
 

 

 

 

3. ADVANCED PROCESS MODELLING AND 
MODEL ANALYSIS 
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3.1. BASIC TOOLS FOR PROCESS MODEL 
ANALYSIS 
 
• The analysis of process system models leads to mathematical 

problems of various types. 

 

•  It is convenient and useful to formulate these mathematical 
problems in a formal way specifying the inputs to the 
problem, the desired output or question to be solved and 
indicate the procedure or method of solution.  

 

• Such a formal problem description can also be useful when 
we want to analyse the computational needs of a 
mathematical problem or one of its solution methods. 
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• Problem statements where a yes/no Question is to be 
answered are called decision problems, whilst problems 
with a Find/Compute section are termed search 
problems. 

 

• In the Method or Procedure section the key steps in 
solving the problem are usually given in the form of a 
conceptual problem solution. 

 

•  The ingredients of a conceptual problem solution are as 

follows: 
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1. Solvability/feasibility analysis 

 

• Here we answer the following key questions: Do we have a 
solution at all? If yes, is it unique? 

 

2. Solution method (algorithm) 

 

• Here we set out the way in which the output is computed or the 
approach for arriving at a decision. 

 

3. Analysis of the problem and its solution method 

 

• Here we provide an analysis of how many computational steps 
are needed for solution and how this number of steps depends 
on the problem size. 
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The Notion of a System, Linear and Time-Invariant 
Systems 

• We understand the system to be part of the real world 
with a boundary between the system and its 
environment.  
 

• The system interacts with its environment only through its 
boundary. 
 

• The effects of the environment on the system are described 
by time dependent input functions u(t) from a given set of 
possible inputs u  U 
 

• while the effect of the system on its environment is 
described by the output functions y(t) taken from a set of 
possible outputs y  y. 
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-The schematic signal flow diagram of a system S with its 
input and output signals is shown in Fig. below 

Signal flow diagram of a system 
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• The system can be described as an operator S which maps 
inputs u(t) into outputs y(t), expressed as: 

 

 

 

 

• For process control applications, we often distinguish 
between manipulated input variables u(t) and disturbance 
variables d(t) within the set of input variables to the system. 

 

• Both manipulated input and disturbance variables act upon 

the system to produce the system behavior. 
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• There are systems with special properties which are especially 
interesting and easy to handle from the viewpoint of their 
analysis and control. Here we investigate a number of these 
systems. 

 

Linear Systems 

 

• The first property of special interest is linearity. A system S is 
called linear if it responds to a linear combination of its 
possible input functions with the same linear combination of 
the corresponding output functions.  

• Thus, for the linear system we note that 
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Time-Invariant Systems 
• The second interesting class of systems are time-invariant 

systems.  

 

• A system S is time-invariant if its response to a given input is 
invariant under time shifting.  

 

• Time-invariant systems do not change their system properties 
in time.  

 

• If we were to repeat an experiment under the same 
circumstances at some later time, we get the same response 
as originally observed. 
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• The notion of time invariance is illustrated in Fig. below, where 
we see two identical inputs to the system separated by a time 
t and note that the time shifted outputs are also identical.  

 

 

 

 

 

 

 

 

 

 

     

    Notion of time invariance 
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• In many process system applications, this can be a 
reasonable assumption over a short time frame. 
 

•  In other cases, phenomena such as catalyst deactivation or 
heat transfer fouling lead to non time-invariant systems.  
 

• An in-depth knowledge of the system mechanisms as well 
as the time frame of the intended analysis often resolves 
the validity of the time-invariant assumption. 
 

• Time-invariant systems have constant or time-independent 
parameters in their system models. 
 

• Linear and time-invariant systems are termed LTI systems 
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Different Descriptions of Linear Time-Invariant Systems 

• The system S can be described in alternative ways : 
– in the time domain, 
– in the operator domain, 
– in the frequency domain. 

 
• The operator and frequency domain description of systems is 

only used for linear systems, most frequently for LTI systems.  
 

• These descriptions can be obtained by using Laplace 
transformation or Fourier transformation of the time domain 
description of systems to obtain the operator domain or 
frequency domain description respectively. 
 

• Process models are naturally and conventionally set up in the 
time domain 
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• Continuous time LTI systems may be described in the time 
domain by 

 • input-output models, 

 • state space models. 

• Input-output models are further subdivided into linear 
differential equation models and impulse response models. 

 

Linear Differential Equations with Constant Coefficients 

• If we consider the system input and output and their possibly 
higher order derivatives as 
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• the general form of the input-output model for an LTI SISO 
system is given by the following higher order linear 
differential equation with constant coefficients: 

 

 

 

State Space Representation 

• Input-output representations describe the system with zero 
initial conditions.  

 

• Given the assumption of zero initial condition, we needed the 
impulse response function h(t) or its Laplace transform, the 
transfer function H(s), 

• state of the system at t0 contains all past information on the 
system up to time t0. 
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• To compute y(t) for t  to (all future values) we only need u(t), t 
>to and the state at t = t0. 

 

• The development of a state space model of a process system 
normally involves identifying a number of classes of variables in 
the system. These include: 
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• The general form of SSR or state space model of a MIMO LTI system 
without considering disturbances separately from manipulated 
inputs is in the following form: 

 

 

 

 

 

 

 

 

 

 

• A is called a state matrix, B is the input matrix, C is the output 
matrix and D is the input-to-output coupling matrix. 
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• EXAMPLE (A simple stable SISO LTI system). Consider a simple 
LTI SISO system model in the form: 

 

 

 

 

 

 

 

 

 1. Construct the state space model representation matrices. 
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• The standard matrix-vector form of the system model above is 
in the form of STATE SPACE Eq.  with the following vectors and 
matrices 
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• EXAMPLE (A simple stable MISO LTI system). Consider a 
simple LTI MISO model in the form: 

 

 

 

 

 

 

 

 

• Construct the state space model representation matrices 

19 



• The standard matrix-vector form of the above system model is 
in the form of Eq. with the following vectors and matrices: 
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LUMPED DYNAMIC MODELS AS DYNAMIC SYSTEM 
MODELS 

• Lumped dynamic models are in the form of DAE systems where the 

  

 • differential equations originate from conservation balances of 
conserved extensive quantities (mass, component masses, energy or 
momentum) for every balance volume; 

 

 • algebraic equations are of mixed origin derived from constitutive 
relations. These are normally nonlinear algebraic equations. They are 
often of full structural rank indicating that the differential index of the 
DAE model is 1. Higher index models result when this system is rank 
deficient. 

 

• Therefore, lumped dynamic models can be often transformed to set of 
explicit first-order NLDEs with given initial condition. 

21 



System Variables for Process Systems 

 
• In order to develop a state space model of a process system, 

we need to identify the system variables.  

 

• This includes the state, input, disturbance and output 
variables of the system. For process systems these choices are 
dictated by the development of the lumped parameter 
dynamic model of the process and by the setup of the 
measurements and any control system. 

 

• More precisely, state variables are fixed by the lumped 
parameter dynamic model while input, disturbance and 
output variables are fixed by the design, instrumentation and 
purpose of the model. We now consider these variable 
categories. 
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State variables x(t) 
 
• The differential equations in a lumped dynamic model 

originate from conservation balances for the conserved 
extensive quantities over each balance volume.  
 

• As the state variables are the differential variables in 
these balance equations, the natural set of state 
variables of a process system is the set of conserved 
extensive variables or their intensive counterparts for 
each balance volume.  
 

• This fact fixes the number of state variables. Hence, the 
dimension of the state space model is equal to the 
number of conserved extensive quantities. 
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• If there are c components in the system, then 
in general we can write c component mass 
balances for each species plus an energy 
balance. 

 

•  Thus, the total number of states n is obtained 
by multiplying (c + 1) by the number of 
balance volumes 

 

• Moreover the physical meaning of the state 
variables is also fixed by this correspondence. 

24 



Manipulated input and disturbance variables u(t), d(t) 

 
• In order to identify potential input variables and disturbances 

one should look carefully at the process to identify all 
dynamic effects from the environment which act upon the 
system to affect its behaviour.  

 

• Those potential input variables which can be influenced by a 
device such as a control valve through an instrumentation 
system or changed manually form the set of potential 
manipulated input variables.  

 

• The actual purpose of the modelling decides which variables 
will be regarded as actual disturbances and manipulated 
input variables from the overall set.  
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• Typically, the following type of signals are used as manipulated 
input variables in a process system: 

 • flowrates, 

 • split and recycle ratios, 

 • utility flowrates and temperatures, 

 • pressures, 

 • current and voltage controlling heaters, shaft rotation, 
motors or valves. 

 • switches. 
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Output variables, y(t) 
 

• The set of potential output variables is fixed by the measurement 
devices and each measured variable can be regarded as an output 
of the system.  
 

• The modelling goal is the one which finally determines which 
variables are actually used for a given purpose from the possible 
set.  
 

• Typically, the following types of signals are used as output variables 
in a process system: 

 • temperatures, 
 • pressures, 
 • concentration related physical quantities like mole or mass 

fraction, 
 • level related physical quantities like weight, head or total mass, 
 • flowrate related physical quantities. 
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EXAMPLE (Nonlinear state space model form of a CSTR model). 
Consider the nonlinear model describing the dynamics of a 
non-isothermal CSTR.  

 

• The reaction is first order, A —> B and is exothermic.  

 

• The reactor is cooled by coolant at temperature Tc.  

 

• The feed is at temperature Ti. It is assumed that the physical 
properties remain constant and that inlet and outlet flows are 
equal. 
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• The mass and energy balances lead to the following equations: 

 

 

 

 

 

with the volume V being constant. 

• These can be rearranged to give 
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• Now the state variables of the nonlinear state space model of 
the CSTR are 

 

 

• Let us select the flowrate and the coolant temperature as 
manipulated input variables, thus: 
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Constructing a Nonlinear State Space Model from Lumped 
Dynamic Model 

• The construction is done in the following Steps: 

 

 1. Transform the model equations 

 Take the lumped process model with its balance and constitutive 
equations. Making use of the equation structure of the 
constitutive algebraic part, we substitute the algebraic equations 
into the differential ones. 

 

 2. State equations and state variables 

 The transformed differential balance equations will form the set 
of state equations with the differential variables being the state 
variables of the system. 

 
31 



 

3. Potential input variables 
 

 The potential input variables are the time-dependent variables on the right 
`hand side of the transformed model equations (state equations) which are not 
state variables and affect the variation of the state variables. 

 
 
4. Manipulable input variables and disturbances 

 
• From the set of input variables, we can select those which can be directly 

manipulable based on the instrumentation diagram of the flowsheet and based 
on the modelling goal. The rest are regarded as disturbance variables. 
 

5. Output variables and output equations 
 

• Using the instrumentation diagram, we can find out the quantities we measure 
for the system and their relationship to the state variables. These will be the 
output variables. Their relationships to state (and sometimes to input) variables 
form the output equations. 
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• EXAMPLE (State space model of three jacketted CSTRs in series). 
Consider a process system consisting of three jacketted CSTRs in 
series with cooling provided in a countercurrent direction. The 
cascade is shown in Fig.  below. 

 

 

 

 

 

 

 

 

 

 

• Develop the nonlinear state space model of the system from its 
lumped dynamic system model. 
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• Assumptions 

 A 1 . Perfect mixing in each of the tanks and in their jackets. 

 

    A2. There is a single first-order A -> B exothermic reaction with 
the reaction rate 

 

 

 

 

   A3. The reaction rate coefficient k obeys Arrhenius law, i.e. 
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• A4. The volume of the mixture in the reactors and that in the 
cooling jackets is constant. 

 

• A5 . The corresponding volumes and heat transfer area in the 
three CSTRs are the same. 

 

• A6. Countercurrent flow of the reaction mixture and the 
cooling water. 

 

• A7. The heat capacity of the wall is negligible. 

 

• A8. The physico-chemical properties are constant. 
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• Model equations 

  

The dynamic model of the ith CSTR consists of the following 
balances: 

 

•  Component mass balance for component A in the reactor 

 

 

 

• Energy balance of the reaction mixture 
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• Energy balance for the water in the jacket 

 

 

 

• The following "boundary conditions" specify the inlet and the 
outlet conditions for the reaction mixture and the cooling water 
respectively: 

 

 

 

• Moreover, we need proper initial conditions for every differential 
variable at time t = 0 
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• State variables and state equations 

 The state variables of the system consisting of the three 
jacketted CSTRs are dictated by the balance equations to be 

 

 

 

• Input and output variables 

 The potential input variables are the non-differential variables 
on the right-hand side of the balance equations which affect 
its solution, can vary in time and possibly can be manipulated: 

38 



• Let us assume that the flowrates are kept constant, therefore, 
the vector of potential input variables is 

 

 

 

• The set of possible output variables is the same as the vector 
of state variables if we assume that the concentration of 
component A can be directly measured, i.e. 
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STATE SPACE MODELS AND MODEL LINEARIZATION 
 

• Almost without exception, process models are nonlinear in their form. 
Nonlinear models are difficult to analyse directly, since there is little 
nonlinear analysis theory which is easy to apply.  
 

• Also many models are used at, or nearby to a particular operating point 
and as such a linear form of the model may be adequate for analysis 
purposes, providing we do not use it far from the intended point of 
operation. 
 

• There is also the fact that many powerful and extensive linear analysis 
tools are available to the process engineer. These include tools for 
assessing performance and designing control systems based on linear 
systems theory. In the area of control design, the use of linear models 
dominates the available techniques.  
 

• Hence, it can be beneficial and even vital to develop linear 
approximations to the original nonlinear model. 
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Linearization of Single Variable Differential Equations 

• Most of the models which we develop are nonlinear, since terms 
in the equations are raised to a power or multiplied together.  

 

• We usually refer to the model as being "nonlinear in certain 
variables". Some variables may occur in a linear form such as cx 
where c is a constant or in nonlinear form such as cX2, or cX1X2. 

 

• Example 

 

 

 

• Is Non-linear with h.     

                                                               is linear with respect to Ts. 
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• Linearization is based on the application of Taylor's expansion 
about a particular operating point. For the general dynamic 
model in one variable, x we can write: 

 

 

 

• and the expansion of the nonlinear function f(x,t) gives 
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• If we truncate after the first derivative, we obtain the linear 
approximation 

 

 

 

• and so the original equation can be written as 
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• Which is our final linearized state space equation in the 

deviation variable x’.  

 

• Often we drop the terminology x’ and simply write x, noting 
that this is a deviation variable. 
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Multi-variable Linearization 
 

• We can extend the single variable linearization to the case 
where we have many variables in our model. Hence, consider 
the set of ODEs given by 

 

 

 

 

 

 

 

 

• Linearization means expanding the right-hand sides as a multi-
variable Taylor series.  
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• which can be expanded about the point 

                                   to  give:  

 

 

 

 

 

 

If we do this for all equations ( 1 , . . . , n) we obtain 
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• Finally, writing the linearized equations in deviation variable form 
we get 

 

 

 

• If we collect all n equations together in matrix-vector form we 
obtain 

 

 

• where J is the system Jacobian (matrix of partial derivatives) 
evaluated at the steady state point Xjo. 
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Linearized State Space Equation Forms 

• When we develop models of process systems we usually end 
up with a nonlinear set of differential equations accompanied 
by a set of algebraic equations. 

 

• If we consider the state space model LTI system written in 
deviation variable form, then the state space matrices are the 
partial derivatives of the state and output equations with 
respect to the state and the input variables as follows: 
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• EXAMPLE (Linearization of a CSTR model). Consider the 
nonlinear model describing the dynamics of a non-isothermal 
CSTR. The reaction is first order, A —> B and is exothermic. 
The reactor is cooled by coolant at temperature TQ, It is 
assumed that the physical properties remain constant and 
that inlet and outlet flows are equal. 

• The mass and energy balances lead to the following 
equations: 

 

 

 

• These can be rearranged to give 
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• Now we linearize the equations above in the following steps: 

 • First, we can classify the variables within the nonlinear state 
space formulation as 

 

 

  other choices for u are possible. 

 • Second, convert the original nonlinear ODEs into linear state 
space form. 

  The partial derivatives with respect to the states x are 
given by 
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• The partial derivatives with respect to the inputs u are 
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- Finally, write the state space equations in deviation variable 
form as 
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