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CHAPTER-3- Gibbs-Duhem Relations and Energy 

Minimum Principles

• The Euler relations

• The Gibbs-Duhem relations

• Fundamental surface

• Energy minimum principles

• The equivalence of entropy maximum and

energy minimum principles



• It is known that the fundamental relation is a homogenous first order function of the

extensive parameters. The fundamental relation in the entropy representation for a

single component system is

S=S(U,V,N)..............................(3.1)

• Since S is homogeneous first order function of U,V,N

S(nU,nV,nN) = nS(U,V,N).......(3.2) (for any n = no of subsystems)

• Differentiating  equation (3.2) with respect to 

∂ S(nU,nV,nN) * ∂(nU)+∂ S(nU,nV,nN) * ∂(nV) + ∂ S(nU,nV,nN) *∂(nN) = S(U,V,N)

∂(nU) ∂(n) ∂(nV) ∂(n) ∂(nN) ∂(n)

• This equation is true for all values of n. if n is taken as equal to 1. 

∂ S(U,V,N) *U + ∂ S(U,V,N) *V + ∂ S(U,V,N) *N = S(U,V,N)

∂(U)                  ∂(V)                   ∂(N)             

The Euler Relations



But, ∂S = 1 ,     ∂S = P and  ∂S = - , 

∂U   T      ∂V    T            ∂N     T

substituting all these terms in the above equation

1/TU + (P/T)V - (/T)N = S.................................(3.3)

• Equation (3.3) is the Euler relation in entropy representation.

• It is stated as the sum of the products of the extensive parameters

and their corresponding intensive parameters is equal to entropy (S).

The Euler Relations



• The Euler relation in energy representation can also be found as follows:-

We know that,         U = U(S,V,N)...............................(3.4)

• And since U is homogeneous first order function of S,V and N

U(nS,nV,nN) = nU(S,V,N)...................(3.5)

• Differentiating with respect to n

∂ U(nS,nV,nN)*∂(nS)+∂ U(nU,nV,nN)*∂(nV)+∂ U(nU,nV,nN)*∂(nN) = U(U,V,N)

∂(nS)            ∂(n)             ∂(nV)           ∂(n)             ∂(nN)       ∂(n)

But, ∂(nS) = n ∂(S) + S∂(n) = S, like the same wise others will give us V & N 

∂(n)        ∂(n)        ∂(n) 

The Euler Relations



• Then, substitute the simplifications and letting n=1, we will get

∂ U(U,V,N) *S+ ∂ U(U,V,N) *V + ∂ U(U,V,N) *N=S(U,V,N)

∂(S) ∂(V) ∂(N)

• But, ∂U = T ,∂S = -P and ∂S =  ,substitute in the above equation

∂S ∂V ∂N

TS – PV + N = U............................................(3.6)

Equation (3.6) is the Euler relation in energy representation.

• It is stated as the sum of the products of the extensive parameters and their

corresponding intensive parameters for the given representation is equal to internal

energy(U).

• If the equation of state of the thermodynamic system is known in the entropy and

energy representation, the fundamental relation for that system in the entropy and

energy representation can be obtained by making use of equation (3.3) and (3.6).

The Euler Relations



• Express the following fundamental Relation in the

Euler form

U = CS3/NV
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Example 1



• This is another consequence of the homogeneous first order property of the

fundamental relations. It determine the explicit relationship between intensive

parameters.

• Knowledge of the exact fundamental relation is required. However we can use the Euler

relation.

• From equation (3.3) 1/TU + (P/T)V - (/T)N = S; Then the differential of S can be

written as: - 1/T dU + U d1/T +(P/T) dV + V d(P/T) - (/T) dN - N d(/T) = dS....(3.7)

And from equation (3.1) we can obtain the differential of S 

1/T dU + (P/T) dV - (/T) dN = dS............................................(3.8)

Subtracting equation (3.7) from (3.8) will give us

0= U d 1/T + V d(P/T) – N d(/T), this can be written us 

d(/T) = u d 1/T + v d(P/T)...........................................(3.9)

• Equation (3.9) is Gibbs-Duhem relation in entropy representation.

The Gibbs - Duhem Relations



Similarly, from the Euler relation of energy representation: - U=TS – PV + N

Its differential is : du=T dS +S dT– P dV – VdP +  dN+ N d....(3.10)

And the differential of the fundamental relation of equation (3.4) is

du=T dS – P dV +  dN............................(3.11)

Subtracting equation (3.10) from (3.11) will give us

0 = S dT – V dP + N d, it can be written as 

d= - s dT + v dP ........................................................(3.12)

Equation (3.12) is the Gibbs-Duhem relation in energy representation.

The Gibbs - Duhem Relations

Gibbs-Duhem relations equation (3.9) and (3.12) state that the sum of the products of

extensive parameters and the derivative of their corresponding intensive parameters is

equal to zero.



For a multi-component system, they have the form of: -

U d 1/T + V d(P/T) – Ni d(i/T)=0       (entropy representation)

S dT – V dP + Ni di = 0        (energy representation)

Conclusion 

• If two equations of state of a system are known the third equation of state can

be determined by making use of the Gibbs-Duhem relation. Then the three

equations of states can be substituted in the Euler relation to determine the

fundamental relation.

• Alternatively one can substitute the known two equations of states in the

differential forms of the fundamental relations, (equations(3.8)and (3.11)) and

integrate them to obtain the fundamental relation.

The Gibbs - Duhem Relations



Example 2

A particular thermodynamic system obeys the following equations of 

state 

T = 3CS2/NV and P = CS3/NV2

Where C is a positive constant. Determine the fundamental relation

Example 3

Find the fundamental relation for a thermodynamic system which

obeys the equations of state given in example 2. Use the alternative

procedure of obtaining the fundamental relation by direct integration

of the deferential form
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Example 2 and 3



• An ideal monotonic gas is described by the two equations of state:

PV = NRT and U = (3/2)NRT. Determine the fundamental relation

for an ideal monotonic gas.

12

Example 4



If Y is a functional of two variables X1 and X2, then it needs three

dimensional coordinate plane Y- X1- X2.

The fundamental surface corresponding to S=S(u,v) in the

thermodynamic configuration space for a single component system

Fundamental Surface



The fundamental surface corresponding the fundamental relation

S=S(U, X1, X2, ..... Xc+1) for fixed values of all Xi except i=k is similar

to a fundamental relation of single component system S=S (u, v),

diagrammatically,

Fundamental Surface…Contd.

The hyper surface which represents the fundamental relations of a 

thermodynamic system is known as fundamental surface.



• Energy minimum principle: - in the equilibrium state the value

of the unconstrained extensive parameters is such as to minimize

the total internal energy of the composite system for a given

value of total entropy.

• Entropy maximum principle:- in the equilibrium state the values

of the unconstrained extensive parameters is such as to

maximize the total entropy of the composite system for a given

value of total internal energy.

• Since energy minimum principle is obtained by inverting the

entropy maximum principle, the equilibrium state satisfies both

principles

The Energy Minimum Principle



• The composite system moves along the curve of intersection of U = UO

plane and fundamental surface until the entropy reaches a maximum

value.

Entropy Maximum Principles



• the composite system moves along the curve of intersection of

S=So plane and fundamental surface till the energy reaches a

minimum value.

The Energy Minimum Principle
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• Entropy Maximum principle: In a state of equilibrium the

unconstrained extensive parameter assume such value as to

maximize the entropy of a composite system for a given value of

total internal energy of the system.

The Equivalence of Entropy Maximum and Energy

Minimum Principles



• Energy minimum principle: In a state of stable system the

unconstrained extensive parameter assume such value as to

minimize the total energy of the system.

The Equivalence of Entropy Maximum and Energy

Minimum Principles….Contd..
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The equivalence of these two principles can be proven mathematically as follows 

Cyclic equation
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The Equivalence of Entropy Maximum and Energy

Minimum Principles….Contd..
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The Equivalence of Entropy Maximum and Energy

Minimum Principles….Contd..



• Substituting                                 and m=
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Hence, the energy minimum principle and entropy maximum 

principle are equivalent. 

The Equivalence of Entropy Maximum and Energy

Minimum Principles….Contd..



• Consider an isolated composite system consisting of two subsystems,

separated by rigid, adiabatic and impermeable boundary.

• Suppose the internal boundary in made movable.

• According to entropy maximum principle the rigid boundary can be

suddenly made to move allowing the system to undergo a spontaneous

change.

• The energy of the system is constant and the entropy increase. In the final

equilibrium state the pressure in both the subsystems will be identical.

dWdQdU    VdPTdS 0

dU=0, dQ= TdS, dw = d(PV)=VdP (Contant volume)

The Equivalence of Entropy Maximum and Energy

Minimum Principles….Contd..



• According to energy minimum principle, the internal boundary can be

made to move, while doing work on an external agent, allowing the system

to undergo a reversible and adiabatic process. And (isentropic system)

and (constant volume)

• During the entropy of the system remains constant and its energy

decrease by the amount of work done on the external agent. In the final

equilibrium state, the gas pressure in both the subsystem will be equal.

dWdQdU  VdPdU 

0 TdSdQ
VdPdW 

The Equivalence of Entropy Maximum and Energy

Minimum Principles….Contd..



• An isolated composite system consisting of two subsystems a and

b which are separated from each other by a rigid, adiabatic and

impermeable boundary. The extensive parameters of the

subsystems are Ua = 7.2 MJ, Va = 1m3, Na = 1 kmol, Ub = 6 MJ;

Vb = 1m3, Nb = 1 kmol. The fundamental relation

U=Uo(Vo/V)2/3*(No/N)-5/3 exp(-2So/3NoR) exp(2S/3NR) where

R = 8.314 kJ/kmol K and the subscript zero denotes reference state

values, is valid for both the subsystems. If the internal boundary is

made diathermal, determine the equilibrium temperature.
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Example 5


