
2.2. DYNAMIC MODELS—LUMPED 
PARAMETER SYSTEMS 
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• This section focused on the underlying modelling principles 
for lumped parameter systems (LPSs) and the subsequent 
analysis of those models.  
 

• Here, we are concerned about the time varying behaviour of 
systems which are considered to have states which are 
homogeneous within the balance volume V. Hence, the 
concept of "lumping" the scalar field into a representative 
single state value.  
 

• Sometimes the term "well mixed" is applied to such systems 
where the spatial variation in the scalar field, which describes 
the state of interest, is uniform. 
 

•  In some cases, we may also consider the stationary behaviour 
of such systems which leads to steady state model 
descriptions. 
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• Lumped parameter dynamic models, or compartmental models 
are widely used for control and diagnostic purposes. 

 

• They are frequently used as the basis for engineering design, 
startup and shutdown studies as well as assessing safe operating 
procedures. 

 

Dynamic Models 

• In terms of dynamic models we have two clearly identifiable 
classes: 

  • distributed parameter dynamic models, 

  • lumped parameter dynamic models. 

 

• In the above classes, we identify the distributed parameter 
dynamic models with various forms of PDEs, principally parabolic 
partial differential equations (PPDEs). 3 



• The lumped parameter dynamic models result in systems of 
ODEs often coupled with many nonlinear and linear 
algebraic constraints.  

 

• The total system is referred to as a differential-algebraic 
equation (DAE) set. The equations need to have a specified 
set of consistent initial conditions for all states. 

 

•  This can be a challenging problem due to the effects of the 
nonlinear constraints which can impose extra conditions on 
the choice of initial values. 
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Classification of Models 



PRINCIPLE OF CONSERVATION 

 
• As a result of the first law of thermodynamics, energy is 

conserved within a system, although it may change its 
form. 

 

•  Also, both mass and momentum in the system will be 
conserved quantities in any space. In most process 
systems, we deal with open systems where mass, energy 
and momentum can flow across the boundary surface. 

 

• As such, we can consider a space with volume V and 
boundary surface T as shown in Fig. 
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General balance volume V 
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Lumped Conservation Balances 

• Lumped parameter models do not incorporate the 
spatial variation of states within the balance volume; 
therefore, the scalar field of the intensive quantities 
(most often concentrations or temperature) is a 
function of time only.  

 

• What this means is that the application of the general 
conservation equations leads to models which are 
represented by ODEs in time.  

 

• Moreover, the closed boundary surface encapsulating 
the balance volume is also homogeneous in space. 
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Total Mass Balance 
• The general expression for a total mass balance can be 

written in word form as: 

 

 

 

 

• or in the case of a lumped parameter system, the equation 
form for p input streams and q output streams is 
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Component Mass Balances 
 
 
 

 
 

• Where the last term accounts for the creation or disappearance of 
component i via chemical reaction. 

 
• In the case of an LPS, we have the general equation in the form 

 
 
 
 
 
 

• Where mi is the mass holdup of component i within the balance volume V , j 
is the stream number and gi is the mass rate of generation or consumption 
of species i in the balance volume due to reaction. 
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• We can also write the general mass balance in molar terms ni 
by introducing the molar flowrates instead of the mass 
flowrates of species i in stream j .  

 

• The general molar balance is written as 
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Total Energy Balance 

• The general conservation balance for total energy over the 
balance volume V with surface is given by 

 

 

 

• The total energy E [J] of the system comprises three principal 
components in process systems: 

 • internal energy U 

 • kinetic energy KE 

 • potential energy PE 

 

• Hence, we can write 
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• The conservation balance for energy over the balance volume 
V can also be written as 

 

 

 

• Where Q is the heat transfer to the surrounding and W is the 
work done 

• Using the thermodynamic relationship for enthalpy H given by 
H = U + PV, it is possible to write the general energy balance 
using mass specific enthalpy H [J/kg] as 
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Simplifications and Modifications of the General Energy Balance 

 

• Assumption 1 : In many cases, the kinetic and potential energy 
components can be neglected 

 

• This is a common representation in chemical process systems 
where internal energy content often dominates the total energy 
content of the system. The equation will be simplified to : 

 

 

 

 

• Computation of the specific enthalpies for all inlet and outlet 
streams is usually done using thermodynamic prediction 
packages which can take into account fluid phase non-idealities. 
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• Assumption 2 We normally do not deal directly with the 
internal energy  U, in the general energy balance but prefer to 
use alternate properties.  

 

• Using the definition of enthalpy we can write the above 
equation as 

 

 

 

 

 

• If P and V are constant, then we can write, 

15 



• Assumption 3 In the above equation, the specific enthalpy of the 
balance volume and the specific enthalpy at the outlet are not 
necessarily equal.  
 

• In the case where pressure variations within the balance volume 
are small, such as in liquid systems or where enthalpy variations 
due to pressure are small, we can assume that the specific 
enthalpies are equal and hence: 
 
 

• We can then write the energy balance as 
 

 
 
 

• This is the most common form of the energy balance for a liquid 
system 
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• Assumption 4 We know that in the above Eq. , the 
enthalpies are evaluated at the temperature conditions of 
the feeds (Tj) and also at the system temperature (T). 

 

•  By making certain assumptions about the enthalpy 
representation, we can make further simplifications. In 
particular, we note that the enthalpy of the feed Hj can be 
written in terms of the system temperature T. 

 

 

 

• If we assume that Cp is a constant, then 
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• Hence, we can write our modified energy 
balance as 
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• Assumption 5:  It has already been mentioned that when 
considering reacting systems no explicit appearance of the 
heat of reaction is seen in the general energy balance.  

 

• This is because the energy gain or loss is seen in the value of 
the outlet enthalpy evaluated at the system temperature T.  

 

• We can now develop the energy balance in a way which makes 
the reaction term explicit in the energy balance. 

 

 

 

• This is the most common form of energy balance for reacting 
systems 
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• The first term on the right-hand side represents the energy 
needed to adjust all feeds to the reactor conditions. 

 

•  The second represents the energy generation or 
consumption at the reactor temperature.  

 

• The last two terms are the relevant heat and work terms 
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CONSERVATION BALANCES FOR MOMENTUM 

• In many systems it is also important to consider the 
conservation of momentum. 

 

•  This is particularly the case in mechanical systems and in flow 
systems where various forces act.  

 

• These can include pressure forces, viscous forces, shear forces 
and gravitational forces. Momentum is the product of mass 
and velocity. We can thus write the general form of the balance 
applied to a similar balance volume as 
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• The last term is the summation of all the forces acting on the 
system. In considering momentum, it is important to consider 
all components of the forces acting on the system under 
study.  

 

• This means that the problem is basically a 3D problem. In 
reality we often simplify this to a I D problem. This alternative 
expression of the momentum balance is given by: 
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• We can write the general momentum balance equation as 

 

 

 

 

 

• Momentum balances in models for lumped parameter 
systems appear most often in equations relating convective 
flows to forces generated by pressure, viscous and gravity 
gradients.  

 

• These are typically expressed by some form of the general 
Bernoulli equation which incorporates various simplifications. 

 

 

 

23 



THE SET OF CONSERVATION BALANCES FOR LUMPED 
SYSTEMS 

 

• The process model of an LPS consists of a set of conservation 
balance equations that are ODEs equipped with suitable 
constitutive equations. 

 

•  The balance equations are usually coupled through reaction 
rate and transfer terms. 
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STEADY-STATE LUMPED PARAMETER SYSTEMS 

• In some circumstances we might be interested only in the 
steady state of the process. 

 

• The general mass and energy balances can be modified to give 
the steady-state balances by simply setting all derivative (time 
varying) terms to zero.  

 

• Hence, we arrive at the equivalent steady-state mass, 
component mass and total energy balances. 

 

• Steady-state total mass balance 
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• Steady-state component mass balance 

 

 

 

• Steady-State energy balance 
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• These equations are typically solved using some form of 
iterative numerical solver such as Newton's method. 

 

• Steady-state balances form the basis for the substantial 
number of process flowsheeting programs which are 
routinely used in the process industries. These include ASPEN 
PLUS , HYSIM  and PRO II. 
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ANALYSIS OF LUMPED PARAMETER MODELS 

 

Degrees of Freedom Analysis 

 

• In the same way that algebraic equations require a degree of 
freedom analysis to ensure they are properly posed and 
solvable, dynamic models also require a similar analysis. 

 

• The basis concept of DOF analysis is to determine the difference 
between the number of variables (unknowns) in a given 
problem, and the number of equations that describe a 
mathematical representation of the problem. 

• Thus, 
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• Where NDF is the number of DOF, Nu the number of 
independent variables (unknowns) and Ne the number of 
independent equations. 

 

• There are three possible values for NDF to take: 

 

(a) NDF = 0 This implies that the number of independent 
unknowns and independent equations is the same. 

 

• A unique solution exists. 
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(b) NDF > 0 
 
- This implies that the number of independent variables is greater than 

the number of independent equations. 
 
– The problem is underspecified and a solution is possible only if 

some of the independent variables are "fixed" (i.e. held constant) 
by some external considerations in order that NDF be reduced to 
zero. Some thought must be given to which system variables are 
chosen as fixed. In the case of optimization these DOF will be 
adjusted to give a "best" solution to the problem. 
 

(c) NDF < 0 
- This implies that the number of variables is less than the number of 

equations. 
 
 The problem is overspecified, meaning that there are less variables 

than equations. If this occurs it is necessary to check and make sure 
that you have included all relevant variables. 
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• EXAMPLE (Lumped parameter modelling of a 
CSTR). 

• A CSTR is shown in Fig. below with reactant 
volume V, component mass holdup MA for 
component A, feed flowrate Fi [m3/s] at 
temperature Ti , Feed concentration of 
component A  is cA

i  . Outlet flowrate FO is in 
units [m3/s]. 

31 



Assumptions 

• Al. perfect mixing implying 
no spatial variations, 

• A2. incompressible fluid 
phase, 

• A3, constant physical 
properties, 

• A4. all flows and properties 
given in mole units, 

• A 5 . equal molar densities, 

• A6. reactions and reaction 
rates given by 
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Model equations 
• The following state the 

overall mass balance, the 
component balance for A 
and the total energy 
balance. 

 

 

 

• A set of constitutive 
equations accompanies 
the conservation 
balances. These include: 

• The model equations 
above have to be solved 
for the following set of 
state variables: 
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Note that a set of initial conditions is needed 
for the solution. 
Initial conditions: 



• As shown in the example above, the general form of the 
lumped parameter model equations is an initial value problem 
for a set of ODEs with algebraic constraints and initial 
conditions X(0). This is called a DAE-IVP problem: 
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High-Index Differential-Algebraic Equations 
 

• The index is the minimum number of differentiations with respect 
to time that the algebraic system of equations has to undergo to 
convert the system into a set of ODEs, 

 

• The index of a pure ODE system is zero by definition. If the index of a 
DAE is one (1), then the initial values of the differential variables can 
be selected arbitrarily, and easily solved by conventional methods 
such as Runge-Kutta and Backward Differentiation methods. 

 

• If, however, the index is higher than 1, special care should be taken 
in assigning the initial values of the variables, since some "hidden" 
constraints lie behind the problem specifications. 
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• The requirement of index-1 for a DAE set is equivalent to the 
requirement that the algebraic equation set should have 
Jacobian of full rank with respect to the algebraic variables. 

 

•  That is 

 

 

 
must be non-singular. 
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• EXAMPLE (A linear DAE system). Consider a simple linear DAE 
system given by 

 

 

 

 

 

• let us investigate the index of this system. To do so, we 
differentiate the algebraic constraint gi to get 
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• Substitute for x’1 and X’2 from f1 and f2 to get 

 

 

• Hence, this algebraic constraint has been converted to an ODE 
after 1 differentiation. This system is INDEX = 1 

 

• As an alternative, consider a change in the algebraic 
constraint g1 to 

 

 

• Differentiate this for the first time to get 

 

 

• and substitute from (f1) and (f2) to get 
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• Clearly, this first differentiation has not produced a differential 
equation in zi, hence we differentiate once more to get 

 

 

 

 

 
• This result shows that the DAE set is INDEX = 2 
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• It might be asked why the index is of importance in DAE 
systems. It is not an issue for pure ODE systems but when the 
INDEX > 1 the numerical techniques which are used to solve 
such problems fail to control the solution error and can fail 
completely. 
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Factors Leading to High-Index Problems 
 

• It has been seen that inappropriate specifications lead to problems with 
high index. 
 

• There are at least three main reasons why high-index problems arise. 
These include: 

  (i) Choice of specified (design) variables, 
  (ii) The use of forcing functions on the system, 
  (iii) Modelling issues. 

 
 

• It must be said that in all the above situations there may be 
inappropriate cases which lead to a high-index problem. Other situations 
are valid and truly lead to high-index problems. 
 

• However, numerical routines are generally incapable of handling these 
high index situations. We prefer to model in such a way that we obtain 
an index-one (1) problem. 
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STABILITY OF THE MATHEMATICAL PROBLEM 

 

• The propagation of errors is not only dependent on the type 
of method used but is influenced dramatically by the 
behaviour of the problem notably by the integral curves, 
which represent the family of solutions to the problem.  

 

• This is clearly dependent on the individual problem. 
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• EXAMPLE (Stability of a simple linear ordinary differential 
system). Before addressing the general nonlinear ODE system, 
let us look at a simple 2 variable problem to illustrate some 
basic characteristics 

 

• Consider the problem 
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• The exact solution is given by 
 
 
 
 
 
 

• Note that the first terms in each equation represent the slow transients in 
the solution whilst the second terms are the fast transients (see the 
exponential terms). Finally, the constant terms represent the steady state 
values. The slow transients determine just how long it takes to reach 
steady state. 
 

• We can note that the fast transient is over at t = 0.002 whilst the slow 
transient is over at t = 10. 
 

• If we solved this with a classical Runge-Kutta method, we would need 
about 7000 steps to reach steady state. Even though the fast transient has 
died out quickly, the eigenvalue associated with this component still 
controls the steplength of the method when the method has a finite limit 
on the solution errors. 
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• Now let us consider the general nonlinear set of ODEs given 
by 

 

 

• The behaviour of the solution to the problem near a 
particular solution g(t) can be qualitatively assessed by the 
linearized variational equations given by: 
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• Since the local behaviour is being considered, the Jacobian 
could be replaced by a constant matrix A provided the 
variation of J in an interval of t is small. 

 

• Assuming that the matrix A has distinct eigenvalues,      , i= , 1, 
2 , . . . , n and that the eigenvectors are        i = 1, 2 , . . . , n the 
general solution of the variational equation has the form 

 

 

 

 

• There are three important cases related to the eigenvalues, 
which illustrate the three major classes of problems to be 
encountered. 
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Unstable Case 
• Here, some of the eigenvalues  are positive and large, hence 

the solution curves spread out. A very difficult problem for 
any ODE method. This is inherent instability in the 
mathematical problem. 

 

• Consider the solution of the following ordinary differential 
equation (ODE-IVP): 
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• This is an inherently unstable problem with a positive 
eigenvalue = 1. It is clear that as this problem is integrated 
numerically, the solution will continue to grow without bound 
as time heads for infinity. 

• Some process engineering problems have this type of 
characteristic.  

 

• Some catalytic reactor problems can exhibit thermal runaway 
which leads to an unstable situation when a critical 
temperature in the reactor is reached.  

 

• Certain processes which have a control system installed can 
also exhibit instability due to unsatisfactory controller tuning 
or design. 
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Stable Case 
• Here the eigenvaues have negative real parts and are small in 

magnitude and hence the solution curves are roughly parallel 
to g(t).  

 

• These are reasonably easy problems to solve, using 
conventional explicit techniques like Euler or Runge-Kutta 
methods. Stable problems are also common in process 
engineering. 
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Ultra Stable Case 

• Here, some eigenvalues are large and negative (there are 
others that are small and negative) and the solution curves 
quickly converge to g(t). This behaviour is good for 
propagation of error in the ODE but not for a numerical 
method. This class of problems is called ''stiff’.  

 

•  When inappropriate numerical methods such as Euler's 
method is applied to an ultra stable problem then there is 
bound to be difficulties. 

 

• It should be noted that stiffness is a property of the 

mathematical problem not the numerical method. 
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• Consider the problem given by 

 

 

 

• where the matrix A is given by 

 

 

• The exact solution to this linear ODE is 
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• Eigen values of the Jacobian of A are 

 

 

•  Hence, the problem has the initial transient 
followed by the integration of the slower 
transient as seen in the analytic solutions. 
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