
 

 

 

2.3 DYNAMIC MODELS-DISTRIBUTED 
PARAMETER SYSTEMS 
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• Distributed parameter models, as their name suggests, 
incorporate the spatial variation of states within the 
balance volume.  
 

• They account for situations where the scalar field of the 
intensive quantities is both a function of time and position.  
 

• This could be a concentration, volume-specific internal 
energy or temperature.  
 

• What this means is that the application of the general 
conservation equations leads to models which are 
represented by partial differential equations (PDEs) in one, 
two or three spatial dimensions. 
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• EXAMPLE (DPS model of a simple packed bed tubular 
catalytic reactor) 

Process system፡ 

• Consider a tubular reactor completely filled with catalyst and 
with ideal plug flow. 

• A first-order catalytic reaction A→P takes place in an 
incompressible fluid phase. 
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Modeling goal 
 

     ‘’Describe the behavior of the reactor  (concentration and 
temperature) for temperature control purposes.’’ 

 

• From the problem description above, we may extract the 
following modeling assumptions which will be generally valid 
for any further model. 
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Assumptions 

 
• Al. Plug flow is assumed in the reactor, which has constant 

volume. 

 

• A2. A first-order reaction A →P takes place. 

 

• A3. An incompressible (liquid) phase is present as a bulk 
phase. 

 

•  A4. A solid phase catalyst is present which is uniformly 
distributed. 
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Modelling of Distributed Parameter Systems 
 Balance Volumes 

 
• In the case of DPS, we define a local co-ordinate system and then 

carry out balances over a representative element of that system. 
 
• we apply three commonly used approaches, which are normally 

dictated by the geometry of the system. These are: 
 

• Rectangular co-ordinates; typically Cartesian co-ordinates in terms of 
the directions x, y and z. 
 

• Cylindrical co-ordinates; where the key dimensions are radius (r), angle 
() and length (z). 
 

• Spherical co-ordinates; where two angles (  and ) are given, plus a 
radius r. 
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• It is up to the modeler to decide which geometry suits the 
actual physical system. 

 

• It is usually the case that most physical systems assume one 
of these geometric shapes, or the region of interest 
approximates to a slab, cylinder or sphere. 

 

• Once the geometry is decided, then it is necessary to carry 
out the balance of mass, energy or momentum over a 
representative infinitesimal volume of the space. 

 

•  This can take the form of a "slice" or "shell" in the region of 
interest. 
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Balance volume in rectangular co-ordinates. 
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• In order to develop the balance equations of the DPS model, 
we have to derive a special case of this general equation 
taking into account : 

 

 - the geometry of the system to select the co-ordinate 
system, 

 -Modelling assumptions that define the general terms in the 
equation. 

 

• Thereafter, the constitutive equations should also be given, 
based on the modelling assumptions. 

 

• The following example of the packed bed plug flow catalytic 
reactor will illustrate how a distributed parameter model can 
be derived. 
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• In order to simplify the form of the equations, we add some 
more simplifying assumptions. 

 

• Assumptions additional to the ones listed as 1-4 are the 
following: 

 

 A5 . The reactor is uniformly distributed in its cross-section, 
i.e. no radial diffusion or convection takes place. 

 

 A6. Constant physico-chemical properties. 

 

 A7. The heat transfer through the reactor wall is considered, 
but the outer temperature is assumed to be constant, TW 

10 



Balance volumes 

• A single volume encapsulating the whole reactor. This is now a 
distributed system. 
 

• The rectangular co-ordinate system is chosen. 
 
Model equations 

 
• Variables 

 
 

 
 

• Where x is the spatial coordinate in axial direction, L is the 
length of the reactor, t is the time, CA is the reactant 
concentration (i.e. volume-specific component mass), U is the 
volume-specific internal energy and T is the temperature. 
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• Component mass balance: 

 

 

 

 

 

 

• where F is the mass flowrate of the inert incompressible fluid, 
D is the diffusion coefficient and rA is the reaction rate. 
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Energy balance: 

 

 

 

• where qtr is the heat transfer rate, K the heat diffusion 
coefficient and H is the reaction enthalpy. 

 

Constitutive equations: 

• Potential relation: 

 

 

 

• where cp is the constant specific energy and  is the density 
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Reaction rate relation 

 

 

 

• where ko  is the pre-exponential factor, E is the activation 
energy, and R is the universal gas constant. 

 

Transfer rate relation: 

 

 

 

where K is the heat transfer coefficient 
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Boundary Conditions and Initial Conditions 

 
• The specification of boundary conditions and initial conditions 

is extremely important in DPS models.  

 

• There are several different types of boundary conditions 
which are applied to these systems.  

 

• In order to have a well-posed model, we need to develop the 
governing equations as well as specifying initial conditions 
for time dependent problems as well as appropriate 
boundary conditions for the system. 
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Boundary Conditions 
 
• Boundary conditions are specified for all time on each of the 

boundaries of the problem. 
 

•  In a heat exchange problem, this might mean setting the 
incoming fluid temperature T and concentration CA at x = 0. It 
can be a function of time T(0, t) and CA(0, t) hence act as 
forcing functions or disturbances on the system. 
 

• Boundary conditions appear in three major forms which are 
important to consider. 

 
• These forms are commonly called first or Dirichlet, second or 

Neumann and Robbins or third type conditions. 
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Boundary regions for three types of conditions 
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For the general equation in (X,Y), we can identify three distinct 
boundary conditions. 

 

• (a) The Dirichlet problem, where the value of the function is 
specified on the boundary, i.e. 

 

 

 

• (b) The Neumann problem, where the normal derivative is 
specified, i.e. 
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(c) The Robbins problem, third type or mixed condition, where 
we have 
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Assumptions Relevant to the Boundary Conditions 

 

Conditions on the physical boundaries of the system 

• For a mass transfer situation, we could interpret the Dirichlet 
condition as setting a concentration on the boundary, 

 

 

 

• The Neumann condition would be equivalent to a flux at the 
boundary. For example, for a perfectly isolated boundary at 
x= 0 orthogonal to the x co-ordinate  direction, the mass flux 
should be equal to zero, so that 
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• The third type of boundary condition would be equivalent to 
convective mass transfer across the boundary. 

 

•  If again we assume a boundary orthogonal to the X co-
ordinate direction and assume component mass transfer 
driven by the difference between the concentration within 
the system on the boundary at x= xM with CA(XM, t) and a 
given fixed outer concentration C* we have 
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Number of boundary conditions 
 

• The number of independent boundary conditions along a given co-
ordinate direction depends on the order of the partial derivative operator 
in that direction.  
 

• The number of independent boundary conditions along a co-ordinate 
direction should be equal to the order of the corresponding partial 
derivative operator . 
 

• Therefore, if we have no diffusion but only convection in a direction we 
should specify one condition; otherwise, with diffusion we must have 
two boundary conditions.  
 

• The two boundary conditions can be on one or both sides of the interval 
of the co-ordinate direction.  
 

• Care needs to be taken that two or more boundary conditions are not set 
simultaneously for a specified boundary region. 
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Infinitely large balance volumes 
 
• Special boundary conditions are used to express the fact that 

the balance volume is very large or infinitely large in a co-
ordinate direction. 

 

•  We may set the size of the balance volume in that direction 
and 

 

   set the concentration of the reactants to zero using 
Dirichlet conditions at the boundary; 

 

 specify that all convective and diffusive flow is zero at 
that boundary using Neumann conditions. 
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• EXAMPLE (Derivation of the initial and boundary conditions 
for the simple packed bed tubular catalytic reactor) 

 

•  In order to simplify the form of the initial and boundary 
conditions, we add some more simplification assumptions. 

 

Assumptions additional to the ones listed as 1-7 are: 

 

• A8. The initial distribution of component A and the initial 
temperature in the reactor is uniformly constant. 

 

• A9. The reactor is very long in the x co-ordinate direction to 
enable full conversion. 
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Initial and boundary conditions 

 

• Initial conditions 

 

 

 

• Boundary conditions 

 

 

 

 

 

• Where CA
i and Ti are the inlet concentration and the inlet 

temperature, while CA
*

 and T* are the initial concentrations 
and temperature, respectively. 
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• Note that two boundary conditions are needed because of 
the presence of the diffusion in both of the balance 
equations.  

 

• The first condition at the outlet of the reactor expresses the 
fact that the reactor is very long and the reaction is fully 
completed before the flow exits 
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Initial Conditions 
• Initial conditions set the values of the states at the initial time 

(typically t = 0) for the whole of the region of interest. 

 

• For example, in the DPS model of the tubular catalytic reactor 
we needed to set the initial fluid temperature and 
concentration along the length of the reactor. These 
conditions can be given as 

 

 

 

 

• Where f1 and f2 are given functions in space. 
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Modelling Assumptions and their Effect on the Model 
Equations 

 

• The most important modelling assumptions which affect the 
model equations of a DPS are summarized  below. 

 

•  The assumptions are grouped according to the model 
element or property they reflect. 

 

 Shape of the balance volumes 

 

 -The shape of the balance volumes determines the co-
ordinate system adopted. This affects the mathematical form 
of the conservation balances in their convection and diffusion 
terms. 
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Size of the balance volumes 
 
 -Very large balance volumes (in any of their co-ordinate 

directions) may call for special boundary conditions. 
 
 Phases in the process system 

 
 -Solid phase in a balance volume implies the absence of 

convection. 
 
Flow conditions 
 
 -Plug flow conditions imply convection in the direction of the 

flow with uniform flowrate in every other direction. The flow 
conditions determine the vector field describing the 
convective flow. 
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Mixing conditions 

 

• Perfect mixing in any of the co-ordinate direction implies no 
diffusion and uniform distribution of the intensive properties 
in that direction. 
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EXAMPLES OF DISTRIBUTED PARAMETER MODELLING 

 

1) DPS Model of a Double-pipe Heat Exchanger 

 
• The mathematical model of a double-pipe heat exchanger 

shows a lot of similarities to the model of the tubular catalytic 
rector we have seen before.  

 

• The process system consists of a double pipe heated from 
outside by condensing saturated steam. 
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Process system 
• Consider a simple ID double-pipe exchanger where a liquid 

stream is being heated by condensing saturated steam at a 
temperature, Ts. 
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• Fluid enters at temperature TL(O, t) and exits at TL ( L , t). Heat 
transfer takes place between the steam (Ts) and the wall (Tw) 
and then to the fluid TL ( Z , t) 

 

• The spatial variation is related to the fluid temperature whilst 
the steam temperature is a "lumped“ variable, Ts. 
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Assumptions 
• A 1. The overall mass (volume) of the liquid as well as that of 

the wall is constant. 

• A2. No diffusion takes place. 

• A3. Steam temperature reacts instantaneously to supply 
changes. 

• A4. Heat transfer coefficients are constant. 

• A5. Specific heats and densities are constant. 

• A6. Time delays are negligible for fluid. 

• A7. Liquid is in plug flow. 
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• Balance volumes 
• Two volumes is considered and for the fluid and the wall, 

respectively, both of them are distributed. The rectangular co-
ordinate system is chosen. 

• Model equations 
 

• Variables 

 

 

 

• Where z is the axial co-ordinate along the tube and L is the 
tube length. 
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• Energy balance for the liquid 

 

 

• Energy balance for the wall 
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• Initial conditions 

 

 

 

 

 

 

• Boundary condition 

 

 

 

• Where Ti is the inlet concentration of the liquid 
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• We can simplify the above PDEs by defining some time 
constants for the system. 

• For example, 

 

 

 

 

 

• Modified equations are then 
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• There are some interesting key steps in developing the DPS model 
above which are as follows: 
 

 1. Only one spatial co-ordinate is needed because of the plug flow 
assumption. 

 
 2. We have substituted the constitutive equations into the balance 

equations. The transfer rate relation was simply substituted as the 
only source term. potential relation U = cpT with constant 
physico-chemical properties has been substituted into the energy 
conservation equations . 

 
• 3. Note that Ts is a function of time only and acts as a forcing 

function on the system. 
 

• 4. The model equations are coupled PDEs since the wall 
temperature (Tw) depends on the fluid temperature (TL). 
 

• 5. A particular steady-state solution profile to the above model is 
shown below 
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Steady-state temperature profile 
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EXAMPLE [(Modelling of a pollutant in a river) 

Process system 

 

• Here, we are concerned about a pollutant discharged to 
a river and its subsequent concentration as it flows 
downstream.  

 

• The Figure below shows the geometry of the situation, 
showing the cross section of the river and the 
representative slice over which the conservation 
balances can be performed. Note that the axial distance 
is the co-ordinate length z. 
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Pollutant dispersion in a river 
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Modelling goal 

 

• To describe the distribution of the pollutant in the river. 

 

Assumptions 

 

• A 1 . The river has a constant cross-sectional area and the 
material is ideally mixed over the cross section. 

• A2. The pollutant disappears via a first-order reaction. 

• A3. Axial dispersion is present. 

• A4. No radial dispersion. 

• A5 . River flow is constant. 

• A6. The river water is considered isothermal. 

• A7. No pollution is in the river in the beginning of the process. 
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• Balance volumes 
• A single distributed parameter volume encapsulating the 

whole river. 

• Model equations 

 Variables 

 

 

 

• where x is the spatial coordinate in axial direction, L the 
length of the river, t the time, and c the pollutant 
concentration. 
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• Component mass balance 
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• Initial and boundary conditions 

 

 
 

 

Normalization of the equations 

• We can take the governing equation and define some non-
dimensional groups as follows: 

 

 

• and rearrange to get 
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LUMPED PARAMETER MODELS FOR REPRESENTING 
DPSs 

 • Lumping of process models of DPS is a widely used technique 
to transform the set of partial differential equations in the 
model into a set of ordinary differential equations. 

 

•  The lumped model is a finite approximation of the DPS 
model in the space co-ordinate directions whereas the time 
variable remains the only independent variable in a lumped 
model. 

 

•  Most often models of originally DPS systems developed for 
dynamic analysis, control or diagnostic purposes are lumped 
in space. 
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The conceptual steps in lumping a DPS system model are 
as follows: 

 
• 1. Divide the distributed parameter balance volume of the 

process system into a finite number of subvolumes. 

 

• 2. Lump each subvolume into a perfectly mixed subvolume (call 
it lump) with the variables averaged. 

 

• 3. Describe convection in the original DPS system as in- and 
outflows of the connected set of neighbouring lumps using the 
appropriate direction. 

 

• 4. Describe diffusion affecting all the neighbouring lumps as 
in- and outflows of neighbouring lumps. 
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• 5. Use the same sources for the lumps as for the original DPS 
model. 

 

• 6. Develop the balance equations for every lump. 

 

• 7. Set boundary conditions at the lumps which coincide with 
the overall boundaries of the process system. 
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• EXAMPLE (Lumped model of the double-pipe heat 
exchanger). 

 
Process system 
 
• Consider the simple double pipe heat exchanger where 

the liquid stream is being heated by condensing 
saturated steam. The system is the same as in previous 
Example. 
 

• Additional Assumptions to the ones listed as 1-7. 
  
 A8. The heat exchanger is described as a sequence of 

three well mixed volumes. 

51 



• Balance volumes 

• We consider two lots of three balance volumes with equal 
holdups. 

• Model equations 

 Variables 
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• Energy balances for the liquid 

 

 

 

 

 

• Energy balances for the wall 
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• Initial conditions 
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