}, \mathrm{y}_{2} \geq 0
$$

- some differences between the primal simplex and the dual simplex methods

Dual Simplex method

- The primal simplex method starts from a non optimal feasible solution and moves towards the optimal solution, maintaining feasibility every time
- Dual simplex method starts with an infeasible basic solution and strives to achieve feasibility, while satisfying optimality criterion every time.
- The dual simplex method has rules for the
- entering variable,
- departing variable
- and testing the feasibility of a solution.

Example

- Minimize $z^{\prime}=300 y_{1}+200 y_{2}$
- S.t. $3 y_{1}+y_{2} \geq 2$
$y_{1}+y_{2} \geq 1$
$y_{1}, y_{2} \geq 0$
- Solution of the Dual:
- Writing the dual in the standard form with equality constraints,

Maximize	$\left(-z^{\prime}\right)=-300 y_{1}-200 y_{2}$
or	$\left(-z^{\prime}\right)+300 y_{1}+200 y_{2}=0$
	$3 y_{1}+y_{2}-y_{3}=2$
or	$y_{1}+y_{2}-y_{4}=1$
	$y_{1}, y_{2}, y_{3}, y_{4} \geq 0$

Example

- Writing the problem in a way to facilitate a starting basic infeasible solution for dual simplex method:

$$
\begin{aligned}
& \left(-z^{\prime}\right)+300 y_{1}+200 y_{1}=0 \\
& -3 y_{1}-y_{2}+y_{3}=-2 \\
& -y_{1}-y_{2}+y_{4}=-1 \\
& y_{1}, y_{2}, y_{3}, y_{4} \geq 0
\end{aligned}
$$

| Starting solution | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Basis y_{I} y_{2} y_{3} y_{4} RHS
 y_{3} -3 -1 1 0 -2
 y_{4} -1 -1 0 1 -1
 $\left(-z^{\prime}\right)$ 300 200 0 0 0

 Ratio \uparrow
 $300 / 3$ $200 / 1$ | | | |
| | $=100$ | $=200$ | |

Example

- The departing basic variable is identified first as one with the most negative value (Row)
- The entering variable: For each nonbasic variable, determine the absolute value of the minimum ratio. (column)
- Iteration 1....

		Feasible and optimal solution			
Basis	y_{1}	y_{2}	y_{3}	y_{4}	$R H S$
y_{1}	1	0	$-1 / 2$	$+1 / 2$	$1 / 2$
y_{2}	0	1	$1 / 2$	$-3 / 2$	$1 / 2$
$\left(-z^{\prime}\right)$	0	0	50	150	-250

Solution: $y_{1}=1 / 2, y_{2}=1 / 2,\left(-z^{\prime}\right)=-250$, or $z^{\prime}=250$.

Dual Example-2

- Consider the following primal problem

Maximize	
	$Z=12 x_{1}+4 x_{2}$
subject to:	$4 x_{1}+7 x_{2} \leq 56$
	$2 x_{1}+5 x_{2} \geq 20$
	$5 x_{1}+4 x_{2}=40$
	$x_{1} \geq 0$
	$x_{2} \geq 0$

The first inequality requires no modification. But the second and the third constraint have to be modified

Example

- Note that the dual variables from the optimal solution are y_{1} $=1 / 2$ and $\mathrm{y}_{2}=1 / 2$.
- The optimal value of x_{1} in the primal can be identified by the coefficient of the slack variable y_{3} in the corresponding dual constraint, which is equal to 50 .
- Thus $x_{1}=50$ and similarly $x_{2}=150$.

Dual Example-2 contd..

- The second inequality can be changed to the less-than-or-equal-to type by multiplying both sides by -1 that is,

$$
-2 x_{1}-5 x_{2} \leq-20
$$

- The equality constraint can be replaced by the following two inequality constraints:

$$
\begin{array}{r}
5 x_{1}+4 x_{2} \leq 40 \\
5 x_{1}+4 x_{2} \geq 40
\end{array}
$$

Dual Example-2 contd..

- The primal problem can now take the following standard form:

Maximize	
	$Z=12 x_{1}+4 x_{2}$
subject to:	
	$4 x_{1}+7 x_{2} \leq 56$
	$-2 x_{1}-5 x_{2} \leq-20$
	$5 x_{1}+4 x_{2} \leq 40$
	$-5 x_{1}-4 x_{2} \leq-40$
	$x_{1} \geq 0$
	$x_{2} \geq 0$

Primal -Dual relationship

Primal Problem	Dual Problem
Maximize	Minimize
$Z=c_{1} x_{1}+c_{2} x_{2}$	$P=b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3}$
subject to:	subject to:
$k_{11} x_{1}+k_{12} x_{2} \leq b_{1}$	$k_{11} y_{1}+k_{21} y_{2}+k_{31} y_{3} \geq c_{1}$
$k_{21} x_{1}+k_{22} x_{2} \leq b_{2}$	$k_{12} y_{2}+k_{22} y_{2}+k_{32} y_{3} \geq c_{2}$
$k_{31} x_{1}+k_{32} x_{2} \leq b_{3}$	all $y_{t} \geq 0$
all $x_{t} \geq 0$	

Dual Example-2 contd..

- The dual of this problem can now be obtained as follows:
.
Minimize

$$
P=56 y_{1}-20 y_{2}+40 y_{3}-40 y_{4}
$$

subject to:

$$
\begin{array}{r}
4 y_{1}-2 y_{2}+5 y_{3}-5 y_{4} \geq 12 \\
7 y_{1}-5 y_{2}+4 y_{3}-4 y_{4} \geq 4 \\
\text { all } y_{1} \geq 0
\end{array}
$$

Matrix form

- Matrix form expression facilitate understanding of the simplex operations
- maximize $\mathrm{c}^{\mathrm{T}} \mathrm{x}$
subject to Ax $\leq b, x \geq 0$

Maximize	$z=\mathbf{C X}$
subject to	$(\mathbf{A}, \mathbf{I}) \mathbf{X}=\mathbf{b}$

subject to $\quad(\mathbf{A}, \mathbf{I}) \mathbf{X}=\mathbf{b}$
where \mathbf{I} is $(m \times m)$ identify matrix, \mathbf{X} is a column vector and \mathbf{C}, a row vector given by

$$
\begin{aligned}
& \mathbf{X}=\left(x_{1}, x_{2}, \ldots, x_{n+m}\right)^{T} \\
& \mathbf{C}=\left(c_{1}, c_{2}, \ldots, c_{n+m}\right),
\end{aligned}
$$

and \mathbf{A} is $(m \times n)$ matrix, \mathbf{b} is a column vector given by

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

```
Example 2.2.3.3}\mathrm{ Consider the LP problem
    Maximize }\quadz=4\mp@subsup{x}{1}{}+5\mp@subsup{x}{2}{
z=4\mp@subsup{x}{1}{}+5\mp@subsup{x}{2}{}
4\mp@subsup{x}{1}{}+2\mp@subsup{x}{2}{}\leq16
x}+\mp@subsup{x}{2}{}\leq
l
The problem is written in the standard form first.
    Maximize in the standard form first.
    subject to - 2\mp@subsup{x}{1}{}+3\mp@subsup{x}{2}{}+\mp@subsup{x}{3}{}=12
        2\mp@subsup{x}{1}{}+3\mp@subsup{x}{2}{}+\mp@subsup{x}{3}{}=12
        4
```



```
Maximize \(\quad z=\left(\begin{array}{lllll}4 & 5 & 0 & 0 & 0\end{array}\right)\left[\begin{array}{l}x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}\end{array}\right] \quad\)\begin{tabular}{l} 
Example in \\
matrix form
\end{tabular}
subject to [}[\begin{array}{llllll}{2}&{3}&{1}&{0}&{0}\\{4}&{2}&{0}&{1}&{0}\end{array}][\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{2}{}}\end{array}][\begin{array}{l}{12}\\{\mp@subsup{x}{4}{}}\end{array}
subject to }[\begin{array}{lllll}{2}&{3}&{1}&{0}&{0}\\{4}&{2}&{0}&{1}&{0}\\{1}&{1}&{0}&{0}&{1}\end{array}][\begin{array}{l}{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\\{\mp@subsup{x}{3}{}}\end{array}]=[\begin{array}{l}{12}\\{16}\\{18}
L
xi}\geq0\quadj=1,2,\ldots,5
```


Piecewise Linearization

- LP can be used with some modification to solve nonlinear problems, if the nonlinear expression can be expressed as piecewise linear segments.
- Requires additional variables and constraints
- Consider a maximization problem of a concave nonlinear function $f(x)$.
- $\mathrm{F}(\mathrm{x})$ can be expressed as a piecewise linear function consisting of segments, with slope of the function in each reducing as x increases.

Piecewise Linearization cont.

LP in Construction Management

- Linear programming can be used in construction management to solve many problems such as:
- Optimizing use of resources
- Determining most economic product mix
- Transportation and routing problems
- Location of new production plants, offices and warehouses
- Personnel assignment
- Determining Optimum size of bid

Method 2

Let the slopes of the linear segments be s_{1}, s_{2}, \ldots, where $s_{1}>s_{2}>s_{3} \ldots$
Then the problem is to
Maximize $\quad f(x)=s_{1} x_{1}+s_{2} x_{2}+s_{3} x_{3}+\ldots=\Sigma s_{n} x_{n}$
subject to $\quad a_{1}+x_{1}+x_{2}+\ldots=x$
$x_{j} \leq a_{j+1}-a_{j}$ for all segments j \qquad

LP applications in other areas

- Developing a production schedule that will satisfy future demands for a firm's product and at the same time minimize total production and inventory costs.
- Selecting the product mix in a factory to make best use of machine- and labor-hours available while maximizing the firm's profit
- Picking blends of raw materials in feed mills to produce finished feed combinations at minimum costs
- Determining the distribution system that will minimize total shipping cost

practical applications

- Scheduling school buses to minimize total distance traveled
- Allocating police patrol units to high crime areas in order to minimize response time to (911) calls
- Scheduling tellers at banks so that needs are met during each hour of the day while minimizing the total cost of labor.
- Allocating space for a tenant mix in a new shopping mall so as to maximize revenues to the leasing company
- Etc. .

Integer and Mixed-Integer Problems

- An LP problem in which all the decision variables must have integer values is called an integer programming problem. (IP)
- A problem in which only some of the decision variables must have integer values is called a mixed-integer programming problem. (MIP)
- Sometimes, some (or all) of the decision variables must have the value of either 0 or 1 . Such problems are then called zero-one mixed-integer programming problems.
- Simplex method cannot be used to such problems. Advanced methods are available for this purpose

Software

- Numerous Computer programs to solve LP problems are widely available.
- Most large LP problems can be solved with just a few minutes of computer time
-Most computer-based LP packages use the simplex method
EXCEL-Solver, LINDO/LINGO, GAMS, XPRESS-MP are very popular. Others exist too: TORA , AMPL, etc..

Solving using Excel Solver

- Solver uses standard spreadsheets together with an interface to define variables, objective, and constraints to define a linear program.
- Solver, while not a state of the art code is a reasonably robust, easy-to-use tool for linear programming.
- Excel Solver add-in optimizes linear and integer problems using the simplex and branch and bound methods.
- Solver does sensitivity analysis automatically

Solver

- Start with entering the data into spreadsheet and Create the model in a separate part of the worksheet.
- Solve the previous example-1 using SOLVER

Sensitivity Analysis

- How sensitive the results are to parameter changes
- Change in the value of coefficients
- Change in a right-hand-side value of a constraint
- Trial-and-error approach
- Analytic post-optimality method
- EXCEL-SOLVER Output for Example-1

Sensitivity Report

Microsoft Excel 12.0 Sensitivity Report						
Worksheet: [test.xlsx]Sheet1						
Report Created: 05/12/2009 18:36:46						
				The sol	tion valu	
Adjustable Cells						
		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
sBS 10	optimal solution $\times 1$		0	2	1	1
SC\$10	optimal solution $\times 2$	150	0	1	1	0.33333333
Constraints						
		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
SD\$5	constraint 1 trail soln.	300	$\uparrow 0.5$	300	300	100
sD\$6	constraint 2 trail soln.	200	0.5	200	100	100

If we use one more Unit of money, the net benefit will increase by 0.5 unit of money This is tin up to 300 more units. Net benefit will fall by 0.5 for each decrease, down as low as 100 units

Changes in Resources limits

- The RHS values of constraint equations may change as resource availability changes
- The shadow price of a constraint is the change in the value of the objective function resulting from a oneunit change in the right-hand-side value of the constraint
- Shadow prices are often explained as answering the question "How much would you pay for one additional unit of a resource?"

LINDO/LINGO

```
See presentation
```


Integer/binary programming

- Assumption of divisibility
- All the software packages in our Courseware (Excel, LINGO/LINDO, and TORA) include an algorithm for solving (pure or mixed) algorithm for solving IP models where variables need to be integer but not binary.
- When using the Excel Solver, the procedure is basically the same as for linear pro
- In a LINDO model, the binary or integer constraints are inserted after the END statement.
- In Excel solver "int" and "bin" options

GAMS

- GAMS (General Algebraic Modeling System)
- www.gams.com

TORA

- The Temporary-Ordered Routing Algorithm (TORA) - An Operations Research Software
- TORA is menu-driven and Windows-based (low screen resolution)

TORA

- TORA software deals with the following algorithms:
- Solution of simultaneous linear equations
- Linear programming
- Transportation model
- Integer programming
- Network models
- Project analysis by CPM/PERT
- Poisson queuing models
- Zero-sum games

