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PREFACE

We have written this text for engineers who wish to grasp the engineering physics of
thermodynamic concepts and apply the knowledge in their field of interest rather than merely
digest the abstract generalized concepts and mathematical relations governing thermodynam-
ics. While the fundamental concepts in any discipline are relatively invariant, the problems it
faces keep changing. In many instances we have included physical explanations along with the
mathematical relations and equations so that the principles can be relatively applied to real
world problems.

The instructors have been teaching advanced thermodynamics for more than twelve
years using various thermodynamic texts written by others. In writing this text, we acknowl-
edge that debt and that to our students who asked questions that clarified each chapter that we
wrote. This text uses a “down–to–earth” and, perhaps, unconventional approach in teaching
advanced concepts in thermodynamics. It first presents the phenomenological approach to a
problem and then delves into the details. Thereby, we have written the text in the form of a
self–teaching tool for students and engineers, and with ample example problems. Readers will
find the esoteric material to be condensed and, as engineers, we have stressed applications
throughout the text. There are more than 110 figures and 150 engineering examples covering
thirteen  chapters.

Chapter 1 contains an elementary overview of undergraduate thermodynamics,
mathematics and a brief look at the corpuscular aspects of thermodynamics. The overview of
microscopic thermodynamics illustrates the physical principles governing the macroscopic
behavior of substances that are the subject of classical thermodynamics. Fundamental concepts
related to matter, phase (solid, liquid, and gas), pressure, saturation pressure, temperature, en-
ergy, entropy, component property in a mixture and stability are discussed.

Chapter 2 discusses the first law for closed and open systems and includes problems
involving irreversible processes. The second law is illustrated in Chapter 3 rather than pre-
senting an axiomatic approach. Entropy is introduced through a Carnot cycle using ideal gas as
the medium, and the illustration that follows considers any reversible cycle operating with any
medium. Entropy maximization and energy minimization principles are illustrated. Chapter 4
introduces the concept of availability with a simple engineering scheme that is followed by the
most general treatment. Availability concepts are illustrated by scaling the performance of
various components in a thermodynamic system (such as a power plant or air conditioner) and
determining which component degrades faster or outperforms others. Differential forms of
energy and mass conservation, and entropy and availability balance equations are presented in
Chapters 2 to 4 using the Gauss divergence theorem. The differential formulations allow the
reader to determine where the maximum entropy generation or irreversibility occurs within a
unit so as to pinpoint the major source of the irreversibility for an entire unit. Entropy genera-
tion and availability concepts are becoming more important to energy systems and conserva-
tion groups. This is a rapidly expanding field in our energy–conscious society. Therefore, a
number of examples are included to illustrate applications to engineering systems. Chapter 5
contains a postulatory approach to thermodynamics. In case the reader is pressed for time, this
chapter may be entirely skipped without loss of continuity of the subject.

Chapter 6 presents the state equation for real gases including two and three parameter,
and generalized equations of state. The Kessler equation is then introduced and the methodol-
ogy for determining Z (0) and Z (1) is discussed. Chapter 7 starts with Maxwell’s relations fol-
lowed by the development of generalized thermodynamic relations. Illustrative examples are
presented for developing tables of thermodynamic properties using the Real Gas equations.
Chapter 8 contains the theory of mixtures followed by a discussion of fugacity and activity.
Following the methodology for estimating the properties of steam from state equations, a
methodology is presented for estimating partial molal properties from mixture state equations.
Chapter 9 deals with phase equilibrium of multicomponent mixtures and vaporization and
boiling. Applications to engineering problems are included. Chapter 10 discusses the regimes



of stable and metastable states of fluids and where the criteria for stability are violated. Real
gas state equations are used to identify the stable and unstable regimes and illustrative exam-
ples with physical explanation are given.

Chapter 11 deals with reactive mixtures dealing with complete combustion, flame
temperatures and entropy generation in reactive systems. In Chapter 12 criteria for the direc-
tion of chemical reactions are developed, followed by a discussion of equilibrium calculations
using the equilibrium constant for single and multi-phase systems, as well as the Gibbs mini-
mization method. Chapter 13 presents an availability analysis of chemically reacting systems.
Physical explanations for achieving the work equivalent to chemical availability in thermody-
namic systems are included.  The summary at the end of each chapter  provides a brief review
of the chapter for engineers in industry.

Exercise problems are placed at the end. This is followed by several tables containing
thermodynamic properties and other useful information.

The field of thermodynamics is vast and all subject areas cannot be covered in a sin-
gle text. Readers who discover errors, conceptual conflicts, or have any comments, are encour-
aged to E–mail these to the authors (respectively, kannamalai@tamu.edu and ikpuri@uic.edu).
The assistance of Ms. Charlotte Sims and Mr. Chun Choi in preparing portions of the manu-
script is gratefully acknowledged. We wish to acknowledge helpful suggestions and critical
comments from several students and faculty. We specially thank the following reviewers: Prof.
Blasiak (Royal Inst. of Tech., Sweden), Prof. N. Chandra (Florida State), Prof. S. Gollahalli
(Oklahoma), Prof. Hernandez (Guanajuato, Mexico), Prof. X. Li. (Waterloo), Prof. McQuay
(BYU), Dr. Muyshondt. (Sandia National Laboratories), Prof. Ochterbech (Clemson), Dr. Pe-
terson, (RPI), and Prof. Ramaprabhu (Anna University, Chennai, India).

KA gratefully acknowledges many interesting and stimulating discussions with Prof.
Colaluca and the financial support extended by the Mechanical Engineering Department at
Texas A&M University. IKP thanks several batches of students in his Advanced Thermody-
namics class for proofreading the text and for their feedback and acknowledges the University
of Illinois at Chicago as an excellent crucible for scientific inquiry and education.

Kalyan Annamalai, College Station, Texas
Ishwar K. Puri, Chicago, Illinois
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NOMENCLATURE*

Symbol Description SI English Conversion

SI to English

A Helmholtz free energy kJ BTU 0.9478
A area m2 ft2 10.764
a acceleration m s–2 ft s–2 3.281
a specific Helmholtz free energy kJ kg–1 BTU lbm

–1 0.4299
a attractive force constant
a specific Helmholtz free energy kJ kmole–1 BTU lbmole–1, 0.4299
b body volume constant m3 kmole–1 ft3 lbmole–1 16.018
c specific heat kJ kg–1 K–1 BTU/lb R 0.2388
COP Coefficient of performance
E energy, (U+KE+PE) kJ BTU 0.9478
ET Total energy (H+KE+PE) kJ BTU 0.9478
e specific energy kJ kg–1 BTU lbm

–1 0.4299
eT methalpy = h + ke + pe kJ kg–1 BTU lbm

–1 0.4299
F force kN lbf 224.81
f fugacity kPa(or bar) lbf in

–2 0.1450
G Gibbs free energy kJ BTU 0.9478
g specific Gibbs free energy kJ kg–1 BTU lbm

–1 0.4299
(mass basis)
g gravitational acceleration m s–2 ft s–2 3.281
gc gravitational constant
g Gibbs free energy (mole basis) kJ kmole–1 BTU lbmole–1 0.4299
ĝ partial molal Gibb's function, kJ kmole–1 BTU lbmole–1 0.4299
H enthalpy kJ BTU 0.9478
hfg enthalpy of vaporization kJ kg–1 BTU lbm

–1 0.4299
h specific enthalpy (mass basis) kJ kg–1 BTU lbm

–1 0.4299
ho,h* ideal gas enthalpy kJ kg–1 BTU lbm

–1 0.4299
I irreversibility kJ BTU 0.9478
I irreversibility per unit mass kJ kg–1 BTU lbm

–1 0.4299
I electrical current amp
J Joules' work equivalent of heat (1 BTU = 778.14 ft lbf)
Jk fluxes for species, heat etc kg s–1, kW BTU s–1 0.9478
Jk fluxes for species, heat etc kg s–1, kW lb s–1 0.4536
K equilibrium constant
KE kinetic energy kJ BTU 0.9478
ke specific kinetic energy kJ kg–1 BTU lbm

–1 0.4299
k ratio of specific heats
L length, height m ft 3.281
l intermolecular spacing m ft 3.281

lm mean free path m ft 3.281
LW lost work kJ BTU 0.9478
LW lost work kJ ft lbf 737.52
M molecular weight, molal mass kg kmole–1 lbm lbmole–1

                                                            
* Lower case (lc) symbols denote values per unit mass, lc symbols with a bar (e.g., h) denote

values on mole basis, lc symbols with a caret and tilde (respectively, ĥ  and h̃ ) denote values
on partial molal basis based on moles and mass, and symbols with a dot (e.g. Q̇ ) denote rates.

m            mass                                                                 kg                lbm                  2.2046



m 2.2046
Y mass fraction
N number of moles kmole lbmole 2.2046
NAvag Avogadro number molecules molecules 0.4536

kmole–1 lbmole-1

n polytropic exponent in PVn = constant
P pressure kN m–2 kPa lbf in

–2 0.1450
PE potential energy kJ BTU 0.9478
pe specific potential energy
Q heat transfer kJ BTU 0.9478
q heat transfer per unit mass kJ kg–1 BTU lb–1 0.4299
qc charge
R gas constant kJ kg–1 K–1 BTU lb–1 R–1 0.2388
R universal gas constant kJ kmole–1 BTU lbmole–1 0.2388

K–1 R–1

S entropy kJ K–1 BTU R–1 0.5266
s specific entropy (mass basis) kJ kg–1 K–1 BTU lb–1 R–1 0.2388
s specific entropy (mole basis) kJ kmole–1 K–1 BTU lbmole–1 R–1

0.2388
T temperature °C, K °F, °R (9/5)T+32

T temperature °C, K °R 1.8

t time s s
U internal energy kJ BTU 0.9478
u specific internal energy kJ kg–1 BTU lb–1 0.4299
u internal energy (mole basis) kJ kmole–1 BTU lbmole–1 0.4299
V volume m3 ft3 35.315
V volume m3 gallon 264.2
V velocity m s–1 ft s–1 3.281
v specific volume (mass basis) m3 kg–1 ft3 lbm

–1 16.018
v specific volume (mole basis) m3 kmole–1 ft3 lbmole–1 16.018
W work kJ BTU 0.9478
W work kJ ft lbf 737.5
w work per unit mass kJ kg–1 BTU lb–1 0.4299
w Pitzer factor
ω specific humidity kg kg–1 1bm lbm

–1

x quality
x k mole fraction of species k
Y k mass  fraction ofspecies k
z elevation m ft 3.281
Z compressibility factor

Greek symbols

α̂ k activity of component k, 
kf

/fk

βP, βT, compressibility K–1, atm–1 R–1, bar–1 0.555, 1.013

βs atm–1 bar–1 1.013

γk activity coefficient, α̂ k / α̂ k
id

φ̂k /φk Gruneisen constant

λ thermal conductivity kW m–1 K–1 BTU ft–1 R–1 0.1605

η First Law efficiency
η

r 
        relative efficiency



ω specific humidity

ρ density kg m–3 1bm ft–3 0.06243

φ equivalence ratio, fugacity coefficient

φ relative humidity,

Φ absolute availability(closed system) kJ BTU 0.9478

Φ' relative availability or exergy kJ kg–1 BTU lb–1 0.4299

φ fugacity coefficient

JT Joule Thomson Coefficient K bar–1 ºR atm–1 1.824
µ chemical potential kJ kmole–1 BTU lbmole–1 0.4299

ν stoichiometric coefficient

σ entropy generation kJ K–1 BTU R–1 0.2388
Ψ absolute stream availability kJ kg–1 BTU lb–1 0.2388

Ψ' relative stream availability or exergy

Subscripts
a air
b boundary
c critical
chem chemical
c.m. control mass
c.v. control volume
e exit
f flow
f saturated liquid (or fluid)
f formation
fg saturated liquid (fluid) to vapor
g saturated vapor (or gas)
H high temperature
I inlet
inv inversion
id ideal gas
iso isolated (system and surroundings)
L low temperature
max maximum possible work output between two given states (for an expansion

process)
m mixture
min minimum possible work input between two given states
net net in a cyclic process
p at constant pressure
p,o at constant pressure for ideal gas
R reduced, reservoir
rev reversible
r relative pressure, relative volume
s isentropic work, solid
sf solid to fluid (liquid)
sh shaft work
Th Thermal
TM Thermo-mechanical
TMC                    Thermo-mechanical-chemical
wwet                    mixture



v at constant volume
v,o at constant volume for ideal gas
v vapor (Chap. 5)
0 or o ambient, ideal gas state

Superscripts
(0) based on two parameters
(1) Pitzer factor correction
α alpha phase

β beta phase

id ideal mixture
ig ideal gas
Ρ liquid

g gas
l liquid
res residual
sat saturated
o pressure of 1 bar or 1 atm
- molal property of k, pure component
^ molal property when k is in a mixure

Mathematical Symbols
δ( ) differential of a non-property, e.g., δ δQ,   W , etc.
d () differential of property, e.g., du, dh, dU, etc.
∆ change in value

Acronyms
CE Carnot Engine
c.m. control mass
c.s control surface
c.v control volume
ES Equilibrium state
HE Heat engine
IPE,ipe Intermolecular potential energy
IRHE Irreversible HE
KE Kinetic energy
ke kinetic energy per unit mass
LHS Left hand side
KES Kessler equation of state
MER Mechanical energy reservoir
mph miles per hour
NQS/NQE non-equilibrium
PC piston cylinder assembly
PCW piston cylinder weight assembly
PE Potential energy
pe potential energy per unit mass
PR Peng Robinson
RE, re Rotational energy
RHE Reversible HE
RHS                     Right hand side
RK                       Redlich Kwong



RKS Redlich Kwong Soave
QS/QE Quasi-equilibrium
ss steady state
sf steady flow
TE, te translational
TER Thermal energy reservoir
TM thermo-mechanical equilibrium
TMC Thermo-mechanical-chemical equilibrium
uf uniform flow
us uniform state
VE,ve Vibrational energy
VW Van der Waals



Laws of Thermodynamics in Lay Terminology

First Law: It is impossible to obtain something from nothing, but one may break even

Second Law: One may break even but only at the lowest possible temperature

Third Law: One cannot reach the lowest possible temperature

Implication: It is impossible to obtain something from nothing, so one must optimize resources

The following equations, sometimes called the accounting equations, are useful in the engi-
neering analysis of thermal systems.

Accumulation rate of an extensive property B: dB/dt = rate of B entering a volume ( Ḃi) – rate
of B leaving a volume ( Ḃe) + rate of B generated in a volume ( Ḃgen) – rate of B de-
stroyed or consumed in a volume ( Ḃdes/cons).

Mass conservation: dm dt m mcv i e/ ˙ ˙= − .

First law or energy conservation: dE dt Q W m e m ecv i T i e T e/ ˙ ˙ ˙ ˙
, ,= − + − ,

where eT = h + ke + pe, E = U + KE + PE, δwrev, open = –v dP, δwrev, closed = P dv.

Second law or entropy balance equation: dS dt Q T m s m scv b i i e e cv/ ˙ / ˙ ˙ ˙= + − + σ ,
where σ̇ cv > 0 for an irreversible process and is equal to zero for a reversible process.

Availability balance: d E T S dt Q T T m m W Tcv o cv R i i e e o cv( / ( / ) ˙ ˙ ˙ ˙− = − + − − −1 0 ψ ψ σ ,

where ψ = (eT – T0 s) = h + ke + pe – T0s, and E = U + KE + PE.

Third law: S → 0 as T → 0.
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Chapter 1 

 1. INTRODUCTION

A. IMPORTANCE, SIGNIFICANCE AND LIMITATIONS
Thermodynamics is an engineering science topic,which deals with the science of

“motion” (dynamics) and/or the transformation of “heat” (thermo) and energy into various
other energy–containing forms. The flow of energy is of great importance to engineers in-
volved in the design of the power generation and process industries. Examples of analyses
based on thermodynamics include:

The transfer or motion of energy from hot gases emerging from a burner to cooler water in
a hot–water heater.
The transformation of the thermal energy, i.e., heat, contained in the hot gases in an auto-
mobile engine into mechanical energy, namely, work, at the wheels of the vehicle.
The conversion of the chemical energy contained in fuel into thermal energy in a com-
bustor.

Thermodynamics provides an understanding of the nature and degree of energy trans-
formations,  so that these can be understood and suitably utilized. For instance, thermodynam-
ics can provide an understanding for the following situations:

In the presence of imposed restrictions it is possible to determine how the properties of a
system vary, e.g.,
The variation of the temperature T and pressure P inside a closed cooking pot upon heat
addition can be determined. The imposed restriction for this process is the fixed volume V
of the cooker, and the pertinent system properties are T and P.
It is desirable to characterize the variation of P and T with volume V in an automobile en-
gine. During compression of air, if there is no heat loss, it can be shown that PV1.4 ≈ con-

stant (cf. Figure 1).
Inversely, for a specified variation of the system properties, design considerations may re-
quire that restrictions be imposed upon a system, e.g.,
A gas turbine requires compressed air in the combustion chamber in order to ignite and
burn the fuel. Based on a thermodynamic analysis, an optimal scenario requires a com-
pressor with negligible heat loss (Figure 2a).
During the compression of natural gas, a constant
temperature must be maintained. Therefore, it is
necessary to transfer heat, e.g., by using cooling
water (cf. Figure 2b).
It is also possible to determine the types of proc-
esses that must be chosen to make the best use of
resources, e.g.,
To heat an industrial building during winter, one
option might be to burn natural gas while another
might involve the use of waste heat from a power
plant. In this case a thermodynamic analysis will
assist in making the appropriate decision based on
rational scientific bases.
For minimum work input during a compression
process, should a process with no heat loss be util-
ized or should one be used that maintains a con-
stant temperature by cooling the compressor? In a
later chapter we will see that the latter process re-
quires the minimum work input.
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The properties of a substance can be determined using the relevant state equations. Ther-
modynamic analysis also provides relations among nonmeasurable properties such as en-
ergy, in terms of measurable properties like P and T (Chapter 7). Likewise, the stability of
a substance (i.e., the formation of solid, liquid, and vapor phases) can be determined under
given conditions (Chapter 10).
Information on the direction of a process can also be obtained. For instance, analysis
shows that heat can only flow from higher temperatures to lower temperatures, and
chemical reactions under certain conditions can proceed only in a particular direction (e.g.,
under certain conditions charcoal can burn in air to form CO and CO2, but the reverse
process of forming charcoal from CO and CO2 is not possible at those conditions).

B. LIMITATIONS OF THERMODYNAMICS
It is not possible to determine the rates of transport processes using thermodynamic

analyses alone. For example, thermodynamics demonstrates that heat flows from higher to
lower temperatures, but does not provide a relation for the heat transfer rate. The heat conduc-
tion rate per unit area can be deduced from a relation familiarly known as Fourier’s law, i.e.,

˙ ′′q  = Driving potential ÷ Resistance = ∆T/RH, (1)

where ∆T is the driving potential or temperature difference across a slab of finite thickness,

and RH denotes the thermal resistance. The Fourier law cannot be deduced simply with knowl-
edge of thermodynamics. Rate processes are discussed in texts pertaining to heat, mass and
momentum transport.

1. Review

a. System and Boundary
A system is a region containing energy and/or matter that is separated from its sur-

roundings by arbitrarily imposed walls or boundaries.
A boundary is a closed surface surrounding a system through which energy and mass may
enter or leave the system. Permeable and process boundaries allow mass transfer to occur.
Mass transfer cannot occur across impermeable boundaries. A diathermal boundary al-
lows heat transfer to occur across it as in the case of thin metal walls. Heat transfer cannot
occur across the adiabatic boundary. In this case the boundary is impermeable to heat
flux, e.g., as in the case of a Dewar flask.

P1 Q

Storage tanks To Combustion

Chamber

P1 Q=0

P 2>P 1 T 2>T 1
P 2>P 1, T 2=T 1

Figure 2: (a) Compression of natural gas for gas turbine appli-
cations; (b) Compression of natural gas for residential applica-
tions.



A moveable/deforming  boundary is capable of performing “boundary work”.
No boundary work transfer can occur across a rigid boundary. However energy transfer
can still occur via shaft work, e.g., through the stirring of fluid in a blender.
A simple system is a homogeneous, isotropic, and chemically inert system with no exter-
nal effects, such as electromagnetic forces, gravitational fields, etc.
Surroundings include everything outside the system (e.g. dryer may be a system; but the
surroundings are air in the house + lawn + the universe)
An isolated system is one with rigid walls that has no communication (i.e., no heat, mass,
or work transfer) with its surroundings.
A closed system is one in which the system mass cannot cross the boundary, but energy
can, e.g., in the form of heat transfer. Figure 3a contains a schematic diagram of a closed
system consisting of a closed–off water tank. Water may not enter or exit the system, but
heat can . A philosophical look into closed system is given in Figure 4a.
An open system is one in which mass can cross the system boundary in addition to energy
(e.g., as in Figure 3b where upon opening the valves that previously closed off the water
tank, a pump now introduces additional water into the tank, and some water may also flow
out of it through the outlet).
A composite system consists of several subsystems that have one or more internal con-
straints or restraints. The schematic diagram contained in Figure 3c illustrates such a sys-
tem based on a coffee (or hot water) cup placed in a room. The subsystems include water
(W) and cold air (A)

b. Simple System
A simple system is one which is macroscopically homogeneous and isotropic and

involves a single work mode. The term macroscopically homogeneous implies that properties
such as the density ρ are uniform over a large dimensional region several times larger than the

mean free path (lm) during a relatively large time period, e.g., 10–6 s (which is large compared

to the intermolecular collision time that, under standard conditions, is approximately 10–15 s, as
we will discuss later in this chapter). Since,

ρ = mass ÷ volume, (2)

where the volume V » lm3, the density is a macroscopic characteristic of any system.

System

Boundary
Control
Volume

(a) (b)
(c)

Hot Water

(W)

Room air

(A)

Figure 3. Examples of: (a) Closed system. (b) Open system (filling of a water tank with
drainage at the bottom). (c) Composite system.



An isotropic system is one in which the properties do not vary with direction, e.g., a cy-
lindrical metal block is homogeneous in terms of density and isotropic, since its thermal
conductivity is identical in the radial and axial directions.
A simple compressible system utilizes the work modes of compression and/or expansion,
and is devoid of body forces due to gravity, electrical and magnetic fields, inertia, and
capillary effects. Therefore, it involves only volumetric changes in the work term.

c. Constraints and Restraints
Constraints and restraints are the barriers within a system that prevent some changes

from occurring during a specified time period.
A thermal constraint can be illustrated through a closed and insulated coffee mug. The in-
sulation serves as a thermal constraint, since it prevents heat transfer.
An example of a mechanical constraint is a piston–cylinder assembly containing com-
pressed gases that is prevented from moving by a fixed pin. Here, the pin serves as a me-
chanical constraint, since it prevents work transfer. Another example is water storage be-
hind a dam which acts as a mechanical constraint. A composite system can be formulated
by considering the water stores behind a dam and the low–lying plain ground adjacent to
the dam.
A permeability or mass constraint can be exemplified by volatile naphthalene balls kept in
a plastic bag. The bag serves as a non–porous impermeable barrier that restrains the mass
transfer of naphthalene vapors from the bag. Similarly, if a hot steaming coffee mug is
capped with a rigid non–porous metal lid, heat transfer is possible whereas mass transfer
of steaming vapor into the ambient is prevented.
A chemical constraint can be envisioned by considering the reaction of the molecular ni-
trogen and oxygen contained in air to form NO. At room temperature N2 and O2 do not re-
act at a significant rate and are virtually inert with respect to each other, since a chemical
constraint is present which prevents the chemical reaction of the two species from occur-
ring. (Non–reacting mixtures are also referred to as inert mixtures.) The chemical con-

RIP C.V.
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System
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Air and
Food
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Figure 4 : Philosophical perspective of systems: (a) Closed system. (b) Open system.



straint is an activation energy, which is the energy required by a set of reactant species to
chemically react and form products. A substance which prevents the chemical reaction
from occurring is a chemical restraint, and is referred to as an anti–catalyst, while catalysts
(such as platinum in a catalytic converter which converts carbon monoxide to carbon di-
oxide at a rapid rate) promote chemical reactions (or overcome the chemical restraint).

d. Composite System
A composite system consists of a combination of two or more subsystems that exist in

a state of constrained equilibrium. Using a cup of coffee in a room as an analogy for a com-
posite system, the coffee cup is one subsystem and room air another, both of which might exist
at different temperatures. The composite system illustrated in Figure 3c consists of two sub-
systems hot water (W) and air (A) under constraints, corresponding to different temperatures.

e. Phase
A region within which all properties are uniform consists of a distinct phase. For in-

stance, solid ice, liquid water, and gaseous water vapor are separate phases of the same chemi-
cal species. A portion of the Arctic Ocean in the vicinity of the North Pole is frozen and con-
sists of ice in a top layer and liquid water beneath it. The atmosphere above the ice contains
some water vapor. The density of water in each of these three layers is different, since water
exists in these layers separately in some combination of three (solid, liquid, and gaseous)
phases. Although a vessel containing immiscible oil and water contains only liquid, there are
two phases present, since ρoil ≠ ρwater. Similarly, in metallurgical applications, various phases

may exist within the solid state, since the density may differ over a solid region that is at a uni-
form temperature and pressure.

In liquid mixtures that are miscible at a molecular level (such as those of alcohol and
water for which molecules of one species are uniformly intermixed with those of the other),
even though the mixture might contain several chemical components, a single phase exists,

N2

Pressure Cooker

Vapor, H2O,
ρρρρ~0.6kg/m3

Liquid , H2O,
ρρρρ~1000 kg/m3

O2

(a)
(b)

Figure 5 : (a) Pure substance illustrated by the presence of water and its vapor in a pot; (b) A ho-
mogeneous system in which each O2 molecule is surrounded by about four N2 molecules.



since the system properties are macroscopically uniform throughout a given volume. Air, for
example, consists of two major components (molecular oxygen and nitrogen) that are chemi-
cally distinct, but constitute a single phase, since they are well–mixed.

f. Homogeneous
A system is homogeneous if its chemical composition and properties are macroscopi-

cally uniform. All single–phase substances, such as those existing in the solid, liquid, or vapor
phases, qualify as homogeneous substances. Liquid water contained in a cooking pot is a ho-
mogeneous system (as shown in Figure 5a), since its composition is the same everywhere, and,
consequently, the density within the liquid water is uniform. However, volume contained in the
entire pot does not qualify as a homogeneous system even though the chemical composition is
uniform, since the density of the water in the vapor and liquid phases differs.

The water contained in the cooker constitutes two phases, liquid and vapor. The
molecules are closely packed in the liquid phase resulting in a higher density relative to vapor,
and possess lower energy per unit mass compared to that in the vapor phase.

Single–phase systems containing one or more chemical components also qualify as
homogeneous systems. For instance, as shown in Figure 5b, air consists of multiple compo-
nents but has spatially macroscopic uniform chemical composition and density.

g. Pure Substance
A pure substance is one whose chemical composition is spatially uniform. At any

temperature the chemical composition of liquid water uniformly consists of H2O molecules.
On the other hand, the ocean with its salt–water mixture does not qualify as a pure substance,
since it contains spatially varying chemical composition. Ocean water contains a nonuniform
fraction of salt depending on the depth. Multiphase systems containing single chemical com-
ponents consist of pure substances, e.g., a mixture of ice, liquid water, and its vapor, or the

Water & alcohol
(vap) 20:80

Water and alcohol
(liq) 40:60

Alcohol

( )

Alcohol (liq)

Water(liq)

Water(g)

Figure 6: A heterogeneous system consisting of binary fluid mixtures. The liquid phase con-
tains a water–alcohol mixture in the ratio 40:60, and the vapor phase water and alcohol are in
the ratio 20:80.



liquid water and vapor mixture in the cooking pot example (cf. Figure 5a). Multicomponent
single–phase systems also consist of pure substances, e.g., air (cf. Figure 5b).

Heterogeneous systems may hold multiple phases (e.g., as in Figure 5a with one com-
ponent) and multicomponents in equilibrium (e.g., Figure 6 with two components).
Well–mixed single–phase systems are simple systems although they may be multicomponent,
since they are macroscopically homogeneous and isotropic, e.g., air. The vapor–liquid system
illustrated in Figure 6 does not qualify as a pure substance, since the chemical composition of
the vapor differs from that of the liquid phase.

h. Amount of Matter and Avogadro Number
Having defined systems and the types of matter contained within them (such as a

pure, single phase or multiphase, homogeneous or heterogeneous substance), we will now de-
fine the units employed to measure the amount of matter contained within systems.

The amount of matter contained within a system is specified either by a molecular
number count or by the total mass. An alternative to using the number count is a mole unit.
Matter consisting of 6.023×1026 molecules (or Avogadro number of molecules) of a species is

called one kmole of that substance. The total mass of those molecules (i.e., the mass of 1
kmole of the matter) equals the molecular mass of the species in kg. Likewise, 1 lb mole of a
species contains its molecular mass in lb. For instance, 18.02 kg of water corresponds to 1
kmole, 18.02 g of water contains 1 gmole, while 18.02 lb mass of water has 1 lb mole of the
substance. Unless otherwise stated, throughout the text the term mole refers to the unit kmole.

i. Mixture
A system that consists of more than a single component (or species) is called a mix-

ture. Air is an example of a mixture containing molecular nitrogen and oxygen, and argon. If
Nk denotes the number of moles of the k–th species in a mixture, the mole fraction of that spe-
cies Xk is given by the relation

Xk = Nk/N, (3)

where N = ΣNk is the total number of moles contained in the mixture. A mixture can also be

described in terms of the species mass fractions mfk as

Yk = mk/m, (4)

where mk denotes the mass of species k and m the total mass. Note that mk = NkMk, with the
symbol Mk representing the molecular weight of any species k. Therefore, the mass of a mix-
ture

m = ΣNkMk. 

The molecular weight of a mixture M is defined as the average mass contained in a
kmole of the mixture, i.e.,

M = m/N = ΣNkMk/N = ΣXkMk (5)

a. Example 1
Assume that a vessel contains 3.12 kmoles of N2, 0.84 kmoles of O2, and 0.04 kmoles of
Ar. Determine the constituent mole fractions, the mixture molecular weight, and the spe-
cies mass fractions.

Solution
Total number of moles N = 3.12 + 0.84 + 0.04 = 4.0 kmoles
x N2

 = NN2
/N = 3.12/4 = 0.78. Similarly, xN2

 = 0.21, and xAr = 0.01.

The mixture molecular weight can be calculated using Eq. 5, i.e.,
M = 0.78×28 + 0.21×32 + 0.01×39.95 = 28.975 kg per kmole of mixture.



The total mass m = 3.12×28.02 + 0.84×32 + 0.04×39.95 = 115.9 kg, and mass fractions

are:
YN2 = mN2

/m = 3.12×28.02/115.9 = 0.754. Similarly YO2  = 0.232, and YAr = 0.0138.

Remark
The mixture of N2, O2, and Ar in the molal proportion of 78:1:21 is representative of the
composition of air (see the Appendix to this chapter).

When dealing specifically with the two phases of a multicomponent mixture, e.g., the
alcohol–water mixture illustrated in Figure 6, we will denote the mole fraction in the gaseous
phase by Xk,g  (often simply as Xk) and use Xk,l  Xk,s to represent the liquid  and solid phase

mole fraction, respectively.
At room temperature (of 20ºC) it is possible to dissolve only up to 36 g of salt in 100

g of water, beyond which the excess salt settles. Therefore, the mass fraction of salt in water at
its solubility limit is 27%. At this limit a one–phase saline solution exists with a uniform den-
sity of 1172 kg m–3. As excess salt is added, it settles, and there are now two phases, one con-
taining solid salt (ρ = 2163 kg m–3) and the other a liquid saline solution (ρ = 1172 kg m–3).

(Recall that a phase is a region within which the properties are uniform.)
Two liquids can be likewise mixed at a molecular level only within a certain range of

concentrations. If two miscible liquids, 1 and 2, are mixed, up to three phases may be formed
in the liquid state: (1) a miscible phase containing liquids 1 and 2 with ρ = ρmixture, (2) that

containing pure liquid 1 (ρ = ρ1), and (3) pure liquid 2 (ρ = ρ2). A more detailed discussion is

presented in Chapter 8.

j. Property
Thus far we have defined systems, and the type and amount of matter contained

within them. We will now define the properties and state of matter contained within these sys-
tems.

A property is a characteristic of a system, which resides in or belongs to it, and it can
be assigned only to systems in equilibrium. Consider  an illustration of a property the tem-
perature of water in a container. It is immaterial how this temperature is reached, e.g., either
through solar radiation, or electrical or gas heating. If the temperature of the water varies from,
say, 40ºC near the boundary to 37ºC in the center, it is not single–valued since the system is
not in equilibrium, it is, therefore, not a system property. Properties can be classified as fol-
lows:

Primitive properties are those which appeal to human senses, e.g., T, P, V, and m.
Derived properties are obtained from primitive properties. For instance, the units for force
(a derived property) can be obtained using Newton’s second law of motion in terms of the
fundamental units of mass, length and time. Similarly, properties such as enthalpy H, en-
tropy S, and internal energy U, which do not directly appeal to human senses, can be de-
rived in terms of primitive properties like T, P and V using thermodynamic relations
(Chapter VII). (Even primitive properties, such as volume V, can be derived using state
relations such as the ideal gas law V = mRT/P.)
Intensive properties are independent of the extent or size of a system, e.g., P (kN m–2), v
(m3 kg–1), specific enthalpy h (kJ kg–1), and T (K).
Extensive properties depend upon system extent or size, e.g., m (kg), V (m3), total en-
thalpy H (kJ), and total internal energy U (kJ).
An extrinsic quantity is independent of the nature of a substance contained in a system
(such as kinetic energy, potential energy, and the strength of magnetic and electrical
fields).
An intrinsic quantity depends upon the nature of the substance (examples include the in-
ternal energy and density).



Intensive and extensive properties require further discussion. For example, consider a
vessel of volume 10 m3 consisting of a mixture of 0.32 kmoles of N2, and 0.08 kmoles of O2 at
25ºC (system A), and another 15 m3 vessel consisting of 0.48 kmoles of N2 and 0.12 kmoles of
O2 at the same temperature (system B). If the boundary separating the two systems is removed,
the total volume becomes 25 m3 containing 0.8 total moles of N2, and 0.2 of O2. Properties
which are additive upon combining the two systems are extensive, e.g., V, N, but intensive
properties such as T and P do not change. Likewise the mass per unit volume (density) does
not change upon combining the two systems, even though m and V increase. The kinetic en-
ergy of two moving cars is additive m1V1

2/2 + m2V2
2/2 as is the potential energy of two masses

at different heights (such as two ceiling fans of mass m1 and m2 at respective heights Z1 and Z2

with a combined potential energy m1gZ1 + m2gZ2). Similarly, other forms of energy are addi-
tive.

An extensive property can be converted into an intensive property provided it is dis-
tributed uniformly throughout the system by determining its value per unit mass, unit mole, or
unit volume. For example, the specific volume v = V/m (in units of m3 kg–1) or V/N (in terms
of m3 kmole–1). The density ρ = m/V is the inverse of the mass–based specific volume. We

will use lower case symbols to denote specific properties (e.g.: v, v , u, and u , etc.). The over-
bars denote mole–based specific properties. The exceptions to the lower case rule are tem-
perature T and pressure P. Furthermore we will represent the differential of a property as
d(property), e.g., dT, dP, dV, dv, dH, dh, dU, and du. (A mathematical analogy to an exact
differential will be discussed later.)

k. State
The condition of a system is its state, which is normally identified and described by

the observable primitive properties of the system. The system state is specified in terms of its
properties so that it is possible to determine changes in that state during a process by monitor-
ing these properties and, if desired, to reproduce the system. For example, the normal state of
an average person is usually described by a body temperature of 37ºC. If that temperature rises
to 40ºC, medication might become necessary in order to return the “system” to its normal state.
Similarly, during a hot summer day a room might require air conditioning. If the room tem-
perature does not subsequently change, then it is possible to say that the desired process, i.e.,
air conditioning, did not occur. In both of the these examples, temperature was used to de-
scribed an aspect of the system state, and temperature change employed to observe a process.
Generally, a set of properties, such as T, V, P,
N1, N2, etc., representing system characteris-
tics define the state of a given system.

Figure 7 illustrates the mechanical
analogy to various thermodynamic states in a
gravitational field. Equilibrium states can be
characterized as being stable, metastable, and
unstable, depending on their response to a
perturbation. Positions A, B and C are at an
equilibrium state, while D represents a non-
equilibrium position. Equilibrium states can
be classified as follows:

A stable equilibrium state (SES), is asso-
ciated with the lowest energy, and which,
following perturbation, returns to its
original state (denoted by A in Figure 7).
A closed system is said to achieve a state
of stable equilibrium when changes oc-
cur in its properties regardless of time,
and which returns to its original state af-

Figure 7: An illustration of mechanical states.



ter being subjected to a small perturbation. The partition of a system into smaller
sub–systems has a negligible effect on the SES.
If the system at state B in Figure 7 is perturbed either to the left or right, it reverts back to
its original position. However, it appears that a large perturbation to the right is capable of
lowering the system to state A. This is an example of a metaequilibrium state (MES). It is
known that water can be superheated to 105ºC at 100 KPa without producing vapor bub-
bles which is an example of a metastable state, since any impurities or disturbances intro-
duced into the water can cause its sudden vaporization (as discussed in Chapter 10).
A slight disturbance to either side of an unstable equilibrium state (UES) (e.g., state C of
Figure 7) will cause a system to move to a new equilibrium state. (Chapter 10 discusses
the thermodynamic analog of stability behavior.)
The system state cannot be described for a nonequilibrium (NE) position, since it is tran-
sient. If a large weight is suddenly placed upon an insulated piston–cylinder system that
contains an ideal compressible fluid, the piston will move down rapidly and the system
temperature and pressure will continually change during the motion of the piston. Under
these transient circumstances, the state of the fluid cannot be described.

Furthermore, various equilibrium conditions can occur in various forms:
Mechanical equilibrium prevails if there are no changes in pressure. For example, helium
constrained by a balloon is in mechanical equilibrium. If the balloon leaks or bursts open,
the helium pressure will change.
Thermal equilibrium exists if the system temperature is unchanged.
Phase equilibrium occurs if, at a given temperature and pressure, there is no change in the
mass distribution of the phases of a substance, i.e., if the physical composition of the sys-
tem is unaltered. For instance, if a mug containing liquid water is placed in a room with
both the liquid water and room air being at the same temperature and the liquid water level
in the mug is unchanged, then the water vapor in the room and liquid water in the mug are
in phase equilibrium. A more rigorous definition will be presented later in Chapters 3, 7,
and 9.

Chemical equilibrium exists if the chemical composition of a system does not change.
For example, if a mixture of H2, O2, and H2O of arbitrary composition is enclosed in a
vessel at a prescribed temperature and pressure, and there is no subsequent change in
chemical composition, the system is in chemical equilibrium. Note that the three species
are allowed to react chemically, the restriction being that the number of moles of a species
that are consumed must equal that which are produced, i.e., there is no net change in the
concentration of any species (this is discussed in Chapter 12).

The term thermodynamic state refers only to equilibrium states. Consider a given
room as a system in which the region near the ceiling consists of hot air at a temperature TB

due to relatively hot electrical lights placed there, and otherwise cooler air at a temperature of
TA elsewhere. Therefore, a single temperature value cannot be assigned for the entire system,
since it is not in a state of thermal equilibrium. However, a temperature value can be specified
separately for the two subsystems, since each is in a state of internal equilibrium.

l. Equation of State
Having described systems, and type and state of matter contained within them in

terms of properties, we now explore whether all of the properties describing a state are inde-
pendent or if they are related.

A thermodynamic state is characterized by macroscopic properties called state vari-
ables denoted by x1, x2, … ,xn and F. Examples of state variables include T, P, V, U, H, etc. It

has been experimentally determined that, in general, at least one state variable, say F, is not
independent of x1, x2, … ,xn, so that

F = F (x1, x2, … ,xn). (6)



Equation (6) is referred to as a state postulate or state equation. The number of independent
variables x1, x2, … ,xn (in this case there are n variables) is governed by the laws of thermody-

namics. Later, in Chapter 3, we will prove this generalized state equation. For example, if x1 =
T, x2 = V, x3 = N, and F = P, then

P = P (T, V, N).

For an ideal gas, the functional form of this relationship is given by the ideal gas law, i.e.,

P = N R T/V, (7)

where R is known as the universal gas constant, the value of which is 8.314 kJ kmole–1 K–1.
The universal gas constant can also be deduced from the Boltzmann’s constant, which is the
universal constant for one molecule of matter (defined as kB = R /NAvog = 1.38×10–28 kJ mole-

cule–1 K–1). Defining the molar specific volume = V/N, we can rewrite Eq. (7) as

P = R T/ v . (8)

Equation (8) (stated by J. Charles and  J. Gay Lussac in 1802) is also called an intensive equa-
tion of state, since the variables contained in it are intensive. The ideal gas equation of state
may be also expressed in terms of mass units after rewriting Eq. (7) in the form

P = (m/M) R T/V = mRT/V (9)

where R = R /M. Similarly,

P = RT/v (10)

Equation (10) demonstrates that P = P (T,v) for an ideal gas and  is known once T and v are
prescribed. We will show later that this is true for all single–component single–phase fluids.

Consider the composite system containing separate volumes of hot and cold air (as-
sumed as ideal gas) at temperatures TA and TB, respectively. We cannot calculate the specific
volume for the entire system using Eq. (10), since the temperature is not single valued over the
entire system. For a nonequilibrium system, state equations for the entire system are meaning-
less. However, the system can be divided into smaller subsystems A and B, with each assumed
to be in a state of internal equilibrium. State equations are applicable to subsystems that are in
local equilibrium.

m. Standard Temperature and Pressure
Using Eq. (8), it can be shown that the volume of 1 kmole of an ideal gas at standard

temperature and pressure (STP), given by the conditions T = 25ºC (77ºF) and P = 1 bar (≈ 1

atm) is 24.78 m3 kmole–1 (392 ft3 lb mole–1,) This volume is known as a standard cubic meter
(SCM) or a standard cubic foot (SCF). See the attached tables for the values of volume at various
STP conditions.

n. Partial Pressure
The equation of state for a mixture of ideal gases can be generalized if the number of

moles in Eq. (7) is replaced by

N = N1 + N2 + N3 + ... = ΣNk, (11)

so that Eq. (7) transforms into

P = N1 R T/V + N2 R T/V+... (12)

The first term on the right hand side of Eq. (12) is to be interpreted as the component pressure
(also called the partial pressure for an ideal gas mixture, this is the pressure that would have
been exerted by component 1 if it alone had occupied the entire volume). Therefore,



p1 = N1 R T/P = X1N R T/V = X1P. (13)

Assuming air at a standard pressure of 101 kPa to consist of 21 mole percent of mo-
lecular oxygen, the pressure exerted by O2 molecules alone pO2

 is 0.21×101 = 21.21 kPa.

Further details of mixtures and their properties will be discussed in Chapters 8 and 9.

o. Process
A process occurs when a system undergoes a change of state (i.e., its properties

change) with or without interaction with its surroundings. A spontaneous process changes the
state of a system without interacting with its environment. For instance, if a coffee cup is
placed in an insulated rigid room, the properties of the composite system (e.g., Tair, Tcoffee)
change with time even though there is no interaction of the room with the outside environment
through work or non–work (e.g., heat.) energy transfer.

During an isothermal process there are no temperature changes, i.e., dT = 0. Likewise, for
an isobaric process the pressure is constant (dP = 0), and volume remains unchanged
during an isometric process (dV = 0). Note that if the temperature difference during a
process ∆T = Tf – Tin = 0, this does not necessarily describe an isothermal process, since it

is possible that the system was heated from an initial temperature Tin to an intermediate
temperature Tint (> Tin) and cooled so that the final temperature Tf = Tin. An adiabatic
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Figure 8: a. Isobaric heating of a fluid; b. Pressure–volume diagram; c. Some terminology used
to describe liquid–vapor regimes; d. A schematic illustration of a generalized phase diagram.



process is one during which there is no heat transfer, i.e., when the system is perfectly in-
sulated.
If the final state is identical to the initial system state, then the process is cyclical. Other-
wise, it is noncyclical.

p. Vapor–Liquid Phase Equilibrium
Having defined systems, matter, and some relations among system properties (in-

cluding those for ideal gases), we now discuss various other aspects of pure substances. Con-
sider a small quantity of liquid water contained in a piston–cylinder assembly as illustrated in
Figure 8a.

Assume the system temperature and pressure (T,P) to be initially at standard condi-
tions. State A shown in Figure 8a is the compressed liquid state (illustrated on the pres-
sure–volume diagram of Figure 8b) corresponding to sub–cooled liquid. If the water is heated,
a bubble begins to form once the temperature reaches 100ºC (at the bubble point or the satu-
rated liquid state, illustrated by point F in Figure 8b). This temperature is called the saturation
temperature or boiling point temperature at the prescribed pressure. The specific volume of the
liquid at this saturated state is denoted by vf. As more heat is added, the two liquid and vapor
phases coexist at state W (in the two–phase or wet region, v > vf). The ratio of vapor (subscript
g) to total mass m is termed quality (x = mg/m). As more heat is added, the liquid completely
converts to vapor at state G which is called the saturated vapor state or the dew point. Upon
further heat addition at the specified pressure, the system temperature becomes larger than the
saturation temperature, and enters state S which is known as the superheated vapor state.

In the context of Figure 8a and b, the symbol A denotes the subcooled liquid or com-
pressed liquid state; F the saturated liquid state (it is usual to use the subscript f to represent the
system properties of the fluid at that state) for which the quality x = 0. W is the wet state con-
sisting of a mixture of liquid and vapor, G a saturated vapor state (denoted with the subscript g,
x = 1), and S represents the superheated vapor

The curve AFWGS in Figure 8b describes an isobaric process. If the system pressure
for the water system discussed in the context of Figure 8a is changed to, say, 10, 100, 200, and
30,000 kPa, these pressures correspond to different saturation temperatures, liquid and vapor
volumes, and isobaric process curves. Joining all possible curves for saturated liquid and vapor
states it is possible to obtain the saturated liquid and vapor curves shown in Figure 8b which
intersect at the critical point C that corresponds to a distinct critical temperature and pressure
Tc and Pc.

The Table A-1 contains critical data for many substances while Tables A-4 contain in-
formation regarding the properties of water along the saturated vapor and liquid curves, and in the
superheated vapor regions and Table  A-5 contains same information for R-134a. A representa-
tive P–v diagram and various liquid–vapor regime terminology are illustrated in Figure 8c as
follows:

If the vapor temperature T > Tc, and its pressure P < Pc the vapor is called a gas. A gas is a
fluid that, upon isothermal compression, does not change phase (i.e., from gas to liquid as
in Curve LM, T > Tc). Otherwise, the fluid is called a vapor (a fluid in a vapor state may
be compressed to liquid through a process such as along the curve SGWFK).
Substances at P>Pc and T>Tc are generally referred to as fluid (e.g., point U of Figure 8c).
If a supercritical fluid is isobarically heated there is no change of phase (e.g., line RU of
Figure 8c).
Above the critical point, i.e., when P>Pc, and T>Tc the vapor is called a fluid which exists
in a supercritical state. If P > Pc, and T < Tc it is referred to as a supercritical fluid (region
(1),   Figure 8c).
A subcritical fluid is one for which P < Pc, T < Tc, and v < vf.
Both liquid and vapor are contained in the two–phase dome where P < Pc, T < Tc, and vf <
v < vg.
If P < Pc, T < Tc, and v > vg, the vapor is in superheated state.



The saturated liquid line of Figure 8c joins those states that have been denoted by the
subscript F in the context of Figure 8a, e.g., points D, F, etc. Likewise, the saturated vapor line
joins the states represented by the subscript g, i.e., the points G, E, etc. of Figure 8c. At the
critical point C the saturated liquid and vapor states are identical. Upon plotting the pressure
with respect to the saturation temperatures Tsat along the saturated curve, the phase diagram of
Figure 8d is obtained. In that figure the vaporization curve is represented by JC, JQ is the
melting curve for most solids (JQ´ is the analogous melting curve for ice), and JR represents
the sublimation curve. The intersection J of the curves JC and JQ´ is called the triple point at
which all three phases co–exist. For water, this point is characterized by P = 0.0061 bar (0.006
atm) and T = 273.16 K (491.7 R), whereas for carbon the analogous conditions are T ≈ 3800

K, P ≈ 1 bar. For triple points of other substances see Table A-2.

C. MATHEMATICAL BACKGROUND
Thus far,  we have discussed the basic terminology employed in thermodynamics. We

now briefly review the mathematical background required for expressing the conservation
equations in differential form (that will be discussed in Chapters. 2, 3 and 4), equilibrium crite-
ria (Chapter 3), conversion of the state equations from one form to another (Chapter 5), Max-
well’s relations (Chapter 7), the Euler equation (Chapters 3 and 8) stability behavior of fluids
(Chapter 10 and entropy maximization and Gibb’s function minimization (Chapters 3 and 12).

1. Explicit and Implicit Functions and Total Differentiation
If P is a known function of T and v, the explicit function for P is

P = P(v,T), (14)

and its total differential may be written in the form

dP
P

v
dv

P

T
dT

T v

= 



 + 





∂
∂

∂
∂

. (15)

Consider the P, T, v relation

P = RT/(v–b) – a/v2, (16)

where a and b are constants. Equation (16) is explicit with respect to P, since it is an explicit
function of T and v. On the other hand, v cannot be explicitly solved in terms of P and T, and,
hence, it is an implicit function of those variables. The total differential is useful in situations
that require the differential of an implicit function, as illustrated below.

b. Example 2
If state equation is expressed in the form

P = RT/(v–b) – a/v2, (A)

find an expression for (∂v/∂T)P, and for the isobaric thermal expansion coefficient βP =

(1/v) (∂v/∂T)P.

Solution
For given values of T and v, and the known parameters a and b, values of P are unique (P
is also referred to as a point function of T and v). Using total differentiation

dP = (∂P/∂v)T dv + (∂P/∂T)v dT. (B)

From Eq. (A)

 (∂P/∂v)T = –RT/(v – b)2 + 2a/v3, and (C)



(∂P/∂T)v = R/(v – b) (D)

Substituting Eqs.(C) and (D) in Eq. (B) we obtain

dP = (–RT/(v – b)2 + 2a/v3)T dv + (R/(v – b))v dT. (E)

We may use Eq. (E) to determine (∂v/∂T)P or (∂v/∂P)T. At constant pressure, Eq. (E)

yields

0 = (–RT/(v – b)2 + 2a/v3)T dv + (R/(v – b))v dT, (F)

so that

(∂vP /∂TP) = (∂v/∂T)P = –(R/(v – b))/(–RT/(v – b)2 + 2a/v3), (G)

and the isobaric compressibility

βP = 1/v (∂v/∂T)P = –R/(v(–RT/(v–b) + 2a(v–b)/v3)). (H)

Remarks
It is simple to obtain (∂P/∂T)v or (∂P/∂v)T from Eq. (A). It is difficult, however, to obtain

values of (∂v/∂T)P or (∂v/∂P)T from that relation. Therefore, the total differentiation is em-

ployed.
Note that Eqs. (C) and (D) imply that for a given state equation:

(∂P/∂T)v = M(T,v), and (I)

(∂P/∂v)T = N(T,v), and (J)

Since,

dP = M(T,v) dv + N(T,v) dT, (K)

Differentiating Eq. (C) with respect to T,

∂/∂T (∂P/∂v)  = (∂M/∂T)v = –R/(v – b)2. (L)

Likewise, differentiating Eq. (D) with respect to v,

∂/∂v (∂P/∂T)  = (∂N/∂v)T = –R/(v – b)2. (M)

From Eqs. (L) and (M) we observe that

∂M/∂T = ∂N/∂v or ∂2P/∂T∂v = ∂2P/∂v∂T. (N)

Eq. (N) illustrates that the order of differentiation does not alter the result. The equation
applies to all state equations or, more generally, to all point functions (see next section for
more details).
From Eq. (B), at a specified pressure

(∂P/∂v)Tdv + (∂P/∂T)vdT = M(T,v) dv + N(T,v) dT = 0.

Therefore,

(∂v/∂T)P = –M(T,v)/N(T,v) = –(∂P/∂T)v/(∂P/∂v)T. (O)

Eq. (O) can be rewritten in the form

(∂v/∂T)P (∂T/∂P)v (∂P/∂v)T = –1, (P)



which is known as the cyclic relation for a point function.

2. Exact (Perfect) and Inexact (Imperfect) Differentials
 If the sum Mdx+Ndy (where M = M (x,y) and N = N (x,y)) can be written as d(sum),

it is an exact differential which can be expressed in the form

dZ = M(x,y) dx + N(x,y) dy. (17)

If the sum cannot be written in the form d(sum), it is more properly expressed as

δZ =  M(x, y) dx + N(x, y) dy, (18)

For instance, the expression xdy + ydx is an exact differential, since it  can be written as d(xy),
i.e., dZ = xdy + ydx = d (xy), where Z = xy + C. A plot of the function Z versus x and y is a
surface. The difference Z2-Z1 = x2 y2-x1 y1 depends only on the points (x1, y1), (x2, y2) and not
on the path connecting them. But the expression x2dy + ydx cannot written as d(xy) and hence
the sum x2dy + ydx denoted as δZ = x2dy + ydx.

Exact differentials may also be defined through simple integration. Consider a differ-
ential expression that is equal to 9x2y2dx + 6x3ydy, the integration of which can be problem-
atic. It is possible to specify a particular path (Say path AC in Figure 9), e.g., by first keeping x
constant while integrating the expression with respect to y, we obtain Z = 3 x3 y2  (for a mo-
ment let us ignore the integration constant). On the other hand we can  keep  y  constant and
integrate with respect to x and obtain  Z = 3 x3 y2 , which is same as before. Only exact differ-
entials yield such identical integrals. Hence, the the sum 9x2y2dx + 6x3ydy  is an exact differ-
ential. Consider 6x2ydx + 6x3ydy. If we adopt a similar procedure we get different results
(along constant x, Z = 3x3y 2 and along constant y, Z = 2 x3y). Instead of integrating the alge-
braic expressions, we can also integrate the differentials between two given points. For an ex-
act differential of the form dZ = Mdx + Ndy the integrated value between any two finite points
(x1,y1) and (x2,y2) is path independent. If the integration is path dependent, an inexact differen-
tial (of the form δZ = Mdx + Ndy) is involved.

Consider the exact differential dZ = xdy + ydx. The term xdy represents the elemental
area bounded by the y–axis (GKJH) in Figure 10 and ydx is the corresponding area bounded
by the x–axis (KLMJ). The total area xdy + ydx is to be evaluated while moving from point
F(x1,y1) to point C(x2,y2). An arbitrary path
“a” can be described joining the points F and
C. Integrating along “a” from F to C, the
integrated area ∫(xdy) + ∫(ydx) is a sum of the

areas EFaCD + AFaCB. Using another path
“b” results in exactly the same area, since
regardless of the path that traversed to con-
nect F and C, the integrated value is the
same, i.e., Z2–Z1 = (x2y2–x1y1). Therefore,
∫(xdy + ydx) is path independent.

c. Example 3
Is the function

9x2y2dx + 6x3ydy (A)

an exact or inexact differential? Prove or
disprove by adopting path integration
(Figure 9).

Solution

The difference ZA–ZB can be determined
Figure 9: Illustration of an exact differential
using path integration.



by moving along paths ACB or ADB, as illustrated in Figure 9. Consider the path ACB
along AC for which x = 1. Integrating the relation while keeping x constant,

ZC–ZA = (6x y / 2)3 2
11
1 4

,
,  = 48 – 3 = 45. (A)

Along the path CB, y is held constant (y = 4). Integrating the relation at constant y,

ZB–ZC = (9x y / 3)3 2
1 4
2 4
,
,  = 336, i.e., (B)

ZB–ZA = Eq. (A)+Eq. (B) = 381. (C)

The integration can also be performed along path ADB, i.e., along AD, keeping y at a
constant value of 1. Using the relation

ZD–ZA = 9x y dx = (9x y / 3)2 2 3 2∫ 11
21
,
,  = 21. (D)

Similarly, x is constant (x = 2) along DB, so that

ZB–ZD = (3x y )2 2
21
2 4

,
,  = 360. (E)

From Eqs. (D) and (E), ZB–ZA = 381.
The integral is the same  for paths ACB and ADB. Thus the differential is an exact differential.
Remarks

If the integration is performed along the path ACB and continued from B to A along

BDA, the cyclic integral dz dz dz
ACB BDA

∫ = ∫ + ∫  = 381 – 381 = 0.

The difference (ZB–ZA) is independent of the path selected to reach point B from
point A, since Eq. (A) is an exact differential. The function Z is a point function, since
it only depends upon the selected coordinates.
In the context of Figure 9, the value of ZB-ZA via path C will be the same as via path
D. Thus if we take a cyclic process from A-B via path C and then from B-A via path
D, there will be no net change in  Z , i.e ∫ dZ = 0.

Figure 10: Illustration of an exact differential,
dz = xdy + ydx.



d. Example 4
Determine if 6x2y2dx + 6x3ydy is an exact or inexact differential.

Solution
Consider the path ACB along which ZC–ZA  = (6x y / 2)3 2

11
1 4

,
,  = 45 and ZB – ZC  =

(6x y / 3)3 2
1 4
2 4
,
,  = 224 so that (ZB–ZA) = 269.

Likewise, following the path ADB ZD–ZA = (2x y )3 2
11
21
,
,  = 14 and ZB–ZD = (3x y )3 2

21
2 4

,
,  = 360

so that (ZB–ZA) = 374.
The value of (ZB–ZA) along the path ADB does not equal that along path ACB. Conse-
quently, the expression for Z is not a property, since it is path dependent, and is, therefore,
an inexact differential.

Remark
If the integration is first performed along the path ACB and continued from B back to A
along BDA, the integrated value is 269 (ACB)–374 (BDA) = –105. If the integration is
first performed along the path ACB and continued from B back to A along BDA, the inte-

grated value is ∫ δZ ≠ 0  since  269 (ACB)-374 (BDA) = -105. In general, the cyclic in-

tegral of an inexact differential is nonzero.

a. Mathematical Criteria for an Exact Differential

i. Two Variables (x and y)
The path integration procedure helps determine whether a differential is exact or in-

exact. However, the mathematical criterion that will now be discussed avoids lengthy path
integration and saves time. Example 2 shows that a point function of the form P = P(T,v) may
be written as

dP = M(T,v) dv + N(T,v) dT, (19)

and it possesses the property

∂M/∂T = ∂N/∂v, (20)

i.e., ∂2P/∂v∂T = ∂2P/∂T∂v. Substituting for x = v, y = T, and Z = P,

dZ = (∂Z/∂x)y dx + (∂Z/∂y)x dy = M(x,y) dx + N(x,y) dy. (21)

The function M is called the conjugate of x, and N is the conjugate of y. The necessary and
sufficient condition for Z to be a point function is given by Eq. 20, namely,

∂2Z/∂y ∂x = ∂2Z/∂x∂y or (∂M/∂y)x = (∂N/∂x)y. (22)

This is another criterion describing an exact differential, and it is also referred to as the condi-
tion of integrability. A differential expression of the form M(x,y) dx + N(x,y) dy is said to be
in the linear differential (or Pfaffian) form. A differential expression derived from a point
function or a scalar function, such as P = P(T,v), in the Pfaffian form satisfies the criterion for
being an exact differential.

e. Example 5
Consider the expression –(Ry/x2)dx + (R/x) dy, where R is a constant. Is this an exact dif-
ferential? If so, integrate and determine “Z”.

Solution
M = –R y/x2, and N = R/x. Therefore,
(∂M/∂y)x = –R/x2, and (∂N/∂x)y = –R/x2, i.e., the criterion for being an exact differential is

satisfied by the expression. Therefore,

dZ = –Ry/x2 dx + R/x dy, i.e., (A)



∂Z/∂y = R/x = N, and ∂Z/∂x = –Ry/x2 = M. (B)

To determine Z, we can integrate along constant x to obtain

Z = Ry/x + f(x). (C)

Upon differentiating Eq. (C) with respect to x

∂Z/∂x = –Ry/x2 + f´(x). (D)

However, from Eqs. (A) and B, (–Ry/x2) = M so that f´(x) = 0, i.e., f(x) is a constant, and

Z = Ry/x + C. (E)

Remarks
Assume that C = 0 and R = 8. Once x and y are specified (say, respectively with val-
ues of 2 and 4) in Eq. (E), the value of Z is fixed (= 16) irrespective of the path along
which the point (x = 2, y = 4) is reached. In this case Z is called a point function.
If C = 0, y = T, x = v, and Z = P, then using Eq. (E) the point function that is obtained
is of the form

P = RT/v,

which is the familiar ideal gas equation of state. A plot of P with respect to T is presented in
Figure 12 while a  plot of P versus both T and v describes a surface (Figure 11)   Starting a
process at point (T1, v1) (i.e., point A,  of Figure 12), the pressure P2 can be determined at a
point (T2,v2) (i.e., Point B of the figure) using either of the paths ACB or ADB.

From the preceding discussion we note that dz∫ = 0 if Z is a point function. There-

fore, if Z denotes the temperature T, then dT∫ = 0. However, if Z denotes the heat transfer Q

which is not a point function, δQ∫ = 0 . Point functions such as T = T(P,v) = Pv/R can be

x

y

z surface z=c x/y
eg: P = RT/v

E

F

x1
y1

x2

y2

Figure 11. Z-x-y or P-T-v  surface.



specified for only those systems that are in equilibrium (or which have a uniform property dis-
tribution within them). If a system exists in a nonequilibrium state, it can be shrunk and con-
tinually made smaller until a uniform property domain is reached. At that stage point function
relations can be applied to determine the properties of the smaller system.

ii. Three or More Variables
The exactness criteria can be generalized to systems involving more than two vari-

ables. Consider that Z is described by three variables x1, x2, and x3, i.e.,

Z = Z(x1,x2,x3). (23)

The total differential of Z is

dZ = ∂Z/∂x1 dx1 + ∂Z/∂x2 dx2 + (∂Z/∂x3) dx3. (24)

Since dZ is exact

∂Z/∂x1 = ∂Z/∂x2, ∂Z/∂x2 = ∂Z/∂x3, and ∂Z/∂x3 = ∂Z/∂x1. (25)

We now have three conditions in terms of all three variables. Generalizing these expressions
for k variables when

Z = Z(x1,x2,x3,…,xk). (26)

The total differential may be written in the form

dZ Z x dxi
i

k

i= ∑
=

( / )∂ ∂
1

, (27)

and by analogy  the criteria describing an exact differential for this case are

∂
∂

∂
∂

∂
∂

∂
∂x

Z

x x

Z

x
j

j i i j

( ) ( ),= ≠ 1. (28)

When Z is a function of two variables alone, i.e., Z(x1,x2), one criterion describes an
exact differential. If more than two variables are involved, i.e., Z (x1,x2,x3,…,xk) it is possible
to write the following equations in terms of x1, namely, ∂2/∂x1∂x2 = ∂ 2/∂x2∂x1, ∂2/∂x1∂x3 =

∂2/∂x3∂x1,..., etc., and generate (k–1) equations for the k variables. Likewise, in terms of

∂2/∂x2∂x1 = ∂2/∂x1∂x2, ∂2/∂x2∂x3 = ∂2/∂x3∂x2, ..., etc. However, ∂2/∂x1∂x2 = ∂2/∂x2∂x1, which

appears in both equations so that only ((k–1)–1) equations can be generated in terms of x2.
Similarly, ((k–1)–2) criteria can be generated for x3, and so on resulting in ((k–1) + ((k–1)–1)
+ ((k – 1) – 2) + ((k – 1) – 3)+....) criteria. Simplifying, k(k–1) – (1 + 2 + 3 + ... + k–1) =
k(k–1) – (1/2)(k–1)k = k(k–1)/2. Therefore, the number of criteria describing an exact differ-
ential of Z(x1,x2,x3,…,xk) are k(k–1)/2. When a point function involves more than two vari-
ables i.e. Z = Z(x1,x2,x3,…,xk) a hypersurface is produced, e.g., the plot of P = N1 R T/V +
N2 R T/V +.. = P (T,V, N1, N2, N3,...).

3. Conversion from Inexact to Exact Form
It is possible to convert an inexact differential into an exact differential by using an

integrating factor.

f. Example 6
Consider the following inexact differential

δqrev = cv,o(T)dT + ((RT/(v – b))dv, (A)



where cv,o denotes the specific heat at constant volume, R the gas constant, and b a virial
constant. Show that the differential is inexact. If Eq. (A) is throughout divided by T, is
qrev/T an exact differential?

Solution
Considering M = cv,o(T) and N = RT/(v–b), then

∂M/∂v = 0, and ∂N/∂T = R/(v–b).

Since, ∂M/∂v ≠ ∂N/∂T, qrev is inexact. Dividing Eq. (A) by T

δqrev/T = cv,o(T)dT/T + ((R/(v – b))dv,

Now, consider M = cv,o(T)/T, and N = R/(v–b) so that

∂M/∂v = ∂N/∂T = 0.

In this case, δqrev/T is an exact differential.

Remarks
In Chapter 3 we will discuss that qrev is termed the reversible heat transfer, which is
not a system property, but qrev/T = ds, where s is a system property called the entropy.
We can similarly show that qrev/v is inexact.

4. Relevance to Thermodynamics
We will now discuss the relevance of exact differentials to thermodynamic analyses.

a. Work and Heat
Both work transfer W and heat transfer Q are path dependent, while properties such

as P and T are path independent. If a gas that is initially at state 1 (cf. Figure 13) corresponding
to the conditions T1 = 500 K, v1 = 2 m3 kg–1 (i.e., P1 = 71.8 kPa from Figure 13) is isothermally
expanded (process AC) to v2 = 6 m3 kg–1, following which heat addition occurs at fixed vol-
ume so that the gas temperature rises to 1000 K, the pressure at state 2, i.e., P2, is found to be
47.8 kPa. The same end state may be achieved by first adding heat at constant volume (process
AD) to raise the temperature to 1000 K, and then expanding isothermally to v2 = 6 m3 kg–1.
The final pressure following the latter process will still be 47.8 kPa.

Figure 12: Plot of pressure vs. volume with temperature as a
parameter.



In a closed system containing an ideal gas, the incremental work δW = P dV (this will

be discussed more thoroughly in Chapter 2, with the total work W for a process being given by
the area under the corresponding P–v curve (e.g., Figure 12). For the path ACB the work WACB

is the area under the curve ACB, while for a process along ADB (Figure 12), WADB is the area
under that curve. It is apparent that WACB ≠ WADB even though the initial and final pressures,

temperatures and volumes (all of which are properties) are the same. Therefore, we can deter-
mine v for given values of T and P, but not the work done, since it is path dependent. So “v”
could be tabulated at given T and P as in Steam  and R 134a Tables (Tables A-4 and A-5)  but
work cannot be tabulated. The differentials of path dependent quantities are inexact differen-

tials (e.g., δW, δQ etc.), and their cyclic integrals δQ∫  ≠ 0 and δW∫  ≠ 0. In general, the heat

transfer between any two states 1 and 2,

∫δQ ≠ Q2–Q1. (29)

b. Integral Over a Closed Path (Thermodynamic Cycle)
Over a cycle for which the final and initial states are identical

dT dP du= = = =∫ ∫ ∫ ... 0 . (30)

In general, for a process occurring between two distinct states 1 and 2, the property change

dT
T

T

1

2∫  = T2–T1, dP
P

P

1

2∫  = P2–P1, etc. (31)

The internal energy can be expressed as an exact differential by the relation du = T ds
– Pdv, i.e., u = u(s,v), M(s,v) = T, and N (s,v) = –P. The exact differential criterion (∂T/∂v)s =

–(∂P/∂s)v for this case is also referred to as a Maxwell relation, details of which are given in

Chapter 7. In general, all system properties, e.g., T, P, V, v, u, U, etc., are path independent
and point functions, and, therefore, form exact differentials. Consider the exact differential
form du = cv,0dT + (a/T)v2dv where “a”  and cv0 are constants. If the internal energy difference
is to be determined between states A and B (cf. Figure 12) either of paths ACB (isothermal
conditions along AC, and constant volume along CB), or ADB (v constant along AD and T

A

C

B

D

A

Q

Q

B
1

2

1

2

T=500
P=23.9

T=1000 K
P=47.8 bar

T=500
P=71.8
v=2

T=1000
P=43.6
v=2

T=1000
P=47.8
v=6

T=500
P=71.8
v=2 v=6 v=6 m/kg3

path ACB

path ADB

A
B

C

D

P

v

(final)(initial)

Figure 13: Illustration of path dependent work. A gas is ex-
panded to state B using paths ACB or ADB.



unchanged along DB) can be used to integrate the expression, with the difference (uB–uA) be-
ing the same regardless of path.

The Appendix contains several relations between irrotational scalar fields that are
useful in fluid mechanics, criteria for exact differentials, and thermodynamic properties.

5. Homogeneous Functions
Homogeneous functions possess certain mathematical characteristics and the term

homogeneous must not be confused with the thermodynamic definition of homogeneity. The
total energy U in the air contained in a vessel is readily determined if the state (say, number of
moles, temperature, and pressure) is known. If three identical vessels containing air at the same
conditions are combined, these will contain three times as many moles, and, therefore, three
times as much energy (since U is an extensive property). The combined internal energy Uc =
Uc(T,P, 3×0.3 moles O2, 3×1.2 moles N2) = 3 U(T, P, 0.3 moles O2, 1.2 moles N2). Mathemati-

cally,

U(a,b, λ NO2
,λ NN2

) = λ1U(a,b, NO2
, NN2

).

The function U is called a homogeneous function of degree 1, λ is a multiplier, and a and b are

constants (which in this case are fixed values of T and P). If the three vessels are combined in
an equilibrium state, the density, which is an intensive property, does not change. Therefore,

ρ(T,P, λ NO2
,λ NN2

) = λ0ρ (a,b, NO2
, NN2

), 

where ρ is a homogeneous function of degree zero. The definition of homogeneous function

can be generalized as follows:
In general, a function F(a,b,x1,x2,x3,…,xk) is a homogeneous function of degree m if

F(a,b, λx1, λx2, λx3,…, λxk) = λmF(a,b,x1,x2,x3,…,xk), (32)

where a and b are constants. Homogeneous functions for which m = 1 describe extensive prop-
erties, and those with m = 0 describe intensive properties.

For instance, consider the function

F(a,b,x1,x2) = ax x b x1
2

2
3 2

3/ ( ) . (33)

Assuming x1,new = λx1, x2,new = λx2,...

F(a,b,x1,new,x2,new,,…) = F(a,b, λx1, λx2,…) = ax x b xnew new new1 1
2

2
3 2

3, , ,/ ( )

= a x x b xλ λ λ2
1
2 3

2
3 2

3/ ( )  = a x x b xλ4
1
2

2
3 2

3/ ( )= λ4 F(a,b,x1,new,x2,new,,…). 

Therefore, F is a homogeneous function of degree 4. If a=b=1, x1=1, x2=2, and x3=1, F(1,2,1) =
8. Furthermore, if λ = 2, then F(2x1, 2x2,...) = F(2,4,2), and using Eq. (32)

F (2,4,2) = 24 F(1,2,1) = 16×8 = 128. 

This result may be checked using the above values for the variables in Eq. (33) so that x1,new =
λx1 = 2x1 = 2, x2,new = λx2 = 2x2 = 4, and x3,new = λx3 = 2x3 = 2. In that case as well, the func-

tion F = 128.
Consider the following homogeneous functions: F1(x,y) = sin2(x/y) is a function of

degree 0, since its phase is unchanged by λ; F2(x,y) = x–πsin(x/y) + xy–π–1 ln(y/x) is one of de-

gree m = –π, and F3(x,y) = 3x3/y2 of degree m = 1.

A necessary and sufficient condition for F to be homogeneous and of degree m, is that
the Euler equation



x F x mFkk
K

k=∑ =0 ( / )∂ ∂ . (34)

holds, the proof for which is contained in the Appendix to this chapter.

g. Example 7
Prove Euler’s equation with the function

Z (x,y) = ax2y + 2bxy2. (A)

Solution

F = Z(x,y) (B)

is a homogeneous function of degree m = 3.
We must prove that

x Z x y Z y Z( / ) ( / )∂ ∂ ∂ ∂+ = 3 .

Differentiating Eq. (A) with respect to x and then y, the resultant expression is

= x(2axy + 2by2) + y(ax2 + 4bxy) = 2ax2y + 2bxy2 + ax2y + 4bxy2

= 3ax2y + 6bxy2 = 3(ax2y + 2bxy2) = 3Z.
A function F is oftentimes not homogeneous with respect to all of the variables. If F is

partly homogeneous in terms of j among k variables so that

F(a,b,x1,x2,x3,…,xk) = F(a,b,λx1,λx2,λx3,…,λxj,xj+1,…,xk), (35)

the Euler equation Eq. (34) assumes the form

x F x mFii
j

i=∑ =0 ( / )∂ ∂ . (36)

h. Example 8
Is the function

F(a,b,x,y,t) = ax3y/t + x2y2/t3 + bxy3/t7

a homogeneous function, a and b being constants. What is the Euler equation?
Solution

The function F is not fully homogeneous, since F(a,b,x,y,t) ≠ λmF(a,b,x,y,t). If the powers

of x, y, and t are added, the first term on the RHS of the expression yields 3, the second
term 1, and the third term –3. However, if t is excluded, the sum of the powers of x and y
for each term is 4. Therefore, the function is partly homogeneous (with respect to x, and y)
so that F(a,b,λx,λy,t) = λ4F(a,b,x,y,t).

The Euler equation assumes the form

x∂F/∂x + y∂F/∂y = 4F.

If a function F = F (a,b,x,y) is homogeneous and of degree m, λ can be specified

equal to 1/x so that

F(a,b,λx,λy)= F (a,b,1,y/x) = (1/x)m F(a,b,x,y). (37)

Therefore,

F (a,b,x,y) = xmF(a,b,y/x) (38)

i. Example 9
Consider the function



Z(a,b,x,y) = ax3 + bxy2, (A)

and show that Z (a,b,x,y) = x3 Z (a,b,y/x).
Solution

Equation (A) may be written in the form

Z(a,b,x,y) = x3(a + b(y/x)2), (B)

where the terms in the brackets correspond to Z(a,b,y/x). Therefore,

Z (a,b,x,y) = x3Z(a,b,y/x).

We now summarize the properties of homogeneous functions:

F(a,b, λx1, λx2, λx3,…, λxk) = λmF(a,b,x1,x2,x3,…,xk),

x F x mFkk
K

k=∑ =0 ( / )∂ ∂ .

F (a,b,x,y) = xmF(a,b,y/x)

a. Relevance of Homogeneous Functions to Thermodynamics

i. Extensive Property
A thermodynamic variable or property F is extensive if it is a homogeneous function

of the first degree with respect to all of its extensive parameters in a functional relation.
Mathematically, F is an extensive property if m = 1 in Eq. (32), namely

F(λx1, λx2,...) = λF(x1, x2,...),

where x1, x2,... are all extensive properties.
If F is taken to represent the internal energy U = U(S,V,λ NO2

,λ NN2
,λ NAr) of air

contained in a vessel of volume V and of entropy S, where NO2
, NN2

, and NAr denote moles of

oxygen, nitrogen and argon. The entropy is an extensive property (that is discussed in greater
detail in Chapter 3 which has the units of kJ K–1. If λ identical vessels are combined into a

system, the internal energy of the composite system is λU, and the volume is λV contains λNi

moles of each of the species i. Therefore,

U(λS, λV, λN1, λN2, λN3) = λU(S,V,N1,N2,N3). (39)

For sake of illustration assume each vessel to be at S = 2 kJ K–1, with volume of 5 m3

containing 1 kmole of argon (N1), 78 kmole of nitrogen (N2) and 21 kmole of oxygen (N3).
Assume that the internal energy in each vessel is 500 kJ. If λ = 3, three vessels have been

combined and the volume and number of moles increases threefold. Using the notation of Eq.
(39)

U(3×2,3×5,3×1,3×78,3×21) = 3×U(2,5,1,78,21).

Therefore, m = 1, and we confirm once again that U is an extensive variable.

ii. Intensive Property
A thermodynamic variable or property F is said to be intensive if it is a homogeneous

function of zero degree with respect to all of its extensive parameters. In mathematical terms F
is intensive when m = 0 in Equation (32) or if

F(λx1, λx2,...) = F(x1, x2,...),



We can define T = ∂U/∂S. Since U is a function of S, V, and of the number of moles of various

species, as discussed above, ∂U/∂S is also a function of those variables. Therefore,

T = ∂U/∂S = T(S,U, N1,N2,...). (40)

If the energy of each vessel in the above discussion is increased by, say, dU = 3 kJ and, for
sake of illustration, the corresponding change in dS = 0.01 kJ K–1, the temperature inside the
vessels must be

T = ∂U/∂S = 3 kJ/0.01 kJ K–1 = 300 K.

If three vessels are combined, the volume, number of moles, energy, and entropy all triple, i.e.,
dU = 3×3, dS = 3×0.01. Therefore, the temperature of the combined system is still

T = 9/0.03 = 300 K,

as expected. More rigorously,

T = ∂ ∂U S
V N N

/
, , , ...

( )
1 2

= T(S,V,N1,N2,...).

Since for the combined system Uc = λU, and Sc = λS,

Tc = ∂ ∂U Sc c V N N
/

, , ,...( )
1 2

=  ∂(λU)/∂(λS) = ∂U/∂S = T. 

We, therefore, conclude that intensive properties are unchanged upon addition of identical
systems, i.e.,

T(λS, λU, λN1, λN2,...).= λ0T(λS, λU, λN1, λN2,...). (41)

Additional applications will be discussed in Example 10 and Chapters 3, 5 and 8.

iii. Partly Homogeneous Function
The volume given by the ideal gas law V = NRT/P where V = V(T,P,N) is a partly

homogeneous function of the number of moles N. Consider a vessel containing air at a tem-
perature of 298 K and pressure of 1 bar. If three identical vessels are combined into another
system, the values of V and N triple, although T and P are unaffected. Therefore,

V(T,P,λ NO2
,λ NN2

,λ NAr) = λV(T,P, NO2
, NN2

,NAr), (42)

which shows that V is a partly homogeneous function of degree 1 with respect to NO2
, NN2

,

and NAr.

iv. Conversion of Extensive Into Intensive Properties
We have shown that U = U(S,V,N) is a homogeneous function of degree 1, namely,

U = U (λS, λV, λN) = λU(S,V,N)

Using a value of λ = 1/N, U (S/N,V/N,1) = (1/N) U(S,V,N), or

U s v N U S V N( , , ) ( / ) ( , , )1 1=  or Nu s v U S V N( , ) ( , , )= .

j. Example 10
Consider the following state equation for the entropy of an electron gas

 S(N,U,V) = C N1/6U1/2V1/3, (A)

Show that S is a homogeneous function of degree 1 (i.e., it is extensive).



Assuming T = (∂U/∂S)V,N, show that T is a homogeneous function of degree 0 (i.e., it is
intensive).

Solution

S(λN,λV,λU) = C(λN)1/6(λV)1/3(λU)1/2 = λCN1/6V1/3U1/2 = λS(N,U,V). (B)

Therefore, S is homogeneous function of degree m = 1, S being an extensive property.
From Eq. (A),

dSV,N = CN1/6V1/3((1/2)U–1/2dUV,N) and

T(N,U, V) = ∂UV,N/∂SV,N = 2U1/2/(CN1/6V1/3). (C)

The temperature

T(λN,λV,λU) = 2(λU)1/2/(C(λN)1/6(λV)1/3) = λ02U1/2/(CN1/6V1/3),

that proves that T is a homogeneous function of degree 0 which cannot be altered by in-
creasing or decreasing the system size (or λ).

Remarks
The entropy S is an extensive property (m = 1), whereas the temperature T is an in-
tensive property (m = 0).
Since m = 1, Euler’s equation for S(U, V, N) assumes the form

U(∂S/∂U) + V(∂S/∂V) + N(∂S/∂N) = S. (D)

  We will show in Chapter 3 that

∂S/∂U = 1/T, ∂S/∂V = P/T, and ∂S/∂N = –µ/T. (E)

where µ is called the chemical potential. If S is expressed in units of J K–1 and U in J,

∂S/∂U is in units K–1. (Similarly, you may verify that ∂S/∂V can be expressed in units of N

m–2 K–1.) Using Eqs. (D) and (E),

U/T + V(P/T) – µ/T = S, i.e., U + P V – T S = µN.

k. Example 11
The internal energy U is an extensive property, since it is a homogeneous function of de-
gree m = 1. In general, U = U(S,V,N1,N2,...,Nk) so that k+2 extensive properties are re-
quired to determine U for a k–component simple compressible system. Show that u ,
which is an intensive property, is a function only of k+1 intensive variables.

Solution
Select λ = 1/N, where N denotes the total number of moles in the system so that

U(S/N,V/N,N1/N,N2/N,...,Nk/N) = (1/N)U(S,V,N1,N2,...,Nk), or

U(S,V,N1,N2,...,Nk) = N u  ( s , v , x1,x2,...,xk),

where xi represents the mole fraction of the i–component in a gaseous system (we can re-
place xi with xl,i for a system containing a liquid mixture). Therefore,

u  = U/N = u  ( s , v , x1,x2,...,xk).

Since N1+N2+ ... +Nk = N, then

N1/N+N2/N+ ... +Nk/N = 1, or x1+x2+ ... +xk = 1.



Therefore, xk = 1–x1–x2–...–xk–1, and u( s , v , x1,x2,...,xk–1) is an intensive property which is
a function of only k–1+2 = k+1 intensive variables.

6. Taylor Series
The value of a function w(x) at neighboring point x+δx, namely, w(x+δx), can be

determined in terms of its value at x by using a Taylor series as follows:

w(x+δx) = w(x)+|dw/dx|xδx+(1/2!)|d2w/dx2|x(δx)2

               +(1/3!)|d3w/dx3|x(δx)3+...+(1/n!)|dnw/dxn|x(δx)n+R´, (43)

where 2!=2×1, 3!=3×2×1,..., n!=n×(n–1)×(n–2)×...×4×3×2×1, and R´ denotes the remainder.

If w = w(x,y,z), then

w(x+δx,y+δy,z+δz) = w(x,y,z) + (∂/∂x δx + ∂/∂y δy + ∂/∂z δz)w + 

                   (1/2!)(∂/∂x δx +  ∂/∂y δy +  ∂/∂z δz)2 w+ (1/3!) (...) + ..., or

w(x+δx,y+δy,z+δz) = w(x,y,z) + δw + δ2w + ... + δnw + R´, where  (44)

δ2w = (∂/∂x δx + ∂/∂y δy +  ∂/∂z δz)2 w

        = ∂w/∂x2 δx2+ ∂2w/∂y2 δy2 + ∂2w/∂z2 δz2 + 

           2 ∂2w/∂x∂y δxδy + 2 ∂2w/∂y∂z δyδz + 2 ∂2w/∂z∂x δzδx, and

δnw = (∂/∂x δx+ ∂/∂y δy+ ∂/∂z δz)n w.

The Taylor series expansion will be used to derive conservation equations in Chapter
2, the entropy balance equation in Chapter 3, the availability balance equation in Chapter 4 and
stability criteria in Chapter 9. In place of a Taylor series, Callen uses the expression

w(x+dx, y+dy,z+dz) = exp ((∂/∂x δx + ∂/∂y δy + ∂/∂z δz) w(x,y,z)),

where the term related to the exponential is treated as a small quantity.

7. LaGrange Multipliers
The LaGrange multiplier method allows us to optimize (i.e., either maximize or

minimize) a function u = u(x,y,z), say, subject to the conditions g(x,y,z) = 0, and h(x,y,z) = 0.
The method involves the following steps:
1. A function F is formed such that

F(x,y,z,λ1, λ2) = u(x,y,z) + λ1g(x,y,z) + λ2h(x,y,z). (45)

2. Since F is to be optimized, Eq. (45) is differentiated specifying

∂F/∂x = 0, ∂F/∂y = 0, and ∂F/∂z = 0.

3. x, y, z, λ1, and λ2 are solved using the constraints and Eq. (45) at the optimum condition.

We will use the LaGrange multiplier method later to determine the equilibrium con-
ditions for multicomponent and multiphase systems.

l. Example 12
Use the LaGrange Multiplier method and optimize the function

G(A,B,x,y) = x(A+ ln(x/(x+y))) + y (B+ln(y/(x+y))) (A)

subject to the condition that

2x + y = N, (B)



where A, B and N are constants. Obtain a numerical solution for x, y, and G when A =
–30.27, B = –12.95, and N = 4.

Solution
Using Eq. (45) we form the function

F = G(A,B,x,y) + λ(2x + y – N) = 0, where (C)

∂F/∂x = 0, ∂F/∂y = 0

Using Eqs. (A) and (C), and differentiating the latter with respect to x and y,

∂F/∂x = x(1/x – 1/(x+y)) + (A + ln (x/(x+y)) + y(–1/(x+y))+ 2λ = 0.

Upon simplification,

A + ln (x/(x+y))  + 2λ = 0, and (D)

∂F/∂y = y (1/y – 1/(x+y)) + (B + ln(y/(x+y))) + x(–1/(x+y))+ λ = 0 so that

B + ln(y/(x+y)) + λ = 0. (E)

Multiplying Eq. (E) by 2 and subtracting it from Eq. (D)

A + ln(x/(x+y)) – 2B – 2ln(y/(x+y)) = 0, or

ln(y/(x+y))2 – ln (x/(x+y))  = exp(A–2B), (F)

where x and y are obtained from the condition 2x + y = N. Using y = N – 2x in Eq. (F),

(N–2x)2/(x(N – x)) = K, (G)

or x2–xN + N2/(4 + K) = 0, where

K = exp(A–2B). (H)

Equation (G) is a quadratic in terms of x and can therefore be solved if it is optimized for a
particular value of x. Using A = –30.27, B = –12.95, N = 4 in Eq.(H), K = 0.0127. Sub-
stituting these data in Eq. (G) we obtain (4–2x)2 = 0.0127 x (4–x). Solving for x and se-
lecting the root for which x>0, and y>0,

x = 1.8875, and y = N – 2x = 4 – 2×1.8875 = 0.225, and G(A,B,x,y) =–60.78

Remark
In Chapter 12, an example illustrates that A, B and K are functions of T and P, and
Eq. (F) corresponds to a chemical equilibrium condition when G is minimized for a
problem in which 4 moles of oxygen are admitted to a reactor while x moles of O2

and y moles of O–atoms leave the reactor. The solution for x corresponds to the
chemical equilibrium composition.

8. Composite Function
Consider the ideal gas law v = RT/P to apply for a process during which a gas ex-

pands in a two–dimensional nozzle. If we travel downstream with the gas, as a consequence of
the expansion, the pressure and temperature typically decrease and the specific volume v occu-
pied by 1 kg mass of the gas typically increases according to the ideal gas law. An alternative
way of looking at the problem is to consider the entire nozzle domain in an x–y dimensional
plane (called an Eulerian frame of reference) in which P and T (and, therefore, v) are functions
of x and y. The specific volume v(x,y) can be determined using the state equation. Functions



such as v = v(T,P), with T and P being themselves functions of x and y, are called composite
functions. In order to determine |∂v/∂x|y, i.e., how the specific volume changes with respect to

displacements y from the nozzle centerline, v = v(T,P) and, therefore, T(x,y) and P(x,y) must
be known. From the state equation,

dv = (∂v/∂T)dT + (∂v/∂P)dP (46)

However, since T = T(x,y) and P = P(x,y),

dT = (∂T/∂x) dx + (∂T/∂y) dy, and dP = (∂P/∂x) dx + (∂P/∂y) dy. (47)

Substituting from Eqs. (47) in Eq. (46)

dv = (∂v/∂T)((∂T/∂x)dx + (∂T/∂y)dy)) + (∂v/∂P)((∂P/∂x)dx + (∂P/∂y)dy),

and the variation of v along x for fixed y

|dv/dx|y = (∂v/∂T)(∂T/∂x) + (∂v/∂P)(∂P/∂x). (48)

Using the relation v = RT/P

|dv/dx|y = (R/P)(∂T/∂x) + (–RT/P2)(∂P/∂x). (49)

Similar arguments apply if T = T(x,y,z), and P = P(x,y,z).

9. Stokes and Gauss Theorems
These theorems are required in order to convert equations from integral to differential

forms as will be shown in Chapters 2 to 4 for energy conservation, and the entropy and avail-
ability balance equations. A brief overview of vector calculus which covers dot and cross
products, the gradient of scalar, curl of a vector, and the relationship between thermodynamic
properties and scalar fields is presented in the Appendix.

a. Stokes Theorem
The relation between the line integral (KMNP) and the surface integral (illustrated in

Figure 14) is given by the relation
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Figure 14: (a) Line integral around an arbitrary path. (b)
Line integral around a circular path.



r r r r r
F ds F dA

cs
⋅ ∇ × ⋅∫ ∫= ( ) , (50)

where 
r r
∇ × F  is the curl of 

r
F . The area vector dA

r
 is the outer normal perpendicular to the sur-

face (e.g., for a closed curve lying in the x–y plane, the area lies in the x–y plane and, if the
integration for the line integral is performed in a counter–clockwise direction, the area vector
faces outward similar to a screw moving out of a surface). The integral over the area simplifies
to (Fxy – Fyx).

b. Gauss–Ostrogradskii Divergence Theorem
As illustrated in Figure 15, the relation between surface and a volume integral is

given by
r r r r
F dA F dV

cs cv
⋅ ∇ ⋅ ⋅∫ ∫= ( ) , (51)

If 
r r
F v= ρ , the Gauss divergence theorem yields ( ) ( ( ))ρ ρr r r r

v dA v dV
cs cv

⋅ ∇ ⋅ ⋅∫ ∫= , where ρ denotes

density, 
r
v  velocity, and ρ

r
v  the mass flux per unit area. The control surfaces cs (comprising

surfaces ABCD, EFGH, BFGC, CDHG, HDAE, and ABFE) enclose the control volume cv. If
the total mass flux leaving the volume from all of the surfaces is known, that flux must equal
the flux

r r
∇ ⋅ ( )ρv  leaving a small elemental volume integrated over the entire volume.

c. The Leibnitz Formula
If the gas contained within a balloon is discharged, the balloon volume shrinks, and

the mass contained in it decreases. The rate of change of the mass can be determined by ap-
plying the Leibnitz Formula, i.e.,

∂

∂
ρ

∂ρ

∂
ρ

t
dV

t
dV v dA

V t V t
d

A t( ) ( ) ( )
∫∫∫ ∫∫∫ ∫∫= + ⋅

r r
, (52)

where 
r
v td ( ) denotes the instantaneous deformation velocity of the balloon. This formula is

useful for solving problems related to the material covered in Chapter 2 that involve deform-
able control volumes. In the case of a balloon releasing gas, the balloon shrinks and the 

r
v td ( )

vector is inward, while the area vector is outward, and 
r r
v dAd ⋅  < 0. On the other hand, if gases

are pumped into the balloon, it expands, so that 
r r
v dAd ⋅  > 0.

D. OVERVIEW OF MICROSCOPIC THERMODYNAMICS
In order to understand the physical processes governing behavior in thermodynamic

systems, such as the variations in energy and temperature with work and heat input; the rela-
tions between pressure and temperature in gases, liquids, and solids; the directions of heat and
mass transfer and chemical reactions; the relation between the saturation pressure and tem-
perature, etc., we must understand the microscopic behavior of molecules constituting the
matter of those systems. This understanding is also useful in interpreting many classical ther-
modynamic relations. A detailed treatment of microscopic thermodynamics is beyond the
scope of this text, and, therefore, only a brief overview of the subject is presented herein.

1. Matter
Feynman describes matter as follows: “...all things are made of atoms – little particles

that move around in perpetual motion attracting each other when they are a little distance apart,
but repelling upon being squeezed into one another.” Atoms are of the order of 1–2 Angstroms
(i.e., 1–2×10–10 m) in radius. The water molecule, H2O, is a heteronuclear molecule consisting

of two atoms of H (located apart by 105º) separated from one atom of O by a distance of about
1 Å (Figure 16). Adjacent water molecules are separated by an intermolecular distance l. The

variation of the intermolecular force F between molecules as a function of l is illustrated in

Figure 17. In a piston–cylinder–weight assembly, this distance can be varied by varying the



volume through the addition or removal of weights. The intermolecular force is negative when
attractive, i.e., it attempts to draw molecules closer together, while positive forces correspond
to closer intermolecular spacing and are repulsive, i.e., they attempt to move the molecules
away from each other. The distances li, lm, l0 and σ that are illustrated in Figure 17 will be de-

scribed later.

2. Intermolecular Forces and Potential Energy
Consider the earth’s mass mE (whose origin is at its center). Newton’s law of gravita-

tion states that the force F exerted by the earth towards its origin on another mass m located at
a distance r is given by the relation F = C mmE/r2, where C is the gravitational constant. In
vector form

r r
F r C m m r rE( ) / | |= 3 , (53)

where C = 6.67×10-8 N m2 kg–2 , and 
r
F r( )  in units of N. The force exerted on a unit mass by

the earth, i.e., its gravitational acceleration, 
r r
g r C m r rE( ) / | |= 3 . (If 

r
F r( ) is an attractive force,

it carries a negative sign, since it acts towards the origin. Typically, 
r
g<0, since it is attractive

towards the earth, and, in order to move a mass away from the earth through a distance dr
r

,
work must be done to overcome the earth’s attractive force.) Therefore, the work done upon a
mass m, i.e., the work input to raise that mass, is given by

δφ = δW = –
r r
F r dr( ) ⋅ . (54)

We see from Eq. (54) that δW/ dr
r

 = –
r
F r( ) . Using the relation for the gravitational accelera-

tion, the work performed to raise a unit mass is

w = W/m = φg = –CmE/r + C1,

where φg is known as the gravitational potential. As r→∞, . φg →C1 so that C1=0. Therefore,

ρρρρ
Vr

dAr

Figure 15: Surface and volume integrals used in the Gauss diver-
gence theorem.



φg = –CmE/r, (55)

and dφg/ dr
r

 represents the gravitational force exerted on a unit mass. The energy stored in a

mass under the influence of the earth’s gravitational field grows with an increase in the dis-
tance r. This gravitational potential energy is similar to the energy contained within a raised
weight that induces it to fall unless it is constrained. Similarly, work must be performed to
move in a charge of Qc coulombs through an electrical potential.

Likewise, if a molecule A is located at an origin and molecule B is situated at a dis-
tance l removed from it, the potential energy stored within the molecule can be determined if

the characteristics of the force field are known. Alternatively, if the potential is known, the
force exerted by a molecule on another can be determined (as illustrated above by the deriva-
tive –dφg/ dr

r
). The Lennard–Jones’ (LJ) (6-12 law) empirical approach for like molecular

pairs, such as the homonuclear molecular pair O2–O2, furnishes the intermolecular potential
energy in the form

Φ(l) = 4ε ((l0/l)12 – (l0/l)6), (56)

where ε represents the characteristic interaction energy between molecules, i.e., the maximum

attraction energy or minimum potential energy Φmin (ε = Φmin ≈ 0.77 kB Tc, with kB denoting

the Boltzmann constant and Tc the critical temperature), l0 represents the distance at which the

potential is zero (cf. Figure 17) and is approximately equal to the characteristic or collision
diameter σ of a molecule at which the potential curve shown in Figure 17 is almost vertical.

Tables A-3 tabulate σ and ε/kB  (in K) for many substances. The term kB is called Boltzmann

constant  (= ¯R /NAvog= 1.33x10 -26 (kJ /molecule K)). In order to calculate the minimum po-
tential energy lmin, Eq. (56) can be differentiated with respect to l  and set equal to zero. From

this exercise lmin/l0=21/6=1.1225, and the corresponding value of Φmin = ε. Hence,

Φ(l)/ Φmin = 4((l0/l)12 – (l0/l)6), (57)
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Figure 16: Schematic illustration of a water molecule.



Figure 18 presents a plot of the nondimensional intermolecular potential with respect to l/l0. If

we approximate an ideal gas as that gas where |φ (llimit) | ≈ 0.01| φmin|, then we obtain llimit/l0 =

3.075 (from Eq. (57)) . Note that we are comparing attractive potential  of gases with those of
maximum  potential (i.e of liquids/solids). A better definition will be given in Chapter 6. The
interaction force between  the molecules is given by the relation F(l) =–dΦ/dl, so that F(l)/ Φmin

= (4/l0)(12(l0/l)13–6(l0/l)7). The maximum attractive force occurs at lmax/l0 = 1.2445, and the

corresponding force |Fmax| = 2.3964 |Φmin|l0. Therefore,

F(l)/ |Fmax| = –0.599(–12(l0/l)13 +6 (l0/l)7). (58)

It is seen from Eqs. (58) and (53) that gravitational forces are proportional to masses (inde-
pendent of the chemical composition) and inverse of distance square while the LJ  forces are
inversely proportional 1/l7 , and depends upon the chemical composition of the masses. As-
suming l0 to equal σ, for molecular nitrogen σ = l0 = 3.681 Å and ε/kB = 91.5 K. Using the

value of kB = 1.38×10–23 J molecule–1 K–1, Φ and F can be determined for given values of l0/l.
Results are presented for molecular nitrogen in Figure 17.

If the molecules are spaced relatively far apart, the attractive force is negligible.
Ideal gases fall into this regime. As the molecules are brought closer together, although the
attractive forces increase, the momentum of the moving molecules is high enough to keep
them apart. As the intermolecular distance is further decreased, the attractive forces become so
strong that the matter changes phase from gas to liquid. Upon decreasing this distance further,
the forces experienced by the molecules become negligible (i.e., dΦ/dl = 0 or Φ is maximized),

and the matter is now a solid in which the molecules are well–positioned.

From Eq. (58) we see that the attractive force F(l) ∝ (l3)–7/3 has units of approximately

(volume)–2. This concept can be used in developing van der Waals’ equation of state (see
Chapter 6). The LJ relation assumes the force field to be spatially symmetric around the mole-
cule, an assumption which is valid over a wide range of conditions for gases such as O2, N2,
and He and the other noble gases. However, this is not necessarily true for polar molecules
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such as H2O (cf. Figure 16 in which H–atoms are positively charged and O–atom is negatively
charged, since the O–atom pulls electrons away from H–atoms due to its heavier mass) and
NH3. For the sake of illustration we will assume the LJ relation to also hold for polar gases.
3. Internal Energy, Temperature, Collision Number and Mean Free Path
a. Internal Energy and Temperature

At low pressures and high temperatures the intermolecular spacing in gases is usually
large and the molecules move incessantly over a wide range of velocities. The molecules also
vibrate and rotate. The total energy possessed by them is due to these translational, rotational,
and vibrational modes (Figure 19).

For the sake of illustration, consider H2O vapor–phase molecules at a pressure of 1
bar and a temperature of 200ºC. Typically, these molecules move with an average velocity of
350 m s–1 at temperatures around 300 K. Since l » 3limit, attractive forces can be ignored. As the
water vapor is compressed, the intermolecular distance decreases and attractive forces become
significant as the gas reaches a certain volume (or pressure). Upon further compression, the
attractive forces become so strong that the vapor changes phase to become liquid. According to
liquid cell theory, each molecule is confined to a small cell of volume v´ (which is the total
volume divided by the number of molecules contained in it). If the molecular diameter is small
compared to the cell volume, a molecule is free to move within its cell without interacting with
its nearest neighbors. Therefore, the translational energy of that molecule decreases, although
it possesses the same rotational and vibrational energies. As the liquid is further compressed it
becomes a solid. The interactions of a molecule with its neighbors are strongest when motion
is restricted to conditions corresponding to the minimum potential energy, i.e., when l = l min.
At this state the molecules possess most of their energy in the vibrational mode. The relative
position of molecules (or their configuration) is fixed in solids. Gases correspond to the other
extreme and contain a chaotic molecular distribution and motion. Liquids fall in a regime in-
termediate between gases and solids, since their molecular kinetic energies are comparable to
the maximum potential energies. Therefore, the molecular energy changes significantly with
compression and phase change.

The position of an atom within a molecule can be fixed by three spatial coordinates
(say, x,y and z). A polyatomic molecule containing δ atoms requires 3δ coordinate values in

order to fix the atomic positions, and, consequently, has 3δ degrees of freedom. Molecules can

have three translational energy modes. A monatomic gas (δ =1) has three translational energy

modes, and a linear molecule such as CO2, which has all of its atoms arranged in a straight
line, possesses two rotational degrees of freedom (since rotation about its own axis is negligi-
ble) while H2O, which is a nonlinear molecule, possesses three rotational degrees of freedom.
Therefore, the number of vibrational energy modes for a nonlinear molecule must be equal to
the difference between the total degrees of freedom and the sum of the translational and rota-
tional energy modes, i.e., (3δ–6). Since a linear molecule possesses three translational and two

rotational modes, its vibrational energy modes must number (3δ–5). The total energy associ-

ated with a molecule u´ = e´T + e´R + e´V is known as the molecular internal energy, where e´T,
e´R, and e´V, respectively, represent the total translational, rotational, and vibrational energies
of that molecule.
b. Collision Number and Mean Free Path

Molecules contained in matter travel a distance lmean before colliding with another
molecule. Consider a molecule A that first collides with another molecule after traveling a
distance lmean, then undergoes another collision after moving a distance of 2lmean, and so on,

until colliding for the Nth time with another molecule after having moved along a distance
N×lmean. If these N collisions occur in one second, the molecule A is said to undergo N colli-

sions per unit time (also known as the collision number).



If the molecular diameter of a molecule is σ (also called the collisional diameter), this

is the closest distance at which another molecule can approach it. At this distance the repulsive
force between the two molecules is infinitely large as shown in Figure 17. Assume that the
average molecular velocity Vavg is the distance through which the molecule travels in one sec-
ond. Now consider a geometrical space shaped in the form of a cylinder of radius σ and length

Vavg. There are n´πσ2Vavg molecules within this cylinder where n´ denotes the number of mole-

cules per unit volume. A molecule traveling through the cylinder will collide with all of the
molecules contained within it, since the cylinder radius equals σ. Therefore, the number of

collisions occurring per unit time Zcoll is n´πσ2Vavg, and the time taken for a single collision is

the inverse of this quantity. The average distance traveled by the molecule during this time is
called its mean free path lmean, where

lmean = Vavg/(n´πσ2Vavg) = 1/(n´πσ2).

Another relation for the mean free path is

lmean  = 1/(21/2πn´σ2).

Typically, the number of collisions is of the order of 1039m–3 s–1. The mean free path is also the
average distance between adjacent molecules. For instance, consider a room consisting of N2

molecules at 298K, 1 bar. Then n’=2.43x 1025 molecules/m3, σ= 3.74 Å, and lmean = 0.0662 µm

or 662  Å or 66.2 nm.
All of the molecules do not travel at the average velocity. The typical velocity distri-

butions (also called the Maxwellian distributions) of helium molecules at different tempera-
tures are illustrated in Figure 20. The typical velocity distributions can be determined from the
expression
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(1/N)(dN´V/dV) = 4π–1/2 (m/(2kBT))3/2V2 exp(–(1/2)mV2/(kBT))) (59)

where N´V represents the number of molecules moving with a velocity in the range V and
V+dV, N the total number of molecules, m the molecular mass (= M/NAvog), with M denoting
the molecular weight). Therefore, the translational energy varies among the molecules, and
integration of Eq. (59) between the limits V  = 0 and ∞ results in a number fraction of unity.

Microscopically, the molecules are in state from which the average energy is subject to pertur-
bations of varying strengths. In Chapter 10 we will learn that these perturbations cause certain
states to become stable, metastable, or unstable.

Equation (59) can be rewritten in terms of the energy e = mV2/2 and integrated to ob-
tain the fraction of molecules possessing energy in the range from E to ∞, i.e.,

N´E/N = 2π–1/2((E/( R T))1/2exp(–(E/( R T)) + (1 – erf((E/ R T)0.5)), (60)

where E = e´NAvog = M V2/2, M denotes the molecular weight (or the mass of 1 kmole), and
R = kB NAvog is the universal gas constant. As E→0, so does the error function and the first

term in Eq. (60), and, therefore, as is logical, the term (N0≤E≥∞/N)→1. This term becomes neg-

ligibly small as E→∞, since the volume fraction of molecules associated with extremely large

energies normally approaches zero. Since E/ R T is typically large, the value of the last term on
the RHS of Eq. (60) is negligibly small. Hence, the fraction of molecules with a velocity in the
range V to ∞ (or E≤E≤∞) may be expressed as

N´V/N = 2π–1/2(E/( R T)1/2exp(–(E/( R T)). (61)

Equation (61) indicates that the fraction of molecules associated with an energy of value E and
greater is proportional to exp(–(E/( R T)). Chemical reactions between reactant molecules oc-
cur when the energy E exceeds the minimum activation value, which is required to overcome
the molecular bond energies, thereby allowing the atoms to be rearranged in the form of prod-
ucts.

The average molecular speed Vavg is

Vavg = (8/(3π)]1/2 Vrms=  (8 kBT/(πm) }1/2  = (8 R T/(M π)}1/2 (62)

Where m is the mass of molecule and the expression for the most probable speed is

Vmps =  (2/3)1/2 Vrms = (2kBT/m)1/2= (2 R T/M)1/2. (63)

The root mean square speed Vrms can be expressed as

(a) (b) (c)

Figure 19. Illustration of the energy modes associated with a
diatomic molecule. (a) Translational energy  (TE). (b) Rotational
energy  (RE). (c) Vibrational energy (VE).



Vrms = (3kBT/m)1/2= (3 R T/M)1/2. (64)

where V V V Vrms x y z
2 2 2 2= + +  is based on the three velocity components, and

m rms m x y z k TBV V V V2 2 2 2 2 3 2= + + =( ) / ( / ) .

From Eq. (64) note that average te per molecule  3kB T/2 where kB = R /NAvog. It is
customary to assume three velocity components to equal each other in magnitude, i.e., each
translational degree of freedom contributes energy equivalent to (1/2)kBT to the molecule. At
standard conditions Vrms ≈  1770, 470, and 440 m s–1, respectively, for H2, N2 and O2, and is

typically of the same magnitude as the sound speed in those gases. Recall that for an ideal gas
the sound speed c = (k R T/M)1/2, where 1≤k≤5/3. For gaseous N2 and H2, respectively, at stan-

dard conditions Vavg ≈ 475 and 1770 m s–1; m = 4.7×10–26 kg and 0.34×10–26 kg; σ = 3.74 Å

and 2.73 Å; l = 650 Å and 1230 Å; and Zcoll = 7×109 and 14.4×109 collisions s–1. Recall that for

an ideal gas the sound speed c =  kRT / M , where 1 < k < 5/3. The sound speed is compa-
rable to average molecular velocity.

i. Monatomic Gas
The only molecular energy mode in monatomic gases is translational. Helium, argon,

and other noble gases are examples of monatomic gases. The energy per molecule u´ in a
monatomic gas is

u´ = e´T = (3/2)kBT. (65)

where energy per degree of freedom is given by (1/2) (kB T) and at 298 K energy per degree of
freedom is given as  0.5*1.38x10-26 kJ/molec. K * 298 = 2.05x10-24  kJ/molec. Monatomic gas
has 3 degrees of freedom. For a mass containing Avogadro’s number of molecules NAvog,

u  = (3/2)NAvog kBT = (3/2) R T, i.e., (66)

T = 2/3( u/ R ). If an ideal monatomic ideal gas is placed in a rigid container and heated, the
intermolecular spacing remains unchanged and, as shown in Figure 18, the potential energy is
still negligible. However, due to a rise in the translational energy, the internal energy increases.

ii. Diatomic Gas
There are three translational and two rotational modes for a diatomic gas. At low

temperatures the vibrational modes can be neglected so that

u´ = e´T + e´R = (5/2)kBT. (67)

At higher temperatures there are (3n–5) = 1 vibrational modes. If a diatomic molecule is visu-
alized as two atoms attached by a spring, each vibrational mode for this combination has two
degrees of freedom, i.e., due to the potential energy (that is similar to the energy stored in a
spring), and to the kinetic energy of the atoms with respect to the center of mass. Each degree
of freedom contributes an energy equivalent to (1/2)kBT, and

e´V,diatomic = 2(1/2)kBT = kBT. (68)

At higher temperatures, since u´= (e´T+e´R)+e´V, its value equals (7/2)kBT. Therefore, for dia-
tomic gases

u  = (7/2)NAvog kBT = (7/2) R T, i.e., (69)

T = 2/7( u/ R ). 



Comparing Eqs. (66) and (69) it is seen that for similar increase in u, the temperature change

for the diatomic molecule gas is smaller compared to a monatomic gas due to the higher en-
ergy storage capacity of the diatomic molecule.

iii. Triatomic Gas
We have seen that each vibrational mode has two degrees of freedom for linear mole-

cules containing δ number of atoms. Therefore, linear triatomic molecules each have (3+2+(3δ
–5)×2), i.e., (6δ–5) degrees of freedom, while nonlinear molecules have (3+3+(3δ–6)×2) or

(6δ –6) degrees of freedom. Each mode contributes (1/2)kBT of energy. The molecular energy

in a linear polyatomic molecule is

u´ = (6δ–5) (1/2)kBT, i.e., u  = (6δ–5) (1/2) R T. (70)

Likewise, for  a nonlinear molecule

u´ = (6δ–6) (1/2)kBT, i.e., u  = (6δ–6) (1/2) R T. (71)

This simplified theory suggests that the internal energy per mole is proportional to the tem-
perature. The translational energy e´T ≈ 0 for liquids, while for solids both e´T and e´R are neg-

ligible.

4. Pressure
When a racquetball is thrown against a wall it bounces back after impact. If several

balls are thrown against the wall periodically, the impact due to the balls becomes regular and,
at a high enough frequency, can be considered as a force. Similarly, the pressure that we expe-
rience is due to a continuum of matter that strikes us incessantly (as shown in Figure 21). In
the case of gases, large numbers of molecules travel at high speeds at standard conditions and
impinge on surfaces, thereby creating pressure. Under atmospheric conditions, the force ex-
erted by impinging air molecules (due to their change in momentum as they strike a surface) is
equivalent to placing a weight of 105 N on each m2 of the surface (i.e., 100 KPa). A relatively
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Figure 20. Maxwellian distribution of the absolute velocity in helium, which is a perfect gas. (He-
lium with m g= × −6 65 10 23. ) .



small volume of 1 mm3 can contain 4×1015 molecules of air at 298 K that travel with an aver-

age molecular velocity of 350 m s–1, and which create a pressure of 100 KPa. If the number of
molecules is doubled, but the molecular velocity and volume are held constant (i.e., the trans-
lational energy and temperature are unchanged), the pressure will double to 200 KPa. If the
original number of molecules is retained within the original volume but the molecular velocity
is raised, i.e., the translational energy and, thereby, temperature are increased, the pressure will
also rise. Therefore, the pressure in a container can be altered by changing the molecular ve-
locity (hence, temperature), the number of molecules per unit volume (n´), or the number of
moles per unit volume (n).

a. Relation between Pressure and Temperature
Ideal Gas: We have seen that for gases the exchange of momentum is related to pres-

sure. Consider a surface of area l2 upon which molecules impinge and apply pressure. A mole-
cule of mass m traveling with a velocity Vy imparts a momentum mVy to the surface followed
by other similar molecules. Since l also denotes the intermolecular distance, the time interval

between successive collisions tcoll on the surface is l/Vy. Therefore, the momentum impinge-

ment rate is m Vy/(l/Vy) or mVy
2/l, where Vy

2 = (1/3)V2. The momentum rate per unit area or

pressure on the l×l area is mV2/3l3, provided there are no attractive forces between the gas

molecules and the surface. If the molecules are assumed placed at the corners of a cube of di-
mension l×l×l, the number of molecules per unit volume n´ is approximately 1/l3. Recalling

that n´ = N´/V, where V is the volume,

P = n´mV2/3 = 2N´(TE)/3V = (2/3)(3/2)N´kBT/V = N R T/V, (72)

where N = n´/NAvog is the mole number, TE denotes the translational energy per molecule,
and R = NAvogkB. Equation (74) is a statement of the ideal gas law.

Air, which is a mixture, can be assumed to contain 79% nitrogen and 21% oxygen by
volume. Therefore, for approximately four collisions due to N2 molecules on a surface that is
adjacent to air, one collision is due to an O2 molecule with the consequence that 79% of the
pressure felt by the surface is due to nitrogen and 21% due to oxygen. The contribution of each
species to the total pressure is called its partial pressure. The partial pressure exerted by the

Pressure

molecule

V
•

Due to
impingement,
Pideal

Due to Attractive
Forces, ∆∆∆∆P’

Figure 21. Schematic illustration of the process by which pressure is sensed.



nitrogen in air pN2
 on a surface at standard conditions is 0.79 bar, whereas the partial pressure

due to oxygen pO2
 is 0.21 bar. In general, for any species k, p N RT Vk k= / , where pk is the

component pressure due to the k–th species. Hence, the general state equation for an ideal gas
mixture is given by

P = Σpk = ΣNk R T/V = N R T/V, or

pk/P = Nk/N = Xk. (73)

where Xk is the mole fraction of the k–th component in the mixture.
Real Gas: The relation given by Eq. (74) for the ideal gas pressure ignores the attrac-

tive forces between molecules. Consider the interior of any system (e.g., the interior of room
air). There is no net attractive force between the interior molecules since the intermolecular
forces cancel out. However the attractive forces between a molecule at the boundary (Fig. 19a)
and the interior molecules causes a net attractive force or pressure ∆Pattr toward the interior,

thereby reducing the ideal gas pressure (Pig) caused by the exchange of momentum. The pres-
sure of a real gas P= Pig- ∆Pattr. Recall that the ideal gas pressure is proportional to the number

of molecules per  unit volume (n´) and the momentum exchange by each molecule. Similarly
∆Pattr is also proportional to n´ and the attractive force between experienced by each molecule

within n´ and all the interior molecules per unit volume (n´). Therefore, ∆Pattr∝ n´2 ∝  1/v2  = a/

v2 where a is a constant. The real gas pressure P ≈ RT/v - a/v2. The ideal gas and real gas re-
gimes can be delineated by comparing the pressure reduction due to attractive forces with the
ideal gas  pressure (details of this will be found in Chapter 6). The ideal gas assumption is
valid if

( ¯v / b) » 0.9/ TR 0.43 

where TR denotes the reduced temperature T/Tc and b  the body volume of all molecules per
kmole of the substance (≈ NAvog π σ3/6). Further discussion is provided in Chapter 6.

Knudsen Number: The pressure relations are valid only when the surface on which a
molecule impinges has a dimension much larger than  the mean free path l. Consider a small
particle of the order of say 0.01 µm surrounded by N2 gas. We wish to determine the pressure

molecules rotate around 

Figure 22. Illustration of the
molecules contained in liquid
water that are in motion relative
to each another.



exerted on this small particle. Say that the mean free path of N2 molecule is 0.1 µm . Hence, it

is possible that molecules located 0.1 µm apart may not collide at all on the surface of the par-

ticle. For such cases the pressure cannot be calculated through continuum equations. The
Knudsen number is defined as

Kn = lmean/d,

where d denotes the particle diameter. This number is useful in defining continuum properties
such as the pressure, thermal conductivity coefficient, etc. If Kn «l, the continuum approxima-
tion is valid.

5. Gas, Liquid, and Solid
When matter is compressed, its molecules exist closer to each other. As the intermo-

lecular distance is reduced, the attractive force between adjacent molecules becomes large
enough to reduce the molecular velocity. Through this process gas molecules slow down to a
state at which the matter changes phase and becomes liquid. The atoms (that are part of mole-
cules) in liquids can vibrate, and molecules can rotate around each other to assume any con-
figuration as shown in Figure 22. This rotational capability of the molecules disallows their
placement at particular positions, and is a characteristic of a fluid. Liquid molecules contain
negligible translational energy. The sum of their rotational and vibrational energies defines
their warmth or “heat”. In general, the sum of the translational, rotational, and vibrational, en-
ergies for fluids are comparable to the minimum potential energy with the consequence that
fluids are mobile.

As liquids are compressed, the intermolecular distance l decreases further, and the net
force on the molecules (i.e., the maximum attractive potential) declines to eventually become
negligibly small. Therefore, molecules cease to move around each other with the consequence
that the rotational energy tends to zero, although the vibrational energy is still finite with the
vibrations occurring about a fixed position lmin (cf. Figure 23). The cessation of rotation

“glues” the molecules to definite positions as shown in Figure 23, and at this fixed configura-
tion matter becomes solid. As solids are compressed l < lmin, although individual atoms con-
tained in the various molecules vibrate, the intermolecular forces are repulsive. Upon stretch-
ing solids, l > lmin, and the intermolecular force becomes attractive, thereby bringing the mo-

lecular configuration to its original state. If the solid temperature is raised, the molecular vi-
brational energy increases. The consequent rise in the vibration amplitude tends to stretch the
molecules over greater distances although l<lmin. Since intermolecular attractive forces increase
weakly as compared to repulsive forces, molecules can be spaced farther apart at  higher tem-
peratures, leading to their thermal expansion.

m. Example 13
Water is contained inside a piston-cylinder assembly.
Assuming the water to be gaseous, determine both the rms and average velocities and
internal energies of the molecules at 293 K and 3000 K.
If 1 kmole of water is contained in a piston–cylinder–weight assembly, the volume of
which is either 1041.5 m3 or 0.0805 m3, determine the average volume around each
molecule.
Assuming these volumes to be spheres of radius r´, determine the sphere radii and the
intermolecular spacing for the two cases.
If the collision diameter (≈l0) of water molecules is ≈2.56 Å (1 Å = 10–10 m), deter-
mine l/lmax for each of the two cases. Express the answers in terms of l/lmax. If it is as-
sumed that 1 kmole of H2O behaves as an ideal gas at 1041.5 m3,  determine the mean

free path at 293 K. Comment on the results.



Solution
The Boltzmann constant,

kB = R /NAvog = 8314 J K–1 kmole–1/(6.023×1026 molecule kmole–1) 

= 1.38×10–23 J molecule–1 K–1.

The molecular mass

m = M/NAvog = 18.02 kg kmole–1/(6.023×1026 molecule kmole–1) 

= 2.99×10–26 kg molecule–1.

Vrms = (3kBT/m)1/2 = (3×1.38×10–23×293/2.99×10–26)1/2 = 637 m s–1.

Vavg = (2π–1/2) Vrms = 718.5 m s–1.

The energy per molecule,

u´ = (1/2)m(Vrms)
2 = (1/2) 2.99×10–26×6372 = 6.066×10–21 J molecule–1, and

u  = 6.066×10–21 J molecule–1×6.023×1026 molecule kmole–1=3654 kJ kmole–1.

At 3000 K,
Vrms = (3×1.38×10–23× 3000/2.99 ×10–26)1/2 = 2037.4 m s–1, and Vavg = 2299

m s–1.

u’=7.901x10-21 J/molecule , u= 4760 kJ/kmole

For a volume of 1041.5 m3,

v´ = v/NAvog = 1041.5 m3 kmole–1/(6.023×1026 molecule kmole–1) 

= 1.73×10–24 m3 molecule–1.

r´ = (3v´/4π)1/3 = 74.46×10–10 m or 74.46 Å.

l = 2r´ = 2×74.46 Å = 148.9 Å.

For a volume of 0.0805 m3,
v´ = 13.4×10–29 m3 molecule–1.

r´ = 3.172×10–10 m or 3.172 Å.

l = 6.34 Å.

Furthermore, since lmin/l0=1.1225, lmax/l0=1.2445, and

l0≈σ = 2.56 Å, lmax = 3.19 Å, and

l/lmax = 148.91/3.19 = 46.68 at v  = 1041.5 m3

kmole–1, and
l/lmax = 3.85/3.19 = 1.21 at v  = 0.018304 m3

kmole–1.
Finally lmean=1/(n’π σ2 }, n’ =6.023x1026/1041.5

= 5.783 x1023 , lmean =1/(5.783x1023

*π *(2.53x10-10)2  }

=8.6x10-06 m or 86000 Å!

o ecu es ed

Figure 23. Illustration of ice
molecules that exist in a fixed
configuration with respect to
each other.



Remarks
Attractive forces are negligible for the larger
volume (l/lmax= 46.68) and, hence, the water

molecules behave as in an ideal gas. However,
upon compression to the smaller volume l/l0=
1.34, and attractive forces become strong
enough for the water to exist as either liquid or
a solid (ice).
If velocity of a hypothetical ideal gas tends to
zero, so does u´, and, consequently, u=0. In re-
ality, as the molecular momentum becomes
negligibly small, matter is drawn together due to the intermolecular attractive forces,
thereby condensing it into a liquid or a solid.
The molecules are located farther apart in the larger volume at a specified temperature
or average molecular velocity. Consequently, the number of molecules per unit vol-
ume is lower than in the smaller volume, resulting in a lower pressure. Using the ideal
gas law, the pressure exerted by the larger volume at T = 293 K is 0.023 bar. How-
ever, this law cannot be applied once the molecules are relatively closely spaced as in
a liquid or solid, and cannot be used to predict the pressure under these conditions,
since attractive forces are not considered in its development. In Chapter 6 we will dis-
cuss real gas equations of state which consider the effect of attractive forces on pres-
sure.

6. Work
Gas molecules contained in a piston–cylinder assembly at a specified temperature

move with a certain average velocity. The impact of these molecules (or the gas pressure) on
the piston induces a net force on it as shown in Figure 24. This force will cause the piston to
move upwards unless it is constrained by an equal force. If the constraining force is smaller,
the piston will move some distance, say dx so that dV = Adx, with V and A, respectively  de-
noting volume and area until the force exerted by the gas on the piston reduces sufficiently to
equal the constraining force. Therefore, a force or pressure difference causes a volumetric
change dV. The work done to accomplish this change is

W = F dx = PA dx = P dV, (74)

where P is the pressure exerted by the gases within the cylinder at the end of expansion, and is
equal to the external pressure Pext exerted by the imposed constraining force. The work done is
assumed reversible (or performed in quasi equilibrium such that at each step during the volume
change Pext ≈  P), and the process is itself mechanically reversible (i.e., a positive or negative

fluctuation in pressure within the cylinder can cause the piston to move in either direction).
Consider a piston–cylinder arrangement containing an isothermal gas that is internally

divided by a partition into two unequal sections A and B, as shown in Figure 25. Assume that
the smaller section A away from the piston contains a larger number of molecules per unit vol-
ume as compared to section B. Since the temperatures in both sections are identical, the mole-
cules everywhere travel with the same average velocity. There is a pressure differential across
the partition, since section A is denser than B (i.e., PA>PB). If the internal partition is removed,
molecules in section A will migrate and collide with those in B. However, during a short initial
period, molecules in B that are adjacent to the piston will be unaware of that migration, and the
pressure exerted by them will remain unchanged at PB. After this initial period the migrating
molecules will reach all portions of B and the pressure will become uniform everywhere within
the cylinder. As a result the piston will move unless constrained. In this example work is per-
formed as a result of a nonuniform pressure difference within the system during the short ini-
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Figure 24. Schematic illustration
of work being done.



tial mixing period. Hence a single value of P cannot be assigned for the whole system during
the relaxation process. After this relaxation time the pressure is uniform and work ceases.

Work is a result of organized motion. Therefore, when a piston moves, gas molecules
contained in a cylinder also move in the same direction. A pressure difference may be em-
ployed to accelerate these molecules in a particular direction, consistent with Newton’s laws of
motion. As a result of the acceleration, gas molecules can acquire a higher kinetic energy, re-
sulting in higher temperatures.

7. Heat
Next, we discuss the concepts of thermal equilibrium and reversible heat transfer

through the following example. Assume a vessel to be partitioned into two sections A and B by
a hypothetical permeable surface (Figure 26). Gas is heated in section A and cooled in B. Since
they are at a higher temperature (being heated), the molecules contained in section A possess
greater energy than those in section B. Further, assume that at any given time N molecules
from A cross the partition and randomly move into section B, while a similar number migrate
from B to A so that there is no net mass transfer.

However, energy transfer occurs from A to B, since molecules migrating from section
A have greater energy compared to those in B. This energy transfer occurs as heat transfer that
is due to a temperature gradient serving as the driving potential. Heat transfer causes the ran-
dom motion of molecules to increase in all directions, regardless of phase. If the heating of
matter in section A and its cooling in section B are ceased, eventually the molecules contained
in both sections will move at the same average velocity, i.e., they will be at the same tempera-
ture and, thus, have the same kinetic energy. At this state thermal equilibrium has been
reached. Molecules in a system at a uniform temperature have, on average, the same transla-
tional energy. Therefore, although there is a microscopic molecular velocity distribution in the
matter; there is no net exchange of energy. Under these conditions any heat transfer is reversi-
ble since at any time an equal number of molecules with the same energy crosses in either di-
rection.

Consider a vessel containing hot liquid water placed in a room under atmospheric
conditions. The water molecules possess energy in their vibrational and rotational modes, with
each mode contributing energy equivalent to (1/2)kBT. The water molecules transfer energy
from these modes to the gas  molecules in air that impinge on the liquid. In turn, these gas
molecules transfer energy to other gas molecules that are farther removed from the liquid sur-
face, and so on. Eventually, the water cools and air heats until the liquid and gas are in thermal

A

weight

B

Piston

Figure 25. Schematic illustration of a relaxation proc-
ess where PA>PB, and TA>TB.



equilibrium, i.e., they exist at the
same temperature. At this state
since not all molecules within the
liquid or gas have the same energy,
energy (heat) transfer still occurs
between the low and high energy
molecules, although there is no net
energy exchange. Heat transfer
under these conditions is reversi-
ble.

8. Chemical Potential
The chemical potential

drives mass (or species) transfer in
a manner similar to the thermal
potential that drives heat transfer
from higher to lower temperatures.

a .  Multicomponent into Mul-
ticomponent

Consider a vessel divided
into two sections C and D (as
shown in Figure 27) that initially
contains oxygen throughout, and in which charcoal is spread over the floor of section D. As-
sume that as the charcoal is burned, sections C and D consist of two components: oxygen and
CO2. Further, consider a specific time at which the mole fraction of O2 in section C (say, x O2

=

80%) is larger compared to that in section D (say, XO2 = 30%).
Since molecules move randomly, for every 1000 molecules that migrate from C into

D through the section Y–Y, 1000 molecules will move from D into C. Consequently, 800
molecules of O2 will move into D while only 300 molecules of this species will migrate to C
from D, so that there is net transfer of 500 molecules of O2 from section C into D. Simultane-
ously, there is a net transfer of 500 molecules of CO2 across the Y–Y plane from section D into
C. The oxygen transfer enables continued combustion of the charcoal. This mass transfer (or
species transfer) due to random molecular motion is called diffusion.

The chemical potential µ  for ideal gases is related to the species concentrations

(hence, their mole fractions). A higher species mole fraction implies a higher chemical poten-
tial for that species. For instance, the chemical potential of O2, µO2

 is higher in section C com-

pared to D, thereby inducing oxygen transfer from C to D. If the charcoal is extinguished, CO2

production (therefore, O2 consumption) ceases, and eventually a state of species equilibrium is
reached. At this state the chemical potential of each species or its concentration is uniform in
the system.

b. Single Component into Multicomponent
Consider the following scenario. A vessel is divided into two sections E and F by a

porous membrane, as shown in Figure 28a. Section E initially contains a single component
(denoted by o) at a lower pressure, and Section F contains a multicomponent gas mixture at the
same temperature, but at double the pressure. Assume that the mole fraction of o molecules in
section F is initially xo,F = 0.2, and that there are 50 molecules per unit volume contained in
section E and 100 molecules per unit volume in section F. Further, assume the porosity of the
membrane to be selective such that it allows only o molecules to be transferred through its
pores (i.e., it is a semipermeable membrane). Assuming 200 molecules s–1 of o to migrate from
E into F, 400 molecules of all species will attempt to transfer into E from F due to the higher
pressure in that section. However, the semipermeable membrane allows only o molecules to

Figure 26. Heat transfer mechanism.



transfer from F, so that of these 400 only the 80 molecules of o move from F into E. Therefore,
there is net flow equal to (200–80)=120 molecules s–1 from E into F. If the pressure in section
F is increased eightfold, molecules of species o can no longer be transferred into it, since of the
1600 molecules that now attempt to migrate every second, the membrane allows only the 320
which are of o to move into section E (cf. Figure 28b). The net motion is 320 – 200 = 120
molecules s–1 into section E from F.

Therefore, by adjusting the pressure in section F, we can control the direction of spe-
cies transfer, or prevent it altogether by maintaining chemical equilibrium. For example, if
under these conditions, the pressure in section F is five times that in E, 1000 molecules s–1 at-
tempt to migrate from F to E, but only 200 molecules s–1 of o actually do, balancing the trans-
fer of the same amount from E to F. The chemical potential of species o becomes uniform
across the membrane at this state. Altering the pressure from this condition will change the
chemical potential. In general, the larger the pressure, the higher the chemical potential.

9. Boiling/Phase Equilibrium

a. Single Component Fluid
Consider an open vessel that is partly filled with liquid water and placed in the at-

mospheric, as shown in Figure 29a. If the water is heated, its molecular energy and intermo-
lecular distances increase. While the molecules in the interior of the liquid are surrounded in
all directions by molecules exerting very strong attractive forces, those near the surface are
partially unbalanced being somewhat weakly attached. Upon further heating, the intermolecu-
lar spacing keeps increasing, and the rotating molecules near the water surface attain sufficient
rotational energy to overcome the attractive forces. At this point these molecules move (or
escape) into the space occupied by air and/or water vapor. This process, whereby molecules
are removed from the liquid mass into the vapor space is called evaporation. Likewise, water
vapor molecules can approach the liquid surface and be pulled (or captured) into the liquid
phase by the strong attractive forces exerted by the liquid molecules. This process is called
condensation.

Consider a closed evacuated vessel into which a small quantity of water is injected
and then heated to a temperature T, as shown in Figure 29b. Upon heating, the pressure in the
vapor/gas phase increases as the initially liquid molecules transform into it. Initially, due to the
sparse population of gas-phase molecules the return rate to the liquid will be lower compared
to the escape rate into gas phase. As the pressure of the vapor/gas phase rises, the return rate to

CO2 

O2 

D 

C 

Figure 27: Illustration of species transfer. Oxygen mole-
cules are denoted by o and CO2 molecules by x.



the liquid phase also increases. Eventually a condition will be reached at which the return and
escape rates equal each other. At this state of phase equilibrium the water level will remain
unchanged over time. For any species k at a specific temperature, this pressure is called the
saturation pressure Psat

k. In a microscopic sense, the net evaporation rate = escape rate to the
vapor phase return rate to the liquid and hence if there is evaporation, there is no absolute
phase equilibrium.

In a microscopic sense, (the net evaporation rate) = (escape rate to the vapor phase) –
(return rate to the liquid) and, hence, in the case of evaporation there is no absolute phase
equilibrium. However, since there may be trillions of molecules crossing the interface at any
time, a few million molecules evaporating and condensing per unit time will not significantly
affect the phase equilibrium properties. As the liquid temperature is raised, the molecular en-
ergy increases and, therefore, more molecules escape the liquid into the gas phase. If phase
equilibrium is to be maintained at this stage, the vapor pressure should be increased such that
the capture rate of vapor molecules into liquid equals the escape rate of liquid molecules into
vapor. The saturation pressure increases with a rise in temperature (as seen in the Steam Tables
A-4).

Sublimation of solids into vapor occurs when the vibrational energy is high enough to
overcome the intermolecular forces within the solid. As with the liquid–vapor interface dis-
cussed above, at the same time vapor molecules strike the solid surface and are captured into
the solid phase. Phase equilibrium is achieved when the escape rate from the solid equals the
capture rate of impinging gaseous molecules.

b. Multiple Components
At a temperature of 50ºC, water molecules have stronger attractive forces as com-

pared to ethanol molecules, since ethanol is highly volatile. Therefore, water attains phase
equilibrium at a relatively lower vapor pressure (the saturation pressure of water at 50ºC is 10
kPa while that of ethanol is 40 kPa). Consider the system illustrated in Figure 30 that contains
a 90% water and 10% ethanol mixture at 50ºC. Assume that the escape and capture rates both
equal 1000 molecules s–1 cm–2 for water, and 4000 molecules s–1 cm–2 for ethanol. Typically,
the capture rate is proportional to the saturation pressure. Due to mixing at the molecular level,
of each cm2 of surface area 0.1 cm2 corresponds to ethanol molecules and the rest, i.e., 0.9 cm2,
to those of water. Therefore over each square cm of mixture surface, the number of ethanol
molecules that escape equals 4000×0.1 = 400. In order for phase equilibrium to prevail the

ethanol condensation rate should also equal 400 molecules cm–2. Equilibrium with respect to

Net:120 molec of “o”/s

P=400kP
a

80molec of “o”/s
→→→→

Figure 28: Illustration of a semipermeable membrane that allows species transfer from
(a) Section E to F; (b) Section F to E.



water requires a condensation rate of 900 molecules cm–2. The gas phase consists of both spe-
cies in some proportion (say, xw and xe that, respectively, denote the vapor mole fractions of
water and ethanol). Therefore, phase equilibrium at 50°C requires that  a total of 1300 mole-

cules condense per cm2, whereas each of these species alone would have condensed at the rate
of 4000 molecules/cm2 (for ethanol) and 1000 molecules/cm2 (for water). The capture rate is
proportional to the vapor pressure  or mole  fraction. The capture rate is proportional to the
vapor pressure through effects due to the molecular density and energy. Through this example
we see that molecularly mixed multicomponent substances have two effects on phase equilib-
rium:

The ethanol mole fraction in the gas phase xe is different compared to the liquid mole
fraction X e,l. Whereas Xe,l = 0.1, Xe = 400/1300 = 0.3 with the consequence that the gas–phase
mole fraction of the volatile component is higher compared to its liquid phase mole fraction.
The gas-phase mixture pressure P at equilibrium is greater than that for water pw

sat, but lower
than that for ethanol pe

sat. The partial vapor pressures exerted by the two species are Xe,l pe
sat

and xw,l pw
sat . This  relation for partial pressure is known as Raoult’s law (see Chapter 9). The

total gas-phase pressure P is a sum of these partial pressures given by P = Xe,l pe
sat  +  Xw,l pw

sat

=0.1x40 + 0.9x10 = 13  kPa, where pw
sat < P < pe

sat.Note that Xe = (.1* 40)/13 = 0.31  and Xw =
0.69.

Therefore, for this example, phase equilibrium exists at a pressure of 13 kPa at 50ºC
at which the vapor phase ethanol mole fraction is 30%. If the vapor pressure is suddenly low-
ered to 12 kPa, keeping the temperature and liquid mixture composition the same, the capture
rates for both species will be lower, implying that the escape rate from the liquid must be re-
duced in order to restore phase equilibrium. This may be accomplished by reducing the liquid
temperature (without altering the composition) so that fewer molecules escape into the vapor
phase, or by changing the composition, but maintaining the same temperature. That composi-
tion can be determined by applying Raoult’s Law, i.e., (1–xe)×10+xe×40=12 so that xe=6.7%.

Likewise, xe,l = xe×40/P=0.067×40/12=023, and its equilibrium value will reduce as the vapor

pressure is lowered. A more detailed discussion is presented in Chapter 9.

10. Entropy
Molecules undergo random motion as shown in Figure 31a. The energy of random

motion is indicated by the temperature (e.g., T∝mV2 where V denotes the molecular velocity; a

random velocity distribution is provided by a Maxwellian law) while “ipe” depends upon the
volume V of the system. In addition to “te”, molecules contain energy in the form of “ve” and
“re” at various rotational speeds. As seen in Figure 31a, the random motion which occurs in all

Liquid

Figure 29: (a) Water evaporation in air; (b) simultaneous evapo-
ration and condensation.



directions and in all velocities cannot be converted directly into work. If the motion is orga-
nized (cf. Figure 31b -  water flow from a dam) with macroscopic flow and kinetic energy, the
work capability is improved. Now consider blending a fluid in a blender and its temperature
increases; here, organized shaft work is converted into thermal (random) energy of the matter.
Entropy is a measure of the number of “random” states in which molecules store energy, just
as there are several ways to store physical items in a cabinet (depending upon the number of
items and the shelves in the cabinet). Assuming all of these states to be equally probable, the
entropy S is defined as a quantity proportional to the logarithm of the number of macro states
Ω, in which energy is stored i.e., S ∝ lnΩ.

The probability of predicting a particular macro state out of all possible macro states
is low, and the entropy is also defined as a quantity proportional to ln (1÷probability). Just as it

may be possible to rearrange the items in the cabinet among the various shelves over a very
short duration, it may be possible to reorganize the energy among the macro states of a system.

We now illustrate how the energy is distributed. Consider a monatomic gas. The total
translational energy of an individual particle is given as

εijk =(1/2) m Vijk2 = ( hP
2 /(8mV2/3))(i2+j2+k2), (75)

where εijk denotes the energy at a quantum number, hP the Planck’s constant (=6.623x10-37 kJ-

s/molecule), V volume, and where i, j, and k are quantum numbers in the x, y, and z directions,
and Vijk

2 = Vi
2 + Vj

2 + Vk
2. Note that as volume is decreased, the energy per quantum state is

increased. A crude explanation is that the molecules have frequent collisions within a smaller
volume thereby maintaining narrower velocity distribution or more molecules/atoms having
higher quanta of energy. For monatomic gas the energy is mostly translational and hence has
three degrees of freedom (i, j, and k). For a diatomic gas, the additional terms to be included
are

εl = (hPν)(l+(1/2)), and (76)

εr = ( hP
2 r/(8π2I))(r+1), (77)

liquid 

Figure 30: Boiling and condensation of a multicomponent solution of water (w) and ethanol
(e).



where εl denotes the vibrational quantum number, ν the frequency, r the rotational quantum

number, and I the moment of inertia. As we have previously discussed, diatomic molecules
have 3 translational quantum numbers, and one vibrational and one rotational quantum number
with five consequent degrees of freedom (i.e., we can assign 5 numbers, e.g., i, j, k, l, r for a

diatomic gas). As an illustration of energy quanta, consider the emission of light occurs due to
the excitation of electrons from a lower to a higher energy level (ε1) followed by decay to a

ground state (ε0); the frequency of light emitted (ν) by a single photon is given by the expres-

sion

hP ν = (ε1- ε0).

The number of photons depends upon the number of electrons undergoing similar processes.
Consider the example of water molecules contained within a rigid vessel of fixed vol-

ume. The energy stored in the molecules exists in various forms. Each particle has energy at
various quantum levels. Therefore, the macroscopic energy of a group of particles consists of,
say, for the sake of illustration, particle A at a hypothetical quantum state i=2, j=3, k=5 (cf. Eq.
(77)), particle B at i= 5, j=7, k=14, etc. Figure 32a and b illustrates two possible quantum or
macro states (particle A at 0, B at 1, C at 2, D at 3 and A at 0, B at 2,C at 2, D at 2 or the
0,1,2,3 and 0,2,2,2 states) for a group having 4 particles with 6 units of total energy. The other
3 possible quantum arrangements are (3,3,0,0; 2,2,1,1; 3,1,1,1). Considering millions of parti-
cles with a total energy of U, there exists an immense number of arrangements in quantum
states for the same group containing fixed energy. The entropy S is defined as S ≈ k lnΩ, (also

known as the Boltzmann Law) where Ω denotes the total number of quantum states and all

macro states are considered to be equally probable. Hence, S ≈ –k ln (probability of a particu-
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Figure 31 (a) Illustration of random motion of molecules; molecules travel with different velocities
(in steps of quanta); work capability is less. (b) Illustration of macroscopic motion of molecules
(e.g.: water from a dam), work capability is high.



lar macro state).
One can question what happens to the number of states as the volume is changed. The

number of quantum states depends upon the free (or available) space between molecules and
the larger the volume for a set number of molecules, the greater the number of quantum states
within which energy storage is possible. Therefore, the energy per quantum state in the smaller
volume is higher (cf. Eq. (77)). Upon compression, the molecules of a gas come closer to-
gether in a smaller volume and while the number of particles at each state is fixed, each parti-
cle contains energy at a higher energy state. Therefore, the entropy decreases as the volume is
decreased (or the pressure increases) at a fixed energy level. The energy value for quantum
levels εi is proportional to the inverse of the intermolecular spacing or (volume)2/3. Therefore,

quantum levels ε0 (ground energy), ε1, ε2, etc., can contain a higher energy value in a smaller

volume. For example, if in a larger volume ε0 corresponds to 2 units of energy, upon compres-

sion to 1/8th of that volume ε0 contains 8 energy units. Therefore, upon compression, the total

number of macro states reduces (or the energy per macro state increases) if the total energy and
total number of molecules are fixed.

It is seen from Eq. (77) and Figure 32a and b that when the energy contained in matter
U is increased at a specified value of V, there are more quantum numbers or more states in
which molecules store energy and, hence, entropy. On the other hand, given the same energy U
but at a reduced volume V, the energy per quantum state increases (cf. Eq. (77)) and, hence,
the entropy declines. Therefore, the entropy is a function of the energy and volume or S= S(U,
V). It is a property and a measure of the number of ways (macrostates) molecules store energy.
This relation will be rigorously discussed in Chapter 3 using classical thermodynamics.

Consider the entropy of a crystalline solid at 0 K that contains negligible energy. The
probability of molecules in the zero–energy macro state is unity, and S = 0. As the substance
temperature is increased, its molecules move apart (which increases the specific volume) and it
expands, and the entropy increases due to the increase in energy and change in volume. Upon
further heating, the solid changes phase to become liquid, and molecules are allowed to move
around other molecules. At this stage Sliquid>Solid. Upon further heating, the liquid can vaporize
so that the molecules translate at a relatively high speed (which, for water, is approximately
400 m s–1 at its boiling point). As a consequence, there is an increasing number of quantum
states within the translational energy mode, and the entropy becomes larger. This entropy in-
crease continues as the vapor is further heated.

We now discuss the relation between entropy and energy increase at fixed volume.
We will show later that dS/dU (=change in entropy or change in number of quantum states/
change in energy) = 1/T (cf. Chapter 3). The greater the number of molecules with high “te”
values (i.e. with larger molecular velocities) in a monatomic gas, the smaller is the increase in
entropy with an increase in the value of U at a specified volume. This implies a smaller in-
crease in the number of energy states, since most molecules possess energy at higher quantum
number. An analogy is having only five bills of 100 dollars each with a total worth of 500
dollars. Thus, if you are given another 100 dollars in a single bill, the total number of bills be-
comes six (much like a small increase in entropy). On the other hand if one has 500 one dollar
bills and is given another 100 dollars in like bills, the total number of bills is 600 (much like a
large increase in entropy). A large amount of energy transfer may be required at higher tem-
peratures to create a similar increase in entropy as compared to a system at a lower tempera-
ture.

Consider the energy U = ΣNi´εi so that

dU = ΣdNi´εi + Σdεi Ni´. (78)

The term “dU” represents the change in energy brought out by a process. For example, the
compression process (e.g. the work input) and heating process (heat flow into the matter) in-
crease the energy by “ dU” (Figure 32 c and e). The right hand side represents the mode in



which the molecules store the energy. The first summation in the above equation can be inter-
preted as the increase in the number of molecules dNi′ at a given quantum energy state. This is

caused by the heat addition to the mass at fixed volume (i.e., in the absence of a compression
process, or at a fixed number of quantum states) that increases the internal energy which
moves a few molecules from lower energy levels to higher energy levels (Figure 32c). Now,
with more energy and a fixed number of particles, a larger number of arrangements is possible
with a consequent increase in entropy. The second summation term represents the storage for
the same number of molecules due to the increased energy level at the same quantum state.
The latter occurs during compression in the absence of heat i.e. the molecules remain at the
same quantum level after the magnitude of that energy level has increased. This is denoted as a
bigger step size at the same quantum level (Figure 32e) and is known as the volume effect or
the PdV work effect. The second term will not change with the number of macro states, and
hence does not alter entropy.

We will show in Chapter 2 that (Net energy gain, dU = Energy gain due to heat trans-
fer, δQ – (Energy decrease due to reversible expansion work transfer, δW) where δWrev = PdV.

The term “rev” will be explained in Chapters 2 and 3. The energy gain due to heat transfer
results in an entropy increase. In Chapter 3 we will see that dS = δQrev/T. It can be shown that

δQ = Σ dNi´ εI, δW = -Σdεi Ni´.

Entropy increases with heat transfer only but not due to PdV work. When PdV work
is performed, a group of molecules are exerted on with a force. This accelerates the x–wise
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component of the molecular velocity V that increases the “te”. The energy level of this group
of molecules is raised as shown in Figure 32e. Thus, the total number of states do not change
even though the energy level for each group has increased due to work input. Now consider the
energy transfer due to heat (i.e. due to temperature difference) through solid walls into a gas
with the solid being at a higher temperature. The molecules within a group of gas molecules
impinging on the wall pick up the energy randomly and these can be placed at different energy
levels as shown in Figure 32c. The energy transfer through heat results in an entropy increase
while energy transfer through work does not. In Chapter 3 we will see that dS = δQrev /T (but

not δWrev/T or PdV/T).

The entropy increases as two different species are mixed. This can be illustrated
through the example of two adjacent adiabatic containers of volumes V1 and V2 at the same
temperature that, respectively, contain nitrogen and oxygen. If the partition between them is
removed, then N2 and O2 gases have a new set of quantum states due to extension of volume
from V1  and  V2  to V1+ V2 . This increases the entropy of each species. Hence mixing causes
an increase in entropy, and, consequently the system entropy. In this instance, mixing causes
the entropy to increase even though total energy of nitrogen and oxygen is unchanged due to
mixing.

11. Properties in Mixtures – Partial Molal Property
A kmole of any substance at standard conditions contains 6.023x1026 molecules

known as Avogadro number. The molecular energy is in the form of vibrational, rotational,
and translational energy, and the molecules are influenced by the intermolecular potential en-
ergy (ipe). At the standard state, the energy of pure water ¯u  is 1892 kJ/kmole (the bar at the
top indicates pure property on a kmole basis). If a kmole of water is mixed at the molecular
level at standard conditions with 2 kmoles of ethanol, each H2O molecule is now surrounded
by 2 molecules of ethanol. Since the temperature is unchanged, the intermolecular distance is
virtually unaltered before and after mixing. The attractive forces due to the water-ethanol
molecules are different from those between water-water molecules (this is true of non-ideal
solutions and will be discussed in Chapter 8) and, consequently, the potential energy is differ-
ent for the two cases. Therefore, the combined energy contribution to the mixture by a kmole
(or 6x1026 molecules) of water in the mixture ^uH2O, is different from that of a kmole of pure
water ¯u H2O. The heat at the top of ¯u H2O indicates property when the component is inside the
mixture. Here, ^uH2O denotes the partial molar internal energy. Similarly, the enthalpy and
entropy of the water are different in the mixture from its unmixed condition. This is further
discussed in Chapter 8.

If the solution were ideal, i.e., if the ethanol-ethanol intermolecular attractive forces
were the same as those for water-water molecules, the water-ethanol attractive forces would
equal those in the pure states. In that case ^uH 2 O = ¯u H2O, for an ideal gas mixture and
µk=µk since attractive forces do not influence the property. However, even then, ^s H2O

would not equal ¯sH2O, since the water molecules would be spread over greater distances in the
mixture with the result that the number of quantum states for water molecules would increase.

E. SUMMARY
We have briefly reviewed various systems (such as open, closed, and composite),

mixtures of substances, exact and inexact differentials and their relation to thermodynamic
variables, homogeneous functions and their relation to extensive and intensive variables, Tay-
lor series, the LaGrange multiplier method for optimization, and the Gauss and Stokes theo-
rems. The background material and mathematical concepts will be used through a quantitative
language useful to engineers involved with the design and optimization of thermodynamic
systems. We have also briefly covered the nature of intermolecular forces and potential, the
physical meanings of energy, pressure; of temperature, and of thermal, mechanical, and species
equilibrium; boiling and saturation relations; and, finally, entropy. These concepts are useful in



the physical interpretation of various thermodynamic relations that are presented in later chap-
ters.

F. APPENDIX

1. Air Composition
Species Mole % Mass %

Ar 0.934 1.288
CO2 0.033 0.050

N2 78.084 75.521
O2 20.946 23.139

Rare gases 0.003 0.002

Molecular Weight: 28.96 kg kmole–1.

2. Proof of the Euler Equation
Assume that our objective is to determine a system property F, where

F(λx1, λx2,...) = λmF(x1, x2,...), and (79a)

x1,new = λx1, x2,new = λx2,.... Differentiating Eq. (80) with respect to λ (and treating it as a vari-

able),

(∂F/∂(λx1,new))(∂x1,new/∂λ)+(∂F/∂(λx2,new))(∂x2,new/∂λ)+… = mλm–1F(x1, x2,...). (81b)

Since ∂x1,new/∂λ = x1, ∂x2,new/∂λ = x2, …, Eq. (81b) assumes the form

(∂F/∂(λx1,new))x1 + (∂F/∂(λx2,new))x2 + … = mλm–1F(x1, x2,...).

Multiplying both sides of the above equation by λ, and noting that

λmF(x1, x2,...) = F(x1,new, x2,new,...),

we have the relation

(∂F/∂(λx1,new))x1,new + (∂F/∂(λx2,new))x2,new + … = mF(x1,new, x2,new,...). (80)

If m = 1,

x F x mFkk
K

k=∑ =0 ( / )∂ ∂ . (81)

3. Brief Overview of Vector Calculus

a. Scalar or Dot Product

i. Work Done to Move an Object
Consider a surfboard being dragged over water along an elemental path ds

r
 by a

power boat that applies a force of 
r
F  on the board. The work done is given as

δ θW F ds F ds= ⋅ =
r r

cos ,

where θ denotes the angle between the force and the elemental path.

ii. Work Done to Move an Electrical Charge
Similarly if an electrical charge of strength Q is located at an origin, the force 

r
F  ex-

erted by it on another charge of strength q situated at distance 
r
r  removed from the origin is

r r
F qQ r r= ( )/ | |ε 3 ,



where ε denotes the Coulomb constant. If the product (qQ) > 0 (i.e., the two are like charges),

the force is repulsive. In case (qQ) < 0 (i.e., the charges are unlike) the force is one of attrac-
tion. The work done to move charge q away from Q

δW F dr= ⋅
r r

.

b. Vector or Cross Product
The area 

r
A  due to a vector product

r r r
A x y= × , (82)

can be written in the form
r r
A k x y= | || | sinθ , (83)

where 
r
k  denotes the unit vector in a plane normal to that containing the vectors 

r
x  and 

r
y , and

θ the angle between these two vectors. The vector product yields an area vector in a direction

normal to the plane containing the two vectors.
Consider the circular motion of an object around an origin in a plane. The force due to

that object in the plane
r r r r r
F i F j F i F j Fx y= + = +cos sinθ θ , (84)

where θ denotes the angle between the force and an arbitrary x–wise coordinate at any instant,

and 
r
i  and 

r
j denote unit vectors in the x– and y– directions, respectively. The torque exerted

about the center
r r r r r r r r
B F r i F j F i x j y k y F x F= × = + × + = +( cos sin ) ( ) ( cos sin )θ θ θ θ , (85)

where 
r r
i i×  = 0, 

r r
i j× = 

r
k , and 

r r
j i× = −

r
k .

When a screw is loosened from a flat surface by rotating it in the counter clockwise
direction, it emerges outward normal to the surface, say, in the z–direction. To place the screw
back into the surface, it must be rotated in the clockwise direction, i.e., it may be visualized as
moving towards the origin of the z–direction. The rotation is caused by an applied torque that
is a vector. If the term (F cos θ y – Fsinθ x) = 0 in Eq.(87), then there is no rotation around the

z–axis. In general, a force has three spatial components, i.e.,
r r r r
F iF jF kFx y z= + + , (86)

and the torque is described by the relation
r r r r r r
B F r i F z F y j F x F z k F y F xy z z x x y= × = + + + + +( ) ( ) ( ) , i.e., (87)

there are rotational components in the x– and y– directions also. If 
r
F  and 

r
r  are parallel to

each other, e.g., 
r r
F iFx=  and 

r r
r ix= , then

r r r
B F r= × = 0.

c. Gradient of a Scalar
Consider a one–dimensional heat transfer problem in which the temperature T is only

a function of one spatial coordinate, say, y, i.e., T = T(y). In this case T(y) is a point or scalar
function of y, since its value is fixed once y is specified. In general, the gradient of T is defined
as



r r r r
∇ = + +T i x j y k z T( / / / )∂ ∂ ∂ ∂ ∂ ∂ , (88)

which for the one–dimensional problem assumes the form
r r
∇ =T j T y∂ ∂/ , (89)

The x–z plane contains isotherms, since T≠T(x,z), and 
r
∇ T is a vector along normal to the

isotherms in the y–direction.
Consider, now, the temperature profile in an infinite cylindrical rod. Assume that the

temperature is constant along the axial direction z, once a cross–sectional location (x,y) is
specified, i.e., T=T(x,y), and T≠T(z). Assume an axisymmetric problem for which the iso-

therms are circular in the x–y plane and form cylindrical surfaces. In this case,

dT = (∂T/∂x)dx + (∂T/∂y)dy = 
r
∇ T· ds

r
, (90)

where , 
r r r
∇ = +T i T x j T y∂ ∂ ∂ ∂/ / . Therefore,

dT/ds = 
r
∇ T· ds

r
/ds, i.e., (91)

the gradient dT/ds varies, depending upon the direction of the gradient between any two iso-
therms. Along any circular isotherm 

r
∇ T· ds

r
 = 0 according to Eq. (93), since 

r
∇ T and ds

r
 are

normal to each other.
In general, if T=T(x,y,z) then isotherms form surfaces that lie in all three (x,y,z) coor-

dinates, and, at any location,
r
∇ T represents a vector that lies normal to a scalar surface on

which T is constant.

d. Curl of a Vector
Consider a vector

r r r r r r r r
∇ × = + + × + +F i x j y k z iF jF kFx y z( / / / ) ( )∂ ∂ ∂ ∂ ∂ ∂

= − + − + −
r r r
i F z F y j F x F z k F y F xy z z x x y( / / ) ( / / ) ( / / )∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ (92)

The LHS of Eq. (94) is a vector called curl 
r
F . If 

r r
∇ × F= 0, then the two are parallel to each

other, i.e., the vector field is irrotational. Assume that
r
F  = 

r
∇ T. (93)

Now assume that instead of a spatial coordinate system, x denotes pressure P, y denotes the
specific volume v, and z represents x1 (i.e., the mole fraction of component 1 in a binary mix-
ture), i.e.,

r r r

r

r

∇ × ∇ = −

+ −

+ −

T i x T v v T x

j P T x x T P

k v T P P T v

( / ( / ) / ( / ))

( / ( / ) / ( / ))

( / ( / ) / ( / )).

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

1 1

1 1  (94)

The vector 
r
∇ T lies in a direction normal to the isothermal surface T, and 

r
∇ ×

r
∇ T lies normal

to the plane containing 
r
∇  and 

r
∇ T. This implies that 

r
∇ ×

r
∇ T is a vector that lies back on the

isothermal scalar surface T, and, therefore, 
r
∇ ×

r
∇ T = 0. Note that the terms in the brackets

satisfy the criteria for exact differentials and the RHS of Eq. (96) equals zero. All thermody-
namic properties satisfy the irrotationality condition. Functions such as T=T(P,v,x1) are known

r
∇



as properties, point functions, scalar functions, or scalar potentials. Terms in exact differential
form, such as dT = ∂T/∂P dP + ∂T/∂v dv + ∂T/∂x1 dx1, are called Pfaffians.



Chapter 2

 2. FIRST LAW OF THERMODYNAMICS

A. INTRODUCTION
Chapter 1 contains an introduction to thermodynamics, provides some basic defini-

tions, a microscopic overview of thermodynamic properties and processes, and briefly reviews
the necessary mathematics. We will use that material to formulate thermodynamic laws based
either on a generalization of experimental observations, or in terms of four mathematical pos-
tulates that are not necessarily based on these experimental results. The laws of thermody-
namics are presented in Chapters 2 and 3, and the postulate concepts are addressed in Chapter
5.

The thermodynamic laws are simply restrictions on the transformation of energy from
one form into another. For examzple,

If the thermal energy content of a given mass of steam is 100,000 kJ, it is impossible to
obtain a work output of 150,000 kJ from it in the absence of another energy input. Here,
the First Law of Thermodynamics provides a restriction.
If that same mass of steam containing the same energy content exists at a temperature, it is
impossible to obtain a work output of 90,000 kJ from steam at 1000 K. In this case, the re-
striction is due to the second law of thermodynamics that constrains the degree of conver-
sion of heat energy.

In this chapter we will briefly discuss the zeroth and first laws that deal with energy
conservation, examine problems involving reversible and irreversible, and transient and steady
processes; and, finally, present the formulation of the conservation equations in differential
form. The second law and its consequences will be considered in Chapter 3.

1. Zeroth Law
The Zeroth law forms the basis for the concept of thermal state (or temperature). Con-

sider the body temperature of two persons (systems P1 and P2) read using an oral thermometer
(system T). If the systems P2 and T are in thermal equilibrium, and so are systems T and P1,
then systems P2 and P1 must exist at the same thermal state. Therefore, both persons will mani-
fest the same body temperature. Similarly, if the hot gas inside an electric bulb is in thermal
equilibrium both with the electrical filament and the glass wall of the bulb, the glass wall is
necessarily in thermal equilibrium with the filament.

2. First Law for a Closed System
We will present the First law of thermodynamics for a closed system, and illustrate

applications pertaining to both reversible and irreversible processes.

a. Mass Conservation
For closed systems the mass conservation equation is simply that the mass

m = Constant, (1)

In the field of atomic physics, mass and energy E are considered convertible into each another
and, taken together, are conserved through the well–known Einstein relation E = mc2, where c
denotes the light speed. However, in the field of thermodynamics it is customary to assume
that the conversion of mass and energy into each other is inconsequential and, therefore, either
is separately conserved.

b. Energy Conservation
An informal statement regarding energy conservation is as follows: “Although energy

assumes various forms, the total quantity of energy is constant, with the consequence that
when energy disappears in one form, it appears simultaneously in others”.



i. Elemental Process
For a closed system undergoing an infinitesimally slow process, (Figure 1a) during

which the only allowed interactions with its environment are those involving heat and work,
the first law can be expressed quantitatively as follows

δQ – δW = dE, (2)

where δQ denotes the elemental (heat) energy transfer across the system boundaries due to

temperature differences (Figure 1a), δW the elemental (work) energy in transit across the

boundaries (e.g., the piston weight lifted due to the expansion of the system), and dE the en-
ergy change in the system. The "E" includes internal energy U (=TE+VE+RE etc.) which re-
sides in the matter, kinetic energy KE and potential energy PE. Note that Q and W are transi-
tory forms of energy and their differentials are written in the inexact forms δQ and δW (see

Chapter 1) while differential of resident energy E is written as an exact differential. Dividing
Eq. (2) by m,

δq – δw = de, (3a)

where q denotes the heat transfer per unit mass Q/m, w the analogous work transfer W/m, and,
likewise, e = E/m.

It is customary to choose a sign convention for the work and heat transfer that follows
common sense. In the absence of work transfer, i.e., δW = 0, addition of heat causes an in-

crease in energy. Therefore, it is usual to accord a positive sign for heat transfer into a system.
For an adiabatic system (δQ = 0), if the work done by the system is finite and conferred with a

positive sign (W > 0), then, from Eq. (2), dE < 0. This is intuitively  appropriate, since in order
to perform work, the system must expend energy. On the other hand, if the system of Fig. 2 is
adiabatically compressed, work is done on the system (so that W < 0), and the stored energy in
the system increases (dE > 0).

The system energy consists of the internal, potential, and kinetic energies. Equation
(2) may be rewritten for a static system in the form

δQ – δW = dU. (3b)

ii. Internal Energy
At a microscopic level the internal energy is due to the molecular energy which is the

sum of the (1) molecular translational, vibrational and rotational energies (also called the ther-
mal portion of the energy), (2) the molecular bond energy (also called the chemical energy),
and the (3) intermolecular potential energy, ipe  (cf. Chapter 1). At a given temperature the
energy depends upon the nature of a substance and, hence, is known as an intrinsic form of
energy.

iii. Potential Energy
The potential energy of a system is due to the work done on a system to adiabatically

move its center of gravity through a force field. The potential energy of a system whose center
of gravity is slowly raised vertically (so as not to impart a velocity to it) in the earth’s gravity
field through a distance of dz increases by a value equal to mgdz. The first law

δQ - δW = dU + d(PE) + d(KE), 

where PE and KE denote the potential and kinetic energies, can be applied after noting that for
this case δQ = dU = d(KE) = 0, so that

0 – δW = 0 + d(PE) + 0. (4)



Now, δW = –F dz. The negative sign arises since work is done on the system by a force F that

lifts it through a distance dz. In raising the mass, the direction of the force is vertically upward.
In the absence of any acceleration of the mass, this force is also called a body force. Using the
relation F = mg for the force with g denoting the local gravitational acceleration, the work
done W = –mg dz, and using Eq. (4) d(PE) = –δW = mg dz. Integrating this expression across

a vertical displacement that extends from z1 to z2, the potential energy change is given as

∆PE = mg(z2 – z1).

The potential energy per unit mass due to the gravitational acceleration at a location z
above a stipulated datum is also called the gravitational potential pe, i.e.,

pe = gz. (5)

In SI units, pe can be expressed in J kg–1 or in units of m2 s–2, where

pe (in units of kJ kg–1) = g(in units of m s–2) z(in units of m)/1000.

In English units, pe can be expressed as BTU lb–1 = g(ft s–2) z(ft)÷(gcJ), where gc = 32.174 (lb

ft s–2lbf–1) is the gravitational constant, and J denotes the work equivalent of heat of value
778.1(ft lbf BTU–1).

iv. Kinetic Energy
In order to move a mass along a level frictionless surface, a boundary or surface force

must be exerted on it. Applying the first law, namely, δQ - δW = dU + d(PE) + d(KE), the

adiabatic work due to these forces can be expressed as

0 – δW = 0 + 0 + d(KE). (6)

The work performed in moving the center of gravity of a system through a distance dx is (– F
dx), where the force F = m dV/dt, the velocity V = dx/dt, and t denotes time. In order to be con-
sistent with the standard sign convention, the work done on the system is considered negative.
Therefore, d(KE) = m (dV/dt)×(V dt) = mVdV. Upon integration, the kinetic energy change of

the system as it changes its velocity from a value V1 to V2 is

∆KE = (1/2)m(V V2
2

1
2− ).

The kinetic energy per unit mass ke is

ke =1/2 V2. (7)

In SI units, ke is expressed in J kg–1, namely, ke(J kg–1) = (1/2)V2(m2 s–2). Often, it is prefer-
able to express ke as

ke (kJ kg–1) = (1/2000)V2.

In English units, ke(BTU lb–1) = V2(ft2 s–2)÷(gcJ). The kinetic and potential energies are inde-
pendent of the nature of the matter within a system, and are known as extrinsic forms of en-
ergy.

v. Integrated Form
Integrating Eq. (2) between any two thermodynamic states (1) and (2) we have

Q12 – W12 = E2 – E1 = ∆E. (8)

The heat and work transfers are energy forms in transit and, hence, do not belong to the matter
within the system with the implication that neither Q nor W is a property of matter. Therefore,
while it is customary to write the energy change for a process E12 = E2–E1, we cannot write Q12



= (Q2–Q1) or W12 = (W2–W1). Since for a cycle the initial and final states are identical,

δ∫ ∫=Q W=0.

Writing Eq. (8) on a unit mass basis

q12 – w12 = e2 – e1 = ∆e. (9)

The application of the first law to systems require these to be classified as either cou-
pled systems in which the transit energy modes, namely, Q and/or W, affect particular storage
forms of energy, or as uncoupled systems if the heat and/or work transfer affect more than one
mode of energy as illustrated below.

vi. Uncoupled Systems
Consider an automobile that is being towed uphill on a frictionless road during a

sunny summer afternoon from initial conditions Z1 = V1 = U1 = 0 to an elevation Z2, velocity
V2 and energy U2. Taking the automobile as a system, the heat transfer Q12 from the ambient to
the car is determined by applying Eq. (8), i.e.,

Q12 – W12 = E2 – E1 = ∆U + ∆PE + ∆KE,

so that Q12 = ∆U. Therefore, the heat transfer across the boundary increases the system internal

energy by ∆U which changes the static state of the system. The work performed to tow the

automobile is

– W12 = ∆ PE + ∆ KE, 

which influences the dynamic state of the system.

a. Example 1
A car of mass 2000 kg is simultaneously accelerated from a velocity V = 0 to 55 mph
(24.6 m s–1) and elevated to a height of 100 m. Determine the work required. Treat the
problem as being uncoupled.

Solution

Q12 – W12 = = U2 – U1 + KE2 – KE1 + PE2 – PE1.

0 – W12 = (0+(2000÷2)(24.6 m s–1)2–0+2000×(9.81×100)–0)÷1000 = 2568 kJ.

Remark
All of the work can be recovered if the car is made to slide down on a frictionless

road to ground level (i.e., to zero potential energy) so that the potential energy is completely
converted into kinetic energy. Upon impact against a spring the vehicle kinetic energy is fur-
ther transformed into the spring potential energy, thereby recovering the work. Hence, the
process is uncoupled.

vii. Coupled Systems
In coupled systems two or more interactions across the system boundary (e.g., heat

and work) influence the same energy mode. For example, if a tow truck pulls a car on a rough
high-friction road, the work performed is higher than that for an uncoupled system, since addi-
tional work is required in order to overcome the external friction. Frictional heating can cause
the internal energy of the car tires to increase, and if the tires do not serve as good insulators,
heat transfer to the road can occur. Therefore, the work is coupled with both internal energy
and heat transfer. This is illustrated in the following example.

b. Example 2
A car of mass 2000 kg that is simultaneously accelerated from a velocity V = 0 to 55
mph (24.6 m s–1) and elevated to a height of 100 m requires a work input of 3000 kJ.
If the car is well insulated, what is the change in the internal energy of the car?



Solution

Q12 – W12 = = U2 – U1 + KE2 – KE1 + PE2 – PE1.

0+3000=U2–U1+((2000÷2)(24.6ms–1)2–0+2000×(9.81×100)–0)÷1000=2568 kJ,

i.e.,

U2 – U1 = 3000 – 2568 = 432 kJ.

Remarks
The work input is more than ∆KE and ∆PE.  Thus additional work is used to over-

come friction. Frictional work results in heating. If the tires (which are part of the car)
are well insulated, their internal energy increases by 432 kJ. In this case the work is
coupled to changes in the internal, kinetic, and potential energies of the system.
Dividing the work into intrinsic and extrinsic contributions

W12 = W12,int + W12,ext,

we find that W12,int = 432 kJ, which results in the change in U, and that W12,ext = 3000
– 432 = 2568 kJ, which results in a change in the kinetic and potential energies,
(diathermic) and the tire remains at fixed temperature. Then there is no change in the
internal energy. Hence heat must be lost from the tires, i.e.,

Q12 – W12 = ∆U + ∆PE + ∆KE = 0 + ∆PE + ∆KE,

where Q12 = –432 kJ, and W12 = –3000 kJ. In this case the work is coupled with the
heat transfer. The heat transfer affects the intrinsic energy by changing U.
When the car moves at a high velocity, frictional drag due to the atmosphere can
cause its body to heat, thereby increasing the internal energy. The work done on the
car also increases its potential and kinetic energies, and the process becomes coupled.
The work cannot be recovered, since the car will contain a higher internal energy
even after impacting it against the spring, as illustrated in the previous example.
The heating of matter offers another example involving a coupled system. Consider

constant pressure heating that causes a system of gases to expand and lift a weight of 100 kg
through a distance of 2 m, if Q12 = 10 kJ, W12 = 1.96 kJ. (Here we neglect any change in the
center of gravity of the matter contained in the system.) If there is no change in the system
kinetic energy, from Eq. (8)

Q12 – W12 = U2 – U1 = ∆U. (10)

In this case Q12 ≠ ∆U. As a result of the work and heat interaction, ∆U = 10 – 1.96 = 8.04 kJ. If

the system is confined to include only the moving boundary and the lifted weight, and these
are considered adiabatic, then (–W12) = ∆(PE), so that the work performed alters the system

potential energy.
The illustrations of coupled and uncoupled systems demonstrate that it is necessary to

understand the nature of a problem prior to applying the mathematical equations.

c. Systems with Internal Motion
Consider a mass of warm water contained in a vessel. If it is stirred, the entire effort

imparts kinetic energy to that mass in the absence of frictional forces, and the center of gravity
of each elemental mass of water moves with a specific kinetic energy ke. If the kinetic energy
distribution is uniform throughout the system, its total value equals m x ke. Such a situation
exists in an automobile engine when fresh mixture is admitted or when the exhaust valve
opens. Oftentimes, the kinetic energy is destroyed due to internal frictional forces between the
system walls and moving matter, which converts the kinetic energy into internal energy, as in
coupled systems.



viii. Adiabatic Work and Caratheodary Axiom I
The work performed during all adiabatic processes (Q12 = 0) between two given

states is the same. Applying Eq. (8)

W12 = E2 – E1 = ∆E.

This statement is called the Caratheodary Axiom I (see Postulate III of Chapter 5). For exam-
ple, the electrical work (= voltage × charge current) used to heat a fluid adiabatically between

two temperatures is identical to the mechanical work (e.g., performed using a pulley–paddle
assembly to stir the water) required for a similar adiabatic heating process.

d. Cyclical Work and Poincare Theorem

ix. Cyclical Work
For a closed system undergoing a thermodynamic cyclical process,
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Figure 1: Illustration of the first law for a cyclical process.



dE∫ = 0. (11)

Hence, the first law (Eq. (2)) yields,

δ δQ W∫ ∫= , (12)

and Eq. (12) implies that if δQ∫ ≠0, then δW∫ ≠0. On a unit mass basis

δ δq w∫ ∫= .

Figure 1b illustrates the cyclical process in a steam power plant for which the heat transfer
during the various processes is indicated. Applying Eq. (12) for all processes, i.e., 1–2, 2–3,
3–4,..., and 8–1,

δ δQ Q Q Q W W W W∫ ∫= = = + + ++ + +12 23 81 12 23 81L L ,

so that

δW∫  = 0 –300 – 2000 + 0 + 0 –200 + 0 + 4000 – 500 = 1000 kJ.

Therefore, by considering the net heat transfer for this cyclical process, the net work output of
the plant can be determined.

x. Poincare Theorem
Consider an adiabatic system containing water and a mechanical stirrer. Work transfer

through the stirrer is used to
raise the water temperature
from a quiescent state 1 to an-
other motionless state 2. Since
Q12 = 0, the change in internal
energy can be obtained by ap-
plying the first law (Eq. (10)),
and U2 – U1 = ∆U = |W12|.

Next, if the insulation is re-
moved and the water allowed
to cool to its initial state,
Eq.(10) can again be used to
determine the heat flow Q21. In
this case Q21 =  |U2 – U1| =
|W21| as a consequence of the
Poincare theorem of thermo-
dynamics, which states that
during a cyclical process the
net heat interactions equal the
net work interactions. While
the Caratheodary axiom states the First Law in context of a single adiabatic process, the Poin-
care theorem expresses it for a cyclical process.

xi. Rate Form
Equation (2) can be used to express the change in state over a short time period δt

(i.e., δQ = Q̇ δt, and δW = Ẇδt to obtain the First Law in rate form, namely,

Q̇  – Ẇ = dE/dt. (13)

b
c

a

Figure 2: P–v diagram for quasiequilibrium and nonquasie-
quilibrium processes.



The rate of work Ẇ is the energy flux crossing the boundary in the form of macro-
scopic work (e.g., due to the system boundary motion through a distance dz as illustrated in
Figure 2). The heat flux  Q̇  is a consequence of a temperature differential, and does not itself
move the boundary, but alters the amplitude of molecular motion that manifests itself in the
form of temperature.

We see that energy conservation can be expressed in various forms (e.g., Eqs. (2), (3),
(8), (9), (12) and (13)). The laws of thermodynamics are constitutive equation independent. It
is possible to determine dE/dt accurately  if Ẇ and Q̇  are measured. Calculations of Q̇  and/or

Ẇ may require constitutive relations. In the context of the relation Q̇  = - λ∇T, a constitutive

equation for heat transfer is employed with Ẇ= 0. Therefore, the value of dE/dt depends upon
the accuracy of the Fourier law and can differ from actual experimental data.

e. Quasiequilibrium Work
Consider an adiabatic frictionless piston–cylinder assembly on which infinitesimal

weights are placed as illustrated in Figure 3a and Figure 3b. If the small weights are slowly
removed, the system properties remain almost uniform throughout the removal process. There-
fore, at any instant following the removal of an infinitesimal weight, if the system is isolated, it
is in an equilibrium state (i.e., its properties are invariant with respect to time). Since the inten-
sive state can be determined during any part of the process involving the successive removal of
weights, the path along which the process proceeds can be described (e.g., as illustrated in
Figure 2 for a quasiequilibrium process that moves the system from state 1 to 2R along the
path ABC). Due to their nature, quasiequilibrium processes are also termed quasistatic.

However, not all quasistatic processes are at quasiequilibrium. Consider the example
of a gasoline–air mixture (system) contained in a piston–cylinder assembly. At the end of a
compression process, spark is initiated,  hot region develops around the spark plug, while the
remainder of the mixture is much colder. Even though the piston moves slowly (i.e., it is qua-
sistatic) during this process, the spark initiation results in a non–equilibrium state, since the
temperature distribution is nonuniform, and it is not possible to assign a single system tem-
perature.

The consequences of the quasiequilibrium processes illustrated in Figure 3 are as fol-
lows:

If the infinitesimal weights are slowly removed, then at any time the force of the weights F
≈ PA, where A denotes the piston surface area. A force of P×A is exerted by the system.

Therefore, the infinitesimal work W performed by the system as the individual weights are
removed, and the piston moves infinitesimally through a displacement dx, is
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P2R

V2R
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VA

P1

V1

P1
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Figure 3: a. Quasiequilibrium process; b. Nonquasiequilibrium process.



δW = F dx = PAdx = PdV. (14)

Consequently, the work done during the process 1–2 is

W12 = PdV
1

2

∫ . (15)

This is an illustration of reversible work.
The work performed by the system results in a p\otential energy gain for the remaining
weights that are placed in the environment outside the system.
Since energy is transferred to the environment, according to the first law the system loses
internal energy. The process can be reversed by slowly placing the weights back on the
piston. This action will push the piston inward into the system, reduce the potential energy
of the weights placed in the system environment, and restore the system to its initial state.
A quasiequilibrium process is entirely reversible, since the initial states of both the system
and environment can be completely restored without any additional work input or heat in-
teraction.
We will see later that a totally reversible process is always a quasiequilibrium process.
The work done on or by the system PdV is due to the matter contained within it. The sign
convention follows, since it is positive
for expansion (when work is done by the
system), and negative during compres-
sion (when work is performed on the
system).
It can be mathematically shown that W
is an inexact differential. Equation (14)
may be written in the form δW = PdV +

0×dP. Using the criteria for exact differ-

entials (discussed in Chapter 1) with M
= P, and N = 0, it is readily seen that
∂M/∂P = 1, and ∂N/∂V = 0. Therefore,

∂M/∂P ≠ ∂N/∂V.

c. Example 3
Air is isobarically expanded from
state 1 (P1 = 1 bar, v1 = 1 m3 kg–1),
to state 2 (P2 = 1 bar, v2 = 3 m3

kg–1), and then compressed isometrically to state 3 (P3 = 3 bar, v3 = 3 m3 kg–1). De-
termine the final temperature and the net work.
Air is isometrically compressed from state 1 (P1 = 1 bar, v1 = 1 m3 kg–1), to state 4 (P4

= 3 bar, v4 = 1 m3 kg–1), and then expanded isobarically to state 3 (P3 = 3 bar, v3 = 3
m3 kg–1). Determine the final temperature and the net work.

Solution
The P–v diagram for this example is illustrated in Figure 4. The final temperature T3

is independent of the work path, and

T3 = P3v3/R = 300×3÷0.287 = 3136 K.

The work along the two paths

w123 = P1 (v2 – v1) = 1 × 100 × (3 – 1) = 200 kJ kg–1, and (A)

w143 = P4 (v3 – v2) = 3 × 100 × (3 – 1) = 600 kJ kg–1. (B)

1

4
3

2

V

P

Figure 4: P–v diagram with P expressed in
units of bar and v in m3 kg–1.



Remarks
The net work in the second case, i.e., w143, is larger compared to W123. The tempera-
ture represents the state of the system, and its functional form, e.g., T3 = P3v3/R, is in-
dependent of the path selected to reach that state. However, the work expressions w123

and w143 (Eqs. A and B) depend upon the path selected to reach the same final state,
even though the expressions for work (contain variables that only represent proper-
ties. Therefore, the final temperature is path independent, but the net work is not.
The inexact differential W integrated between two identical states along dissimilar
paths 1–2–3 and 1–4–3 yields different results. An inexact differential can only be
integrated if its path is known.

f. Nonquasiequilibrium Work
In the context of Figure 3, the initial pressure in the system is such that P1A = F1,

where F1 denotes the combined weight of the piston and the aggregate weights placed upon it.
If all of the weights are abruptly removed, rather than slowly as discussed previously, the force
exerted on the system near the piston will be much smaller than F1. The difference between
these two forces results in an acceleration of the piston due to Newton’s law, and the piston
mass acquires kinetic energy. Thereupon, the system pressure in the vicinity of the piston rap-
idly decreases. The translational energy of these molecules decreases with the pressure reduc-
tion.However, molecules further removed from the piston still possess their initial velocities
(i.e. higher T, higher P), and the system is in an internally nonequilibrium state. The matter
adjacent to the piston also acquires kinetic energy (e.g., Section A in Figure 5) while that re-
moved from it does not (e.g., Section B). Hence at any instant the system properties are non-
uniform and, consequently, the process is not at  quasiequilibrium.

The time taken for the system to equilibrate, also called its relaxation time trelax, is of
the order of the distance divided by average molecular velocity (that approximately equals the
sound speed Vs). Typically, the sound speed in air at room temperature is 350 m s-1. It follows
that if L = 10 cm, trelax = 3Η10-3 s. Consequently, a disturbance near the piston, such as a de-

creased pressure or decreased molecular velocity is communicated through random molecular
motion to molecules located 10 cm away after roughly 0.3 ms. If the piston is displaced by 10
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Figure 5: Illustration of a nonquasiequilibrium process.



cm every 0.3 ms, the disturbance perpetuates, and a non-equilibrium condition continually
prevails.

This behavior is similar to that of a disturbance due to stones dropped into a placid
pond. The disturbance is always present unless the time interval between two sequentially
dropped stones is long. If the rate of stones being dropped is fast enough, the disturbance
strengthens. In the piston–cylinder example, if the piston moves with a velocity of 1 m s–1

(which is much lower than the sound speed), the typical time scale involving motion through a
10 cm displacement (=L/VP) is 100 ms, which is much larger than the relaxation time. In this
case, the pressure rapidly conforms to a uniform value within the whole system. Therefore, a
process may be assumed to be in quasiequilibrium as long as its relaxation timescale (=L/Vs) is
considerably smaller than the process timescale (=L/VP) responsible for the property gradients
that are the source of nonequilibrium system conditions. If VP = 350 m s–1, quasiequilibrium
cannot be assumed, and the system properties (i.e., its state) along the process path cannot be
described. Therefore, an uncertain path is used to illustrate such a process in Figure 2.

During the quasiequilibrium process 1–2R described in Figure 2, the system performs
more work than any corresponding non-equilibrium process 1–2 (path D-E-F-2), since part of
the non-equilibrium work imparted to the piston in the form of kinetic energy is converted into
thermal energy. As a consequence, even if expanded to the same final volume, the temperature
at the end of a non-equilibrium process is higher, and applying the ideal gas law P2 > P2R (state
2). This may also be understood by envisioning the frictional effects that dissipate and raise the
system internal energy (therefore, temperature) during non-equilibrium processes. These proc-
esses are irreversible, since the original system state cannot be reverted to its original state by
simply reversing the work transfer. An additional amount of work is required to overcome the
effects due to friction.

Placing the system boundary immediately around the piston and the external weights
(that are respectively, of mass mp and mw), the force experienced by the system is

m dVP/dt = PbA – PRA, (16a)

where dVP/dt denotes the piston acceleration, Pb the pressure at the system boundary, PR = Po +
mg/A is the sum of the ambient pressure and the pressure due to the piston weight, and m = mp

+ mw. The work performed to move the accelerating mass m through a displacement dz is the
difference between the work performed by the system and that performed to overcome the
resistance to its motion. Multiplying Eq. (16a) by dZ

m (dVP/dt) dz = δW – (PodV + mg dz),

where the boundary work δW = PbdV. Therefore,

δW = m (dVP/dt) dz + PodV + mg dz. (16b)

Using the relation dz = VPdt in Eq. (16a), and integrating appropriately,

W = m ∆ke + Po∆V + m∆pe, (17)

where Poke = VP
2/2 and ∆pe = gz.

If the system pressure is uniform (e.g., trelax « L/Vp), then Pb = P and the work per-
formed by system

δW ≈ PdV,

which requires a functional relation between P and V for the matter contained in the system.
The following example illustrates a nonquasiequilibrium process.

d. Example 4:
A mass of air is contained in a cylinder at P = 10 bar, and T = 600 K. A mass  of 81.5
kg is placed on the piston of area 10 cm2 and the piston is constrained with a pin. If



the pin is removed,
assuming the piston
mass and atmospheric
pressure to be negligi-
ble:
Determine the piston
acceleration just after
the pin is released.
Write an expression
for the work per-
formed on the sur-
roundings.
Write an expression
for the work done by
the system matter if it
exists at a uniform
state.
Why is there a differ-
ence between the an-
swers to the questions
above?

What are the effects of a frictional force of 0.199 kN? (See also Figure 6.)
Solution

The force due to mass of 81.5 kg placed on the piston equals 81.5×9.81÷1000 = 0.8

kN. The pressure due to a weight of 0.8 kN equals 800 kPa (or 8 bar). Since the sys-
tem pressure is 10 bar, there is a force imbalance equivalent to 2 bars, and the mass is
accelerated. The force F = m×a = mdV/dt, i.e.,

F = (10–8)bar×100 kN m–2 bar–1×10 cm2×10–4 m2 cm–2×1000 N kN–1 = 200 N.

Hence, the initial acceleration dV/dt = F/m = 2.45 m s–2.
The work δW = 800×dV, which changes the potential energy of the mass.

If the process is internally reversible, the matter is internally in a quasiequilibrium
state, and δW = PdV.

The difference between the work performed by the system and that transmitted to the
weight in the form of potential energy increases the kinetic energy of the weight. If
the imparted kinetic energy is zero (or dV/dt = 0), the work done by the system equals
that done on its surroundings, i.e., there are no losses.
In the case of a frictional force of 0.199 kN, the resistance force F = 0.8 + 0.199 =
0.999 kN so that the resistance pressure P = 0.999 kN /10–3 m2 = 999 kPa, which is
virtually identical to the system pressure. Therefore, the force imbalance is negligible,
and m dV/dt ≈ 0. If the process is internally reversible, the work done by the system

δWsystem = P dV, and that done on the weight δWW ≈ 800×dV. Hence, the frictional

work
WF = P dV – 800×dV = (P – 800) ×dV.

e. Example 5
A mass of 50 kg is placed on a 10 cm2 area weightless piston (cf. Figure 7). The am-
bient is a vacuum, i.e., the pressure is zero in it. The initial gas pressure is 100 bar,
and the initial volume is 10 cm3. The cylinder height is 10 cm. A pin, constraining the
piston in place is suddenly released.

2

Piston area
A=10cm3

10 bar
600 K

81.5  kg

81.5  kg

Figure 6: A nonquasiequilibrium process due to the release
of a mass accelerated by a pressurized system.



Consider the gases in the piston–cylinder assembly to constitute a system A. If the
process in system A is internally reversible and isothermal, determine the work output
of the gas.
Let system B be such that it includes the piston, weight, and ambient, but excludes the
gases. What is the velocity of the piston when its position  is at the cylinder rim?  As-
sume system B to be adiabatic.

Solution
System A delivers work to system B during the process 1–2.

V1 = 10 cm3, V2 = 10 cm × 10 cm2 = 100 cm3.

The work done by system A is:

WA = ∫PdV = ∫(mRT/V)dV = mRT ln(V2/V1) = P1V1 ln(V2/V1) (A)

∴ WA = 100 bar × 100 kN m–2 bar–1 × 10 cm3 × 10–6 m3 cm–3 ln(100/10)

           = 0.230 kJ.
The work input from system A into system B results in an increase of  the kinetic and
potential energies of the weight. The initial and final heights of the piston in the cyl-
inder are:

Z1 = V1/A = 10 cm3 ÷ 10 cm2 = 1 cm, Z2 = 10 cm. (B)

Applying Eq. (8) to system B, i.e.,

Q12 – W12 = E2 – E1 = ∆U + ∆PE + ∆KE, (C)

where ∆PE = 50 kg×9.81 m s–2×(10–1)cm×0.01 m cm–1 ÷ (1000 J kJ–1) = 0.044 kJ,

and
∆U = 0.

Using this result and Eq. (A) in Eq. (C),
0 – (–0.230) = 0 + ∆KE + 0.044, i.e.,

∆KE = (1/2)m(V2
2 – V1

2) =  0.230 – 0.044 = 0.186 kJ.

Since the initial velocity V1 is zero, (1/2)mV2
2/1000 = 0.186 kJ, and substituting

m=50 kg,
V2 = 2.73 m s–1.

Remarks
Instead of
the 50 kg
weight, a
projectile of
very small
mass can be
similarly
used. If the
projectile
were fired
from the
chamber
using, say,
gunpowder,
the gases
would ex-
pand, al-
though the

Z1

Z2

V

P

(1)

(2)

B

   A

Figure 7: An analysis of a nonequilibrium process.



high temperature would remain unchanged over the period of interest due to the com-
busting powder. In that case, the projectile velocity can be determined using the
above example.
Since the velocity in the example is of the order of 2.73 m s–1, which is much slower
than the room temperature molecular velocity of 350 m s–1, one can assume rapid
equilibration within the system. However, at lower temperatures, the quasiequilibrium
assumption is invalid, since the molecular velocity can approach the process velocity.
If the ambient pressure Po is 1 bar, the work transmitted to the matter, which is also
called useful work, is given by the relation

Wu = ∫PdV – ∫PodV = ∫(P – Po)dV = ∫PdV – Po(V2 – V1), i.e.,

Wu = 0.230 –  1 × 100 × 90 × 10–6 = 0.221 kJ.

Therefore, the kinetic energy change is

∆KE = (0.221 – 0.044) = 0.177 kJ, and

V2 = (2 × 1000 × 0.177 ÷ 50)1/2 = 2.66 m s–1.

g. First Law in Enthalpy Form
If the kinetic and potential energies are neglected, Eq. (2) transforms into

δQ – δW = dU.

The enthalpy can replace the internal energy in this equation. The enthalpy of any substance is
defined as

H = U + PV, or (18)

h = u + Pv.

For ideal gases PV = mRT and, hence, H = U + mRT. Substituting Eq. (18) in Eq. (3’)

δQ – δW = d(H – PV).

For a quasiequilibrium process δW = PdV + δWother. Therefore,

δQ – PdV – δWother = d(H – PV).

Simplifying, this expression

δQ + VdP – δWother = dH. (19)

If δWother = 0

δQ + VdP = dH.

The First Law can be written in the form

δQ– δW' = dH,

where for a reversible process

δW' = – VdP.

For a quasiequilibrium process at constant pressure

δQP = dH. (20)



If an electric resistor is used to heat a gas contained in an adiabatic piston–cylinder–weight
assembly, as shown in Figure 8b, the constant pressure electrical work

–δWelec,P = dH. (21)

The constant volume work (cf. Figure 8a) is

–δWelec = dU. (22)

Note that the First Law is valid whether a process is reversible or not. However, once the
equality δW = P dV is accepted, a quasiequilibrium process is also assumed.

xii. Internal Energy and Enthalpy
Experiments can be performed to measure the internal energy and enthalpy using Eqs.

(21) and (22). For instance, electrical work can be supplied to a fixed volume adiabatic piston
cylinder assembly (cf. Figure 8a), and Eq. (22) used to determine the internal energy change
dU or du. Alternately, using a constant pressure adiabatic assembly (cf. Figure 8b), the electric
work input equals the enthalpy change, and Eq. (21) can be utilized to calculate dH or dh.

The internal energy is the aggregate energy contained in the various molecular energy
modes (translational, rotational, vibrational) which depend upon both the temperature and the
intermolecular potential energy which is a function of intermolecular spacing or volume (see
Chapter 1). Therefore, u = u(T,v) or u = u(T,P), since the specific volume is a function of pres-
sure. While differences in internal energy can be determined, its absolute values cannot be
obtained employing classical thermodynamics. However, we are generally interested in differ-
ences. For tabulation purposes a reference condition is desired. If the initial condition u1 = uref

is the reference condition and u2 = u during a process 1–2, the difference

∆u = u(T,P) – uref(Tref,Pref).

We normally set uref = 0 at the reference temperature and pressure Tref, and Pref, which
characterize the reference state. For example, for tabulation of steam properties, the triple point
(Ttp = 0.01ºC, Ptp = 0.006 bar) is used as the reference state. Once u is calculated with respect
to the reference condition uref = 0, Eq. (18) can be used to determine h. From the relation

href = uref + Pref vref = 0 + Pref vref.

Adiabatic work addition -
constant pressureAdiabatic work addition -

constant volume

Figure 8: (a) Constant volume, b) Constant pressure processes.



we note that href ≠ 0 even though uref = 0. However, a separate reference condition can be used

for the enthalpy so that

∆h = h(T,P) – href (Tref,Pref).

The internal energy can be separately calculated at this reference state. Property tables for
many substances set href = 0 at (Tref,Pref) (Steam tables usually use Tref = 0.01 C and Pref =
0.0061 bar for liquid water).

f. Example 6
One kilogram of water at a temperature T = Tref = Ttp = 0.01ºC is contained in an
adiabatic piston cylinder assembly. The assembly resides in an evacuated chamber
and a weight is placed on top of the piston such that P = Pref = 0.61 kPa. At these ref-
erence conditions, the specific volume v(Tref,Pref) = 0.001 m3 kg–1 is assumed to be in-
dependent of temperature. During an isobaric process, a current of 0.26 A provided at
a potential of 110 V over a duration of 60.96 min raises the water temperature to
25ºC. Determine the enthalpy of water at that state if href = 0.

Solution
We will use the energy conservation equation
δQ – δW = dU

and select the water mass as the system. In general, the work term will include a
volumetric change component in addition to the electrical work so that
δQ – PdV – δWelec = dU.

At constant pressure, δQP – δWelec,P = dU + PdV = dH, and on a unit mass basis

δqP – δwelec,P = du + Pdv = dh.

Recalling that the system is adiabatic (qP = 0), and integrating the latter expression
– welec,P = h – href.

Now, Welec = 0.26 × 110 × 60.96 × 60 = 104.6 kJ. Therefore, – (–104.6) = h – 0, and

h (25ºC, 0.61 kPa) = 104.6 kJ kg–1.
Furthermore,

u = h – Pv  = 104.6 – 0.61 × 0.001 ≈ 104.6 kJ kg–1.

Remarks
The experiments may be repeated at different pressures for the same temperature
range, and the enthalpy tabulated as a function of pressure. If the specific volume is
known, applying the relation u = h – Pv, the internal energy can also be tabulated, as
is done in the Steam tables.
Through experiments performed on ideal gases, it is found that h = h(T) which is in-
dependent of the pressure, e.g., the enthalpy of air at 25ºC and 1 bar is identical to that
at 25ºC and 10 bar (≈ 300 kJ kg–1).

Denoting the enthalpy of an ideal gase by h(T),

u = h(T) – Pv = h(T) – RT = u(T). (23)

(Later in this text, ideal gas properties will be denoted as u0, h0, etc.). In general, for
any substance u = u(T,v). However, when an ideal gas is isothermally heated in a
piston–cylinder assembly, the molecular translational, rotational, and vibrational en-
ergies remain constant, while the gas expands, thereby increasing the intermolecular
spacing. Under these conditions, the intermolecular potential energy for ideal gases is
also unchanged, since intermolecular attractive forces are absent. Therefore, the inter-
nal energy of an ideal gas is a function of temperature alone. A more detailed discus-
sion of this is contained in Chapters 6 and 7.



xiii. Specific Heats at Constant Pressure and Volume
As the matter contained within a system is heated, the temperature and internal energy

change. Applying the First Law to a constant volume closed system δqv = duv. The specific

heat at constant volume cv is defined as

cv = (∂u/∂T)v = δqv/dTv. (24)

If instead of heating, electrical work is supplied to an adiabatic system (as in Figure 8)

cv = (∂u/∂T)v = (|δwelec v|/dT)v.

If the matter contained in a piston–cylinder–weight assembly that ensures isobaric processes is
likewise heated (as illustrated in Figure 8b), the constant pressure specific heat cp is defined as

cp = (∂h/∂T)P = (|δwelec v|/dT)p. (25)

For any substance, the values of the properties cp and cv can be experimentally meas-
ured. In general, incompressible liquids and solids are characterized by a single specific heat c
which is a function of the temperature alone, i.e., cp ≈ cv = c(T). A more detailed discussion is

contained in Chapters 3 and 7. The enthalpy at a given pressure can be determined as a func-
tion of temperature by integrating Eq. (25), namely,

dhp = cp dT. (26)

The ratio of the two specific heats k = cp/cv is an important thermodynamic parameter. Typi-
cally the value of  k  is 1.6 for monatomic gases (such as Ar, He, and Ne), 1.4 for diatomic
gases (such as CO, H2, N2, O2)  and 1.3  for triatomic gases (CO2, SO2, H2O).

g. Example 7
Consider an electron gas, the enthalpy of which is h = 3CT6/P2. Obtain an expression
for cp.

Solution

cp = (∂h/∂T)P = 18CT5/P2 = f(T,P).

Remarks
Although the differentiation is carried out at constant pressure, cp is a function of both
pressure and temperature.
If water is isobarically heated at 100 kPa from 25 to 60ºC its specific heat at constant
pressure averaged over that temperature range is measured to be 4.184 kJ kg–1 K–1. If
the water is isobarically heated at 2 bars (e.g., in a pressure cooker) over the same
temperature range, the average value of cp is 4.17 kJ kg–1 K–1, illustrating that the spe-
cific heat varies with pressure within the same temperature range.
For ideal gases, since u and h are functions of temperature alone, so are the two spe-

cific heats, rendering the subscripts somewhat meaningless, i.e.,

cvo = du/dT = cvo(T), and cpo = (dh/dT) = cpo(T). (27)

For ideal gases the subscript v is to be interpreted as differentiation of u with respect to T,
while the subscript P may be interpreted as differentiation of h with respect to T. Substituting
Eq. (23) in Eq. (27)

cpo = cvo + R. (28)

Table A-6F presents relations for cpo(T) for many ideal gases while Table A-6C provides cpo

values at specific temperatures. The internal energy and enthalpy of an ideal gas can be calcu-
lated using Eq. (27), i.e.,



h = c (T) dTp,o
T

T

ref
∫ , and u = c (T) dTv,o

T

T

ref
∫ ,

where href = uref = 0. Once either the enthalpy or internal energy is known, the other property
can be calculated from the ideal gas relation u = h – RT. For instance, if cpo(T) is specified
(Tables A-6F), one can generate h and u tables for ideal gases (Tables A-7 for air and A-8 to
A-19 for many other ideal gases).

h. Example 8
In order to determine cp for an unknown ideal gas, 0.1 kg of its mass is deposited into
an adiabatic piston–cylinder–weight assembly and electrically heated (cf. Figure 8b)
by a current of 0.26 A at 110V for a duration of 30 seconds. The resultant temperature
rise is measured to be 10ºC. Calculate cp, assuming it to be constant.
The experiment is repeated by removing the weight, but constraining the assembly
with a pin so that the volume is kept constant (cf. Figure 8a). For the same tempera-
ture rise of 10ºC to occur, the current must now be applied for 23 seconds. Determine
cv.
Determine the molecular weight of the unknown gas from the measured specific heats
assuming the gas to be ideal.

Solution
δWelec – P dV = dU, or –δWelec = d(H – PV) + P dV

Since the pressure is held constant,
–δWelec = dH = m cp dT.

Assuming cp ≈ constant in the narrow temperature range, and integrating

– Welec =  m cp (T2 – T1).
Substituting for (T2 – T1) = 10ºC, and using a negative sign for the electrical work
transfer to the system

cp = (30×0.26×110÷1000)÷(0.1×10) = 0.85 kJ kg–1 K–1.

Since V = constant, –δWelec = dU = m cv dT, and

cv = (23×0.26×110÷1000)÷(0.1×10) = 0.65 kJ kg–1 K–1.

With the ideal gas assumption cp = cpo, and cv = cvo, using the relation,
cpo – cvo = R = R /M,
R = 0.85 – 0.65 = 0.2 kJ kg–1 K–1, and
M = 8.314÷0.2 = 42 kg kmole–1.

Remarks
An alternative method to determine the molecular weight of an unknown gas is by
charging a known mass of that gas into a bulb of known volume, measuring the tem-
perature and pressure, and employing the relation M = m R T÷(PV).

If the gas molecular weight is known, cvo can be determined if cpo is known, and vice
versa, since cvo = cpo – R.
At higher pressures, close to critical pressure, the intermolecular spacing becomes
small, and the effects of  intermolecular potential energy on u and h, and, therefore, cp

and cv, become significant for gases. This is discussed in Chapter 7.
The temperature remains constant for a liquid being vaporized at a fixed pressure. Since, ac-
cording to the First Law, the heat transfer per unit mass of liquid equals its latent heat of va-
porization, namely, qp = hfg, the enthalpy change is finite while dT = 0. Therefore, cp =
(∂h/∂T)p → ∞ during vaporization. (Although cp for both the liquid and vapor phases has a

finite value, that value is infinite during phase change. Therefore, cp is discontinuous during
phase change.)



xiv. Adiabatic Reversible Process for Ideal Gas with Constant Specific Heats
For any reversible process, δwrev = P dv. For an ideal gas du =cv0 dT. Hence, for an

adiabatic reversible process involving ideal gases
0 - P dv = cv0 dT

Using ideal gas law P = RT/v and simplifying with the relations R = cp0 - cv0 and k = cp0 /cv0

-(k -1)dv/v = dT/T
Assuming constant specific heats and integrating,

-(k-1) ln v = ln T + B´, i.e., ln T + (k-1) ln v = C´, or ln T vk-1 = C´.
Therefore,

 T vk-1 = C˝, (29a)

where C˝ = exp (C´). Using the relation T = Pv/R, we find that (Pv/R) vk-1 = C, or

Pvk = C. (29b)

For air cp0 = 1, cv0 = 0.714, i.e., k = 1÷0.714 = 1.4.

Note that if a gas is compressed adiabatically and reversibly from state 1 to 2 and then
expanded back adiabatically and reversibly from state 2 to 1, the net cyclic work is zero. For
the cyclic work to be finite, one must add heat at the end of the adiabatic compression process;
since the expansion line is parallel. In this case, the cycle cannot be closed unless heat is re-
jected after the reversible expansion, which is manifest through the Second Law (cf. Chapter
3).

We now discuss why the temperature increases during adiabatic compression. Con-
sider a 1 kg mass that is compressed for which δq -δw = du, where δw = Pdv. If the system is

adiabatic, δq =0. The deformation or boundary work (which is an organized form of energy

with motion in a specified direction) is used to raise the internal energy of the 1 kg mass,
thereby raising the internal energy (manifest through the random energy of molecules that
equals te+ve+re) and, hence, temperature. For an adiabatic process, if δw =0 then the internal

energy is unchanged, i.e., u = u (T)  (as for an incompressible substance). The temperature
does not change during the adiabatic compression of an incompressible substance.

xv. Polytropic Process
In practical situations, processes may not be adiabatic. It is possible to determine the

relation between P and v and find for most substances that
Pvn = C

where n may not necessarily equal k. Note that n = 1 for an isothermal process involving an
ideal gas and n = 0 for an isobaric process.

i. Example 9
Air is contained in an adiabatic piston cylinder assembly at P1 = 100 kPa, V1 = 0.1 m3,
and T1 = 300 K. The piston is constrained with a pin, and its area A is 0.01 m2. Vac-
uum surrounds the assembly. A weight Wt of 2 kN is rolled on to the piston, and the
pin is released. Assuming that k o (=cp/cv) = 1.4, and cvo = 0.7 kJ kg–1 K–1,
Is the process 1–2 reversible or irreversible?
What are the final pressure, volume, and temperature?

Solution
We will select our system to include both the air and the weight rather than the air
alone because the sudden process by which it changes state cannot be completely
characterized. The process is clearly irreversible, since the system cannot be restored
to its initial state unless the weight is lifted back to its original position, which re-
quires extra work.

P2 A = Wt, or P2 = Wt /A. (A)



With Wt = 2 kN, P2= 2 ÷ 0.01 = 200 kPa.

Applying the First Law to the system,
Q12 – W12 = 0 = E2 – E1, or E2 = E1.

Neglecting the kinetic energy,

E2 = U2 + Wt Z2, and E1 = U1 + Wt Z1. (B)

Substituting Eq. (A) in (B), since E2 = E1,
U2 –U1 = Wt (Z2 – Z1) = Wt (V2 – V1) ÷ A = P2 (V1 – V2), or

m (u2 – u1) = Wt (V1 – V2) ÷ A. (C)

Treating the air as an ideal gas, Eq. (C) may be written in the form

m cvo (T2 – T1) = Wt (V1 – V2) ÷ A. (D)

The two unknowns in Eq. (D) are T2, V2, so that an additional equation is required to
solve the problem. Invoking the ideal gas law for the fixed mass

P1V1/RT1 = P2V2/RT2, (E)

Equations (D) and (E) provide the solution for V2 and T2. Substituting for V2 from Eq.
(E) in (D), we obtain a solution for T2/T1, namely,

T2/T1 = (P2/P1 + cvo/R)/(1 + cvo/R). (F)

Using R = R /M = 8.314 ÷ 28.97 = 0.287 kJ kg–1 K–1,

T2/T1 = (200÷100 + 0.7÷0.287) ÷ (1 + 0.7 ÷ 0.287) = 1.29, or

T2= 387 K.
Substituting this result in Eq. (E),

V2/V1 = (1 + (cvo/R)(P1/P2))/(1 + cvo/R). (G)

∴ V2/V1 = (1+ 0.7 × 100 ÷ (0.287 × 200)) ÷ (1+ 0.7 ÷ 0.287) = 0.65, and

V2 = 0.65 × 0.1 = 0.065 m3.

Remarks
The potential energy of the weight is converted into thermal energy in air.
Once P2 and T2 are known, it is possible to determine ko (= cpo/cvo) for an ideal gas
using Eq. (F). Furthermore, employing the identity R  = c cp o v o, ,−  it is possible to cal-

culate the molar specific heats. The gas molecular weight is required in order to as-
certain the mass–based specific heats.
If the ambient pressure is finite, then Eq.
(F) and (G) remain unaffected, but P2=
W/A + Po.
A machine that violates the first law of

thermodynamics is termed a perpetual motion ma-
chine of the first kind (PMM1) (e.g., the “magician”
David Copperfield lifting a man and, thus, changing
potential energy without performing any work).
Such a machine cannot exist.

We have thus far presented the First Law in
the context of closed systems containing fixed
masses. This analysis is applicable, for example, to
expansion and compression processes within auto-
mobile engines, and the heating of matter in en-
closed cooking pots. Most of the practical systems
involve open systems such as compressors, turbines,

Figure 9: Nonuniform property within
a control volume.



heat exchangers, biological species, etc.  In the next section we will examine the derivation of
the first law for an open system.

3. First Law For an Open System
In open systems, mass crosses the system boundary (also known as the control surface

cs which encloses a control volume cv). In addition to heat and work interactions with the en-
vironment, interactions also occur through an exchange of constituent species between the
system enclosure and its environment. Consequently the mass contained within the system
may change. Examples of open systems include turbines which have a rigid boundary, thereby
implying a fixed control volume (as in Figure 9) or automobile engine cylinders in which the
cs deforms during the various strokes (as illustrated in Figure 10) We will initially restrict our
analysis to situations for which boundary deformation occurs only in that part of the c.v. in
which mass does not enter or exit the system (e.g., the portion H in  Figure 10).

In general, the system properties are spatially nonuniform within the control volume,
e.g., in the turbine illustrated in Figure 9,  TA ≠ TB ≠ TC so that internal equilibrium for the

entire system mass cannot be assumed and hence a single property cannot be assigned for the
whole control volume. However, the c.v. can be treated as though each elemental volume dV
within it is internally in a state of quasiequilibrium, and constitutes a subsystem of the open
composite system. The mass contained in any elemental volume (cf. Figure 9) is dV/(v(T,P)).

An open system energy conservation equation is equivalent to that for a closed system
if the energy content of an appropriate fixed mass in the open system is temporally character-
ized using the Lagrangian method of analysis. However, the problem becomes complicated if
the matter contains multiple components. It is customary to employ an Eulerian approach that
fixes the control volume, and analyzes the mass entering and leaving it. We now formulate the
Eulerian mass and energy conservation equations, and illustrate their use by analyzing various
flow problems. At the end of the chapter, we will also develop differential forms of these
equations that are useful in problems involving fluid mechanics, heat transfer, and chemically
reacting flows.

a. Conservation of Mass
An elemental mass δmi awaits entry through the inlet port of an open system (such as

the automobile cylinder illustrated in Figure 10) at time t. The cs enclosing the open system is
marked by the boundary FBHCDE. Another boundary AGFEDCHBA (called the control mass
surface c.m.s) includes both the mass within the c.v. and the elemental mass δmi. During an

infinitesimal time period δt (does not necessarily denote an inexact differential), while the

mass  δmi enters the c.v, another elemental mass δme exits it. Thus if mass in-flow rate is ṁ i

(say 0.2 kg/s) and if time period is δt (say 2 ms) then mass waiting outside the c.v. is  δmi = ṁ i

δt  (i.e 100 g). Thus every 2 ms, a slug of 100 g will enter our c.v. We will be concerned with

mass and energy conservation equations within δt first. The piston moves simultaneously per-

forming deformation work δWd. As the mass δmi moves into the c.v., the boundary of the

c.m.s moves from AG to BF and extends to LK, i.e., the c.m.s moves from AGFEDCHBA to
BFEDLKCHB in such a manner that it contains the same mass at both times t and t +δt. In

summary, ṁ
Quantity At time t At time t+δt

mass in c.v mc.v,t mc.v,t+δt

mass outside c.v δmi δme

mass within c.m.s mc.v,t +δmi mc.v,t+δt + δme

Since the mass enclosed within the c.m.s does not change during the time t,

mc.v,t +δmi = mc.v,t+δt + δme. (30a)



Applying a Taylor series expansion (see Chapter 1) at time t+δt to the RHS of Eq.

(29),

mc.v,t+δt = mc.v,t + (dmc.v/dt) δt + (1/2!)(d2mc.v/δτ2)t(δt)2 + …, (30b)

where (dmc.v,/dt)t denotes the time rate of change of mass in the c.v. at time t. Substituting Eq.
(30b) in Eq. (30a)

mc.v,t + δmi = mc.v,t + (dmc.v/dt)tδt + (1/2!)(d2mc.v/dt2)t(δt)2 + … + δme.

Simplifying, and dividing throughout by δt,

δmi/δt= (dmc.v/dt)t + (1/2!)(d2mc.v/dt2)t(δt) + … + δme/δt. (31)

xvi. Nonsteady State
In the limit δt → 0, the higher order terms in Eq. (31), namely d2mc.v/dt2 and so on

vanish. Therefore,

dmc.v/dt = ṁi  – ṁe, (32)

i.e., the rate of mass accumulation within the c.v. equals the difference between the mass flow
into it and that out of it. In Eq. (32) ṁi  and ṁe, respectively, denote the mass flow rate cross-
ing the system boundary at its inlet and its exit, and its LHS the rate of change of mass within
the c.v. The relation is derived for a c.v. containing a single inlet and exit.

The mass in the control volume can be evaluated in terms of density and the volume.
The density may be spatially nonuniform (Figure 9). Considering an elemental volume dV, and
evaluating the elemental mass as ρdV, an expression for mc.v. can be obtained in the form

mc.v. = ρdVcv∫ , (33)

Substituting in Eq. (32),
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Figure 10 : Mass and energy conservation in an open system at: a: time t;
and b: time t+δt.



d( ρdVcv∫ )/dt = ṁi  – ṁe. (34)

xvii. Elemental Form
For a small infinitesimal time period t, Eq. (32) may be written in the form

dmc.v. = dmi – dme, (35)

where dmi = ṁi d t denotes the elemental mass entering the c.v. during the time period dt, dme

= ṁedt is the mass that exits during that time, and dmc.v. is the elemental mass that accumulates
within the c.v. over the same period.

xviii. Steady State
Steady state prevails when the system properties and characteristics are temporally

invariant. (Property gradients within the system may exist at steady state, e.g., the spatial
non–uniformities in a turbine even though the local property values within the turbine are in-
variant over time.) Therefore,

dmc.v,/dt = 0, (36)

and Eq. (32) implies that ṁi  = ṁe, since, at steady state, mc.v. = constant. The mass within the
c.v. is time independent in a steady
flow open system. Although the steady
flow open system exchanges mass
with its environment, while the closed
system does not, both systems contain
constant mass.

xix. Closed System
Since mass cannot cross the

system boundary ṁi  = ṁe = 0, and,
hence at steady state, once again Eq.
(34) applies so that mc.v. = constant.
Equation (36) implies that the mass
within c.v. is time independent even in
a steady flow open system. Note that
the steady flow open system ex-
changes mass with its environment
even though it has constant mass
within c.v., while the closed system
does not allow mass to cross the
boundaries.

b. Conservation of Energy
The specific energy “e”  of a mass of matter δmi entering the inlet port of an open

system during an arbitrary time interval δt is due to its kinetic, potential, and internal energies,

kei, pei, and ui (e.g., as in the automobile engine illustrated in Figure 10). Applying the First
Law to the c.m.s,

δQc.m.s – δWc.m.s = dEc.m.s, (2)

where δQc.m.s and δWc.m.s refer to the heat and work transfer across the c.m.s boundary. The

δWc.m. includes electrical work δWelec, shaft work δWshaft, deformation work δWd (=PdV)

etc..The energy accumulation within the c.m.s during δt is

dEc.m.s = Ec.m.s,t+δt – Ec.m.s,t. (37)

B
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Work= Pi Ai dXi

Area,Ai

δδδδmi
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Figure 11: Illustration of flow work.



The energy in the system at time t

Et = Ec.v,t + δmi ei,

where Ec.v,t denotes the energy within the c.v, δmiei the energy due to the mass mi, and ei is the

specific energy of the inlet mass. The specific energy

e = u + ke + pe. (38)

At time t = t + δt, the energy content of the c.m.s is

Ec.m.s,t+δt = Ec.v,t+δt + δmeee, (39)

and the subscript e refers to the exit conditions. Using Eqs. (2), (37), and (39),

δQc.m.s – δWc.m.s = Ec.v,t+δt + δmeee – Ec.v,t – δmiei. (40)

Expanding Ec.v,t+δt using a Taylor's series,

Ec.v,t+δt = Ec.v,t + (dEc.v/dt)tδt +(1/2)(d2Ec.v/dt2)t(δt)2 + …,

and using this result in Eq. (40), and simplifying

δQc.m.s – δWc.m.s = (dEc.v/dt)tδt +(1/2)(d2Ec.v/dt2)t(δt)2 + … + δmeee – δmiei. (41)

In general, the work interaction through the c.m. boundary (analogous to closed sys-
tem work) can involve the shaft work δWshaft, the c.v. boundary deformation work δWd (e.g., at

boundary H in Figure 10), flow work δWf (a kind of boundary work involving the deformation

of c.m. boundary; for example, the boundary AG in Figure 11  is pushed in by applying inlet
pressure Pi so that the mass δmi can enter the c.v. within dt, and due to exit pressure Pe that

pushes out the mass δme within dt),and other work forms δWother (e.g., electrical work).

δWc.m.s = δWshaft + δWf + δWd + δWother. (42)

xx. Flow Work
The control mass boundary deforms  at the inlet and exit due to the mass entering and

leaving the c.v. Therefore,

δWf = δWf,i + δWf,e. (43)

At the inlet, the boundary AG is pushed towards BF as illustrated in Figure 11. Work is per-
formed on the control mass by pushing it through a distance dxi during time δt, i.e.,

δWf,i = –PiAidxi.

The distance dxi = Viδt, where Vi denotes the inlet velocity. Since PiAi have positive values, the

negative sign is added in order to satisfy the sign convention for work input into the system.
The previous expression may be written as

δWf,i = –PiAiViδt = –Pi ṁi
viδt. (44)

Similarly, at the exit the work done by the system in pushing the mass dme out is

δWf,e = –PeAeVeδt = –Pe ṁe
veδt.

Therefore,



δWf = Pe ṁe
veδt – Pi ṁi

viδt. (45)

Further, substituting Eqs. (42), and (45) in Eq. (41) and dividing throughout by δt

δQ/δt – δWshaft/δt + (Pi ṁi
vi – Pe ṁe

ve) – δWd/δt – δWother/δt

              = (dEc.v/dt)tδt +(1/2)(d2Ec.v/dt2)t(δt)2 + … + (δme/δt)ee – (δmi/δt)ei. (46)

xxi. Nonsteady State
In the limit δt → 0 in the context of Eq. (46), δmi shrinks to an infinitesimally small

volume (see the remarks below), but the ratio δme/δt is still finite, the boundary AG ap-

proaches BF (cf. Figure 11 and Figure 10), and the boundary LK approaches DC. Since the
c.m.s is virtually identical with the cs, δQ c.m.s/δ t = Q̇cv , δWshaft/δt= Ẇshaft , δWd/δt= Ẇd ,

δWother/δt= Ẇother . Using the expression δWc.v. = δWshaft + δWd + δWother, and the definition ẇ

c.v. = ẇ  shaft + ẇ  d + ẇother, Eq. (46) assumes the form Eq. (46) assumes the form

Q̇cv– Ẇcvt  = (dEc.v/dt) + ṁeee – ṁi ei – Pi ṁi
vi + Pe ṁe

ve. (47)

Simplifying this expression

Q̇cv– Ẇcv = (dEc.v/dt) + ṁeeT,e – ṁi eT,i, (48)

where eT = h + ke + pe is called the methalpy or total enthalpy. The Pv term in the enthalpy is
due to the work flow of matter into and out of the c.v. Equation (48) may be rewritten in the
form

(dEc.v. /dt) = Q̇cv– Ẇcv+ ṁi eT,i – ṁeeT,e, (49)

the physical meaning of which is as follows: The energy accumulation rate = Energy added
through the c.s. by heat transfer – Energy transfer through work interactions + Methalpy addi-
tion by advection – Methalpy expulsion through advection. The term Ec.v. must be evaluated for
the entire open system in which property gradients may exist. For instance, in a steam turbine
(Figure 10) as steam is admitted in order to start it, the turbine c.v. is warmed up and Ec.v. in-
creases over time. However, the temperature and pressure near its inlet are higher than at the
exit so that the specific energy varies within the c.v. We can evaluate Ec.v.by using the relation

(dEc.v. /dt) = d/dt( ρedVcv∫ ) = Q̇cv– Ẇcv+ ṁi eT,i – ṁeeT,e. (50)

For a nondeformable c.v., such as a turbine, ẇd = 0 so that ẇc.v. = ẇ shaft + ẇother.
The term ẇc.v. does not include the flow work which is already accounted for in the
enthalpy term (i.e., h = u + Pv =internal energy + flow work).
The elemental mass δmi in Figure 10 is the mass waiting outside control volume that

will subsequently enter the c.v. within the duration δt. As δt → 0, δmi and its volume

→ 0, and δme and its volume → 0. In this case the c.m.s. → c.v., and the two bounda-

ries merge.
The heat transfer across the c.v. boundary Q̇ c.v. = δQ/δt ≠ 0 as δt → 0, although δQc.m.

→ 0.

The term Ec.v. = (U + KE + PE)c.v.
The terms dEc.v/dt, Q̇ , and Ẇ are expressed in similar units and the dot over symbols
˙ , ˙ ,Q W and ṁ is used to indicate heat, work and mass transfer across the c.s., and time

differentials, e.g., dEc.v/dt, indicate accumulation of properties within the c.v.



Equations (49) and (50) can be applied to various cases such as steady (∂/∂t = 0),
adiabatic ( Q̇ c.v= 0), closed systems ( ṁi = 0, ṁe= 0), and heat exchange devices like

boilers ( Ẇc.v. = 0).

xxii. Elemental Form
Upon multiplying Eq. (49) by δt we obtain

dEc.v. = Q̇cvdt– Ẇcvdt+ ṁi eT,idt– ṁeeT,edt, = δQc.vdt–δWc.vdt+ ṁi eT,idt– ṁeeT,edt.(51)

In Eq. (51) dEc.v. denotes the energy accumulation, and δQc.v. and δWc.v. the heat and work

transfer over a small time period dt.

xxiii. Steady State
Open systems, e.g., turbines, compressors, and pumps, often operate at steady state,

i.e., when dEc.v. /dt = 0, dmc.v. /dt = 0, and ṁi = ṁe= 0. Hence,

Q̇cv– Ẇcv+ ṁi eT,i – ṁeeT,e = 0. (52)

xxiv. Rate Form
Consider the special case of a single inlet and exit with no boundary work. At steady

state, properties within the c.v. do not vary over time, although spatial variations may exist.
Therefore, Eq. (49) simplifies to the form

Q̇cv– Ẇcv= ṁ∆eT, (53)

where ∆eT = eT,i –eT,e.

xxv. Unit Mass Basis
The unit mass–based equation may be obtained by dividing Eq. (53) by mass, i.e.,

q̇cv– ẇcv = ∆eT. (54a)

where qc.v. = ˙ / ˙Q mcv ,and wc.v= Ẇc.v/ ṁ. For an elemental section of a turbine Eq. (54a) can be
written as,

δqc.v. – δwc.v. = deT.

If the KE and PE are neglected,

δqc.v-δwc.v=dh. (54b)

In a Lagrangian reference frame, a unit mass enters a turbine (as illustrated in Figure 12) with
an inlet energy eT,i which decreases due to heat loss to the ambient (i.e., δqc.v. < 0) and work

output (δwc.v. > 0). At the same time the unit mass undergoes deformation due to changes in

volume. If one travels with the mass, then

δqc.m.  -δwc.m = duc.m. (54c)

where  δwc.m is the work involved within c.m. But  δwc.m =  δwPdv for a reversible process.

Since the internal energy change du = dh - P dv - v dP,  then the equation (54c) becomes

δq +   v dP = dh,

where the subscript c.m. has been omitted. Upon comparison with Eq. (54c) with Eq. (54b),
the reversible shaft work   



δwc.v,rev = - vdP.

xxvi. Elemental Form
Over a small time period δt during which a mass dm both enters and leaves a steady

state open system, Eq. (52) yields

δQc.v. – δWc.v. = dm(∆eT). (55)

This expression may also be obtained by multiplying Eq. (53) by dm.

xxvii. Closed System
Equation (36) is also an expression of closed system mass conservation. The energy

conservation expression of Eq. (50) can be applied to closed systems. Since ṁi = ṁe= 0,

(dEc.v. /dt) = Q̇ – Ẇ. (56)

The subscript c.v. has been omitted for the closed system. The elemental form of Eq. (56),
namely, δQ – δW = dE, is identical to Eq. (2).

xxviii. Remarks
For a nondeformable c.v,  such as a turbine, Wd = 0 so that Wc.v. = Wshaft + Wother. The
term Wc.v. does not include the flow work which is accounted for through the enthalpy
term (h = u + Pv = internal energy + flow work). The elemental mass δmi in Figure 10
is the mass waiting outside control volume that will subsequently enter the c.v. within
the duration δt. As δt →  0, δmi and its volume →  0, and δme and its volume → 0.

However, δmi/δt ≠ 0, and δme/δt ≠ 0. In this case the c.m.s. → c.s., and the two sur-

faces merge.
The heat transfer across the c.v. boundary Q̇cv  = δQ/δt ≠ 0 as t →  0, although

δQc.m.s → 0. The control volume energy Ec.v. = (U + KE + PE) c.v.

The dot over symbols Q, W, and m is used to indicate heat, work and mass transfer
across the cs and time differentials, e.g., dEc.v/dt, indicate accumulation.
Equations (49) and (50) can be applied to various cases such as steady (∂/∂t = 0),

adiabatic ( Q̇cv= 0), closed systems ( ṁi = 0, ṁe= 0), and heat exchange devices such

as boilers ( Ẇcv = 0).

xxix. Steady State Steady Flow (SSSF)
Steady flow need not necessarily result in steady state, e.g., during the mixing of a hot and

cold fluid. Likewise, during intensive steady state, i.e., when the properties are temporally uni-
form, a system may not experience steady flow, e.g., as a fluid is drained from a vessel.

j. Example 10
As liquid water flows steadily through an adiabatic valve the pressure decreases from
P1 = 51 bar to P2 = 1 bar. If the inlet water temperature is 25ºC, what is the exit tem-
perature? Assume that the specific volume of water is temperature independent and
equal to 0.001 m3/kg, and that u = cT, where c = 4.184 kJ kg–1 K–1. Neglect effects
due to the kinetic and potential energies.

Solution
Mass conservation implies that dmc.m./dt = 0. Therefore, ṁi = ṁe= ṁ. Furthermore,

dEc.v/dt = 0, and Q̇cv= Ẇcv = 0. Applying Eq. (50), ṁ∆eT = 0.

Since eT = h + ke + pe, this implies that h2 = h1. A process during which the enthalpy
is unchanged (i.e., h2 = h1) is called a throttling process. Furthermore, since v2 = v1=
v, and u2 + P2v2 = u1 + P1v1 (as a consequence of h2 = h1),



c (T2 – T1) = –v(P2 – P1), i.e.,

T2 – T1 = (0.001 × (51–1) bar × 100 kPa bar–1) × (4.184 kJ kg–1K–1)  = 1.2 K, and

T2 = (298 +1.2) = 299.2 K.
Remarks

The temperature increases during the adiabatic throttling of liquids. We saw that
when a fluid of fixed mass is compressed adiabatically in a closed system, the bound-
ary or deformation work raises the internal energy and, hence, the temperature. If the
fluid is incompressible, liquid deformation work is absent and u and T cannot change.
On the other hand, if there is some flow inside the closed system, e.g., incompressible
water around inside a piston–cylinder assembly, applying the relation δq - δw = du +

d(ke) = 0 - 0 = du + d(ke). If the water slows down due to friction effects at the walls,
du increases while d (ke) decreases, i.e., the temperature changes for an incompressi-
ble substance occur only due to friction. The internal energy and temperature of a
compressible fluid changes during an adiabatic process due to Pdv work during com-
pression due to frictional heating.
We will now consider a throttling process. Water at the inlet must overcome an inlet
pressure over a cross-sectional area A. Consider an elemental mass having dimen-
sions of area A and distance L. This mass is pushed into the control volume with a
pressure of P. Therefore, the work done by applying a force P A to move along a dis-
tance L is equal to P A L. Mathematically, P A L = P V = P v m (which is the inlet
flow work). Using the subscript 1 to denote conditions at the inlet, the total energy of
the mass after it enters the inlet (that includes the work required to push it) is u1 + P1

v1 which will increase  the c.v. internal energy uc.v.  (see also Example 14). In order to
maintain steady state conditions, a similar mass must be pushed out of the exit by
flow work equal to P2 v2 m. However, P2 < P1, and the outlet flow work is lower than
the inlet flow work. Consequently, energy starts accumulating within the control vol-
ume heating the water. Therefore, the mass leaving the c.v. must be at a higher tem-
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Figure 12: First Law applied to a steady state open system in a Lagrangian
reference frame.



perature compared to the mass at the
inlet in order to maintain the steady
state condition. Chapter 7 contains
further discussion regarding the
temperature change in a gas that
accompanies a pressure drop during
a sudden expansion process that is
also called a throttling process. In
that case v2 > v1.

k. Example 11
A fluid flows through a capillary tube with an inlet velocity Vi and exit velocity Ve.
Apply the mass and energy conservation equations for steady flow and simplify the
expression.(Figure 13)

Solution
Mass conservation implies that ṁi = ṁe= ṁ. From energy conservation dEc.v/dt = 0,

and Ẇcv = 0 so that Eq. (50) implies that

Q̇cv– ṁ∆eT = 0, i.e.,  qc.v– ∆eT = 0. (A)

For an adiabatic system, Eq. (A) assumes the form

∆(h + ke) + ∆pe = 0, or (h + ke) + pe = Constant. (B)

The sum (h + ke) is called the stagnation enthalpy and is commonly used in fluid dy-
namics analyses. If u is a function of temperature alone, e.g., as for an ideal gas or in-
compressible liquid, ∆u = 0 and ∆h = ∆ (Pv). In this case,

(Pv + ke) + pe = Constant, or P/ρ + V2/2 + gZ = Constant. (C)

Remarks
Suppose eq. (C) is applied to an incompressible fluid between inlet and exit.  Then

ui + Piv + kei+pei = ue + Pe v + kee + pee. (D)

Rewriting this relation, we have

Pi/ρ + Vi
2/2 + gzi – Pe/ρ + Ve

2/2 + gze = ui – ue. (E)

The term em = P/ρ + V2/2 + gz  is the mechanical portion of the energy.  Rewriting Eq.
(E),

e e u um i m e i e, .− = − . (F)

From Eq. (E),

P P u um i m e i e. , ( )− = − ρ (G)

where Pm = P + ρV2/2 + ρ gz denotes the mechanical pressure, or

H H u u gm i m e i e, , ( ) /− = − (H)

where, Hm = P/ρg + V2/2g + Z. The difference Hm,i - Hm,e is the mechanical head loss

Hm,L, i.e.,

Hm,L= Hm,i - Hm,e =  (ui -ue)/g.

If there is no frictional loss for an incompressible fluid, ui = ue, and Eq. (E) yields

Figure 13: Steady flow through a capillary tube.



Pv + ke + pe or P/ρ + V2/2 + gZ = em = Constant. (I)

Eq. (I) is the Bernoulli energy equation which is well known in the field of fluid me-
chanics. Therefore,

em,i= em,e; Pm,i = Pm,e; Hm,i= Hm,e. 

Instead of a capillary tube with constant mass flow, consider natural gas flow through
a pipeline of variable cross section. The velocity distribution across the pipe may be

spatially nonuniform, and the density
also may vary axially as the flow pro-
ceeds. If an imaginary capillary tube of
very small cross section is inserted into
the pipe, such that velocity across the
capillary tube is spatially invariant at
both inlet and outlet, the energy
change for a non-adiabatic elemental
mass flow through it is given by Eq.
(B), and Eq. (D) if  adiabatic. Such a
tube is called a stream tube, and if we
imagine ourselves to be situated on top
of a unit mass travelling through the
stream tube, the energy of the mass is
governed by Eqs. (B), (D) or (I). An
infinite number of stream tubes can
theoretically be inserted across a cross
section, and the total energy change
can be calculated.

c. Multiple Inlets and Exits
For the mass boiler illustrated in Figure 14,

dmc.v/dt = ṁi∑  – ṁe∑ , and (57a)

(dEc.v. /dt) = Q̇cv– Ẇcv+ ṁi∑ eT,i – ṁe∑ eT,e, (57b)

d. Nonreacting Multicomponent System

xxx. Mass Conservation
For multicomponent nonreacting systems having a single inlet and exit, Eq. (32) may

be written in terms of each component, namely,

dmk,c.v/dt = ˙
,mk i  – ˙

,mk e. (58)

The mass flow rate of a component is the product of the component molar flow rate multiplied
by its molecular weight, i.e., ṁk  = Ṅk MK. The mole balance equation for each species is
written in the form

dNk/dt = ˙
,Nk i  – ˙

,Nk e. (59)

and the overall mass balance assumes the form

dmc.v/dt = d mk cv,∑ /dt = – ṁe∑ . (60)

The mass conservation equation will be extended to reacting systems in Chapter 11.

xxxi. Energy Conservation
The energy conservation may be written in the molal form as

Figure 14: Boiler with multiple inlets and exits.



 (dEc.v/dt) = Q̇  c.v. - Ẇ c.v. + Σ ˙
,Nk i êk,T,i - Σ ˙

.Nk e
ˆ

, ,ek T e .

The advection energy  for mixtures is defined as

  ṁi∑ eT,i = Σ ˙
,Nk i êk,T,i ,

and the advection enthalpy ṁh for a mixture

 ˙ ˆmh N hkk k= ∑ ,

where 
)
ek,T,i  and ĥk  denote the energy and enthalpy of the k–the component in the mixture (cf.

Chapter 1). If we assume that êk,T,i  = ek,T,i  and ĥk  = hk  (which is the enthalpy of component k
in its pure form at the same temperature and pressure – discussed in greater detail in Chapter
8),

(dEc.v/dt) = Q̇  c.v. - Ẇ c.v. + Σ ˙
,Nk i ek,T,i - Σ ˙

.Nk e ek,T,e. (61)

4. Illustrations
The simplest class of problems pertains to those concerned with spatially uniform

properties within a c.v., also known as uniform state problems. However, the system charac-
teristics can change over time.

a. Heating of a Residence in Winter
A transient analysis must be employed to predict the temperature as a residential

space is heated from a colder to a warmer temperature.

l. Example 12
A rigid residential space is at a temperature of 0ºC (which equals the ambient tem-
perature). A gas heater is used to warm it up to 20ºC. Heat is lost from the walls, floor
and ceiling of the space to the ambient at a rate of 3 kW. The net air equivalent mass
inside the house is 400 kg. What is the required blower capacity so that the space can
be warmed to the desired temperature in 15 minutes. Assume warm air to be available
at 40ºC, the air mass in the space to be constant, and the air exhausts at the space
temperature. Assume also that cvo = 0.71 kJ kg–1 K, and R =0.287  kJ kg–1 K–1. As we
heat the space and if P = constant, then mass (=PV/RT) will decrease inside the con-
trol volume and mass conservation requires that mass leaving must be more compared
to mass entering. Then mass must be decreasing. However, in order to simplify the
problem, assume that mass  in the residential space is constant.

Solution
We start by writing the generalized mass and energy conservation equations for open
systems. Using the mass conservation relation, namely, Eq. (32), at steady state

ṁi = ṁe= ṁ. (A)

Neglecting the potential and kinetic energies, Ec.v. = U, and Eq. (50) assumes the form

d/dt( ρedVcv∫ ) = Q̇cv– Ẇcv+ ṁi hi – ṁehe. (B)

Substituting Eq. (A) in Eq. (B), and assuming constant specific heat and uniform tem-
perature throughout the space

mc.vcvodT/dt = Q̇cv– Ẇcv + cpo(Ti – Te). (C)

Since Ẇcv= 0 and the exit temperature Te equals the house temperature T, Eq. (C) may
be written in the form



cv vo

cv po i

m c dT

Q  mc (T T )
 =  dt˙ ˙− −

. (D)

After integration and simplifying,

ln(A – B T) = –Bt + C. (E)

The constants

A = BTi + Q̇cv /(mc.vcvo), and (F)

B = ṁcpo/(mc.vcvo). (G)

Applying the initial condition T = To at time t = 0, using Eq. (E)

ln (A– BTo) = C. (H)

Employing Eq. (E)–(H),

(( Q̇cv / ṁcpo) + (Ti – T)) / (( Q̇cv / ṁcpo) + (Ti – Te))= exp(–(t/tc)), (I)

where the characteristic time associated with heating the house

tc = (mc.vcvo)/( ṁcpo) = mc.v/( ṁk)= (284  ṁ-1) (J)

where k = cpo/cv0. The mass heat capacity of the house Cvo equals mc.vcvo. Using the
desired temperature T = 293 K in the allotted time t = 900 s, with the initial and inlet
temperatures Te = 273 K, T= 293 K  and Ti = 313 K, the heat loss Q̇cv  = –3 kJ s–1,
mc.v. = 400 kg, and the properties cvo = 0.71 kJ kg–1 K–1 and cpo = 1 kJ kg–1 K–1, Eq. (I)
yields

(–3 ṁ–1 + 313 – 293) ÷ (–3 ṁ–1 + 313 – 273) = exp (–3.17 ṁ).

Solving iteratively ṁ = 0.327 kg s–1. Then  from Eq.(J), tc =  284  ṁ-1 = 869 s.
Remarks

The characteristic time tc is a useful time scale. The higher the house heat capacity,
the larger is the value of tc, implying that it takes longer to heat a space with the same
flow rate. Typically, the mass to be heated depends upon the building area. For most
residential buildings, the air equivalent mass is 50 kg per m2 of heated area (10 lb ft-

2), and for larger houses and commercial buildings this mass is 150-350 50 kg m-2.
The example uses a low air mass equivalent.

b. Thermodynamics of the Human Body
There is perpetual heat loss from the human body and, yet, normally the body tem-

perature remains virtually unchanged.

m. Example 13
Consider a spherical tank of radius 0.38 m (radius R). We wish to pack electric bulbs
each of radius 0.01 m (radius a). The power to each  bulb is adjusted such that the sur-
face  temperature of the tank is maintained at  37ºC. The heat transfer coefficient  is
about 4.63 W/m2 K. Assume steady state. Determine a) heat loss from the tank  (=
hHA (T-T0)) for T0= 25ºC, b) number of bulbs you can pack in the tank, c) amount of
electrical power required for each bulb so that the tank surface is always at 37 C ; d)
what are the answers for (a) to (c) if the tank radius is reduced to 0.19 m but the sur-
face temperatureis still maintained at 37ºC  and the bulb size is fixed?

Solution
Q̇  = hH A (T- T0) = 4.63 × 4 π × 0.38 2 × (37-25) =101 W.

Since the volume of each bulb V = 4/3 ×π ×R3, the number of bulbs R3/a3.=54872.



At steady state dEc.v/dt = Q̇  - Ẇ + ṁi eT,i - ṁeeT,e  = 0, ṁi = ṁe = 0, i.e.,

Q̇  - Ẇ= 0.

Therefore, the electrical work Ẇ = Q̇ , and

Ẇ/N = Q̇ /N = 101/54872 = 0.00184 W/bulb.

The heat transfer
Q̇ /N = hA(T-T0)/(R

3/a3) = hH 4 π(T- T0) a
3/ R  = 0.0007/R.

Therefore, by reducing the radius R, the electrical work per bulb increases, and the
power per bulb doubles to 0.00368 W.

Remarks
As an analogy, the cells in a human or animal body can be thought of as replacing the
bulbs in the above example. The electrical power can then be replaced by the slow
metabolism of fuel (glucose and fat). As the size of a species decreases (Figure 15a),
there is a smaller number of cells (which decrease in proportion to the length scale
R3), while the surface area decreases more slowly (according to R2). Thus, a larger
amount of fuel metabolism is required in each cell.

We can now obtain scaling groups. The heat loss from an organism Q̇L= Q̇L
′′A =

hA(Tb - T), where A denotes the organism body area. The heat ransfer rate h is con-
stant for most mammals. We note that Q̇L∝  mb 

2 / 3. Experiments yield that Q̇L  =

3.552 mb
0.74.

The metabolic rate during the human lifetime keeps varying with the highest meta-
bolic rate being for a baby and the lowest  being for a relatively senior citizen.

C.V.

Decreasing
Radius

 R

 Species of different sizes

Figure 15a: Metabolic rates and sizes of species.



The minimum metabolic rate required for maintaining bodily functions is of the order
of 1 W. The open system energy balance under steady state provides the relation Q̇ c.v.

= ṁehe - ṁihi =  ṁ(he - hi).
If the body temperature rises, (e.g., during fever), then dEc.v/dt ≠ 0.

c. Charging of Gas into a Cylinder
Compressed gas cylinders, containing high–pressure gases, are commonly used to

supply gas for welding torches and fire extinguishers. The following problem considers the
time required to charge gases up to a specified pressure into a cylinder of known volume.

n. Example 14
A rigid cylinder is charged with an ideal gas through a pressurized line, and the flow
is choked. Determine:
The enthalpy in the tank at a time t » 0, assuming mt=0 = 0.
A relation between the cylinder and line temperatures.
The cylinder temperature, pressure, and mass as a function of time.

Solution
For this problem, ṁe = 0 so that

dmc.v/dt = ṁi . (A)

Assuming that the gas charging occurs over a short duration, heat losses can be ig-
nored, i.e., Q̇cv= 0. Furthermore, the kinetic and potential energies, and boundary and
shaft work can also be assumed negligible, and, using Eq. (50),

(dUc.v/dt) = ṁi hi. (B)

Figure 15b: Metabolic rates of different species. (Adapted from Scaling: Why is animal size so
important. K.S. Nielsen, Cambridge University Press, p 57, 1984. With permission).



Assuming a uniform state in the c.v, Uc.v. = ∫uρdV = uρ∫dV = um, and Eq. (B) may be

written in the form

(d(mu)/dt) = ṁi hi, or (C)

m du/dt + u dm/dt = ṁi hi. (D)

From Eqs. (A) and (D)

dm/dt (hi – u) = m du/dt. (E)

Assuming the inlet state to be at steady state, i.e., hi ≠ h(t), Eq. (E) may be written as

dm/m = du/(hi – u), (F)

which upon integration, using the initial conditions u = uo, m = mo, at t = 0, assumes
the form

m/mo = (hi – uo)/(hi – u). (G)

Using Eq. (G),

m(hi – u) = mo(hi – uo). (H)

Simplifying with m = m0 + mi,

u = hi -(mo  /(m0 + mi)) (hi - uo). (I)

Equation.(I) is valid whether the matter is an ideal gas or not. Since dh = cpodT and du
= cvodT, and cpo and cvo remain constant, hi = cpoTi and u = cvoT. Using these relations
in Eq. (I) we obtain the relation

T=  (mo T0 + mi k0 Ti)/(m0 + mi), (J)

where ko = cpo/cvo. The pressure in the tank P(t)= m (t) RT/V, and

P(t) =  (moT0 + mik0 Ti) R /V (K)

If mo = 0, from Eq. (H) m(hi – u) = 0. Since m ≠ 0, for this initial condition

hi = u. (L)

Further with constant cpo and cvo, hi = cpoTi and u = cvoT. Using these relations in Eq.
(L) we obtain,

T = koTi, (M)

where ko = cpo/cvo. When the line pressure is large, gas dynamic considerations indi-
cate that the flow is choked. Therefore, the mass flow rate depends only upon the line
pressure and temperature. For fixed line conditions, ṁi  is a constant irrespective of
the downstream cylinder pressure. Integrating Eq. (A) with the initial condition m(t =
0) = mo =0,

m = ṁi t + mo = ṁi t. (N)

From the ideal gas law m(t) = P(t)V/RT. Using Eqs. (M) and (N) we can solve for
pressure

P(t) = ṁi t R koTi/V = αt. (L)



Remarks
In the initial period mi is comparable to m0,  and T will increase as more mass is
added (cf. Eq. (J). Since mi » mo, the temperature reaches a constant value as indi-
cated by Eq.(M), which is a form of Eq. (J) obtained when m0 =0.
The temperature in the c.v. is higher due to the conversion of flow work (i.e., the
pumping work performed in pushing the mass into the cylinder) into thermal energy
in the form of u. The mass entering the cylinder contains an enthalpy h which is con-
verted into u, i.e., the Pv (or flow work) at the inlet is converted into internal energy.
Eq. (L) states that P(t)/t = α. If ṁi , Ti, and R are known, α may be determined by ex-

amining the time gradient of P(t). Once α is known, the ratio ko can be calculated,

Since R=cpo-cvo, than cvo and cpo can be determined.
The kinetic energy of the fluid entering the tank has been neglected in this analysis. If
the inlet line has a large diameter, the flow velocity is relatively low, and the enthalpy
of the fluid in the line is at its stagnation enthalpy (since, hstg = h+V2/2 where h is
called static enthalpy). At the throat of the tank, the enthalpy hthroat < h,. but Vthroat» V
and  hstg is the same as in the line. Once the fluid enters the cylinder (of far larger di-
ameter than the line), assuming the c.v. to be situated several throat diameters down-
stream, V2/2 = 0. Therefore, in this case the enthalpy of fluid entering the c.v. is the
same as the stagnation enthalpy that in a large diameter line.
If the cylinder is charged with a reciprocating compressor, the mass flow will depend
upon the cylinder pressure, and the mass flow may vary with time.

o. Example 15

The tank volume in an automobile is 757 liters. This volume is to be charged with
methane at a station where the line pressure is considerably higher than the tank pres-
sure, and the line temperature is 300 K. Assume that methane is an ideal gas (withcpo

= 36 kJ kmole-1 K-1, R= 8.314 kJ kmole-1). What should the pressure in the tank be
so that it can contain a heating value equivalent to 20 gallons of gasoline? The heat
release due to 1 gallon of gasoline is the same as that released from 2.4 kg of CH4.

Solution
Mass of methane = 20 × 2.4 = 48 kg of CH4.

Number of methane moles NCH4
 = mass ÷ molecular weight, i.e.,

NCH4
 = 48 kg ÷ 16.05 kg kmole–1 = 2.99 kmole.

The temperature of gas inside the tank is higher than the line temperature due to the
flow work performed on the mass. The constant volume specific heat

cvo  = cpo  – R = 36 – 8.314 = 27.69 kJ kmole–1 K–1, i.e.,

ko = cpo / cvo  =  36 ÷ 27.69 = 1.3.

Using Eq. (J) of Example 14, T = koTi, i.e.,
T = 1.3 × 300 = 390 K.

Therefore, the tank pressure
P = NCH4

R T/V= 2.99 × 8.314 × 390 ÷ (757 l × 10–3 m3 l–1), or

P = 12,807 kPa or 128 bars.
Remarks

If the tank is cooled during charging to 300 K, the tank pressure required to charge
the same mass of methane can be reduced to 128 × 300 ÷ 390 = 98.46 bars. If the tank

is pressurized to 128 bars at 300 K, a larger number of moles of CH4, i.e., NCH4
 =

12,807 × 757 × 10–3 ÷ (8.314 × 300) = 3.89 kmole (or 62.4 kg) can be charged.



d. Discharging Gas from Cylinders
Gases are discharged from cylinders for use in welding torches as well as other appli-

cations. Here, the time variation in cylinder pressure as the gases are discharged becomes con-
sequential.

p. Example 16
Gas is discharged from a pressurized rigid cylinder. Determine the change in pressure
in a rigid cylinder as the specific volume of the gas (v = V/m) contained in it changes.

Solution
For this problem, ṁi  = 0, and mc.v. = m, and Eq. (32) simplifies to the form

(dm/dt) = – ṁe. (A)

For a relatively short time period δt

dm = –dme. (B)

For a rigid cylinder δWd = 0. Since there is no shaft work, and the potential energy is

negligible, Eq. (50) assumes the form

(dEc.v/dt) = Q̇cv– ṁe (he + kee).

For the duration δt

dEc.v. = δQc.v. – dme (he + kee). (C)

Note that as matter is discharged, the cylinder temperature and pressure may vary so
that he can change over time.
When gas leaves the tank its enthalpy he differs from that of the stagnant gas in the
tank. For the mass near the exit, the specific energy e includes the energies of the
stagnant and moving gas (i.e., u + ke). The energy balance between a unit mass of ex-
iting gas and stagnant gas yields he + kee = h (see Example 11). Omitting the subscript
c.v, Eq. (C) may be written as

d(em) = δQc.v. – dme h. (D)

The specific energy is not uniform in the c.v. However, the mass containing kinetic
energy adjacent to the exit is small as compared to the rest of the mass of stagnant
gas. Therefore, the assumption e ≈ u or Ec.v. = Uc.v. = m×u is a good approximation.

Expanding the LHS of Eq. (D) and using Eq. (B) to eliminate dme,

m du + u dm = δQ + dm h.

If the system is adiabatic, δQ = 0, and

dm (h – u) = m du. (E)

Since m = V/v, ln (m) = ln (V) – ln (v) so that

dm/m = – dv/v. (F)

Using Eqs. (E) and (F)

– (dv/v) (h – u) = du, or – dv ((Pv)/v) = du, i.e., du + P dv = 0. (G)

The relation in Eq. (G) is independent of the nature of the system. Assuming the gas
to be ideal, du = cvo dT and P = RT/v, i.e., R = cpo – cvo. Using these relations in Eq.
(G),

(cvo/T) dT= –((cpo – cvo)/v) dv. (H)



Therefore,

dT/T = – (ko –1) (dv/v), that, upon integration, results in (I)

Tvk–1 = Constant. (J)

Using the ideal gas law to replace T (with Pv/R) in Eq. (J), and simplifying

Pvk = Constant. (K)

As the specific volume increases due to a decrease in mass, the pressure also de-
creases. If the value of k is known, both temperature and pressure can be predicted.

Remarks
The above step-by-step procedure illustrates the process of simplification while using
valid assumptions.
The Washburn experiment (discussed later in Chapter 7) involves gas discharge from
a tank into the atmosphere with the pressurized tank and its valves immersed in an
isothermal bath. The gas leaving the tank is always at the bath temperature. In that
case, Pv = constant if gas is ideal, i.e., k = 1.

e. Systems Involving Boundary Work
As air is blown into a balloon the c.v. deforms due to deformation work. In the fol-

lowing example we discuss the consequent change in balloon energy. The resulting expression
will be used later in Chapter 3 to illustrate the dependence of internal energy U on properties,
such as S, V and N in an open system.

q. Example 17
Obtain an expression for dU when dN moles of single component (e.g., N2) fluid is
pumped into a balloon.  Neglect the kinetic and potential energies. Assume the ambi-
ent pressure to be slightly below the balloon pressure.

Solution
The balloon expands during the filling process resulting in deformation work. Em-
ploying the mole balance equation

dNc.v/dt = Ṅi  – Ṅe. (59)

where the subscripts i and e, refer to the inlet and exit respectively. Neglecting the ki-
netic and potential energy in the energy conservation equation,

dUc.v/dt = Ṅi hi – Ṅehe + Q̇cv– Ẇcv. (A)

For a small time period δt, since Ne = 0, Eqs. (59) and (A) yield

dNc.v. =  dNi, and (B)

dU = dNi hi – δWc.v. + δQ. (C)

Since there is no shaft work, δWc.v. = δWd = PdV (as the process is in quasiequilib-

rium). Furthermore, since dNi = dN, and hi = h, Eq. (C) may be written in the form

dU = hdN – PdV + δQ, (D)

where dN denotes the number of moles accumulated within the balloon.  Internal en-
ergy in the balloon increases due to energy  input into the balloon along with gas in-
flow,  work performed and heat added.



Remarks
In the context of Eq. (D) it is incorrect to write U = U(N,V,Q), since the differential
of Q is inexact, i.e., Q is not a property. For a closed system, since dN = 0, Eq. (D)
yields,

δQ = dU + PdV  or   δQ  = dU  - (- PdV) (E)

Equation (D) will be used later in Chapter 3 for an open system to obtain a relation
for energy in terms of entropy, moles accumulated  and the volume.
Consider a wet carpet drying over a period of time. If a c.v. is selected around the
carpet, the system is open, since the liquid vaporizes (here dN denotes the change in
the number of moles of fluid contained in the carpet) due to heat transfer (δQ supplied

by the ambient air) that supplies latent heat to the fluid. Equation (D) is still applica-
ble to this case.

r. Example 18

Suppose pressurized air is admitted into a pneumatic piston–cylinder assembly that
jacks up an automobile. As the cylinder of cross-sectional area A is pressurized by the
air, the force cA on the piston exceeds the weight of the car, thereby lifting it against
gravity. Determine the volume and temperature, V(t) and T(t), for any given mass
m(t).

Solution
For this problem, ṁe = 0, and mc.v. = m, and Eq. (32) simplifies to the form

(dm/dt) = – ṁi . (A)

Assume the system to be adiabatic, and the kinetic and potential energies to be negli-
gible. Therefore, hi is time independent. Since the c.v. is deformed, deformation work
Ẇd  is performed, and from  Eq. (50)

(dUc.v/dt) = – Ẇd  + ṁi hi, where (B)

Ẇd  = P dV/dt. (C)

If the weight of the automobile is W, then P= W/A. Initially the pressure is less than P
and as such volume will not change until P ≥ P0. If the gas is admitted over a small

duration δt, multiplying Eq. (B) by that period we have

dU = – P dV + d mihi. (D)

If hi is invariant, then integrating Eq.(D),

U U PdV m hi i

V

V t

− = +∫0

0

( )

.

In the initial periods when the value of PA is lower than the weight, dV= 0. There-
fore,

U - U0 = mi hi, and (E)

    (U - Uo) = - PW (V-V0) + mihi, P ≥ P0, (F)

where the subscript 0 represents the initial conditions. Eq. (E) presents results for the
charging problem (Example 14). Assuming uniform properties within the c.v. U =
mu,, Eq.(F) implies that

(m u  – m0uo) = – P(V–V0)+ mihi. (G)



Here Vo, mo, and uo denote the initial volume, mass and specific internal energy. Note
that when V= V0, (i.e., piston does not move), Eq. (G) converts to the charging prob-
lem solved in Example 14. Employing the ideal gas law

m = P(t)V(t) /RT, and mo = P0Vo/RTo. (H)

Using Eqs. (G) and (H),

(PV/RT) cvo  R T (t) – (PoVo/RT0) cvo T0 + P(V–Vo) = mihi. i.e., (I)

(PV – PoVo)(cvo/R) + PW(V–Vo) Ω = mihi. (J)

Using the relation R = cpo– cvo and solving for mass m(t) at any time, based on the in-
let mass flow rate

m(t) = mo + ṁi  t  = mo + mi (t) (K)

Once ṁi  is known, m (t) can be determined using Eq. (K) (and for known P, V(t) can
be calculated using Eq. (J)). Using the ideal gas law,
T(t)/T0 =    (PV/(PoVo))/(1 + (PV k/(PoVo) – (1+ (k-1) P/ Po)) (To/ kTi)) (L)

Remarks
Charging Period:
During the initial period before the piston starts to move, V = V0. Here, the air is
charging the cylinder as in Example 14, increasing the temperature. For the condition
V→ Vo in Eq. (L), we recover the charging solution

T/To = (P/Po)/(1 + (P k/Po – (1+ (k-1) P/ Po)) (To/ kTi)), (M)

which yields the expression for the gas temperature as a function of the gas pressure
in the cylinder. For an initial pressure Po≈ 0, Eq. (M) reduces to the form T = k Ti (as

shown in Example 14).
Lifting Period:
If the initial pressure  P0 = P, then Eq.(L) implies that

T/To = (V(t)/Vo)/(1 + (V(t)/Vo –1)(To/ Ti)),, V(t) ≥ V0, (N)

which is independent of gas medium pumped in. It then follows that

mi = P V(t)/(R T(t)) = P k/(k-1)(V–Vo)/hi. (O)

For the case V » V0, Eq. (N) simplifies to the form T = Ti  and Eq. (O) yields mi = m
= PV/(cp0 Ti). In this example flow work is employed to lift a weight so that T = Ti.

f. Charging of a Composite System
The following example illustrates the case of a composite system involving two

phases.

s. Example 19
An insulated gasoline tank must be replaced in an automobile with the system shown
in Figure 16. The tank is filled to 90% of capacity with the initial pressure above the
liquid pressure Pambient.  Valve A is then opened, the gas is throttled to pressure P2, and
then admitted through valve B so that the gas fills the space above the liquid fuel in
the rigid tank, and increases the pressure to P2. When the pressure reaches a value P2,
valve C is opened, the fuel is fed into the engine for combustion. As the liquid level
drops, the pressure above the liquid space is maintained at P2 by adjusting the valve
A. As an engineer, you are asked to analyze the process of charging the tank and
draining the liquid gasoline. The tank volume is V and initial fuel temperature is TF,0.



Assume that the gas is ideal and the line temperature is T1. However, draining may
involve a longer time.
What will be the temperature T2 after throttling by the valve A. Assume that the
charging of gas occurs so rapidly that the process in the tank can be assumed as adia-
batic. Also assume that the space above the liquid initially contains a negligible
amount of matter.
Determine the maximum temperature within the c.v.
Analyze the problem of draining by employing the mass and energy conservation
equations. Assume that mass flow through valve B ṁ e,F = A (2ρ(P-Pambient))

1/2.  How

will you obtain the liquid volume in the tank over time in terms of P? An explicit an-
swer is not required.

Solution
Throttling in valve A is adiabatic, i.e., for an ideal gas T2 = T1.
Since the charging occurs rapidly, the tank can be assumed to be adiabatic. We know
from Example 14 that the gas temperature above the liquid surface (cf. c.v. G in
Figure 16)

Tg = k Ti = 1.4 T2.
Therefore, T = k T1. This result is reasonable as long as there is insufficient time for
heat transfer to occur to the liquid.
One can determine amount of charged gas in the tank mg,charge using the results of Ex-
ample 14.
Consider the gas space. The mass and energy conservation equations are

 (dmc.v/dt) =  ṁi - ṁe, and
(dEc.v/dt) =  Q̇ c.v. - Ẇc.v. +  ṁi eT,i -  ṁeeT,e.

To Combustor
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Figure 16. Charging a composite system.



For this problem, ṁe = 0 and mc.v. = m so that (dm/dt) =  ṁi

Taking the control volume around the liquid only (cf. c.v. L in Figure 16) and as-
suming that there is  no heat transfer from the gas to liquid, and recalling that  work is
done on the liquid,

(uF  dmF/dt)  + (mF  duF/dt)  =0 -  P dV/dt - ṁe,F he,F. (A)

Applying mass conservation,

(1/vF) dV/dt = - ṁe,F (B)

where ṁe,F = A(2ρ(P-Pambient))
1/2. For the gas space,

(1/ vg) dV/dt = ṁi,g, and (C)

ṁi,g/ ṁe,F = vF/vg. (D)

The temperature of the gas space remains constant. The volume of gas space increases
for a constant pressure. Since P and T are constant, the specific volume of gas must
remain constant during the draining process. With the flow rate maintained constant,
the gas flow rate must also be constant. Therefore, the mass of gas admitted during
the draining process mg,drain can be determined.
Eq. (A) then implies that

ṁe,F P vF = - ṁe,F (uF - hF)+ ((mFcF) dT/dt). (E)

Simplifying, dT/dt =0 or T is constant.
Remarks
The gas temperature during charging increases. First, the gas transfers heat to the liquid. Any
subsequent mass admitted during
draining will have the temperature
T2. It is more likely that final tem-
perature of liquid and gas Tf will be
such that mF cF Tf + mg cv,g, Tf  = mF

cF TF,0 + mg,charge cg  k T2 + mg,drain cg

T2  where mg = m g,charge + mg,drain.

B .  I N T E G R A L  A N D
DIFFERENTIAL FORMS OF
CONSERVATION
EQUATIONS

1. Mass Conservation

a. Integral Form
If the rigid boundary around

a turbine is demarcated, the proper-
ties within the c.v. vary spatially
from inlet to exit. Therefore, the
mass within the c.v. can only be de-
termined by considering a small ele-
mental volume dV, and integrating
therefrom over the entire turbine
volume. Since the velocity distribution also varies spatially (Figure 17), the inlet and exit mass
flow rates can be represented as

ṁ V dAi Ai
= − ⋅∫ ρ

r r
, ṁ V dAe Ae

= ⋅∫ ρ
r r

. (62)

Figure 17: Illustration of the inlet and exit velocity
vectors for a turbine.



The negative sign in Eq. (62) is due to the velocity vector of the entering mass that points to-
wards the elemental area dA, while the area vector always points outward normal to the c.s.
(cf. Figure 17). Hence, the dot product of the integral in Eq. (62) evaluated at the inlet is nega-
tive. According to our previously stated convention, the mass entering the turbine must carry a
positive sign. This is satisfied by providing the negative sign to the equation. Using Eqs. (62)
and (34)

d dt dV V dA V dAcv A Ai e
/ ( )ρ ρ ρ∫ = − ⋅∫ + ⋅∫

r r r r
, i.e., (63)

d dt dV V dAcv/ ( )ρ ρ∫ = − ⋅∫
r r

. (64)

The cyclical integration implies that the mass is tracked both in and out throughout the c.s. of
the system (e.g., the surface BCDEFGH in Figure 17).

b. Differential Form
Applying the Gauss divergence theorem to the RHS of Eq. (64) (cf. Chapter 1),

ρ ρ
r r r r
V dA V dV⋅ = − ∇ ⋅∫ ∫ . (65)

(As mentioned in Chapter 1, the x–wise component of the RHS is (∂(ρvx)/∂y)dy(dxdz).) If the

control volume is time independent, i.e., it has rigid boundaries, the LHS of Eq. (64) may be
written in the form

d/dt(∫ρdV) = ∫(∂ρ/∂t)dV. (66)

Using Eqs. (65) and (66), we can rewrite Eq. (64) as

( / )∂ρ ∂ ρt V dVcv + ∇ ⋅∫ =
r r

0 . (67)

Since the c.v. is arbitrarily defined, if it is shrunk to a small volume, Eq. (67) still holds, and

∂ρ ∂ ρ/ t V+ ∇ ⋅ =
r r

0. (68)

2. Energy Conservation

a. Integral Form
In a steam turbine the term Ec.v. must be evaluated for the entire turbine in which the

properties are spatially nonuniform. Therefore, the energy varies within the c.v. The methalpy
crossing the cs is

– ρe V dATin

r r
⋅∫ , (69)

where 
r r
V dA⋅  < 0 for the incoming flow and 

r r
V dA⋅  > 0 for the exiting flow. A negative sign is

added to the value in order to be consistent with our sign convention for the mass inflow and
outflow. Assuming the c.v. boundary to be rigid, Ẇd = 0. Therefore,

Ẇ w dVcv cvcv= ′′′∫ , (70)

where ′′′wcv  denotes the work done per unit volume. The heat crossing the system boundary

Q̇cv  is given by

Q̇ q dAcv cv= − ′′ ⋅∫
r

, (71)

The negative sign associated with Eq. (71) is explained as follows. The vector dA
r

 is
outward normal to the surface, i.e., dA ndA

r r= . The incoming heat flux vector q″ enters the
surface in a direction that is opposite to the outward normal vector 

r
n . Therefore, the dot prod-



uct of the heat flux vector and the area vector is negative, implying that the sign for heat input
is also negative. Since our stated sign convention in First Law states that heat input in context
of the First Law is positive, a negative sign is placed in Eq. (71). Using the relationships of
Eqs. (69)–(71) in Eq. (50), the integral form of the energy conservation equation for a rigid c.v.
assumes the form

d dt edV q dA w dV e V dAcv cv T/ ( )ρ ρ∫ = ′′ ⋅ − ′′′ − ⋅∫ ∫ ∫
r r r

. (72)

The term d/dt(∫ρedV) in Eq. (72) denotes the rate of change of energy in the entire control vol-

ume.

b. Differential Form
Applying the Gauss divergence theorem to Eq. (72), and converting the surface inte-

gral into a volume integral, we obtain

d dt edV e V dV q dV w dVcv T cv/ ( ) ( )ρ ρ∫ + ∇ ⋅ = − ∇ ⋅ ′′ − ′′′∫ ∫ ∫
r r r r

. (73)

Simplifying the result

∂ ρ ∂ ρ( ) / ( ) ˙ "e t e V Q wT cv+ ∇ ⋅ = − ∇ ⋅ − ′′′
r r r r

. (74)

If the heat transfer in the c.v. occurs purely through conduction and the Fourier law applies,

˙ "
r r
Q T= − ∇λ . (75)

Furthermore, if no work is delivered, and the kinetic and potential energies are negligible
(namely, eT = h, and e = u), Eq. (74) may be expressed in the form

∂ ρ ∂ ρ( ) / ( ) ( )u t Vh T+ ∇ ⋅ = ∇ ⋅ ∇
r r r r

. (76)

Using the relation u = h – P/ρ, Eq. (76) may be written as

∂ ρ ∂ ρ ∂ ∂( ) / ( ) / ( )h t Vh P t T+ ∇ ⋅ = + ∇ ⋅ ∇
r r r r

. (77)

These differential forms of the energy conservation equation are commonly employed
in analyses involving heat transfer, combustion, and fluid mechanics.

c. Deformable Boundary
Examples of a deforming boundary include the surface of a balloon while it is being

filled, and the leakage of gases past a piston. The above formulations have accounted for de-
formation work, but assumed that there is no flow at the deforming boundary. If mass flow
occurs at the deforming boundary, the input and exit mass and energy flows will be influenced.
Consider the leakage of air past a piston in addition to the mass otherwise entering and leaving
a cylinder. If the absolute velocity of the leaking fluid adjacent to the piston is 

r
V  and defor-

mation velocity is 
r
Vd , then leakage flow rate will be zero if 

r
V=

r
Vd . If 

r
V  > 

r
Vd , then the leak-

age flow rate of fluid past the deforming boundary is

ṁ V dAr= ⋅∫ ρ
r r

, (78)

where the relative velocity 
r
Vr  = 

r
V–

r
Vd . The RHS of Eq. (34), written in terms of the mass

flow rates, can now be expressed in terms of the relative velocity. Furthermore, the integrals

d/dt(∫ρdV) → ( / )∂ρ ∂t dV∫ , and d/dt(∫ρedV) → ( ( ) / )∂ ρ ∂e t dV∫ . (79)

Therefore, the mass and energy conservation equations can be written in the forms



( / )∂ρ ∂ ρt dV V dAr∫ ∫= ⋅
r r

, and ( ( ) / ) ˙ ˙∂ ρ ∂ ρe t dV Q W e V dAcv cv T r∫ ∫= − + ⋅
r r

. (80)

Rigorous proof of the formulation of Eqs. (80) is contained in the Appendix to this chapter.
If a balloon releases gas (as shown in Figure 18) at an absolute velocity of 8 m s–1 and

it shrinks at the rate of –2 m s–1, the magnitude of the relative velocity Vr = 8–(–2) = 10 m s–1.
If the cross-sectional area through which leakage occurs is 1 mm2, assuming the density of air
to be 1.1 kg m–3, the mass flow exiting the deforming balloon equals 10×1×10–9×1.1 =

1.1x10–8 kg s–1.

C. SUMMARY
In this chapter we have discussed the conservation equations in the context of closed

and open systems. Problems pertaining to
quasiequilibrium and nonquasiequilib-
rium problems in closed systems have
been discussed, and several applications
of the conservation equations expressed
in transient form were illustrated. The
conservation equations have been ex-
pressed both  in differential and integral
forms.

We have learned that the general
method to solve problems pertaining to
thermodynamic systems is as follows:

Select the system and determine
whether it is closed or open
Determine the transactions across the
boundary (i.e., the heat, work, and
mass transfer across the boundary).
Determine the nature of matter con-
tained within the system (e.g., ideal
gas, incompressible liquid, etc.)
Determine the known properties
(e.g., using the ideal gas assumption,
or the relevant property tables).
Write the mass and energy conserva-
tion equations in a dimensionally conforming manner and following a consistent sign con-
vention.
Characterize the processes that occur within the system (e.g., isothermal, adiabatic, iso-
baric, etc.).
Make reasonable assumptions in order to simplify the problem, and solve the problem.

D. APPENDIX

1. Conservation Relations for a Deformable Control Volume
In the context of Eq. (50) we focus attention on the term d/dt( ρedVcv∫ ). For a small time

period δt, the accumulation of energy within a deforming c.v. is d( ρedVcv∫ ), i.e., the change in

energy within the original volume plus the change in energy within an incremental deformed
volume. Therefore,

d edV d e dV e dx dAcv d( )ρ ρ ρ∫ = − + ⋅∫ ∫ r r
,

where dx d

r
 is the incremental deformation length. Dividing the entire equation by δt, in the

limit δt→0,

discharge

Figure 18: Shrinking of a balloon.



d dt edV e t dV eV dAcv d/ ( ) ( ) /ρ ∂ ρ ∂ ρ∫ = + ⋅∫ ∫
r r

, (A)

where 
r
Vd  denotes the deformation velocity of the volume. Likewise, the last two terms in Eq.

(50)

ṁi eT,i – ṁeeT,e = ρe V dAT

r r
⋅∫ . (B)

We have assumed that the c.v. performs boundary work Wb in addition to other forms
of work transfer, i.e., Wc.v. = Wb + Wshaft + Wother. For a small time period, the boundary work

δWb = PdV + PsurrdV, i.e.,

it equals the work done by the flow as it enters and leaves the c.v. (represented by the first term
on the RHS) in addition to the work done by the boundary as it  is subjected to the surrounding
pressure Psurr (i.e., the second term). Therefore,

δW P dx dA P dx dAb d
A

surr d
Af

= ⋅ + ⋅∫ ∫r r r r
.

Again, dividing the entire equation by δt, in the limit δt→0,

Ẇ P V dA P V dAb d
A

surr d
f

= ⋅ + ⋅∫ ∫
r r r r

. (C)

Manipulating Eq. (50), and Eqs. (A), (B), and (C), we obtain

∂ ρ ∂( ) /e t dV∫  = Q̇cv– ( Ẇshaft + Ẇother + P V dA P V dAd
A

surr d
f

r r r r
⋅ + ⋅∫ ∫ )

                          + ρe V dAT

r r
⋅∫  – ρeV dAd

r r
⋅∫ . (D)

Using the relation

ρ ρe V dA eV dA PV dAT d d d
Af

r r r r r r
⋅ = ⋅ + ⋅∫ ∫ ∫ , (E)

Eq. (D) assumes the form

∂ ρ ∂( ) /e t dV∫  = Q̇cv– ( Ẇshaft + Ẇother + P V dAsurr d

r r
⋅∫ ) + ρe V dAT r

r r
⋅∫ . (F)

where the relative velocity 
r
Vr  = 

r
V–

r
Vd .



 Chapter 3

3. SECOND LAW AND ENTROPY

A. INTRODUCTION
The First law of thermodynamics does not limit the degree of conversion of cyclical

heat input into cyclical work output, as discussed in Chapter 2. The Second law establishes this
limit and, for instance, it prevents heat engines from converting their entire heat input into
work. Consider the example of a car. A gallon of gasoline releases 120,000 kJ of thermal en-
ergy. If the work transfer to the wheels of the car is only 40,000 kJ then the remaining 80,000
kJ must be accounted for. Assume that the heat loss from the automobile radiator accounts for
40,000 kJ while the exhaust accounts for 40,000 KJ. The ratio between work and heat
(40,000/120,000) is the efficiency η. For the above example η = Energy Sought/Energy

Bought = 1/3. In no engines is all of the heat absorbed converted into work, i.e., η ≠ 1. An up-

per limit on the efficiency can, however, be obtained by applying the Second law.
This chapter presents the statements of the Second law and expressions for maximum

possible efficiency; defines entropy; introduces the concept of entropy generation and its rela-
tion to work loss; and summarizes the relations with which the entropy of substances can be
evaluated. Entropy balance equations are also presented in integral and differential forms. Fi-
nally entropy maximum and energy minimum principles are illustrated with examples. How-
ever, prior to discussing the Second law any further, some pertinent concepts are first pre-
sented.

1. Thermal and Mechanical Energy Reservoirs
A thermal energy reservoir is a large repository of heat that acts as a source or sink.

Heat exchange can occur with the reservoir (or repository system) without changing its tem-
perature. It also acts as a reversible heat source, since it contains no temperature gradients
within itself. Upon heat addition, only the thermal energy content of the reservoir changes,
indicating that it is implicitly rigid. Therefore, by the First law, dU = δQ. The reservoir tem-

perature is virtually unaffected during heat transfer, since it has a large mass.
Examples of thermal energy reservoirs include the atmosphere and oceans. If the

mass of an ocean is 1010 kg and its specific heat c = 4.184 kJ/kg K, then 106 kJ of heat addition
to it will produce a temperature rise of only 2.4×10–5 K (= 106 ÷ 4.184×1010), i.e., the tem-

perature is virtually unchanged. The internal energy change dU is nonzero, since, even though
the temperature increment is negligibly small, the system is massive. Therefore, dU = mcdT =
4.184×1010 × 2.4×10–5 = 106 kJ, which equals the transferred heat energy.

A mechanical energy reservoir is a large body acting as a source or sink with which
work can be exchanged without affecting its characteristics. Examples include a large flywheel
containing a large amount of kinetic energy, or a large pressure reservoir consisting of a gas
contained in a piston–cylinder assembly that has an infinitely large weight placed on the pis-
ton. If work is exchanged with the pressure reservoir, its pressure is unaffected. Likewise,
work transfer to the flywheel does not alter its kinetic energy.

Thermodynamic Cycle: Final thermodynamic state after a (cyclic) process is the same as
initial state, e.g., in a steam power plant.
Mechanical Cycle: Final mechanical position is the same as its initial position (e.g., the
position of piston at top of a cylinder returns after one revolution of a crank).
Closed Cycle: The working fluid undergoes a series of processes and returnes to its origi-
nal state, i.e., fluid is retained in the system.
Open Cycle: The working fluid is different from that at its initial state and is discarded at
the conclusion of the cycle.

Unless otherwise specified, a cycle refers to thermodynamic cycle



a. Heat Engine
A heat engine is a cyclic device in which the heat interactions with higher and lower

temperature thermal energy reservoirs are converted into work interactions with mechanical
energy reservoirs. Heat engines can operate either with vapor (e.g., steam) or gas (e.g., air) as
the medium of fluid. Consider Figure 1 of Chapter 2, which is known as the Rankine cycle. In
this cycle steam is produced in a boiler through heat input to water. The steam is subsequently
expanded in a turbine, thereby producing work, and later condensed back into the liquid phase
through heat rejection from the spent steam in a condenser. The water is then pumped back to
the boiler.

b. Heat Pump and Refrigeration Cycle
Systems in which work interactions with mechanical energy reservoirs result in heat

transfer from lower– to higher–temperature thermal energy reservoirs are either heat pumps or
refrigeration devices.
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Figure 1. Illustration of a  cyclic process with cyclic work output.



B. STATEMENTS OF THE SECOND LAW
If a gas is adiabatically compressed from a state characterized by P1 and v1 to a state

(P2,v2) through work transfer w12 (Figure 1), adiabatic expansion from state 3 (which is the
same as state 2) to (P4,v4) (where state 4 is the same as state 1) provides work output |w34| =
|w12|, i.e., wcyc= 0. If a higher pressure is required at the end of the expansion process then heat
must be supplied at state 2 (e.g., at constant volume so that v3= v2 and P3 > P2). The expansion
to state 4 (for which v4= v1) produces P4 > P1. In this case the adiabatic curves 3-4 and 1-2 are
almost parallel and, consequently, T4 > T1. We make the point that heat rejection must close
the cyclic process. The Otto cycle used in automobiles is schematically illustrated through part
(d) of Figure 1 in the form of a P–v diagram. It consists of four processes: adiabatic quasie-
quilibrium compression (1–2), constant volume heat addition (2–3), adiabatic quasiequilibrium
expansion (3–4), and constant volume heat rejection (4–1).

The simplest statement of Second law is that for heat input a cyclic process requires
heat rejection.

1. Informal Statements
We present two informal statements of the Second law.

Statement 1: “The efficiency of a heat engine is less than unity.”
The efficiency η of a thermodynamic cycle is defined as the ratio of the  work output

to the thermal input, i.e.,

η = = Sought/Bought = Wcycle/Qin. (1)

For a cyclical process, the First law states that

∫ δQ = Qin – Qout = Wcycle = ∫ δW. (2)

Using Eqs. (1), (2) and the informal statement,

η =  (1– Qout/Qin) < 1. (3)

Note that by using the subscripts “in” and “out”, the sign convention has already been
accounted for. For a finite work output, Eq. (3) implies that Qout is always nonzero. The ratio
of the actual mechanical work to cycle work is called the system mechanical efficiency, and
the product of the cycle and mechanical efficiencies is sometimes referred to as the thermal
efficiency.

Statement 2: “An isolated system initially in a state of nonequilibrium will sponta-
neously achieve an equilibrium state.”

A spontaneous process is one that occurs without outside intervention (i.e., without
work or heat transfer). Consider a cup of warm water placed in a room made of rigid, insu-
lated, and nonpermeable walls. Heat transfer occurs from the water and cup to room air until
all three are at the same temperature. At this state equilibrium is reached. It is impossible to
reheat the water and cup back to their initially higher temperature without external interven-
tion, i.e., reheating is impossible by using the room air alone, since the final state consisting of
the higher–temperature water (and cup) placed in lower–temperature air would be in a state of
nonequilibrium, and in violation of the Second law. We will illustrate this concept using Ex-
amples 1 and 2.

a. Example 1
A stirrer is used to warm 0.5 kg of water that is contained in an insulated vessel. The
water is initially at a temperature of 40ºC. A pulley–weight assembly rotates the stir-
rer through a gear mechanism such that a 100 kg mass falls through a height of 4220
cm. Is this process really possible? What is the final temperature? Assume that u = cT
(with T expressed in ºC), and c = 4.184 kJ kg–1 K–1.

Solution
The potential energy of the falling weight changes, and the consequent work input
into the system heats the water. The potential energy change is



∆PE = 100×9.81×42.2÷1000 = 42 kJ.

The First law states that Q12 – W12 = U2 – U1. At 40ºC,
U1 = 0.5×40×4.184 = 84 kJ.

Since Q12 = 0, ∆PE = –(–42) = U2 – U1, or

U2 = 42+84 = 126 kJ.
Therefore, u2 = 126÷0.5 = 252 kJ kg–1, and T2 = 252÷4.184 = 60ºC.
The process is possible and all the work is converted into “heat” (thermal energy)

Remarks
Even though the internal energy cannot be measured directly, the pulley system en-
ables us to implicitly calculate its values. Note that in this case all of the work can be
converted into the thermal (heat) energy of water.
Another example involves running a blender filled with ice cream over a long time
period. Again, in this case, work input is converted into “heat” and the ice cream will
melt.
One can complete a cyclic process by rejecting heat to the ambient reservoir and
cooling the water from 60 °C to 40 °C. In this cyclic process, the First law states that
∫δQ - ∫δW = 0 or ∫δW  =Wcyc =∫δQ < 0, i.e., a cyclic process can be completed with

heat rejection to a single reservoir but with work input.

b. Example 2

42 kJ of heat energy are transferred from a thermal energy reservoir that exists at a
temperature of 27ºC and are converted into work using a hypothetical heat engine un-
dergoing a cyclical process. The process raises a 100 kg weight through a 4220 cm
height. The weight is then allowed to fall (as in Example 1) and the work is used to
heat 0.5 kg of water that is initially at a temperature of 40ºC. Is such a scenario possi-
ble? What is the final water temperature? Assume u = cT, and c = 4.184 kJ kg–1 K–1.

Solution
In this scenario, the combined system that includes the heat engine and weight per-
forms no net work, but can continuously transfer heat from the lower temperature
thermal energy reservoir at 27ºC to warmer water that exists at 40ºC. This cannot be
done through direct contact alone. Therefore, the combined system within the bound-
ary E can be made to proceed further towards nonequilibrium, which is counter intui-
tive and the process is impossible.
However, this process can still be analyzed on the basis of the First law alone, i.e.,

– (– 42) = U2W – U1W, (A)

where, U1W = 0.5 ×4.184 × 40 = 84 kJ. From Eq. (A),
U2W = 42 + 84 = 126 kJ, u2W = 252 kJ; T2W = 60ºC.

Remark
Recall that work can be converted into “heat” and hence the problem lies in the con-
version of all of the “heat” into work.

a. Kelvin (1824-1907) – Planck (1858-1947) Statement
“It is impossible to devise a machine (i.e., a heat engine) which, operating in a cy-
cle, produces no effect other than the extraction of heat from a thermal energy res-
ervoir and the performance of an equal amount of work.”

The First law conserves energy, and the Second law prohibits the complete conver-
sion of thermal energy into work during a cyclical process. Using the First law for a closed
system undergoing a cyclical process in a heat engine, ( ∫ δQ = ∫ δW) > 0. Note that the Kel-

vin-Planck statement does not preclude the condition ∫δW ≈ 0 (cf. Example 1). Consider an

adiabatic mass of water being heated by the action of a frictionless stirrer that raises the water
temperature. If the insulation and stirrer are removed, it is possible to cool the water to its ini-



tial temperature by losing an amount of thermal energy that is equal to the stirrer work input.
In this case, the water undergoes a cyclical process, but still rejects heat to a single thermal
energy reservoir. Now, consider the following possibility: Instead of rejecting heat to the res-
ervoir after the insulation is removed, the stirrer is retained, and the water cooled to its initial
temperature by converting all the thermal energy (i.e. heat) into work. Such a process is impos-
sible, since it violates the Kelvin–Planck statement, and no such cyclical device can be de-
signed. Once work is converted into heat, all of the heat cannot be converted back into work.
Therefore, heat energy (i.e., Q = U2 – U1) possesses a lower quality than an equal amount of
work energy, since it is capable of a smaller amount of useful work.

b. Clausius (1822-1888) Statement
Heat cannot flow from a lower to higher temperature. However, heat can be

transferred from a lower-temperature thermal energy reservoir to a higher-temperature
reservoir in the presence of work input. The Clausius statement (due to Rudolf Clausius,
1822–1888) regarding this is as follows:

“It is impossible to construct a device that operates in a thermodynamic cycle
and produces no effect other than the transfer of heat from a cooler to a hotter body.”

An air conditioner transfers heat from the lower temperature indoor space of a house
to a higher–temperature ambient during the summer. A heat pump delivers heat from a
lower–temperature ambient to a higher–temperature system (such as a house). For example,
using a heat pump, if 150 kJ of heat is transferred from cold air at, say, 0ºC in conjunction with
a work input of 100 kJ, the pump is capable of delivering 250 kJ of heat to a space. Rather than
the efficiency, a refrigeration cycle is characterized by a Coefficient of Performance, namely

COPrefrigeration = Energy Sought/Energy Bought 

=  Heat transferred from the lower temperature system/Work input. (4)

In the case of a heat pump,

COP heat pump = Energy Sought/Energy Bought 

= Heat transferred to the higher temperature system/Work input. (5)

Heat pumped at the rate of 3.516 kW (200 BTU/min or 211 kJ/mim) from a system
constitutes a unit that is referred to as one ton of capacity. The physical implication is derived
from the cooling of water, i.e., if 3.516 kW of thermal energy is removed from 1 ton of liquid
water at 0ºC, transforming it completely into ice at 0ºC over a duration of 24 hours. Instead of
(COP)cooling which is dimensionless,  industries use a unit called HP/ton of refrigeration (1 HP
= 550 ft lbf/s = 0.7457 kW= 42.42 BTU/min, HP/Ton = 4.715/COP). Employing Eqs. (2), (4),
and (5)

COPrefrigeration = Qin from lower T system÷|Qin from lower T system – Qout to higher T system| (6)

COPheat pump = Qout to higher T system ÷|(Qin from lower T system – Qout to higher T system| (7)

Consider a system undergoing a cyclical process and pumping heat from a lower-
temperature thermal energy reservoir to a higher-temperature thermal energy reservoir. From
the First law ( ∫ δQ = ∫ δW) < 0, since there is work input into such a process. Therefore, for

a refrigeration cycle, such as one for an air conditioner (– QH + QL) < 0, where QH denotes the
heat leaving a system and entering a warmer thermal energy reservoir (e.g., the ambient), and
QL is that entering the system from a cooler thermal energy reservoir (e.g., a cooled residential
space).

i. Perpetual Motion Machines
A machine that obeys the First law but violates the Second law of thermodynamics is

known as a perpetual motion machine of the second kind (PMM2). Other terms for it include
anti–Clausius machine and anti–Kelvin machine.



c. Example 3
Consider the following hypothetical scenario based solely on the First law. An insu-
lated pressure vessel contains superheated steam. The thermal energy contained in the
steam is converted  into work in order to run a heat engine A (Qin,A, Qout,A, Wcycle,A).
However, this decreases the steam temperature, and a heat pump B (Qin,B, Qout,B, Wcy-

cle,B) is employed to pump thermal energy into the vessel to raise the temperature to its
initial value, such that Qout,B = Qin,A.  Note that the numbers carry a positive sign for
all the symbols. Now, Wcycle,A = Qin,A – Qout,A, and Wcycle,B = Qout,B – Qin,B = Qin,A –
Qin,B. Therefore,  Wwheels = Wcycle,A – Wcycle,B = Qin,B – Qout,A. If Qin,B > Qout,A, we can
harness the difference Wcycle,A – Wcycle,B in order to run an automobile. Is it possible to
operate an automobile perpetually in this manner without consuming fuel and,
thereby, emitting no pollutants or greenhouse gases? (See  Figure 2.)

Solution
Consider the case Qout,A = 0 . This is a violation of the Second law. A consequence is
that with Qin,A = 150 kJ, Wcycle,A = 150 kJ, Qin,B = 50 kJ, Qout,B = Qin,A = 150 kJ, Wcy-

cle,B = 100 kJ, Wcycle,A - Wcycle,B =Qin,B – Qout,A =  50 kJ. The question is whether one
can use the energy from the ambient to run an automobile. (Note that frictional work
transferred at the tires can be used to supply energy back into the ambient.) This is an
example of a perpetual motion machine of the second kind. The heat engine A vio-
lates the Kelvin–Planck statement of the Second law, and its existence is not possible.
If Qout,A = 45 kJ, the machine A is not in violation of the Second law. In this case
Wwheels =Qin,B – Qout,A =  5 kJ. However, for the dashed boundary, 5 kJ of energy en-
ters from the ambient and it is all converted into work. Again, this violates the Kel-
vin–Planck statement of the Second law.
Thus, the system within the dashed boundary in Figure 2 remains unchanged during
both of these processes, and the entire heat crossing the boundary is converted into
work. This is impossible.

C. CONSEQUENCES OF THE SECOND LAW

1. Reversible and Irreversible Processes
Water may be heated using direct heat (e.g., using an electrical heater) or work (e.g.,

using a stirrer producing mechanical work that is converted into internal energy by mechanical
frictional processes). The stirring process is irreversible, since all the increased energy con-
tained in the water cannot be converted back to obtain a cyclic work output that is equivalent
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Figure 2: An example of a PMM2.



to the work input. Hence conversion of all mechanical work into thermal energy is an irre-
versible process as a consequence of the Second law. In general, irrversibilities are caused by
frictional processes and property gradients within systems. All processes are not irreversible.
For example, if a gas is adiabatically compressed under quasiequilibrium process, its internal
energy and pressure increase. However, upon expansion, the initial state can be retrieved with-
out any work transfer across the system boundary.

Is irreversibility undesirable? Irreversibility is required in order to force a process,
since energy cannot be extracted from a substance in equilibrium with its surroundings. Water
stored behind a dam is in thermal and chemical equilibrium and, if constrained by the dam, is
also in mechanical equilibrium. The mechanical constraint must be removed to create a non-
equilibrium state in order to extract the energy. Similarly, high temperature steam contained in
an insulated boiler drum is not in thermal equilibrium with its environment. The resulting tem-
perature difference is used to transfer heat and extract work using a heat engine, such as a
steam turbine. A thermal process cannot be executed without creating a thermal potential dif-
ference. However, Second law restrictions result in irreversibilities during such a process.

2. Cyclical Integral for a Reversible Heat Engine
We will show that for any reversible heat engine involving an ideal gas as the me-

dium the cyclical integral

∫ δQ/T = 0.

For such a heat engine using the First law

δq – δw = du.

If the processes within it are in quasiequilibrium, then δqrev – δwrev = du. Since δwrev = Pdv,
and for an ideal gas du = cv0 dT,

δqrev – P dv = cv0 dT, i.e., δqrev/T – (R/v)dv = cv0 dT/T.

Integrating over a cycle, we find that the RHS of these relations is zero, i.e.,

∫ δqrev/T = ∫R dv/v + ∫cv0 dT/T = 0. (8)

The Carnot cycle (due to Sadi Carnot, 1796–1832) uses ideal gas as its working fluid
and consists of four quasiequilibrium processes, as illustrated in Figure 3: adiabatic compres-
sion, isothermal heat addition QH from a higher–temperature reservoir at a temperature TH,
adiabatic expansion, and heat rejection QL to a lower–temperature reservoir at TL. From Eq. (8)
it is evident that

QL/QH = TL/TH (9)

for a Carnot cycle. Hence the efficiency of a Carnot cycle is given by the expression

η = Wcycle/QH = 1 – QL/QH = 1 – TL/TH. (10)

If the P–v–T relationship for ideal gases were of the form P v = R f(Θ) where T =

f(Θ), in that case du = cv0 f´(Θ) d Θ, and ∫ δQ/T = ∫ δQ/f(Θ) = 0. Therefore,

QL/QH = f(Θ H)/f(Θ L), i.e., (11)

QL/QH = f (Θ L, Θ H). (12)

From Eqs. (10) or (12) it is obvious that all Carnot heat engines running between the
reservoirs at the same high and low temperatures, and using an ideal gas as a medium have the
same efficiency. This is known as Carnot’s Second Corollary. Let us now state Carnot’s cor-
ollaries:



First: The thermal effi-
ciency of an irreversi-
ble power cycle is al-
ways less than the
thermal efficiency of a
reversible power cycle
when each operates
between the same two
reservoirs.
Second: All reversible
power cycles  with any
medium of fluid oper-
ating between the same
two thermal reservoirs
must have the same
thermal efficiencies.

For instance, a Carnot cycle
using steam as a medium
must have the same effi-
ciency as one using ideal gas
as the working fluid if they operate between the same thermal reservoirs. The Kelvin–Planck
statement of the Second law is violated  if Carnot’s Second Corollary is violated as illustrated
in the next example. We will prove this  I) for a cycle with ideal gas as medium and II) then
with  steam as medium. Also in general, for any Carnot cycle operating with any medium
∫ δQ/T = 0.

d. Example 4
An automobile engine consists of an Carnot cycle–based heat engine using steam as
its medium, and operating between a thermal reservoir at 500 K and ambient air at
300 K. Assume its efficiency to be 50%. A similar heat engine which uses ideal gas as
its medium is operated in reverse in order to replenish the heat lost by the
higher–temperature reservoir. This tandem operation of steam heat engine and ideal
gas heat pump occurs perpetually in the absence of any fuel input to power the auto-
mobile. Is this possible? (See Figure 4.)

Solution
The efficiency of a Carnot cycle–based engine using ideal gas as its working fluid is
ηG= 1 – 300 ÷ 500 = 0.4, i.e., QL = 0.6 QH. We are asked to assume that for the steam

engine ηs = 0.5, QL = 0.5 QH. Since the engines are reversible, the ideal gas–based

machine can be operated as a heat pump. Using both the steam heat engine and ideal
gas heat pump in tandem, it is possible to obtain a net energy production (as work)
equal to 0.1QH  or 10 kJ if QH  =100 kJ while the entire heat lost by the
higher–temperature reservoir is replenished. The combined system within the dashed
boundary removes 10 kJ of thermal energy from the lower–temperature reservoir at
300 K and converts it completely into work with 100% efficiency in violation of the
Kelvin–Planck statement of the Second law. Clearly, this is impossible.

Remarks
An assumption was made that ηs > ηG. Instead, if we assume ηs < ηG, the tandem op-

eration of an ideal gas engine and a similar steam heat pump can be hypothesized to
prove that this is not possible. Thus, the only realistic scenario occurs when ηs = ηG.

The conclusion from this example is that the efficiency of a Carnot cycle using steam
as its medium is the same as for a cycle employing air as the medium as long as they
operate between the same TERs. In other words the Carnot efficiency  is independent
of the medium used in the cycle or constitutive relation (e.g. ideal gas law) of the me-

QH

QL

T= TL

T= TH

Q=0 Q=0

TL

TH

Figure 3.  Schematic illustration of a Carnot cycle.



dium. Therefore, Eqs. (8)–(10) are applicable to any Carnot cycle utilizing any me-
dium, and QL/QH = TL/TH for all Carnot cycles. To assume otherwise would violate
the Second law. If two Carnot cycles are operated between the same
higher–temperature reservoirs at TH, but different lower–temperature reservoirs, the
higher efficiency will belong to one operating at the lowest temperature TL.

e. Example 5
Steam is generated at a temperature of 1000 K. It is possible to transfer 2000 kW
from it to a Carnot heat engine. Calculate the work done if the engine is used in:
A desert where the ambient temperature is 47ºC?
A polar region where the ambient temperature is –13ºC?

Solution
QH = 2000 kW. Therefore, heat rejection from the engine at 47ºC (320 K) is

QL = –QH TL/TH = –2000 × (320 ÷ 1000) = –640 kW.

W = ∫ δQ = QH – QL = 2000 – 640 = 1360 kW, and

η = 1 – 320 ÷ 1000 = 0.68.

At the lower temperature of –13ºC (260 K), the heat rejection
QL = –QH TL/TH = –2000 × (260 ÷ 1000) = –520 kW, W = 2000 – 520 =

1480 kW, and
η = 1 – 260 ÷ 1000 = 0.74.

A larger amount of work is possible with the same thermal input if the temperature of
the lower–temperature reservoir is reduced.

f. Example 6
What is the work required to run a Carnot heat pump that provides 2000 kW of ther-
mal energy to a 1000 K high-temperature reservoir in a desert that has an ambient
temperature of 47ºC.

Solution
The COP = QH/W = TH/(TH – TL) = 1000 ÷ (1000–320) = 1.47. Therefore,

W = 2000 ÷ 1.47 = 1360 kW.
This work input equals the output of the heat engine discussed in Example 5 above.

3. Clausius Theorem
The Clausius theorem proves that for any reversible cycle (using any medium)

∫ δQ/T = 0. (13)

Figure 4: An automobile using ambient air as its energy source.



The theorem converts a reversible cycle into the equivalent of an aggregate of a series of
Carnot cycles. Consider a single reversible process i-f depicted in  Figure 5a. This process can
be replaced by a sum of adiabatic reversible (i-g), isothermal (g-h), and adiabatic reversible (h-
f) processes (as shown in  Figure 5b) such that the area under the P-v curve for process Ai-f@
equals that under the path i-g-h-f.

Applying the First law to the process i–f

qif – wif = uif = uf – ui. (14)

We wish to prove that the path “i–f” can be replaced by i–g, g–h, and h–f as long as

wighf = wif. (15)

To do so, select the state g such that Eq. (15) is satisfied (or the area under reversible path is
the same as that under those due to the isothermal and adiabatic reversible processes). Apply-
ing the First law to the process i–g–h–f

qighf – wighf = uighf = (uf – ui), i.e., (16)

qighf – wif = uif. (17)

From Eqs. (14) and (17)

qif = qighf = qig + qgh + qhf. (18)

However, qig = qhf  = 0. Therefore,

Figure 5:  a. A reversible process “if”; b.
Replacement of the reversible process
with adiabatic and isothermal reversible
paths.



qif = qighf = qgh (19)

This discussion illustrates that the heat interaction during a reversible process which
is a part of an arbitrary reversible cycle, e.g., along the path i-f, can be replaced by isothermal
processes (such as gh) and adiabatic processes (e.g., i-g and h-f) both of which are part of
Carnot cycles. For instance, consider cycle j-i-k-d-c-j as illustrated in Figure 6,. We can draw

adiabatic reversible lines as shown in the figure, and the integral ∫ δQ/T  can be evaluated by

dividing the entire cycle j-i-f-k-d-c-j into a series of cycles A, B, C, D, and E. For instance,
cycle C is along paths m-n, n-i, i-c and c-m.

Consider the cycle i-f-d-c-i in which the processes c-i and f-d are adiabatic and re-
versible. Using the Clausius theorem, we can replace the path i-f (which is a part of the re-
versible cycle C) by processes i-g, g-h, h-f which are part of a Carnot cycle. The work transfer
wif =wighf, and heat transfer qif = qighf. Similarly, the process d-c can be replaced by the path d-
b, b-a, and a-c. Therefore, the cycle i-f-d-c-i is equivalent to the sum of the processes i-f (∫(i-
g+(g-h)+(h-f)), f-d, d-c (∫(d-b)+(b-a)+(a-c)), and c-i so that it can be replaced by the equivalent
Carnot cycle a-g-h-b-a. Consequently,

Isothermal
reversible

n

m

Adiabatic
reversible

Isothermal
reversible

Figure 6: Replacement of a reversible cycle with a series of Carnot cycles.



δQ Tif fd dc ci /+ + +∫  = δQgh/Tgh + 0 + δQba/Tba + 0. (20)

Once the reversible cycle is split into an infinite number of Carnot cycles Tgh→Tif, and the

local Carnot efficiency for cycle C may be expressed as η = 1 – (Tdc/Tif). Equation (20) can be

rewritten in the form

˙ ˙ ˙Q

T

Q

T

Q

T
if

if

dc

dc

∑ = + = 0 , or ∫ δQ /T = δQif/Tif + δQdc/Tdc = 0, i.e.,

(the integral of the local heat transfer for a reversible process) ÷ (local temperature of the sys-
tem) = 0. This relation is valid for any reversible cycle, i.e.,

∫ δQ /T = 0. (21a)

QL,RHEQL,IRHE

Wcycle,RHEcle,IRHE

Irreversible
process

QL

QL,IRHE

c) Pseudo-Carnot Cycle

a) Irreversible

Heat  Engine

b)Reversible Heat
Engine

Figure 7. a) Reversible heat engine, RHE; b). irreversible heat engine,
IRHE; c). pseudo-Carnot cycle with an irreversible process.



4. Clausius Inequality
Consider two heat engines, one irreversible (IRHE) and the other reversible (RHE).

The efficiency of the irreversible heat engine is lower than that of a reversible heat engine op-
erating between identical higher– and lower–temperature thermal reservoirs, (Carnot’s First
Corollary)  i.e.,

ηIRHE < ηRHE.

Consider a Carnot cycle that involves reversible processes (e.g., a reversible heat en-
gine) and a pseudo-Carnot cycle (the irreversible heat engine shown in Figure 7b). The
pseudo-Carnot cycle involves a single irreversible process depicted by the irreversible expan-
sion path 3-4 in Figure 7c. The irreversible path 3-4 creates frictional heating, which requires
more heat rejection to complete the cycle.  Recall that for any heat engine  η = 1 – Qout /Qin,

and that for a Carnot engine Qout/Qin = QL/QH = TL/TH, which implies that for the same value of
QH

QL,IRHE > QL,RHE.

For an irreversible cycle

∫ (δQ /T)IRHE = QH/TH–QL,IRHE/TL = (QH/TH–QL,RHE/TL)+QL,RHE/TL–QL,IRHE/TL.

The expression contained in the parenthesis equals zero, since QL,RHE/QH = TL/TH. Further-
more, QL,IRHE > QL,RHE, and

∫ δQ /T = 0 + (QL,RHE – QL,IRHE)/TL, i.e.,

∫ δQ /T <0. (21b)

This mathematical statement is known as the Clausius inequality.
In a manner similar to that used for a closed reversible cycle, an irreversible cycle

may be represented by an infinite number of pseudo–Carnot cycles (involving one irreversible
process). By doing so, it becomes possible to prove that for any cycle involving irreversible

processes, ∫ δQ /T <0 .

For the same of illustration, consider a realistic automobile engine running on an Otto
cycle. Due to irreversible frictional processes, the engine must reject more heat to the cooling
water than an analogous reversible engine so that the cyclic process is achieved. In this case,
δQout/Tout > δQin/Tin leading to the inequality of Eq. (21b). The medium (gaseous combustion

products) in the engine can exist at a temperature different from that of the reservoirs. There-
fore, the relevant temperatures in the integral of Eq. (21b) may differ from the reservoir tem-
peratures. In subsequent sections we will generalize the Clausius inequality, and refer to me-
dium temperatures during the cyclical process rather than the reservoir temperatures.

5. External and Internal Reversibility
A Carnot cycle is illustrated in Figure 8a. Although during the process 2–3, the cycle

medium temperature is 1000 K, the temperature of the corresponding thermal energy reservoir
TH´= 1200 K. Likewise, the process 4–1 occurs at a medium temperature of 400 K, while the
thermal energy reservoir is colder with TL′ = 300 K. In this case, irreversibilities occur be-

tween the cylinder wall and the hot (at TH′) and cold (at TL′) reservoirs. Assuming uniform gas

temperatures within the system during these processes (e.g., TA = TB = 1000 K as the process
2–3 proceeds, as shown in Figure 8b), it is clear that while the closed system is internally re-
versible; it is externally irreversible. This spatial property uniformity causes the process to be
internally reversible.

The efficiency of the Carnot cycle 1–2–3–4 equals 1–TL/TH, where TL = 400 K; and



TH = 1000 K. This efficiency is based on the internal temperatures of the system. Therefore,
Eq. (21) can be written as

( / )intδQ T rev∫  = 0, (22)

where the T denotes the uniform internal system temperature.

6. Entropy
In Chapter 1, entropy is

defined as a measure of the
number of states in which
energy is stored. The calcu-
lation of entropy requires
knowledge of energy states of
molecules. Now using classi-
cal thermodynamics, a
mathematical definition will
be given for estimating the
entropy in terms of macro-
scopic properties.

a. Mathematical Definition
For any cycle in-

volving internally reversible
processes, ( / )intδQ T rev∫  = 0.

Since the cyclical integral for
any property is also zero,
e.g., du∫  = dh∫  = du∫  = du∫
= 0, we can define (δQ/T)rev

in terms of the entropy which is a property. Therefore,

(δQ/T)rev = dS. (23)

The subscript “int” is omitted hereon for the sake of convenience. The absolute entropy can be
expressed in units of kJ K–1 or BTU R–1. On a unit mass basis (δq/T)rev = ds (in units of kJ Kg–1

K–1 or BTU lb–1 R–1). Similarly, on a mole basis, (δ q/T)rev = d s  (expressed in units of kJ

kmole–1 K–1 or BTU lb mole–1 R–1). The absolute entropy S is an extensive property as are the
absolute internal energy and enthalpy, and volume, and can be converted into its intensive
form s or s .

b. Characteristics of Entropy
The entropy is a measure of the energy distribution within the constituent molecules

of the matter contained in a system. The larger the number of ways that energy can be distrib-
uted in a system, the greater the entropy. The classical theory suggests that the entropy change
can be evaluated by the relation dS = δQrev/T rather than using the energy distribution ap-
proach. For a reversible process, it is seen from Eq. (23) that

TdS = δQrev or T ds = δqrev. (24)

Processes can now be depicted on a T–S diagram (as shown in Figure 9). The area
under a process path 1-2 represents the reversible heat transfer. If a process is reversible and
adiabatic, δQrev = 0, implying that the entropy remains unchanged during it (in this case the

process is termed as being isentropic). The T–S diagram for a Carnot cycle operating between
fixed temperature reservoirs forms a rectangle as illustrated in Figure 10. For this cycle the
entropy change during the heat absorption process ∆SH equals that during the heat rejection

Figure 8 a. Carnot cycle with a thermal energy reservoir at
TH′ and TL; b. piston-cylinder assembly with a temperature

different from the thermal energy reservoir at TH′.



process ∆SL. The entropy change of a

composite system (e.g., containing two
subsystems) ∆S is simply the sum of the

entropy changes in both systems. The
proof of this statement is contained in the
Appendix. Therefore, ∆S1+2 = ∆S1 + ∆S2,

or S1+2 = S1 + S2.

g. Example 7
A house, initially at a tempera-
ture T1 during a hot summer
day, must be cooled to a tem-
perature T2, while the ambient
temperature is T0.
Obtain an expression for the
minimum work required.
If T0 = 310 K, T1 = 310 K, T2 =
294 K, cv0 = 0.718 kJ kg–1 K–1,
determine the minimum work required to cool a house containing a living area of 200
m2   with equivalent mass of  50 kg m–2 of living area.

Solution
An air–conditioning cycle which absorbs heat at a temperature T, and rejects heat to
ambient at T0 is used (see Figure 11). The temperature of the house decreases as pro-
gressively more heat is absorbed from the house (1-2), and discarded to the ambient.
The heat transfer decreases the entropy of the house, and the ambient gains entropy
(line K–L).
We assume the air–conditioning to occur through a Carnot cycle GHCFG  that con-
sists of a series of elemental reverse Carnot cycles that operate at the same high tem-
perature T0, but their lower–temperature reservoirs have different temperatures rang-
ing from T1 to T2 (or TG to TH). Consider one such elemental cycle A–B–C–D which
absorbs heat δQin during the process A–B from the house which is at temperature T.

Applying the First law to the reversed Carnot engine,

δW = δQin – δQout, and (A)

δQout/δQin = T0/T. Therefore,

δW = δQin (1– T0/T). (B)

Note that the heat transfer to the reversed Carnot cycle

δQin = –δQH, (C)

where δQH is the heat transfer from the house. From Eqs. (C) and (B)

δW = –δQH(1–T0/T) = –δQH + T0 dS. 

Applying the First law to the house

δQH –δWH = dUH. 

Since the work transfer to the rigid house δWH = 0,

δQH = dUH. (D)

Figure 9: A process represented on the tempera-
ture-entropy (T-S) diagram.



Furthermore, from Eqs. (D) and (C)

δW = – dUH + T0 dSH. (E)

Equation (E) can be integrated to obtain

Wmin= W= –(U2 – U1) + T0(S2 – S1), (F)

where U and S refer to properties of the house. (The availability concepts introduced
in Chapter 4 will yield similar results.) Per unit mass of the house,

wmin = W/m = w = –(u2 – u1) + T0 (s2 – s1). (G)

T1 = 310 K, T2 = 294 K, cv0 = 0.718 kJ kg–1 K–1.
w = –0.718 × (294 –310) + 310 × (0.718 ln (294/310) – R ln (v2/v1)).

However, v2 = v1, since the house is rigid, and
w = – 0.718 × (294–310) + 310 × 0.718 ln (294/310) = –0.3071 kJ kg–1. m =

200 × 50 = 10,000 kg and hence,

W = –0.30701 × 10,000 = –3070.1 kJ

Remarks
The overall cycle diagram for the combined Carnot cycle involving several elemental
cycles is depicted in Figure 11b as the dashed line E–F–G–H.
Figure 11b illustrates the change in entropy of the house and ambient air. For the
Carnot cycle operating between the variable temperature reservoir and the ambient,
the T–S diagram is no longer a rectangle (area E–F–G–H in Figure 11b). The area un-
der the lower–temperature path 1–2 represents the heat absorbed from the house by
the medium in the Carnot cycle.
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Figure 10: A Carnot cycle represented on a T-S diagram.



In Chapter 4 we will discuss the concept of availability. There, Eq. (F) will reappear
in the relation for optimum work.
If the expression in Eq. (F) is used in the context of a thermal energy reservoir at a
temperature TH, W = (U1 – U2) (1– T0/TH), where U1 – U2 of the reservoir equals Qin.
If the house is initially at a temperature of  TH, 1, and a sudden cold front  at T0 moves
in, how much work must be supplied to cool the house to TH, 2 ?
One can show that Eq.(G) reduces to

w× = (wmin /(cv0 TH,1))= –(θ2 – 1) + θ0  ln (θ2) , θ = T/ TH,1 (H)

where w× is a maximum when  θ2 =  θ0.

Figure 11c illustrates the variation of w× as a function of θ2. It is possible to produce

work when cooling the house (e.g., the house supplies heat to Carnot heat engine
which rejects heat to the ambient). The sensible energy of a warm house can be used
to produce work during a cooling process. However, the work produced decreases
once the house temperature falls below the ambient temperature since a part of the
produced work is used as a work input in a Carnot heat pump. When the house tem-
perature reaches a certain value, then

–(θ2 – 1) + θ0 ln(θ2)= 0 or θ2  =  1 - θ0  ln (1/θ2), i.e., w =0,

(see the straight line on the plot). If the house temperature decreases further, then ex-
ternal work input is necessary. When T0 = 298 K, Thouse-2 = 298 K, w = – 0.718 ×
(298–310) + 298 × 0.718 ln(298/310) = 0.169 kJ kg–1 while at Thouse-2 = 285 K, w× =

–0.718 × (285–310) + 298 × 0.718 ln(285/310) = –0.041 kJ kg–1.

h. Example 8
Discuss an optimal path to heat 1 kg of water from 300 K and 1 bar (point K of Figure
12) to 780 K, with the final pressure being arbitrary. A pump that is used to compress
the fluid consumes virtually negligible work.

Solution
Two different paths may be selected: (1) the path K–F–G–H at a pressure of 1 bar, or
(2) the path K–D–E along which the final pressure is the same as critical pressure.
The area under the path S on the T–S diagram represents the amount of heat required

Figure 11 a. A Carnot cycle; b. T-S Diagram for the cooling of a house.



under reversible conditions. For the second path the area A–K–D–E–B is lower com-
pared to that for the first path, i.e., area A–K–F–G–H–C. Regardless of the choice of
final pressure (within the constraint that the fluid is not supercritical), the path along
the critical pressure represents the least heat input.

Remark
For path (2), the water pressure must be raised from 1 bar to its critical pressure Pc =
220.9 bar. Since water is a liquid (hence, incompressible), the pump work required is
negligible.

7. Relation between ds, δδδδq and T During an Irreversible Process
Assume that a large aggregate of infinitesimal weights is suddenly placed on top of a

piston of a piston–cylinder assembly, thereby compressing the gas contained adiabatically, but
irreversibly (path 1-2 in Figure 13 and Figure 14a). The abrupt action of placing the weight on
the piston causes a higher–velocity macroscopic movement of molecules and closer spacing of
molecules near the piston surface, while molecules farther away from this surface, still spread
far apart, are macroscopically virtually motionless. This results in the formation of property
gradients and frictional heating of the gases through the destruction of macroscopic kinetic
energy, and in a temperature rise at the conclusion of the compression process. After reaching
the final volume V2, if the infinitesimal weights are slowly removed, not all of the weights
must be taken away in order to regain the initial volume V1 (path 2-3 in Figure 13 and Figure
14b),  since the initial compression created too high a temperature due to rapid motion of the
piston where kinetic energy of molecules is eventually converted into heat. Therefore, the ex-
pansion which now occurs through a quasiequilibrium process back to the initial volume can-
not have the same initial temperature.

The two processes are illustrated through the P–v diagram in Figure 13. The irreversi-
ble compression process is represented by the dashed line 1–2, while the quasiequilibrium ex-
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pansion is depicted by the solid
line 2–3. Since T3 > T1, the pres-
sure P3 following expansion is
greater than the initial pressure
P1, although the corresponding
volumes are identical. The proc-
esses can be organized into a
cycle by adding a quasistatic
equilibrium heat rejection proc-
ess at constant volume. Thus, the
cycle 1-2-3-1 involves three
processes: (1) irreversible adia-
batic compression 1-2 , path A
(Q12 = 0), (2) reversible adia-
batic expansion 2-3 (Q23 = 0),
and (3) constant volume heat
rejection 3-1 (Q31 < 0).  Let us
lump the processes   2-3 and 3-1
as path B. Applying the First law

to the processes, since ∫ δQ =

∫ δ W and ∫ δ Q < 0, then

∫ δW < 0 implying work input

into the cycle.
The Clausius inequality must be satisfied for any cycle involving irreversible proc-

esses so that
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Lumping the reversible processes 2-3 and 3-1 together as a single reversible process 2-1 (path
B),

1

2

A

2

1

rev BQ T + Q T∫ ∫( / ) ( / ) ,δ δ < 0.

The process 2-3-1 is reversible, and the term δQ/T can be replaced by dS. Therefore, (S2-S1) <

0. Since the value of (S2-S1) along path B is the same as that along the irreversible path A, then
for any irreversible process

S2 – S1 > ( / )δQ T1
2∫ . (25)

Equation 25 implies that the entropy change between two equilibrium states 1 and 2 exceeds
the entropy change induced by the heat transfer process or the transit entropy alone due to the
irreversibility.

The entropy transfer due to heat transfer across a boundary δQ/T will be termed as

the transit entropy (abbreviated as tentropy). It is a not a property. The transit entropy ∫ δQ/T

= 0 only if Q = 0. (e.g., the irreversible process 1–2 illustrated in Figure 14a). It is also possible
to reach state 2 through a combination of reversible processes. For instance, in a first quasie-
quilibrium process, the infinitesimal weights can be slowly placed on the piston (Figure 14b)
to reach state 2R at which V2R = V2, but T2R < T2. Following this, state 2 can be reached from
2R through constant volume heating. The entropy change along path 1–2R–2 can be deter-
mined by employing the expression dS = δQrev/T to obtain S2 – S1 (recall that S is a property,

Figure 12: Heating of a fluid.



and independent of the process path). This is the procedure that we will adopt in the next sec-
tion for evaluation of entropy.

As an example, assume that 2000 kJ of heat crosses a system boundary at 999 K, and
that this temperature subsequently increases to 1001 K. Since the average temperature is 1000
K, the tentropy equals 2 kJ K–1. If the entropy change in the system dS is measured to be 2.5 kJ
K–1, then the above inequality given by Eq. (25) is satisfied. Thus, the process is possible.

As another example, consider a 2 kg mass of air contained in an insulated pis-
ton–cylinder assembly at 25ºC and 100 bar. Stirring work (= 14 kJ) is performed to raise the
air temperature to 35ºC (Figure 15a) at constant volume. It is impossible to convert all of the
14 kJ of thermal energy back into work since, for the 14 kJ of heat extraction, the Carnot work
is 0.46 kJ (cf. Eq. F in Example 8). Therefore, a work capability of 13.54 kJ is lost. However,
if in the first instance, the air was adiabatically and quasistatically compressed to 35ºC utiliz-
ing 14 kJ of work (as illustrated in Figure 15b), the gas could have been expanded to its origi-
nal state to recover the entire amount of work. The latter process is reversible while the former
is irreversible. In the former process, moving the stirrer causes viscous dissipation (which is a
frictional process converting work into “heat”) to occur, and the Second law prevents the con-
version of the entire amount of heat into work. For that process, since δQ = 0, using the rela-

tion dS > δQ/T, dS > 0. Since the

latter process is reversible, dS =
δQ/T. Furthermore, since δQ = 0, by

implication dS = 0 implying that S =
constant.

a. Caratheodary Axiom II
The first Caratheodary

axiom has been previously discussed
in Chapter 2. We will illustrate the
second axiom through the following
example: Consider the adiabatic, but
irreversible, compression process
(from V1 to V2) depicted in Figure
14(c). The same state (2) can be
reached by adiabatic reversible com-
pression 1-2R and then via heat
transfer at constant volume V2R = V2.
Is T2R > T2 or T2R < T2? Although V2

= V2 R, the Caratheodary axiom II
postulates that T2R must always be
lower than T2.

ii. Proof
Assume the axiom to be true. Since the process 1–2R–2 is reversible, the cycle

1–2–2R–1 (which contains an irreversible process 1–2) is possible. For the cycle,

δQ∫ /T = (∫δQ/T)1–2 + (∫δQ/T)2–2R + (∫δQ/T)2R–1 = 0 + (negative number)+0,

and the Clausius inequality is satisfied.
Now, assume that the axiom is incorrect, and that state 2R lies above 2 on the P–V

diagram (cf. Figure 14d). For the cycle 2–2R–1–2,

δQ∫ T = (∫δQ/T)1–2 + (∫δQ/T)2R + (∫δQ/T)2R = 0 + (positive number) + 0.

A

B

Figure 13: P-V diagram for a thermodynamic cycle
consisting of an irreversible process.



The RHS of this expression is positive, which violates the Clausius inequality. Therefore,
some states cannot be reached through an adiabatic process once the final volume is fixed. This
is the essence of the Caratheodary axiom II.

D. ENTROPY BALANCE EQUATION FOR A CLOSED SYSTEM
The Clausius inequality states that the entropy change is always larger than the transit

entropy for irreversible processes. This statement can be expressed in a balanced form that is
similar to the energy and mass conservation equations, except for the fact that entropy is not a
conserved quantity. Entropy balance is an important tool in designing and optimizing heat ex-
changers, heat engines and pumps, and various other thermodynamic systems. It provides
quantitative information regarding the operating conditions and the extent of inefficiency of a
device or system.

1. Infinitesimal Form

a. Uniform Temperature within a System
The entropy generated is the difference between the entropy change and the transit

entropy during a process. For a closed system, the differential relation of Eq. (25) may be re-
written to explicitly include the entropy generation s, i.e.,

(a)

(b)

(c) (d)

Figure 14: Illustration of reversible and irreversible processes that
reach the same final state – a. Irreversible compression by suddenly
placing a large system of infinitesimal weights; b. Reversible com-
pression by placing one infinitesimal weight at a time; c. P-V dia-
gram for the processes illustrated in Figures a and b; d. Proof of the
Caratheodary axiom for the example.



dS = δQ/T + δσ. (26)

This relation is also known as Gibbs’ equation. The entropy generation δσ > 0 for internally

irreversible processes and is zero for internally reversible processes. Although the boundary
temperature may be uniform, thereby indicating thermal reversibility, other irreversibilities,
such as those due to chemical reactions, can contribute to σ, as will be discussed in Chapter 11.

i. Example 9
Assume a large primary system to consist of a vessel containing warm water at a sys-
tem temperature of 350.001 K (T1). An infinitesimal amount of its heat (1050 J) is
transferred to a secondary system consisting of room air at a temperature of 300 K
(T2). Consequently, the water temperature drops to 349.999 K. What is the entropy
generation:
If the system is cooled in air (as illustrated through process (a) (as shown in Figure
16a)?
If the heat removed from the primary system is used to run a Carnot engine (process
(b)), and that rejected by the engine is transferred to the secondary system (cf. Figure
16b)?

Solution
Assuming an internally reversible cooling and heating process for the water and air,
using Eq. (26), δσ = 0 for both systems. Therefore,

dS = δQ/T (A)

Since the temperature is approximately constant (≈350 K), upon integrating Eq. (A)

Figure 15: a. Irreversible process; b. Irreversible state
changes.



∆S1 = –1050÷350 = –3 J K–1. (B)

which is represented by path AB in Figure 16c. Similarly,

∆S2 =1050÷300 =3.5 J K–1. (C)

The entropy gain for the air is represented by the path C–D–E in Figure 16c. If a
boundary is placed around systems 1 and 2, as illustrated by the dashed line in Figure
16a, there is no heat or work transfer across the composite isolated system. However,
an irreversible process occurs within the composite system, and

dS – (0/T) = δσ, i.e., dS1 + dS2 = δσ, or (D)

∆S1 + ∆S2 – 0 = σ. (E)

Employing Eqs. (B) and (C),
σ = –3.0 + 3.5 – 0 = 0.5 J K–1.

The path D–E, shown in  Figure 16c  illustrates the net entropy gain for the isolated
system that occurs since entropy is generated due to irreversible heat transfer between
the two subsystems 1 and 2.

The second scenario is illustrated in Figure 16d. In this case subsystem 2 un-
dergoes the same entropy change as does subsystem 1 so that

∆S1 = – 3.0 J K–1, and ∆S2 = Q2/T2. (F)

Therefore, QL/QH = Q2/Q1 = T2/T1 = 300÷350 = 0.857.
Since Q2 = 1050 × 0.857 = 900 J, and

∆S2 = 900÷300 = + 3.0 J K–1. (G)

For the composite system ∆S1 + ∆S2 – 0 = σ. Employing Eqs. (F) and (G),

– 3.0 + 3.0 – 0 = σ = 0.

In this particular case |∆S1| =  |∆S2|.

Remarks
For the first case 1050 J of
thermal energy is transferred
from the warm water to the
ambient and ∆U1= –∆U2 =

–1050 J. It is impossible to
transfer the 1050 J back from
the ambient to restore the water
to its original state. Further,
∆U = ∆U1 + ∆U2 = 0

For the second case work is
produced and used to lift a
weight (e.g., lift an elevator)
with the consequence that a
smaller amount of heat is re-
jected to the ambient while ac-
complishing the same change
in state of the water. In this
case, ∆U1 = – 1050 J, and ∆U2

= + 900 J so that ∆U (=∆U1 +

T1=
350 K

1

T1=
350 K

1

22

1050 J 1050 J

S1= -3.0 J/K

S1= -3.0 J/K

S2= +3.0 J/K

S2= +3.0 J/K 900 J

W=150 J

S1+ S2 =0S1+ S2 >0

(a) (b)

T2=300 K T2=300 K

Figure 16: a). Illustration of a) direct cooling; b).
cooling using a Carnot engine.



∆U2) = –150 J which equals the potential energy change in the weight.

For the second case the ambient gains 150 J in potential energy due to the work done
in raising the weight. In order to reverse the process, i.e., to heat the water by heat
transfer from the ambient, work input is required. If the weight is lowered to provide
work for a heat pump cycle Figure 17, QH/QL = TH/TL =350÷300 = 1.17. Therefore,
QL = 1050÷1.17 = 900 J, and the absolute value of the work |W| = |Heat absorbed –
Heat rejected| = |QL – QH| = 150 J. By lowering the weight to its original position, it is
possible to supply 150 J of work to the heat pump to heat the water. In this manner
both the water and ambient are restored to their initial states. Processes during which
σ = 0 are entirely reversible.

In order to restore the water back to its original state for the first case one can extract
900 J of heat from the ambient with an external work input of 150 J so that it is possi-
ble to pump 1050 J of thermal energy. However, we now require an additional 150 J
of work. For the first system ∆U1 = 0. For the second system ∆U2 = +150 J and the

ambient loses a work equivalent of 150 J (which equals T0σ = 300×0.5 = 150 J). Ide-

ally, heat engines should operate in a manner similar to the second case.

b. Nonuniform Properties within a System
Thus far, we have considered uniform-temperature systems such that dS–δQ/T = δσ.

This  relation must be modified to account for nonuniform system temperatures.
Consider a system that changes irreversibly from state 1 to 2 due to the rapid com-

pression induced by the sudden inward movement of a piston in a cylinder (cf. Figure 18a and
b). At the final state, the system is a composite of two subsystems A and B. Subsystem A con-
tains molecules adjacent to the piston that are more closely packed than those in B (cf. Figure

35
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300 K
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T

C D
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(c) (d)

Figure 16 c) T-S diagram for direct cooling; d) T-S diagram for cooling via Carnot engine.



18b). Consequently, the two subsystems exchange different amounts of heat (respectively, δQA

and δQB) through the system boundary. Heat transfer occurs internally between the two sub-

systems in the amount δQ´, where δQ´ < 0 for A, and has a positive value for B. Assuming

these subsystems to be internally reversible, applying Eq. (26),

dSA – δQA/TA – δQ´/TA = 0, and dSB – δQB/TB + δQ´/TB = 0.

Adding the two relations,

(dSA + dSB) – (δQA/TA + δQB/TB) = δQ´ (1/TA – 1/TB), or (27a)

(dSA + dSB) – (δQA/TA + δQB/TB) = δσ. (27b)

Note that δQ´ < 0 if TA > TB, and is positive if TA < TB. The RHS of Eq. (27a) is al-

ways a positive number that represents the entropy generated due to irreversible heat transfer
within the composite system. Equation (27b) may be interpreted as follows: (The combined
entropy change of the two subsystems within the composite system or a system where gradi-
ents exist) – (The transit entropy across the boundary calculated using the composite system
boundary temperatures and heat fluxes) = (The entropy generated due to internal gradients).

Figure 18c illustrates the processes occurring in a composite system that consists of
three subsystems. Generalizing Eq. (27b) to a system containing several subsystems (that is
uniquely defined by its properties),

ΣdSj = ΣδQj/Tb,j + δσ (27c)

The term dSj denotes the entropy change in the j–th subsystem, δQj is the heat flux across that

subsystem at the subsystem boundary temperature Tb,j, and δσ the entropy generated for the
entire system as a result of irreversible interactions within the various subsystems. If the
boundary temperature Tb is uniform across the system boundary, but differs from the system
temperature, Eq. (27) can be simplified into the form

dS = δQ/Tb + δσ. (28)

Equations (27c) and (28) are called entropy balance equations for specified mass or
closed systems. Equation (28) expresses the entropy change dS within a system at a boundary
temperature Tb. This change is caused by the transit entropy δQ/Tb and the entropy generated

due to irreversibilities. All processes (including chemical changes) must satisfy Eq. (28).

350 K

1050 J

1050 J

900 J

150 J

300 K

Figure 17: Illustration of a heat pump.



If the control surface is slightly extended to lie outside a system so that Tb = T0 (cf.
Figure 18d), all irreversibilities lie within the system, and Eq. (28) assumes the form

dS = δQ/To + δσ. (29)

As an example, approximate the engine walls of an automobile engine to be adiabatic.
The compressed “cold” gasoline–air mixture in the engine exists at a temperature ≈600 K,

which, after burning, is converted into hot gases ≈2000 K (cf. Figure 19). Upon ignition, the

vicinity of the spark plug is “warmer” than other locations such that the system is a composite
of (A) hot spots and (B) cold spots. For the two subsystems, ∆SA + ∆SB > 0, since the entropy

increases due to “internal equilibration”. For the composite system illustrated in Figure 19,

dSA + dSB  = δQA/TA + δQB/TB + δσ.

Frictional heating between moving gases and the fixed walls offers another example of an irre-
versible process. The friction causes a temperature differential near the wall that subsequently
transfers heat towards the system interior, thereby generating entropy.

iii. Simple rule
If the properties of a system are uniform throughout (i.e., the system contains no

property gradients), in that case processes are “internally” reversible. When temperature, pres-
sure, or kinetic energy gradients are created within a system, processes involving it become
internally irreversible, and, consequently, entropy is generated.

2. Integrated Form
The integrated form of Eq. (28) is

S2 – S1  = ∫δQ/Tb + σ. (30)

If a process satisfies Eq. (30) (e.g., with σ ≥0), there is no assurance that the end state (2) is

Figure 18: a) Initial state 1; b) final state 2; c) composite system
with three sub-systems; d) system with Tb = T0.



realized. As we will  see later, for a process to occur, the condition δσ ≥  0 must be satisfied

during each elemental part of the process. Therefore, Eq. (28) is more meaningful than Eq.
(30).

3. Rate Form
The time derivative of Eq. (28) returns the rate form of that relation, i.e.,

dS/dt – Q̇ /Tb = σ̇ . (31)

For instance, if a blender containing water is turned on or when a coffee pot with an immersed
electrical heating coil is switched on, work is destroyed. Equation (31) is convenient to use to
determine the entropy generation rate. The thermodynamic laws are constitutive equation in-
dependent, but can be used to validate (or invalidate) any constitutive equation. For instance, it
is possible to determine σ̇  accurately if Q̇  is known or can be accurately measured  (cf. Ex-
amples 1 and 2) and dS/dt is also known (e.g., from property tables such as Tables A-4, A-5,
etc. or from basic measurements using pulley-weight assembly systems). On the other hand
calculations of Q̇  and/or dS/dt may require application of a constitutive relation. For instance,

by applying Q̇ /T  = -(λ∇T)/T, we have used a constitutive equation for heat transfer. If it is

possible to show that σ̇ <0 with a constitutive relation, and since the entropy balance equation
follows from the Clauisus inequality (which is a mathematical form of the Second law), then
the constitutive relation is inaccurate.

4. Cyclical Form
Integrating Eq. (28) over a cyclical process, 0  = δQ∫ /Tb + σcycle. Since σcycle > 0,

δQ∫ /Tb < 0. (32)

This relation is a restatement of the Clausius inequality with the temperature replaced by Tb.
The entropy generation concept is a powerful tool to determine the extent of ir-

reversibilities occurring during cyclical processes, which result in increased heat rejection and
lead to lower efficiencies. Evaluation of the entropy generation during the individual processes
constituting a cycle allows the determination of their relative irreversibilities, and quantifies
those due to heat transfer, the destruction of mechanical work, etc., as illustrated in Example

TB

Cold Air,  B
300K

Hot Spot 1000K
Burnt Gases,A

Spark Plug

TA

Figure 19: Illustration of internal irreversibility.



12. Most idealized cyclical processes (e.g., the Rankine, Otto, and Brayton cycles) assume σ

= 0. Based upon the values of σcycle or ∫ δQ/Tb , practical cyclical heat engines can be as-

signed a rating of 0 (σcycle highest with work production of zero) to 1 (σcycle = 0, i.e., idealized

cycles with maximum work production). Cycles may deteriorate over time due to hardware
problems, with the consequence that σcycle increases.

5. Irreversibility and Entropy of an Isolated System
Since δQ = 0 for isolated systems, and δσ > 0 for irreversible processes, Eq. (28)

yields that dS > 0. When warm water is exposed to ambient air, as illustrated in Example 9, the
system “drifts” in the absence of internal constraints towards an equilibrium state. We saw
from Example 9 that for a composite system consisting of (1) warm water directly losing heat
to air (cf. Figure 16a) and (2) that water being supplied with heat equal to the lost value
through a Carnot heat pump, a net work loss occurred. This loss is called the irreversibility I of
the composite system. In the case discussed in Example 9,

I = T0 σ.

A rigorous proof of this equality is contained in Chapter 4.

j. Example 10
An uninsulated coffee pot is maintained at a temperature of 350 K in a 300 K ambient
by supplying 1050 W of electrical work. The heat transfer coefficient is 0.2 kW m–2

K–1, and heat transfer occurs over a pot surface area of 0.5 m2. Determine the entropy
generated:
In the system contained within the boundary cs1, as illustrated in Figure 20a (i.e., for
only the coffee within the pot), assuming the pot boundary temperature to be 350 K.
The matter contained within cs2, as illustrated in Figure 20b (i.e., for the system in-
cluding both the coffee and pot)
For the system containing the coffee, pot, and the ambient (i.e., bounded by the sur-
face cs3 illustrated in Figure 20c) for which Tb = T0 which is the ambient temperature.

Solution
Selecting the control surface internally, and applying the First law, Q̇  – Ẇelec = dE/dt.

At steady state, dE/dt = 0 so
that Q̇  = Ẇelec = –1050 W.
Applying the entropy balance
equation in rate form dS/dt –
Q̇ /Tb = σ̇ , we obtain

0 – (–1050/Tb) = σ̇ .
Since Tb = 350 K,

σ̇  = 1050÷350 = 3 W K–1.
Selecting the control surface
cs2 to be flush with the pot
walls, the boundary tempera-
ture Tb must be determined.
Applying the convection heat
transfer relation

h A (Tb – T0) = Q̇  = 1050
W,
the boundary temperature is
determined as,

Tb = 1.05 ÷ (0.2 × 0.5) +

300 = 310.5 K, and σ̇  =Figure 20: Entropy generation within a coffee pot.



–(–1050 ÷ 310.5) = 3.382 W K–1.
Upon comparison with the previous solution, we find that irreversible heat transfer
between the coffee and pot walls causes an entropy generation of 3.382 – 3 = 0.382 W
K–1.
Selecting the control surface cs3 such that the boundary exists outside the pot, Tb = T0,

0 – (–1050 ÷ 300) = σ, i.e., σ̇  = + 3.5 W K-1.

No irreversibilities exist outside the boundary of the control surface cs3 . The entropy
change in this composite system (using Tb = T0) equals the entropy change in an iso-
lated system, since there is no entropy production within the ambient.

Remarks
For the matter contained within the surfaces cs2 and cs3  which include the pot wall,

σ̇  = 0 – (1050 ÷ 310.5) – (–1050 ÷ 300) = 0.118 W K–1

due to the heat transfer between the ambient and pot walls.
By a suitable choice of the boundary, we are able to determine contributions to over-
all σ. The major contribution is due to destruction of electrical work into heat called

electrical frictional work.
The change in entropy due to:

destruction of electrical work within the coffee pot = 3 W K–1.
irreversible heat transfer between coffee and pot walls = 0.38 W K–1.
irreversible heat transfer between pot walls and ambient = 0.12 W K–1.

The change in entropy of the isolated system = 3.5 W K–1.

k. Example 11
An uninsulated coffee pot is maintained at a temperature of 350 K in a 300 K ambi-
ent. Instead of supplying electrical work, we can compensate for the heat loss by
placing a heat pump between the coffee pot and ambient, as shown in Figure 21.
What is the electrical work required to operate the heat pump?

Solution:
COP = 350 ÷ (350–300) = 7, i.e., Ẇelec = 1050 ÷ 7 = 150 W.
The pot can be maintained at 350 K by providing 150 W of electrical power to a heat
engine, rather than directly supplying 1050 W as in the previous example.

6. Degradation and Quality of Energy
Consider a Carnot cycle operating between thermal energy reservoirs at the high and

low temperatures TH and TL, respectively. The term (1– T0/TH) represents the quality of the
energy or the work potential per unit energy that can be extracted in the form of heat from a
thermal energy reservoir at a temperature TH. Therefore, the heat QH extracted from the ther-
mal energy reservoir at TH has the potential
to perform work equal to QH × quality = QH

(1– T0/TH) where quality of energy at TH is
given by  (1– T0/TH). It is seen that at a
specified temperature, the quality equals
the efficiency of a Carnot engine that is
operated between TERs at temperatures T
and T0.

Assume that it is possible to re-
move 100 kJ of heat from hot gases that are
at 1000 K (and which constitute a thermal
energy reservoir) using a Carnot engine
operating between 1000 K and the ambient
temperature of 300 K (cf. Figure 22a). Us-
ing the engine under these conditions, it is
possible to produce a work output of Figure 21: The heating of a coffee pot using a

Carnot heat pump.



100×(1 – 298÷1000) ≈ 70 kJ, as illustrated in Figure 22a. Therefore, the quality of energy at

1000 K is 70%. The entropy change of the hot gases is –0.1 kJ K–1 (= –100 ÷ 1000), while the
entropy gain for the ambient is 0.1 kJ K–1 (i.e., 30 kJ÷300 K).

Alternatively, we can cool the hot gases using water to transfer the 100 kJ of energy.
Assume that during this process the water temperature rises by 2 K from 399 K to 401 K (with
the average water temperature being 400 K, as shown in Figure 22b). If a Carnot engine is
placed between the water at 400 K and the ambient at 300 K, then for the same 100 kJ of heat
removed from radiator water, we can extract only 100×(1 – 298÷400) ≈ 25 kJ, and 75 kJ is

rejected to the ambient. In this case, the energy quality is only 25% of the extracted heat.
Figure 23 illustrates the processes depicted in Figure 22a and b using a T–S diagram. The cy-
cle A–B–C–D–A in Figure 23 represents the Carnot engine (CE) of Figure 22a, while area
ABJIA and EGKIE represent heat transfer from engine and to hot water, respectively, for
Figure 22b, while the area C–D–I–H represents the rejected heat of CE for the first case, and
the area D-C-H–K–J–I–D that for the latter case. Since more heat is rejected for the second
case, the work potential or the quality of the thermal energy is degraded to a smaller value at
the lower temperature. This is due to the irreversible heat transfer or the temperature gradients
between hot gases and radiator water (as shown in Figure 22b). In general property gradients
cause entropy generation.

Now, one might ask about the Maxwell-Boltzmann distribution of molecular veloci-
ties. Consider a monatomic gas within a container with rigid adiabatic walls. A “pseudo” tem-
perature distribution exists for the monatomic gas. The question is whether with collision and
transfer of energy, there can be degradation of energy or generation of entropy. First, tem-
perature is a continuum property and the temperature cannot be associated with a group of
molecules. Secondly, after frequent collisions, at that location where frequent transfers occur,
the intensive state is not altered over a time period much larger than collision time. Thus, no
gradient exists and there is no entropy generation.

a. Adiabatic Reversible Processes
Recall that for any process within a closed or fixed mass system, dS = δQ/Tb + δσ.

For any reversible process δσ =0 so that dS = δQ/T. For an adiabatic reversible process, δQ =

δσ = 0, so that

dS = 0.

Consequently, the entropy remains unchanged for an adiabatic reversible process. These
processes are also known as isentropic processes.

 ba

Figure 22: a. Carnot engine operating between hot gases and the ambient; b.
Carnot engine operating between water and the ambient.



E. ENTROPY EVALUATION
The magnitude of heat transfer can be determined through measurements or by ap-

plying the First law. Thereupon, in the context of Eq. (28), if the entropy change is known, δσ
may be determined for a process. The entropy is a property that depends upon the system state
and is evaluated at equilibrium.

Consider the irreversible process illustrated in Figure 24 involving the sudden com-
pression of a gas contained in a piston–cylinder assembly with a large weight. The dashed
curve in Figure 24 depicts the accompanying irreversible process. Applying the First law to the
process we obtain

Q12 – W12 = U2 – U1.

The change in state due to an irreversible process can also be achieved through a se-
quence of quasiequilibrium processes as described by the path A in Figure 24. Applying the
First law to this path, we obtain the relation

Q1-2R–2 – W1–2R–2 = U2 – U1.

Integrating Eq. (28)  (with δσ= 0) along this path A ,

S2 – S1 = ∫1
2  δQR/T. (33)

since δσ = 0. The infinitesimal heat transfer δQR along the path A is  obtained from the First
law for a sequence of infinitesimal processes occurring along the reversible path 1–2R–2, i.e.,

δQR = dU + δWR = dU + P dV.

Therefore, Eq. (33) may be written in the form
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Figure 23: T-s diagram for the processes indicated in the previous figure.



S2 – S1 = ∫(dU + PdV)/T. (34)

Integrating this relation between the initial and final equilibrium states

S2 – S1 = T dU PT dUU
U

V
V− −∫ + ∫1 1

1

2

1

2 . (35)

The values of pressure and temperature along the path 1–2R–2 in Eq.(35) are different
from those along the dashed line 1–2, except at the initial (T1, P1) and final (T2, P2) states.  If
the state change is infinitesimal

dS = (dU/T) + (P/T) dV, or (36)

TdS  =  dU + PdV, (37)

which is also known as the TdS relation. Equation (37) results from a combination of the First
and Second laws applied to closed systems.
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Figure 24: An irreversible process depicted on a U-V-S diagram. An illustration of estimating s by
reversible path.



Since the entropy is a property, the difference (S2– S1) as shown in Eq. (35) is a func-
tion of only the initial (U1,V1) and final (U2,V2) states, i.e., for a closed system S = S(U,V).
For example, if the initial and the final pressures and volumes are known, the temperature dif-
ference T2  - T1 can be determined using the ideal gas relation T2 = P2 V2/(mR)  and T1 = P1

V1/(mR),  even though the final state is reached irreversibly, i.e., the functional relation for T2 -
T1 is unaffected. Likewise, to determine the final functional form for the difference (S2–S1),
any reversible path A or B may be selected, since its value being path–independent depends
only upon the initial and final states. (This is also apparent from Eq. (36) from which it follows
that dS = 0 if dU = dV = 0.) For the processes being discussed, the internal energy change as-
sumes the form

dU  = T dS – P dV. (38)

For an infinitesimal process, Eq. (38) represents the change of internal energy between two
equilibrium states with the properties U and U+ dU, S and S +dS, and V and V+dV.

Recall from Chapter 1 that the higher the energy, the greater the number of ways by
which molecules distribute energy. In confirmation, according to Eq.(36), as the internal en-
ergy increases in a fixed mass and volume system, the entropy too must increase. Therefore,
the entropy is a monatomic function of the internal energy for a given volume and mass. The
gradient of the entropy with respect to the internal energy is the inverse of the temperature T–1.
If the internal energy is fixed, Eq.(36) implies that as the volume increases, so does the entropy
(which confirms the microscopic overview outlined in Chapter 1). This is to be expected, since
more quantum states are available due to the increased intermolecular spacing.

Upon integrating Eq. (36), functional relation for the entropy is

S = S(U,V) + C, or U = U(S,V) + C. (39a and b)
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Figure 25: Variation of s with u with v as a parameter.



The latter is also known as the Gibbs fundamental relation for systems of fixed mat-
ter. If the composition of a system is known, it is possible to evaluate the constant C which is a
function of the number of moles of the various species (N1, N2,…, etc.) or their masses (m1,
m2,…, etc.) that are contained in the closed system of fixed total mass m. If the composition of
the system is fixed, i.e., if the number of species moles N1,  N2,…, etc. are fixed, then S =
S(U,V) which is also known as the fundamental equation in entropy form.

On a unit mass basis Eq. (36) may be written in the form

ds = du/T + Pdv/T, (40)

so that for a closed system of fixed mass

s = s (u,v). (41)

Figure 25 contains an experimentally–determined relationship between s and u with v as a pa-
rameter for the refrigerant R–12.

Since dU = dH – d (PV), Eq. (36) assumes the form

dS = dH/T –  VdP/T.  (42)

It is apparent from Eq. (42) that  S = S(H,P). Writing Eq.(42) on unit mass basis

ds =  dh/T – v dP/T, i.e., (43)

s = s(h,P). (44)

Note that only for exact differentials or differentials of properties can one give the
functional relation like Eq. (44). On the other hand consider the example of electrical work
supplied to a piston–cylinder–weight assembly resulting in gas expansion. In that case. the
work

δW = P dV –Eelec δqc, (45)

where δqc denotes the electrical charge and Eelec the voltage. It is not possible to express W =

W(V,qc), since δW is an inexact differential (so that W is not a point function).

1. Ideal Gases
Substituting for the enthalpy dh = cp0 (T) dT, Eq. (43) may be written in the form

ds =  cpo dT/T – R dP/P. (46)

a. Constant Specific Heats
Integrating Eq. (46) from (Tref,Pref) to (T,P)

s(T,P) – s(Tref,Pref) = cpo ln(T/Tref) – R ln(P/Pref). (47a)

Selecting Pref = 1 atmosphere and letting s(Tref,1) = 0, we have

s(T,P) = cp0 ln (T/Tref) – R ln (P(atm)/1(atm)). (47b)

Selecting an arbitrary value for Tref, and applying Eq. (47b) at states 1 and 2,

s(T2,P2) – s(T1,P1) = cpo ln(T2/T1) – R ln(P2/P1). (47c)

For an isentropic process s2 = s1. Consequently,

cpo ln(T2/T1) = R ln(P2/P1). (47d)

Since R = cpo – cvo, applying Eq. (47d)

T2/T1 = (P2/P1)
k/(k-1), or P2/P1 = (T2/T1)

(k-1)/k, (47e and f)

where k = cp0/cv0. Finally, upon substituting for T = Pv/R in Eq. (47e), we obtain the relation



Pvk = Constant. (47g)

b. Variable Specific Heats
Consider an ideal gas that changes state from (Tref,Pref) to (T,P). Integrating Eq. (46)

and setting s(Tref,Pref) = 0 we have

s(T,P) = (c (T) / T)p0T
T

ref
dT∫  – R ln (P/Pref).

For ideal gases, the first term on the right is a function of temperature alone. Setting Pref = 1
atm, the entropy

s(T,P) = s0(T)  – R ln (P(atm)/1(atm)), where (48a)

s0(T) = (c (T) / T)p0T
T

ref
dT∫ . (48b)

If data for the specific heat cp0(T) are available (Tables A-6F), Eq. (48b) can be read-
ily integrated. In general, tables listing s0(T) assume that Tref = 0 K(Tables A-7 to A-19). There-
fore,

s(T,P) = s0 (T) – R ln (P/1), (49)

where the pressure is expressed in units of atm or bars. If P = 1 atm or approximately bar, s(T,
1) = so(T) which is the entropy of an ideal gas at a pressure of 1 bar and a temperature T. The
second term on the RHS of Eq. (49) is a pressure correction. Applying Eq. (49) to states 1 and
2,

s(T2,P2) – s(T1, P1) =s 0 (T2) –s0 (T1) – R ln (P2/P1). (50a)

For an isentropic process

s0(T2) –s0(T1) – R ln (P2/P1) = 0. (50b)

Therefore, for an isentropic process, if the initial and final pressures, and T1 are specified,
s0(T2) can be evaluated. Using the appropriate tables for s0(T) (e.g.: Tables A-7 to A-19), T2

may be determined.
For processes for which the volume change ratios are known, it is useful to replace

the pressure term in Eq. (50b) using ideal gas law:

s 0(T2) –s0(T1) – R ln ((RT2/v2)/(RT1/v1)) = 0.

Simplifying this relation,

s 0(T2) –s0(T1) – R ln (T2/T1) + R ln (v2/v1) = 0. (50c)

For a known volume ratio and temperature T1, Eq. (50c) may be used to solve for T2 itera-
tively. In order to avoid the iterative procedure, relative pressures and volumes, Pr and vr, may
be defined using Eq. (50b) as follows (further details are contained in the Appendix to this
chapter)

Pr (T)= exp(s0(T)/R)/exp (s0(Tref´)/R), and (50d)

vr = (T /exp (s0(T)/R))/(Tref´/exp(s0(Tref´)/R)), (50e)

where Tref´ is an arbitrarily defined reference temperature. For air, Tref´ is taken to be 273 K,
and

Pr = 0.00368 exp(s0(T)/R)

Equations (50b) and (50c) can also be written in the form

P2/P1 =Pr2/Pr1, and (50f)

v2/v1 = vr2/vr1. (50g)



The value of vr in SI units is based on the relation

vr = 2.87 T/Pr 

Tabulations for Pr  and vr particularly for solution of isentropic problems were necessary in the
past due to the nonavailability of computers. Since their advent, the system properties at the
end of isentropic compression or expansion are readily calculated.

The isentropic and nonisentropic processes can now be explained as follows. Con-
sider a monatomic gas. When an adiabatic reversible compression process occurs in a closed
system the work input is converted into a translational energy increase (e.g., due to increased
molecular velocity (Vx

2 + Vy 
2 + Vz

2) because of a force being applied in a specific direction,
say “x” which increases Vx). Thus, the total number of macro-states cannot change.  A crude
way to interpret is that dS = dU/T + P dV/T so that S generally increases with increased energy
U but decreases due to a decrease in volume V. The entropy first increases due to increased U
because of work input (the first term on the RHS) but decreases due to the reduced volume (as
the second term, due to the intermolecular spacing, is reduced and, consequently, the number
of states in which energy can be stored also decreases). The second term counteracts the en-
tropy rise due to the increased internal energy, and the entropy is unchanged.

l. Example 12
Air is adiabatically and reversibly compressed from P1 = 1 bar, and T1 = 300 K to P2

= 10 bar. Heat is then added at constant volume from a reservoir at 1000 K (TR) until
the air temperature reaches 900 K (T3). During heat addition, about 10% of the added
heat is lost to the ambient at 298 K. Determine:
The entropy generated σ12 in kJ kg–1 K–1 for the first process 1–2;

The net heat added to the matter;
The heat supplied by the reservoir;
The entropy generated in an isolated system during the process from (2) to (3).

Solution

S2 – S1 – ∫δQ/Tb = σ12. (A)

Since the process is reversible,

σ12 = 0, (B)

which implies that  no gradients exist within the system. Therefore,

Tb = T. (C)

Using Eqs. (A), (B), and (C)

S2 – S1= ∫δQ/T. (D)

Since the process is adiabatic δQ = 0, and S2 = S1 or s2 = s1. At state 1, from the air

tables (Tables A-7), pr1 = 1.386, u1 = 214.07, and h1 = 300.19. Therefore,
s1 = s0 (T1) – R ln P/1 = 1.702 – 0 = 1.702 kJ kg–1 K–1.

For the isentropic process
pr2 (T2)/ pr1(T1) = p2/p1 = 10. Hence, pr2 = pr1 10 = 1.386×10 = 13.86 so that

T2 = 574 K, u2 = 415 kJ kg–1, h2 = 580 kJ kg–1, and s2 = s1 = 1.702 kJ kg–1 K–1.
Temperature gradients can develop inside a system during heat addition from a ther-
mal reservoir or heat loss to the ambient, thereby making a process internally irre-
versible. In this example, the final states are assumed to be at equilibrium. Applying
the First law to the constant volume process, the heat added to the system can be
evaluated as follows

q23 =  u3 – u2 = 674.58 – 415 = 260 kJ kg–1.
If qR denotes the heat supplied by reservoir, the heat added q23 = 0.9 qR, i.e.



qR = 288.88 kJ kg–1.
The heat loss to the ambient is  q0 = 288.88 – 260 = 28.88 kJ kg–1.
Since we must determine the entropy of an isolated system, assuming that there are no
gradients outside that system, and selecting the system boundaries to include the res-
ervoir at TR and the ambient at T0, it follows that

s3 – s2 – qR/TR – q0 /T0 = σ.

Now, P3/P2 = T3/T2 = 900÷574 , i.e., P3 = 15.68 atm, and s3 = 2.849 – 0.287 ln

(15.68÷1) = 2.059 kJ kg–1 K–1. Therefore,

2.059 – 1.702 – (289/1000) – (–29/298) = σ so that

σ = 0.165 kJ kg–1 K–1.

Remarks
It is possible to tabulate pr values for a particular gas using Eq. (50c).

2. Incompressible Liquids
For incompressible liquids and solids, the specific volume v is constant. Since u =

u(T,v), for incompressible substances it follows that u = u(T). The intermolecular spacing in
incompressible liquids is constant and, consequently, the intermolecular potential energy is
fixed so that the internal energy varies only as a function of temperature. Since, h = u + Pv, for
incompressible liquids

h(T,P) = u(T) + P v.

Differentiating with respect to the temperature at fixed pressure,

cP = (∂h/∂T)P = (∂u/∂T)P.

Since u = u(T), it follows that

cP = (∂u/∂T)P = du/dT = cv  = c, 

and for incompressible substances

du = cdT. (51)

The values of c for liquids and solids are tabulated in Tables A-6A and A-6B.  Using Eq. (40),
ds = du/T + 0, so that

ds = cdT/T. (52)

Therefore, the entropy is a function of temperature alone. For any substance s = s(T,v) so that
if v = constant, s = s(T). Note that Eq. (43) cannot be used since h = h(T,P).  Equations (51)
and (52) are applied to evaluate the internal energy and entropy of compressed liquids.

For example, water at 25ºC and 1 bar exists as compressed liquid, since P >
Psat(25ºC). The Steam tables  (Tables A-4A) tabulate values of u(T) and s(T) as a function of
temperature for saturated water. If the entropy of liquid water is desired at 25ºC and 1 bar,
since u(T,P) ≈ u(T,Psat) = uf(T), and s(T,P) ≈ s(T,Psat) = sf(T), the respective tabulated values

are 104.9 kJ kg–1 K–1 and 0.367 kJ kg–1 K–1. Likewise, the enthalpy at that state is

h = u + P v = 104.9 + 1×100×0.001 = 105 kJ kg–1.

An incompressible substance with constant specific heat is also called a perfect in-
compressible substance. For these substances, integration of  Eq. (52) between T and reference
temperature Tref yields

s – sref = c ln(T/Tref), (53a)

or between two given states



s2 – s1 = c ln(T2/T1). (53b)

When an incompressible liquid undergoes an isentropic process, it follows from Eq. (53b) that
the process is isothermal.

3. Solids
Equation (53), which presumes constant specific heat, is also the relevant entropy

equation for incompressible solids. However as T→0, Eq. (53) becomes implausible, forcing

us to account for the variation of the specific heat of solids at very low temperatures. At these
temperatures

cv(T) = 3 R(1 – (1/20)(θD/T)2), where T » (θD = 3 R (4 π4/5) (T/θD)3), (54)

where θD is known as the Debye temperature. A solid that behaves according to Eq. (54) is

called a Debye solid.
Another pertinent relation is the Dulong–Petit law that states that

cv ≈ 3 R.

This is based on the presumption that a mole of a substance contains Navag independent oscil-
lators vibrating in three directions, with each molecule contributing an amount (3/2)kBT to the
energy. Molecules contribute an equal amount of potential energy, i.e., (3/2)kBT. At low tem-
peratures, the Dulong–Petit constant specific heat expression leads to erroneous results, and a
correction is made using the Einstein function E(TEin/T), i.e.,

cv ≈ 3 R E(TEin/T), where

E(TEin/T) = (TEin/T)2 exp(TEin/T)/(exp(TEin/T)–1)2.

Here, TEin denotes the Einstein temperature. (For many solids, TEin ≈ 200 K.) As T→0,

E(TEin/T)→T2. For coals,

cv ≈ 3 R((1/3)E(TEin,1/T) + (2/3) E (TEin,2/T)),

where TEin,2 denotes the second Einstein temperature.

4. Entropy During Phase Change
Consider the case of a boiling liquid. Since the pressure and temperature are generally

unchanged during a phase transformation, applying Eq. (43),

ds =  dh/T – vdP/T = dh/T. (55)

Integrating the expression between the saturated liquid and vapor states

sg – sf = (hg –hf)/T = hfg/T. (56)

Generalizing for any change from phase α to β,

sα – sβ = hαβ/T (57)

m. Example 13
The entropy  of water at Ttp = 0ºC ,PTP = 0.611 kPa, is arbitrarily set to equal zero,
where the subscript tp refers to the triple point. Using this information, determine:
s(liquid, 100ºC) assuming c = 4.184 kJ kg–1 K–1. Compare your results with values
tabulated in the Steam tables (Tables A-4).
s(sat vapor, 0ºC, 0.611 kPa) assuming hfg = 2501.3 kJ–1 kg–1 K–1.
The entropy generated if the water at 0ºC and 0.611 kPa is mechanically stirred to
form vapor at 0ºC in an adiabatic blender.



s(393 K, 100 kPa) assuming cp,0 = 2.02 kJ kg–1 K–1 and that steam behaves as an ideal
gas.

Solution
Applying Eq. (53),

s(373) – s(273) = 4.184 ln (373/273) = 1.306 kJ kg–1 K–1.
Since s(0ºC) = 0, s(100ºC) =1.306 kJ kg–1 K–1.
From the Table A-4A, s(100ºC) = 1.3069 kJ kg–1 K–1, which is very close.
Applying Eq. (56) to the vaporization process at the triple point,

sg – sf = 2501.3÷273 = 9.16 kJ kg–1 K–1. Since,

sf (273 K, 0.611 kPa) = 0, sg (273 K, 0.611 kPa) = 9.16 kJ kg–1 K–1. (A)

ds – δq/Tb = δσ. Since δq = 0, ds = δσ. Integrating this expression,

sg – sf = σ. (B)

Using Eq. (A) and (49b), with sf (0ºC, 0.611 kPa) = 0

sg – sf = 9.16 kJ kg–1 K–1 = σ. (C)

s(393 K, 100 kPa) – s(273 K, 0.611) =
2.02 ln (393÷273) – (8.314÷18.02)ln (100÷0.611) = – 1.616 kJ kg–1 K–1, or

s(393, 100 kPa) = 9.16 – 1.616 = 7.54 kJ kg–1 K–1.
Conventional Steam tables (e.g., Table A-4A) yield a value of 7.467 kJ kg–1 K–1.

Figure 26: P–v diagram for water.



Remarks
For estimating entropy in vapor phase at low pressures, one can use ideal gas tables
(Tables A-12) also, e.g., s(393,100) – s (273,0.611)= (s0 (393) – R ln (100/100)) – (s0

(273) – R ln (0.611/100)) where Pref = 100 kPa
The stirring process is irreversible. Therefore, viscous dissipation converts mechani-
cal energy into thermal energy. The heat vaporizes the liquid, and increases the en-
tropy.

n. Example 14
Determine the enthalpy of water at 25ºC and 1 bar (i.e., at point A of Figure 26) if the
enthalpy of saturated liquid (at point F) at that temperature is known.

Solution
From the Steam tables (A-4A) Psat = 0.03169 bar and hf = 104.89 kJ kg–1 for saturated
liquid water at 25ºC (at point F). Since c = constant for incompressible liquids,

ds = c dT/T (A)

Along the 25ºC isotherm (curve FA), Eq. (A) illustrates that ds = 0, and the process is
isentropic. Since, dh = Tds + vdP, for this case

dh = v dP. 

T
A

C

S

G

D

h=Const

h=Const

P=Const

u=Const

Pc

B

F

S

v=vC

Figure 27: T-s diagram of a pure fluid.



Upon integrating
between points F and
A,

hA  (25 C, 1
bar) – hF

(25ºC,
0.03169 bar)
= ∫v dP ≈ vf

(25ºC,
0.03169) (PA

– PF)
=
1.0029×10–3 × (100 – 3.169) = 0.09711 kJ kg–1, and

hA (25 C, 1 bar) = 104.89 + 00.09711= 104.987 kJ kg–1.
Remarks

Since the enthalpy values are virtually insensitive to pressure, one can assume that hA

≈ hF, i.e., the enthalpy of a compressed liquid at given temperature and pressure is ap-

proximately that of the saturated liquid at that temperature.
If pressure at point A is 25 bar, hA = 104.89 + 2.504 = 107.394 kJ kg–1. Use of Table
A-4 yields a value of 107.2 kJ kg–1, which is very close, with the difference being due
to the assumption of constant specific volume.

a. T–s Diagram
We are now in a position to discuss the representation of the states of a pure fluid on a

T–s diagram. For instance, we may arbitrarily assign a zero entropy to liquid water at its triple
point (i.e., point B of Figure 27). For incompressible liquids, we can assume that s(0.01ºC, 1
bar) ≈ s(0.01ºC,0.006 bar) = 0. If the water is again heated from 0.01ºC to 100 C at 1 bar, it is

possible to evaluate the values of s, and those of sf(100ºC, 1 bar), (point F) using Eq. (53), and
sg (100ºC, 1 bar) (point G) using Eq. (56). If the vapor behaves as an ideal gas (which is gener-
ally true at lower pressures) the entropy may be evaluated using either of Eqs. (47c) or (50a)
(Point S) . In this manner, the behavior of a substance can be characterized at lower pressures
on the T–s diagram, as illustrated by the curve BFGS in Figure 27 at 1 bar. Thereafter, by
changing the pressure, entropy values can be obtained at higher pressures. Since the ideal gas
assumption is flawed at elevated pressures, Eqs. (47c) or (49) must be modified. This will be
discussed further in Chapters 6 and 7. As is apparent from the path A–C–D, an inflection oc-
curs in the slope of the isobar (at the critical pressure Pc) at the critical point C, i.e., (∂T/∂s)Pc =

0 at this point. Also illustrated on the diagram are isometric, isenthalpic and isoquality lines.

5. Entropy of a Mixture of Ideal Gases

a. Gibbs–Dalton´s law
The application of the Gibbs–Dalton law to characterize a multicomponent gaseous

mixture is illustrated in Figure 28. Two components species are hypothetically separated, and
the component pressures P1 and P2 are obtained. Thereby, the component pressure Pk is deter-
mined as though component k alone occupies the entire volume (i.e., no other components are
present) at the mixture temperature. Thereafter, using the component pressures, the entropy is
evaluated, i.e.,

S (T,P, N) = ΣSk (T,pk,Nk) =Nk sk
(T, pk). (58)

For ideal gases, the component pressure for a species is identical to its partial pressure, namely,

pk´ = XkP = pk, (59)

, P , P1 , P1

Figure 28: Illustration of the Gibbs-Dalton law.



where pk´ denotes the partial pressure of species k in the mixture. For ideal gases pk´ = pk.
This subject is discussed in greater detail in Chapter 8 on mixtures.

b. Reversible Path Method
A general method to determine the mixture entropy using the relation dS = δQrev/T is

derived in the Appendix.

o. Example 15
A piston–cylinder assembly contains a 0.1 kmole mixture consisting of 40% CO2 and
60% N2 at 10 bars and 1000 K (state 1). The mixture is heated to 11 bars and 1200 K
(state 2). The work output from the assembly is 65.3 kJ. Evaluate the entropy change
S2–S1 and σ12 for the following cases:

The boundary temperature Tb equals that of the gas mixture.
Tb is fixed and equals 1300 K during heat up.

Solution

S = N sk k T pk( , )∑ (A)

For the mixture

S = NCO2
sCO2

(T, PCO2
) + NN2

sN2
(T, PN2

), (B)

S1 = ( NCO2
sCO2

(T, PCO2
) + NN2

sN2
(T, PN2

))1, (C)

S2 = ( NCO2
sCO2

(T, PCO2
) + NN2

sN2
(T, PN2

))2,where (D)

NCO2
 = 0.4 × 0.1 = 0.04 kmole, and NN2

= 0.6×0.1 = 0.06 kmole.

Now, sCO2
(T,Pk) = sCO2

0 (T) – R ln ( PCO2
/1), where

( PCO2
)1 = 0.4 × 10 = 4 bar, ( PCO2

)2 = 0.4 × 11 = 4.4 bar, and

( PN2
)1 = 0.6 × 10 = 6 bar, ( PN2

)2  = 0.6 ×11 = 6.6 bar.

Therefore, at conditions 1 and 2, respectively,
sCO2

(1200K, 4.4 bar) = sCO2

0 (1200 K) – R ln(4.4÷1)

= 234.1 – 8.314 × ln(4.4÷1) = 221.8 kJ kmole–1 K–1, and,

sCO2
(1000K, 4 bar) =  sCO2

0 (1000 K) – R ln(4÷1) = 216.6 kJ kmole–1 K–1.
Likewise,

sN2
 (1200K, 6.6 bar) = sN2

0 (1200 K) – R ln(6.6÷1)

= 279.3 – 8.314 × ln (6.6÷1) = 263.6 kJ kmole–1 K–1, and

sN2
 (1000K, 6 bar) = 269.2 – 8.314 × ln 6 = 254.3 kJ kmole–1 K–1.

Using Eqs. (C) and (D)
S1 = 0.04 × 216.6 + 0.06 × 254.3 = 23.92 kJ K–1,

S2 = 0.04 × 221.8 + 0.06 × 263.6 = 24.69 kJ K–1, and

S2 – S1 = 24.69 – 23.92 = 0.77 kJ K–1.

S2 – S1 – Q12/Tb = σ12. (E)

Applying the First law, Q12 =  U2 – U1 + W12. Therefore,
U2 = 0.04 × 43871 + 0.06 × 26799 = 3362.8 kJ,

U1 = 0.04 × 34455 + 0.06 × 21815 = 2687.1 kJ, and

Q12 = 3362.8 – 2687.1 + 65.3 = 741 kJ.



Using these results in Eq. (E)
σ 12 = 0.77 – 741/1300 = 0.2 kJ K–1.

F. LOCAL AND GLOBAL EQUILIBRIUM
A system exists in a state of thermodynamic equilibrium if no changes occur within

the system in the absence of any interactions (of mass or energy). The entropy cannot be
evaluated for a system that contains internal temperature gradients. However, it is possible to
determine the entropy for a small elemental mass with the assumption of local equilibrium.
Summing the local entropy over all the elemental masses contained in a system, the system
entropy can be determined. However, the concept of intensive system entropy is meaningless
in this case.

p. Example 16
Consider a container of length 2L, width W, and height H that is filled with water.
Due to cooling, at a specified time t, the water temperature at the center of the con-
tainer is 320 K, while that adjacent to the walls is 300 K (cf. Figure 29). The initial
temperature profile follows the relation

 T = Tmax – (Tmax – T0) x/L (A)

Assuming local equilibrium initially, obtain an expression for S1 at time t.
The pool is now insulated and the entire pool is allowed to reach equilibrium. What
are the final system and specific entropies? Assume the water mass to equal 1000 kg.
What is the entropy generated for the above process?

310K
320
K

(1)   Initial State
(2)   Final State

Figure 29: Illustration of global and local equilibrium.



Solution
Assuming local equilibrium for an elemental mass dm = W H dx ρ,

S1 = 2 x
x L
=
=∫ 0 (c ln (T/Tref)) (W H dx p). (B)

Employing Eqs. (A) and (B), with Tref = T0 we have

S1/(2L W H ρ) = c(T0/(Tmax–T0))((Tmax/T0) ln(Tmax/T0)–Tmax/T0+1). (C)

S1/(2LWHP)=0.1365 kJ/kgk

Noting that 2LWHP is the pool mass of 1000 kg.

Therefore, S1 = 136.5 kJ K-1.

Therefore, S1 = 1159 kJ K–1.
At the final state S2/(2 L W H p) = c ln (T2/T0). Using values for c = 4.184 kJ kg-1 K-1,
Tmax = 320 K, T0 = 300 K, mass m = 2LWHP= 1000 kg, and using a linear tempera-
ture profile that yields T2 = 400 K we have,

S2 = 137.2 kJ K-1, and s2 = 0.1372 kJ kg-1 K-1.

Therefore, (S2 - S1) =0.7 kJ K-1.

Although the internal energy, volume, and mass remain unchanged, the entropy
changes during the irreversible equilibration process.

Since the process is adiabatic, s = S2 - S1 = 0.7 kJ K-1.

Remarks
Assume that the universe was formed from a highly condensed energy state during a
big bang that resulted in temperature gradients (e.g., formed by the temperatures at
the surface of the sun and the earth). With this description the universe is currently in
the process of approaching an equilibrium state, and, consequently, its entropy is
continually increasing. Once the equilibrium state is reached no gradients will exist
within the universe, and the entropy will reach a maximum value.

G. SINGLE–COMPONENT INCOMPRESSIBLE FLUIDS
For incompressible fluids the internal energy and entropy may be written in the forms

u = c (T–Tref), and s = c ln(T/Tref). Manipulating the two relations

s = c ln ((u/c + Tref)/Tref), i.e., (60a)

s = s(u). This relation is called the entropy fundamental equation for an incompressible sin-
gle–component fluid. Likewise, expressing the internal energy as a function of the entropy,

u = c Tref (exp (s/c) – 1), i.e., (60b)

it follows that u = u(s). This relation is called the energy fundamental equation for an incom-
pressible single–component fluid. Similarly, the enthalpy fundamental equation may be ex-
pressed in the form

h = u + Pvref = c Tref  (exp(s/c) –1) + Pvref = h (s,P).

This is discussed further in Chapter 7.

q. Example 17
Consider a vapor–liquid mixture in a closed system that is adiabatically and qua-
sistatically compressed. Is the process isentropic at low pressures? Assume that the
mixture quality does not change significantly (cf. Figure 30).



Solution
During the process the vapor is more readily compressed, which, in turn, compresses
the liquid droplets. If the process is to be isentropic, there should be no temperature
difference between the vapor and liquid drops. However isentropic compression of
incompressible drops cannot create a temperature rise, while it can do so for vapor.
Thus the vapor must heat the drops. Therefore, even though the process is quasistatic,
it is not a quasiequilibrium process, since internal temperature gradients exist during
compression, which cause irreversible heat transfer between the vapor and liquid
drops. Applying the First law,

–P (dVv + dVl) = dUv +dUl, (A)

where the subscripts v and l, respectively, denote vapor and liquid. Upon compres-
sion, the increased vapor temperature causes the liquid drops to heat up, and it is
usual that the liquid temperature lags behind the vapor temperature. Finally, the sys-
tem equilibrates so that Tv,2 = T2 = Tl,2. In order to simplify the problem, we assume
that there is no vaporization during compression, i.e., first the vapor is compressed as
though the drops are insulated from it. Since the liquid has a specific volume of 0.001
m3 kg–1 while the vapor specific volume is of the order of 1 m3 kg–1 we can neglect
the small change in drop volume. Assuming ideal gas behavior for the vapor, we can
show using Eq. (A) (or assuming an isentropic process for the vapor) that

Tv,2/Tv,1 = (V1/V2)
(k–1). (B)

Following compression the liquid and vapor reach the equilibrium temperature T2

without any change in their respective volumes. Applying the First law,

mv cv0 (Tv2 – T2) = ml cl (T2 – T1). (C)

Solving for T2/T1

T2/T1 = (x cv0 (Tv,2/Tv,1) + (1–x) cl)/(x cv0 + (1–x) cl) (D)

where x = mv/ (ml + mv) denotes the mixture quality. Applying the entropy balance
equation S2 – S1 – ∫δQ/Tb = σ,

s2 – s1 = σ/m = x (cv0 ln (T2/T1 + R ln (V2/V1)) + (1–x) cl ln (T2/T1) (E)

(a)
(b)

Figure 30: Illustration of irreversibility during compression of two phase mixture.



Using values for the compression ratio V1/V2 = 2, cv0 = 1.5, cl = 4.184, and R = 0.46,
a plot of σ  with respect to x with rv as a parameter can be generated (Figure 31).

When x = 1, the mixture is entirely vapor, and the process is reversible. When x = 0,
the mixture only contains liquid, and the process is again reversible. The entropy gen-
eration term σ reaches a maxima (which can be found by differentiating Eq. (E) with

respect to x, and, subsequently, setting dσ/dx = 0) in the vicinity of x = 0.6.

Remarks
We have ignored the influence of phase equilibrium and vaporization in the above
analysis. As the vapor is compressed, its temperature and pressure increase according
to the relation Tv,2/T1 = (P2/P1).

(k–1)/k. Phase equilibrium effects induce the liquid tem-
perature Tsat(P) to increase with the pressure according to a different relationship
compared to variation of vapor temperature during compression. If local phase equi-
librium near the drop surface is assumed during the compression process, invariably a
temperature difference exists causing irreversibility.

r. Example 18
Air (for which k = 1.4) is contained in an insulated piston–cylinder assembly under
the conditions P = 100 kPa, V = 0.1 m3 and T = 300 K. The piston is locked with a
pin and its area is 0.010 m2. A weight of 2 KN is rolled onto the piston top and the pin
released.
Is the process reversible or irreversible?
Does the relation Pvk = constant, which is valid for an isentropic process, describe the
process?
Determine the final state.
Evaluate the entropy change s2 – s1.

Solution
When the pin is released, the molecules adjacent to the piston are immediately com-
pressed making the local gas hotter while those farther away are not. Therefore, the
pressure near the piston top is higher than the cylinder bottom. This effect continues
as the piston moves inward, and the system is not at a uniform state. Thus a pressure
and temperature gradients are established. The process is irreversible.
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The relation Pvk = constant does not
apply, since the process is not isen-
tropic.
Using the method of Example 9 of
Chapter 2, P2 = 2/0.010 = 200 kPa,
T2 = 386 K, and V2 = 0.065 m3.
Therefore,

s2–s1 = cp 0  ln (T2 /T1)–R
ln(P2/P1) = ln (386÷300)–0.286

ln(200÷100)

  = 0.0538 kJ kg–1 K–1.

s. Example 19
Consider an idealized air condition-
ing cycle used for storage tank ap-
plications. The objective is to cool
the water stored in a tank from 25ºC
(Tt,1) to make ice at 0ºC (Tt,2) by circulating cold Freon inside the tank. The ambient
temperature is 25ºC (T0). Determine the minimum work required for every kg of wa-
ter contained in the storage tank. The heat of fusion for water sf sfh   u≈( )  is 335 kJ
kg–1 (cf. Figure 32).

Solution
This example is similar to that contained in Example 7. We assume a Carnot refrig-
eration cycle discarding heat to a variable low temperature reservoir. The cycle oper-
ates at a fixed higher temperature T0. First, the water is cooled from the initial state
(state 1) to the melting point (MP) of ice, and then frozen at that temperature (state 2).
As shown in Example 7,

Wmin = – (Ut,2 – Ut,1) + T0 (St,2 – St,1),
Wmin = – (mc(T2 – T1) – m usf) + T0 (mc ln (T2/T1) – m usf/Tfreeze), or
wmin = Wmin/m = – (4.184×(0–25)–335)+298×(4.184×ln(273÷298)–335÷273)

= 439.6 – 298 × 1.594 = –35.41 kJ kg–1.

Remarks
Figure 32 contains a representation of the process on a T–s diagram. The area under
the path in the figure represents the reversible heat absorbed from the tank. We have
assumed that the low temperature (of Freon) during the refrigeration cycle is exactly
equal to the storage tank temperature. However, in practice it is not possible to trans-
fer heat in the absence of a temperature gradient without inducing some irreversibility
between the Freon and water contained in the tank.

t. Example 20
0.5 kg of coffee is contained in a cup at a temperature of 370 K. The cup is kept in an
insulated room containing air at a temperature of 300 K so that, after some time, it
cools to 360 K. The air mass is 100 kg. Assume the properties of coffee to be the
same as those of water, and determine the following:
The change in internal energy dU (= dUcoffee + dUair).
The initial entropy of the coffee and air if it is assumed that both subsystems exist at
an equilibrium state.
The heat transfer across the cup boundary δQ.

The temperature change of the air.
The entropy change of coffee dScoffee.
The entropy change of air dSair.
The entropy generated.

Figure 32: T-s diagram illustrating water in a
storage tank.



Solution
Consider an isolated composite system consisting of two subsystems, i.e., coffee and
air. In the absence of external interactions, isolated systems attain a stable equilibrium
state. The internal energy change dU = 0 by applying the First law for a combined
system, i.e.,

dUcoffee = – dUair. (A)

Scoffee = m s = 0.5 × sf,370 K = 0.5 × 1.25 = 0.625 kJ K–1. (B)

Sair = 100 × s300 K = 100 × 1.7 = 170 kJ K–1. (C)

Therefore,

S = 170.625 kJ K–1. (D)

For the coffee δQ – δW = dUcoffee = m c dTcoffee = 0.5 × 4.184 × (–10) = – 20.92 kJ.

Since there is no volume change, δW = 0, and

δQ = – 20.92 kJ. (E)

Applying the First law dUcoffee = – dUair (see Eq. (A)), since dUcoffee = – 20.92 = –
dUair = – 100 × 1.0 × dTair,

dTair = 0.21 K. (F)

The air temperature does not rise significantly.
Assuming the coffee temperature to be uniform within the cup, we will select the
system so as to exclude boundaries where temperature gradients exist. Using the en-
tropy balance equation for closed systems, and for internally reversible processes,

dScoffee = δQ/T = – 20.92÷((360 + 370) × 0.5) = – 0.0573 kJ K–1. (G)

Employing Eq. (B),
Scoffee = 0.625 – 0.0573 = 0.5677 kJ K–1.
dSair = 20.92÷((300 + 300.21) × 0.5) = + 0.0697 kJ K–1, and

Sair = 170.0697 kJ K–1.
Forming a combined system that includes both coffee and air, δQ = 0. Applying the

entropy balance equation dS – 0 = δσ,

dS = dScoffee + dSair = 0.0573 + 0.0697 =  0.0124 kJ K–1 so that
δσ = 0.0124 kJ K–1.

You will also find that δσ → 0 when the coffee temperature almost equals that of the

air.
Remarks

In this case, δσ > 0 during the irreversible process in the isolated system.

δσ → 0 when the coffee temperature almost equals the air temperature (or as reversi-

bility is approached).
Vaporization of water into the air has been neglected.

u. Example 21
A gas undergoes an expansion in a constant diameter horizontal adiabatic duct. As the
pressure decreases, the temperature can change and the velocity increases, since the
gas density decreases. What is the maximum possible velocity?



Solution
From mass conservation

d(V/v) = 0, (A)

where V denotes velocity. Therefore, dV/v + V d(1/v) = 0. Applying energy conser-
vation

d(h + V2/2) = 0, and (B)

utilizing the entropy equation

dh = T ds + v dP, or ds = dh/T – v dP/T. (C)

Using Eqs. (A) and (B),

dh = – V dV = – V2 dv/v. (D)

From Eqs. (D) and (C),

ds = – V2 dv/(T v) – v dP/T. (E)

For an adiabatic duct, ds = δσ. Since δσ ≥0 for an irreversible process,

ds ≥0. (F)

Using Eqs. (F) and (E), V2 ≤ – v2 (∂P/∂v)s. Typically  (∂P/∂v)s < 0. Hence V2 > 0. For

a reversible (i.e., isentropic) process,

V2 = – v2 (∂P/∂v)s (G)

which is the velocity of sound in the gas.
Remarks

In Chapter 7, we will discuss use of the enclosed software to determine the sound
speed in pure fluids.

H. THIRD LAW
The Third law states that a crystalline solid substance at an absolute temperature of

zero (i.e., 0 K) possesses zero entropy. This implies that the substance exists in a state of per-
fect order at that temperature in the absence of energy, a condition that is not particularly use-
ful, since it is no longer possible to extract work from it. In other words, the entropy of any
crystalline matter tends to zero as ∂U/∂S → 0. We will see in Chapter 7 that s(0 K) is inde-

pendent of pressure, i.e., s(0 K, P =1 bar) = s(0 K, P). Entropy values are tabulated for most
substances using the datum s = 0 at 0 K.

In general, substances at low temperatures exist in the condensed state so that for an
incompressible substance

ds =  cs dT/T.

At very low temperatures the specific heat–temperature relation for a solid, cs = αTm can be

applied, so that

(s – sref (0)) = αTm/m, m ≠ 0 (61a)

For Debye solids m = 3, and

α = (1944/θD
3) kJ kmole–1 K–4, at T < 15 K, (61b)

where θD is a constant dependent upon the solid.



In summary, according to the Third law  s = sref (0) = 0 at an absolute temperature of
zero.

v. Example 22
The specific heat of a Debye solid (for temperatures less than 15 K) is represented by
the relation cs = (1944 T3/θ3) kJ kmole–1 K–1. Obtain a relation for the entropy with
respect to temperature for cyclopropane C3H6 for which θ = 130. What are the values

of the entropy and internal energy at 15 K. (cf. also Figure 33).
Solution

The molar specific entropy (0 K, 1 bar) = 0 kJ kmole–1 K–1 (i.e., point A in Figure
33a). Since s c dT Ts=∫ / ,

s  = (1944 T3/θ3)/3 kJ kmole–1 K–4.

At 15 K, s (15 K, 1 bar) = (1944  × 153/1303)/ 3 = 0.995 kJ kmole–1 K–1.

The internal energy
u= ∫ csdT so that at

15 K,
u  = (1944 ×  154

÷ 1303) ÷  4 =

11.2 kJ kmole–1.

w. Example 23

cl = 76.5 kJ kmole–1 K–1, and hfg  = 20,058 kJ

kmole–1.
Solution

From Example 22, s (s, 15 K) = 0.99 kJ kmole–1 K–1 (at point B in Figure 33). Hence,
s (s, 145.5) – s (s,15) = 28.97 ln (145÷15) (i.e., point C, saturated solid  in Figure 33a

and b which represents a saturated solid that is ready to melt). Therefore,
s (s, 145.5)  = 65.72 + 0.99 = 66.71 kJ kmole–1 K–1, and
u  (s, 145.5)  = 28.97 × (145 – 15) + 11.2 = 377.7 kJ kmole–1.

The liquid entropy may be evaluated as follows:
s (l, 145.5) – s(s,145.5) = 5442÷145.5 = 37.40 kJ kmole–1 K–1.

Therefore,
s  (l, 145.5) = 37.4 + 66.71 = 104.11 kJ kmole–1 K–1 (point D in Figure 33) so that

Figure 33: Illustration of a: a: P–T diagram; b. s–T diagram.

At a pressure of 1 bar,
evaluate the entropy
and internal energy of
cyclopropane C3H6

when it exists as (a)
saturated solid; (b)
saturated  liquid; and
(c) saturated vapor
given that the specific
heat cs follows the
Debye equation with
θD = 130 K and m = 3

when T < 15 K, cs =
28.97 kJ kmole–1 K–1

for 15 K < T < TMP,
where the melting
point TMP = 145.5 K at P = 1 bar, hsf = 5442 kJ k mole-1, and the normal boiling point
TBP = 240.3 K; and for the liquid 



s (l,240.3) – s(l,145.5) = 76.5 ln(240.3÷145.5) = 38.4 kJ kmole–1 K–1, and
s (l,240.3) = 38.4 + 104.11 = 142.51 kJ kmole–1 K–1 (point F in Figure 33).

Since h = u + Pv, and for solids and liquids Pv « u, it follows that for these substances
h ≈ u or hsf ≈ usf and hfg ≈ ufg . Hence,

u(l,145.5) = 377.7 + 5442 =5819.9 kJ kmole–1, and

u(l,240.3) = 5819.9 + 76.5 ×  (240.3 – 145.5) = 13132 kJ kmole–1.

In the gaseous state
s (g, 240.3) – s (l,240.3) = 20,058÷240.3 = 83.5 kJ kmole–1 K–1, i.e.,
s (g,240.3) = 83.5 + 142.51 = 226.01 kJ kmole–1 K–1 (point G in Figure 33).

Therefore,
s (g,240.3) = 226 kJ kmole–1 K–1, and
h(g, 240.3) = 13132 + 20.058 = 33,190 kJ kmole–1.
u(g, 240.3) = 33,190 - 8.314 × 240.3 = 31,192  kJ kmole–1.

Remarks
If the reference condition for the entropy is selected at the saturated liquid state (i.e.,
at point D), we can arbitrarily set s = 0 there. Therefore, at point C, saturated solid, sC

= –37.40 kJ kmole–1 K–1, and at point B, sB  = –37.40 – 65.72 = –103.12 kJ kmole–1

K–1. Such a procedure is generally used for water, since the reference condition with
respect to its entropy is based on the saturated liquid state at its triple point tempera-
ture of 0.01ºC. At this state it is usual to set s = h ≈ u = 0. Methods for evaluating  at

any pressure and temperature will be discussed in Chapter 7.

Recall from the First law that δQ - δW =dU. Therefore, if a process involves irre-

versibility, then  dS = δQ/Tb +  δσ so that

dS = dU/Tb + δW/ Tb + δσ.

In case the process is mechanically reversible, then the entropy balance equation for a closed
system can also be written as

dS = dU/ Tb + P dV/ Tb + δσ.

where δσ >0 for irreversible processes and equals zero for reversible processes.

I. ENTROPY BALANCE EQUATION FOR AN OPEN SYSTEM
We have presented the entropy balance equation Eq. (28) for a closed system and

obtained relations describing the entropy of a fixed mass. We will now formulate the entropy
balance for an open system in an Eulerian reference frame.

1. General Expression
The entropy balance equation for a closed system containing a fixed control mass

assumes the form

dSc.m. – δQ/Tb = σc.m., (28)

where the subscript c.m. denotes the control mass. Work does not explicitly enter into this ex-
pression. For an open system which exchanges mass, heat and work with its ambient (cf.
Figure 34), the derivation of the corresponding balance equation is similar to that of the energy
conservation equation. The entropy change within a fixed mass over an infinitesimal time δt

can be written in the form

dSc.m.= Sc.m.,t+dt – Sc.m.,t. (62a)

The control mass at time t (illustrated within the dashed boundary in Fig. 25(a)) includes both
the control volume mass and a small mass dmi waiting to enter the control volume. After an



infinitesimal time δt as the mass dmi enters at the inlet, a small mass dme leaves through the

control volume exit, and for the control volume Eq. (62a) may be expressed in the form

dSc.m. = (Sc.v.,t+dt + dme se) – (Sc.v.,t + dmisi). (62b)

Heat transfer can occur across the control volume boundary. In general, the boundary
temperature at its inlet (but within the dashed boundary) is different from the corresponding
temperature at the exit, and the heat transfer rate δQ may vary from the inlet to exit. For the

same of analysis we divide the boundary into sections such that at any section j the boundary
temperature is Tb,j and the heat transfer rate across the boundary is Q̇j . For an infinitesimally

small time period δt, the term δQ/T is given as

(δQ/Tb) = Σj Q̇j
δt/Tb,j. (63)

Using Eqs. (28), (62), and (63), expanding Sc.v.,t+δt in a Taylor series around time t, and divid-

ing the resultant expression by δt,  and letting when δt → 0 so that the control mass and control

volume boundaries merge (i.e., c.m. → c.v.) , we obtain

dSc.v./dt = ṁi si – ṁese + Σj Q̇j
/Tb,j + σ̇ cv . (64)

δδδδW

c.m. boundary
c.v. boundary

δδδδW

δδδδQ1

δδδδQ2 Tb,2

Tb,1

Tb,2 Tb,3

T3

Scv dme, se

dmi, si

Figure 34: Schematic diagram to illustrate the entropy balance equation.



On a mole basis Eq. (64) may be written in the form

dSc.v./dt = Ṅ si i  – Ṅ se e + Σj Q̇j
/Tb,j + σ̇ cv , (65)

and generalizing for multiple inlets and exits

dSc.v./dt = Σ ṁi si – Σ ṁese + Σj Q̇j
/Tb,j + σ̇ cv . (66)

where Q̇j  denotes the heat interaction of the system with its surroundings at section j with a
boundary temperature Tb,j. The first term on the RHS of Eq. (66) represents the input entropy
through the various inlets, the second term the outlet entropy, and the third term the transit
entropy due to heat transfer. Equation (66) may be interpreted as follows: The rate of entropy
accumulation in the control volume = entropy inflow through advection – entropy outflow
through advection + change in the transit entropy through heat transfer + entropy generated
due to irreversible processes. The various terms are also illustrated in Figure 35.

Equations (64) and (65) may be, respectively, rewritten in the form

dSc.v. = dmi si – dme se + ΣjδQj/Tb,j + dσ, and (67a)

dSc.v. = dNi si  – dNe se + ΣjδQj/Tb,j + dσ. (67b)

Recall that for closed system TdS = δQ + dσ. Equation (67) is the corresponding

equation for the open system. In case of elemental reversible processes in the presence of uni-
form control volume properties (e.g., in an isothermal swimming pool)

dσ = 0, Tb,j = T so that

TdS = δQ + dmi Tsi – dme Tse.

For an open system with property gradients within the control volume, as in a turbine,
the system may be divided into small sections to apply the relation

TdS = δQ + dmi Tsi – dme Tse

to each subsystem within which the temperature is virtually uniform.
For a closed system, Eq. (64) reduces to Eq. (31). If the process is reversible, Eq.(66)

becomes

dSc.v./dt = Σ ṁi si – Σ ṁese + Σj Q̇j
/Tb,j. (68)

Equation (66) provides information on the rate of change of entropy in a control volume. If it
becomes difficult to evaluate Σj Q̇j

/Tb,j, the system boundary may be drawn so that Tb,j = T0,
i.e., all irreversibilities are contained inside the selected control volume. For instance, if in
Figure 34 the boundary is selected just outside the control volume, then Tb,j = T0.
At steady state Eq. (66) becomes

Σ ṁi si – Σ ṁese + Σj Q̇j
/Tb,j + σ̇ cv  = 0. (69)

For single inlet and exit at steady state

si-se +  Σqj /Tbj +  σc.v=0

Where σm, entropy generates per unit mass. If process is reversible σc.v = 0, Tb = T and hence

si-se +  Σqj /T =0

or

ds = ΣI {δqj)rev/T



which is similar to relation for an open system

In case of a single inlet and exit, but for a substance containing multiple components,
the relevant form of Eq. (66) is

dSc.v./dt = Σk ˙
, ,m sk i k i

 – Σk ˙
, ,m sk e k e

 + Σj Q̇j
/Tb,j + σ̇ cv . (70)

where sk  denotes the entropy of the k–th component in the mixture. For ideal gas mixtures

sk (T,P) = sk
0 (T) – ln(PXk).

x. Example 24

state:

= 500°C.

At steady state

ṁ(si –se) + Q̇j /Tb,boiler + σ̇  = 0, i.e., (A)

σ = (s2 –s1) – q12/Tb,boiler. (B)

Using the standard Steam tables (A-4A) s1 = 3.03 kJ kg–1 at P1 = 60 bar for the satu-
rated liquid and s2 = 6.88 kJ kg–1 at P2 = 60 bars for steam at 500°C. The heat transfer
q12 = 4526 kJ kg–1 of water and Tb,boiler = 1200 K. Substituting the data in Eq.(B),
σ = (6.88 – 3.03) – 4526÷1200 = 0.07833 kJ kg–1 of water.

For control surface 2, Eq.(B) may be written in the form

σ = s2 – s1 – q12/Tb,reactor. (C)

Using the Steam tables (A-4)  data
σ = (6.88 – 3.03) – 4526 ÷ 2000 = 1.587 kJ kg–1 of water.

For this case s2 = 7.0901 at P2 = 40 bars and T2 = 500 C, and
σ = 7.09 – 3.03 – 4526 ÷ 1200 = 0.288 kJ kg–1 of water.

Remarks
The difference in the value of s between cases (a) and (b), (i.e., 1.587 – 0.0783 =
1.509 kJ kg–1 of water) is due to the irreversible heat transfer between the two control
surfaces 1 and 2. Therefore,

σq  =  q12(1/Tb,boiler – 1/Tb,reactor),

Q/Tb mi si

dS/dt

me se

F

Figure 35: Illustration of the entropy band dia-
gram.

Water enters a boiler at 60 bar as a
saturated liquid (state 1). The boiler
is supplied with heat from a nuclear
reactor maintained at 2000 K while
the boiler interior walls are at 1200
K. The reactor transfers about 4526
kJ of heat to each kg of water. De-
termine the entropy generated per
kg of water for the following cases
assuming the system to be in steady

For control surface 1 shown in
Figure 36 with P2 = 60 bars and T2

For control surface 2 which in-
cludes the nuclear reactor walls
with P2 = 60 bars and T2 = 500°C.
For control surface 1 with P2 = 40
bars and T2 = 500°C.

Solution



where σq denotes the entropy generated in the thin volume enclosed within control

surfaces 1 and 2 due to the irreversible heat transfer.
Power plant systems are designed to minimize the generated entropy.
If the heat transfer q12 for the first case is given as 5000 kJ, σ = –0.32 kJ kg–1. Is this

possible or is the heat
transfer value incorrect?

y. Example 25

plify the equations.

dmcv/dt = ṁi – ṁe, and
dScv/dt = Σ Q̇ cv,j/Tb,j + Σ ṁisi – Σ ṁese + σ̇ cv.

At steady state
ṁi – ṁe = 0, and
Σ Q̇ cv,j/Tb,j + Σ ṁisi – Σ ṁese + σ̇ cv = 0.

From mass conservation
ṁi = ṁe = ṁ = 0.519 kg hr–1.

Therefore,
σ̇ cv = –100×3600×24/(310×1000)+0.54×1.610+12.456×1.702–

           (0.54+ 0.519×24)×1.735 = 28.35 kJ K–1 day–1.

Per unit mass
σ̇ cv = 28.35/70 =0.405 kJ kg–1 day–1.

The life span is 10000/(365×0.405) = 68 years.

Remarks
In Chapter 11, the irreversibility due to metabolism will be considered.
From Example 12 in Chapter 2 we see that q̇G∝mb 

-0.33 while empirical results sug-
gest that q̇ G (kW/kg) = 0.003552mb

-0.26. Part (e) of the problem can be mathemati-

cally expressed as ≈ σ̇ /m = σ̇ m  ≈ ( q̇G/Tb) equals the specific meatbolic rate ÷ Tb.

Figure 36: Illustration for Example 24.

Consider a human being
who weighs 70 kg. At
37ºC the typical heat loss
is 100 W. The person is
injected with glucose (s =
1.610 kJ kg–1 K–1) at the
rate of 0.54 kg day–1. Air at
27ºC is inhaled at the rate
of 0.519 kg hr–1. Assume
steady state, no excretion,
and for the products to
possess the same proper-
ties as air. The products
are exhausted through the
nose at 37ºC. Select the
c.v. boundary so that it lies
just below human skin.
a. Write the mass conservation and entropy balance equations for the system and sim-

b. Determine the exhaust mass flow rate (e.g.,  through the human nose).
c. What is the entropy generation rate per day?
d. What is the entropy generation rate per day per unit mass?
e If the entropy generation during a species’ life cannot exceed 10,000 kJ kg–1 K–1,
what is this human being’s life span?

Solution



Likewise, from part (c), the life span of a species  ≈ CTb / q̇G where C ≈ 10,000 kJ

kg–1 K–1.
The metabolic rate during the lifetime of an organism varies,  with the highest meta-
bolic rate being for a baby and the lowest for an older person. The minimum meta-
bolic rate for maintaining bodily functions is of the order of 1 W.  The expression in
part d is based on an average metabolic rate.
The entropy change in the environment can be obtained by considering the atmos-
phere as the system.
There are no gradients in the environment outside of the skin. Therefore, the entropy
generation is zero. The entropy growth rate in the environment is

dSenv /dt =   0 + Q̇ /T∞ + 0 =  100/300 = 0.33 W K–1 per human  being.

2. Evaluation of Entropy for a Control Volume
Recall that for closed systems we evaluate entropy by connecting a reversible path

between two given states and then use dS = dU/T + PdV/T along the reversible path in order to
determine the entropy change. We need to obtain a corresponding relation for a control vol-
ume. For instance, let us say that we wish to find the entropy change of the air in a tire when
air is pumped into it. Assume that the initial (T1,P1,V1,N1) and final states (T2, P2, V2, N2) are
known. The difference N2–N1 represents the number of moles that are pumped into the tire.
The process may or may not be reversible. We will now show that for a single component un-
dergoing a reversible process in an open system

dS = dU/T – PdV/T + (µ/T)dN. (71)

where the chemical potential µ = g = h – Ts.

z. Example 26

Boundary work is performed as the balloon expands. Heat transfer may also occur
across the boundary. Since matter enters the balloon but does not leave it during the
charging process, over a small time period

dE = dU =  dNi hi
 + δQ – δW. (A)

The form of energy conservation has been previously discussed in Chapter 2. For en-
tropy balance, we can apply Eq. (65) with a uniform boundary temperature, i.e.,

dS = dNi si
 + δQ/Tb + δσc.v.. (B)

The mass or mole conservation relation is

dN = dNi. (C)

Since the processes in the balloon are internally reversible, the pressure of the gas in
the balloon is almost equal to the outside pressure so that the deformation work Wd =
PdV is reversible and δσc.v. = 0, implying that Tb = T. Dropping the subscript i in Eqs.

(A) and (B)

dU = dN h   – PdV + δQ, and (D)

dS = dN s  + δQ/T. (E)

Consider a balloon that is charged with gaseous nitrogen. The balloon is kept in a
room whose pressure can be closely matched to that of the balloon. The moles within
the balloon and the volume increase. Assume the process to be reversible.  Show that
the entropy change when dN moles of a pure component are pumped into it is repre-
sented by Eq.(71).

Solution



Equation (E) reveals that even if an open system is adiabatic and reversible dS can be
nonzero since moles enter the system. Eliminating δQ from Eqs. (D) and (E), the

resulting expression is (in mass form) dU = dNh  – PdV + TdS – TsdN, where µ = g =
(h– Ts) is the chemical potential or Gibbs function of a species entering the system.
Therefore, U = U(S,V,N).  Since δW = PdV, the third term on the right hand side of

the resultant equation, i.e., µdN, can be viewed as the reversible chemical work,

δWchem,rev = –µdN. The negative sign occurs, since the chemical work input when

moles are added to a system is negative according to sign convention for work.
Therefore, the change of internal energy of the matter in the balloon equals the energy
transfer into the control volume due to reversible heat addition less the energy out-
flow through the deformation work, but in addition to the energy transfer due to the
chemical work.
If a gas is pumped into a rigid volume (e.g., rigid tank) then P dV = 0, and if the en-
tropy is kept fixed (e.g., if the volume is cooled while matter is introduced into it so
that s finalNfinal = s initialNinitial), the energy change dU = –δWchem,rev = µdN is the chemi-

cal work performed to adiabatically pump the incremental number of moles dN.
Pressure potential causes the volume to change and perform deformation (boundary)
work, temperature potential causes the entropy change through the heat transfer proc-
ess, and the chemical potential causes the matter to move into or out of the control
volume. Rewriting Eq. (F) in the form

dS = dU/T + (P/T)dV + (µ/T)dN. (H)

which represents the change of entropy along a reversible path.  As before, S =
S(U,V,N). Note that for a closed system containing inert matter, N is fixed and hence
S = S(U,V).

Remarks
In Example (26),  we determine dS for a control volume. With this expression we can
integrate Eq. (G) between two states to obtain the resultant entropy change.
If a multi–component gas mixture (e.g., air) is reversibly pumped into a uniform tem-
perature volume, Eqs. (A), (B), and (D)  are modified as (with subscripts k denoting
species)

dU = ΣdNk hk
+ δQ – P dV, (A’)

dS = ΣdNk sk
 + δQ/T, and (B’)

dU = ΣdNk( hk – T sk ) – PdV + TdS, or (D’)

dU = TdS – PdV + Σµk dNk. (72a)

Here, µk = gk  = ( hk – T sk ) (a more detailed discussion is contained in Chapter 8).
The first term on the RHS of Eq. (72a) represents the reversible heat transfer and the
last term is the accumulation due to the exchange of matter. In a closed system con-
taining inert components there is no change in the number of moles, and Eq. (72a) can
be written in the form dU = TdS – PdV.
Adding d(PV) to both sides of Eq. (72a) we have

dH = dU + d(PV) = TdS + VdP + ΣµkdNk. (72b)

Subtracting d(TS) from both sides of Eq. (72a)

dA = dU – d(TS) = – SdT – PdV + ΣµkdNk (72c)



where A = U– TS is the Helmholtz function. Subtracting d(TS) from both sides of Eq.
(72c)

dG = dH – d(TS) = – SdT + VdP + ΣµkdNk, (72d)

where G = H–TS is the Gibbs function.
It is clear from the energy fundamental equation

U = U(S,V,N1,N2, ... ,Nk), (73)

that k + 2 properties are required to determine the extensive state of an open system.
For the same of illustration, assume a 9 m3 room containing 0.09 kmole of O2 (com-
ponent 1) and 0.36 kmole of N2 (component 2). Fresh warm air is now pumped into
the room (N1,i = 0.1 kmole and N2,i = 0.376 kmole) and some air leaves the room (N1,e

= 0.05 and N2,e = 0.188). Hence, N1 = 0.09 + 0.1 – 0.05 = 0.14 kmole, N2 = 0.36 +
0.376 – 0.188 = 0.548 kmole. The entropy increases due to the temperature rise as
well as the larger number of moles of gas in the room, while the gas volume remains
the same.
If the room is divided into three equal parts A, B, and C, then VA = VB = VC = V/3 =
9/3 m3, and likewise SA = SB = SC = S/3, NO A2 ,  = ... = NO2

/3, and UA = UB = UC =

U/3. Therefore, U(SA,VA, ...) = U(S/3,V/3, NO2
/3, …) = 1/3 U(S,V, NO2

, …). In gen-

eral, if the room is divided into λ´ parts,

U(S/λ´, V/λ´, … = 1//λ´ U(S,V, ...),

or if 1/λ´ = λ  then U(λS, λV, ..) = λU(S,V, ...) which is a homogeneous function of

degree 1. Note that intensive properties are independent of the extent of the system
and are homogeneous functions of degree 0. Since T = ∂U/∂S, and  the property in

any section is 1/λ´ that of the original extensive property, i.e.,

T = ∂UA/∂SA = ∂(U/λ´)/∂(S/λ´) = ∂U/∂S.

Since the internal energy is an extensive property (or a homogeneous function of de-
gree 1), it must satisfy the Euler equation (cf. Chapter 1), namely,

∂U/∂S + V ∂U/∂V + N1 ∂U/∂N1 + ... = 1 (74a)

However, ∂U/∂S = T, ∂U/∂V = – P, and ∂U/∂N1 = µ1 so that Eq. (74a) assumes the

form

U = ST – PV + µ1N1 + µ2N2 + ..., (74b)

which, upon simplification, may be written as

U+ PV – TS = H – TS = G = ΣµkNo. (74c)

Likewise, applying the Euler equation to evaluate the property H(S,P,N1,..) (cf. Eq.
(72b)),

H (S,P,N1 ..) = TS + ΣµkNo, (74d)

Similarly, the Helmholtz and Gibbs functions can be written in the forms

A (T,V,N1, …)  = –PV + ΣµkNo, and (74e)

G (T,P,N1, ...) = ΣµkNo. (74f)

Equation (73) implies that



dU = TdS + SdT – PdV – VdP + µ1dN1 + N1dµ1 + ... . (75a)

Subtracting Eq. (72a) from Eq. (75a) we obtain

SdT – VdP + N1dµ1 + N2dµ2 + ... = 0. (75b)

Equation (75b), which is also known as the Gibbs–Duhem equation, implies that

T = T(P,,µ1,µ2, ..., µk). (76)

The temperature, which is an intensive property, is a function k+1 intensive variables.
Equation (76) is also known as the intensive equation of state.
Applying Eq. (72a) to examine the fluid discharge from a rigid control volume we
obtain the relation

dU = T dS – ΣµkdNk, (77a)

which describes the internal energy change due to the change in the number of moles
(i.e., dNk). Even if sk  is constant, the change in entropy can be nonzero, since in this

case dS = d(ΣNk sk
) = Σ sk dNk so that

dU = TΣ sk dNk – ΣµkdNk = TΣ sk dNk – Σ( hk –T sk ) dNk = –Σ hk dNk. (77b)

Therefore, the internal energy change when matter is isentropically discharged equals
the enthalpy of the matter leaving the system (Example 16, Chapter 2, gas discharge
from tank).

We may rewrite Eq. (72a) in the form of the entropy fundamental equation,

dS = dU/T  +  (P/T)dV - Σ {µk /T) dNk.

i.e., S = S(U,V,N1,...).

aa. Example 27

Applying the ideal gas law,
N1 = 1 × 0.1 ÷ (0.08314 × 300) = 0.004 kmole.

Therefore, the entropy change dS = d( sN) = 0, i.e., d s / s  = dN/N, or
s2 / s1 = N1/N2 = 0.004 ÷ 0.020 = 0.2.

Now, v2= 0.1 ÷ 0.02 = 5 m3 kmole–1, and v1 = 0.1 ÷ 0.004 = 25 m3 kmole–1 so that

s2 / s1  = ( cv0ln(T2/Tref) + R ln( v2/ vref ))/( cv0ln(T1/Tref) + R ln( v1/ vref ))

Using the values Tref = 273 K, vref = 1 m3 kmole–1, cv0= 20 kJ kmole–1 K–1, and R =
8.314 kJ kmole–1 K–1,

T2 = 186 K.
The chemical work, Wchem,rev = –∫µdN = –(U2 – U1). Now,

U2 – U1 = 0.02 × 20 × (186 – 273) – 0.004 × 20 × (300 – 273) = –36.96 kJ, i.e.,

Wchem,rev = +36.96 kJ.

a. Example 28

Nitrogen is pumped into a 0.1 m3 rigid tank. The initial state of the gas is at 300 K
and 1 atm.  Determine the chemical work done to isentropically pump 0.016 kmole of
the gas into the tank to a 10 bar pressure.

Solution

Determine the chemical potential of pure O2 at T = 2000 K and P = 6 bar, and O2 pre-
sent in a gaseous mixture at T = 2000 K and P = 6 bar, and XO2 = 0.3, assuming the
mixture to behave as an ideal gas.



Solution
µ = g  = ( h– T s ), where for ideal gases s= s 0  – R ln(P/Pref). Using values from ta-
bles (Table A-19),
µO2

 = 67881 kJ kmole–1 – 2000 K × (268.655 kJ kmole–1 K–1 – 8.314 kJ kmole–1 K–1

× ln(6 bar ÷1 bar)) = – 439,636 kJ kmole–1.
For an ideal gas mixture according to the Gibbs–Dalton law,
sk (T,pk) = sk

0 (T) – ln(pk/Pref) = (268.655 kJ kmole–1 K–1 – 8.314 kJ kmole–1 K–1 ×
×ln ((6 bar × 0.3) ÷1 bar) = 272.747 kJ kmole–1 K–1.

Since µk = ( hk – T sk ), µO2
 = – 477,613 kJ (kmole O2 in the mixture)–1.

Remarks
The chemical potential of O2 decreases as its concentration is reduced from 100%
(pure gas) to 30%.
You will later see that the chemical potential plays a major role in determining the di-
rection of chemical reactions (in Chapter 10) and of mass transfer (in this chapter),
just as temperature determines the direction of heat transfer.

3. Internally Reversible Work for an Open System
It has been shown in Chapter 2 that for a steady flow open system δq – δw = deT,

where eT = h + ke + pe. For an internally reversible process that occurs between two static
states

Tds – δwc.v.,rev = deT. (78)

Since dh = Tds + vdP,

Tds – δwc.v.,rev = Tds + vdP + d(ke + pe), i.e.,

δwc.v.,rev = –vdP – d(ke + pe).

Neglecting the kinetic and potential energies, the work delivered by the system is represented
through the relation

wc.v.,,rev = – vdP
P

P

i

e

∫ . (79)

bb. Example 29

performed by the heart per kilogram of blood that is pumped. Assume that blood has

wc.v.,,rev = – vdP
P

P

i

e

∫ .

Therefore,
wc.v.,rev  = – vblood(Pe – Pi) = 0.001 m3 kg –1 (120–70) (mm Hg)×(100 ÷ 760) kPa (mm

Hg)–1 = 0.0063 kJ kg–1.

Remarks
Blood is contained within a finite volume of blood vessels. The body maintains the
amount of water to a fixed concentration. If the two pressures simultaneously increase

The systolic (higher) and diastolic (lower) blood pressures are measured to be, re-
spectively, 120 mm and 70 mm of mercury for a healthy person. Determine the work

the same properties as water.
Solution



(true for non–exercising persons), but the term (Pe – Pi) remains unchanged (e.g., Pe =
190 mm and Pi = 140 mm), the work performed by the heart may not change. How-
ever, the blood vessels may now become stressed and fail at the higher pressures.
In Chapter 9 we will discuss that the amounts of dissolved CO2, N2, and O2 in the
blood rise as the pressure increases, but do so disproportionately, depending upon
their boiling points.

cc. Example 30

For an open system,

δ wshaft rev,  = – vdP = –( R T/P)dP, i.e., (A)

wshaft rev,  = – R T ln(Pe/Pi). (B)

The pressure Pi varies as the gas is progressively withdrawn from the tank. From Eq.
(B)

δ Wshaft rev,  = wshaft rev, dNi = – R T ln(Pe/Pi)dNi,turbine, where (C)

dNtank = – dNi,turbine. (D)

Since PtankV = Ntank R  T, dPtank = dNtank R  T/V, and

dNtank = dPtankV/ R T. (E)

Therefore, using Eqs. (C) and (E)

δ Wshaft rev,  = – – R T ln(Pe/Pi) dPtankV/ R T = – V ln(Pe/Pi) dP, (F)

where Pi = Ptank. Hence,

δ Wshaft rev,  =– VPe ln (Pe/ Ptank) Ptank /Pe, and

Wshaft rev, = VPe ((Ptank,2/Pe) ln (Ptank,2/Pe) – (Ptank,1/Pe) ln (Ptank,1/Pe)). (G)

Using the values V = 2 m3, Pe = 1 bar, Ptank,1 = 50 bars, Ptank,2 = 1 bar,

Wshaft rev,  = 2 × 1 × 100 (1 ÷ 1 ln(1÷1) – (50÷1) ln(50÷1)) =  39120 kJ

Remarks
If we select the control volume to include both the turbine and the tank, assuming that
there is no accumulation of energy or entropy in the turbine,

dUtank = δQ – PdV – δ Wshaft rev,  – hedNe. (H)

Applying the entropy balance equation to the tank,

dStank = δQ/T – dNe se
. (I)

From Eqs. (H) and (I),

Pressurized gas tanks are employed in space power applications. As the gas contained
in the tanks  is used, the tank pressure falls (say, from Pt,1 to Pt,2) so that the work
done per unit mole can vary. Determine the work that can be done if a 2 m3 turbine
and the tank are kept in an isothermal bath, Pe = 1 bar, Pt,1 = 50 bars, and Pt,2 = 1 bar.

Solution



δ Wshaft rev,  = TdStank – dUtank – PdV + T dNe se
 – hedNe. (J)

Since dNe = – dNtank, dV = 0, dStank = s ktan dNtank + Ntankd s ktan , he  (T) = h ktan (T) =

u ktan  + R T, dUtank = u ktan dNtank + Ntank u ktan
, and d u ktan  = 0,

 δWshaft,rev = T ( s tank dNtank+ Ntank d s tank) - d(dNtank u tank + Ntank d u tank) - 0 -
T dNtank s e + ( u tank + RT) dNtank.

Simplifying this relation

dWshaft,rev = dNtankT(stank-se) = - dNtankTR ln(Ptank/Pe) = -V dPtankln(Ptank/Pe). (K)

If the process within the control volume is adiabatic and reversible,

dUtank = 0 – 0 – δ Wshaft rev,  – he  (T) dNe, or (H)

δ Wshaft rev,  = – u ktan  dNtank – Ntank d u ktan  + ( u ktan + R T(t))dNtank

= – Ntank cv0
dTtank + R T (t)dNtank 

= – Ntank cv0
dTtank + VdP – R NtankdTtank

   – dTtankNtank( cv0 + R ) + VdP = – dTtank Ntank cp0
 + VdP.

Therefore the relationship between the temperature and Ntank is of the form Ttank/Ttank,1

= (Ptank/Ptank,1)
(k–1)/k = (NtankTtank/Ntank,1Ttank,1)

(k–1)/k, i.e.,

(Ttank/Ttank,1)
(1/k) = (Ntank/Ntank,1)

(k–1)/k, and

δ Wshaft rev,  = – dTtank Ntank,1(Ttank/Ttank,1)
(1/(k–1)) cp0 + VdP. 

The efficiency of heat engines can oftentimes be improved by increasing the peak
temperature in the relevant thermodynamic cycle. However, materials considerations
impose a restriction on the peak temperature. Materials may be kept at a desired safe
temperature by providing sufficient cooling. In that case entropy is generated through
cooling which must be compared with the work loss by reducing the peak tempera-
ture. When heat exchangers and cooling systems are designed for work devices, in-
formation on possible work loss should be provided.

dd. Example 31

Consider a 1 meter long turbine that operates steadily and produces a net power out-
put of 1000 kW. Gases enter the turbine at 1300 K (Ti) and 10 bar (Pi), and leave at
900 K (Te) and 1 bar (Pe). The turbine walls are insulated, but its blades are cooled.
The cooling rate per unit area of the blade is given by the relation h(Tavg – Tblade)
where Tavg  = (Ti + Te)/2. The Nusselt number (Nu = hC/ λ) on the gas side of the

blade is 1000, where h denotes the convective  heat transfer coefficient (kW m–2 K–1),
C the chord length (which is 15 c.m. along axial direction), and λ the thermal con-

ductivity of the hot gases (= 70_10–6 kW m–2 K–1). The blade A= C _ blade height
which is assumed to be the same as the chord length. There are approximately 40
blades for each rotor and 3 rotors for every meter of length. Assume that cp = 1.2 kJ
kg–1 K–1 and R = 0.287 kJ kg–1 K–1.

Write the generalized overall energy conservation equation.
What is the heat loss rate if the blade temperature Tblade = 900 K.
Determine the gas mass flow rate.
Write the entropy balance equation and simplify it for this problem.
Determine the entropy generation rate.



Solution

The energy equation can be written in the form
dE/dt = Q̇  – Ẇ + ṁi (h + ke+ pe)i – ṁe(h + ke + pe)e.
At steady state, dEc.v./dt = 0, ke = 0, pe = 0, dmc.v./dt = 0, hence ṁi  = ṁe = ṁ, i.e.,

0 = Q̇  – Ẇ + ṁ(hi – he). (A)

Q̇   = h A (Tavg – Tblade), and (B)
A = 0.15 × 01.5 × 40 × 3 = 2.7 m2. (C)

Since, h C/λ = 1000,

h = 1000 × 70 × 10–6 ÷ 0.15 = 0.467 kW m–2 K–1. (D)

Using Eqs. (B), (C), and (D),

Q̇  = 0.462 × 2.3 × (1100 – 900) = 252 kW. (E)

he – hi = cp0(Ti – Te) = 1.2 × (1300 – 900), and (F)

Ẇ  = 1000 kW. (G)

Using Eqs. (A), (E), (F), and (G),

0 = 252 – 1000 – ṁ × 1.2 × (1300 – 900), i.e.,

ṁ= 2.6 kg s–1. (H)

The entropy balance equation at steady state is

dSc.v./dt = 0 = Q̇ /Tb,j + ṁ(si – se) + σ̇ cv . (I)

(se – si) = cp0 ln(Te/Ti) – R ln(Pe/Pi). = 1.2 ln(900÷1300) – 0.287ln (1/10) (J)

             = – 0.441 + 0.66 = 0.220 kJ kg–1 K–1. (K)

Using Eqs. (H)–(K),

˙
. .σ c v  = – (–252/900) – 2.6 × (–0.22) = 0.28 + 0.57 = 0.85 kW K–1.

Remark
The entropy generation due to blade cooling results in a work loss of To ˙

. .σ c v  = 298 ×
0.85 = 250 kW (this is discussed further in Chapter 4). However, the increased gas
temperature at the turbine inlet results in a larger work output.

4. Irreversible Processes and Efficiencies
Adiabatic expansion and compression processes prevent energy loss related to heat

transfer. Idealized adiabatic processes are also isentropic. However, actual processes may not
occur under quasi–equilibrium conditions and may, therefore, be adiabatic, but irreversible
Figure 37. In this case it is useful to compare various adiabatic devices operating at identical
pressure ratios for either expansion or compression (e.g., turbines and compressors) or over the
same expansion or compression ratios (e.g., the compression and expansion strokes in automo-
bile engines). The resulting term represents the adiabatic (or isentropic) efficiency ηad that is

ηad = actual work output ÷ isentropic work output = w/ws (expansion processes) or



ηad = isentropic work input ÷ actual work input = ws/w (compression processes).
For these processes, w = |h1 – h2|, and ws = |h1 – h2s|.

Compressors and turbines are also designed for isothermal processes. The work input
can be reduced even for isothermal processes. The isothermal efficiency ηiso is defined as

ηiso = w/wiso (expansion processes) or wiso/w (compression processes).

These efficiencies are also sometimes referred to as First law efficiencies. The work wrev =
∫Pdv or –∫vdP, respectively, for closed and open systems.

5. Entropy Balance in Integral and Differential Form
We have previously determined the entropy generation by assuming the system prop-

erties to be spatially uniform, except at the boundary. We now present the appropriate balance
equations for irreversible processes that occur in continuous systems containing spatial
non–uniformities. The methodology is similar to that used to present the differential forms of
the mass and energy conservation equations in Chapter 2.

a. Integral Form
Equation (64) may be expressed in integral form as

d dt sdV Vs dA Q T dA dV
c v c v

/ ( ) ( / ) ˙
. . . .

ρ ρ σ∫ + ⋅ = − ′′ ⋅ + ′′′∫∫ ∫
r r r r

. (80)

The relevant density and temperature are those at the boundary of the control surface and 
r

′′Q ,
r
V , and 

r
A , respectively, denote the heat flux, velocity, and area vectors.

b. Differential Form
The entropy balance equation can be written in a differential form to evaluate the en-

tropy generation in a control volume. Applying the Gauss Divergence theorem to Eq. (80) we
obtain
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Figure 37: Illustration of efficiencies.



d dt s Vs Q T cv/ ( ) ( / ) ˙ρ ρ σ+ ∇ ⋅ = − ∇ ⋅ ′′ + ′′′
r r r r

. (81)

The control surface is shrunk to a surface around an infinitesimally small volume dV and the
boundary temperature becomes the elemental volume temperature. Employing the mass con-
servation equation

d dt +  V =  0ρ ρ/ .∇
r

,

Eq. (81) can be simplified into the form

ρ ρ σds dt V s Q T cv/ ( / ) ˙+ ⋅∇ = − ∇ ⋅ ′′ + ′′′
r r r r

. (82)

Recall that the Fourier law is represented by the relation 
r

′′Q  = –λ
r
∇T . For isotropic materials

(that have uniform properties in all spatial directions) the law involves a linear relation be-
tween the two vectors 

r
′′Q and 

r
∇T , where the direction 

r
′′Q  depends upon that of the tempera-

ture gradients that are normal to the isotherms. That the two vectors must be parallel to each
other is known as Curie’s principle. For a one–dimensional problem

r
′′Q = – λ

r
i (dT/dx).

The heat flux vector has a positive direction with respect to x when heat flows from a
higher temperature to a lower temperature, and the introduction of the negative sign satisfies
the Second law. We will later prove that this sign in the Fourier law can be determined using
the criterion that ˙ ′′′σ cv  > 0 for irreversible heat transfer for all materials having a positive ther-
mal conductivity coefficient. Applying the Fourier law to Eq. (82),

ρ ρ λ σ∂ ∂ ∇ ∇ ⋅ ∇ ′′′s t +  V s =  T T) +  cv/ . ( / ˙
r r r

. (83)

We have assumed that the local volume is in thermodynamic equilibrium and that
entropy generation occurs due to irreversibilities between the various local volumes.

6. Application to Open Systems
The entropy generation ˙ ′′′σ cv  can be determined as a function of spatial location within

a volume by solving Eq. (83) provided that the temperature and pressure are known. In Chap-
ter 4 we will discuss that the work lost due to irreversibilities is given by the product T0 ˙ ′′′σ cv

.

Fins are used in heat exchangers to increase the heat transfer rate. We have discussed
that a hot body can be cooled either by directly transferring heat to the ambient (by generating
entropy) or by using a heat engine to produce reversible work (without producing entropy).
The fins are entropy generators at steady state for which Eq. (83) yields

ρ λ σ
r r r r
V s T cv⋅∇ = − ∇ ⋅ ∇ + ′′′( / ) ˙T . (84)

Since there is no convection heat transfer within the solid fins,

−∇ ⋅ ∇ + ′′′ =
r r

( / ) ˙λ σT T cv 0.

a. Steady Flow
Consider the one–dimensional steady flow of a fluid with negligible temperature and

velocity gradients. For this case Eq. (83) simplifies to the form

ρv ds/dx = ˙ ′′′σ cv .

For an ideal gas



ds = cp dT/T – R dP/P 

Since the temperature is virtually constant. Therefore,

ρv (–R/P) dP/dx = ˙ ′′′σ cv .

In this case dP/dx ≤ 0. For a fixed mass flow rate, integrating between the inlet (P = Pi) and

any other section where P < Pi,

˙ ′′′σ cv = (Rρv/x) ln (Pi/P).

Friction causes pressure losses so that. ˙ ′′′σ cv  > 0.

b. Solids
The energy conservation for solids can be written in the form

ρc∂T/∂t = –
r r
∇ ⋅ ′′Q (85a)

Since s = c dT/T, manipulating Eq. (83)

(ρc/T)∂T/∂t = ––
r r
∇ ⋅ ′′( / )Q T  + ˙ ′′′σ cv . (85b)

Dividing Eq. (85a) by the temperature and subtracting the result from Eq. (85b) we obtain

( ) / ( / ) ˙
r r r r
∇ ⋅ ′′ + ∇ ⋅ ′′ + ′′′ =Q T Q T cvσ 0 , i.e.,

˙ ( / )′′′ = ′′∇ ⋅σ cv T Q T1 2
r r

, i.e.,

Since ˙ ′′′σ cv  > 0,
r r

′′ ⋅∇Q T  < 0.

The important implication is that 
r

′′Q ·> 0 if 
r
∇T  < 0, i.e., heat can only flow in a di-

rection of decreasing temperature.

ee. Example 32

s = c ln(T/Tref). (A)

At 100ºC, s = 0.385 ln(373÷273) = 0.1202 kJ kg–1 K–1.

Likewise, at 30ºC s = 0.0401 kJ kg–1 K–1.
Using Eq. (85b), for the one-dimensional conduction problem,

 ˙ ′′′σ cv  = –d/dx(λ/T dT/dx). (B)

From energy conservation,

–λ dT/dx = ′′q̇  = Constant. (C)

Therefore, integrating from the boundary condition, namely, T = T0 at x = 0,

T0 – T = ′′q̇ x/ λ. (D)

Dividng Eq. (C) by T,replacing T with Eq.(D), and then using  the result in Eq. (B)

Consider a 5 mm thick infinitely large and wide copper plate, one surface of which is
maintained at 100ºC and the other at 30ºC. The specific heat and thermal conductivity
of copper are known to be, respectively, 0.385 kJ kg–1 K–1 and 0.401 kW m–1 K–1.
Determine the entropy at 100ºC and 30ºC, and the entropy production rate.

Solution



˙ ′′′σ cv  = d/dx( ′′q̇ /(T0 – ′′q̇ x/ λ)

Multiplying by dx and integrating within the limits x=0 and x= L,

˙ ( )
˙

˙ /

˙
. .′′ =

′′
− ′′

−
′′

σ
λc v x

q

T q x

q

T0 0

(E)

For the given problem ′′q̇  = 0.401 × (373 – 303) ÷ 0.005 = 5614 kW m–2, and

˙ ' ' ( ). .σ c v L  =(614×(1÷(373–5614×0.005÷0.401)–(÷(373))== 3.48 kW m–2 K–1.

Even though entropy is produced at a rate of 3.48 kW m–2 K–1 within the plate, the
entropy at the edges (across the plate thickness) will not increase, since the entropy is
a property that depends only on the local temperatures. In addition, the entropy that is
produced is flushed out in the form of transit entropy at x = 0, i.e., through thermal
conduction. This statement can be verified by employing the entropy balance equation
for a control volume around the entire plate,

dS/dt – ∫δ ˙"Q /Tb = ˙ ′′′σ cv .

Since the temperature at any location is constant, the entropy cannot accumulate at
steady state and dS/dt = 0. Therefore, ∫d

r
′′Q /Tb = – ′′q̇  (1÷373 – 1÷303) = ˙ ′′′σ cv  = 3.48

kW m–2 K–1.
A similar example involves electric resistance heating for which the coil temperatures

can be maintained at steady state by transferring heat out of the coils as fast as it is produced.
The entropy flux d

r
′′Q /Tb acts in the same manner in order to maintain constant entropy.

Summarizing this section on the entropy balance,
∆S = σ for an isolated system.

dSc.v./dt = σ̇ c.v., in  rate form for an isolated system.
 dSc.v./dt = σ̇ c.v., in rate form for an adiabtic closed system.
dSc.v./dt = Q̇ c.v. /Tb + σ̇ c.v., in rate form for any system.

dSc.v./dt = Q̇ c.v. /Tb +  ṁi si -  ṁe se + σ̇ c.v., in rate form for an open system.

J. MAXIMUM ENTROPY AND MINIMUM ENERGY
The concept of mechanical states is illustrated in Figure 38 using the example of balls

placed on a surface of arbitrary topography. Position A represents a nonequilibrium condition,
whereas B, C, D, and F are different equilibrium states. A small disturbance conveyed to the
ball placed at position C will cause it to move and come to rest at either position B or D.
Therefore, position C is an unstable
equilibrium state for the ball. Small
disturbances that move the ball to
positions B and D will dissipate, and
the ball will return to rest. If the ball
is placed at B, a large disturbance
may cause it to move to position D
(which is associated with the lowest
energy of all the states marked in the
figure). If the ball is placed at position
D and then disturbed, unless the dis-
turbance is inordinately large, it will
return to its original (stable) position.
Position D is an example of a stable
equilibrium state, whereas position B
represents a metastable equilibrium
state. Also it is noted that the change Figure 38: Mechanical equilibrium states.



of states say from (C) to (B) or (D) are irreversible.  A criteria for “stability”can also be de-
scribed based on the potential energy associated with the various states depicted in Figure 38.
If the potential energy decreases (i.e., δ(PE) < 0) as a system is disturbed from its initial state,

that state is unstable (state C). On the other hand, if the potential energy increases once the
system is disturbed (δ(PE) >0), that initial state is stable (states B and D).

Similarly, the stability of matter in a system can be described in terms of its thermo-
dynamic properties. A composite system containing two subsystems is illustrated in Figure 39.
The first subsystem consists of an isolated cup of warm coffee or hot water (W), while the
room air surrounding it is the other subsystem (A). The internal constraints within the com-
posite system are the insulation (which is an adiabatic constraint) around the coffee mug and
the lid (which serves as a mechanical constraint) on the cup. The two subsystems will eventu-
ally reach thermal equilibrium state, once the constraints are removed. The magnitude of the
equilibrium temperature will depend upon the problem constraints. For example, if the walls of
the room are rigid and insulated, the temperature of the room air will increase as the coffee
cools. Consequently, the air pressure will increase, but the internal energy of the combined
system will not change.

If the mechanical constraint is still in place, it is only possible to reach thermal equilib-
rium. If the mechanical constraint is removed, say, by using an impermeable but movable pis-
ton placed on top of the water, then thermo-mechanical (TM) equilibrium is achieved. If the
piston is permeable, in that case the water may evaporate and also reach phase (or  chemical)
equilibrium. Therefore, the conditions of a system depend upon the constraints that are im-
posed. If the walls of the composite system are uninsulated, heat losses may occur from the
system, thereby reducing the internal energy. The equilibrium temperature will be lower for
this case. Therefore, equilibrium may be reached in a variety of ways so that various scenarios
may be constructed, depending on the constraints, as follows.

The room may be insulated, impermeable, and rigid so that the composite system is
isolated. In this case entropy generation will occur due to irreversible  processes taking place
inside the system.

The room may be diathermal, rigid and impermeable. Interactions with the environ-
ment (which serves as a thermal energy reservoir at a temperature T0) are possible. In this
case the combined entropy of the coffee and room air may not change as the two subsystems
undergo the equilibration process. The coffee will transfer heat to the room air, which in turn
will transfer it to the environment. Consequently, the internal energy of the composite system
will decrease.

The room might be diathermal with a flexible ceiling allowing the pressure to be con-
stant during the process. In this case, we can show that the enthalpy decreases while the en-
tropy, pressure, and mass are fixed.

1. Maxima and Minima Principles

a. Entropy Maximum (For Specified U, V, m)
The isolated system shown within the dotted boundary in Figure 39 contains two sub-

systems say hot water (W) and air (A). That isolated system contains two subsystems (W) and
(A). The total internal energy

U = UW + UA. (86)

Similarly, under a constrained equilibrium state the entropy is additive, i.e.,

S = SW + SA. (87)

Once the constraints are removed, the composite system enters a nonequilibrium state (analo-
gous to the ball at position A in Figure 38). Thus an irreversible occurs. We can apply Eq. (28)
to the system within the dotted boundary,



dS = δQ/Tb + δσ, 

For an irreversible process, δσ > 0. Since the composite system is adiabatic δQ = 0. Hence

dS = dSw+ dSA  > 0 or S keeps increasing as long the irreversibility exists. The internal energy
(U = UW + U 

A) is conserved, but the entropy increases until an equilibrium state is reached at
which dS = 0 and the entropy is at a maxima as shown in  Figure 40 (analogous to the ball at
position D in Figure 38). The final equilibrium state is achieved when the entropy of the iso-
lated system reaches a maximum. Note that constitutive rate equations (e.g., the Fourier law,
Newton’s laws etc.) are not required in order to determine the entropy generation as long as S
is known as a function of U and V from the basic pulley-weight type of experiments.  Even
though the composite system is isolated, the local temperature within it is time varying, as are
other local system properties. Although, dU = dV = 0, since an irreversible process occurs,
entropy is generated, since, δσ > 0.

 Recall from earlier derivation that at equilibrium.

S = S (U, V, N1, ... Nn) (88)

while during an irreversible process occurring in the isolated system

dS ≠ 0, U,V , m fixed  (implying dU=0, dV=0 during the process). (89)

Then, at the entropy maxima, (cf. Figure 40)

d2S < 0, , U,V , m fixed (90)

Intuitively, equilibrium is reached as the temperatures of the two subsystems W and A
approach each other. However, in a chemically reacting system, the temperature alone cannot
describe equilibrium, since the composition may change and S-max principle can be invoked
to describe the equilibrium.

Si

Hot Water (W)

Room air (A)

Smax

Boundary of
U,V,m system

Figure 39: llustration of equilibrium at fixed values of U,
V, m.



Recall the entropy balance equation for a closed system  dS = dU/T + P dV/T+ δσ. If

this expression were to be used in the context of the composite system of Figure 39 (for which
dU = dV = 0), then dS = 0. (By implication, an adiabatic fixed-volume system is incapable of
an entropy change.) This relation cannot be applied to a composite system that is in a non-
equilibrium state. For example, one cannot assign a single temperature to the composite system
illustrated in Figure 39. However, it may be applied separately for each subsystem to properly
analyze the problem if each sub-system in internal equilibrium with irreversibility confined to
a thin boundary between the two subsystems W and A . i.e., dS W = dUW/TW + PW dVW/TW

with δσw = 0  and dSA = dUA/TA + PA dVA/TA with δσA = 0  . We will use such a procedure to
illustrate the Smax principle with a simple example of cooling of coffee in room air.

ff. Example 33

UW = mW cW (TW –273), (A)

UA = mA cv0A (TA – 273), (B)

VW = mW /ρW = 1 ÷ 1000 = 0.001 m3,

ρA = PA/RTA = 100 ÷ (0.287 × 290) = 1.2 kg m–3,

E

Configuration parameter

Equilibrium for U1,V,m

Equilibrium dS=0 d2S<0
U,V,m fixed

Smax

dS>0

Figure 40 : Entropy maximum Smax principle for specified val-
ues of U, V, m.

The initial temperature of a completely covered and insulated coffee cup containing 1
kg of coffee is 350 K. Assume the properties of coffee to be the same as those of wa-
ter (c = 4.184 kJ kg–1 K–1). The ambient air (cv0,A = 0.713 kJ kg–1 K–1) is contained in
a rigid and insu-
lated room at a
temperature of 290
K. The air mass is
0.4 kg. If the insu-
lation is removed,
but the covering
retained (to allow
heat transfer but no
mass transfer) from
the coffee, and the
cup is cooled
gradually, deter-
mine the following
(ignoring evapora-
tion and assuming
uW  = cW  (TW  –
273), uA  = cv0,A

(Ta– 273), sW  = c
ln(TW/273), and sA

= cv0,A ln(TA/273)+
R ln(v/vref)):
The heat removed
from the water for
each 0.5 K drop in the coffee temperature.
The temperature of air TA when the coffee cools to 349.5 K.
The entropy of the water (SW) at TW = 350, and 349.5 K.
The entropy of the air (SA) when TW = 350, and 349.5 K.
The total entropy S (U, V, m) = SA + SW when TW = 350, and 349.5 K.
Repeat these steps for TW = 349, 348.5, … and so on, and plot the entropy with re-
spect to TA and UA.

Solution



VA = mA /ρA = 0.4 ÷ 1.2 = 0.333 m3, and the total volume

V = VW + VA = 0.001 + 0.333 = 0.334 m3.
The volume of the coffee cup VW =0.001 m3, and it contains internal energy UW =
322.2 kJ. The room air contains internal energy UA = 13.3 kJ, and volume VA = 0.333
m3. The total internal energy U = 335.5 kJ, total volume V = 0.334 m3, and total mass
m = 1.4 kg. Given this information, we must determine the possible states that the
system can attain if the internal constraints are removed. One such state results when
the two subsystem temperatures equal each other. (This technique will not always
work as will be seen later in the case of chemical reactions in Chapter 10.) Another
possibility is to examine those states as the system entropy increases to a maximum
from its initial value.
If the coffee cools through a temperature decrement dTW = – 0.5 K, using the First
law,

δQW – δWW = dUW, so that (C)

δQW – 0 = dUW = mW c dT = 1 × 4.184 × (– 0.5) = –2.092 kJ.
Heat is transferred resulting in a temperature rise in the air.
Applying the First law to the room air,

δQA – δWA = dUA, i.e., 2.092 – 0 = mA cA dTA so that (D)

dTA = 2.092 ÷ (0.4 × 0.713) = 7.335 K.

Therefore, TA = 290 + 7.335 = 297.335 K.
Since the composite system is in a constrained equilibrium state, the total entropy can
be obtained by summing up the subsystem entropies. Using Eq. (53) with T2 = TW and
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T1 = 273 K,
sW = cW ln (TW/273), so that

SW =mW sW = mW cW ln (TW/273) (E)

 = 1 (kg) × 4.184 (kJ kg–1 K–1) × ln(350 ÷ 273) = 1.0395 kJ K–1.

Similarly, at temperatures of 349.5, 349, 348.5, ..., K, SW = 1.0336, 1.0276, ..., kJ K–1.
For a 0.5 K temperature drop dSW = 1.0336 – 1.0395 = –0.0059 kJ K–1.
Since the volume of air does not change,

SA = mA cvA ln (TA/273) + R ln (v/vref). Let vref = v = (V/mA), so that

SA= mA cvA ln (TA/273). (F)

Therefore, at 290 K, SA = 0.4 (kg) × 0.713 (kJ kg–1 K–1) × ln(290/273) = 0.01722 kJ

K–1, and at 297.335 K, SA = 0.02435 kJ K–1.
For a 7.335 K temperature rise, dSA = 0.02435 – 0.01722 = 0.00713 kJ K–1.
At 350 K, S = SW + SA = 1.0395 + 0.01722 = 1.0568 kJ K–1. At 349.5 K, S = 1.0579
kJ K–1. Therefore,

dS = dSW + dSA = – 0.0059 + 0.00713 = 0.00173 kJ K–1.
The combined system is a closed and adiabatic system so that dS – δQ/T = δσ.

Since δQ = 0, δσ = dS = 0.0014 kJ K–1 for the infinitesimal process during which dTW

= – 0.5 K. As entropy is generated due to system irreversibilities the entropy of the
composite system changes.
Figure 41 illustrates the change in the composite system entropy with respect to the
temperature TA of subsystem A. Likewise Figure 42 presents the variation of the
composite system entropy with respect to the internal energy UA contained in air at the
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constrained equilibrium state (i.e., by allowing the coffee to lose heat, then placing
the insulation back around the coffee mug and preventing any further heat transfer).
The entropy increases at the fixed U, V, and m values so that the entropy generation
δσ > 0 along the branch ABE. At point E there are no constraints within the system,

the temperatures TA and TW are equal, and the entropy reaches a maxima.
Therefore, equilibrium is that state at which the entropy is the highest of all possible
values after considering all of the constrained equilibrium states (for specified values
of U, V and m). This is called the highest entropy principle.

Remarks
Thermal equilibrium: The case of a homogeneous-single component system.
Now, consider the case when the total internal energy, volume, and mass are held
constant, but the initial mass of cold system can be changed. Figure 43 contains two
curves for molecular nitrogen corresponding to the same values of U,V, and m. The
curve AEC has been generated for a cold system mass equal to 0.2 kg and a hot sys-
tem mass of 0.4 kg. The hot and cold conditions are Tcold = 290 K, Vcold = 0.13 m3,
Ucold = 43 kJ, mhot = 0.4 kg,
Thot = 350 K, Vhot = 0.26
m3, Uhot = 104 kJ. The total
values (for the system) are
U = 147 kJ, V = 0.36 m3,
and m = 0.6 kg. The curve
BED corresponds to a cold
mass of 0.25 kg with Tcold

= 290 K, Ucold = 54 kJ; and
mhot = 0.35 kg, Thot = 359
K, Uhot = 93 kJ (for the
same total values for U, V
and m as for curve AEC).
Both sets of initial condi-
tions reach the same value
for Smax at equilibrium, i.e.,
the maximum entropy is a
function of only U, V, and
m.
The case of irreversibility
during spontaneous proc-
esses.
In the presence of con-
straints each subsystem
(e.g. A and W) is in equi-
librium. Once the constraints are removed, the entropy reaches a maximum following
a spontaneous process. In order to reverse that process, the entropy of the composite
system should decrease which is impossible according to the Second law. The use of
a Carnot heat pump in this case would require external work input. Secondly, the en-
tropy of the coffee increases (∆Scoffee > 0) with heat addition. As the air cools back to

its initial temperature, its entropy SA decreases (∆SA < 0). However, |∆SA | = |∆Scoffee|,

and the overall entropy remains unchanged. Therefore, it is not possible to restore the
entropy of an isolated system back to its initial state.
The S-U-V surface.
In our analyses, we have assumed the various subsystems to undergo quasiequilib-
rium processes. Each of these processes within each subsystem can be mapped in
S–U–V space. Since the composite system is in a nonequilibrium state, the process
that it undergoes cannot be mapped in this S–U–V space (Figure 44). However, if the
third coordinate is elected as the deformation coordinate (e.g., internal energy of wa-

0.082

0.0825

0.083

0.0835

0.084

0.0845

0.085

290 300 310 320 330 340 350 360

TB, K

S
is

o
, 
k
J
/K

mB=0.2 kg

mB=0.25 k

A

E

C

B

D

Figure 43 :  The entropy with respect to the tempera-
ture TB during the interaction of hot and cold nitrogen.



ter in the current example increasing away from the origin “O”), the process ABE in
Figure 41 is mapped as A–K–2U in Figure 44. During the process A-K-2U, one
could have stopped the process at state K by covering the water with an insulated lid.
However dS at this point is not yet zero, i.e., the entropy has not yet reached a maxi-
mum value. This state K could be construed as constrained equilibrium states of each
subsystem constituting the composite system The final equilibrium state can be lo-
cated in that space (points 2S,2U, Figure 44) where dS=0. Note that the process D-L-
2U is possible only if the air is warmer than the water, i.e., equilibrium is approached
towards increasing entropy.
Equilibrium.
At the equilibrium point E (Figure 41), at a microscopic level at S = Smax a few ener-
getic molecules of water (at a slightly higher temperature than of the air taken as a
whole) transfer heat to air. An equal number of energetic air molecules transfer heat
back to the water resulting in reversible heat transfer. Although the system is con-
stantly disturbed at the equilibrium state, the state is overall stable. At the stable equi-
librium state dS = 0, so that δσ = 0 i.e TW ≈ TA = 346.2 K, with the implication that

the entropy is constant adjacent to its peak value. The processes are reversible, i.e.,
the air can supply a differential amount of heat to the coffee and vice versa. The proc-
ess A–B–E illustrated in Figure 41 is possible but process E–D is not. However, if the
initial state of the system lies at point D (i.e., with hot air and cold coffee), the process
D–E is possible, and δσ > 0.

Using Eqs. (A), (B), (E), and (F) to eliminate TW and TA in terms of UW and UA we
obtain

S = SW + SA 

= mW cW ln(UW/(mW cW×273) + 1) + mA cv0,A ln(UA/(mA cv0,A×273) + 1), (G)

where U = UA + UW is fixed. Therefore, the entropy is a function of UA alone if U,
mW, and mA are fixed. In order for the entropy to reache a maxima, the necessary
conditions are

∂S/∂Ua = 0 , and ∂2S/∂Ua
2 < 0 at equilibrium,  U, V.m fixed

By differentiating Eq. (G) it is possible to determine UA or TA when S = Smax. In-
versely, if a system is in equilibrium, dS = 0 and d2S < 0 for any small disturbance.
(This is called the stability criteria, and is discussed later in Chapter 10.)
If the subsystem masses and total volume are kept constant, but the initial tempera-
tures and internal energies are changeable, the equilibrium value Smax changes, since S
= S(U,V,m).  Similarly, if only the volume is changed, the pressure also changes, and
the value of Smax is different. Changes in the total mass or number of moles have a
like effect, since S = S(U, V, N). Differentiating the entropy near equilibrium,

dS = ∂S/∂U dU + ∂S/∂V dV + ∂S/∂N dN, (H)

so that

dS = dU/T –P dV/T + µ dN. (I)

This expression is only valid between two equilibrium states, namely, S(U,V,N) and
S(U+dU,V+dV,N+dN).
Heterogeneity and equilibrium
That equilibrium exists between the coffee and air does not imply that the pressure
and internal energy are uniform. If the internal energy is everywhere the same, a sys-
tem exists in a homogeneous state (or phase). Generally, when two subsystems that
are initially in a nonequilibrium state reach equilibrium with each other, heterogene-



ous states (or two phases) may exist. Differences in the system density and internal
energy describe these phases.
A stability test for equilbrium at specified values of U, V and m.
Recall that the system at microscopic level is incessantly dynamic. Hence disturbance
occurs continuously. Let us consider the impact of small disturbance on the system at
fixed values of the internal energy, volume, and mass. It is possible for a group of air
molecules to exist at a temperature T´ > Tequil. This implies that a group of water
molecules must correspond to a temperature T″ < Tequil. Such a situation can arise if a

few air molecules gain some energy dUA. At that state the entropy of air SA(UA +
dUA) = S(UA) + dS/dUA dUA + d2S/dUA 

2 dUA 
2 + … . The water can lose an equiva-

lent amount of energy dUW (since the total energy is unchanged), and its entropy
SW(UW + dUW) = S + dS/dU(dUW) + d2S/dUW

2(dUW)2. Therefore, SA(UA + dUA) +
SW(UW + dUW) = SA + SW + 1/T(dUA +dUW) + (d2S/dU2) (dUA

2+ dUW 
2) +... . Since

the energy U = UA + UW is fixed, dUA = – dUW and dUA
2 = dUW

2. However, in this
case the disturbed state entropy is lower than the maximum value, and SA(U + dU) +
SW(UW+dUW) – (SA(UA,VA) + SW(UW, VW)) < 0. This implies that (d2S/dU2) (dUA)2<
0 if the initial state is at the “maximum entropy” or stable equilibrium state (which is
also known as the stability condition, Chapter 10). In this example, the small group of
hotter air molecules will attempt to equilibrate after contact with the water molecules.
Such a process, where the system self–adjusts to a disturbance, is said to follow Le
Chatelier’s principle.
An application.
Assume that at the end of the compression stroke of an Otto cycle a gasoline–air
mixture reaches a gas–phase temperature of 600 K. tIn the presence of constraints
each subsystem is in equilibrium. Once the constraints are removed, the entropy
reaches a maximum following a spontaneous process. In order to reverse that process,
the entropy of the composite system should decrease which is impossible according to
the Second law. Can we use Carnot heat pump. First, it requires external work input.
Secondly, the entropy of the coffee increases (∆Scoffee > 0) with heat addition. As the

air cools back to its initial temperature, its entropy SA decreases (∆SA < 0). However,

|∆SA | = |∆Scoffee|, and the overall entropy  remains unchanged. Therefore, it is not pos-
sible to restore the entropy of isolated system back to its initial state that time, a spark
initiates combustion. After about say 2 ms, half of the chamber is filled with hot gases
at 2000 K, the unburned side is still at 600 K, and the reaction is frozen. At this time
the system is insulated and the piston locked (i.e., U, V, and m are fixed). Equilibrium
is achieved for this system when the entropy reaches a maxima (or when TA = TB).
We have so far dealt with the equilibrium conditions for isolated systems that (1) have

no interactions with the environment, or (2) undergo spontaneous processes. In the atmosphere
the temperature and pressure are approximately constant. However, irreversible processes con-
tinue to occur within the atmosphere. Therefore, the question arises as to the criteria for equi-
librium? Does the entropy continue to increase to a maximum value at fixed T and P or does it
decrease to a minimum in this case? Are there other extensive properties which reach a
maxima or minima if we change the constraints from constant internal energy and volume to,
for instance, specified values of T and P, or S and V? In the following sections we will discuss
the various equilibrium conditions when different parameters are held constant.

b. Internal Energy Minimum (for specified S, V, m)
Recall the previous example. Near the maximum entropy state, at fixed internal en-

ergy (∂S/∂UA)U = 0 and (∂S/∂U W) U = 0. Therefore, (∂S/∂U A) (∂U A/∂U) (∂U/∂S) = – 1 near

equilibrium, i.e., (∂U/∂U A)S = –(∂S/∂UA)T = 0. Since (∂S/∂UA)U = 0, (∂U/∂UA)S = 0 implying

that the internal energy must be extremized Figure 45 with respect to UA at a given value of
entropy as discussed  below.



Systems may, in general, interact with heat, work, and mass reservoirs. One method
to cool coffee isentropically is to connect a Carnot heat engine between the coffee and the
(ambient) room air. By this method we can remove, say, δQcoffee amount of heat from the cof-

fee to produce work δW, and reject heat (δQcoffee – δW) to the ambient air. Using the First law,

we know that the internal energy of the system must decrease by an amount dU = δQcoffee –

δW. Therefore, the internal energy U decreases if the values of S, V, and m are unchanged.

When the coffee temperature equals that of the room air, it is no longer possible to extract
work from it. In this case, the internal energy of the composite system has reached a minimum
value. The mechanical analogy is a coin lying with one face down. It has the lowest possible
energy in this position and is more stable compared to a coin standing on its edge.

Consider the expression of the First law

δQ – δW = dU, (91a)

where the work

δW = δWb + δWother = P dV + δWother. (91b)

The subscript b refers to the system boundary work. For a process to occur within a fixed mass
system,

dS =δQ /Tb + δσ, or δσ  ≥  0. (89)

Using Eqs. (89), (91a), and (91b) to eliminate δQ

2’U

(1)

T

K

F

LWater

Energy, Uw

Water and air
Equilibrium

    U

surface

D
U

S1.0568 1.06125

Figure 44: Representation of states in U-S plane.   U= UW+ UA ,  S = SW + SA,

State (1): Composite system: W +A, water at higher T; Path  A-K-2U: direct cool-
ing; Path A-C-2S: cooling via Carnot engine; Path A-K-2U-2S: direct cooling fol-
lowed by heat loss to ambient.



Tb dS = dU + P dV + δWother + Tb δσ . (92)

Since δσ  ≥  0, the following restatements of Eq. (92) apply, i.e.,

At constant U, V, m, and δWother = 0 (i.e., for an isolated system), or

dS = δσ  ≥0. (93a)

At constant U, V, m, and δWother ≠ 0, dS = δWother/Tb + δσ, or

dS ≥δWother /Tb. (93b)

For a composite system if S, V, m are fixed, and δWother = 0, dU = – Tb δσ.

For a composite system at fixed S, V, m and δWother ≠ 0, dU ≤ – δWother – Tb δσ, or

dU ≤ 0, S,V, m fixed. (94a)

For a composite system at fixed S, V, m and δWother ≠ 0, dU ≤ – δWother – Tb δσ, or

dU ≤ – δWother . (94b)

For a Carnot–engine operating at constant S, V, and m, Eq. (94b) is applicable as an
equality, since no irreversible processes occur, and

dU = – δWother, ,   S,V, m fixed implying dS=0, dV=0 during the process (95)

where δWother is the work leaving the composite system. Therefore, the internal energy

continually decreases as work is extracted from the engine and reaches a minimum at
fixed S,V and m (Figure 45).

In place of a Carnot engine, we can use the room air to transfer heat to the ambient so
that the combined entropy of the coffee and air remain constant. For this irreversible process,
δWother = 0 so that

dU ≤ 0, S,V, m specified. (96)

gg. Example 34

dU=0
d2U>0

Figure 45: Energy minimum Umin principle
for specified S, V, m.

One kg of hot coffee at a temperature
of 350 K (TW,0) is kept in an adiabatic
room that contains 0.4 kg of air at a
temperature of 290 K (TA,0). The cup
is initially insulated. A Carnot engine
is used to cool the coffee, lift a
weight, and reject heat to the room air
until the coffee and air temperatures
equilibrate (cf. Figure 46). During the
equilibration process:
How does the internal energy of the
composite system change?
How does the entropy of the coffee
change?
How does the entropy of the room air
change?
How does the entropy of the compos-
ite system change?



+ dSA = 0.

Using the First law δQ – δW = dU. Since, δQ = 0 and δW > 0, dU < 0. Therefore, the

internal energy will decrease, since energy is converted into work.
The entropy of the coffee decreases, since heat is transferred from it.
The entropy of the air increases, since heat is transferred to it.
There is no entropy change in the composite system, since a Carnot engine is used for
which the entropy changes in its source (coffee) and sink (air) are equal.
The total entropy change dSA + dSW = dS = 0. Therefore, dSA = – dSW so that dSW =
mWcW dTW/TW. If the coffee cools by 0.5 K, dTw = – 0.5 K, and

dSW = 1 × 4.184 × (–0.5 ÷ 350) = –0.00598 kJ K–1.

dSA = mA cvA dTA/TA = – dSW = 0.00598 kJ K–1.
dTA = 0.00598 × 290 ÷ (0.4 × 0.713) = 6.078 K.

U = UW + UA = mW cW (TW – 273) + mA cvA (TA – 273) = 327.02 kJ.
After cooling by 0.5 K U = UW + UA = mW cW (TW – 273) + mA cvA (TA – 273) =
326.66 kJ.
The internal energy decreases as work is delivered. These calculations may be re-
peated for the other temperatures, i.e., Tw = 389, 388.5 K, ... .

Room , Subsystem, A

Warm water
subsystem, W

work

Adiabatic
boundary

QA

QW

weight

State 1

Composite sys

Figure 46: A scheme for maintaining constant entropy in a composite system.

Assuming coffee temperatures to be 340 K, 339.5 K, ... K, calculate TA such that dSW

Determine the initial internal energy of the composite system and plot the internal en-
ergy as a function of air temperature as the coffee cools.

Solution



Remarks
Minimum U for a reversible path at specified values of S, V and m.
The internal energy reaches a minimum value of 325.47 kJ at TA = TW = 345.8 K.
Figure 47 presents the variation of the composite system internal energy U as a func-
tion of UA. The entropy, volume, and mass of the composite system are fixed, but its
internal energy decreases as work is delivered. At equilibrium dU = 0, and the work
delivered is the maximum possible. The entropy of the water decreases, but that for
room air increases, whereas in Example 33,   ∆SA > ∆SW. In this example, the Carnot

engine is connected between subsystems W and A with the condition that |∆Sw| =

|∆SA|. We can reverse the process by operating the Carnot engine as a heat pump that

lowers a weight. The process at constant S,V and m is represented by A-C-2S in
Figure 44. If we define a larger system that includes the environment and the two sub-
systems, the total energy E (=U + PE) remains constant, although the internal energy
of subsystem W decreases. The energy that leaves the coffee partly heats the air, and
partly raises the weight.
Consider the line where the entropy surface S1 intersects the surface U1. State 1 is in
constrained equilibrium, but does not lie on the curve (2S)-(2'S)-(2U)-(2'U), since the
initial state of the composite system is not an equilibrium state. The dashed curve A-
C- (2S)-F or D-F-2S (in case air is hotter) is the path  along which the composite sys-
tem internal energy is minimized at constants. Equilibrium can be defined as that state
at which the internal energy (=UA+UW) is the lowest among all possible values for
specified values of S, V and m. This is called the lowest energy principle. The final
temperature TW = TA = 345.8 K is obtained from the slope of the internal energy with
respect to the entropy at the point (2S). (Analogously, a mechanical equilibrium state
in Figure 37 is defined as that with the lowest energy among all possible states, state
D in Figure 37).
Minimum U for an irrversible path but not at fixed S,V and m.
Consider warm water and cool air that mix spontaneously. As in example 33 consider
the equilibrium state 2U that is reached ireversibly via the path A-K-2U  as shown in
Figure 44. Now consider the case when the subsystem W is always in thermal equilib-
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Figure 47: The total internal energy U as a function of the internal energy
of the air UA for specified values of S, V and m.



rium with subsystem A (e.g., state 2U in Figure 44). If we transfer heat from both W
and A to the ambient  in such a manner that TW= TA, then S = (mW cW + mA cvA) ln
(T/273) and U = (mW cW + mA cvA) (T-273). Eliminating the temperature from these
two equations, U = 273 (mWcW + mA cvA)(exp (S/(mWcW + mA cvA)) – 1). This relation
for U(S) is plotted in Figure 44 as a curve (2S)-(2'S)-(2U)-(2'U). The entropy along
this curve is a single valued function once U, V, and m are prescribed, since there is a
single stable equilibrium state. The slope of the curve (∂U/∂S)V is the temperature of
the TW= TA= T. surface. The slope at 2S (fixed values of S, V, and m) is lower than
that at 2U (fixed values of U, V, and m), since, in the current example, energy is
transferred in order to maintain constant entropy.
From  Figure 44 we also note that the slope dU/dS = T is positive. As the temperature
increases, the internal energy increases and, consequently, the entropy increases.
Since T = dU/dS, then the convex nature of the curve requires that the temperature (or
slope) must increase with increasing entropy. (At T = 0 K, dU/dS = 0.) The nature of
this curve will be discussed further in Chapter 10.

hh. Example 35

systems.

Using the First law U1A + U1B = U2A + U2B, or 2 × (T2 – 600) + 1 (T2 –300) = 0, i.e.,

T2 = 500 K. Therefore,
S2 – (S1A + S1B) = 2 × 4.184 × ln (T2/600) + 1 × 4.184 × ln (T2/300) = 0.612, i.e.,

S2 = 0.612 kJ K–1.
In order that S3 = S1, the entropy increase must be countered. Therefore,

3 × 4.184 × ln (T3/500) = – 0.612, i.e.,

T3 = 476.2 K
When the entropy is maintained constant for specified values of volume and mass, the
initial internal energy

U1 = U1 A + U1B = 2 ×  4.184 × (600 – 273) + 1 × 4.184 × (300 – 273) =

358.65 kJ,
and at the final state

U2 = U2A + U2B = 2 × 4.184 × (476.2 – 273) + 1 × 4.184 × (476.2 – 273) =

255.1 kJ.
The internal energy reaches a minimum value (Note that intitial S and final S are
fixed but during the process dS ≠ 0) even though the isolated system entropy in-

creases.

c. Enthalpy Minimum (For Specified S, P, m)
Rewriting Eq. (92)

dU = Tb dS -  P dV - (δWother)  - Tb δσ (97)

Using the relation

dU = dH – d(PV),

dH =  TbdS + VdP – δWother  - Tb δσ, (98)

Two kg of hot water (subsystem A), initially at a temperature of 600 K, is mixed with
1 kg of cold water (subsystem B) that is initially at 300 K.
What are the equilibrium temperature and entropy if both A and B are isolated sub-

Now assume that the two subsystems are not isolated. Once the composite system
reaches equilibrium, heat is removed so that the final entropy value of A+B equals the
initial entropy of A+B. What is the final temperature?

Solution



dH ≤ Tb dS + V dP – δWother., (99)

dS =dH/Tb - (V/Tb) dP  +(δWother)/Tb  + δσ. (100)

At constant H, P, and m, δWother = 0, and dS ≥ 0 (101)

(Equation (100) is particularly useful for adiabatic reacting flows occuring in open systems, cf.
Chapters 11 and 12.)

At constant H, P, and m, when δWother ≠ 0, and dS ≥ δWother.

At constant (Figure 48a) S, P, and m, when δWother = 0, and dH ≤ 0. (102)

At constant S, P, and m, when δWother ≠ 0, and dH ≤ -δWother.. (103)

ii. Example 36

respect to the air temperature TA).
Solution

The entropy change dS = dSA + dSW = 0. At constant pressure, dSA = mA cpA dTA/TA

so that

mA cpA dTA/TA = – mW cW dTW/TW. (A)

Integrating Eq. (A) we obtain

ln TA = – mW cW/mA cpA ln TW + C.

Eliminating the integration constant by using the initial condition

TA/TA0 = (TW/TW0)
m c m cW W A pA/( ) , (B)

the temperatures TW, TA can be evaluated. When TW = 349 K,

TA = 290 × (349/350)(–1×4.184/(0.4×1.0)) = 298.8 K.

Therefore, it becomes possible to evaluate the enthalpy change

dH = dHA + dHW = ma cpA dTA + mW cW dTW. (C)

Fixing the reference state at 273 K, and integrating

H = mA cpA (TA – 273) + mW cW (TW – 273). (D)

If water temperature of 349 K and an air temperature of 298.8 K are assumed, H =
328 kJ. The net heat transfer across the boundary of the room can be calculated from
the relation

δQb = dH = dHA + dHW = mA cpA dTA + mW cW dTW, i.e.,

Qb = H – H0 = mA cpA (TA – TA0) + mW cW (TW –TW0).

Remarks
Explicit solution for T at Hmin.
Using Eqs. (B) and (D), and differentiating H with respect to TW, the water tempera-
ture at the minimum enthalpy Hmin can be obtained, i.e., through the relation

The pressure (P = 100 kPa), entropy (S = So), and mass in the problem of Example 33
are maintained constant. Obtain an expression for  the variation of the enthalpy with



mAcpATA0 (–mWcW/(mAcpA))(TW/TW0)
( /( ) )m c m cW W A pA −1 (1/TW0) + mW cW = 0, or

(TA0/TW0) (TW/TW0)
( /( ) )m c m cW W A pA −1  – 1 = 0.

Therefore, TW/TW0 = (TW0/TA0)
( /( ) )m c m cW W A pA + −1 1

 = 0, so that

Tw = 0.9837 × 350 = 344.3 K, and TA = 344.3 K.

The two temperatures still equal one another, but the equilibrium temperature at Hmin

is lower than that at Smax (which was calculated in the previous example). This is to be
expected, since work is delivered in order to maintain the pressure constant as the air
is heated during the process.
An application.

S,P,m fixed

dH=0, d2H>0

Configuration parameter

T,V,m fixed

dA=0, d2A>0

Configuration parameter

T,P,m fixed

dG=0, d2G>0

Configuration parameter

G

(a)

(b)

(c)

Figure 48: a. Hmin principle for specified S, P, m; b. Amin principle for
specified T, V, m; c. Gmin principle For Specified T, P, m.



Recall from Eq. (100) that at constant H,P,m, dS ≥  0. Combustion occurs at almost

constant pressure during a diesel cycle. During such a hypothetical cycle, a mass of
air is compressed until it reaches a temperature of 600 K, and diesel is injected into its
center. Assume that combustion is initiated at 2 ms later when half of the chamber is
filled with hot gases at 2000 K while the unburned mass is at the 600 K temperature
(cf. Figure 49). Further, assume that the reaction is frozen at this instant. As heat is
transferred from the burnt to unburned gases we allow the piston to move in order to
maintain constant pressure. The chamber walls are insulated. Irreversible heat transfer
between the hot and cold gases causes the entropy to increase. Equilibrium for the
multicomponent system is achieved when the entropy reaches a maximum at fixed
H,P, m  while the Otto cycle is an example involving the maximization of  entropy at
fixed U, V,and m.

d. Helmholtz Free Energy Minimum (For Specified T, V, m)
Oftentimes, the internal energy and entropy cannot be directly measured. It becomes

useful to fix the temperature, volume, and mass in order to examine the change of state from a
nonequilibrium to equilibrium state. Using the relation Eq.(97)

 dU   = Tb dS -  P dV - (δWother)  - Tb δσ (92)

Since

dU = dA + d(TS). 

then at  constant temperature, volume, and mass (with Tb = T), 

dA =  – SdT– P dV – δWother -  Tb δσ (104)

If δWother = 0,

dA ≤ 0, T, V and m fixed. Implying dT=0,dV=0 (105)

(2)(1)

Hot gas
at 4000K

Figure 49 : An application of the entropy maximization principle at fixed H,P and
m.



Thus A  is minimized at fixed T, V and m (Figure 48b). In Chapter 7 we will show that we can
determine the saturation pressure at any given temperature using this principle. For example,
we can pour liquid water at 50° C into a rigid evacuated vessel of volumeV immersed in an

isothermal bath at T.  As vaporization proceeds at constant T, V, m, the sum of A of H2O (g)
and H2O (l) decreases and vaporization stops once A is minimized or phase equilibrium is
reached. If

δWother ≠ 0, dA ≤ – δWother. (103b)

Consider molecular nitrogen and molecular oxygen at the same temperature and pressure in
two adjacent containers separated by a partition. Even though at thermal and mechanical equi-
librium, once the partition is removed, the composition of the composite system changes until
the Helmholtz Free Energy reaches a minimum value.

e. Gibbs Free Energy Minimum (For Specified T, P, m)
Again, using the relation Eq.(99)

dH = TbdS + V dP – δWother - Tb δσ (98)

Simplifying Eq.(98)

dG = dH – d(TS). (106)

Assume that there are no thermal and mechanical irreversibilities in the system (i.e., Tb = T,
and P = uniform) using Eqs.(98) and (104)

dG =  –S dT + V dP – δWother  -  Tb δσ (107)

Simplifying this relation,

dG ≤ –S dT + V dP – δWother. (108)

At constant P, T, and m, if δWother = 0, dG ≤ 0. (109)

See Figure 48c. Equation (109) has applications to phase change problems (Chapters 7), mix-
ing problems (Chapters 8) and chemically reacting systems (Chapters 11 and 12). We will
show in Chapter 7 that it is possible to determine the saturation pressure of a fluid at any tem-
perature using the Gmin principle.

At constant P, T, and m, if δWother ≠ 0, dG ≤ -δWother. (110)

jj. Example 37

the value of G for the combined system at equilibrium? Assume the two specific heats

NA = NO2PV/ R T = 100 × 10/(298 × 8.314) = 0.404 kmole.

Similarly, NB = NN2 = 0.605 kmole.

Consider section (A) in a constant–pressure device to consist of a 10 m3 volume that
contains molecular oxygen at 25ºC and 100 kPa. Section (B) in the same device con-
sists of the remaining volume of 15 m3 which contains molecular nitrogen at the same
temperature and pressure. When the partition is removed, molecules of both species
diffuse into one another. The molecules are instantaneously distributed throughout the
section they diffuse into. Plot the relationship of GA+B with respect to YN2,A. What is

cpN2 = 1.04 kJ kg–1 K–1, and cP,O2 = 0.92 kJ kg–1 K–1 (cf. Figure 50).
Solution



hN2
= 1.04×28×298 = 8678 kJ kmole–1, and, hO2

 = 0.92×32×298 = 8773 kJ
kmole–1. Now,

G = NO2,A gO2
+ NN2,B gN2

, and (A)

gO A2 ,  = gO2
– T sO A2 , (T,pO2,A), where

sO A2 , (T,pO2,A) = cp O, 2
ln(T/Tref) – R ln(pO2,A/pref).

The reference state is selected to be 298 K and 1 bar. Since pO2,A = YO2,A P,

gO A2 ,  = gO2
 (T,P) + R T ln YO2,A. (B)

Similarly,

gN B2 ,  = gN2
(T,P) + R T ln YN2,B, i.e., (C)

gO A2 ,  = 8773 + 8.314 × 298 ln 1 = 8773 kJ kmole–1, and gN B2 , = 8678 kJ

kmole–1.
Initially,

G1 = 0.404 × 8773 + 0.605 × 8678 = 8794 kJ.

Assume that 10% of the oxygen molecules (i.e., 0.0605 kmole) cross into section B
after the partition is removed and 10% of the N2 molecules (i.e., 0.0404 kmole) like-
wise cross into section A (at the same temperature and pressure, i.e., 298 K and 1
bar). Following the molecular crossover, the number of moles contained in Section A
are

NN2,A = 0.10 × 0.605 = 0.0605 kmole, and

NO2,A = 0.404 – 0.1 × 0.404 = 0.364 kmole.

Similarly the number of moles contained in section B are
NN2,B = 0.605 – 0.1 × 0.605 = 0.545 kmole, and

NO2,B = 0.1 × 0.4 = 0.0404 kmole.

Therefore,
YN2,A = 0.0605 ÷ (0.0605 + 0.364) = 0.143, and

Section A
O2 at 25C
P= 1bar
V= 10 m3Section B,

N2 at 25C
P= 1bar
V= 15 m3

Figure 50 : A schematic illustration of the Gmin principle in a mixing process.



YO2,A = 0.364 ÷ (0.0605 + 0.364) = 0.857.

Similarly in Section B,
YN2,B = (0.545) ÷ (0.545 + 0.0404) = 0.931, and

YO2,B = 0.0404 ÷ (0.0404 + 0.545) = 0.069.

Now,
G = NO2,A gO A2 ,  + NN2,A gN A2 , + NO2,B gO B2 , + NN2,B gN B2 , , where

gN A2 ,  = 8678 + 8.314 × 298 × ln 0.143 = 3859 kJ kmole–1.

Similarly,
gN B2 ,  = 8678 + 8.314 × 298 × ln 0.931 = 8501 kJ kmole–1,

 gO A2 ,  = 8773 + 8.314 × 298 × ln 0.857 = 8391 kJ kmole–1, and

gO B2 ,  = 8773 + 8.314 × 298 × ln 0.069 = 2149 kJ kmole–1, so that

G = 0.364 × 8391 + 0.0605 × 3859 + 0.0404 × 2149 + 0.545 × 8501 = 8007 kJ.

These calculations can be repeated for 20%, 30%, etc., of each species diffusing into
each other. Figure 51 contains a plot of G with respect to YN2,A. Note that if all of the
molecular nitrogen diffuses into Section A and all of the O2 diffuses into Section B
the value of G reverts to G1. The minimum value is reached when YN2,A = 0.6.
At equilibrium

YO2 = 0.404÷(0.404 + 0.605) = 0.4, YN2 = 0.6,

gO2
 = 8773 + 8.314 × 298 × ln 0.4 = 6503 kJ, and

gN2
 = 8678 + 8.314 × 298 × ln 0.6 = 7412 kJ.

Hence,
G2 = 0.404 × 6503 + 0.605 × 7412 = 7111 kJ.

dGT,P < 0 when mixing (which is irreversible) occurs. We will discuss the Gmin princi-
ple further in Chapters 7 and 8.

Remarks
Explicit solution for equilibrium concentration with LaGrange method
Applying Eq.(107) at constant, T,P,m and zero other work

dGT,P,m =  -  Tb δσ (111)

Figure 51: Illustration of  Gmin during a mixing process



we need to evaluate either  σ or G. The Gibbs energy cannot be evaluated for Sections

A and B together since an irreversible process occurs between them. However G can
be evaluated if we assume the process within each section to occur reversibly. In that
case, dGT,P,m = (dGA +dGB) <0; each section acts  as an open system. In Chapters 4,
11, and 12, we will show that for the open system, dGA = dNO2,A gO A2 ,

 + dNN2,A gN A2 ,
,

where dNO2,A is the change in Section A for O2 moles due to transfer from Section  B
; dGB = dNO2,B gB   + dNN2,B gN B2 ,

 . The concentration at G = Gmin can be obtained

from Eqs. (A), (B), and (C) by minimizing G(T, P, NN2, NO2) subject to NO2 = NO2,0

(the initial value of O2) and NN2 = NN2,0 (the initial value of N2). Using the LaGrange
multiplier method,

F =  GA (T,P,NN2,A,NO2,A) + GB (T,P,NN2,B,NO2,B) + 

λ 1(NO2,A + NO2,B – NO2,0) + λ2(NN2,A + NN2,B – NN2,0). (D)

where λ is the LaGrange multiplier. Therefore,

G (T,P,NN2,NO2) = NO2( gO2
(T,P) + R T ln (NO2/(NN2 + NO2))) + 

                               NN2 ( gN2
(T,P) + R T ln(NO2/(NN2 + NO2))). (E)

Using the relations ∂F/∂NO2,A = 0, ∂F/∂NO2,B = 0, ∂F/∂NN2,A = 0, ∂F/∂NN2,B = 0, and
differentiating Eq. (E),

NO2,A( R T/(NO2,A – (NN2,A+NO2,A))–1) + 

gO2
(T, P)+ R  ln(NO2,A/(NN2,A + NO2,A)) + λ1=0.

Simplifying the equation
R T NN2,A/(NN2,A + NO2,A) + gO2

(T, pO2,A) + λ1 = 0, or

YN2,A + gO2
 (T, pO2,A) = – λ1´ (G)

where λ1´ = λ/RT. Similarly,

YN2,B + gO2
(T, pO2,A) = – λ1´. (H)

It is seen from Eqs. (G) and (H) that mole fractions in both Sections A and B must be
the same at equilibrium (i.e., at Gmin) ,i.e.,

YN2,A = YN2,B or pO2,A = pO2,B.

2. Generalized Derivation for a Single Phase
We have thus far obtained the conditions for thermal (Example 33) and chemical (Ex-

ample 37) equilibrium. Consider, once again, hot coffee contained in a rigid cup with a firm lid
as in Example 33. If the coffee is replaced with warm nitrogen at 350 K, heat transfer will oc-
cur from the cup. As the room air warms, the room pressure increases, while that of the gas in
the cup decreases. Thermal equilibrium will be reached at the maximum entropy state (Smax)TE,
but with a mechanical constraint in place. If the mechanical constraint is removed, i.e., the lid
is replaced with a nonpermeable and moveable piston, then equilibrium will be achieved at
another maximum entropy state (Smax)TM.  Finally, if the impermeable piston is replaced with a
permeable piston, the system pressure and temperature may not change, but the nitrogen mole
fraction in the room will change until chemical or species equilibrium is reached at yet another
maximum entropy state (Smax)TMC. In this case (Smax)TMC > (Smax)TM > (Smax)Thermal Equil , i.e.,
“equilibrium” is reached when the entropy attains the highest possible value when all the con-



straints (thermal, mechanical and chemical) are removed. In this section we will discuss a gen-
eralized analysis for such an equilibration process.

Assume that two subsystems A and B contain two species, namely, species 1 and 2, as
illustrated in Figure 52(a). Assume that subsystem A has a slightly higher pressure, a slightly
higher temperature, and contains a slightly larger number of moles of species 1 as compared to
subsystem B so that the two subsystems are infinitesimally apart from equilibrium with one
another. There are three initial constraints: a rigid plate that is nonporous, is a good thermal
energy conductor, and serves as a chemical constraint; a porous rigid insulation which serves
as a thermal constraint allowing only mass transfer when subsystems A and B are at same tem-
perature; and a pin holding the rigid plate firmly in place (serving as a mechanical constraint)
which, when removed, allows work transfer. When all of the constraints are removed, assum-
ing the combined system to be insulated, rigid, and impermeable, changes in U, V, N1 and N2

occur only in each of the subsystems. Therefore, the entropy of each subsystem changes sub-
ject to the condition U = UA + UB, or

dU = 0 = dUA + dUB (112)

Similarly,

dV = dVA + dVB = 0,  (113)

dNA1 + dNB1 = 0, and (114)

dNA2 + dNB2 = 0. (115)

Since each subsystem is initially in a state of equilibrium, then

SA = SA (UA, VA, NA1, NA2), and (116)

SB = SB (UB, VB, NB1, NB2), (117)

the entropy of subsystems A and B changes as soon as the constraints are removed. Employing
a Taylor series expansion for the relevant expressions around each initial subsystem state,

SA + dSA = SA (UA, VA, NA1, NA2) + ((∂S/∂U)A dUA + (∂S/∂V)A dVA + 

∂SA/∂NA1 dNA1 + ∂SA/∂NA2 dNA2) + .... . (118)

Similarly,

SB + dSB = SB (UB, VB, NB1, NB2)+ ((∂S/∂U)B dUB + (∂S/∂V)B dVB +

(∂S/∂NB1) dNB1 + ∂SB/∂NB2 dNB2) + ... . (119)

Since

dS = dSA + dSB= δσ (120)

considering only the first-order derivatives,

dSA = (∂S/∂U)A dUA + (∂S/∂V)A dVA + (∂SA/∂NA1) dNA1 + (∂SA/∂NA2) dNA2, (121)

dSB = (∂S/∂U)B dUB + (∂S/∂V)A dVB + (∂SB/∂NB1) dNB1 + (∂SB/∂NB2) dNB2. (122)

Recall that for a closed system dS= dU/T + P/T dV – Σ( µ k/T) dNk. Therefore,

dSA = dUA/TA + PA/TA dVA – Σ(µ k /T)A dNk,A,



(∂SA/∂UA)VA,NA1,NA2 = 1/TA, and (123)

(∂S/∂V) = PA/TA. (124)

We can also define

∂SA/∂NA1 = – µ A1/T, and ∂S/∂NA2 = – µ A2/T. (125)

The process within the adiabatic and isolated composite system is irreversible so that dS = δσ.

Therefore, the entropy increases due to heat, work, and mass transfer, and dS > 0.
Using Eqs. (121) to (125) we can express Eq. (120) in the form

dS = δσ = (1/TA – 1/TB) dUA + (PA/TA – PB/TB) dVA + 

                  (µB1/TB – µA1/TA) dNA1 + (µB2/TB – µA2/TA) dNA2 ≥0. (126)

This relation can be expressed in rate form that is valid during the entropy transfer, i.e.,
δσ /dt = (1/TA – 1/TB) dUA/dt + (PA/TA – PB/TB) dVA/dt +

(µB1/TB – µA1/TA) dNA1 /dt +(µB2/TB – µA2/TA) dNA2/dt ≥0. (127)

a. Special Cases

iv. No Thermal Constraint
In this case, consider the rigid impermeable plate and pin in place, but with the porous

insulation removed (cf. Figure 52(b)) so that the two subsystems are each rigid and imperme-
able, i.e., dVA = 0, dVB = 0, dN1 = 0. dN2 = 0. Using Eq. (126),

δσ = (1/TA – 1/TB) dUA, or

B

A
A

(d)

Insulation
roller

Porous
spongeCopper

plate
Copper
plate
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B B B

Figure 52 a. Initial state of a composite system; b. thermal equilibration with a copper plate in con-
tact; c. mechanical equilibration with a movable partition; d. chemical equilibration with a porous
partition.



δσ/dt = (1/TA – 1/TB) dUA /dt. (128)

We can also express (128) in terms of heat flux.  From the First law δWA/dt = 0, since the pin

is in place. Therefore, the rate of change in internal energy dUA/dt equals the conduction heat
flux QA (= JQ) from subsystem A, and the relation

δσ/dt = JQ (1/TA - 1/TB).

If dUA/dt < 0 (e.g., heat loss from A and JQ < 0) and δσ/δt > 0, TA > TB.  At thermal equilib-

rium δσ = 0. Then, using Eq. (128)

TA = TB.

v. No Mechanical Constraint
Now assume that, initially, both temperatures are equal. Once the pin and insulation

are removed, heat and work transfer is possible, but mass transfer is not (cf. Figure 52(c)).
Thereupon, as subsystem A expands, subsystem B will be compressed. The temperature in
both sections will equilibrate with the consequence that the first term on the RHS of Eq. (124)
will equal zero, since TA = TB. In this case

dS/dt = δσ/dt = (PA/TA–PB/TB) dVA/dt = ((PA–PB)/T) JV, (129)

where JV is the deformation rate flux as a result of the generalized deformation force (PA–
PB)/T. If dVA > 0 and δσ > 0, PA > PB. At the mechanical equilibrium condition, δσ = 0 so that

PA = PB.

vi. No Chemical Constraint
If the initial temperatures and pressures are equal in the subsystems (as illustrated in

Figure 52(d)), but the boundary is permeable Eq. (127) takes the form

(µB1/TB – µA1/TA)dNA1/dt + (µB2/TB – µA2/TA) dNA2/dt ≥0. (130)

If dNA1 < 0 (i.e., there is net transfer of species 1 from subsystem A), since δσ > 0, µA1/TA >

µB1/TB. Furthermore, since TA = TB,

µA1 > µB1,

and Eq. (130) may be written in the form
δσ = ((µB1– µA1)/T) JNA1 + ((µB2 – µA2)/T) JNA2 ≥0.

The term dNA1/dt is the species flux JN1 crossing the boundary as a result of the generalized
(species–1) flux force (µB1 – µA1)/T that is conjugate to JN1. At chemical or species  equilib-

rium

µA1 = µB1. 

Similarly, µA2 = µB2.

Consider the example of pure liquid water at a temperature of 100ºC and pressure of 1
bar (subsystem A) and water vapor at the same temperature and pressure contained in subsys-
tem B. When both subsystems are brought into equilibrium TA = TB, PA = PB, and µ1A = µ1B.

This is also known as the phase equilibrium condition.

vii. Other Cases
Oftentimes in a mixture, the higher the concentration of a species, the higher is its

chemical potential (cf. Chapter 8) and hence the species transfers from regions of higher con-
centration to those at lower concentration through molecular diffusion.



Since there are four independent variables dUA, dVA, dNA1 and dNA2 contained in Eq.
(126), when δσ > 0 each term in the relation must be positive. Consequently TA > TB if dUA <

0, PA > PB if dVA > 0, and µB1 > µA1 if dNA1 > 0, i.e., heat flows from higher to lower tem-

peratures, work flows from higher to lower pressures, and species likewise flow from higher to
lower chemical potentials.

In case of multiphase and multicomponent mixtures, the derivation of the equilibrium
condition is not simple. In this case the LaGrange multiplier scheme can be used to maximize
the entropy subject to constraints, such as fixed internal energy, volume, and mass. This
method is illustrated in the Appendix.

If a system initially in equilibrium (i.e., TA = TB, PA = PB, µA1 = µB1, µA2 = µB2) is

disturbed, its entropy decreases, i.e., dS < 0. A Taylor series expansion around the equilibrium
state that includes second order derivatives reveals that

dS = 0, and d2S < 0,

which are conditions for entropy maximization indicating the initial state to be stable. This will
be further discussed in Chapter 10.

A process (or effect) occurs only if a nonequilibrium state (or cause) exists. For in-
stance, fluid flows in a pipe due to a pressure differential, and  heat transfer only occurs if a
temperature differential exists. A stable equilibrium state will not support the occurrence of
any process.

kk. Example 38

At chemical equilibrium, there is no net flow of molecular oxygen, i.e.,
µ O2,A = µO2,B, and

hO2 (T) – T (sO2,A
0(T) – R ln pO2,A/1) = hO2 (T) – T (sO2,B

0(T) – R ln pB/1).
Upon simplification

pB = 0.4 × 10 = 4 bars.

Remark
Note that there is a mechanical imbalance of forces across the semipermeable mem-
brane so that the membrane must be able to withstand a pressure difference of 10 – 4
= 6 bars.

K. SUMMARY
Chapter 3 introduces concepts on Second law of thermdodynamics, entropy and en-

tropy generation. While Chapter 1 defined entropy in terms of the number of states in which
energy is stored, Chapter 3 yields an expression for entropy in terms of properties of the sub-
stance of the system.  Design of thermal systems should minimize entropy generation so that
useful work output is maximized. The entropy maximum, and energy minimum principles  are
illustrated with simple examples. Finally the driving potentials for heat, work and species
transfer are defined using entropy generation concepts.

L. APPENDIX

1. Proof for Additive Nature of Entropy
Consider a well–insulated coffee cup (1) at 320 K that is closed with an insulated

rigid lid and placed in a room that is at a temperature of 300 K. We are asked to determine the
entropy of composite system (1+2). Assume that there are two Carnot engines, one connected

Consider a mixture of O2 and N2 (in a volumetric ratio of 40:60) contained in chamber
A at a 10 bar pressure as shown in Figure 53. Chamber B contains only O2 at the
same temperature, but at a pressure PB such that chemical equilibrium is maintained
for O2 between chambers A and B that are separated by a semipermeable membrane
that is permeable to only O2. Determine PB. (A semipermeable membrane is a device
that allows the transfer of specific chemical specie.)

Solution



between a large sauna that exists at 350 K and the coffee cup (that is at 320 K), and another
engine that is placed between the sauna and the room air (that is at 300 K). If Q1,H denotes the
heat absorbed from the sauna by the engine between the sauna and the coffee, and Q2,H repre-
sents the heat absorbed by the engine placed between the sauna and the room air, then the
change of entropy in the sauna is

∆SH = (Q1,H + Q2,H)/TH = Q1,H/TH + (Q2,H)/TH (131) 

However, this change in the sauna entropy must equal the sum of the changes in the entropy of
the coffee and the room air. Therefore,

 ∆SL = ∆S1+2 = Q1,L/Tcoffee + Q2,L/Troom = ∆S1 + ∆S2. (132)

Therefore, the entropy change in the composite system is the sum of the entropy change in
each of the subsystems constituting the composite system.

2. Relative Pressures and Volumes
Recall that

s(T2,P2) – s(T1, P1) = s0(T2) – s0(T1) – R ln (P2/P1). (133)

For isentropic processes, s(T2,P2) = s(T1,P1), and Eq. (133) can be used to determine
the ratio

P2/P1 = exp(s0(T2) – s0(T1))/R = exp(s0(T2)/R)/exp(s0(T1)/R). (134)

Changing the notation so that P2 = P, T2 = T, P1 = Pref´ and T1 = Tref´,

Pr(T)= P/Pref´ = exp (s0(T)/R)/exp(s0(Tref´)/R), (135)

where Pr(T) is referred to as the relative pressure. It represents a fictitious pressure ratio for an
isentropic process during which the temperature changes from Tref to T. In the air tables (Ta-
bles A-7) Tref´ is generally set equal to 273 K. We can determine the values of Pr as a function
of temperature for an ideal gas by applying Eq. (50d). With values for s0(273) = 1.6073 kJ kg-1

60 % N2 and 40 %
O2

A
B

Pure O2 at
298 K

P = 10 bar

T = 298  K

PB = ?
Semi-permeable
Membrane  for
O2

Figure 53: Illustration of a method to measure the chemical potential.



K-1, R = 0.287 kJ kg-1 K-1, s0(1000) = 2.9677 kJ kg-1 K-1, Pr(1000K) = 114. Thus Eq.(50d) may
be written as (cf. Tables A-7)

Pr(T)≈ 0.00368 exp (s0(T)/R)

Irrespective of the reference condition, for an isentropic process Eq. (134) may be expressed in
the form

P2/P1 = Pr2(T2)/Pr1(T1). (136)

Using the ideal gas law, Eq. (134) can be expressed in terms of volume, i.e.,

(RT2/v2)/(RT1/v1) = exp (s0(T2)/R)/exp (s0(T1)/R). (137)

The ratio

v2/v1 = (T2/exp (s0(T2)/R)) / (T1/exp(s0(T1)/R)) or v2 Pr2/T2=v1 Pr1/T1 (138)

The relative volume vr″ = TR/Pr which is a dimensional quantity. The dimensionless analog

vr = v/vref = (T/exp (s0 (T)/R)) / (Tref/exp(s0(Tref)/R)) = (T/Tref)/Pr. (139)

For an isentropic process, Eq. (50g) assumes the form

v2/v1 = vr2/vr1 = (T2/Pr2)/(T1/Pr1). (140)

Expressing, vr″ = T R/Pr, and using the value R = (53.3 ft lbf/ lbmR)/(144 in2/ft2), then

vr″(1800 R) = 1800×53.3/(144×114) = 5.844 ft3 lbf/(lbm in2) which is same as the tabulated

value. In general,

vr″ =2.87 T/Pr in SI units, and vr″ = 0.37 T/Pr in English units.

We can eliminate the units once we define

vr = v/vref = (T /exp (s0 (T)/R)) / (Tref /exp (s0(Tref)/R)), i.e., (141)

vr = (T/Tref)/Pr. (142)

If we select Tref = 273 K for air, then at T = 1000 K, Pr = 114, vr = 0.0321 (however, in this
case, the tables provide a value of 25.17).

3. LaGrange Multiplier Method for Equilibrium

a. U, V, m System
One can use the LaGrange multiplier method to maximize the entropy. In case an

analysis involves several nonreacting subsystems containing several species so that

S = S(1) (U(1),V(1),N1
(1),N2

(1),) + S(2)(U(2),V(2),N1
(2),N2

(2)) + ..., (143)

the entropy may be maximized subject to the constraint that

U = U(1) + U(2) +...= Constant, (144)

V = V(1) + V(2) +...= Constant, and (145)

N1 = N1
(1) + N1

(2) +...= Constant. (146)

Using the LaGrange multiplier method and Eqs. (143) to (146),

S = S(1)(U(1), V(1), N1
(1), N2

(1),...) + S(2)(U(2), V(2), N1
(2), N2

(2)) + ... .+

λU(U –(U(1) + U(2) +..))+ λV(V –(V(1) + V(2) +...)) + λN1(N1 – (N1
(1) + N1

(2) +...)). (147)



The maximization process requires that ∂S/∂U(1)= 0, ∂S/∂U(2) =0, …Differentiating Eq. (147),

∂S/∂U(1) = ∂S(1)/∂U(1) – λU = 0 or ∂S(1)/∂U(1) = 1/T(1) = λU. (148)

∂S/∂U(2) = ∂S(2)/∂U(2) + λU = 0, or ∂S(2)/∂U(2) = 1/T(2) = λU. (149)

                                             …                          

Therefore, T(1) = T(2) =....., that represents the thermal equilibrium condition. Since

∂S/∂V(1) = ∂S(1) /∂V(1) – λV = 0 or ∂S(1) /∂V(1) = P(1)/T(1) = λV. (150)

∂S/∂V(2) = ∂S(2) /∂V(2) – λV = 0, or ∂S(2) /∂V(2) = P(2)/T(2) = λV. (151)

Since T(1) = T(2) = …, P(1) = P(2) = …, mechanical equilibrium condition between different
phases. Furthermore,

∂S/∂N1
(1) = ∂S(1)/∂N1

(1) – λN1 = 0 or ∂S(1)/∂N1
(1) = µ1

(1)/T(1) = –λ(N1). (152)

∂S/∂N2
(1) = ∂S(1)/ ∂N2

(1) + λN2 = 0 or ∂S(1)/∂N2
(1) = µ2

(1)/T(1) = –λ(N2). (153)

Since the temperatures within the subsystems are identical, µ1
(1) = µ2

(1) = …, i.e., phase 1 is in
equilibrium and no chemical reaction occurs. Repeating the process for the other subsystems,

∂S/∂N1
(2) = ∂S(2)/∂N1

(2) – λN1 = 0 or ∂S(2)/∂N1
(2) = µ1

(2)/T(2)= –λ(N1). (154)

∂S/∂N2
(2) = ∂S(2)/∂N2

(2) + λN2 = 0 or ∂S(2)/∂N2
(2) = µ2

(2)/ T(2)= –λ(N2). (155)

Furthermore, we assume identical values of λ so that , T(1) = T(2)  = … , and µ1
(1) = µ1

(2), ... ,

µ2
(1) = µ2 

(2), etc. Therefore, in the nonreacting subsystems, the equilibrium condition requires
the temperatures, pressures, and chemical potentials in all of the subsystems to, respectively,
equal one another.

A similar procedure can be adopted to determine the equilibrium condition at given T,
P and N.

b. T, P, m System

viii. One Component
Consider N moles of a pure substance (say, H2O) kept at 0ºC and constant pressure P

(say, 0.6 kPa, the triple point pressure). The substance attains equilibrium in multiple phases
(e.g., the water forms three – π = 3 – phases: solid ,liquid and gas). In general, the number of

moles in each phase is different (say, N(l), N(g), N(s),) may change, and the Gibbs energy is
minimized at equilibrium. For the composite system that includes all the phases

G = G(1) (T,P,N(1)) + G(2) (T,P,N(2)) + ... = G(T,P, N(1), N(2) ...N(π)), (156)

which is to be minimized subject to the constraint N = ΣN(j) = constant. We again use the La-

Grange multiplier method and form the function

F = G + λ(ΣN(j) – N), so that (157)

∂F/∂N(1) = ∂G/∂N(1) + λ = g (1) + λ = 0. (158)

Similarly, for the other phases



∂F/∂N(2) = ∂G/∂N(2) + λ = g (2) + λ = 0. (159)

Therefore,

g (1) = g (1) = ... = – λ, (160)

implying that at equilibrium the molal Gibbs function is identical for all species.

ix. Multiple Components
The Gibbs energy

G = G(1)(T,P,N1
(1),N2

(1),...,NK
(1)) + G(2)(T,P,N1

(2),N2
(2),...,NK

(2)) + … +

G(π) (T,P,N1
(π),N2

(π), ... ,NK
(π)) (161)

= G(T,P,N1
(1),N2

(1), ... ,NK
(1), N1

(2),N2 
(2), ... ,NK

(2), N1
(π), N2 

(π), ... ,N(π)). (162)

We must minimize G subject to the constraints

N1 = N1
(1) + N(2) + ... + N1

(π). (163)

N2 = N2
(1) + N2

(2) + ... + N1
(π).

                   …         

NK = NK
(1) + NK

(2) + ... NK
(π).

Therefore,

F = G + λ1(N1
(1) + N1

(2) +... + N1
(π) – N1) +

λ2 (N1
(1) + N1

(2) +... + N1
(π)  – N2)+ ... +

λK (N1
(1) + N1

(2) +... + N1
(π) – NK); and (164)

∂F/∂N1
(1) = 0 = ĝ1

 (1) + λ1, (165)

∂F/∂N1
(2) = 0 = ĝ1

 (2) + λ1,

so that

ĝ1
 (1) = ĝ1

 (2) = … .

Likewise,

ĝ2
 (1) = ĝ2

 (2) = … .

The partial molal Gibbs function for each component must be identical in all of the phases at
equilibrium.



Chapter 4 

4. AVAILABILITY

A. INTRODUCTION
The Second law illustrates that the energy contained in a system in the form of ther-

mal or internal energy cannot be entirely converted into work in a cyclic process even though
the system may exist at a higher temperature than its ambient. On the other hand, if an equiva-
lent amount of energy is contained in the same system in the form of potential energy, that
energy can be entirely converted into work. Therefore, 1000 kJ of thermal energy contained in
a system at a temperature of 1000 K that interacts with an ambient at 300 K can at most poten-
tially provide only 700 kJ of electrical work (through a Carnot heat engine) while 1000 kJ of
potential energy in the same system can produce possibly 1000 kJ of electrical work.

For obvious reasons, it is desirable to convert the entire amount of energy in applica-
tions (e.g., the chemical energy of gasoline) into work. This is potentially possible in fuel cells
(cf. Chapter 13) in which the chemical energy of a fuel can be almost fully converted into
electrical energy. However, if the same amount of fuel is burned and the chemical energy
contained in it is converted into thermal energy by the production of hot combustion gases in
an adiabatic reactor, the conversion of heat into work is limited by the system and ambient
temperatures. Therefore, it is useful to develop a method to determine the availability (or work
potential) of energy in its various forms (such as heat, chemical, work, advection or flow en-
ergy).

Availability is a measure of the work potential of energy. Availability concepts enable
the continuous monitoring of the work potential of thermodynamic systems  and the associated
work losses as they undergo
changes in their respective
states.

The work output
from a process must satisfy
both the First and Second
laws of thermodynamics. For
instance, if δW and dU are

known, δQ can be determined

using the First law (δQ – δW

= dU), fixed mass and then
used in the context of the
Second law (dS – δQ/Tb =

δσ), fixed mass to examine if

the Second law is satisfied by
the relation δσ ≥ 0. When the

availability concept is used,
the compliance of both laws
is ensured. Application of the
concept leads to the best use
of resources for a prescribed
state change.

Suppose, for the
sake of illustration, that a cup
of hot coffee at 100ºC is to be
cooled to 30ºC. One option is
to transfer heat to the ambient

cell fuelW
•

 

W

Figure 1: a. simple combustion; b. automobile engine; c.
steam power plant; and d. fuel cell.



atmosphere. Then, if the coffee is to be reheated to its original temperature, a heat pump may
be used, however, it involves external work input. Alternatively, the coffee can be cooled by
transferring heat to a Carnot heat engine that produces work, and converts it into potential en-
ergy by, say, lifting a small elevator. For this process the coffee may be reheated by lowering
the elevator and supplying work to a reversed Carnot cycle (or Carnot heat pump) to heat the
coffee. The latter process makes the best use of the energy resources and the combined cooling
via Carnot engine and reheating process is potentially reversible while the direct cooling to
atmosphere is irreversible. Other examples are as follows.

The fuel contained in the gas tank of an automobile can be supplied to a burner and
simply burned (cf. Figure 1a) or used to idle an automobile (cf. Figure 1b). For both processes
the chemical energy of the fuel is simply wasted. Useful work can be obtained by utilizing the
automobile for transportation, but part of the energy will still remain unused and will escape
with the exhaust and radiator water. The fuel may also be used to fire a boiler, produce steam,
or run a turbine that delivers work (cf. Figure 1c). Finally, the same amount of fuel can be sup-
plied to a fuel cell that converts the chemical energy of the fuel into electrical energy and,
thereby, electrical work (cf. Figure 1d). Even though the fuel consumption is the same for all
of these cases, the largest amount of work is typically delivered by fuel cells. This leads to the
question: What is the maximum work possible from a particular device, given a specific
amount of fuel? The answer to this question is provided by availability analyses.

B. OPTIMUM WORK AND IRREVERSIBILITY IN A CLOSED SYSTEM
Consider an initial equilibrium state for a uniform temperature and pressure (say,

2000 K and 20 atm) air mass contained in an insulated and locked piston–cylinder assembly
that is placed in a cooler, lower–pressure ambient (at, say, 298 K and 1 atm). Upon removal of
the insulation and the locking pin, the hot air will cool and the piston will move and produce
work. During the cooling and work delivery phase, realistically, the system temperature will
most likely be nonuniform during an initial phase (for the sake of illustration, say, 2000 K at
the center and 400 K at boundaries) so that the process is irreversible. At this time the system
will contain a certain internal energy U1´ and entropy S1´. If the nonuniform temperature pis-
ton–cylinder system is once again restrained and insulated, another uniform temperature and
pressure equilibrium state will eventually be reached (again, for the sake of illustration at, say,
1900 K and 16 atm for a fixed U, V, and m process). At this final equilibrium state, although
the internal energy U2 = U1´, the entropy S2 > S1´ due to heat transfer among the various non-
uniform temperature masses prior to equilibration (Chapter 3). The First Law applied to the
system states that

Q – W = U2 – U1. (1)

For the irreversible process that occurs between the two equilibrium states,

S2 – S1 = ∫1
2(δQ/Tb) + σ (2)

where S1 is the initial entropy (at 2000 K and 20 atm) and S2 the entropy at the final state (at
1900 K and 16 atm).

Realistically, the boundary temperature Tb will also most likely vary along the system
boundary during the process and assume different values as the state changes. If Tb is main-
tained constant (e.g., by using a water jacket around the cylinder) during the irreversible proc-
ess, the Second law may be simplified into the following form

S2 – S1 = Q/Tb + σ. (3)

Eliminating Q in Eqs. (1) and (4) we have

S2 – S1 = (U2 – U1)/Tb + W/Tb + σ. (4)

Therefore, the work



W = – (U2 – U1) + Tb (S2 – S1) – Tb σ. (5)

Now consider an elemental process between the equilibrium states (U,S) and (U + dU, S + dS)
so that S2 – S1 → dS, and U2 – U1 = dU. (Note that the condition of constant Tb is more appro-

priate for the elemental process.) For the elemental process Eq. (5) may be written as

δW = – dU + Tb dS – Tb δσ. (6)

1. Internally Reversible Process
An internally reversible system contains no temperature gradients during any part of

the process so that Tb equals the system temperature T and, within the system, σ = 0. For an

internally reversible process, Eq. (6) yields

TdS – PdV = dU, 

i.e., we recover a combination of the First and Second Law expressions.

2. Useful or External Work
The work expressed in Eq. (5) is delivered by the matter of the system and it crosses

the system boundary. However, the piston rod does not receive the entire amount of work,
since a part of that work (say, W0) is used to push against the ambient gases that exist at a
pressure P0 adjacent to the piston and which resist the piston motion. Therefore, the net avail-
able external or useful work

Wu = W – W0 (7)

is delivered through the piston rod, while the total work

W0 =P0 (V2 – V1). (8)

Therefore, with eqs.(5) and (8) , Eq. (7) may be expressed in the form

Wu = – (U2 – U1) + Tb (S2 – S1) – P0 (V2 – V1) – Tb σ. (9)

3. Internally Irreversible Process with no External Irreversibility
Recall that the temperature Tb in Eqs. (5) and (6) may be unknown during a process.

However, if the system boundary is slightly extended outside of the system into the uniform
ambient, the boundary temperature Tb → T0, and its boundary pressure P → P0. In this case all

of the irreversibilities occur inside the system since there are no temperature and pressure gra-
dients outside it. Hence, the generated entropy is the same as that generated in an isolated sys-
tem. Rewriting Eq. (9) with Tb = T0,

Wu = – (U2 – U1) + T0 (S2 – S1) – P0 (V2 – V1) – T0 σ. (10)

If, the state of a system changes reversibly during a process, the work produced is op-
timized. Since no internal gradients are created during an idealized reversible process so that
no entropy is generated, losses are eliminated while delivering the same amount of work as for
an irreversible process. With σ = 0 in Eq. (10) the optimum work is expressed as

Wu,opt = – (U2 – U1) + T0 (S2 – S1) – P0 (V2 – V1). (11)

The availability concept is based on Eq. (11) and we will later discuss a method to
achieve processes for which σ = 0.

a. Irreversibility or Gouy–Stodola Theorem
The difference between Wu,opt and Wu (from Eqs. (10) and (11)) is called the irre-

versibility or lost work, i.e.,



I = Wu,opt – Wu = T0σ. (12)

Equation (12) is also known as Gouy–Stodola theorem.

4. Nonuniform Boundary Temperature in a System
If, during a process, the boundary temperatures are nonuniform in a system* then Q =

ΣδQj and the term δQ/Tb in Eq. (2) must be replaced by ΣδQj/Tb,j where Tb,j denotes the

boundary temperature of the j–th infinitesimal element of the control surface surrounding the
system. In that case

dS = ΣδQj/Tb,j + δσ (13)

Expanding,

dS = δQ0/T0 + δQ1/Tb,1  + δQ 2/Tb,2 + …. + δσ, (14)

where δQ0 denotes the heat exchange between the system and its environment (that exists at a

temperature T0). The First law may be expressed in the differential form

δQ0 + δQ1 + δδQ2 + … – δW = dU. (15)

Eliminating  δQ0 between (14) and (15)

δW = – dU + T0 dS + δQ1(1– T0/Tb,1) + δQ2(1– T0/Tb,2) + ... – T0 δσ (16)

If the different boundary temperatures remain unaltered during the process, Eq. (16) can be
integrated

Wu= – (U2 – U1) – P0 (V2 – V1) + T0 (S2 – S1) + Q1(1– T0/Tb,1) 

     + Q2(1– T0/Tb,2) + ... – T0σ (17)

We will see later that oftentimes Tb,1, Tb,2, … denote the boundary temperatures of thermal
energy reservoirs. By setting Φ = 0 in Eq. (17), the optimum work is obtained as

Wu,opt = – (U2 – U1) – P0 (V2 – V1) + T0 (S2 – S1) + Q1(1– T0/Tb,1) 

          + Q2(1– T0/Tb,2) + … (18)

C. AVAILABILITY ANALYSES FOR A CLOSED SYSTEM
We will now discuss the maximum possible work or optimum work given the initial

and final states of a system. Equation (11) provides an expression that combines the First and
Second laws to determine the optimum work. In this section we present an idealized scheme to
achieve that optimum work. In addition we will also define useful work (Wu), and present the
availability functions for closed systems.

1. Absolute and Relative Availability Under Interactions with Ambient
Consider a piston–cylinder assembly in which steam (at an initial equilibrium state

(P1,T1)) expands to a final equilibrium state (P2,T2) during an irreversible process, i.e., the
system properties  may be  non-uniform and the temperatures at its boundary and in the ambi-
ent could be different during the process (cf. Figure 2a). It thereby loses heat Q0 to its ambient
and produces work.

                                                            
* e.g., in an automobile engine the temperature at the cylinder walls and heads is different from
that at the piston surface.



We denote the matter within the c.s.1 of  the piston–cylinder assembly as M and that
in the ambient as A, and allow M to undergo an arbitrary change in state from (U1,V1) to
(U2,V2) so that the energy in A changes from U1,0 to U2,0, and the corresponding volumetric
change (in A) is V0 = – (V2 – V1). The total energy E = U (of M) + U0 (of A) + PE0 (of A),
total volume V = V (of M) + V0 (of A), and the total mass of the isolated system consisting of
both M and A are unchanged, but irreversible processes within the isolated system result in
entropy generation. A reversible process (cf. Figure 2b) that involves work transfer Wre, heat
transfer  Qrev across the boundaries of  M which is  then used to run a Carnot engine that, in
turn, rejects Q0 (amount of heat to the ambient) and produces a work of WCE , can also change
the initial state of M to the same final state as shown in Figure 2a, but in this case without al-
tering the entropy of the isolated system. For the latte r case, the reversible work done by M,
i.e., Wrev, and the work delivered by the Carnot engine WCE can be combined so that Wopt =
Wrev + WCE.

As the Carnot engine absorbs heat from M (Figure 2b), the temperature of M changes
and, consequently, the Carnot efficiency continually changes. Hence consider an infinitesimal
reversible process:

δWrev = δQrev – dU. (19a)

If δWrev   =  50 kJ, dU = -100 kJ, δQrev  will be  -50 kJ; if dU is fixed at –100 kJ, δWrev = 0 kJ,

then δQrev  = -100 kJ. The higher the work delivered by the mass, the lower the amount of heat

transfer for the same value of dU. The heat δQrev is supplied from M to the Carnot engine.

Since the heat gained by the Carnot engine is (–δQrev), the work done by the engine is

δWCE = –δQrev (1– T0/T).  (19b)
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Furthermore, since entropy change of matter M, dS = δQrev/T, the above equation assumes the

form

δWCE = –δQrev + T0 dS. (20)

Adding Eqs. (19a) and (19b) and considering an infinitesimal state change,

δWopt =– dU + T0 dS. (21)

The higher the work δWrev delivered by the matter, the lower the amount of heat

transfer for the same value of dU and the lower the value of δWCE. However, δWopt  = δWCE +

δWrev remains independent of how much work δWrev is delivered by the matter M within the

system. Integrating Eq. (21) between initial and final states, respectively, denoted as 1 and 2,

Wopt = U1 – U2 – T0 (S1 – S2). (22)

This is the net work delivered by the matter through the heat transfer Qrev (i.e., WCE) and Wrev
during change of state from state 1 to 2. However, the work through the piston rod is less since
a part of Wopt is used to overcome atmospheric resistance (P0 (V2 – V1)). The useful or external
optimum work during the process is represented by the relation

Wu,opt = Wopt – W0 = Wopt – P0 (V2 – V1), and (23)

Wu,opt = (U1 – U2) –T0 (S1 – S2) + P0 (V2 – V1). (24)

This is the same expression as Eq. (11) and represents the optimum useful work delivered by
the matter M. It is more appropriate to refer to Wu,opt as the external work delivered rather than
as the useful work, since for compression processes the term “useful” can be confusing to
readers. For a compression process Wu,opt is the external work required to compress the fluid.
Based on a unit mass basis

wu,opt = (u1 – u2) – T0 (s1 – s2) + P0 (v1 – v2). (25)

For an expansion process, the term wu,opt represents the maximum useful work for the
same initial and final states of M. Both processes are represented on the T–s diagram contained
in Figure 3. The term T0(s1–s2) in Eq. (25) is the unavailable portion of the energy (represented
by the hatched area DEGF in Figure 3).

We denote φ as the absolute closed system availability, i.e.,

φ = u – T0 s + P0 v, so that (26)

wu,opt =  φ1 – φ2. (27)

 (The term φ is known as “availability” in the European literature.) The availability is e x-

pressed in units of kJ kg–1 in the SI system and in BTU lb–1 in the English system. The term φ1

represents the potential to perform work in a closed system. It is not a property, since it also
depends upon the environmental conditions surrounding a system. If, during a process, the
state of a system is known, the availability can be determined and the optimum work can be
compared with the actual work being produced.

If state 2 at which the temperature and pressure of M approach T0 and P0 (state 0 in
Figure 3) thereby achieving thermo–mechanical equilibrium (called “restricted dead state”)
with the environment , Eq. (25) assumes the form

′φ1  = wu,opt,0 = (u1 – u0) – T0 (s1 – s0) + P0 (v1 – v0) = φ1 – φ 0. (28)



We denote ′φ1  as closed system relative availability at state 1, (also known as closed
system exergy in Europe or availability in the US). The relative stream availability or exergy
has a clearer physical meaning in comparison to the  absolute specific flow availability. Recall

that the properties for u, s, etc., are tabulated assuming that u=0, s=0 at a prescribed reference
state (cf. Chapters 2 and 3). Thus, the values for u and s differ depending upon the reference
state and hence absolute availability will change depending upon this choice. However, the
exergy, φ´ is unaffected by these changes so that it is a truer representation of the potential to

perform work.
In other words, the closed system  exergy ′φ1   = the energy of matter relative to the

dead state (u1 – u0) – the unavailable portion of energy T0 (s1 – s0)  (area DHIG shown in
Figure 3) – the work to be performed to overcome the ambient (or atmospheric) resistance P0

(v1 – v0). We now illustrate the physical implication of the relative availability or exergy by
considering a thermodynamic system that contains steam at high pressure and temperature
(state 1). If the steam is reversibly expanded until it reaches a “dead state”, e.g., when it is fully
converted into liquid water, the energy that is extracted in the form of useful work is also the
relative availability at the initial state. Eq. (27) can be expressed as

wu,opt =   ′φ1 –  ′φ2 . (29)

So far we have only considered expansion processes that involve interactions with the
environment. During totally reversible compression wu,opt denotes the minimum external work
input (wu,min) that must be exerted in order to achieve the state change. In this case, the ambient
may actually aid in the compression process. Consider a gas compression process at sea level
and the same process conducted at the top of a high mountain. The higher ambient pressure at
sea level will lead to a lower work input in comparison with that at higher altitudes.

2. Irreversibility or Lost Work
During a reversible process (cf. Figure 2b) for the same change in state as for an irre-

versible process (cf. Figure 2) the work W = Wu = Wu,opt. The irreversibility I or lost work LW
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are both defined as the energy that is unavailable for conversion to work as a result of ir-
reversibilities, i.e.,

LW = I = (Wopt – W), or (30)

LW = I = (Wu,opt – W). (31)

Applying the First and Second Laws to the system shown within the control surface cs2 in
Figure 2a, W = Q0 – (U2 – U1) and the entropy generation σ = S2 – S1 – Q0/T0. Eliminating Q0

from these two relations ,

W = (U2 – U1) – T0 (S2 – S1) – T0 σ = Wopt – T0 σ, (32)

which has a form similar to Eq. (5) with Tb= T0. In the context of Eqs. (30) and (31)

LW = I = Wopt – W = Wu,opt – W = T0 σ. (33)

Since σ > 0, LW > 0 and Wopt ≥ W.

a. Comments
For the reversible process Qopt,,0 – Wopt = ∆U  while for irreversible process   ∆U = Q0

– W. Therefore, Wopt – W = LW = Qopt,,0 – Q0. Since LW > 0, Qopt,,0 > Q0. Due to our
convention, the heat rejection carries a negative sign. For example, if Q,0 = -100 kJ,
Qopt,,0  =  -50 kJ then Qopt,,0 > Q0  criterion is satisfied. The implication is that an irre-
versible process rejects a larger amount of heat and further raises the internal energy
of the ambient A due to the irreversibility it must overcome.
Recall that in Chapter 3 we have discussed the entropy maximum principle at condi-
tions corresponding to fixed Uiso, Viso and miso, and the energy minimum principle at
fixed Siso, Viso, and miso. Now, consider the hot matter M as it interacts with the ambi-
ent A. If M is cooled by A, the combined entropy of M and A,Siso= SM+A = S + S0, in-
creases at fixed Uiso (= U + U0), Viso (= V + V0), and miso = m + m0, and eventually
reaches equilibrium at state 2U by travelling along the path 1–A–B–2U that is shown
in Figure 4. The point 1 represents the initial state of the composite system in a
UM+A–SM+A–U coordinate system. If matter M delivers work and transfer heat to its
ambient then the irreversible process is represented by 1–2. If, at state 2, the system is
insulated and its piston is restrained from moving (i.e., a constrained equilibrium state
is established), SM+A will increase, UM+A will decrease (since work is delivered), while
VM+A and mM+A will remain unchanged. If the process is continued until the “dead
state” is reached (0,I) , U will have decreased at fixed V and m along the path 1–2–OI.
Now let us consider the optimum process 1-2opt for which no entropy is generated
during a totally reversible process of the composite system. Consequently, SM+A is
unchanged while UM+A decreases with VM+A and mM+A fixed as depicted by the path
1–2opt in Figure 4. If a constraint is placed between M and A once the composite sys-
tem reaches the state 2opt, this, once again, results in a constrained equilibrium condi-
tion. The entropy change for the process 1–2opt dSM+A = dSM + dS0 = 0. Even if the
state of M is identical at points 2 and 2 opt so that UM,2 > UM opt,2 ,UM+A,2 > UM A opt+ ,2 ,

since UA,2 > UA opt,2  due to more heat rejection in the irreversible process. With S, V

and m for the composite system being fixed, the maximum optimum work is obtained
when the system M reaches a dead state along the path 1–2opt–0 at which thermo-
mechanical equilibrium is achieved within the ambient. At this point the energy UM+A

the minimum and no more work can be delivered by M.
Consider a constant volume system, e.g., a car battery if T0 = T1 = T2 = T then

Wu,opt = (U1 – U2) – T (S1 – S2), i.e., (34)



Wu,opt = (U1 – T S1) – (U2 – T S2), or

Wu,opt = (A1 – A2), (35)

where A = U – T S denotes the Helmholtz function or free energy. The magnitude of
A represents the capability of a closed system to deliver work.

a. Example 1

temperature T0 = 298 K and pressure P0 = 1 bar.
Determine the useful work that is delivered for an isentropic process.

work.

work), and the entropy generated during the process.
Solution

From the tables for air (Table A-7) at 2000 K, u1 =1679 kJ kg–1, s1
0 = 3.799 kJ kg–1

K–1, vr1 = 2.776, and Pr1 = 2068.
For the isentropic processes,
v2s/v1 = vr2s/vr1 = 7. ∴ vr2s = 19.43, and from the tables Pr2 = 161, T2 = 1090 K, and u2s

= 835 kJ kg–1. Hence,
P2/P1 = Pr2/Pr1 = 161/2068 = 0.0779, and P2 = 2.725 bar,
and the isentropic work
ws = u1 – u2s = (1679-835) = 844 kJ kg–1.
The specific volumes
v1 = RT1/P1 = 0.164 m3 kg–1, and v2 = 1.148 m3 kg–1 (using the expansion ratio).
Hence, the useful work
wu,s = 844 – 100 × (1.148 – 0.164) = 745.6 kJ kg–1.

Since the cylinder mass is constant, applying the ideal gas law, T2 = T1 P2 v2/(P1 v1),
i.e.,
T2 = 2.5 × 7 × 2000 ÷ 35 = 1000 K. The initial entropy

s1 = s1
0 – R ln (P1/P0) = 3.799 – 0.287 ln (35/1) = (3.799 – 1.020) = 2.779 kJ kg–1 K–1,

and the final entropy
s2 = s2

0 – R ln (P2/P0) = 2.97 – 0.287 ln (2.5/1) = 2.71 kJ kg–1 K–1.
The absolute availabilities
φ1 = u1 – T0 s1 + P0 v1 = 1679 – 298 × 2.779 + 100 × 0.164 = 867.23 kJ kg–1, and

φ2 = u2 – T0 s2 + P0 v2 = 758.9 – 298 × 2.71+ 100 × 1.148 = 66.1 kJ kg–1. Therefore,

wu,opt = φ1– φ2 = 867.2 – 66.1 = 801.1 kJ kg–1. Now,

wopt = wu,opt + P0 (v2 – v1) = 801.1 + 100 × (1.148 – 0.164) = 899.5 kJ kg–1.

Hence, the optimal heat transfer
q opt = (u2 – u1) + wopt = 758.9 – 1679 + 899.5 = –20.6 kJ kg–1.
Applying the relation V2/V1 =v2/v1 = 7, since V1 = 0.000205 m3,
V2 = 7 × 0.000205= 0.00144 m3

The mass m = P1V1/RT1 = 35 × 102 × 0.000205/(0.287×2000) = 0.00125 kg.

Since the total useful work Wu = 0.8 kJ, on a mass basis wu = 0.8/0.00125 = 640  kJ
kg–1.
Therefore, the work w = 640  + 100 × (1.148 – 0.164) = 738.4 kJ kg–1.

If a dynamometer measures the useful work to be 0.8 kJ for non-adiabatic process and
the initial volume V1= 0.000205 m3, determine the heat loss, irreversibility (or lost

If process is nonadiabatic and P2 = 2.5 bar, what are the absolute closed system avail-
abilities at the initial and final states? Determine the optimum and useful optimum

Air is expanded to perform work in a piston–cylinder assembly. The air is initially at
P1 = 35 bar and T1 = 2000 K, and the expansion ratio rv (= v2/v1) is 7. The ambient



The heat transfer q = (u2 – u1) + w = (758.9 – 1679) + 738.4 = –181.7 kJ kg–1.
The irreversibility  i = wu,opt – wu = 801.2 – 640 = 161 kJ kg–1 (or 0.201 kJ).
The entropy generation σ = I/T0 = 161/298=0.0007  kJ K–1 (or 0.54 kJ kg–1 K–1).

Remarks
For the last part of the problem σ = 161.2/298 = 0.54 kJ kg–1 K–1. The entropy change

in the system s2 – s1 = –0.07 kJ kg–1 K–1, the atmospheric entropy change s0 = –q/T0 =
182/298 = 0.61 kJ kg–1 K–1 so that σ = –0.07 + 0.61 = 0.54 kJ kg–1 K–1 (as before).

The entropy change can be negative for nonadiabatic processes, since the entropy is
lowered when a system is cooled.
We note that |qopt | < |q|.
We will now illustrate the optimum process. The work wu,opt could have been ob-
tained for same initial and final system states through a totally reversible process
which generated no entropy in the isolated system (for which S, V, and m are fixed).
At the initial states for the system M and the ambient A, U1,M = 1679 × 0.00125 = 2.1

kJ, (cf. Point 1 on Figure 4) and we assume that U1,A = 0. Therefore, the combined
isolated system energy is U1,M+A = 2.1 kJ.
At their final states
U2,M = 758.9 × 0.00125= 0.95 kJ, i.e., the energy change ∆UM = –1.15 kJ.

Applying the First law
QA – WA = U2,A – U1,A, where
WA = P0∆VA = – 0.062 kJ. Now,

QA = 0.00125 × 20.6 = 0.026 kJ. Therefore,

U2,A – U1,A = 0.026 – (– 0.062) = 0.088 kJ, i.e., U2,A =0.088 kJ, and
U2,M+A = 0.95 + 0.088 = 1.038 kJ.
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Assume that the optimum work is used to raise a weight so that the ambient potential
energy increases by an amount
∆PE = 801.2 × 0.00125 = 1 kJ (based on the useful work).

The internal energy change in the isolated system
∆U M+A = U2,M+A – U1,M+A = 1.038 – 2.1 = –1.06 kJ.

The internal energy of the combined isolated system is lowered (cf. Path 1–2opt on
Figure 4), although S, V, and m are held constant.
For the actual process considered in part five of the problem U2,A – U1,A = QA. With
QA = 0.227 kJ,
U2,A = 0.227 + 0.062 = 0.289 kJ, and
U2,M+A = 0.95 + 0.289 = 1.239 kJ (cf. Point 2 on Figure 4).
The actual process increases the isolated system entropy (cf. Path 1–2 on Figure 4).
The combined system energy U2,M+A is higher in this case than for the corresponding
reversible process, since a larger amount of heat is rejected to environment. While the
increased heat transfer raises the ambient internal energy, in case a weight is lifted,
the ambient gains a lower amount of potential energy ∆PE due to the smaller amount

of work that is done on it.
In case the expansion is continued to the dead state, T0= 25ºC, P0= 1 bar, using the
properties of air at that state, it is possible to determine that
φ0 = u0 – T0 s0 + P0 v0 = 213 – 298 × 1.677 + 100 × 0.855 = –201.2 kJ kg–1,

wu,opt,0 = φ1 – φ0 = 867.3 – (–201.2) = 1068.5 kJ kg–1,

wopt,0 = wu,opt,0 + P0 (v0 –v1) = 1068.5 + 100 × (0.855 – 0.164) = 1137.6 kJ kg–1, and

q opt = (u0 – u1) + wopt,0 = 213 – 1679 + 1137.6 = –328.5 kJ kg–1, i.e., the heat entering
the ambient under this condition Qopt,0 = 0.374 kJ. Furthermore,
U0,A = 0.374 + 0.062 = 0.436 kJ and U0,M = 213 × 0.00125 = 0.266 kJ so that

U0,M+A = 0.436 + 0.266 = 0.702 kJ (cf. Point 0 on Figure 4). Therefore,
U0,M+A – U1,M+A = U0,M – U1,M + U0,A – U1,A = 0.266 – 2.1 + 0.436 – 0 = –1.398 kJ.
This is the lowest possible energy value that can be contained in the combined iso-
lated system keeping the combined S, V and m constant. In terms of the potential en-
ergy change, at this point a lifted weight will reach its highest elevation.
For the actual process (cf. to Point 2 on Figure 4) a lifted weight will rise to a lower
elevation and the internal energy and entropy of the combined isolated system will
have higher values.
Removing all restraints between M and at the dead state A will result in no change in
state of the isolated system (if both M and A consist of air). However, if the gas com-
position is different in M and A, removing the restraints will result in mixing. This
will be discussed later in the context of chemical availability.

b. Example 2
Two kg of water are to be heated from a temperature T1 = 25ºC to T2 = 100ºC.

ral gas is required, assuming that it can release 18,400 kJ m3 of heat.

mine the costs associated with the problem.
Solution

Assume that the ambient temperature T0 = 298 K and that the water specific heat c =
4.184 kJ kg–1 K–1.
Applying the First law

How much electrical work is required by an electrical range to do so?(Figure 5a)
Determine the minimum work required using an availability analysis (Figure 5b)
If the cost of natural gas is $4 per MJ and the electricity cost is 4¢ per kW–hr, deter-

Natural gas heaters with an 85% efficiency are used for the purpose. How much natu-



q – 0 = u2 – u1 = c (T2 – T1) = 4.184 × (100 – 25) = 313.8 kJ kg–1.

The actual heat input that is required
qin = 313.8/0.85 = 369.2 kJ kg–1 or Qin = 2 × 369.2 = 738.4 kJ.

The volumetric amount of natural gas required = 738.4 ÷ 18400 = 0.04 m3.

Assuming that the electrical work is 100% efficient
Welec = – 313.8 × 2 = –627.6 kJ.

The optimum work
wopt = u1 – u2 – T0 (s1 –s2) + P0 (v1 – v2).
Since v1 ≈ v2 for liquids due to negligible expansion,

wopt = c (T2 – T1) – T0 (c ln (T2/T1)) = –4.184 × 75 + 298 × 4.184 × ln (373/298) =

– 313.8 + 279.9 = – 33.9 kJ kg–1. Therefore,
Wopt = –33.9×2 = –67.8 kJ, and

Wopt = Wmin, the minimum work required in order to heat the water.
The cost comparisons to heat the 2 kg of water are as follows:
Natural gas heating: $4 × 10–6 × 738.4 = 0.296¢.

Electrical heating: 4¢ kWh–1 × 313.8 = 0.7¢.

Heat pump: 4¢ kWh–1 × 33.9 = 0.076¢.

Remarks
Using a heat pump, the electrical bill for heating the water can be reduced by 89%.
Availability analyses provide the information on how best to achieve desired end
states with minimum work input or by obtaining maximum work output. The only
allowed interactions are the ones with the environment.
The heat pump can be run by using 33.9 kJ kg–1 of electrical work to run it. In turn the
heat pump will accept 279 kJ kg–1 from the ambient air at 25ºC and deliver 313.8 (=
279.9 + 33.9) kJ kg–1 of heat to the water. The heat pump must be operated between a

Water

To

Welec

  +
   -

Water

C.V

  To

wopt

Qo

Figure 5: a. Direct heating of water with an electrical range; b. heating of water with a heat
pump where we use ambient Q0 to supply a part of the heat.



fixed temperature thermal reservoir at a temperature T0 =25ºC and the vari-
able–temperature hot water reservoir.
This example is pertinent also to domestic heating applications.

D. GENERALIZED AVAILABILITY ANALYSIS
The previous section considered a closed system undergoing expansion or compres-

sion processes with simultaneous heat exchange with a constant–temperature environment.
Many practical applications (e.g., automobiles, steam power plants, and gas turbines) involve
open systems that interact with heat sources that are thermal energy reservoirs (such as boilers,
reheaters, and combustors), and reject heat to the ambient (e.g., condensers in steam power
plants, through heat losses from steam pipes, and automobile and turbine exhaust). These sys-
tems may also operate in an unsteady mode. Therefore, a more generalized availability analy-
sis is required. We will start by discussing a generalized analysis for an open system and then
simplifying it to specific systems.

1. Optimum Work
Consider water at high pressure P1 and low temperature T1 (cf. Figure 6) that is heated

to produce steam at ( ′P1 , ′T1 ) using a large thermal reservoir (such as a boiler) that exists at a

constant temperature TR,1. The reservoir transfers heat at a rate ˙
,QR 1 to the water. The steam

first delivers useful work  Ẇu  through a deformable piston–cylinder assembly followed by

shaft work  ẆShaft  through a steam turbine. The cylinder boundary deforms, producing defor-
mation or boundary work P0 dVcyl/dt against the atmosphere. The boundary is selected in such
a manner that no property gradients exist outside it, and the boundary temperature is T0 (as

•

shW

pipe,Q o

•

C.V

Deformable part
of Boundary,
Po (dV/dt) UW

•

P1, T1 P2, T2

turb o,Q
•

•

R,1Q

Po

Figure 6: Schematic illustration for a generalized availability analysis.



illustrated in Figure 6). Therefore, there are no irreversibilities outside of the system. We as-
sume that there is no entropy generation in either the reservoir inside the control volume or the
environment outside it. Since heat is transferred to the water and steam from the hot gases in
the boiler, a temperature gradient exists inside the boiler. Other (temperature and pressure)
gradients exist inside the pipes, the cylinder and turbine, and other components. For instance,
the turbine blades may have rusted, resulting in frictional heat generation. Boundary layer ef-
fects on pipe and boiler walls and turbulent viscous dissipation over the turbine blades can add
heat to the flow. Realistically, the process from state 1 to state 2 will be irreversible so that
entropy must have been generated within the control volume and the net actual work output
rate for such a process is

Ẇcv = Ẇu + Ẇsh  + Ẇ0.

where Ẇ0 denotes the atmospheric work PodVcyl/dt.
In this context we will now determine the optimum work for a process that occurs

between the same inlet (T1,P1) and outlet (T2,P2) states and which withdraws an identical
amount of heat from the reservoir, ˙

,QR 1. In our analysis we will consider the presence of sev-
eral thermal energy reservoirs at various temperatures, i.e., TR,1, TR,2, TR,3,...etc. with all ir-
reversibilities being maintained within the system control volume. Applying the First law for
an open system,

dE
dt Q W m e m ecv

cv cv i T i e T e= + −− +˙ ˙ ˙ ˙
, , , (36)

where the control volume work expression Ẇcv includes Ẇu , Ẇshaft , P0dVcyl/dt, and any other

work forms. The total heat Q̇cv  transferred from the control volume includes the various heat

interactions ˙
,QR 1, ˙

,QR 2, ˙
,QR 3,... with the thermal energy reservoirs, and that with the environ-

ment Q̇0. Therefore,

dE
dt W m e m ecv

R R R cv i T i e T e= + + + −+ − +˙ ˙ ˙ ˙ ..... ˙ ˙ ˙
, , , , ,Q Q Q Q0 1 2 3 (37)

Typically Q̇0 0< . If turbine blades get rusted over a period of time, more energy is used to
overcome friction than to produce work; thus, frictional heating will occur which will cause
turbine exit temperature Te to increase. In order to maintain the same Te, the heat loss to the
environment Q̇ 0,turb must have to be increased so that under steady state operation a smaller
amount of work is delivered.

We have assumed that temperature gradients only exist within the boundaries of the
control volume and, consequently, entropy is generated only within it. Applying the entropy
balance equation (Chapter 3),

dS
dt

Q
T

Q
T

Q
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Q
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e e i i cv= + + + + − + +

˙ ˙ ˙ ˙
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3
0L σ , (38)

We observe that the higher the loss Q̇0 , the higher σ̇ cv  for a steady state operation for fixed si

and se. From energy balance, the higher the heat loss, the lower is the work output. Expressing
Q̇0 in terms of σ̇ cv  Eq. (37) can be expressed in the form

˙ (
˙

˙ ˙ )

˙ ˙ ˙ ˙

,

,

, , ,

W T
dS

dt

Q

T
m s m s

Q
dE
dt m e m e T

cv
cv R j

R j
j
N

e e i i

R jj
N cv

e T e i T i cv

= − ∑ + − +

∑ − − + −

=

=

0 1

1 0σ

(39)

Rewriting Eq. (39),



˙ ( ) / ˙ / ˙ ˙ ˙
, ,W d E T S dt Q T T m m Tcv cv cv R j R jj

N
e e i i cv= − − + −( )∑ − + −=0 01 01 ψ ψ σ , (40)

The absolute specific stream availability or the absolute specific flow or stream  availability ψ
is defined as

ψ (T,P,T0) = eT(T,P) – T0 s(T,P) = (h(T,P) + ke + pe) – T0 s(T,P). (41)

where the terms ψi and ψe denote the absolute stream availabilities, respectively, at the inlet

and exit of the control volume. They are not properties of the fluid alone and depend upon the
temperature of the environment. The optimum work is obtained for the same inlet and exit
states when σ̇ cv  = 0. In this case, Eq. (40) assumes the form

˙ ( ) / ˙ / ˙ ˙
, , ,W d E T S dt Q T T m mcv opt cv cv R j R jj

N
e e i i= − − + −( )∑ − +=0 01 1 ψ ψ . (42)

where the term ˙ ( / ), ,Q T TR j R j1 0−   represents the availability in terms of the quality of heat en-

ergy or the work potential associated with the heat transferred from the thermal energy reser-
voir at the temperature TR,j. When the kinetic and potential energies are negligible,

ψ = h – T0 s. (43)

For ideal gases, s = s0– R ln (P/Pref), where the reference state is generally assumed to be at Pref

= 1 bar. Therefore,

ψ = ψ0 + R T0 ln (P/Pref), (44)

and ψ0 = h0 –T0 s
0. The enthalpy h (T) = h0 (T) for ideal gases, since it is independent of pres-

sure.
If the exit temperature and pressure from the control volume is identical to the envi-

ronmental conditions T0 and P0, i.e., the exit is said to be at a restricted dead state, in that case
˙ ˙W Wcv,opt cv,opt

0
=  and the exit absolute stream availability at dead state may be expressed as

ψe,0 = eT,e,0 (T0,P0) – T0 s e,0 (T0,P0). (45)

Note that eT,e,0 = h0 since ke and pe are equal to zero at dead state.

2. Lost Work Rate, Irreversibility Rate, Availability Loss
The lost work is expressed through the lost work theorem, i.e.,

LW I W W Tcv opt cv cv= = − =˙ ˙ ˙ ˙
, 0σ . (46)

The terms ˙ , ˙
,Wcv Wcv opt

 > 0 for expansion processes and ˙ , ˙
,W Wcv cv opt < 0  for compression

and electrical work input processes. The lost work is always positive for realistic processes.
The availability is completely destroyed during all spontaneous processes (i.e., those

that occur without outside intervention) that bring the system and its ambient to a dead state.
An example is the cooling of coffee in a room.

3. Availability Balance Equation in Terms of Actual Work
We will rewrite Eq. (40) as

d E T S dt m Q T T m W Icv cv i i R j R jj
N

e e cv( ) / ˙ ˙ / ˙ ˙ ˙
, ,− = + −( )∑ − −= −0 01 1ψ ψ . (47)

The term on the LHS represents the availability accumulation rate within the control volume as
a result of the terms on the RHS which represent, respectively: (1) the availability flow rate
into the c.v.; (2) the availability input due to heat transfer from thermal energy reservoirs; (3)
the availability flow rate that exits the control volume; (4) the availability transfer through ac-



tual work input/output; and (5) the availability loss through irreversibilities. The Band or
Sankey diagram illustrated in Figure 7 employs an accounting procedure to describe the avail-
ability balance. This includes irreversibility due to temperature gradients between reservoirs
and working fluids, such as water in a boiler with external gradients, the irreversibilities in
pipes, turbines, etc.

a. Irreversibility due to Heat Transfer
We can separate these irreversibilities into various components. For instance consider

the boiler component. Suppose the boiler tube is enclosed by a large Tubular TER. For a single
TER the availability balance equation is given as

d E T S dt Q T T m m Icv cv b R i i e e b R( ) / ˙ / ˙ ˙ ˙
,− −( ) + − += +0 0 11 ψ ψ , (48)

We have seen that an irreversibility can arise due to both internal and external processes. For
instance, if the boundary AB in Figure 6 is selected so as to lie just within the boiler, and the
control volume encloses the gases within the turbine, then Eq. (47) becomes

d E T S
dt Q T T m m Icv

b w b i i e e b
cv( ˙ / ˙ ˙ ˙)

,

−
= −( ) + − +0 1 0 ψ ψ , (49)

where Tw,b denotes the water temperature just on the inside surface of the boiler (assumed uni-
form) and  Q̇ R,1 = Q̇ b , the heat transfer from the reservoir to the water. The irreversibility  İb

arises due to temperature gradients within the water. Subtracting (48) from (49), the irreversi-
bility that exists to external temperature gradient between reservoir and wall temperature alone
can be expressed as

˙ ˙ ˙ ( / / ), ,I I Q T T Tb R b b w b R+ =− −0 11 1 (50)

ψ

ψshW

QRj(1-To/TRj)
Input  Stream

availability

d/dt [ECV-ToSCV]Icv

Figure 7:  Exergy band or Sankey diagram illustrating availabilities.



Recall the entropy generation σ̇ cv = İcv/T0. Thus, the entropy generated due to gradients ex-
isting between a TER and a boiler tube wall

˙
˙

˙ ( )
, ,

σ =
−

= −+I I

T
Q

T T
b R b

o
b

w b R

1 1

1

(51)

4. Applications of the Availability Balance Equation
We now discuss various applications of the availability balance equation.
An unsteady situation exists at startup when a turbine or a boiler is being warmed, and
the availability starts to accumulate. Here,

d (Ecv – T0 Scv)/dt ≠ 0.

If a system has a nondeformable boundary, then

Wcv = Wshaft,  P0dVcyl/dt = 0, Ẇu = 0

When a system interacts only with its ambient (that exists at a uniform temperature
T0), and there are no other thermal energy reservoirs within the system, the optimum
work is provided by the relation

˙ ˙ ˙ ˙ ˙ ( ) /,W W I m m d E T S dtcv opt cv i i e e cv cv= + = − − −ψ ψ 0 . (52)

For a system containing a single thermal energy reservoir (as in the case of a power
plant containing a  boiler, turbine, condenser and pump, (Figure 8) or the evaporation
of water from the oceans as a result of heat from the sun acting as TER), omitting the
subscript 1 for the reservoir,

d E T S dt m Q T T m W Icv cv i i R R e e cv( ) / ˙ ˙ / ˙ ˙ ˙− = + −( )− − −0 01ψ ψ . (53)

For a steady state steady flow process (e.g., such as in power plants generating power
under steady state conditions), mass conservation implies that ˙ ˙ ˙m m mi e= = . Fur-
thermore, if the system contains a single inlet and exit, the availability balance as-
sumes the form

˙ ( ) ˙ ˙ ˙
, ,/m Q T T W Ii e R j R jj

N
cvψ ψ− + −( )∑ − − == 1 001 . (54)

On unit mass basis

 ψ ψi e R j R j cvq T T w i− + ∑ −( ) − − =, ,/1 00 , (55)

where q Q m w W m i I mR j R j cv cv, ,
˙ / ˙ , ˙ / ˙ , ˙ / ˙= = = . When a system interacts only with its

ambient at T0 and there are no other thermal energy reservoirs within the system, the
optimum work is given by the relation

˙ ˙ ˙ ( ) /,W m m d E T S dtcv opt i i e e cv cv= − − −ψ ψ 0 . (56)

In case the exit state is a restricted dead state, (e.g., for H2O, dead state is liquid water
at 25°C 1 bar)

˙ ˙ ˙ ( / ), , ,W m Q T Tcv opt R j R jj
N= ′ + −∑ =ψ 1 01 (57)

where ψ′ = ψ – ψ0 is the specific stream exergy or specific-relative stream availability

(i.e., relative to the dead state). Since ψ0 = ho-Toso in the absence of kinetic and po-



tential energy at the dead state, as T0 →  0, ψ0 →  0, and the relative and absolute

stream availabilities become equal to each other.
For a system containing multiple inlets and exits the availability equation is

d E T S dt m Q T T m W Icv cv i i
inlets

R j R jj
N

e e
exits

cv( ) / ˙ ˙ / ˙ ˙ ˙
, ,− = ∑ + −( )∑ − ∑ − −=0 01 1ψ ψ . (58)

For a single inlet and exit system containing multiple components the expression can
be generalized as

d E T S dt m Q T T

m W I

cv cv k i k i
species

R j R jj
N

k e k e
species

cv

( ) / ˙ ˙ /

˙ ˙ ˙

, , , ,

, ,

− = ∑ + −( )∑

− ∑ − −

=0 01 1ψ

ψ
, (59)

where ψk = hk(T,P,Xk) – T0 sk(T,P,Xk) denotes the absolute availability of each com-

ponent, and Xk the mole fraction of species k. For ideal gas mixtures,

ψk = hk – T0 (sk
0

 – R ln (pk/Pref)),

since the partial pressure of the k–th species in the ideal gas mixture Pk = Xk P.
Consider an automobile engine in which piston is moving and at the same time mass
is entering or leaving the system (e.g., during the intake and exhaust strokes). In addi-
tion to the delivery of work through the piston rod Ẇu, atmospheric work is per-
formed during deformation, i.e., Ẇ0 = P0 dV/dt. Therefore,, ˙ ˙W W P  dV / dtcv u 0 cyl= +
and the governing availability balance equation is

d E T S dt m Q T T

m W P dV dt I

cv cv k i k i
species

R j R jj
N

k e k e
species

u o

( ) / ˙ ˙ /

˙ ˙ / ˙

, , , ,

, ,

− = ∑ + −( )∑

− ∑ −

=

− −

0 01 1ψ

ψ
.

Simplifying.

d E T S P dV dt dt m Q T T

m W I

cv cv o k i k i
species

R j R jj
N

k e k e
species

u

( / ) / ˙ ˙ /

˙ ˙ ˙

, , , ,

, ,

− = ∑ + −( )∑

− ∑

+ =

− −

0 01 1ψ

ψ
.

For steady cyclical processes  the accumulation term is zero within the control vol-

ume, and ψi = ψe. Therefore,

˙ ˙ ˙ /, , ,W I Q T Tcv cycle R j R jj
N+ = −( )∑ = 1 01 .

c. Example 3

the irreversibility.
Solution

ψi = (h1 + v2/2g) – T0 s1 = 3989.2 + 20 – 298 × 7.519 = 1769 kJ kg–1. Likewise,

ψe = 2609.7 + (802÷2000) –298 × 7.9085 = 256 kJ kg–1. Therefore,

wopt = 1769 – 256 = 1513 kJ kg–1, and
I = 1513 – 1300 = 213 kJ kg–1. The entropy generation

Steam enters a turbine with a velocity of 200 m s–1 at 60 bar and 740ºC and leaves as
saturated vapor at 0.2 bar and 80 m s–1.The actual work delivered during the process
is 1300 kJ kg–1. Determine inlet stream availability, the exit stream availability, and



σ = 213÷298 = 0.715 kJ kg–1 K–1.

Remarks
The input absolute availability is 1769 kJ kg–1.
The absolute availability outflow is 256 kJ kg–1.
The absolute availability transfer through work is 1300 kJ kg–1.
The availability loss is 213 kJ kg–1.
The net outflow is 1769 kJ kg–1.

d. Example 4

turbines are rigid.

water into the pump is saturated liquid.
Solution

If the boundary is selected through the reactor, for optimum work I = σ = 0. Under

steady state conditions time derivatives are zero, and, since the body does not deform
Wu = 0, so that Wcv = Wshaft and ˙ ˙ ˙m m mi e= = . Therefore,

˙ ( ) ˙ / ˙
, , ,m Q T T Wi e R R cv optψ ψ− + −( ) − =1 0 11 0 . (A)

Dividing Eq. (A) throughout by the mass flow rate,

2
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3

    4
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Condenser
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QR

Q0

Figure 8: Schematic of diagram of a steam power plant.

What is the maximum possible work between the two states 1 and 2?
If the steam that is discharged from turbine is passed through a condenser (cf. Figure
8) and then pumped back to the nuclear reactor at 60 bar, what is the maximum possi-
ble work under steady state cyclical conditions? Assume that the inlet condition of the

This example illustrates the interaction between a thermal energy reservoir, its ambi-
ent, a steady state steady flow process, and a cyclical process. Consider the inflow of
water in the form of a saturated liquid at 60 bar into a nuclear reactor (state 1). The
reactor temperature is 2000 K and it produces steam which subsequently expands in a
turbine to saturated vapor at a 0.1 bar pressure (state 2). The ambient temperature is
25ºC. The reactor heat transfer is 4526 kJ per kg of water. Assume that the pipes and



W q T Tcv opt i e R R, , ,( ) /= − + −( )ψ ψ 1 0 11 . (B)

Using the steam tables (A-4A)

ψi = 1213.4 – 298 × 3.03 = 310.5 kJ kg–1, and (C)

ψe = 2584.7 – 298 × 8.15 = 156.0 kJ kg–1. (D)

Therefore,

qR,1 = 4526 kJ kg–1, and (E)

wcv,opt = 4526(1 – 298 ÷ 2000) + (310.5 – 156) = 4006 kJ kg–1. (F)

For the cycle, ψi = ψe. Therefore,

wcv,opt,cycle = qR,1 (1– T0/TR,1) = 3852 kJ kg–1.

Note that this work is identical to that of a Carnot cycle with an efficiency of (1–
T0/TR,1).

Remarks
A realistic cyclical process contains inherent irreversibilities due to irreversible heat
transfer and internal irreversibilities so that

wcv,cycle < wcv,opt,cycle.
The work wcv,cycle usually deteriorates over time, since internal irreversibilities in the
cycle increase. Once the state is known, it is possible to ascertain ψ at various points

during a process to determine wcv,opt and wcv, and to calculate σcv = (wcv,opt – wcv)/T0.

It is seen from Eq. (40) that the higher the entropy generation, the larger the mount of
lost work and lesser the work output. Entropy generation occurs basically due to internal gra-
dients and frictional processes within a device; it can also originate due to poor design, such as
through irreversible heat transfer between two systems at unequal temperatures as in heat ex-
changers. For instance, consider a parallel flow heat exchanger in which hot gases enter at
1000 K and are cooled to 500 K by cold water that enters at 300 K (cf. Figure 9a). The water
can, at most, be heated to 500 K. A large temperature difference of 700 K exists at the inlet
resulting in large entropy generation during the process. In a counter flow heat exchanger the
temperature difference can be minimized to reduce σ  (cf. Figure 9b). Therefore, it is important

to consider entropy generation/availability concepts during the design of thermal systems.

e. Example 5

that cp = 1 kJ kg–1 K–1, hfg = 2257 kJ kg–1, and T0 = 298 K.
Solution

The energy required to heat the water is obtained by applying the First Law, namely,

dEc.v./dt =   Q̇ 0 + Q̇ R,1 + Q̇ R,2 + Q̇ R,3.. - Ẇc.v. + Σ ṁi eT,i - Σ ṁe eT,e.

Since the fire tube boiler is assumed to be an adiabatic, steady and non-work producing
device, this relation assumes the form

Hot air at a temperature of 400ºC flows into an insulated heat exchanger (the fire tube
boiler shown in Figure 10) at a rate of 10 kg s–1. It is used to heat water from a satu-
rated liquid state to a saturated vapor condition at 100ºC. If the air exits the heat ex-
changer at 200ºC, determine the water flow in kg s–1 and the irreversibility. Assume



0  =   + ṁa (ha,i – ha,e) +  ṁw (hf – hg), or 

ṁa cp (T2 – T1) = ṁw hfg,

where the subscripts a and w, respectively, refer to the air and water. Therefore,

ṁw = 10 × 1 × 200 ÷ 2257= 0.886 kg s–1.

The optimum work

Ẇcv,opt = ( ṁa ψa,i + ṁw ψw,i) – ( ṁa ψa,e + ṁw ψw,e), i.e., (A)

Hot Steam

   990 K

Hot Steam

   500 K

Hot gas

1000 K

Cold Water
  300 K

Hot gas

Cold Water

(a) Parallel flow heat exchanger

Hot gas

Cold
 Water

Cold Water

300 K

(b) Counter flow heat exchanger

Hot gas
500 K

Hot gas
1000 K

Hot gas
310 K

Figure 9. Schematic illustration of: (a) parallel flow heat exchanger; and (b) counterflow heat
exchanger.



ψa,i = h a,i – T0 si =1 × 673 – 298 × (1 × ln (673/298)) = 430.2 kJ kg–1, 

ψa,e = 473 – 298 × 1 × ln (473/298) = 335.3 kJ kg–1,

 ψw,i = 419 – 298 × 1.31 = 28.6 kJ kg–1, and

ψw,e = 2676.1 – 298 × 7.35 = 485.8 kJ kg–1.

Therefore,

Ẇcv,opt = 10×430.2 + 0.89×28.6 – (10×335.3 + 0.89×485.8) = 544 kW, and

I= Ẇcv,opt – Ẇ = 544 – 0 = 544 kW.

Remarks
Hot combustion products enter the fire tubes of fire tube boilers at high temperatures
and transfer heat to the water contained in the boiler drum. The water thereby evapo-
rates, producing steam. This example reveals the degree of irreversibility in such a
system.
The irreversibility exists due to the temperature difference between the hot gases and
the water. An alternative method to heat the water would be to extract work by run-
ning a Carnot engine that would operate between the variable–temperature hot gases
and the uniform–temperature ambient. A portion of the Carnot work can be used to
run a heat pump in order to transfer heat from the ambient to the water and generate
steam. The remainder of the work would be the maximum possible work output from
the system. However, such a work output is unavailable from conventional heat ex-
changers in which the entire work capability is essentially lost.

We now discuss this scenario quantitatively. Assume that the air temperature changes from Ta,i

to Ta,e as it transfers heat to the Carnot engine. For an elemental amount of heat δ Q̇  extracted

from the air, the Carnot work.

δ ẆCE = δ Q̇  (1– T0/T). (B)

Since

δ Q̇  = ṁa  cp dT, (C)

δ ẆCE = – ṁa  cp dT (1– T0/T).

Upon integration,

ẆCE = ṁa cp ((Te – Ti) – T0 ln(Te/Ti)). (D)

     = 10 × 1 × (200 – 298 × ln (473/673)) = 949 kW.

This is the Carnot work obtained from the transfer of heat from the air. Now, a por-
tion of this work will be used to run a heat pump operating between constant tem-
peratures T0 and Tw (100ºC) in order to supply heat to the water. The heat pump COP
is given by the expression

COP = Q̇ H/ Ẇ in,heat pump = Tw/(Tw –T0) = 4.97.



Since the heat transfer Q̇ H = 2257 × 0.89 = 2009 kW, The work input Ẇ in,heat pump =

2009 ÷ 4.97 = 404 kW. Therefore, the net work that is obtained

Ẇcv,opt = 949 – 404 = 545 kW.
This is identical to the answer obtained for the irreversibility flux using the availabil-
ity analysis. Due to the high cost of fabricating such a system, conventional heat ex-
changers are instead routinely used.
We now examine the feasibility of installing a Carnot engine between the hot gases
and the water that exists at 100ºC so that heat could be directly pumped into water.
You will find that it is impossible to achieve the same end states as in the heat ex-
changer while keeping σcv = 0 without any interaction with the environment.

5. Gibbs Function
Assume that a system is maintained at the ambient temperature T0 (a suitable example

is a plant leaf that is an open system in which water enters through the leaf stem and evapo-
rates through the leaf surface). In this case, the absolute stream availability can be expressed as

ψ = h –T s = h –T0 s = g, (60)

where g denotes the Gibbs function or Gibbs free energy. It is also referred to as the chemical
potential of a single component and is commonly used during discussions of chemical reac-
tions (e.g., as in Chapter 11). The product (Ts) in Eq. (60) is the unavailable portion of the en-
ergy. Therefore, the Gibbs function of a fixed mass is a measure of its potential to perform
optimum work in a steady flow reactor. We recall from Chapter 3 that a system attains a stable
state when its Gibbs function reaches a minimum value at given T and P. This tendency to
reach a stable state is responsible for the occurrence of chemical reactions during non-
equilibrium processes (Chapter 12).

6. Closed System (Non–Flow Systems)
In this section we will further illustrate the use of the availability balance equation Eq.

(47), particularly the boundary volume changes resulting in deformation work (Figure 11).

a. Multiple Reservoirs
For closed systems, ˙ ˙m mi e= = 0, and the work ˙ ˙ ˙ /W W W P dV dtcv shaft u o cyl= + + . For a

closed system containing multiple thermal energy reservoirs, the balance equation assumes the
form

Gas at
400 C

Air at
200C

Steam at
100C

Water at
100 C

Ta,i Ta,e

Q

Figure 10: A fire tube in which hot gases flow in a boiler.



d E T S dt Q T T W Icv cv R j R jj
N

cv( ) / ˙ / ˙
, ,− = −( )∑ − −=0 01 1 . (61)

If this relation is applied to an automobile piston–cylinder assembly with negligible shaft work
(δWshaft=0)  and with the inlet and exhaust valves closed, the useful optimum work delivered to

the wheels over a period of time dt is δW u.  The work

δ δ δW dE T dS P dV Q T T Iu R R j w= − +( ) − + ∑ −( ) −0 0 01 / , , i.e., (62)

W E T S P V Q T T Iu R R j= − +( ) − + ∑ −( ) −∆ ∆ ∆0 0 01 / , (63)

where ∆E=E2-E1, ∆S=S2-S1, ∆V= V2-V1. Dividing the above relation by the mass m,

w e T s P v q T T iu R R j= − +( ) − + ∑ −( ) −∆ ∆ ∆0 0 01 / , . (64)

b. Interaction with the Ambient Only
With values for qR = 0, i = 0, and e = u, Eq. (64) simplifies as

wu,opt = φ1 – φ. (27)

When φ2 = φ0,

wu,opt,0 = ′φ1  = φ1 – φ0. 

The term φ´  is called closed system exergy or closed system relative availability. Consider the

cooling of coffee in a room, which is a spontaneous process (i.e., those that occur without out-
side intervention). The availability is completely destroyed during such a process that brings
the system and its ambient to a dead state. Thus, wu = 0 and i = wu,opt,0 = φ1 – φ0.

c. Mixtures
If a mixture is involved, Eq. (63) is generalized as,

W N e N e T N s N s

P N v N v Q T T I

u k k k k k k k k

k k k k R R j

= − − + −( )
− − + ∑ −( ) −

Σ Σ

Σ

( ˆ ˆ ) ( ˆ ˆ )

( ˆ ˆ ) /

, , , , , , , ,

, , , , ,

2 2 1 1 0 2 2 1 1

0 2 2 1 1 01
, (65)

where, typically, ˆ , , ˆ ln /e e u and s s R p Pk k
o

k ref≈ ≈ = −    for a mixture  of ideal gases and Pref = 1
bar

f. Example 6

The specific heat of the water c = 4.184 kJ kg–1 K–1.
Solution

Consider the combined closed system to consist of both the hot water and the heat en-
gine. Since there are no thermal energy reservoirs within the system and, for optimum
work, I = 0,

d E T S dt Wcv cv cv opt( ) / ˙
,− =0 , or (A)

This example illustrates the interaction of a closed system with its ambient. A closed
tank contains 100 kg of hot liquid water at a temperature T1 = 600 K. A heat engine
transfers heat from the water to its environment that exists at a uniform temperature
T0 = 300 K. Consequently, the water temperature changes from T1 to T0 over a finite
time period. What is the maximum possible (optimum) work output from the engine?



Wcv,opt = (Ecv – T0 Scv)1 – (Ecv – T0 Scv)2,
 where (B)

(Ecv)1 = U1 = m c T1, (Ecv)2 = U2 = m c T2, and (Scv)1 – (Scv)2 = m c ln(T1/T0). (C)

Substituting Eq. (C) into Eq. (B), we obtain

Wcv,opt = m c (T1 – T0) – T0 m c ln(T1/T0) = 

100 × 4.184 × (600 – 300 – 300 × ln (600/300)) = 38520 kJ.

Remarks
If only the heat engine is considered to be part of the system, it interacts with both the
hot water and the ambient. In this case the hot water is a variable–temperature thermal
energy reservoir. Since the heat engine and, therefore, the system, is a cyclical device,
there is no energy accumulation within it. Therefore, for an infinitesimal time period

δQR,w (1–T0/TR,w) = δWcv,opt, (D)

where the hot water temperature TR,w decreases as it loses heat. Applying the First and
Second laws to the variable–temperature thermal energy reservoir, δQR,w = –dUR,w = –

mw cw dTR,w and δQR,w/TR,w = dSR,w. Using these relations in the context of Eq. (D) we

obtain the same answer as before.

uW
•Po

         TR,1

         QR,1

eem ψ
•

iim ψ
•

P

Figure 11. Application of the availability balance for a piston-cylinder
assembly.



7. Helmholtz Function
In case a closed rigid system exists at its ambient temperature T0, its absolute avail-

ability can be expressed as

φ = u –T s = u –T0 = a, (66)

where a denotes the Helmholtz function or the Helmholtz free energy. The Helmholtz function
is another measure of the potential to perform work using a closed system. Consider, for in-
stance, an automobile battery in which chemical reactions occur at room temperature and pro-
duce electrical work, and the chemical composition of the battery changes with time. The op-
timum work for such a situation is given by the expression

Wcv,opt = (ΣNk φ̂k )initial – (ΣNk φ̂k )final. (67)

Since we have assumed that T = T0,

Wcv,opt = (ΣNk âk )initial – (ΣNk âk )final.

The Helmholtz function of a closed system represents its potential to perform work.

g. Example 7

produce ice from the water if its initial temperature is 300 K.
Solution

Consider a closed control volume that encloses the tank and the air conditioner, but
excludes the ambient. The minimum work

˙ ( ) /,W d E T S dtcv opt cv cv= − 0 .

Integrating over the time period required to convert the water into ice,

Wcv,min = (Etank,1 – Etank,2) – T0 (Stank,1 – Stank,2).

Assuming the energy for the process E = U, since the mass contained in the tank is
unchanged,

wcv,min = (utank,1 – utank,2) – T0 (stank,1 – stank,2). 

Note that state 1 is liquid while state 2 is ice; thus, sensible energy must be removed
to reduce  T1 to Tfreeze and then latent  energy to form ice. Assuming constant proper-
ties for water,

utank,2 = utank,1 – cw (T1 – Tfreeze) – ufs, and stank,2 = stank,1 – cw ln (Tfreeze/T1) – sfs. 

Therefore,

wcv,min = cw (T1 – Tfreeze) + ufs – T0 (cw ln (Tfreeze/T1) + sfs) (A)

Since sfs = hfs/Tfreeze = (ufs + P vfs)/Tfreeze ≈ ufs/Tfreeze, we have

wcv,min = cw (T1 – Tfreeze) + ufs (1 – T0/Tfreeze) – T0 cw ln (T1/Tfreeze). (B)

Using the values cw = 4.184 kJ kg–1 K–1, ufs = 334.7 kJ kg–1, and T0 = 300 K,

This example considers an air–conditioning cycle. In some areas the cost of electricity
is higher during the day than at night, making it expensive to use air conditioning.
The following scheme is proposed to alleviate the cost. The air conditioner is to be
operated during the night in order to cool water in a storage tank to its freezing tem-
perature. During the day a fan is to be used to blow ambient air over the water tank,
thereby cooling the air and circulating it appropriately. Use a generalized availability
analysis and derive an expression for the minimum work that is required in order to



wcv,min = 4.184 (300 – 273) + 335 (1– 300/273) – 300 × 4.184 × ln (300/273) 

      = –38.54 kJ kg–1 of ice made.

In case T1 = T2 = Tfreeze = 273K, using Eq. (B)

wcv,min = ufs (1 – T0/Tfreeze) = |Heat removed ÷ COPCarnot|, where

COPCarnot= Tfreeze/(1 – T0/Tfreeze) = 10.11, so that

| wcv,min| = 335/10.11 = 33.1 kJ kg–1 of ice. 

Remarks
Practical air conditioning systems involve a throttling process which is irreversible
and, therefore, σ > 0 during air–conditioning cycles. Although the actual work will be

greater than 38.54 kJ/kg of ice that is made, the design goal should be to approach this
value. In an ideal air–conditioning cycle, isentropic expansion in a turbine may be
used rather than using a throttling device in order to eliminate entropy generation.

E. AVAILABILITY EFFICIENCY
Availability analyses help to determine the work potential of energy. As the energy of

systems is altered due to heat and work interactions, their work potential or availability
changes. The analyses lead to the maximization of work output for work–producing systems
(heat engines, turbines, etc.) and to the minimization of work input for work–absorbing sys-
tems (heat pumps, compressors, etc.) so as to achieve the same initial and end states. Under
realistic conditions systems may produce a lower work output or require more work input as
compared to the results of availability analyses. In that case it is pertinent to evaluate how
close the actual results are compared to their optimum values. The analyses also allow us to
evaluate irreversibilities of heat exchangers that are neither work–producing nor
work–absorbing devices. This section presents a method of evaluating the performance of heat
engines, heat pumps, turbines, compressors, and heat exchangers using availability concepts.

1. Heat Engines

a. Efficiency
Different heat engines employ various cyclical processes (e.g., the Rankine, Brayton,

and Otto cycles) that first absorb heat and then reject it to the environment in order to produce
work. The efficiency η = Sought/Bought = work output ÷ heat input = W/Qin = (Qin–Qout)/Qin

(Figure 3a) presents an energy band diagram for a heat engine operating between two
fixed–condition thermal energy reservoirs. The Carnot efficiency of an ideal heat engine ηCE =

1 – TL/TH, where TL and TH, respectively, are the low and high temperatures associated with
the two reservoirs. We note that even for idealized cycles involving isothermal energy reser-
voirs and internally reversible processes, ηCE < 1 due to Second law implications, and avail-

ability analysis tells us that work potential of heat is equal to Qin (1- T0/TH). A part of Qin is
converted to Wopt,cyc and  Q0,opt,cyc is rejected to the ambient under ideal conditions. y.

b. Availability or Exergetic (Work Potential) Efficiency
In power plants based on the Rankine cycle, heat is transferred from hot boiler gases

to cooler water in order to form steam. A temperature difference exists between the gases and
the water, thereby creating an external irreversibility even though the plant may be internally
reversible. Therefore its work output Wcyc is lower than the maximum possible work output
Wopt,cyc for the same heat input, and hot gas, ambient, and cold water temperatures. The Avail-
ability Efficiency is defined as



ηAvail = W/Wopt,cyc = W/Wmax,cyc, where (68)

Wopt,cyc = Wmax,cyc = (Wcyc + Icyc), and (69)

Icyc = T0 σ cyc. Note that σcyc refers to entropy generation in isolated system during a cyclic

process. Exergetic efficiency for a cycle is a measure of deviation of an actual cycle from an
ideal reversible cycle. Equation (68) can be used to compare different cycles that operate be-
tween similar thermal energy reservoirs. For a cycle operating between fixed–temperature
thermal energy reservoirs

Wopt,cyc = Wmax,cyc = QR,1 (1 – T0/TR,1), and (70)

the optimum cyclic process rejects a smaller amount of heat Q0,opt,cy as compared to a realistic
process. The difference Q0,opt,cyc – Q0,cyc = I = T0 σcyc is the irreversibility. Figure 12a and b

illustrate the energy  and availability band diagrams for a heat engine. The term QR (1-T0/TR) is
the availability associated with heat QR, Wcyc   is the availability transfer through work, and Icyc

is the availability loss in the cycle.

h. Example 8

tropic pump.
Determine:
The optimum work.
The   availability efficiency.
The overall irreversibility of the cycle.
The irreversibility in the boiler, turbine, and condenser.

Solution
Analyzing the Rankine cycle:
The turbine work is

q12 – w12 = h2 – h1, i.e., (A)

w12 = 2585 – 3422 = 837 kJ kg–1.

The heat rejected in the condenser

q23 – w23 = h3 – h2, i.e.,

q23 = qout = 192 – 2585 = –2393 kJ kg–1. 

Likewise, in the pump
q34 – w34 = h4 – h3 ≈ v3 (P4 – P3), or (B)

Since properties for the liquid state at 4 may be unavailable, they can be otherwise
determined. The work

w34 = –0.001 × (60 – 0.1) × 100 = – 6 kJ kg–1.

From Eq. (B) h3 = 192 kJ kg–1 (sat liquid at 0.1), and

h4 = 192 + 6 = 198 kJ kg–1.

In the boiler

qin = q41 – w41 = h1 – h4 = 3422 – 198 = 3224 kJ kg–1.

A nuclear reactor transfers heat to water in a boiler that is at a 900 K temperature,
thereby producing steam at 60 bar, and 500ºC. The steam exits an adiabatic turbine in
the form of saturated vapor at 0.1 bar. The vapor enters a condenser where it is con-
densed into saturated liquid at 0.1 bar and then pumped to the boiler using an isen-



Therefore, the cyclical work

wcyc = wt – wp = 837 – 6 = qin – qout = 3224 – 2393= 831 kJ kg–1. 

The efficiency

η = wcyc/qin = 831/3224 = 0.26.

Integrating the general availability balance equation over the cycle

wcyc,opt = qin (1 – T0/Tb) = 3224 (1 – 298/900) = 2156 kJ kg–1.

The actual Rankine cycle work = 831 kJ kg–1 and the actual cycle efficiency η = 0.26.

The Carnot work is 2156 kJ kg–1 and the Carnot efficiency ηCarnot = 0.67. The relative

efficiency is

ηAvail = wcyc/wcyc,opt = η/ηCarnot = 831/2156 = 0.39.

The overall irreversibility of the cyclical process is

I = wcyc,opt – w = 2156 – 831 = 1325 kJ kg–1.

An availability analysis can be performed on the various system components as fol-
lows:
For the turbine,
s1 = 6.88 kJ kg–1 K–1, and s2 = 8.15 kJ kg–1 K–1 so that s2 > s1. Furthermore,
ψ1 = h1 – T0 s1 = 3422 – 298 × 6.88 = 1372 kJ kg–1, and, likewise,

ψ2 = 2585 – 298 × 8.15 = 156.3 kJ kg–1. Therefore,

wt,opt = ψ1 – ψ2 = 1372 – 156.3 = 1216 kJ kg–1, and

It = 1216 – 837 = 379 kJ kg–1.
For the condenser,
ψ3 = 191.8 – 298 × 0.649 = –1.6 kJ kg–1, and

wcond,opt = ψ2 – ψ3 = 156.3 – (–1.6) = 157.9 kJ kg–1. Therefore,

Icond = 157.9 kJ kg–1.
For the pump,

               s4 = s3 = 0.649 kJ kg–1 K–1, and

ψ4 = h4 – T0 s4 = 198 – 298 × 0.649 = 4.6 kJ kg–1. Consequently,

wp,opt = ψ3 – ψ4 = –1.6 – 4.6 = – 6.2 kJ kg–1.

Since wp = – 6.2 kJ kg–1, Ip = 0 kJ kg–1.
For the boiler,
Wb,opt = = qb (1– T0/Tb) + ψ4 – ψ1 = 2156 + 4.6 – 1372 = 789 kJ kg–1, and

Ib = = Wb,opt – Wb = 789 – 0 = 789 kJ kg–1.
The total irreversibility = 379+158+0+789 = 1326 kJ kg–1 is the same as that calcu-
lated above.
The availability input at the boiler inlet ψ4 = 4.6 kJ kg–1, and

ψ0 =h0 – T0 s0 ≈ hf
sat (25 C) –298× sf

sat (25 C) = 104.89-298×0.3674 = -4.6 kJ kg–1.

The availability input through heat transfer in the boiler ψ41 = qb (1 – T0/Tb) = 3224 × (1 –

298/2000) = 2156 kJ kg–1. Figure 13 illustrates the exergy band diagram for the cyclic
process.



These results are summarized in tabular form below.
State T,C P,

bar
x H, kJ

kg–1
s, kJ

kg–1 K–1
q, kJ
kg–1

w, kJ
kg–1

ψ, kJ

kg–1

i, kJ
kg–1

ψ´ =ψ -

ψ0

1 500 60 - 3422 6.8 0 1372 1376.6
2 0.1 1.0 2585 8.15 0 837 156.3 379 160.9
3 0.1 0.0 191.8 0.65 -2393 0 -1.6 158 3.0
4 60 - 198 0.65 - -6 4.6 0 9.2
1 60 - 3422 6.8 3224 - 1372 789 1376.6

Remarks
In this example, the processes comprising the Rankine cycle are all reversible. The ir-
reversibility arises due to the temperature difference between the thermal energy res-
ervoir and the boiler. In this case the maximum work output wcyc,opt can be obtained
by placing two Carnot heat engines, one between the reactor and the boiler (to supply

Wcycle
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Figure 12(a):  Energy band diagram , (b) exergy band diagram for a heat engine.



heat to the boiler), and the second between the condenser and its ambient (to reject
heat to the ambient).
The boiler accounts for 24.5% of the total irreversibility.

Many practical systems do not interact with a fixed–temperature reservoir, e.g., in a
coal– or oil–fired power plant. In that case

ηAvail = wcyc/(inlet stream exergy into a system ψ´),

where ψ´ = (h– T0 s) – (h0 – T0 s0). The definition of h0 (involving the chemical energy of a

species) will be discussed in Chapter 11.

2. Heat Pumps and Refrigerators

a. Coefficient of Performance
Heat pumps and refrigerators are used to transfer heat through work input and are

characterized by a coefficient of performance COP (= heat transfer ÷ work input) instead of an

efficiency. For a heat pump

COPH = QH/Work input = Qout/(Qin – Qout), (71)

and for a refrigerator

COPR = QL/Work input = Qin/(Qin – Qout). (72)

For a Carnot heat pump Qout/Qin = QH/QL = TH/TL. Therefore,

COPH = TH/(TH – TL). (73)

Likewise, for Carnot refrigerators

COPR = TL/(TH – TL). (74)

Figure 14a contains an energy band diagram for a heat pump and refrigerator that in-
teracts with fixed–temperature thermal energy reservoirs. Figure 14b illustrates the corre-
sponding availability. Both the Carnot COPs →  ∞ as TH → TL, and approach either zero (in

case of COPR) or unity (in case of COPH) as the difference (TH – TL) becomes very large. The
availability COP

COPavail = |Wcyc,opt|/|Wcyc|, where (75)

Wcyc,opt = Wcyc,min = Wcyc_ – To σcyc.

i. Example 9

condenser temperature is 35ºC so that external irreversibilities exist. Determine:
The COP based on the evaporator and the condenser temperatures.
The COP based on the house and the ambient temperatures.
The minimum work input that is required.
The availability efficiency.
The irreversibility.

Solution
Using the relation

COPCarnot = |Qcondenser|/|Work Input| = |Qcondenser|/(|Qcondenser| – |Qevaporator|), (A)

Qcondenser/Qevaporator = Tcondenser/Tevaporator. (B)

A Carnot heat pump delivers heat to a house maintained at a 25ºC temperature in a
0ºC ambient. The temperature of the evaporator in the heat pump is –10ºC, while the



Therefore,

COPCarnot = Tcondenser/(Tcondenser – Tevaporator) = (308)/(308 – 263) = 6.844.

In the absence of external irreversibilities, the evaporator and ambient temperatures
should be identical, as should the condenser and the house temperatures. Therefore
COPCarnot,ideal = |Qhouse|/|Work Input| = Thouse/(Thouse – Tambient) = 11.92, and
WCarnot = |Qhouse|/COP= 1/11.92 = 0.0839 kJ per kJ of heat pumped into the house.
Consider the generalized availability equation

˙ ˙ ˙ / ˙ ( ) /, ,W m Q T T m d E T S dtcv i i
inlets

R j R jj
N

e e
exits

cv cv= ∑ + −( )∑ − ∑ − −=ψ ψ1 01 0 .

For a steady state cyclical process with one inlet and exit, d/dt = 0, ˙ ˙m mi e= (steady),
and ˙ ˙ψ ψi e=  (cyclical). Therefore,

Wcyc,min = |Qhouse|(1– T0/Thouse)/Thouse = |Qhouse|/COPCarnot, and (C)

Wcyc,min = 1/11.92 = 0.0839 kJ per kJ of heat pumped in.
The availability COP
COPavail = 0.08389/0.146 = 0.57.
We considered an internally reversible process with external irreversibilities existing
at the evaporator and condenser due to the temperature differences between these res-
ervoirs and the ambient and the house, respectively. In that case
Wcyc = |Qhouse|/COP = 1/6.844 = 0.146 kJ per kJ of heat pumped into the house.
The overall irreversibility associated with every kJ of heat that is pumped into the en-
vironment is
I = Wcyc,min – Wcyc = T0 σcyc = –0.08389 – (–0.146) =

   0.06211 kJ for every kJ of heat pumped into the house.
Since the ambient temperature is 0ºC,
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Figure 13:  Exergy band diagram a steam power plant.



σcyc = 0.0621/273 = 0.00023 kJ K–1 for every kJ of heat pumped into the house.

Remarks
The overall irreversibility can also be obtained by considering entropy balance equa-
tion for the system by including the thermal reservoirs at 25ºC and 0ºC, i.e.,
Entropy change in the isolated system = Entropy change in the house (at temperature
TH) + Entropy change in the ambient (at temperature TL) + Entropy change in the
control volume of interest during the cyclical process due to internal irreversibilities.
Therefore,
σ = ∆SH + ∆SL + 0 = ∆SH + ∆SL.

Based on each unit heat transferred to the house, the two entropy changes are
∆SH = QH/TH = 1/298 = 0.00336 kJ  K–1, and

∆SL = – QL/TL.

Since Wcyc = 0.146 kJ per kJ of heat pumped into the house,
QL = 1 – 0.146 = 0.854 kJ per kJ of heat pumped into the house,
∆SL = – 0.854/273 = –0.00313 kJ K–1, and
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σ = 0.00336 – 0.00313 = 0.00023 kJ per kJ of heat pumped into the house.

This is the same answer as that obtained in the solution.

3. Work Producing and Consumption Devices
In order to change a system to a desired end state from a specified initial state, energy

must be transferred across its boundaries. In work producing or absorbing devices, this energy
transfer is in the form of work. Since W  (for zero irreversibility) differs from W (for realistic
processes), the value of the availability efficiency ηavail is instructive in assessing the overall

system design.

a. Open Systems:
For a work producing device Wopt = Wmax and

ηavail = W/Wmax. (76)

Availability or exegetic efficiency is a measure of deviation of an actual process from an ideal
reversible process for the prescribed initial and final states.The maximum value of the avail-
ability efficiency is unity and the presence of irreversibilities reduces that value. The overall
irreversibility

I = Wmax – W = Wmax(1– W/Wmax) = Wmax(1– ηavail). (77)

If the end state of a working fluid emanating from a work–producing device, e.g., a
gas turbine, is at a higher temperature or pressure than that of its ambient, the fluid still con-
tains the potential to perform work. Therefore, it is useful to define the availability efficiency
considering the optimum work (which is based on the assumption that the optimal end state is
a dead state). In that case Wmax,0 = Wopt,0, and

ηavail,0 = = W/Wmax,0 = (W/Wmax)(Wmax/Wmax,0) = ηavail (Wmax/Wmax,0). (78)

Note that Wmax ≤ Wmax,0 and hence ηavai1,0≤ηavail. For a work–consuming device such as a com-

pressor,

ηavail = Wmin/W. (79)

If the exit state from a work-producing device is the dead state, then the availability efficiency
is. This ratio informs us of the extent of

ηavail ,0 = (work output) ÷ (input exergy), (80)

and the conversion of the input exergy into work, but gives no indication as to whether the
exergy is lost as a result of irreversibility or with the availability leaving along with the exit
flow.

For a work–consuming device such as a compressor

ηavail = |Wmin|/|W|, ηre 1,0 = |Wmin,0|/|W|

b. Closed Systems
For processes involving work output from a closed system (which is usually expan-

sion work such as that obtained during the gas expansion in an automobile engine) Wu,opt =
Wu,max, and

ηavail = |Wu|/|Wu,max|. (81)

Likewise, for processes during which work is done on a closed system (which is usually com-
pression work, e.g., air compression in a reciprocating pump) Wu,opt = Wu,min so that



ηavail = |Wu|/|Wu,min|, and (82)

η ηavail,0 avail u u,min,0W / W= . (83)

The isentropic efficiency is not same as the availability efficiency, since isentropic
work can involve an end state that is different from a specified end state, while the determina-
tion of optimum work is based on the specified end state. These differences are illustrated in
the example below.

j. Example 10

ability efficiency based on the optimum work.
Solution

Applying the generalized entropy balance equation

dScv dt m s m s Q Ti i e e b/ ˙ ˙ ˙ / ˙= − + + σ . (A)

Under adiabatic steady state steady flow conditions, d/dt = 0, ˙ ˙m mi e= (steady), and

Q̇ =0. Therefore, Eq. (A) assumes the form

s2 – s1 = σ.

The specific entropies s1(60 bar, 773 K) = 6.88 kJ kg–1 K–1, and s2(0.1 bar, x = 0.9) =
0.1 × 0.65 + 0.9 × 8.15 = 7.4 kJ kg–1 K–1 so that σ = 0.52 kJ kg–1 K–1. The process is

irreversible, since σ > 0.

Applying the energy conservation equation for an adiabatic (q = 0) steady–state,
steady–flow process

–w = h2 – h1. (C)

The specific enthalpies h1(60 bar, 773 K) = 3422.2 kJ kg–1, h2(0.1 bar, x = 0.9) = 0.1 ×
191.83 + 0.9 × 2584.7 = 2345.4 kJ kg–1 so that w = –(2345.4 – 3422.2) = 1076.8 kJ

kg–1.
For an isentropic process the end state s2s = s1 (= 6.88 kJ kg–1 K–1) with the final pres-
sure P2s = P2 (although the quality of the steam differs at these two states). Therefore,

s2s = 6.88 = (1–x2s) × 0.65 + x2s × 8.15, i.e., x2s = 0.83.

Applying the First law to the process 1–2s,

– w12s = h2s –h1, i.e., (D)

h2s = 0.17 × 191.83 + 0.83 × 2584.7 = 2177.9 kJ kg–1, and

An adiabatic steady–state, steady–flow turbine expands steam from an initial state
characterized by 60 bar and 500ºC (State 1) to a final state at 10 kPa at which the
quality x= 0.9 (state 2).
Is the process possible?
Determine the turbine work output.
What would have been the quality  x2s at the exit and  isentropic work output for the
same initial conditions for the same P2 = 10 kPa?
Determine the work output if the final state is to be reached through a combination of
a reversible adiabatic expansion process that starts at the initial state followed by re-
versible heat addition until the final state is reached.
Determine the maximum possible (optimum) work.
Calculate the availability efficiency based on the actual inlet and exit states and avail-



w12s = 3422.2 – 2177.9 = 1244.3 kJ kg–1.

We see that x2 > x2s, since the irreversible (frictional) process generates heat and, con-
sequently, the steam leaves the turbine with a relatively higher enthalpy at the conclu-
sion of process 1–2. Therefore, w12 < w12s.
The adiabatic or isentropic efficiency is

η = w12/w12s = 0.865.

The infinitesimal enthalpy change dh = δq – δw. One could react state 2 by using an

isentropic process first  to P2= 10 kpa  and x2s =0.83  and then adding  heat at con-
stant T2 to state 2 to obtain the  quality x2= 0.9. Since the paths 1–2s and  2s–2 are re-
versible, δq = T ds. Hence,

T ds – w = dh. (E)

Integrating the equation appropriately, we have

Tds Tds w h hs

s

s
ss

ss1

2

2

2
1 2 2 2 1∫ + −∫ = −− − .

The path 1–2s involves no entropy change so that

T (s2 – s2s) – w12 = h2 – h1.

Hence, – w1–2s–2 = 2345.4 – 3422.2 – 318.8 × (7.4 – 6.88) – 1242.6 kJ kg–1. Since

work is path–dependent and the paths 1–2 and 1–2s–2 are different, it is incorrect to
write w1–2s–2 as w12. The work w1–2s–2 is larger than the answer obtained in part 0 of
the solution, since the process 1–2s–2 is reversible. During the process 2s–2 the re-
versible heat added q2s–2,rev = T (s2 – s2s) = 165.8 kJ kg–1. A portion of this heat is con-
verted into additional work. We have not, however, given any information on what
source is used to add the heat. The heat addition process involves an interaction with a
source other than the ambient.
We will now use an availability analysis to determine the maximum work output that
is possible in the absence of entropy generation while maintaining the same initial and
final states. Simplifying the availability balance equation for this situation, the opti-
mum work

wopt = ψ1 – ψ2, (F)

where ψ1 = h1 – T0 s1 = 3422.2 – 298 × 6.88 = 1371.9 kJ kg–1. Likewise, ψ2 = 2345.4

– 298 × 7.4 = 140.2 kJ kg–1, and wopt = 1231.7 kJ kg–1.

The availability efficiencies

ηavail = w12/wopt = 0.874, and

ηavail,0 = w12/wopt,0, where

wopt,0=  ψ1 – ψ0 and ψ0 = h0 – T0 s0. The dead state for the working fluid is that of liq-

uid water at 298 K, 1 bar, so that h0 = 104.89 kJ kg–1 and s0 = 0.3674 kJ kg–1 K–1,
and ψ0 = 104.89 – 298 × 0.3674 = –4.6 kJ kg–1.

Consequently, wopt,0= 1376.5 kJ kg–1 and ηavail,0 = 0.78.

Remarks
We see that w12 < wopt < w1–2s–2 < wopt,0. For the optimum work the only outside inter-
action that occurs is with the ambient that exists at the temperature T0 while W1-2s-2 is



achieved with an external heat input from an unknown source. However, heat for path
2s-2 can be pumped without using an external heat source; instead we use a heat
pump. We can first employ the isentropic expansion process 1–2s to produce a work
output of w1–2s = 1244.3 kJ kg–1. Then we can use a portion of this work to operate a
Carnot heat pump that absorbs heat from the ambient (at T0) and adds 165.8 kJ kg–1 of
heat to the process 2s–2. The Carnot heat pump must operate between 319 K and 298
K. Therefore, the Carnot COP = 318.8 ÷ (318.8 – 298) = 15.3. Since 165.8 kJ kg–1 of

heat is required, a work input of 165.8 ÷ 15.3 = 10.8 kJ kg–1 is necessary. This 10.8 kJ

kg–1 of work is subtracted from w1–2s and, consequently, wopt = 1244.3 – 10.8 = 1233.5
kJ kg–1, which is essentially the same answer as that based on the above availability
analysis. For the optimum process 1-2s-2, entropy generation is zero.
The availability calculation does not explain why a final state x2 = 0.9 at P2 = 0.1 bar
is reached instead of the state x2s = 0.83 at P2 = 1 bar. It only provides information as
to what the optimum work could have been had the inlet and exit states been fixed. In
a cyclic process, all the states are normally fixed. In a power plant all the states are
normally fixed to maintain a steady state. A power plant operator must monitor the
exit conditions, optimum work, and the entropy generation as the plant equipment de-
grades over time.

4. Graphical Illustration of Lost, Isentropic, and Optimum Work
The previous example illustrates the differences between isentropic, actual, and opti-

mum work for a steady state steady flow process. These differences and those between the
adiabatic and availability or exergetic efficiencies can now be graphically illustrated. This is
done in Figure 15 that contains a representative T–s diagram for gas expansion in a turbine
from a pressure P1 to P2. The solid line 1–2s represents the isentropic process, while the dashed
curve 1–2 (for which the actual path is unknown) represents the actual process. The isenthal-
phic curve h1 intersects the isobaric curves P1 at (1) and P2 at the point K. The isentropic and
actual work represent the areas that lie, respectively, under the lines 2s–K (i.e., B–2s–K–D)
and 2–k (i.e., C–2–K–D). The proof follows.

For any adiabatic process, w = dh. For the isentropic process 1–2s

– w1–2s = h2s – h1,

while for the actual process 1–2

– w1–2 = h2 – h1.

The work loss during the irreversible adiabatic process is

w1–2s – w1–2 = h2 – h2s.

Consider the relation

T ds + v dP = dh

which is valid for a fixed mass of simple compressible substances. At constant pressure

T ds = dh, 

at a constant pressure P2

Tds dh
s sh

h
2
1

2

1∫ = ∫ .

Consider an ideal gas as an example (Figure 15). The constant temperature lines are same as
constant enthalpy lines. For illustration consider the expansion process 1-2 with P2<P1; the area
under 2s-K along constant P2 line represents the work output for isentropic process.

Similarly, the area under 2–K (C–2–K–D) represents the actual work. The area under
2s–2 (i.e., B–2s–2–C), therefore, represents the difference between isentropic and non-



isentropic processes. Similarly, if fluid is expanded from state (1) to dead state, (say P2 = P0, T2

= T0) then work is given by area V-0-X-Y and availability stream availability at state 1 (h1 – h0

– To (s1 – s0)) is given by area B-E-0-V+V-0-X-Y and at state 2 by area (E-F-0-V+V-0-A-Q)
thus, the area E-F-C-B-+Q-A-X-Y represents wopt. The irreversibility is given by area BEFC +
QAXY.

Since the actual work is given by area 2KDC+QAXY, the consequent availability loss
T0 (s2 – s1) that is represented by the area BEFC which is smaller than the work loss area
B–2s–2–C. The reason for this is that the end–state conditions are maintained identical for the
availability calculations, i.e., part of the isentropic work is used to pump heat so that state 2 is
reached from the state 2s. Hence, the optimum work wopt < w1–2s–2 so that (wopt – w12) < (w12s –
w12). This difference is represented by the area E–2s–2–F. The adiabatic or isentropic effi-
ciency is provided by the relation

η = actual work ÷ isentropic work = (Area C2KD) ÷ (Area B2SsKD).

The availability efficiency

ηAvail = actual work ÷ maximum work = (Area C2KD ÷ (Area C2KD+EFCB).

Similar diagrams can be created for compression processes for which

η = isentropic work ÷ actual work = (Area B2sKD) ÷ (Area C2KD), and

ηAvail = actual work÷maximum work = 

(Area C2ID) ÷ (Area C2KD) ÷ (Area C2KD + Area EFCB).
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Figure 15 : Graphical illustration of availability on a T-S diagram for an expansion proc-
ess.



5. Flow Processes or Heat Exchangers
Heat exchangers are used to transfer heat rather than to directly produce work. There-

fore, the definition for availability efficiency that is just based on work is unsuitable for heat
exchangers. Hence the availability efficiency for a heat exchanger must be defined in terms of
its capability to maintain the work potential after heat exchange. Hence ηAvail,f = (Exergy

leaving the system) ÷ (Exergy entering the system). A perfect heat exchange will have ηavail,f=1

Since the stream exergy leaving a system equals that entering it minus the exergy loss
in the system,

ηAvail,f = 1 – ((Exergy loss in the system) ÷ (Exergy entering the system)). (84)

a. Significance of the Availability or Exergetic Efficiency
For instance, heat is transferred in a boiler from hot gases to water in order to produce

steam. However, the steam may be used for space heating and/or to produce work, and the
higher the ηAvail value in the boiler, the higher will be the potential of the steam to perform

work in a subsequent work–producing device. The availability efficiency represents the ratio
of the exiting exergy to the entering exergy.

Assume that a home is to be warmed by a gas heater to a 25ºC temperature during the
winter when the ambient temperature is 0ºC. Assume, also, that the heater burns natural gas as
fuel and produces hot combustion gases at a temperature of say 1800 K. These hot gases are
used to heat cooler air in a heat exchanger. The flow through the house is recirculated through
the heater in which the cold air enters at a temperature of say 10ºC and leaves at 25ºC. Conse-
quently, the hot gases transfer heat to the colder air and leave the heat exchanger at a 500 K
temperature. Extreme irreversibilities are involved. Typically ηAvail is very low indicating a

large loss in work potential.
“Smart” engineering systems can be designed to heat the home and at the same time

provide electrical power to it for the same conditions as in the previous gas heater arrange-
ment. Assume that the hot product gases at 1800ºK are first cooled to the dead state (at 273 K)
using a Carnot engine to produce work equal to Ψg,1800. The cold air at 283 K can also be

cooled to the dead state to run another Carnot engine that produces work, Ψa,283. The work

produced from both engines Ψg,1800 + Ψa,283 can then be used to run a heat pump that raises the

temperature of the air from the dead state to the desired temperature (298 K) and, conse-
quently, increases the exergy contained in the air and raises the temperature of the product
gases from the dead state to the exiting gas temperature (500 K). We will still be left with a
potential to do work (= exergy of hot gases and cooler air entering the heat exchanger – exergy
due to the cooled gases and heated air leaving the heat exchanger) which can be used to pro-
vide electricity to the home.

b. Relation Between ηAvail,f and ηAvail,0 for Work Producing Devices

If the exit state from a work producing device is the dead state, then the availability
efficiency is ηAvail,0 = (work output) ÷ (input exergy). This ratio informs us of the extent of the

conversion of the input exergy into work, but gives no indication as to whether the exergy is
lost as a result of irreversibility or with the exit flow. The flow availability  efficiency ηAvail,f,

which compares the exergy ratio leaving a system to that entering it, is able to convey that in-
formation.

F. CHEMICAL AVAILABILITY
Our discussion thus far has considered systems for which the dead state is in

thermo–mechanical (TM) equilibrium. For instance, consider compressed dry air that is con-
tained in a piston–cylinder assembly that is placed in an ambient under standard conditions.
The air may be expanded to its dead state and, in the process, produce work. At the dead state



the air exists in thermo–mechanical equilibrium with its environment. If the constraint, i.e., the
piston, between the air and the ambient is removed, no change of state occurs within  the cyl-
inder  or the ambient. Now, assume that the cylinder initially contains a mixture consisting of
40% N2 and 60% O2, while the ambient still contains dry air (consisting of 79% N2 and 21%
O2). Although thermo–mechanical equilibrium is achieved when the gas is fully expanded to
restricted dead state conditions (thermo-mechanical equilibrium), mass transfer occurs when
the constraint is removed, i.e., the composition within the cylinder changes irreversibly. Recall
that chemical potential of species k is the same as Gibb´s function which depends upon species
concentration. Thus, the difference in concentration between the gas in the system and air in
the ambient leads to difference in Gibb´s function and hence irreversible mass transfer of spe-
cies k (Chapter 3). The ambient gains O2 molecules, trying to alter its partial pressures in the
environment. The overall composition of the combined isolated system (piston–cylinder and
ambient) is not the same as it was before implying that the entropy of the isolated system must
have increased. Therefore, even if a system exists in thermo–mechanical equilibrium, this does
not assure a zero entropy increase when the constraints upon it are removed.

Similarly, consider a turbine in which compressed air is expanded to the dead state
which exists at standard conditions. Upon discharge to the dead state, it exits the turbine with
negligible kinetic energy and its state does not change, since the air exists in
thermo–mechanical equilibrium with the ambient. On the other hand, if compressed nitrogen is
expanded through the turbine, its state will change from pure nitrogen to an air–nitrogen mix-
ture as it mixes with the ambient air. In this section we will discuss a methodology to deter-
mine the optimum work in cases where thermo–mechanical equilibrium exists, but irreversible
mixing occurs. If somehow, the N2 is released at pressure equal to ambient partial pressure of
N2, then there is no irreversible mixing and chemical equilibrium now exists in addition to TM
equilibrium. We wish to derive relations for the optimum work when matter reaches thermo-
mechanical-chemical (TMC) equilibrium. Before doing so, we will briefly describe semi-
permeable membranes. These membranes are permeable to specific species only, e.g., if dirty
water is filtered through a charcoal bed, the bed can be designed to be permeable mostly to
water, but impermeable to any particulate matter that it carries. Similarly, semipermeable
membranes can be designed to separate water (solvent) and salt (solute), and gas mixtures.

1. Closed System
We now discuss thermo–mechanical–chemical equilibrium. In the following we pre-

sent a methodology of achieving TMC equilibrium followed by brief derivation. Consider a
cylinder containing an ideal gas mixture consisting of 40% N2 and 60% O2 by volume which
has expanded from initial state  to the final restricted dead state (Figure 16), i.e., in thermo-
mechanical equilibrium with the ambient. Once in the TM state the cylinder can be divided
into two chambers A and B by a partition and constrained by two pistons placed on either side
of the partition that can move independently, as shown in  Figure 16. The partial pressures of
oxygen and nitrogen in the cylinder are pO2,0= 0.6 and  pN2,0 = 0.4 bars, respectively, while the
corresponding ambient pressures are pN2,∞ = 0.79 and pO2,∞ = 0.21 bars. Next, a semi-

permeable membrane that is only permeable to O2 replaces the partition. One piston, say A, is
then moved so as to decrease the pressure in chamber A without altering its temperature.
Therefore, the partial pressure of O2 in chamber A decreases below its corresponding value in
chamber B and, consequently, oxygen molecules migrate across the membrane from B to A
(Chapter 1 and Chapter 3). By maneuvering the piston to achieve very low pressure, virtually
all of the oxygen can be transferred from chamber B into A. Next, the O2–permeable mem-
brane can be replaced with one permeable to nitrogen and all N2 molecules can be transferred
from A into chamber B. By so manipulating the two pistons and the semipermeable mem-
branes, the two components can be separated so that chamber A consists of only O2 and cham-
ber B consists of only N2

Once the separation process is completed semipermeable membrane is  replaced with
a partition impermeable to either of the species, the pistons A and B can be moved so that pN2,B



= pN2,∞ and  pO2,A = pO2,∞  (Figure 16d), i.e., same as the partial pressures of the two species in

the environment. Note that T0 = T∞ in this section of the chapter. Isothermal work called

chemical work Wch,02 is obtained from chamber A, since pO2,∞< pO2,0 (the initial partial pressure

of oxygen), but compression work must be performed on chamber B for which pN2, ∞ > pN2,0.

The pistons A and B can now be removed and replaced with rigid semipermeable membrane
pistons that are, respectively, permeable to O2 and N2. There can not be transfer of species
across this membrane since partial pressures are the same. In this manner chemical equilibrium
will be achieved in the combined isolated system consisting of the chambers A and B and the
ambient.

Thus, the work can be obtained through a two–step process consisting of (1) the work
obtained during expansion from the initial state to that in the thermo–mechanical equilibrium
Wu,0, and (2) the chemical work obtained in proceeding from the thermo–mechanical state to
the thermo–mechanical–chemical equilibrium state Wch.

Therefore, for a closed system in TMC equilibrium,

Wu,opt, ∞∞∞∞ = Wu,opt,0 + Wch, where (85)

Wch = (U0–U∞) –T0(S0–S∞) + P0(V0–V∞) = (H0–H∞) – T0(S0–S∞) == G0–G∞. (86)

Where properties U∞ , S∞, V∞ are determined for O2 and N2 contained within the sections A and

B  at T0 = T∞ , pN2,∞ and pO2,∞. The work wu,opt,0 can be obtained using Eq. (28). On a unit mass

basis,

wch = (h0 – h∞) – T0 (s0 – s∞) = g0–g∞.

It is seen that the chemical work per unit mass is also the same as the difference in stream
availability between the restricted dead state, i.e., TM to  TMC equilibrium state (see next sec-
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Figure 16: Illustration of a device that may be used to achieve thermo–mechanical–chemical
equilibrium of a system with its environment. a) Gas mixture at initial  state; b): gas mixture
at dead  state; c) partition with semi-permeable membrane with two separate pistons; d)
separation of components and adjustments to partial pressures of ambient.



tion) and the chemical work can be represented as the change in the Gibbs free energy due to
the change in state from TM to TMC states.

For ideal gas mixtures g X g T pk k k0 0 0= ∑ ( ), , , where pk = XkP, and

g T p h T T s T R p g T P RT pk k k k k k( , ) ( ) ( ( ) ln( / ) ( , ) ln( / )0 0 0
0

0 0 01 1= − − = + .

Therefore,

w X T p X T pch k k k k k k k= ∑ − ∑ ∞ ∞φ φ, , , , , ,( ) ( )0 0 0 0 . (87)

and writing in terms of g

w X g T p X g T pch k k k k k k= ∑ − ∑ ∞ ∞, , , , , , ,( ) ( )0 0 0 0 . (88)

wch = − ∞φ φ0 , where (89)

,  φ0 0 0 0 0= Σ X g T Pk k, , ( , ) , Xk = Xk,0 = Xk,e, and (90)

,  φ∞ ∞ ∞ ∞= Σ X g T Pk k, , ( , )0 . (91)

k. Example 11

it is at thermo–mechanical–chemical equilibrium.
Solution

The maximum work

w w wchmax, max,∞ = +0 , where (A)

wmax,0= φ  – φ0 . 

Now, φ  = u  – T0 s+ P0 v , where v  = 0.08314 × 2000 ÷ 60 = 2.77 m3 kmole–1. The

specific entropy, sN2
 = sN2

0 – R  ln (pN2/1) = 251.6 – 8.314 (ln(0.4×60)/1) = 225.2 kJ

kmole–1 K–1, and sO2
 = sO2

0 – R  ln (PO2/1) = 268.7 – 8.314 (ln(0.6×60)/1) = 238.9 kJ

kmole–1 K–1. The mixture initial specific entropy and internal energy are
s  = (0.4 sN2

 + 0.6 sO2
) = 233.4 9 kJ kmole–1 K–1, and

u  = (0.4 × 48,181+ 0.6 × 51,253) = 50,024 kJ kmole–1.

Therefore,
φ  = 50,024 – 298 × 233.4 + 100 × 2.77 = –19252.2 kJ kmole–1,

u0= 0.4 × 6190 + 0.6 × 6203 = 6197.8 kJ kmole–1,

s0  = 4(191.52–8.314×ln (0.4/1))+0.6(205.0–8.314

      ×ln (0.6/1))=205.2 kJ kmole–1 K–1,

v0 = 0.08314 × 298/1 = 24.78 m3 kmole–1,

φ0  = 6197.8 – 298 × 205.2 + 100 × 24.78 = –52473.8 kJ kmole–1. Therefore,

wmax,0 = –19252.2 – (–52473.8) = 33,221.6 kJ kmole–1. Since
wch = φ0  – φ∞ and

φ∞ = ΣXk φk ,∞

φO2 ,∞(T0,PO2,∞) = uO2
(T0,pO2,∞) – T0 sO2

(T0,pO2,∞) + P0 vO2
(T0,pO2,∞)

Determine the maximum work that can be performed if a gas mixture consisting of
40% O2 and 60% N2 is expanded from 2000 K and 60 bars to the dead state at which



= 6203 – 298 × (205.0 – 8.314 × ln (0.21/1)) + 100 × (0.08314 ×
298/0.21)

= –46981 kJ kmole–1.
Likewise,

φN2 ,∞(T0,pN2,∞)

= 6190 – 298 × (191.5 – 8.314 × ln (0.79/1)) + 100 × (0.8314 × 298/0.79)

= 6190–298 × 193.5 + 100 × 31.4 = –48,333 kJ kmole–1.

Therefore,
φ∞ = 0.6 × (–46981) + 0.4 × (–48333) = –47521.8 kJ kmole–1, and

wch = –52473.8 – (–47521.8) = –4952 kJ kmole–1.
wu, max, ∞= 33,221.6+ (-4952) = 28,269.6 kJ/mole

Remarks
The chemical work per kmole of mixture is negative, since a larger work input is nec-
essary to compress 0.4 kmoles of N2 from 0.4 bars to 0.79 bars as compared to the
work output obtained from the expansion of 0.6 kmoles of O2 from 0.6 bar to 0.21
bar.
It will be shown later that the expression for wch for an open system is similar to that

for a closed system. Several cases involving water, air–vapor mixtures, and product gas mix-
tures will be dealt with later in the context of open systems.

2. Open System
As before, we assume that the availability can be characterized by a two–step process.

First, the mixture is brought from a specified state to a dead state considering only thermome-
chanical equilibrium (i.e., there is no change in the system composition), and then allowing the
system components to arrive at phase and/or chemical equilibrium with the environment
(which is a mixture of specified composition, e.g., containing O2, N2, H2O, CO2, Ar, etc.).

a. Ideal Gas Mixtures
Assume that you travel with an unit mass (or a kmole) of an ideal gas mixture as it

enters a turbine and leaves it for the environment in a state as shown in Figure 17. Conse-
quently, the composition within the unit mass at Xk changes irreversibly when it enters the
environment at Xk,∞. In order to achieve TMC equilibrium we adopt the scheme illustrated in

Figure 18. The exiting gases (at the state (T0, P0) are passed through semipermeable mem-
branes in order to separate the mixture into its pure components. These components subse-
quently enter a chemical turbine so that the exhaust pressure of component k matches its par-
tial in the ambient. Using the generalized availability relation
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0

01 1

ψ ψ
,

where ψ̂ k  denotes the absolute stream availability of the k–th species in the mixture. For a
steady state of the system without any reservoir and any irreversibility,

˙ ˙ ˙ ( , , ) ˙ ˙ ( , , ), , ,
.

W N T P X N T P Xopt k k k
inlet

k k k
turb exit

0 0 0 0 0= ∑ − ∑ψ ψ , where (92a)

ˆ ( , , ) ˆ ( , , ) ( , , ) ˆ ( , , ),ψ k k k k k k kT P x h T P x T s T P X g T P X0 0 0 0 0 0 0 0 0 0= − =)
. (92b)

Recall that Eq. (92a) is still valid when chemical reactions occur where moles change (cf.
Chapter 13). If a system is nonreacting, then ˙ ˙ ˙ ˙N   N ,  N   Nk, in k, exit in exit= = . Recognizing that



˙ ˙ ˙
, ,W W Wopt opt ch∞ = +0 , where (93a)

˙ ˙ ˙ ( , , ) ˙ ˙ ( , , ) ˙
, ,

.
, ,W N T P X N T P X N wch k k k

turb exit
k k k

exits
k ch= ∑ − ∑ = ∑∞ ∞ ∞ ∞ψ ψ0 0 0 0 , and (93b)

ˆ ( , , ) ˆ ( , , ) ( , , ) ˆ ( , , ), , , , ,ψ k k k k k k kT P X h T P x T s T P X g T P X∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞= − =0

)
. (93c)

Note that T0 = T∞ , P0= P∞ , but Xk,0 ≠ Xk,∞.

Using Eqs. (92a) and (93b)

˙ ˙ ˙̂ ( , , ) ˙ ˙̂ ( , , ), , ,W N T P X N T P Xopt k k k
inlet

k k k∞ ∞ ∞ ∞ ∞= ∑ − ∑ψ ψ , and (93d)

Eq. (93b) can be rewritten in the form

˙ ˙ ˙ ˆ ˙ [ ˆ ( , , ) ˆ ( , , ), , , , ,W Nw N w N g T P X g T P Xch ch k ch k k k k k k= = = −∑ ∑ ∞ ∞0 0 0 0 0 0 , (94a)

ˆ ˆ ( , , ) ˆ ( , , ), , , , ,w g T P X g T P Xch k k k k k= − ∞ ∞0 0 0 0 0 0 . (94b)

Dividing Eq. (94a) throughout by Ṅ

 w
W

N
X w X g T P X g T P Xch

ch
k o ch k k k k k k= = = −∑ ∑ ∞ ∞

˙

˙ ˆ [ ˆ ( , , ) ˆ ( , , ), , , , , ,0 0 0 0 0 0 . (94c)

For an ideal gas mixture, Eq. (94b) has the form

State 0

 discharge

T0,P0

40% N2

60% O2

TM State
40% N2

60% O2

P = 1 bar

p

Environment
To, Po or T∞∞∞∞, P∞∞∞∞
TMC State
79% N2

21% O2

P = 1bar

Figure 17: Illustration of equilibrium with the environment at a restricted
(thermo–mechanical) dead state.

)



ˆ ln( / ), , , ,w RT X X Xch k k k k= ∞0 0 0 . (95)

For example if a  turbine operates with a single component, say pure nitrogen so that Xk,0

= 1 and Xk,∞ = 0.79 in the ambient (air), in this case

ˆ ln ,w RT Xch N= − ∞0 2
.

l. Example 12

N2 leaves the system separately at 0.79 bar in both the cases .

, ,

Environment
T∞∞∞∞ = 298 K
P∞∞∞∞ = 1 bar
21% O2, 79% N2

298 K O2, 0.6 bar

298 K

W
•

opt

W
•

opt ,o

Semi-permeable
membranes

W
•

ch

inlet i
60% O2

40% N2

1000K, 10 bar

Figure 18: Illustration of a method to achieve thermo–mechanical–chemical equilibrium for a
mixture of ideal gases.

What is the minimum work required to separate oxygen from air if the oxygen exits
the separation system at (1) pO2 = 0.21 bar and 298 K; and (2) pO2 = P = 1 bar , 298 K.



Solution
Air is supplied to a device at 298 K and 1 bar to separate O2 at 0.21 bar and 298 K,
while N2 will be discharged by the device to the atmosphere in chemical equilibrium
at a 0.79 bar pressure. Employing the availability relation,

w T P T P X T P Xopt air O O N O= − = + =ψ ψ ψ( , ) ( ( , , . ) ( , , . )), , , ,0 0 0 0 0 0 0 0 0 02 2 2 2
0 21 0 79 . (A)

Since ψ = h – T0 s, by simplifying Eq. (A) it may be shown that wopt = 0. No work is

required, since the sum
ψ ψ ψO O N O airT P X T P X T P

2 2 2 20 0 0 0 0 0 0 0 0 0 00 21 0 79, , , , ,( , , . ) ( , , . ) ( , )= + = = .

If the separated oxygen exits the system at a pressure of 1 bar, then work must be
done in order to compress it from 0.21 bar to the higher pressure, i.e., XO2,∞= 1, XO2,0

= 0.21. Using Eq. (95) or using isothermal compression at 298 K to raise the pressure
from 0.21 bar to 1 bar,

w RTch = 0

0 21

1 0
ln

.

.
 = –3867 kJ kmole–1 (of O2).

Remarks
Since the nitrogen must be discharged in a state of chemical equilibrium, one way to
achieve this is to separate the oxygen in a relatively small quantity δNO2 and to dis-

charge the remaining mixture (consisting mostly of air) directly to the atmosphere.
Applying the availability relation,

δWopt = (NO2,0 ψ̂ O2,0(T0, P0, XO2,0) + NN2,0 ψ̂ N2,0(T0, P0, XN2,0))

– δNO2 ψ̂ O2(T0, P0) – (NO2,∞ ψ̂ O2,∞(T0, P0, XO2,∞) + NN2,∞ ψ̂ N2,∞(T0, P0, XN2,∞)).

Since, NO2,∞ = NO 2 , 0  – δNO2, for small values of δN O2, ψ̂ O2,0 ≈ ψ̂ O2,∞ and ψ̂ N2,0

≈ ψ̂ N2,∞, so that

δWopt/δNO2 = ψ̂ O2,∞(T0,P0,XO2,∞)– ψ̂ O2(T0,P0) = ψ̂ O2,0(T0,P0,XO2,∞) – ψ̂ O2(T0,P0).

Therefore,

δWopt/δNO2 = RT0 ln XO2,∞ = –3867 kJ kmole–1 (of O2).

b. Vapor or Wet Mixture as the Medium in a Turbine
Oftentimes, turbines run on a single component that is condensable when cooled. For

instance, when steam is expanded to a dead state at 25ºC and 1 bar (at which it exists in
thermo–mechanical equilibrium with the environment) it liquefies, and the availability at the
turbine exit is

ψ ψ ψ( , ) ( )( ) ( ) ( ) ( )T P g g h T sH O H O H O H O0 0 0 0 02 2 2 2
= = = = = −l l l l . (96)

The properties for the liquid state can be obtained using compressed liquid tables (Tables A-
4A for H2O and A-5A for R 134A) or we can select the properties at the saturated  liquid states
at specified temperatures as an  approximation.

Moreover, the liquid from a turbine cannot be discharged into the ambient wet air
where the water vapor partial pressure is typically pH2O = 0.02 bars, since the liquid water so
discharged into wet air will partially vaporize and mix with the atmosphere irreversibly. In
order to avoid the irreversibility we can first expand the steam from its initial state T, P all the
way to PH20=0.02 and To=298K and subsequently release the steam after passing it through a
semipermeable membrane so that it is in equilibrium with the environment (cf. Figure 20). As



mentioned above, it is useful to consider expansion as the work performed during this
two–step process: Wopt, ∞∞∞∞ = Wopt,0 + Wch, (cf. Eq. (93a)).

However, there are some difficulties in using the tables (A-4C) for the enthalpy and
entropy of superheated vapors at pressures as low as 2 kPa and temperatures of 25ºC. At low
pressures ideal gas behavior for the vapor can be assumed. Since the enthalpy of ideal gases
does not depend upon the pressure,

h(T0,PH2O(g),∞) = h(T0,P
sat). (97)

Therefore, the enthalpy of superheated vapors at low pressures can be assumed to be the same
as that of saturated vapor at the same temperature. However, the entropy of the superheated
vapor does depend on pressure

s(T∞,pH2O,∞) = s(T∞,Psat)– R ln (pH2O,∞/Psat(T∞)), i.e.,

ψ∞ = hH O
sat

2
(T∞) –T∞ s(T∞,pH2O,∞) = hH O

sat

2
(T∞) –T∞ s(T∞,Psat) + RT∞ ln(pH2O,∞/Psat(T∞)), or

ψ∞ = gH O
sat

2
(T∞) + RT0 ln (PH2O,∞/Psat(T∞)) = +∞g T RT RHH

sat

2 0 0( ) ln( ) (98)

where the ratio (PH2O,∞/Psat(T∞)) is the relative humidity of water in air.

c. Vapor–Gas Mixtures
Consider a mixture containing water vapor (XH2O,0 = 0.2) and nitrogen (XN2,0 = 0.8)

that expands to 1 bar and 298 K, a state that is in thermo–mechanical equilibrium (Figure 19).
The expected partial pressure of water vapor at this dead state is 0.2 bar if it remains entirely in
the form of vapor. However, at pH2O = 0.2 bar the required temperature for water to remain as
vapor is 333 K. Therefore, the vapor will partially condense. For the vapor–N2 mixture to be in
restricted dead state requires that pH2O(g) = pH2O(g) 

sat  (298 K) = 0.032 bar. The partly liquid
water and remaining gaseous N2 may form a wet mixture. On the other hand typical wet air in
ambient may consist of vapor at pH2O(g) = 0.02 bars. For a TMC, system, therefore, the vapor
must be further expanded from 0.032 to 0.02 bar and all the liquid must be vaporized  and N2

must be discharged at partial pressures that are the same as the partial pressure in the ambient.
Figure 19 illustrates a device in which the vapor–gas mixture can be first expanded to

a state of thermo–mechanical equilibrium (liquid water, vapor and gaseous N2) following
which the two components are separated using semipermeable membranes. Each component is
expanded in a chemical turbine and then released into the ambient in
thermo–mechanical–chemical equilibrium. The total chemical work

w ch = XN2,0  ŵch,N2 + XH2O,0  ŵch,H2O, (99a)

and from Eq. (95)

ˆ ln ( / ), , ,w RT p pch N N N2 0 02 2
= ∞ . (99b)

Since a wet mixture may exist at T0, we must determine the molal Gibbs function of the mix-
ture. The molal Gibbs function of any species k at the saturated liquid state, its saturated vapor
state and for a wet mixture are identical. (Recall  from Chapter 3 that dG   =-S dT + VdP for a
closed system. When boiling occurs at fixed pressure, the temperature is also fixed, and dg = 0,
i.e., g is constant during phase change. Further details follow in Chapters 7 and 9.) Thus,

ŵCh, H2O =  ĝ  H2O,0  
sat (T0)  - ĝ  H2O, ∞  (T0, P0, XH2O, ∞), (99c)

where ĝH2O,∞(T0, P0, XH2O, ∞) = gsat
 H2O,0 (T∞) + R T0  ln(pH2O,∞/Psat (T0)) if the vapor is an ideal

gas. Simplifying



ŵCh,H2O, = ĝ sat
 H2O,0(T0) - ĝH2O,∞(T0, P0, XH2O, ∞), i.e.,

ŵch,H2O =- R T0 ln (pH2O,∞/Psat (T0)) = - RT RH0 ln( ) . (99d)

d. Psychometry and Cooling Towers
Moist air containing both dry air and water vapor is characterized by the following

parameters:
The humidity ratio or specific humidity or mixing ratio w = mv/ma, where mv denotes
the mass of vapor and ma the dry air mass. In a specified volume V, mv = (pvV)/(RvT)
and ma = (paV)/(RaT) where Pv and Pa are the partial pressures of vapor and air, re-
spectively. Further Rk = R /Mk  where the symbol Mk denotes the molecular weight of
species k (k= v and a). Therefore,

w = (Mv/Ma) (Pv/Pa) = 0.622 (pv/pa). (100)

The degree of saturation is the ratio of the vapor mass actually present at a specified
temperature and pressure to the maximum possible mass that could have been present
without condensation mv

sat  at the same temperature and pressure. Hence,

µ = mv(T,P)/ mv
sat (T,P) = Nv(T,P)/ Nv

sat (T,P). (101)
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Figure 19: A turbine running on a vapor–gas mixture.



The relative humidity  RH  is defined as the ratio of the water vapor mole fraction at a

specified temperature and pressure to the mole fraction that would exist under satu-
rated conditions at the same temperature and pressure, i.e.,

RH = Xv(T,P)/ Xv
sat (T,P)= (Nv(T,P)/N(T,P))/( Nv

sat (T,P)/Nsat(T,P)). (102)

In terms of partial pressures

RH = Pv(T)/ Pv
sat(T). (86´)

Since Nsat(T,P) = N(T,P) + Nv
sat  (T,P) – Nv(T,P) where N denotes the total number of

molecules, the relative humidity can also be expressed as

RH = µ (1 – Xv) + Xv = µ/(1 – Xv
sat (1 – µ)).

Using Psychometric charts  (Appendix Figure B.1) for given TDB (dry bulb temperature) an
TWB (wet bulb) the relative humidity can be determined. Replacing N2 with air in Figure 19
and from Eq. (95)

ˆ ln( ), ˆ ln
( ),

,
,

,
w RT

P

P
w RT

p

p Tch air O
air o

O
ch H O O

H O

H O
sat= = − ∞

2
2

2 0

or

 ψ̂ ch,air = Xair RTO ln(pair, 0/Po) - XH2O R T0 ln(RH) (103)

where RH = p p TH O H O
sat

O2 2, / ( )∞

m. Example 13

Rigid
Semi-
permeable
membrane

H2O
T0, PH20,∞∞∞∞

p ,

p ,

Figure 20: A turbine with exhausting a condensable species (e.g., water).

A wet cooling tower is used to cool the water discharged from the condenser of a
power plant. (Figure 21). Water enters the tower at 45ºC (state 1) and leaves at 25ºC
(state 2). Additional makeup water enters the tower at 25ºC. Air enters the tower at



sume cp,v = 0.603 kJ kg–1 K–1. Determine:
The mass flow rate of dry air; and
The optimum work.

Solution
With p1

sat (20C) = 0.02339 bars and p1
sat (35C) = 0.05628 bars. Using Eqs. (86´) and

known values of RH, pv1  =0.0082 bars, pv2 = 0.0394 bars. Hence pa,1 = 1-0.008 =
0.992 bar, and pa,2 = 0.961 bar. Then from Eq. (100), w1 = 0.0051, w2 = 0.025 (Alter-
nately use psychrometric charts in Appendix Fig B-1). Using constant specific heats
ha,1 = cpa T (in C) = 20  kJ kg–1, ha,2 = 35 kJ kg–1, and from the Table A-4, hv1 =
2547.2, hv2 = 2565.3, sg (25C) = 8.558, with R= 8.314/18.02=0.461 kJ/kgk, sg1=sg

sat

(25C) - Rln(pv1/Pv
sat (T1))= 8.6672  kJ/kg K, sg2 = 8.3531 kJ/kg K, hf,3 = 188.45 kJ

kg–1, sf,3 = 0.6387 kJ kg–1 K–1, hf,4= hf,5= 104.89 kJ kg–1 K–1, sf,4 = 0.3674 kJ kg–1 K–1.
From the mass balance for dry air

ṁa1 = ṁ a 1  = ṁ a.
For water

 dmwater/dt = ṁv1 + ṁ f3 + ṁ f5- ṁ v2 - ṁ f4, where
ṁf5 = ṁv1 - ṁv2

Dividing throughout by ma,
ṁf5/ ṁa = ṁ v2/ ṁa - ṁ v1/ ṁa = w2 - w1, and
ṁf5/ ṁa = 0.025 - 0.005 = 0.020 kg of water per kg dry air.

Through an energy balance
dE/dt = Q̇  - Ẇ + ṁ v1 h v1 + ṁ a1 h a1 + ṁ f3 h f3 + ṁ f5h f5

- ṁ v2 h v2- ṁ a2 h a2 - ṁ f4 h f4.
Dividing by ma and assuming steady state,

0 = Q̇ /ma - Ẇ/ ṁa + ṁ v1 h v1/ ṁa + ṁ f3 h f3/ ṁa + ṁ f5h f5/ ṁa

   - ṁ v2 h v2/ ṁa - ṁ f4 h f4/ ṁa.
Since Q̇  = 0, Ẇ = 0, ṁ f4  = ṁ f3, using the mass balance equation,

ṁ f3/ ṁa = (w2 h v2 + h a2) - (w1 h v1+ h a1) - (w2 - w1)h f5)/(h f3 - h f4)
= ((0.025×2565.3+35)-(0.005× 2538.1+20)

– (0.02)×104.9)/(188.45 - 104.9)

= 0.794 kg of water per kg dry air.

The optimum work

make up water

wet air in
25°°°° C, 35%

Cold water
out

warm
water in

wet air in
25°°°° C, 35%

Figure 21: Illustration of a wet cooling tower.

20ºC and 35% relative humidity, and leaves it at 35ºC and 70% relative humidity. As-



Ẇopt = ṁa ψa,1 + ṁv1 ψv,1 + ṁf,3 ψf,3 + ṁf,5 ψf,5– ṁa ψa,2

  – ṁv,2 ψv,2 – ṁf,4 ψf,4, i.e.,

wopt = ((ha,1 – ha,2 – T0(sa,1– sa2))  + w1  (hv,1 –  T0 sv,1) - w2 (hv,2 –  T0 sv,2)
        + ṁf3/ ṁa (hf,3 – hf,4 – T0(sf,3– sf,4)) + (w2 - w1 }ψf,5.

ψf,5 = hf,5– T0sf,5= 104.89 – 298×  0.3674 = -4.595 kJ/kg

wopt = (– 15 – 298 × (1 ln (293÷308) – 0.287 ln (0.992÷0.961)))

+ 0.005  (2538.1 – 298×(8.6672 -0.461 ln  (0.0082/0.02339)))

– 0.025 × (2565.3 – 298×(8.3531 -0.461 ln  (0.0394/0.05628)))

+ 0.794 (188.45-104.89 – 298 × (0.6387-0.3674)) + 0.02× (-5.595)

=  (2.594 +0.005×(-188.722) –0.025× 27.0909 + 0.794× 2.713 – 0.112

= 3.015 kJ kg–1 (of dry air).
Expressing in kJ per kg of water pumped,

wopt  =  3.015/0.791 = 3.811 kJ kg–1 of  water pumped to cooling tower.
For air we use reference temperature as 273.15 K, and reference pressure as 1 bar.

ψ2= 35 – 298×(1 ln (308/273.15) – 0.287 ln (0.961/1)) + 0.025(2565.3

– 298×(8.3531 -0.461 ln  (0.0394/0.05628))

 = - 3.79 + 0.025 × (27.09) = -3.11 kg of mix at 2 per kg of dry air.

Now,
ψ2′ =ψ2 - ψ0, where

ψ0 = 25 – 298×(1 ln (298/273.15) – 0.287 ln (0.961/1)) + 0.025(2547.2

    – 298 × (8.558 -0.461 ln  (0.05628/0.03169))

     = - 4.60  + 0.025 × 75.82 =-2.71 kJ of mixture per kg of dry air.

ψ2′ =ψ2 - ψ0= -3.11+2.71 = -0.04 kJ kg–1 dry air.

ψ∞ = 25 – 298×(1 ln (298/273.15) – 0.287 ln (0.992/1))

     + 0.025(2547.2 – 298×(8.558 -0.461 ln  (0.0082/0.03169))

     = - 1.8  + 0.025 × (-188.9) = -6.523 kJ kg–1 dry air.

wch =  ψ0 - ψ∞ = -2.71+6.523 = 3.81 kJ kg–1 dry air.

Remarks
The results are provided per kg of dry air since dry air mass flow remains constant
during cooling or heating of wet mixtures.
The optimum work is lost in the power plant. The design could have used (1) a Carnot
engine to obtain work from the warm water, (2) run a heat pump to heat the air, (3)
vaporize some water, and (4) add vapor to the exiting air stream.
The same method can be used to determine the work required to separate water vapor
from air so that the vapor does not condense on the evaporator coils in air condition-
ing devices (and, consequently, does not reduce the heat transfer rate).

G. INTEGRAL AND DIFFERENTIAL FORMS

1. Integral Form
 Consider a control volume for which mass with an availability Θ leaves the control

surface of an elemental area dA with velocity a 
r
v . The surface is at a temperature T and the

availability Q̇  (1- T0/T) associated with the heat ( ˙ " )
r r
Q dA•  leaves the elemental control surface

dA
r

. The appropriate formulation in the integral form is

ρ ρψ( ) ˙ ( / ) ˙ ˙e T s dV v dA q T T dA w dV i dVcv cs cs cv cv−∫ = − ⋅∫ − ′′ − ⋅∫ − ′′′∫ − ′′′∫0 01
r r r

. (104)



This relation implies that the accumulation rate = -availability leaving the c.v  - availability
exiting with heat - availability exiting with work – availability loss rate. Note that when the
mass, heat and work enter the c.v., the first three terms on the right are positive due to the
vectorial notation.

2. Differential Form
The differential form of this relation can be obtained using the Gauss divergence theorem,

i.e.,

ρ∂ ∂ ρψ( ) / ˙ ( / ) ˙ ˙e T s t v q T T w i− = − ∇ ⋅ −∇ ⋅ ′′ − − ′′′ − ′′′0 01
r r r

, (105)

where e denotes the energy and the availability loss per unit volume ˙ ˙′′′ = ′′′i T0σ . Applying the

mass conservation equation and the Fourier heat conduction law ˙ ′′q = – λ
r
∇ T to Eq. (105),

ρ∂ ∂ ρ ψ λ( ) / (( )( / )) ˙ ˙e T s t v T T T w i− + ⋅∇ = ∇ ⋅ ∇ − − ′′′ − ′′′0 01
r r r r

(106)

the availability equations can also be obtained by coupling the entropy balance and energy
conservation equations in the manner ((availability balance) = (energy conservation) –
T0(entropy balance)). Mixing and velocity, temperature, and species concentration gradients
cause a loss in availability.

3. Some Applications
Using Eq. (90), the availability of the hot gases within a boiler can be mapped if the

local state data is available. Locations where the availability loss rate is large can be identified.
At steady state, neglecting both the kinetic and potential energies, e = h and Eq. (106)

simplifies to the form

ρ λr r r r r
v h T s T T T w i⋅ ∇ − ∇ = ∇ ⋅ ∇ − − ′′′ − ′′′( ) (( )( / )) ˙ ˙

0 01 (107)

In the absence of internal temperature gradients, for a reversible process

ρ ψr r
v wopt⋅∇ = ′′′ , i.e., (108)

the local value of ψ is a measure of reversible work for a steady state adiabatic system con-

taining negligible kinetic and potential energy.
For an isothermal turbine performing reversible work, Eq. (90) may be expressed as

ρ∂a/∂t + ρr r
v g w⋅∇ = − ′′′ , (109)

where a = u – Ts, and g = h – Ts. Therefore, changes in the Helmholtz and Gibbs functions are
measures of work in reversible systems. In a closed system ρr r

v g⋅∇  = 0 so that ∂a/∂t = ˙ ′′′w /ρ
= ẇ  which is the work rate per unit mass. Since, the system is internally reversible, i.e., there
are no internal gradients, i.e., A2 – A1 = –W.

On the other hand in a steady open reversible system

ρr
v g w⋅ ∇ = − ′′′( ) ˙ . (110)

The advective term is absent in nonflow systems and, consequently, Eq. (106) simplifies to the
form

ρ∂ ∂ λ( ) / ( ( / )) ˙ ˙e T s t T T T w i− = ∇ ⋅ ∇ − − ′′′ − ′′′0 01 . (111)

For instance, if a large pot of coffee is cooled such that it is internally isothermal at all instants,
this relation can be expressed as

ρ∂ ∂ ∂ ∂ ρ ∂ ∂u t T s t c T T T t i/ / ( / ) / ˙− = − = − ′′′0 01 , (112)



since for this case de = du = c dT, and ds = c dT/T. The variation of the coffee temperature
with time is related to the availability loss rate per unit volume. Similar analyses are valid for
the cooling of solids, such as hot steel billets and associated loss in availabilities.

n. Example 14

within the boundary layer is given by the expression

Θ = 1 – 2 ξ –+ 2 ξ 3 – ξ 4, where (A)

ξ = y/δ(x), (B)

where δ(x) = C x1/2, C is a constant   and

Θ = (T – T∞)/(Tw – T∞). (C)

δ(x) = 0.005 m, determine the availability loss rate per unit volume at the wall.

What is the availability transfer rate associated with the heat flow at the wall?
Solution

For a steady non–work–producing two–dimensional process, the simplified differen-
tial form of availability balance equation is
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At the wall vx = vy = 0 so that
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At the blade wall T = Tw so that

′′′ = − +
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Using Eqs. (B) and (C)

(∂T/∂y)x = (dT/dξ)(∂ξ/∂y)x = dΘ/dξ (Tw – T∞)/δ(x). (G)

At the wall

(∂T/∂y)x|y=0 = dΘ/dξ |ξ=0 (Tw – T∞)/δ(x). (H)

From Eq. (A),

dΘ/dξ = –2 + 6ξ2 – 4ξ3, and (I)

Using the differential form of the generalized availability balance, obtain an expres-
sion for the availability loss rate per unit volume at the wall.
Obtain an expression for the availability loss rate per unit volume in the free stream.
If T∞ = 1300 K, Tw = 900 K, the thermal conductivity λ = 70×10–6 kW m–2 K–1, and

A turbine blade of length L is subjected to hot gases at a temperature T∞. The blade

surface temperature Tw is maintained by wall cooling. The blade can be simulated as a
flat plate subjected to laminar flow of hot gases at T∞ so that a boundary layer δ(x)

grows over the plate as shown in Figure 22. At steady state, the temperature profile



dΘ/dξ(ξ=0) = –2.

Using this result in Eq. (H),

(∂T/∂y)x|y=0 = –2 (Tw – T∞)/δ(x). (J)

Similarly,

(∂2T/∂y2)x = (d/dξ)((dΘ/dξ)(Tw – T∞)/δ(x)) = (d2Θ/dξ2)(Tw – T∞)/(δ (x))2. (K)

Since d2Θ/dξ2(ξ=0) = 0,

(∂2T/∂y2)x|y=0 = 0. (L)

Using Eqs. (F), (J), and (L),

′′′ = −= ∞i T T T T xy w w0 0
2 2 24λ δ( ( ) / )( / ( ( )) ). (M)

The availability loss rate is always a positive quantity. In the free stream, ∂T/∂y = 0,

and ∂2T/∂y2 = 0. Therefore for the free stream

′′′i = 0 (N)

Using  Eq. (M),
′′′i  = 70×10–6 × 298 × ((900 – 1300)2 ÷ 9002) × (4 ÷ 0.005)2 = 2637 kW m–3.

For forced convection δ(x) = C x1/2 where C denotes a constant so that δ  = C2x.

Therefore, using Eq. (M), the dimensionless availability loss rate is
′′′i (0) C2x/(λ T0) = 4(1– T∞/Tw)2 = 4(1– 1300 ÷ 900)2 = 0.79.

The local availability flow rate into the plate due to the heat transfer is
˙ ′′q y=0 (1–T0/Tw) = –λ(∂T/∂y)y=0(1–T0/Tw)

                           = –λ dΘ/dξ(ξ=0) (Tw – T∞) (1–T0/Tw)/δ(x)

= 70×10–6 × 2 × (–400) × (1– 298 ÷ 900) ÷ 0.005 = –7.492 kW m–2.

Remarks:
Assuming a 2.7m2 of total blade area, there is a net 20 kW loss in availability. This trans-
fer should be compared with the work gain due to the higher operational temperature. For
instance, (1–T0/Tg) is the availability transferred from the gas at Tg in the absence of

y

x

Tg

Tw

T(y)
T

L

Figure 22: Laminar flow over a flat plate.



cooling. This availability is increased if cooling is used since operating gas temperature is
increased to Tg

′  = Tg + ∆Tg and, consequently, the availability increase is

((1–T0/Tg
′)–(1–T0/Tg))≈  (∆ T gT0/T

2
g) per unit amount of heat transferred from the hot

gases. The availability loss due to the blade cooling is 2Abλ(Tw–Tg)(1–T0/Tw)/ δ(x), where

Ab denotes the blade area. If the availability gain is to be larger than the loss, then
| ˙ |"Q ∆TgT0/T

2
g > (2λ(Tw–Tg)(1 – T0/Tw)/ δ(x)), where | ˙ |"Q  is the heat or energy loss from

the hot gases per unit blade area.

o. Example 15

the base of a fin of length L,
Q̇ w = λAf(Tw – T0) tanh αL,

m–2 K–1. Note that C/Af = 4/d for a circular cross section.
What is the maximum possible power that can be developed using a “hot head”?

Solution
Selecting the control volume around a single hair,

I = Q̇ w (1 – T0/Tw) – Q0 (1– T0/T0) = Q̇ w (1 – T0/Tw),
where Tw = 310.2 K (average body temperature). Now,

Q̇ w = λAf(Tw – T0) tanh αL, where L = 10–2 m,

α = (hHC/λAf)
1/2 = (0.1 × 4 ÷ (0.0001 × 0.036))1/2 = 333.3 m–1. Therefore,

Q̇ w = 0.036×(π(1×10–4)2÷4) (310.2 – 298) × tanh (333.3×0.1×10–4)

= 0.036×3.1427×0.12÷4 × 10–4 (310.2–298) × 1 = 3.7×10–7 W

I = 3.45×10–7 × (1–298÷310.2) =1.36×10–8 W

Hair

L

T0

TW

C.V

Figure 23  Availability analysis for human hair.

where α = (hHC/λAf)
1/2, C denotes the hair circumference, Af is the cross-sectional

area of the fin (hair), and hH is the convective heat transfer coefficient. Use the values
ρ = 165 kg m–3, λ = 0.036 W m–1 K–1, the hair diameter d = 0.1 mm, and hH = 0.1 W

Determine the irreversibility loss for a human hair of length L. The hair has a surface
temperature of Tw at one end and an adiabatic tip at the other end, and is exposed to
an ambient temperature T0. The literature informs us that the heat transfer rate from



The maximum possible work rate equals the actual work rate plus the irreversibility
rate. Since in this case no work is done, the irreversibility is the maximum possible
work.

Remarks
Shorter hair will have a lower heat loss.
In order to reduce this irreversibility, you can couple a Carnot engine to each strand of
hair and use the work so obtained to propel yourself!
Since the human body is warm, body heat loss through our skin occurs at the rate of
about 1 kW. Again, a Carnot engine may be used to extract work. Since the Carnot ef-
ficiency will be 1 – 298/310 = 0.039, the power developed would be roughly 3.9 W
which is of the order of power of a night lamp.

H. SUMMARY
We have discussed mass and energy conservation in Chapter 2, the entropy balance equa-

tion in Chapter 3, and the availability balance equation in this chapter. Most thermodynamic
systems can be efficiently designed with two conservations and two balance concepts. One can
perform a coupled thermodynamic and economics analysis which provides a cost and effi-
ciency basis to account for the lost energy in each component of a larger system. However, in
order to use these relations and perform analyses, thermodynamic properties (e.g., h, s, u, v,
etc.) must be known. These can either be directly obtained from experiments or by using real
gas state equations or ideal gas properties which are considered next in Chapters 6 and 7.
Properties of matter that consist of a mixture of gases are discussed in Chapter 8. Chapter 9
will present a stability analysis which will explain the formation of multiples phases of a single
component, while Chapter 10 will present the enthalpy and entropy relations for reacting spe-
cies. Chapter 5 considers the subject from the perspective of thermodynamic postulates with-
out using the more conventional laws that we have discussed thus far in Chapters 2 and 3.
However, Chapter 5 is not essential for following the material presented in subsequent chap-
ters.



Chapter 5

 5. POSTULATORY (GIBBSIAN) THERMODYNAMICS

A. INTRODUCTION
In the previous chapters we discussed the thermodynamics laws by employing a clas-

sical approach. In this chapter we will discuss the subject using a set of postulates or rules,
fundamental state equations, and other mathematical tools such as Legendre transforms.  We
will first establish the classical rationale behind such an approach and relate it to some postu-
lates (without invoking any laws). Thereafter, we will introduce the Legendre transform using
which it is possible to transfer an equation from one coordinate system to others (e.g., from an
entropy–based coordinate to a temperature–based coordinate). Next, we will relate the energy
to work. We will discuss the postulates in a mathematical context, present the entropy and en-
ergy fundamental equations, and describe intensive and extensive properties by using the prop-
erties of homogeneous functions. Finally, we will derive the Gibbs–Duhem relation using fun-
damental and Euler equations.

B. CLASSICAL RATIONALE FOR POSTULATORY APPROACH
We have seen that a Stable Equilibrium State (SES) is achieved when the entropy

reaches a maximum value for fixed values of U, V and m (or for fixed number of moles N1,
N2, …). The internal energy of an open system that exchanges mass with its surroundings is
represented by the relation

U = U(S, V, N1, N2, N3, ...),  (1)

which is also known as the energy fundamental equation. The internal energy is a single valued
function of S,V, N1, N2, N3, …, since there is a single stable equilibrium state for a specified
set of conditions. Upon differentiating Eq. (1) we obtain the relation

T

U

S

V

fixed
A

AU

AS

Figure 1: Plot of U vs. S at specified values of V.



dU = TdS – PdV + ΣµkdNk, where (2)

∂U/∂S = FT = T is the affinity  or force  driving heat transfer (cf. Figure 1), ∂U/∂V = FP = –P is

the affinity driving mechanical work, and ∂U/∂Nk = Fm,k =  µk is the affinity that drives mass

transfer (say, during a chemical reaction or a phase transition). In general, the partial derivative
∂U/∂ξj represents the force driving a parameter ξj. For instance, if ξi = Ni, i.e., the number of

moles Ni of the i–th species in the system, then ∂U/∂Ni = µi represents the chemical potential

of that species.

Rewriting Eq.(2),

dS = (1/T)dU + (P/T)dV – Σ(µi/T)dNi, or S = S(U, V, N1, N2, ...). (3)

Equation (3) is called the entropy fundamental equation. It implies that the equilibrium states
are described by the extensive set of properties (U, V, N1, ..., Nn), which is also known as
Postulate I.

We have seen that the entropy is a single valued function (for prescribed values of U,
V, and m), since there is a unique stable equilibrium state. The fundamental equation (cf. Eq.
(3)) is written in terms of extensive parameters. Each sub–system in a composite system can be
described by the fundamental equation. However, the equation cannot be applied to the com-
posite system itself. (This is also called Postulate II.) Equations (1) and (3) are, respectively,
the energy and entropy representations of the fundamental equation, and these are valid only in
a positive coordinate system in which the values of the variables U, V, N1, ... , S > 0. We can
define (∂S/∂U)V, Ni

= FT = 1/T, T(∂S/∂V)U, Ni
= FP = P, etc. for any system that changes from

one equilibrium state to another. This definition fails for systems that do not exist in equilib-
rium states.

T

AS

A

U

S

V fixed

F

G

S

Figure 2: A plot of U vs. S plot at specified values of V showing
similar temperatures (slopes) at two different values of S.



It is possible to generalize Eq. (3) in the rate form as

dS/dt = Σ(dS/dxk)(dxk/dt) = ΣFk Jk. (4)

where xk ‘s are U, V, N1, N2 etc..  For a single component system, Eq. (4) yields S = S(U,V,N)
or S = S(U,V,M) so that s = s(u,v), i.e.,

1/T = (∂s/∂u)v, and P/T = (∂s/∂v)u. (5)

These relations are valid only in the octant where (u,v > 0), and 1/T and P/T represent tangents
to the S–surface in the (u,v) plane. It is possible to have identical values of P/T and 1/T for
various combinations of values of s, u and v. Examples of this include the saturated liquid and
saturated vapor states for a specified pressure. Even though these states correspond to identical
P and T, the values of s, u and v differ for the two states (cf. Figure 2).

1. Simple Compressible Substance
Since Eq.(1) is a first order homogeneous equation, the application of Euler equation

(cf. Chapter 1) yields

S
U

S
+ V

U

V
+ N

U

N
= Ui

i

∂
∂

∂
∂

∑
∂
∂

. (6)

Using the partial derivatives described by Eqs.(5),

TS – PV + ΣµiNi = U. (7)

The total differentiation of Eq. (7) and use of Eq.(2) yields the Gibbs–Duhem (G–D) equation,
namely,

SdT – VdP + ΣNi dµi = 0 (8)

Equation (8) gives the intensive equation of state and it is apparent that

T = T(P, µ1, µ2, ...). (9)

Dividing Eq.(8) by N and solving for dµ (for, say, species 1),

x1 dµ1 = – (S/N) dT + (V/N)dP – x2 dµ2 – x3 dµ3 – … – xn dµn. (10)

Since x1 = 1 –  x2 – x3 – … – xn, this results in an intensive equation of state that is the zeroth
order homogeneous function

µ1 = f(T, P, x2, x3, x4, ..., xn). (11)

As before, we see that (n+1) intensive properties describe the intensive state of an
n–component simple compressible substance.

C. LEGENDRE TRANSFORM

1. Simple Legendre Transform
Consider the relation

y = 2x 2 + 5 (12)

We call y as the basis function,  y = y(0), i.e.,

y(0) = 2x2 + 5. (13)

We can use a series of points to draw the curve ABCD (through point geometry) as shown in
Figure 3. The slope



y′(x) = ∂y(0)/∂x = ξ = 4x, i.e., (14)

y(0) = (1/8)ξ2 + 5. (15)

Can we draw the same curve y(0) vs x in the  y(0) - x plane which we drew with Eq. (13), but
just by using Eq. (15)? Given slope, we cannot place y(0) in y(0)-x plane.  Equation (15) is a
differential  equation, and by replacing x with the slope information regarding the value of x is
lost. From Eq. (15),

y(0) = f(ξ), (16)

which is a relation that does not provide the same information as the expression

y(0) = f(x). (17)

Therefore, we require a different function y(1)(ξ) that describes the curve y(0)(x). In the

context of Eq. (14) ξ = 4at x = 1, ξ = 8 at x = 2, and so on. A tangent drawn at point A (x =1)

intersects the y(0) axis at point E (y(0)  = 3) (Figure 3)  and one at point B (x=2)  intersects the
y(0) axis at  point F (y(0) = –3). The intercepts will be
denoted as y(1). The locus tangent to all the lines is the
curve y(0). Thus, we can construct the curve y(0)(x).
Hence, a curve may be drawn either along points (point
geometry, Eq. (12)) or with a series of slopes or lines
(line geometry). Line geometry requires a functional
relation between the intercept y(1)(ξ)  and ξ to draw the

curve as y(0)(x) while point geometry requires a func-
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y(1) =3
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y(0)

y (0) (x)

Slope ξξξξ=4 at x=1

K

M

L

Slope ξξξξ =12 at x=3

Slope ξξξξ =8 at x=2

Slope ξξξξ=12 at x=3

M

O

N
Q

Figure 3: Illustration of Legendre transform.

x 0 1 2 3
y(0) 5 7 13 23
ξ 0 4 8 12

y(1) 5 3 –3 –13
Table 1: Values of x, y(0), ξ and

y(1) for the basis function y(0) = 2x
+ 5.



tional relation between the ordinate y(0) and x. The line geometry relation is

y(1) = y(0) – ξ x. (18)

Replacing y(0) in Eq. (18) using Eqs. (15) and (14), we obtain the relation

y(1)(ξ) = 5 – ξ 2/4.  (19)

Equations (18) and (19) provide the same information as does Eq. (12). The functional relation
y(1) (ξ) is known as the first Legendre transform of y(0) with respect to x. For the above exam-

ple (cf. Eqs. (12)–(19)), Table 1 presents values of x, y(0), ξ and y(1) for the basis function (y(0)

= 2 x 2 + 5).
It is apparent from Eq. (18) or (19)  that the first Legendre transform slope of ξ is an

independent variable and y(1) is a dependent variable. In the context of the basis function x is
the independent variable and y(0) is the dependent variable. Differentiating Eq.(18)

dy(1) = dy(0) – dx ξ – x dξ y(1). (20)

From Eq. (17),

dy(0) = ξ dx, i.e., (21)

Using  the result in Eq.(20)

dy(1) = ξ dx – dx ξ – x dξ = –x dξ, or x = – ∂y(1)/∂ξ. (22)

a. Relevance to Thermodynamics
We cannot measure the entropy directly, so that it must be derived from other meas-

urements. We can use the relation U = U(S) and measure isometric temperatures, which repre-
sent the slope ξ = (∂U/∂S)V. Thereafter, the function A = y(1)(ξ) can be generated to construct

the U(S) curve.

a. Example 1
The following measurements are made of u(1) and T = (∂u/∂s)v.

T, K

Can you plot u(0) vs  s ; It is known for an incompressible liquid that

y(0) = u(0) = 273 c (exp (s/c) –1), (A)

for Eq. (A) to obtain an expression for u(1)(T).
Solution

At specified values of ξ the intercepts u(1) are known. Hence, the u(0)(s) curve can be

constructed from the above data.
b) Using the first Legendre transform,

u(0) = u(1) – (∂u/∂s)v,s = u(1) – Ts. (B)

Differentiating  Eq. (A)

(∂u0/∂s)v = 273 exp(s/c) = T, or s/c = ln (T/273). (C)

Using Eq. (C) in (A)

275 280 290 300 320 340
u(1), kJ kg–1 –0.030 –0.4 –2.3 –5.5 –16.2 –32.0

where the specific heat c = 4.184 kJ kg–1 K–1. Also apply the first Legendre transform



u(0)= cT – 273 c, and u(1) = c(ξ – 273) – ξc ln (ξ/273), where ξ = T. (D)

2. Generalized Legendre Transform
Consider the generalized expression for a basis function involving more than one

variable, i.e.,

y(0)=y(0)(x1, x2, x3, ..., xn) so that y(1) = y(0) – ξ1x1. (23)

The function y(1) = y(1)(ξ1) for prescribed x2, ..., xn, can also be used to describe Y(0). The first

Legendre transform with respect to x1 is expressed in the form

y x1

 (1) = y(1)(ξ1, x2, ..., xn) (24)

If x1, x3, ..., xn are held constant, the first Legendre transform with respect to x2

Y x2

 (1) = Y(1)(x1, ξ2, x3, ..., xn). (25)

Since

∂y(1)/∂x2 = ∂y(0)/∂x2 – 0 = ξ2, (26)

the second Legendre transform is

y(2) = y(1) – (∂y(1)/∂x2)x2 = y(1) – ξ2x2, i.e., (27)

y(2) =y(1) – ξ2x2, or (28)

y(2)(ξ1, ξ2, x3, x4...) = y(0)(x1, x2 ,x3..) – ξ1x1 – ξ2x2. (29)

Generalizing Eq. (29) to the m–th Legendre transform (where m<n),

y(m) =y(0) – Σi=1,m ξixi, and (30)

the n–th Legendre transform

y(n) = y(0) – Σi=1,n ξixi. (31)

In the context of the second Legendre transform,

dy(2) = dy(0) – dξ1dx1 – ξ1dx1 – dξ2x2 – ξ2dx2 = 

                       ξ1dx1 + ξ2dx2 + ξ3dx3 +.... – dξ1x1 – ξ1dx1 – dξ2x2 – ξ2dx2, i.e.,

dy(2)= ξ3dx3 + ξ4dx4 + … – dξ1x1 – dξ2x2, (32)

for m–th Legendre transform

dy(m)= Σj=m+j,n ξjdxj – Σj=1,m dξjxj, m < n, (33)

and the n–th Legendre transform

dy(n)= –Σj=1,n dξjxj. (34)

If, in the context of Eq. (32) ξ2, x3, x4, …, xn are held constant, then

(dy(2))ξ2,x3,x4... = –dξ1 x1, i.e., (35)



(∂y(2)/∂ξ1) ξ2 3 4, , ,...x x  = – x1. (36)

Similarly,

(∂y(1)/∂ξ1) x x x2 3 4, , ,... = –x1.

Likewise,

 (dy(2)) ξ ξ1 2 4 5, , , ,...x x = ξ3dx3, i.e., (37)

(∂y(2)/∂x3) ξ ξ1 2 4 5, , , ,...x x = ξ3 = (∂y(1)/∂x3) ξ1 2 4, , ,...x x = (∂y(0)/∂x3) x x x1 2 4, , ,..., and (38)

(∂y(2)/∂x4) ξ ξ1 2 3 5, , , ,...x x = ξ4 =(∂y(1)/∂x4) ξ1 2 3 5, , , ,...x x x = (∂y(0)/∂x4) x x x x1 2 3 5, , , ,... . (39)

If the variables in the basis function are extensive, then the Euler equation must be
satisfied so that

Σ i=1,n xi ∂y(0)/∂xi = Σi=1,n ξixi = y(0). (40)

Since, y(n) = y(0) – Σi=1,n ξixi, y
(n) = 0, and

Σi=1,n xi dξi = 0, (41)

which is known as the Gibbs–Duhem relation

b. Example 2

transforms.
Solution

The basis function is

y(0)(x1, x2,....x5), i.e., (A)

y(3) = y(0) – ξ1x1 – ξ2x2 – ξ3x3 (cf. Eq. 29), (B)

dy(3) = –(ξ4dx4 + ξ5dx5) – (x1dξ1 + x2dξ2 + x3dξ3) (cf. Eq. 32), (C)

dy(2) = – (ξ3dx3 + ξ4dx4 + ξ5dx5) – (x1dξ1 + x2dξ2), (D)

dy(1) = –(ξ2dx2 + ξ3dx3 + ξ4dx4 + ξ5dx5) – (x1dξ1), and (E)

dy(0) = –(ξ1dx1 + ξ2dx2 + ξ3dx3 + ξ4dx4 + ξ5dx5). (F)

Employing Eqs. (C)–(E),

(∂y(3)/∂ξ1) ξ ξ2 3 4 5, , ,x x = (∂y(2)/∂ξ1) ξ2 3 4 5, , ,x x x = (∂y(1)/∂ξ1) x x x x2 3 4 5, , , = –x1, where

y(1) = f(ξ1, x2, x3,...), i.e., ∂y(1)/∂ξ1 = – x1.

Differentiating with respect to x2,

∂y(1)/∂x2 = y2
(1) = ξ2, and . (∂/∂ξ2)(∂y(1)) = 1.

More generally,

Consider a basis function involving five variables. Obtain the first and third Legendre



∂y(m)/∂xk = yk
 (m) = ξk, k > m, and ∂/∂ξl(yk

 (m)) = ∂ξk/∂ξl.

For instance,
(∂y(3)/∂ξ2) ξ ξ1 3 4 5, , ,x x = (∂y(2)/∂ξ2) ξ ξ1 3 4 5, , ,x x = –x2, and

(∂y(3)/∂ξ3) ξ ξ1 3 4 5, , ,x x = –x3.

More generally,
∂y(m)/∂ξk = ∂y(m–1)/∂ξk = ... = ∂y(k)/dξk = –xk, k < m, and m ≠ n.

Employing Eqs. (C)–(F),
(∂y(3)/∂x5) ξ ξ ξ1 2 3 4, , ,x = (∂y(2)/∂x5) ξ ξ1 2 3 4, , ,x x = (∂y(1) /∂x5) ξ1 2 3 4, , ,x x x =

   (∂y(0) /∂x5) x x x x1 2 3 4, , , = –ξ5,

(∂y(3)/∂x4) ξ ξ ξ1 2 3 5, , ,x = (∂y(2)/∂x4) ξ ξ1 2 3 5, , ,x x = (∂y(1)/∂x4) ξ1 2 3 5, , ,x x x =

   (∂ y(0)/∂x4) x x x x1 2 3 5, , , = –ξ4,

(∂y(2)/∂x5) ξ ξ1 2 3 4, , ,x x = (∂y(1)/∂x5) ξ1 2 3 4, , ,x x x = (∂y(0)/∂x5) x x x x1 2 3 4, , , = –ξ5,

(∂y(2)/∂x4) ξ ξ1 2 3 5, , ,x x = (∂y(1)/∂x4) ξ1 2 3 5, , ,x x x = (∂y(0)/∂x4) x x x x1 2 3 5, , , = –ξ4,

(∂y(2) /∂x3) ξ ξ1 2 4 5, , ,x x = (∂y(1)/∂x3) ξ1 2 4 5, , ,x x x = (∂y(0)/∂x3) x x x x1 2 4 5, , , = –ξ3,

(∂y(1)/∂x5) ξ1 2 3 4, , ,x x x = (∂y(0) /∂x5) x x x x1 2 3 4, , , = –ξ5,

(∂y(1) /∂x4) ξ1 2 3 5, , ,x x x = (∂y(0) /∂x4) x x x x1 2 3 5, , , = –ξ4,

(∂y(1)/∂x3) ξ1 2 4 5, , ,x x x = (∂y(0)/∂x3 x x x x1 2 4 5, , ,
= –ξ3,

(∂y(1)/∂x2) ξ1 3 4 5, , ,x x x = (∂y(0) /∂x2) x x x x1 3 4 5, , , = –ξ2,

(∂y(0)/∂x5) x x x x1 2 3 4, , , = –ξ5,

(∂y(0)/∂x4) x x x x1 2 3 5, , , = –ξ4,

(∂y(0)/∂x3) x x x x1 2 4 5, , , = –ξ3,

(∂y(0)/∂x2) x x x x1 3 4 5, , , = –ξ2, and

(∂y(0)/∂x1) x x x x2 3 4 5, , , = –ξ1.

In general,
∂ y(m)/∂xk = ∂y(m–1)/∂xk … ∂ y(0)/∂xk = – ξk , m < k, and m ≠ n, and

y11
(0) = ∂2y(0)/∂x1

2, y 1k
(0) = (∂/∂x1)(∂y(0)/∂xk).

3. Application of Legendre Transform
We will now relate the Legendre transform methodology to various thermodynamic

relations.

c. Example 3

with respect to S and V, and the (n+2) Legendre transform for the basis function

U = U(S, V, N1, N2,..Nn). (A)

Show that G = ΣµkNk.

Solution
The first Legendre transform

U(1) = U(0) – S (∂U(0)/∂S)V, Nk
, i.e., (C)

U(1) = U(0) –TS. (D)

where T = ∂U(0)/∂S is the thermodynamic potential. Since (U – TS) = A,

Obtain the first Legendre transform with respect to S, the second Legendre transform



A = U(1) = U(0) – TS = U(1)(T, V, N1, N2,..Nn). (E)

The function U(1) = A(T,V,N1,N2...) is as fundamental equation, which is the intercept
of the curve U(0)(S). We can draw a series of lines with this intercept relation, the loci
of which yield U(0)(S). Likewise,

U(2) = U(0)–S(∂U(0)/∂S)V, Nk
–V(∂U(0)/∂V)S, Nk

= U(0)–TS–V(–P) = H–TS = G, i.e.,

U(2) = G(T, P, N1, N2,..Nn). (F)

The term U(2) is the intercept of the U(1)(V) curve, and –P is the slope of the U(1)(V) at
specified values of T or of U(0)(V) at specified values of S, i.e.,

∂G/∂(ξ1) = ∂G/∂T = S, and ∂G/∂(–P) = V. (G)

where ξ1 = T = (∂U(0)/∂S)V

Further, the (n+2) Legendre transform

U(n+2) = 0 = U(0) –TS + PV – N1 ∂U(0)/∂N1 – N2 ∂U(0)/∂N2 – ...

U(n+2) =0=  G – µ1N1 – µ2N2 – ... , i.e.,

G = Σµk Nk (B)

D. GENERALIZED RELATION FOR ALL WORK MODES
Recall that  for a multicomponent system,

dU = δQ – δW + ΣµkdNk. (42)

where   δW  =P dV for simple compressible system involving one reversible work mode.

In the following more work modes will be discussed.

1. Electrical Work
In case of electrical work a current I flows as a result of a potential E over a period dt

and the electrical work performed

δW = –E I dt = – E dqc, (43)

where  E is the electromotive potential.  The charge provided over time δqc, = I dt. For in-

stance, consider an electrical coil (system) which heats up a bowl of water. The volume of the
coils slightly increases by dV due to heating. Then the work expression is given as

δW = P dV– E dqc and dU = δQ – δW = T dS - P dV + E dqc and

hence U = U (S, V, qc) for this example.

2. Elastic Work
When an anchored rectangular rod of length L on a plate is stretched in the x–wise di-

rection due to a force Fx, the work done by surroundings on the rod

δW = – Fx dx = –Ps A dx = –Ps AL dx/L = –Ps V dε, (44)

where the stress Ps = Fx/A, A denotes the cross-sectional area, V the volume, and the linear
strain ε = dx/L. Ideally, once the force is removed, the rod will retain its original length and the



work will be recovered. (The Young’s modulus E = (∂Ps/∂ε)T and the isentropic Young’s

modulus ES = (∂Ps/∂ε)S.)

3. Surface Tension Effects
Surface tension can be  illustrated through Figure 4. Figure 4a shows a vapor bubble

surrounded by boiling liquid (during evaporation), while Figure 4b illustrates a drop sur-
rounded by vapor (during condensation). The fluid molecules at the surface of the bubble in
Figure 4a are under tension. We will call the bubble the embryo phase and the  boiling  liquid
the bulk mother phase. Beyond the interface MN, the molecules are faced by liquid molecules
(L) on one side (i.e., molecules at closer intermolecular spacing with stronger intermolecular
forces), while on the other side they are faced by vapor molecules (G) which are at a larger
intermolecular spacing with weaker intermolecular forces. Thus, the molecules at the surface
of vapor embryo are pulled towards L due to the very strong intermolecular forces. However,
such a pull results in an increase in the intermolecular spacing along MN that decreases the
liquid density at surface along MN, resulting in stretching forces. These effects (i.e., the de-
creased liquid density) persist over a small distance δ. Three regions are formed, namely, (1)

vapor of uniform density separated from (2) liquid of uniform density by (3) a layer of nonuni-
form density of thickness δ. Tensile forces exist on the surface that lies normal to this thick-

ness. At larger distances from the interface, liquid molecules are surrounded by other like
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Figure 4: Vapor embryo surrounded by mother liquid. (b) Liquid drop em-
bryo surrounded by mother vapor phase.



molecules and surface tension effects vanish. Here the and pressure equals the liquid pressure
Pliq. In the small thickness δ, the tensile force varies with distance r and hence P = P(r).

Consider a vapor bubble of radius av in a liquid. The net tensile force exerted by the
vapor at the mid plane of the bubble normal to the area A = πav

2 equals (Pv–Pliq)A. This force

pulls the molecules against the attractive forces within the layer δ´. At equilibrium,

(Pv – Pliq)A = σ´ 2πavδ, i.e., σ´ δ´ = (Pv – Pliq) A/C, (45)

where σ´ denotes the attractive force per unit area that counterbalances the pressure forces and

C the circumference. As δ´→0, σ'→∞. The thickness δ´→0 is a surface discontinuity and σ´δ´

= σ, which denotes the surface tension. Therefore,

(Pv–Pliq) = A/(Cσ), i.e., (46)

(Pv – Pliq) = 2 σ/av. (47)

which is known as the Laplace equation.
This discussion has considered the mother phase to be liquid enclosing a vapor em-

bryo phase. We can also develop the relations for the other scenario, e.g., for a condensing
water droplet, in which case the mother phase is vapor having its molecules farther apart with
weaker intermolecular forces, while the liquid embryo molecules exist at closer intermolecular
spacing. Mechanical equilibrium exists if the embryo (liquid) phase pressure is higher than that
of the mother phase (converse to the above example, cf. Eqs. (46) and (47)). For a condensing
drop of radius aliq that is surrounded by vapor at Pv, at equilibrium,

(Pliq – Pv) = 2 σ/aliq. (48)

More generally (Pembroyo–Pmother) = 2σ/a where a denotes the embryo radius.

In expanding  a bubble or increasing drop radius,  surface tension work  must be per-
formed. For e.g., consider a film of liquid contained within a rectangular wire whose sides are
L and W. If one of the the sides of width is pulled by dX , the  film the film area A increases
by L dx. The work done on the film

δW = –F dx = –σ L dx.

Likewise, as a bubble of radius “a” expands, work is performed to stretch its film surface  from
A = 4 π a2  to  A+ dA.

 δW = – σ dA. (49)

where dA = 8  π a da  or  dA =  2 dV/a  where V = (4 /3) π a3

4. Torsional Work
In case of torsional work,

δW = τ dθ (50)

where τ denotes the torque that causes an angular deformation dθ.

5. Work Involving Gravitational Field
Consider the energy change in the earth as it revolves around the sun

dE = dU + d(PE) + d(KE). (51)



For a closed system du = TdS – PdV + ΣµkNk, i.e.,

dE = T dS – P dV + Σµ k N k + d(PE) + d(KE) 

     = T dS –P dV + Σ(µk + Mk φk + M k v k
2/2) dNk, (52)

where Mk denotes the molecular weight of the k–th species available on the earth, and φk is the

potential energy of that species.

6. General Considerations
In general,

U = U (S, V, qc, E, A, … , N1, N2, ... , Nm) (53)

The number of independent variables equals the number of all work modes plus number of
species. In the context of Eq. (52), excluding any one thermodynamic property, the configura-
tion parameters include S, V, qc, E, A, … , and m constituents. In this case, if there are n con-
figurational parameters and m constituents, there are (m+n+1) independent variables that de-
scribe the system. Generalizing Eq (52),

U = U(S,x1,x2...xn,N1...Np), (54)

where x1 = V, x2 = qc, ... . In addition, with all other properties and components held un-
changed,

∂U/∂S = T, ∂U/∂x1 = –P, ∂U/∂x2 = E ... , ∂U/∂N1 = µ1, ∂U/∂N2 = µ2, ... (55)

The m th  Legendre transform of Eq. (54)  such that  1<m < n,

U (m)  = U – TS – Σi =1,m fixi, (56)

where fk = ∂U/∂xk denotes the driving force. For instance, xj could denote deformation due to

the application of a force fj. such as the deformation in V due to a pressure P. Taking (K+J+1)
th transform

U (J+K+1) = U  +PV – TS – Σi =1,J-1+K  fiZi (57)

E. THERMODYNAMIC POSTULATES FOR SIMPLE SYSTEMS
We will use four thermodynamic postulates (or rules) instead of stating thermody-

namics laws.

1. Postulate I
Equilibrium states of simple systems exist that are characterized completely by the

internal energy U, the volume V, and the mole numbers N1, N2,...Nn. of the chemical constitu-
ents. Thus, (n+2) variables are required to fix the state of a simple system. The internal energy
U for a closed system is defined by the relation

dU = δQ – δW. (58)

Postulate I is a state equation describing a system at equilibrium and can be mathematically
expressed in the form

U = U(S,V,N1,N2, ... , Nn), 

which is the energy fundamental equation for an n–component mixture. There are no unique
fundamental relations for all substances.



2. Postulate II
Processes that do not influence the environment change all systems with specified in-

ternal restraints in such a manner that they approach a stable equilibrium state for each simple
subsystem contained within them. In a limiting condition, the entire system is in equilibrium.
Postulate II resembles the Second Law, since it states that all systems in a nonequilibrium state
eventually reach equilibrium.

There exists a function S (called the entropy of the extensive parameters U, V, N1,N2,
... , Nn) of any isolated composite system that is defined for all equilibrium states having those
properties. The values assumed by the extensive parameters in the absence of an internal con-
straint are those that maximize S over the allowed constrained equilibrium states.

The equilibrium state is described by the relation

S = S(U,V, N1,N2, ... , Nn), (59)

Equation (59) is the entropy fundamental equation and is similar to the combined First and
Second Law in the engineering approach.

3. Postulate III
The entropy of a composite system is additive over its subsystems. The entropy is

continuous and differentiable and is a monotonically increasing function of the internal energy.
This postulate defines the entropy as an extensive property.

4. Postulate IV
Postulate IV is also known as the Nernst Postulate. For any system state

(∂U/∂S) V Nj, →0 as S→0. (60)

This postulate implies that the value of U increases with an increase in the entropy. The pos-
tulate is similar to the Third law of thermodynamics. Since (∂U/∂S) V Nj,  = T, T→0 as S→0.

The entropy is an extensive property and is a homogeneous function of degree 1. If
the values of U, and V are doubled, that of S is also doubled. However, the differentiation in
Eq. (60) accounts for the size increase in both U and S so that the temperature remains un-
changed. Therefore, T is a homogeneous function of U and V of degree 0.

F. ENTROPY FUNDAMENTAL EQUATION
The fundamental entropy equation described by Postulate II involves certain restric-

tions, namely,
The equation cannot involve derivatives, since integration will lead to the presence of
unknown constants.
The entropy is continuous and differentiable with respect to all of its arguments, since
the derivatives will yield intensive properties of matter (e.g., for a simple compressi-
ble substance, dS/dU = 1/T and dS/dV = –P/T).
S is a homogeneous function of the first degree (i.e., it is an extensive property).
For all appropriate values of U and S,

1/T = (∂S/∂U) V Nj, ≥ 0, or (61)

T = (∂S/∂U) V Nj, ≥ 0. (62)

d. Example 4
The state equation for the entropy of an electron gas in a metal is

S = C1 N
1/6 V1/3 (U–Uo)

1/2, (A)

where



C1 = 23/2 π4/3 kB m1/2/(31/3 h), (B)

µo = C2 (N/V)2/3, and (C)

C2 = 32/3 h2/(8 π2/3 m). (D)

Show that equation (A) is an entropy fundamental equation.
Solution

S = C1 N
1/6 (V2/3 U – (3/5) C2 N

5/3)1/2 = S(U,V,N). (E)

Equation (E) and, therefore, Eq. (A) are forms of the entropy fundamental equation.
Both equations imply that U = U(S,V,N), which is the energy fundamental equation.

G. ENERGY FUNDAMENTAL EQUATION
The functions S and U are monotonically related. For a single phase

S = S(U, V, N1, N2,..., Nn) (63)

Since S is a monotonic function of U, a single valued solution for U can be obtained, i.e.,

U = U(S, V, N1, N2,..., Nn), i.e., (64)

dU = (∂U/∂S) V Nj, dS + (∂U/∂V) S Nj, dV + Σk=1,n(∂U/∂Nk) S V Nj k, , ≠
dNk, where (65)

(∂U/∂S) V Nj, = T, (∂U/∂V) S Nj, = –P, and (∂U/∂Nk) S V Nj k, , ≠
= µk. (66)

Therefore,

dU = TdS – PdV + Σk=1,nµkdNk. (67)

Equation (67) describes the differential change between adjacent stable equilibrium states U
and (U + dU). Rearranging Eq. (67),

dS = dU/T + PdV/T z- Σk=1,n(µk/T)dNk. (68)

In the context of these relations, there are (2+K) independent functions that specify
either U or S. State variables in the fundamental equations are extensive, and the properties T,
P, and µk are functions of S, V, and Nk. For a single component system

U=U(S, V, N). (69)

three extensive properties fix the extensive state. In its differential form Eq.(69) has the form

dU = TdS – PdV + µdN, or for a closed system dU = TdS – PdV. (70)

This is a representation of the combined First and Second Laws of Thermodynamics.

H. INTENSIVE AND EXTENSIVE PROPERTIES
Consider a thermodynamic property

φ = φ(x1,x2...xn). (71)

kB = 1.3804×10–26 kJ K–1 denotes the Boltzmann constant, h = 6.62517×10–37 kJ s the

Planck constant, m = 9.1086×10–31 kg the electron mass, and N the number of elec-

trons (say, mole number ×  Avogadro number). The energy at 0 K Uo = 3/5 N µo,

where the Fermi energy or chemical potential at 0 K



The function φ depends upon the extensive variables xi. If it is an intensive property, it is ho-

mogeneous function of degree zero. On the other hand, φ is extensive if it is homogeneous

function of degree one. If extensive, the derivatives of φ with respect to extensive variables are

intensive, since the degree of the derivatives is zero.

e. Example 5
The simplified form of a fundamental equation for an electron gas is

S = C1N
1/6 V1/3 U1/2. (A)

In case the system is doubled, then Nnew = 2N, Vnew = 2V, and Unew = 2U. In that case,

S(Unew,Vnew,Nnew) = C1 (2N)1/6 (2V)1/3 (2U)1/2 = 2C1 N
1/6 V1/3 U1/2 = 2S.

Therefore, S is doubled, which implies that it is an intensive property.
Since, T = (dU/dS)V,N, from the relation

U = S2/(C1 N
1/3 V2/3), (B)

T = (dU/dS)V,N, = 2 S/(C1 N
1/3 V2/3). (C)

Applying Eqs. (B) and (C),

T = 2 U1/2 /(C1 N
1/6 V1/3), i.e., (D)

T = T (U, V, N) (E)

This shows that T is a homogeneous function of U, V and N, but does not indicate the degree.
However, you will see that by doubling U, N and V, the value of T is unchanged. Therefore, T
is a homogeneous function of degree 0, which implies that it is an intensive property. Table 2
presents a summary of thermodynamic relations and potentials.

Show that S is an extensive property and that the temperature is an intensive property.
Solution



Table 2: A summary of thermodynamic relations and potentials.

Potential and
independent

variables

Definition State equations Integrated form Gibbs–Duhem equa-
tion

Entropy
S(U,V,N)

1/T = (∂S/∂U)V,N, P/T =

(∂S/∂V)U,N, µ/T =

(∂S/∂N)U,V

S = U/T +
PV/T – µN/T

Ud(1/T) + Vd(P/T) –
Nd(µ/T) = 0

Internal energy
U(S,V,N)

T = (∂U/∂S)V,N, P =

–(∂U/∂V)S,N, µ =

(∂U/∂N)S,V

U = TS – PV +
µN

SdT – VdP + Ndµ

Enthalpy
H(S,P,N)

H = U + PV T = (∂H/∂S)P,N, V =

(∂H/∂P)S,N, µ =

(∂H/∂N)S,P

H = TS + µN SdT – VdP + Ndµ

Helmholtz
F(T,V,N)

A = U – TS T = (∂A/∂T)V,N, P =

–(∂A/∂V)T,N, µ =

(∂A/∂N)T,V

A = –PV + µN SdT – VdP + Ndµ

Gibbs
G(T,P,N)

G = U + PV
– TS

T = –(∂G/∂T)P,N, V =

(∂G/∂P)T,N, µ =

(∂G/∂N)T,P

G = µN SdT – VdP + Ndµ

Massiew
J(1/T,V,N)

J = S – U/T P/T = –(∂J/∂(1/T))V,N,

P/T = –(∂J/∂V)T,N, µ/Τ =

–(∂J/∂N)T,V

J = PV/T –
µN/T

Ud(1/T) + Vd(P/T) –
Nd(µ/T) = 0

Planck
Y(1/T,P,N)

Y = S – U/T
– P/T

H = –(∂Y/∂(1/T))P,N, V/T

= –(∂Y/∂P)T,N, µ/Τ =

–(∂Y/∂N)T,P

Y = – µN/T Hd(1/T) + (V/T)dP –
Nd(µ/T) = 0

In the Table, the first row contains the entropy representation and the second the en-
ergy representation of the appropriate fundamental equation. The table contains only simple
forms of the relations, i.e., Nj =N. For multicomponent systems the term µN should be re-

placed by ΣµjNj, and Nd(µ/T) by ΣNj d(µj/T). The enthalpy function is partly homogeneous.

I. SUMMARY
A postulatory approach is given to  describe thermodynamics without invoking ther-

modynamic laws. Then using Legendre transforms, various thermodynamic functions, such as
U, H, A, G, etc., are defined.



Chapter 6 

6. STATE RELATIONSHIPS FOR REAL GASES AND LIQUIDS

A. INTRODUCTION
In the previous chapters we have discussed the First and Second laws of thermody-

namics. In order to analyze the performance and conduct availability analyses of thermody-
namic systems (such as power plants and heat pumps) and devices (e.g., turbines and compres-
sors), and to design high pressure vessels we require the thermodynamic properties and the
constitutive state equations for the matter in the various systems. Chapters 6 and 7 discuss the
methods that can be used to determine the system properties by using state equations. In this
chapter we will discuss the state equations for real gases (i.e., gases at relatively high pres-
sures) and fluids in terms of measurable properties, such as pressure, volume, and temperature.

In case experimental data is available for P, v, and T (e.g., in the steam or refrigerant
tables), it is possible to develop empirical relations that relate these properties. Otherwise, the
relations between these properties must be derived using physical principles. First, we will
discuss the simplest equation of state, i.e., the ideal gas relation. This relation will be extended
to consider real gases and other fluids in terms of two– and three–parameter equations of state
(for which spreadsheet software is also available). Finally, approximate equations of state for
liquids and solids are discussed.

B. EQUATIONS OF STATE
The ideal gas equation of state is also considered to be a thermally or mechanically

perfect state equation. In Chapter 1 we presented a simple derivation of this equation by using
microscopic thermodynamic considerations and neglecting intermolecular forces and the mo-
lecular body volume. The resulting relation was

Pv RT0 = . (1)

The subscript 0 implies that the gas is ideal at the given conditions. If the measured gas volume
at given P and T values is identical to that calculated by using Eq. (1), the gas is said to be an
ideal gas. However, if the measured specific volume at the same pressure and temperature dif-
fers from that determined using Eq. (1), the gas is considered to be a real gas. The simplest
way to present the real gas equation of state is by introducing a correction to the specific vol-
ume by defining the compressibility factor Z, i.e.,

Z(T,P) = v(T,P)/ v0(T,P). (2)

The actual specific volume v(T,P) can be determined from experiments while theo-
retical volume can be determined using ideal gas law. From Eqs. (1) and (2) we obtain the re-
lation

Pv T P Z T P RT( , ) ( , )= , (3)

which is called the real gas or imperfect equation of state. If Z = 1, Eq. (3) reduces to the ideal
gas equation of state. Equation (3) can be represented using reduced properties. Applying Eq.
(2) at the critical point

Z(Tc,Pc) = v(Tc,Pc)/ v0(Tc,Pc), (4)

where Tc and Pc, respectively, denote the critical temperature and pressure. Table A-1 tabulates
these values for many substances. Applying Eq. (3) at the critical point, we obtain the follow-
ing relation:

P v Z T P RTc c c c c= ( , ) . (5)



From Eqs. (3) and (5), we can express the compressibility factor

Z(TR,PR) = PR v(TR,PR) Z(Tc,Pc)/TR = f(PR,TR) Zc, (6)

where PR denotes the reduced pressure P/Pc, and TR the reduced temperature T/Tc. According
to Van Der Waals equation  of state (later sections), Zc = 3/8 and is same for all substances.
Then it is apparent from Eq. (6) that Z is only a function of TR, vR.  Fig. B.2a shows the com-
pressibility chart. In general, values of Zc lie in the range from 0.2–0.3.

Figure 1 contains experimental data for Z vs. PR with TR as a parameter for different
gases. Compressibility charts (Chart  B.2a) to determine the value of Z can be used at the ap-
propriate reduced pressures and temperatures in order to ascertain whether a gas is real or ideal
under specified conditions. Experiments can also be conducted to determine which equation of
state the gas observes and to measure the compressibility factor. It is also possible to obtain an
approximate criterion for real or ideal gas behavior using the intermolecular force potential
diagram presented in Chapter 1. When l » 3l0, the gas molecules move randomly in the absence

of intermolecular attractive forces. If the specific volume of a solid vs  or (liquid vf ) are

known, the molecular number density is n´ = NAvog/ vs  (or = NAvog/ vf ), and l ≈n´–1/3.

C. REAL GASES
According to ideal gas law, the product P v  must be constant at specified temperature.

Figure 2 presents the variation of P v  vs. P for the temperature range 150 K<T<300 K for ni-
trogen. It is apparent that experimental data does not support ideal gas law.

1. Virial Equation of State
When experimental data is represented by a polynomial expansion of P v  in terms of

P, the resulting equation of state is called the virial (i.e., force) equation of state.

Figure 1: Experimental data for Z vs. PR with TR as a parameter for different gases (from G.J.
Su, “Modified Law of Corresponding States,” Ind. Eng. Chem., 38, 803, 1946. With permis-
sion.).



a. Exact Virial Equation
The exact virial equation of state has the form

Pv A T B T P C T P D T P= ′ + ′ + ′ + ′ +1 1 1
2

1
3( ) ( ) ( ) ( ) L, (7)

where ′ ′A B1 1,  (and so on) are, respectively, called the first, second (and so on) virial coeffi-

cients. As P→0, P v→ ′A1 (T). Since the ideal gas state is approached as P→0,

 A1′ =( )T RT . (8)

Dividing Eq.(7) by  R T,

Z = 1 + B1(T) P + C1(T) P2 + …, where (9)

B1(T) = ′B1 (T)/ R T, C1(T) = ′C1 (T)/ R T, … (10)

For nitrogen in the pressure range 0 < P < 200 atm, at T = 298 K the second through ninth
virial coefficients in Eq. (9) are, respectively, –10.281 atm–1, 0.065189 atm–2, 0, 5.1955×10–7

atm–4, 0, –1.3156×10–11 atm–6, 0, and 1.009×10–16 atm–8.

Alternatively the polynomial expansion can be performed in terms of v−1 (as P→0,

v−1→0), i.e.,

Pv A T
B T

v

C T

v

D T

v
= ′ +

′
+

′
+ +( )

( ) ( ) ' ( )
2 3 L. (11)

As v→∞,  A′ =( )T RT  and

Figure 2: P-v diagram for nitrogen (from M.
Zemansky, 4th Ed., McGraw Hill, 1957).



Z = 1 + B(T) v−1 + C(T) v−2 + …, (12)

where

B(T) = ′B (T)/ R T, C(T) = ′C (T)/ R , … (13)

b. Approximate Virial Equation
As P→0, terms of the order of P2 and higher can be neglected, and Eq. (9) can be re-

duced to a first order approximation of the form

Pv RT Z B T P/ ( )= = +1 1 . (14)

For nitrogen, the value of B1 is given by the relation

B1(T) R T = b(T) = (0.0395 – 10 T–1 – 1084 T–2) m3 kmole–. (15)

Equation (14) suggests that Z follows a linear law with P at low pressures and at
specified temperatures. The low-pressure experimental data contained in Figure 1 confirms
such a relation at specified TR. Abbott has suggested the following empirical relation

Z = 1 + B1(TR) PR, for vR > 2, where (16)

B1(TR) = TR(0.083 – 0.422 TR
–1.6) TR

–1. (17)

The value of Z is greater than unity at larger TR and lower than unity for smaller values of TR.
According to the first order approximation of the vrial equation (i.e., Eq. (14), the value of Z
can be larger or smaller than unity, depending upon the sign of B1(TR). Equation (17) implies
that the slope ∂Z/∂PR = B1(TR) is finite as PR→0. At low pressures and TR≈2.76,

B1(TR) = 0,

so that ∂Z/∂PR = 0 and Z = 1, i.e., the real gas behaves like an ideal gas. This reduced tem-

perature is also known as the Boyle temperature. For CO2, Tc = 304 K so that its Boyle tem-
perature is 839 K.

2. Van der Waals (VW) Equation of State
We now develop a rational approach to develop a real gas equation of state. Later we will

use various equations of state in determining the stability characteristics (Chapter 10). Prior to
the presentation of VW equation, Clausius I equation of state will be described because of its
relevance to VW equation.

a. Clausius–I Equation of State
Consider N moles of a gas that occupy a volume V in a container at some pressure

and temperature. The gas molecules undergo random motion and pressure forces exist due to
their impact on the walls of the container. For instance, at room temperature the force due to
impact of air molecules on any surface is 10 N cm–2. This is the average pressure experienced
by the surface due to the impact of molecules that travel at velocities of approximately 350 m
s–1. If b´ denotes the volume of each molecule and N´ the number of molecules in the volume
V, then the total body volume of the molecules is given by the product N´b´. If the volume
N´b´ is insignificant compared to geometrical volume V, the molecules can be assumed to be
point masses, an approximation that is valid at low pressures. The volume V then denotes the
free volume in which these point mass molecules can move. In case intermolecular forces are
negligible (except upon impact) one can derive the ideal gas or perfect gas equation of state
(cf. Chapter 1) in the form

PV = N R T,

where N = N´/NAvog.



In case the geometrical volume is reduced while keeping the number of molecules
unchanged so that the volume N´b´ is comparable to V, the ideal gas equation of state must be
modified. In this case V–N´b´ denotes the free space available for equivalent point mass mole-
cules to move randomly.

Assume, for sake of illustration, that N´ = 8 and consider a cube of side 2σ (where σ
denotes the molecular diameter) and volume V. The volume of each molecule (assumed to be
spherical) b´ = πσ3/6 and, if the eight molecules are tightly packed inside the cube, the free

volume available to them to move around is V– 8(πσ3/6). However, since the intermolecular

distance in the cube is 2σ and adjacent molecules touch each other, the empty space between

any two molecules is unavailable for movement. Therefore, knowing the molecular diameter
alone is insufficient information regarding the free volume. The shortest possible distance be-
tween any two molecules at which there is contact is σ (= σ/2 + σ/2). No other molecule can

be included within the volume defined by the radius σ (or diameter 2σ), and the “forbidden

volume” per pair of molecules is π(2σ)3/6. For a single molecule the forbidden volume is

π(2σ)3/12, and for ′N  molecules it is

b´ = N´π(2σ)3/12 = 4 N´πσ3/6 = N´ (collisional volume ÷ 2), (18)

where the collisional volume is defined as 4πσ3/3.

The ideal gas equation can be corrected by subtracting the product N´b´ from the
geometrical volume V. The free volume V–N´b´ is the volume occupied by equivalent point
masses in an ideal gas and N´b´ is considered to be the apparent body volume of the molecules
contained in the volume V. The reduced free volume increases the number of molecules per
unit free volume, which, in turn, increases the number of collisions per unit time. This results
in a higher pressure. Based on the reduced free volume, the ideal gas equation may be modi-
fied into the form

P = N R T/(V – N´b´) = R T/( v  – b), (19a)

where

b= N´b´/N = (2/3)NAvogπσ3. (19b)

The product πσ3 is the forbidden volume per kmole of the gas, and is four times the body vol-

ume. The number of molecules and moles are related by the expression

N´ = NAvogN.

Rewriting Eq. (19a) (which is known as the Clausius–I equation of state),

v  = R T/P + b  = v0 + b . (20)

Note that v0 would have been the volume had the gas been ideal.
The compressibility factor

Z = v(T,P)/ v0 (T,P) = P v/ R T = 1 + P b/ R T, or (21)

Z – 1 = b(P/ R T). (22)

Equation (22) is also called the deviation function for the compressibility factor. The deviation
function tends to zero as P→0 at a specified temperature. According to the Clausius–I equation

of state, the geometrical volume at a specified state (i.e., fixed T and P) is equal to ideal gas
volume (predicted by ideal gas equation) plus a correction for the molecular body volume.
Upon comparing Eq. (21) with Eq. (14), it is clear that



b(T) = B1(T)( R T). (23)

Although Eq. (21) implies that Z>1 at all conditions, experimental data indicates that Z<1 at
intermediate pressures.

b. VW Equation
The Clausius–I equation of state (Eq. (19)) does not account for the intermolecular

attraction forces that are significant when the molecular spacing is relatively close (e.g., at high
pressures). Therefore, Eq. (19) must be appropriately modified.

Let us denote the pressure that would exist in absence of attractive forces as P´. In or-
der to understand the effects of attractive forces on the pressure P´ we use the analogy of the
gas molecules represented by groups of five particles. Each analogous group consists of a sin-
gle particle labeled as “M” surrounded by four other particles that are geometrically located
90º apart. Assume that a group travels at a velocity of 350 m s–1. There is no net attractive
force on the particle contained in the interior of the group, since the attractive forces due to the
four exterior particles cancel each other out. On the other hand when the particle “M’ (and
similar particles) impinges on a surface so as to create a pressure, the particle that was origi-
nally in the interior is now surrounded by only three particles (since one particle has already
struck the surface). Therefore, at this time, the particle group will exert a lower pressure than
105 N m–2, since there is now a net attraction force exerted on the interior particle “M”.

In order to determine the reduction in pressure, we need a functional form for the at-
tractive force exerted between a pair of molecules separated by an intermolecular distance l.
Such a relation can either be represented by empirical relations (e.g., by using the Len-
nard–Jones (LJ) empirical intermolecular potential energy Φ(l) between a pair of molecules)

that was discussed in Chapter 1, or it can be deduced through a phenomenological approach.
Applying the LJ approach for a like molecular pair, the intermolecular force function (cf.
Chapter 1)

F( ) ( / )( ( / ) ( / )l l l= − −4 12 613 7ε σ σ σ , (24)

where ε denotes the characteristic energy of interaction between the molecules (which corre-

sponds to the maximum attraction energy  ≈  0.77 kB Tc, kB is the Boltzmann constant), σ the

characteristic or collision diameter of the molecule (= 2σ´), and l the intermolecular distance.

The first term on the RHS of Eq. (24) represents the repulsion force between a molecular pair,
and the second term arises due to the intermolecular attraction between the two molecules. The
repulsive force is only of interest if the substance is a solid or a liquid. The reduction in pres-
sure ∆Pattr due to attractive forces is derived in the Appendix, and is

∆P = 2.667π εσ3n´2   ≈3π εσ3n´ 2 (25)

where n´ denotes the number of molecules per unit volume= NAvog n, and n the number of
moles per unit volume. By using Eqs. (19a) and (25) we obtain the Van der Waals (VW) equa-
tion of state (named after Johannes Diderik Van der Waals, 1837–1923) in the form

P = R T/( v  – b) – ( a / v2 ), (26)

where a  = 2.667  πεσ3 NAvog
2. The units for b  and v  are identical (in m3 kmole–1), while those

for a  are atm m6 kmole–2. According to a more rigorous derivation based on the potential

a  = 2.667πεσ3
    NAvog (27)

The first term in Eq.(26) is the pressure exerted due to collision and bouncing off an
imaginary plane and is proportional to thermal part of energy  (i.e te+ve+re etc) of all the
molecules within unit volume of free space. The second term is the reduction in force due to
attractive force exerted on those molecules by neighboring molecules. A typical experimen-



tally determined P–v diagram is illustrated in Figure 3. The saturated liquid state occurs along
the line FAC, saturated vapor along GBC. A few isotherms are also included in Figure 3. If the
pressure is fixed, the temperature is constant during vaporization. As the critical point is ap-
proached, vaporization occurs at single point with the result that the variation of pressure with
volume must show an inflection for the critical isotherm (at Point C in Figure 3 at which T =
Tc, P = Pc, and v= vc). Thus, one must select values for “a” and “b” such that the following
inflexion condition is satisfied, i.e.,

( / ) ( / )∂ ∂ ∂ ∂P v P v
T T T T

c c= =
= =2 2 0. (28)

Therefore, in context of Eq. (26)

( / ) / ( ) /∂ ∂P v RT vc b a vT T c cc= = − − + =2 32 0 , and (29)

( / ) / ( ) /∂ ∂2 2 3 42 6 0P v RT vc b a vT T c cc= = − + = . (30)

Hence,

a RT v b vc c c= −( / ( ) ) /2 3 2 , and (31)

b vc= / 3. (32)

Finally, combining Eqs. (31) and (32) we obtain

a RT vc c= ( / )9 8 . (33)

If critical data on Tc and  vc are available then the constants a  and b  can be determined from
Eqs. (32) and (33) and the critical pressure can then be determined from the state equation (27)
at the critical point, i.e., by using the result for  a  and b  from Eqs. (32) and (33)

P RT vc c c= ( / ) ( / )3 8 . (34)

Therefore,

Z P v RTc c c c= =/ /3 8. (35)

The critical temperature and volume for water are, respectively, Tc = 647.3K and vc  =

0.0558 m3 kmole–1 (Table A-1)  Thereafter, using Eq. (32), b  = 0.0186 m3 kmole–1, and from
Eq. (33) a  = 60.54 bar m6 kmole–2. (The calculated value of Pc from Eq. (34) is 362 bar, but
the measured value is 220.9 bars, i.e., the experimental data for the critical pressure of water at
specified Tc and vc  deviates far from values obtained from the VW equation of state when Zc

≠ 3/8. For the moment we will presume that this equation of state is accurate at the critical

point and proceed to express a  and b  in terms of Pc and Tc using Eqs. (32)–(34). Therefore,

a  = (27/64) R 2Tc
2/Pc = c1 R

2Tc
2/Pc, and b  = R Tc/(8Pc) = c2 R Tc/Pc,  (36)

where the constants c1 =27/64= 0.4219 and c2 =1/8= 0.125. If measured data for all three criti-
cal properties PC, TC,  vC are available, one has a choice of either Eqs. (32) and (33) or Eqs.

(36). Use of eqs. (36) is recommended for better comparison with experimental data. One may
tabulate “a” and “b” values for a few substances using Eqs. (36) as is done in many texts. Ta-
ble A-1 lists the VW values of a  and b  for many substances.

A possible experiment to measure the critical properties of a substance (say, water)
can be constructed in the following manner. First, pour the water into a quartz made pis-
ton–cylinder assembly that is maintained at a constant pressure. Then, slowly heat the water
until a small bubble appears. Determine the specific volume of the water just as bubble begins



to appear (i.e, vf, saturated liquid). Thereafter, determine the gas–phase volume when the entire
mass of the water has been evaporated (i.e., vg for saturated vapor). Also measure the boiling
temperature of water under the specified conditions. Repeat the experiment several times after
incrementally increasing the system pressure and plot the response of vf to the pressure (i.e.,
curve FAC in Figure 3), and of  vg to P (curve GBC in the Figure 3). Two distinct phases will
be observed until the critical point is reached (where the curves for both vf and vg vs. P inter-
sect). The pressure at which we cannot observe a clear demarcation between the liquid and
vapor (i.e., vf being equal to vg) is the critical pressure.

i. Comments
Equation (26) can be rewritten in the form

v3 + v2 (– bP – R T)/P + v  ( a /P) (– a b/P) = 0.

which is a cubic equation in terms of v . Therefore, for a specified pressure and tempera-
ture, there are one real and two imaginary solutions, and/or  three real positive solutions
for v .
The constants a and b are related to the critical properties. The appendix  presents explicit
solutions for cubic equations.
Recall that b= (2/3)NAvogπσ3, so that the collision diameter and, hence, the molecular size

can be determined once we know  b  from critical properties.
Instead of using the inflection approach for evaluation of  a  and  b , the constants c1 and
c2 (in Eq. (36)) can be selected to minimize the difference between the experimental data
and theoretical results obtained from Eq. (26).
If we assume that v » b (i.e., a point mass approximation is used), P ≈ R T/ v  – a / v2,

which is a quadratic equation. In this case, the compressibility factor Z = P v/( R T) = 1 –

Pc

I
GF

B
A

H

P

C

vcvf vg

Figure 3: A typical experimentally determined P–v diagram.



a /( v R T). Therefore, Z < 1 if one considers only attractive forces. When v ≈ b , the first

term in Eq. (26) dominates and hence P ≈ R T/( v– b) which is the Clausius I equation of

state. The compressibility factor Z >1 when body volume effects are more significant.
Thus when both effects are included  Z>1 or Z<1
For a closed system the reversible work w = ΙP(T,v) dv. If a real gas is involved, one

must use the real gas equation of state Eq. (26) for P (T,v). Similarly, for an open system

the reversible specific work w = –Ιv(T,P) dP.

Once v  is specified, ∂P/∂T = R/(v–b), i.e., isochoric curves are linear in P-T plane for a

fluid following VW equation of state.
Since a  = (27/64) R 2Tc

2/Pc  and b  = R Tc/(8Pc), then using Eqs. (19b) and (27), we can
obtain the following relations:

σ = 0.3908kB
1/3(Tc/Pc)

1/3

and ε = (27/64 R2Tc
2/Pc)/(3 NAvag

2 πσ3). Simplifying

ε = 0.75 kBTc,

which is close the value of 0.77 kBTc cited in the literature.

a. Example 1
Determine 

size of a single molecule?
Solution

Ideal gas.
v  = R T/P = 0.08314 bar m3 kmole–1 K–1 × 673 K ÷ 140 bar = 0.4 m3 kmole–1.

Compressibility chart.
PR = P/Pc = 140 bar ÷ 220.9 bar = 0.634,

TR = T/Tc = 673 K ÷ 647.3 K = 1.04. From the compressibility chart, Z = 0.78.

Since P v  = Z R T,
v  = 0.78 × 0.08314 bar m3 kmole–1 K–1 × 673 K÷140 bar = 0.312 m3 kmole–1.

Tables.
v  = 17.22 cm3 g–1 × 10–6 m3 cm–3 × 103 g kg–1 18.02 kg kmole–1 = 0.31 m3 kmole–1.

Van der Waals equation.
a  = 27 R 2 Tc

2/64 Pc = 27×0.083142 bar2 m6 kmole–2 K–2×647.32 K2÷(64 × 220.9 bar),

i.e.,
a  = 5.531 bar m6 kmole–2.
Likewise, b  = R Tc/(8Pc) = (0.08314 bar m3 kmole–1 K–1 × 647.3 K÷(8 × 220.9 bar),

i.e.,
b= 0.0305 m3 kmole–1.
However, using Eq. (27), at 140 bar, T= 673 K,  v  = 0.31 m3 kmole–1, according to
VW equation. (Note that use of this equation produces a closer prediction to the
tabulated value than was obtained using the ideal gas law.)

Molecular diameter
Recall that b  represents the finite volume or 4 × (body volume) of the molecules. A

kmole contains 6.023 × 1026 molecules. Therefore, the body volume of a single mole-

cule
≈ 0.0305 m3 kmole–1 ÷ (4 × 6.023 × 1026 molecules) = 1.264 × 10–28 m3.

The molecular volume
πd3/6 = 1.264×10–29 m3, i.e., d = 2.89×10–10 m = 2.89 Å.

the compressibility chart, the steam tables and the VW equation of state. What is the
v for H2O(g) at P = 140 bars and T = 673 K using the ideal gas equation,



Remarks
The term – a / v2 in the VW equation corresponds to the reduction in pressure due to in-
termolecular forces. When v  = 0.31 m3 kmole–1, – a / v2 = –57.6 bar, while the first term
R T/( v– b) = 199.5 bar. This implies that the frequent molecular collisions create a pres-
sure of 199.5 bars, but due to the strong attraction forces in the dense gas phase the mole-
cules are pulled back together with a pressure equivalent of 57.6 bar. Therefore, the net
pressure is 141.9 bar.
Since σ = ((6/π)( b/4)/NAvog)

1/3, and b  = (1/8) R Tc/Pc using the VW equation of state, σ =
((6/32 π) R Tc/(PcNAvog))

1/3 = 0.391(kBTc/Pc)
1/3. Using the value kB = 1.3804 × 10–26 kJ K–1

molecule–1, σ = = 2.02(Tc(K)/Pc)
1/3 Å with Pc expressed in bar. For instance, if Tc = 647 K

and Pc = 221 bar, σ = 2.89 Å.

3. Redlich–Kwong Equation of State
We will now discuss the Redlich–Kwong (RK) equation of state that is a more accu-

rate representation of a gaseous state, particularly for T>Tc, and is also easier to use. This
equation will be repeatedly used in later chapters in context of the thermodynamic properties u,
h, and s. The RK equation is of the form

P = R T/( v  – b) – a /(T1/2 v( v  + b)). (37)

Attractive forces are modeled differently by the RK equation of state. The two pa-
rameters a  and b  can be evaluated using the inflection conditions as outlined while develop-
ing the VW equation. Since (∂P/∂v) = 0 and ∂2P/∂v2 = 0 at the critical point, it can be shown

that

( b/ vc)
3 – 3( b/ vc)

2 – 3( b/ vc)  + 2 = 0, and (38)

a /(Tc
1/2 vc) = (1 + ( b/ vc)

2)/((1 – ( b/ vc)
2) (2 + ( b/ vc))). (39)

From. Eqs. (38) and (39),

b/ vc = 0.26, and a /(RTc
3/2 vc) = 1.2844.

Using these values in Eq. (37) at the critical point

Zc = 1/3. (40)

Therefore,

a  = c3 R 2Tc
2.5/Pc, and b  = c4 R Tc/Pc. (41)

where c3  = 0.4275, c4  = 0.08664. Table A-1 lists the RK values of a  and b  for many sub-
stances using their critical properties.

 Instead of using the inflection approach for determining the values of a  and b , the
constants c3 and c4 (in Eq. (41)) can be selected so as to minimize the differences between ex-
perimental data for P, v, T and theoretical results obtained by applying Eq. (37). Then, it is
possible to solve for Tc and Pc by employing Eqs. (41), e.g.,

Tc,mod =   ((a c4/(c3b))2/3, Pc,mod = c4 RTc/b =((Ra c4
5/3/(c3

2/3b5/3).

Dimensionless charts based on the RK equation can be developed (cf. Chapters 6, 7,
8, and 10), e.g.,

(Tc,mod/Tc) = ((a c4/(c3b))2/3)/((a×0.08664)/(0.4275 b))2/3  =2.8983  (c4/c3)
2/3. 

Similarly,

 Pc,mod/Pc = 0.3345(c4
5/3/c3

2/3),



and using  the modified critical properties in the charts, the ratios (Tc,mod/Tc) and Pc,mod/Pc = 1
when c3  = 0.4275 and c4  = 0.08664.

One can prove that for gases whose behavior is modeled by the RK equation of state,
isochoric curves (i.e., of P with respect to T at a specified value of v) are no longer linear.
Equation (37) can also be expressed in the form

v3 + v2(– R T/P) + v  ( a /(PT1/2) – b R T/P – b2) + (– a b/(PT1/2)) = 0.

This cubic equation can be explicitly solved for v  in terms of T and P.

4. Other Two–Parameter Equations of State
Table in the Appendix  section (end of this chapter) contains descriptions of other

two–parameter equations of state. We comment on one of these, namely, the Dietrici equation
of state that is represented by the expression

P = ( R T/( v  – b)) exp(– a /( R T v)).

This equation predicts a reasonable value of Zc (= 0.271) and does not yield negative values of
pressures. Its performance is superior in the neighborhood of the critical point.

b. Example 2
Plot the variation of pressure with respect to 
H2O using the ideal gas equation of state and the RK equation of state.

Solution
Ideal gas equation.

P = ( R T)/ v  = 0.08314×593/ v  = 49.3/ v . (A)

This hyperbolic behavior is illustrated by the curve QRS in Figure 4. As v  → 0, P →
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Figure 4: The response of pressure to v  at two temperatures (593 K and 900 K) using the RK equation,
and of P vs. v  employing the ideal gas equation at 593 K.

v at a constant temperature of 593 K for



∞.

RK equation.
a  = 0.4275 R

2Tc
2.5/Pc, and b  = 0.08664 R Tc/Pc. Tc = 647.3 K and Pc = 220.9 bar.

a  = 142.64 bar m6 K0.5 kmole2; b  = 0.0211 m3 kmole–1, and
P = (49.30/( V – 0.0211)) (5.86/( V + 0.0211)).
The curve BECGKNDHJMAFL in Figure 4 describes this behavior at T = 593 K.

Remarks
For ideal gases, at a specified temperature and pressure P ∝ 1/ v . In general, v  = v(P,T)

is a single–valued function of P and T.
The real gas equation is a cubic equation in v  at specified P and T. When T > Tc, at given
T and P the relation yields two complex roots and one real root for the volume. The pres-
sure is a monotonic function of v  at T>Tc (e.g., illustrated by curve WXY in Figure 4)
and hence v= v(T,P),  a single valued function. A plot of the pressure with respect to vol-
ume is a hyperbola at T » Tc. As T→Tc deviations from hyperbolic behavior occurs

around T=Tc. Non–monotonic behavior occurs at T<Tc inside the vapor dome (e.g., curve
BECGKNDHJMAFL). This is a pressure–explicit type of equation of state, i.e., P = P(T,
v) is a single–valued function of v  and T, but it is not a monotonic function of T and v ,
at a specified temperature T < Tc, P does not increase monotonically as v  decreases. As
the volume decreases at constant temperature, first the pressure increases along BEC (ac-
cording to the relation P ∝ R T/ v), and as v  is further reduced (along CGKN), attractive

forces become stronger so that the rate of pressure increase is reduced. As the volume is
reduced further, the attractive forces become so strong that the pressure starts to decrease
(along curve NDHJM). Near the point M, the volume is so small that v≈ b  and, hence,

P≈ R T/( v– b). The free volume available for molecular movement becomes very  small,

with the result that there are frequent collisions that result in an increase in the pressure
(along the curve MAFL with the attractive forces holding the matter in a liquid state).
At specified pressures and temperature, multiple solutions for v  can occur. Therefore, v  is
not a single–valued function of P and T at T < Tc for certain ranges of pressures. For in-
stance, at 50<P<155 bars, three real equilibrium solutions are possible for v  while at 50
and 155 bars, only two solutions exist. For P >155, and P < 50, only one solution (or v is
single valued function of  T and P) is possible. However, all of the solutions are not at sta-
ble equilibrium states. This can be illustrated in the following manner. Consider water
contained at state E in Figure 4 (i.e., 100 bar and 593 K) in a piston–cylinder–weight
(PCW) assembly. Upon pushing the piston down slightly and then releasing it, the de-
creased volume results in the increase of the fluid pressure and the fluid comes back to
original state. On the other hand if the fluid were initially at state H (i.e., 133 bar and 593
K), the same disturbance test  causes a slight decrease in volume first; but the fluid pres-
sure is decreased  to a value less than the external pressure. Therefore, the fluid would be
compressed past state M, finally reaching an equilibrium state in the vicinity of F. State E
is stable while state H is unstable. Further discussion regarding the stability of the three
possible states is contained in Chapter 10. The single–valued and monotonic characteris-
tics are very important while discussing the fundamental relations and thermodynamic
postulates (e.g., in Chapter 5).
At large specific volumes, the vapor behaves like an ideal gas ( v» b , a / v2≈0) and

P∝1/ v . Alternately, if we let a = b  = 0 the ideal gas equation of state can be obtained

from the real gas equation.



Since the real gas state equation is cubic in terms of specific volume, explicit algebraic
expressions are available for solving v(P,T). Normally there are three real solutions for v
at specified P and T for T < Tc (e.g., the points F, H, and G in Figure 4 at T = 320ºC, P =
113 bar). The smallest value (point F) corresponds to a solution in the liquid phase while
the largest value (point G) corresponds to a solution in the vapor phase. The middle value
(point H) has no physical meaning. (These liquid–like and vapor–like solutions will be
used later for determining Psat versus T or for drawing phase diagram.) Points N and M are
called spinodal vapor and liquid points, and will be discussed in Chapter 10. Note that
sometimes as v  becomes very small, it approaches liquid–like behavior due to strong at-
tractive forces (= a / v2), and the pressure becomes negative (a liquid under tension).
Eqs. (26) and (37) are also known as two parameter equations of state since they involve
two parameters, a  and b . The variation of pressure with specific volume using several
state equations is illustrated in Figure 5.
The ratio Pc vc/Tc = 3/8 for VW gas while Zc = 0.333 for RK gas. Some representative ex-
perimentally obtained values of Zc are as follows:

Non–polar gases (e.g., Ar, He, Ne, N2, etc.) 0.29 ≤ Zc ≤ 0.3.

Hydrocarbons (e.g., CnHm) 0.26 ≤ Zc ≤ 0.29.

Polar Gases (e.g., H2O) 0.22 ≤ Zc ≤ 0.26.

Isochoric curves (i.e., v  = constant or P vs. T curves) obtained from the VW equations are
linear, while those obtained from the RK equation are not necessarily so.
The ideal gas equation is applicable when v» b  and a /(T1/2 v2) « R T/ v . In terms of re-
duced variables, vR´ » 0.4275/TR

3/2 and, using the state equation, PR « TR
5/2/0.4275.

At 100ºC and1 bar, the value v  can be obtained by applying the RK equation (0.0264 m3

kmole–1), as can the collision pressure (= R T/( v- b) ≈5894 bar) and the pressure reduc-

tion due to  attractive force ≈ 5893 bar, which indicates that attractive forces cannot be ig-

nored in comparison with collision forces and, hence, the ideal gas equation is not appli-
cable. On the other hand, the ideal gas equation can be used when v» b  and if the pressure
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reduction due to attractive force is far less than the ideal gas pressure. Therefore, for ideal
gas behavior to apply a /(T1/2 v2) « R T/ v . Since v  = NAvog l

3, v  » a RT/ ( )/3 2 , i.e.,

l l l l»( / ) , »( / ) , / » . /. / . / /C k T T P or C v N T or TB C R C C Avag R c R3
1 5 1 3

3
1 5 1 3 1 23 75′ ′ . 

which implies that

l

l c R

molecular pacing at any T and P

molecular pacing at the riticalpo T
=

 s

 s  c int
»

.
/

5 41
1 2 .

Here, vc´ = NAvog(lc´)
3, vc = NAvog lc

3, and  lc = 0.693 lc´, since vc/ vc’ = 1/3. In terms of

reduced variables, vR´ » 0.4275/TR
3/2 and, using the state equation, PR « TR

5/2/0.4275. The
volume at minimum potential is related to critical volume. We will see later that v/vc »
0.7/TR 0.5 for ideal gas behavior to occur.
The term a  represents a measure of attractive forces between the molecules. The higher
the a , higher the  energy required to detach the molecules from liquid phase, the higher is
the saturation temperature. Table A-1 lists boiling and melting points of several sub-
stances. Figure 6 plots  the boiling and melting points of several substances with respect to
a . Can you tell which substances may be more volatile: methane or water at specified T?
The values of “a” are respectively 32.22 and 142.6 (bar m6 K0.5)/kmole2 for the RK equa-
tion.

c. Example 3

(or mean free path between molecules), determine the value of l for water vapor at 320ºC

b

The temperature T = 593 K.
n = 100÷(0.08314×593) = 2.028 kmole m–3, and

n´ = 2.028×6.023×1026 = 1.22 x 1027 molecules m–3,

l = 935.44×10–12 m = 9.35 Å.

P = R T/( v  – b) – a /(T1/2 v  ( v  + b))
100 = 0.08314×593/( v  – 0.0210) – 142.64/(5931/2 v( v  + 0.0210)

Solving iteratively, v  = 0.375 m3 kmole–1, n = 2.667 kmole m–3.
n´ = 1.606×1027 molecules m–3, l = 853.94×10–12 m or 8.54 Å.

Note that the first term in P expression is 139.3 bars due to collision of molecules at
593 K with the wall while the pressure of attraction/intermolecular forces  is deter-
mined as 39.4 bars
d ≈ ((6/4π) 0.0210)1/3 = 0.000255 m or 2.55 Å, l/d = 3.35, d/l = 0.299.

Using the LJ function we find that (intermolecular force/maximum attractive force) ≈
(0.29913 – 2×0.2997) = 0.0014.

If the number of molecules per unit volume n´≈≈≈≈1/l3, where l denotes the average distance

and 100 bar for the following cases: (a) when the ideal gas law is applicable, and (b) when
the RK equation is applicable, and

Compare the answer from part (b) with the molecular diameter obtained from the 
value.
Using the LJ potential function, determine the ratio of attractive potential to minimum
attractive potential.
Using Tables A-4 for the saturated properties of water, determine the intermolecular
spacing for the saturated liquid at 320ºC
Determine the intermolecular spacing for saturated liquid and vapor at TTP, and at the
critical point

Solution



vf = 1.4988×10–3 m3 kg–1 or 0.0270 m3 kmole–1, n = 37.03 kmole m–3 or 22.30x1027

molecules m–3, l = 355×10–12 m, i.e., 0.000355 µm or 3.55 Å which is about half the

spacing for vapor at 320ºC, and 100 bar. Therefore, l/d ≈ 1.39 and some space re-

mains between the water molecules. The intermolecular potential is 25.8% of the
minimum potential, indicating strong attractive forces.
At TTP, vf = 0.001 m3 kg–1 or v f = 0.0180 m3 kmole–1, n = 55.55 kmole m–3 or
33.46×1027 molecules m–3, and l f,TP = 3.1 Å, Similarly, vg = 206.136 m3 kg–1, n =

0.000269 kmole m–3, or 1.62×1021 molecules, and lg,TP = 183 Å. At the critical point,

vc = 0.003155 m3 kg–1, or 0.568 m3 kmole–1, n = 1.762 kmole m–3 or 1.06×1027 mole-

cules m–3, and l f,C = l g,C = 9.8 Å. At lower pressures, for vapor states the molecules

are separated at farther distances, while they are more closely packed in the liquid
state.

d. Example 4
Determine an expression for the reversible work done by  a Van der Waals gas for:
A closed system.
An open system.
Assume the processes to be isothermal.

Solution
The work done during the isothermal compression of a closed system can be written
in the form

w = Pdv
v

v

1

2∫  = ( / ( ) / )RT v b a v dv
v

v

− −∫ 2

1

2

    = RT ln ((v2–b)/(v1–b)) + a (1/v2 – 1/v1)
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Figure 6: The boiling and melting points of several fluids with respect to a : solid diamond:
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The work done during isothermal compression in a steady state steady flow device is:

w = −∫ vdP
v

v

1

2
 = − + ∫( )Pv Pdvv

v

v

v

1

2

1

2

    = P1v1 – P2v2 + RT ln ((v2–b)/(v1–b)) + a (1/v2 – 1/v1)

Remarks
Even though the work expression has properties at states 1 and 2, the functional form
changes if we choose a different path for the same final state. Thus, w is a path de-
pendent quantity.

5. Compressibility Charts (Principle of Corresponding States)
We now illustrate how compressibility charts can be constructed by employing Eq.

(3) and the RK equation of state, Eq. (37). We define

vR’ = v/vc’, where ′ =v RT Pc c c/ . (42)

Using  Eq. (42) in Eq. (37) and writing in terms of reduced variables  we obtain the expression:

P
T

v T v vR
R

R R R R

=
′ −

−
′ ′ +( . )

.

( . ).0 08664

0 42748

0 086640 5 . (43)

Therefore, for given values of PR and TR, ′vR  can be obtained. Thereafter, the compressibility

factor is determined from the relation Z = P v/ R T by inserting the reduced variables, since
Z = PRPc ′vR ′vc

/( R TRTc) = PR ′vR
/TR. (44)

It is useful to eliminate ′vR  in Eqs. (43) and (44) and obtain a relation for ZRK (based on the
RK equation of state) in terms of PR and TR, i.e.,

P
T

Z T P Z T P Z T PR
R

RK R R RK R R RK R R

=
−

−
+( )/ .

.

/ / ..0 08664

0 42748

0 086641 5 (45)

This relation can be simplified in order to obtain Z (= ZRK) in terms of PR and TR, namely, Z3 –
Z2 + (a´ – b´2 – b´) Z – a´ b´ = 0, where

a´ = 0.4275 PR/TR
2.5, (46)

and b´ = 0.08664 PR/TR. (47)

The appendix presents explicit solutions for the three roots of Z. As an illustration, Figure 6a
contains a compressibility chart for Z vs PR with TR as a parameter for an equation of state for
which ZC=0.2801. Figure 7 presents a compressibility chart for Z vs PR with TR as a parameter
for an equation of state for which ZC=0.2801.

For sake of illustration, we consider water at a pressure of 250 bar, a temperature of 873 K.
Therefore, PR = 250÷220.9 = 1.132, TR = 873÷647.3 = 1.349, so that a´ = 0.329 and b´ =

0.0727. Consequently, the value of (a´ – b´2 – b´) is 0.151, and a´ b´ = 0.01665, and a single
real root exists for Eq. (46), i.e., Z = 0.845 (point A, Fig. 6a). Likewise, if P = 133 bars and T =
593 K, PR = 0.601, TR = 0.916, a´ = 0.320, b´ = 0.0569, (a´ – b´ 2 – b´) = 0.260, and a´ b´ =
0.01824. There are now three roots for the equation, i.e.,, Z1 = 0.115 (for a liquid–like solution,
point L), Z2 =  0.249 (unstable solution, point M; see Chapter 10), and Z3 = 0.632 (vapor–like
solution, point V).

e. Example 5
What is the value of ZRK at PR = 1.5 and ′vR = 0.45?
What is the value of ZRK at PR = 1.5 and TR = 1.15?



What is the value of Z for CH4 at T = 219.3 K and P = 69.6 bars according to the RK
equation?
What is the value of Z for N2 at T = 145.1 K and P = 50.85 bars according to the RK
equation?

Solution
Consider Eqs. (37) and (41), and try ZRK = 0.6. You will find that
1.5 ≠ (0.45×1.5 ÷ (0.6 × (0.45–0.08664)) – 0.42748 × 0.60.5/((1.50.5 × 0.45 ÷.5) (0.45 +

0.08664) = 3.0961 – 1.6689 = 1.42).
Next, try ZRK = 0.58, and in this case the RHS

Figure 7: A compressibility chart for Z vs. PR with TR as a parameter for an equation of 
or state for which ZC=0.2801 (from R. Sonntag, C. Borgnakke, and G. J. Wiley, Funda- 
mentals of Classical Thermodynamics, 5th Ed. John Wiley &Sons, 1998, p 763. With 
permission.).



= 3.2029 – 1.6409 = 1.56.
By interpolating we find that ZRK = 0.59. The compressibility charts give the same re-
sult.
For the second problem assume ZRK = 0.6.
The LHS = 1.5.
The RHS = 1.15 ÷ (0.6 × 1.15 ÷ 1.5 – 0.08664) – 0.42748 × 1.5 ÷ (1.15 1.5 × 0.6 × (0.6

× 1.15 ÷ 1.5 + 0.08664)) = 3.0801 – 1.5853 = 1.494.

Hence, the LHS ≈ RHS.

PR = 69.6 ÷ 46.4 = 1.5, TR = 219.3 ÷ 190.7 = 1.15, and, therefore, ZRK = 0.6.

PR = 50.85 ÷ 33.9 = 1.5, TR = 145.1 ÷ 126.2 = 1.15, and, therefore, ZRK = 0.6.

Remarks
It is seen that at specified PR and TR ZRK is equal for all real gases.

f. Example 6

value of 
600ºC.

Solution
For water Pc = 220.9, and Tc = 647.3 K. Using Eq. (41)
a  = 0.42748 R2Tc

2.5/Pc = 0.42748×(0.0814 bar m3 kmole–1 K–1)2×(647.3 K)2.5÷220.9

bar
= 142.59 bar m6 K1/2 kmole–2

b  = 0.08664 RTc/Pc = 0.08664 × 0.08314 bar m3 kmole–1 K–1 × 647.3 K ÷ 220.9 bar

= 0.0211 m3 kmole–1.
Therefore, for RK equation (37)
250 bar = (0.08314 bar m3 kmole–1  K–1 × 873 K) ÷ ( v  – 0.0211)

– 142.59 bar m6÷(8731/2 v  ( v  + 0.0211)).

Solving for v , we obtain three real solutions. Selecting the largest of the three values,
which corresponds to a vapor–like solution, v  = 0.246 m3 kmole–1.
∴ v = 0.246 m3 kmole–1 ÷ 18.02 kg kmole–1 = 0.01361 m3 kg–1.

The steam tables give a value of 0.014137, a difference of –3.7%.

′vc  = Tc/Pc = 0.08314 bar m3 kmole–1 K–1 × 647.3 K ÷ 220.9 bars = 0.244 m3 kmole–1.

Since, ′vR  = v/ ′vc= 0.246 ÷ 0.244 = 1.008, and PR = 1.132, TR = 1.349, using Eq.

(43), ′vR  = 1.008.

Now, (P v)RK = ZRK R T. Since, vRK = 0.246 m3 kmole–1,
ZRK = 250 bar × 0.246 m3 kmole–1 ÷ (0.08314 bar m3 kmole–1  K–1 × 873 K) = 0.845.

Remarks
The reduced parameters PR = P/Pc = 250 ÷ 220.9 = 1.132, and TR = T/Tc = 873 ÷
647.3 = 1.349. A value of ′vR = 1.007 can be obtained using Eq. (43). Thereafter,
since ′vc= 0.244, v  = 0.246 m3 kmole–1.
Equation (46) is a representation of the principle of corresponding states, which states
that the compressibility factor for all gases is the same at specified values of PR and
TR. The factor evaluated with two parameter equation of state is normally denoted as
Z(0).
Using Eq. (48) we can now  plot ZRK vs. PR using ′vR  as a parameter. At fixed tem-
peratures, as the pressure of a gas increases from very low values, its volume de-
creases, the product Pv ≈ constant, and, hence, initially Z ≈ 1. As the volume de-

′vR ,  and that of ZRK for water at a pressure of 250 bars and a temperature of
Determine the value of v and compare it with that obtained from the steam tables,  the



creases, the pressure increases due to frequent molecular collisions of molecules.
However, the intermolecular attractive forces reduce the pressure so that (Pv) <
(Pv)ideal gas and, consequently, the value of Z decreases. Beyond a certain pressure,
further pressure increments produce smaller and smaller reductions in the volume (i.e,
liquid volumes)  so that the value of Pv (or Z) again increases. Therefore, the com-
pressibility factor passes through a minimum value with respect to PR (e.g., point B in
Figure 8 at TR=1.2), since the finite body volume dominates pressure effects at high
pressures and overwhelms the intermolecular attractive forces. At low pressures, the
variation in the values of  Z with pressure has both negative and positive slopes. The
temperature TR at which (∂Z/∂PR) = 0 is known as the Boyle temperature. At higher

pressures Z = 1 at a particular value of PR, once TR is fixed, i.e., the decrease in pres-
sure due to attractive forces at this condition equals the increase in pressure due to
more frequent collisions within a smaller free volume available for molecular motion.
The Z–minimum condition, the Boyle temperature, and the Z = 1 condition are dis-
cussed below.
Table 1 contains a comparison of values of Z from charts and other state equations.

Table 1: Comparison of values of Z from charts and other state equations.

RK
Pr Tr Z Z % error Z % error Z % error
2 1 0.31 0.43 38.7 0.25 12.9 0.32 3.2
2 1.3 0.7 0.65 -7.1 0.7 0 0.69 -1.4
2 3 0.96 0.92 -4.2 0.95 -1 0.95 -1
4 1 0.56 0.74 32.1 0.59 5.4 0.58 3.6
4 1.3 0.69 0.75 8.7 0.7 1.4 0.66 -4.3
4 2 0.96 0.91 -5.2 0.95 -1 0.96 0
6 1 0.78 0.96 23.1 0.82 5.1 0.81 3.8
6 1.3 0.82 0.97 18.3 0.84 2.4 0.82 0
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Chart VW RK BWR
Pr Tr Z Z % error Z % error Z % error
6 2 1.01 1.05 4 0.99 -2 1 -1

Av. %
Diff.

15.7 3.5 2

6. Boyle Temperature and Boyle Curves

a. Boyle Temperature
Using the RK equation, the Boyle temperature can be determined as follows. First,

multiply Eq. (37) by v to obtain

Pv = RTv/(v–b) – a/(T1/2(v+b)). (48a)

Dividing  by RT,

Z = Pv/RT = v/(v–b) – a/(RT3/2(v+b)). (48b)

 Since Z = Pv/RT, ∂Z/∂P = (1/RT) ∂(Pv)/∂P. Therefore, if ∂Z/∂P = 0, it implies that ∂(Pv)/∂P =

0, and

∂(Pv)/∂P = (RT/(v–b) – RTv/(v–b)2 + a/(T1/2(v+b)2)) (∂v/∂P)

                  = (a/(T1/2(v+b)2 – RTb/(v–b)2) (∂v/∂P). (49)

Since

∂v/∂P = 1/((a(2v+b)/T1/2 v2 (v+b)2) – RT/(v–b)2) (50)

As P → 0, the volume becomes large, and Eq (50) assumes the form

∂(Pv)/∂P → (b – a/RT3/2), i.e., ∂(Z)/∂P → (b/RT – a/R2T5/2). (51) 

Expressed in terms of reduced variables.

∂Z/∂PR = 0.08664/TR – 0.4275/TR
5/2 as PR → 0. (52)

Recall from Abbott’s correlation, (Eq. 16)  that ∂Z/∂PR  = B1(TR) = 0.083/TR –

0.4275/TR. Hence, using the RK equation, when TR = 1, the slope ∂Z/∂PR = – 0.3409. This

slope tends to zero when TR
3/2 → 2.8983. The corresponding temperature is called the Boyle

temperature. (This result compares well with the value of 2.76 that is obtained using the em-
pirical virial expressions.) The slope is negative when TR < 2.8983 and is positive when TR >
2.8983. It can be shown that the slope has a maximum value of 0.009737 at TR = 5.33873 and
decreases slowly to 0.004093 as TR → 20, indicating that the value of Z ≈ 1 even at high pres-

sures and temperatures. For instance, in diesel engines pressures as high as 80 bars are attained
but the gaseous mixtures behave like an ideal gas, since for many combustion–related species
TR > 20.

b. Boyle Curve
If TR < 2.8983, Z approaches a minimum value at a particular reduced pressure. The

loci of all the minima of Z = Zminimum constitute the Boyle curve along which the gas behavior
is similar over a wide pressure range. The Boyle curve may be characterized as follows. The
Zminimum condition occurs where the product (Pv) has a minimum value at a specified tempera-
ture. Applying Eq. (49a),



(∂(Pv)/∂P) = (a/(T1/2(v+b)2 – R T b/(v – b)2) (∂v/∂P), (53)

at the minima ∂(Pv)/∂P = 0. Therefore, at this condition, either ∂v/∂P = 0, which implies that

there is no volumetric change during compression (an unrealistic supposition), or

(R T/(v – b) – R T v/(v – b)2 + a/(T1/2(v + b)) = 0. (54)

Using Eq. (55) to solve for T,

T3/2 = a (v – b)2/(R b(v + b)2).

In terms of reduced variables

TR
3/2 = 4.9342 ( ′vR  – 0.08664)2/( ′vR  + 0.08664)2. (55)

Further, solving for ′vR ,

′vR  = 0.08664 (1 + 0.4502 TR
3/4)/(1 – 0.4502 TR

3/4) (56)

Therefore, at specified values of TR, ′vR  can be determined using Eq. (57) and the result sub-
stituted into Eq. (45) to determine PR at Zminimum. There is no solution for ′vR and Zminimum for
values of TR > 2.898 (i.e., above the Boyle temperature), since Z always increases. These re-
sults are illustrated in Figure 9.

c. The Z = 1 Island
For specified values of TR, the corresponding values of Z first decrease below unity as

the pressure is increased, pass through a minima, and then increase to cross over Z = 1. On a
pressure–temperature graph there is restricted regime or an island on which Z = 1. Here the
real gas behaves as an ideal gas. Using Eq. (49b) at this condition, we obtain the relation

Pv/RT = Z = 1/(1 – b/v) – a/(R T3/2 v (1 + b/v)) = 1, i.e., (57)
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 (v R T3/2/a) = (1 – b/v)/(1 + b/v), (58)

which yields a relation between v and T at Z = 1. Solving for the product (bv–1), we obtain

b/v = (A – 1)/(A + 1), (59)

where A = (a/vRT3/2). Substituting Eq. (60) into the RK equation of state,

P = (RT/(2 A b)) (A – 1) – (a/(2 b2 T1/2 A(1 + A))) (1 – A)2. (60)

In the terms of reduced parameters, A = 4.9342/TR
3/2, and ′vR  = 0.08664 (A + 1)/(A – 1), so

that

PR = 5.77101 TR (A – 1) – 28.47536(A – 1)2/(TR
1/2 A (1 + A))). (61)

These results are illustrated in Figure 10.

7. Deviation Function
The function (v – v0) = (v – RT/P) is called the deviation function for volume. It pro-

vides a measure of the deviation of the volume of a real gas from that of an ideal gas under the
same  T and P. The generalized RK equation of state can be expressed as

P = RT/(v – b) – a/(Tn v (v + c)) (62)

where n=1/2, c= b for a RK fluid, n=0, c=0  for VW fluids, and n=1, c=0 for Berthelot fluids.

As P → 0, v tends to large values, and b/v becomes smaller. Under these conditions

Eq. (63) assumes the form

P = (RT/v) (1 – b/v)–1 – (a/T1/2) (1/v2) (1 + c/v)–1.

Upon expansion, (1 + b/v)–1 = 1 – b/v + (b/v)2 +..., and neglecting terms of the order v3 and
higher,
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P = (RT/v) + (1/v2) (bRT – a/Tn). (63)

Therefore,

Pv/RT = Z (v,T) = (1 + b/v) –a/(vRT(n+1)) = 1 + B(T)/v, (64)

Where B(T) = b – a/RT(n+1). As P → 0, v → ∞, and Z → 1.

Solving for v from Eq. (64),

v = RT/2P (1 ± (1 + (4 P/RT)(b – a/RT n+1))1/2).

As P → 0,

v ≈ RT/2P (1 ± (1 + 2 P/RT (b–a/RTn+1))),

only positive values of which are acceptable. Therefore,

v = RT/P + (b – a/RTn+1),

Since RT/P = v0,

v = v0 + b – a/(RTn+1), for  RK, VW and Berthelot (65)

Therefore, at lower pressures, (v – v0)P→0 = b – a/RTn+1, where n ≥ 0. For example, if

n = 0, the volume deviation function has a value equal to (b – a/RT), and is a function of tem-
perature. In this case, the real gas volume never approaches the ideal gas volume even when T
→ ∞. In dimensionless form

′vR  – ′vo R, = a∗ – b∗/TR
(n+1), for  RK, VW and Berthelot fluids.
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Figure 11: The deviation function for Berthelot, RK,and VW gases, PR →0



where n = 0, 1, 1/2, a∗ = (27/64), (27/64), 0.4275, and b∗ = 0.125, 0.125, 0.08664, respectively,

for the Van der Waals, Berthelot and RK equations. The difference between ′vR  and ′vo R, are

illustrated with respect to TR for these equations as PR → 0 in Figure 11.

If a = b  = 0 in any of the real gas equations of state, these equations are identical to
the ideal gas state equation.

8. Three Parameter Equations of State
If v = vc (i.e., along the critical isochore), employing the Van der Waals equation,

P = RT/(vc – b) – a/vc
2,

which indicates that the pressure is linearly dependent on the temperature along that isochore.
Likewise, the RK equation also indicates a linear expression of the form

P = RT/(vc – b) – a/(T1/2vc (vc + b)). 

However, experiments yield a different relation for most gases. Simple fluids, such as argon,
krypton and xenon, are exceptions. The compressibility factors calculated from either the VW
or RK equations (that are two parameter equations) are also not in favorable agreement with
experiments. One solution is to increase the number of parameters.

a. Critical Compressibility Factor (Zc) Based Equations
Clausius developed a three parameter equation of state which makes use of experi-

mentally measured values of Zc to determine the three parameters, namely

P = R T/( v  – b) – a /(T ( v  + c )2). (66)

where the constants can be obtained from two inflection conditions and experimentally known
value of ZC, critical compressibility factor.

b. Pitzer Factor
The polarity of a molecule is a measure of the distribution of its charge. If the charge it

carries is evenly or symmetrically distributed, the molecule is non–polar. However, for some
chemical species, such as water, octane, toluene, and freon, the charge is separated across the

Figure 12. Illustration of Pitzer factor estimation.



molecule, making it uneven or polar. The compressibility factors for nonsymmetric or polar
fluids are found to be different from those determined using two parameter equations of state.
Therefore, a third factor, called the Pitzer or acentric factor ω has been added so that the em-

pirical values correspond with those obtained from experiments. This factor was developed as
a measure of the structural difference between the molecule and a spherically symmetric gas
(e.g., a simple fluid, such as argon) for which the force–distance relation is uniform around the
molecule. In case of the saturation pressure, all simple fluids exhibit universal relations for
PR

sat with respect to TR (as illustrated in Figure 14). In Chapter 7 we can derive such a relation
using a two parameter equation of state. For instance, when TR = 0.7, all simple fluids yield
PR

sat ≈ 0.1, but polar fluids do not. The greater the polarity of a molecule, the larger will be its

deviation from the behavior of simple fluids. Figure 14 could also be drawn for log10 Pr
sat vs.

1/TR as illustrated in Figure 12. The acentric factor ω is defined as

ω = –1.0 – log10 (PR
sat)TR=0.7 = –1 – 0.4343 ln (PR

sat)TR=0.7. (67)

Table A-1 lists experimental values of  ω” for various substances. In case they are not listed, it

is possible to use Eq. (68).

i. Comments
The vapor pressure of a fluid at TR = 0.7, and its critical properties are required in or-

der to calculate ω. For simple fluids ω = 0.

For non-spherical or polar fluids, a correction method can be developed. If the com-
pressibility factor for a simple fluid is Z(0), for polar fluids Z ≠ Z(0) at the same values of TR and

PR.
We assume that the degree of polarity is proportional to ω. In general, the difference

(Z – Z(0)) at any specified TR and PR increases as ω becomes larger (as illustrated by the line

SAB in Figure 13).
With these observations, we are able to establish the following relation, namely.

(Z  (ω,TR,PR)– Z(0) (PR, TR)) = ωZ(1) (TR, PR). (68)

Evaluation of Z(ω,TR,PR)  requires a knowledge of Z(1), w and  Z(0) (PR, TR).

c. Evaluation of Pitzer factor,ω

i. Saturation Pressure Correlations
The function ln(Psat) varies linearly with T–1, i.e.,

ln Psat = A – B T–1. (69)

Using the condition T = Tc, P = Pc, if another boiling point Tref is known at a pressure Pref, then
the two unknown parameters in Eq. (70) can be determined. Therefore, the saturation pressure
at T = 0.7Tc can be ascertained and used in Eq. (69) to determine ω.

ii. Empirical Relations
Empirical relations are also available, e.g.,

ω = (ln PR
sat – 5.92714 + 6.0964/TR,BP+1.28862 ln TR,BP – 0.16935 TR,BP)/

(15.2578 – 15.6875/TR,NBP + 0.43577 TR,NBP), (70)

where PR denotes the reduced vapor pressure at normal boiling point (at P = 1 bar), and TR,NBP

the reduced normal boiling point.



An alternative expression involves the critical compressibility factor, i.e.,

ω = 3.6375 – 12.5 Zc. (71)

Another such relation has the form

ω = 0.78125/Zc – 2.6646. (72)

9. Other Three Parameter Equations of State
Other forms of the equation of state are also available.

a. One Parameter Approximate Virial Equation
For values of vR > 2 (i.e., at low to moderate pressures),

Z = 1 + B1(TR) PR, (73)

where B1(TR) = B(0)(TR) + ωB(1)(TR), B(0)(TR) = (0.083 TR
–1) – 0.422 TR

–2.6, and B(1)(TR) =

0.139 – 0.172 TR
–5.2.

b. Redlich–Kwong–Soave (RKS) Equation
Soave modified the RK equation into the form

P = RT/(v–b) – a α (ω,TR)/(v(v+b)), (74)

where a = 0.42748 R2Tc
2Pc

–1, b = 0.08664 RTcPc
–1, and α (ω,TR) = (1 + f(ω)(1 – TR

0.5))2 , which

is determined from vapor pressure correlations for pure hydrocarbons. Thus, f(ω) = (0.480 +

1.574 ω – 0.176 ω2).

c. Peng–Robinson (PR) Equation
The Peng–Robinson equation of state has the form

P = (RT/(v – b)) – (a α(ω,TR)/((v + b(1 + 20.5))(v + b(1 – 20.5))), (75)

PR2, TR2

Z(1) (PR, TR)

S

A

Zref

wref

PR1, TR1

B

Figure 13: An illustration of the variation in the compressibility factor with
respect to the acentric factor.



where a = 0.45724 R2Tc
2Pc

–1, b = 0.07780 RTcPc
–1   and α(ω,TR) = (1 + f(ω) (1 – TR

0.5))2, f(ω)

= 0.37464 + 1.54226 ω – 0.26992 ω2. Equation (75) can be employed to predict the variation

of Psat with respect to T, and can be used to explicitly solve for T(P,v).

10. Generalized Equation of State
Various equations of state (e.g., VW, RK, Berthelot, SRK, PR, and Clausius II) can

be expressed in a general cubic form, namely,

P = RT/(v–b) – aα (ω,TR)/(Tn(v+c)(v+d)). (76)

In terms of reduced variables this expression assumes the form

PR = TR/( ′vR – b´) – a´α (ω,TR)/(TR
n ( ′vR  + c´) ( ′vR  + d´)), (77)

where a´ = a/(Pc ′vc

2 Tc
n), b´ = b/ ′vc , c´ = c/ ′vc , and d´ = d/ ′vc . Tables are available for the pa-

rameters a´ to d´. Using the relation Z = PR ′vR
/TR, we can obtain a generalized expression for

Z as a function of TR and PR, i.e.,

Z3 + Z2 ((c´ + d´ – b´) PR/TR – 1) + Z (a´α (ω,TR) PR/TR
2+n – 

(1 + b´PR/TR) (c´ + d´)PR/TR + c´d´ PR
2/TR 2) – 

(a´α (ω,TR) b´PR
2/TR

(3+n) + (1 + PR b´/TR) (c´d´PR
2/TR

2)) = 0. (78)

Writing this relation in terms of ′vR ,

′vR
3 PR + ′vR

2((c´ + d´ – b´)(PR/TR) –1) + ′vR  ((c´d´ – b´c´ –b´d´)PR – (c´ + d´)TR 

+ a×/TR
n) – PR b´c´d´ – a´α (ω,TR)b´/TR – TRc´d´ = 0. (79)

Using this equation along with the relation TR = PR ′vR
/Z, the compressibility factor can be

obtained as a function of PR and ′vR , i.e.,

Z(3+n) (a´α(w, TR) /( ′vR
(2+n)PR

(1+n))) (1–b´/ ′vR ) + 

Z3(1+(c´+d´–b´)/ ′vR –(b´/ ′vR
2)(c´+d´–d´/vR)) – Z2(1 + (c´ + d´)/ ′vR –c´d´PR/ ′vR + 

d´/ ′vR
2) – Z(b´ c´/ ′vR ) – c´ = 0.. (80)

where TR in  α (w, TR) expression must be replaced by PR vR´/Z. Table 2 tabulates values of  α,

n, a´, b´, c´, and d´ for various equations of state.

Table 2: Constants for the generalized  real gas equation of state.

Berthelot Clausius II PR PR with w RK SRK VW
a´ 0.421875 0.421875 0.45724 0.4572 0.42748 0.42748 0.421875
b´ 0.125 -0.02 0.0778 0.0778 0.08664 0.08664 0.125
c´ 0 0.145 0.187826 0.187826 0.08664 0.08664 0
d´ 0 0.375 -0.03223 -0.03223 0 0 0
n 1 1 0 0 0.5 0 0
f(ω), H2O 0.873236 1.000629

Note that Zc is  required for Clausius II while ω is required for RKS, PR, f(ω) for H2O with ω
= 0.344



11. Empirical Equations Of State
These equations accurately predict the properties of specified fluid; however, they are not suit-
able for predicting the stability characteristics of a fluid (Chapter 10).

a. Benedict–Webb–Rubin Equation
The Benedict Webb Rubin (BWR) equation of state which  was specifically devel-

oped for gaseous hydrocarbons, has the form

P = RT/v + (B2RT–A2–C2/T
2)/v2 + (B3RT–A3)/v

3 + A3C6/v
6 

   + (D3/(v
3T2))(1+E2/v

2) exp(–E2/v
2) (81)

The eight constants in this relation are tabulated in the literature. This equation is not recom-
mended for polar fluids. Table A-20A lists the constants.

b. Beatie – Bridgemann (BB) Equation of State
This equation is capable representing P-v-T data in the regions where VW and RK

equations of state fail particularly when ρ < 0.8 ρc. It has the form

P v2 = R T ( v  + B0 (1- ( b/ v)) (1- c/( vT3))- (A0/ v2)(1-(a/ v)).

Table A-20B contains several equations and constants.

c. Modified BWR Equation
The modified BWR equation is useful for halocarbon refrigerants and has the form

P  = 
n=∑ 1

9
An (T)/vn + exp(–vc 

2/v2) 
n=∑ 10

15
An(T)/v(2n –17). (82)

Figure 14: Relation between pressure and volume for compres-
sion/expansion of air (from A. Bejan, Advanced Engineering Ther-
modynamics, John Wiley and Sons., 1988, p 281).



d. Lee–Kesler Equation of State
This is another modified form of the BWR equation which has 12 constants and is

applicable for any substance. This  relation is of the form

PR  = (TR/ ′vR ) (1+A/ ′vR +B/ ′vR
2+C/ ′vR

5+(D/ ′vR )(β+γ/ ′vR
2)exp(–γ/ ′vR

2)), (83a)

Z = PR ′vR
/TR = 1+A/ ′vR +B/ ′vR

2+C/ ′vR
5+(D/ ′vR )(β+γ/ ′vR

2)exp(–γ/ ′vR
2), (83b)

where A = a1 – a2/TR – a3/TR
2 – a4/TR

3, B = b1 – b2/TR + b3/TR
3, C = c1 + c2/TR, and D = d1/TR

3.
The constants are usually tabulated to determine Z(0) for all simple fluids and Z(ref) for a refer-
ence fluid, that is usually octane (cf. Table A-21). Assuming that

Z(ref) – Z(0) = ω Z(1), (83c)

Z(1) can be determined.
A general procedure for specified values of  PR and TR is as follows: solve for vR´ from

Eq. (83a) with constants for simple fluids and use in Eq. (83b) to obtain Z(0). Then repeat the
procedure for the same PR and TR with different constants for the reference fluid, obtain Z(ref),
and determine Z(1) from Eq.(83c). The procedure is then repeated for different sets of PR and
TR. A plot of Z(0) is contained in the Appendix and tabulated in Table A–23A. The value of Z(1)

so determined is assumed to be the same as for any other fluid. Tables A-23A and A-23B
tabulate Z(0) and Z(1) as function of PR and TR.

e. Martin–Hou
The Martin–Hou equation is expressed as

P = RT/(v – b) + 
j=∑ 2

5
Fj(T)/(v – b)j + F6(T)/eBv, (84)

where Fi(T) = Ai + Bi T + Ci exp (–KTR), b, B and Fj are constants (typically B4 = 0, C4 = 0
and F6(T) = 0). This relation is accurate within 1 % for densities up to 1.5 ρc and temperatures

up to 1.5Tc.

12. State Equations for Liquids/Solids

a. Generalized State Equation
The volume v = v (P,T), and dv = (∂v/∂P)TdP + (∂v/∂T)PdT, i.e.,

dv = (∂v/∂P)TdP + (∂v/∂T)PdT. (85a)

We define

βP = (1/v)(∂v/∂T)P, (85b)

βT = –(1/v) (∂v/∂P)T, (85c)

 κT = 1/(βT P) = (–v/P) (∂P/∂T)T (85d)

where βP, βT and κT are, respectively, the isobaric expansivity, isothermal compressibility, and

isothermal exponent. The isobaric expansivity is a measure of the volumetric change with re-
spect to temperature at a specified pressure. We will show in Chapter 10 that βT>0 for stable

fluids. Upon substituting these parameters in Eq. (86a),

dv = vβP dT – vβT dP, or d(ln v) = βPdT – βTdP.

If βP and βT are constant, the general state equation for liquids and solids can be written as



ln(v/vref) = βP (T – Tref) – βT (P – Pref). (86)

This relation is also referred to as the explicit form of the thermal equation of state. In terms of
pressure, the relation

P = Pref + (βP/βT)(T – Tref) – ln (v/vref)/( βT vref), (87)

is an explicit, although approximate, state equation for liquids and solids. Both Eqs. (87) or
(88) can be approximated as

(v–vref)/vref = βP (T – Tref) – βT (P – Pref). (88)

Solving the relation in terms of pressure

P = Pref + (βP/βT) (T – Tref) – (v–vref)/( βT vref), (89)

which is an explicit, although approximate, state equation for liquids and solids.
The pressure effect is often small compared to the temperature effect. Therefore, Eq.

(89) can be approximated in the form

ln(v/vref) ≈ βP (T – Tref). (90)

In case βP (T – Tref) « 1, then

v/vref = (1 + βP (T – Tref)). (91)

which is another explicit, although approximate, state equation for liquids and solids
Copper has the following properties at 50ºC: v, βP , and βT are, respectively,

7.002×10–3 m3 kmole–1, 11.5×10–6 K–1, and 10–9 bar–1. Therefore, heating 10 kmole of the sub-

stance from 50 to 51ºC produces a volumetric change that can be determined from Eq.(87) as
7.002×10–3 × 10 × 11.5×10–6 = 805 cm3. If a copper bar containing 10 kmole of the substance

is vertically oriented  and a weight is placed on it such that the total pressure on the mass
equals 2 bar, the volume of the copper will reduce by a value equal to –7.002×10–3 × 10 ×
0.712×10–9 = –0.05 mm3. Therefore, changing the state of the 10 kmole copper mass from

50ºC and 1 bar to 51ºC and 2 bars, will result in a volumetric change that equals 805 – 0.05 =
804.95 mm3.

For solids βP is related to the linear expansion coefficient α. The total volume V ∝ L3,

and

βP = 1/V(∂V/∂T)P = 1/L3 ∂(L3)/∂T = (3/L) ∂L/∂T = 3α, (92)

where α = (1/L) (∂L/∂T)P.

g. Example 7

v = 0.00101 m3 kg–1, and cp = 4.178 kJ kg–1 K–1.
Solution

Since βP = 44.8×10–6 bar–1 and dv = –βP dP v, ln v2/v = –βT (P2 – P1) = – 0.00268, i.e.,

v2/v = 0.997.
Now, v2 = 0.997×0.00101 = 0.001007 m3 kg–1, so that

v2 – v = 0.001007 – 0.001010 = 0.000997 m3 kg–1.

pressible substance, and assume that at 30ºC, βP = 2.7×10–4 K–1, βT = 44.8×10–6 bar–1,
change in volume, and work  required to compress the fluid. Treat water as a com-
Water is compressed isentropically from 0.1 bar and 30ºC to 60 bar. Determine the



δw = –vdP (for a reversible process in an open system).

∴ δw = – v (dP/dv) dv = (1/βT) dv.

Integrating this expression,
w = (1/βT)(v2 – v.) = 100 kPa bar–1×(0.001007–0.00101)÷44.8×10–6 = –6.76 kJ kg–1.

h. Example 8

diator?
Solution

Since d ln v = βP dT – βT dP and the volume is constant,

dP/dT = βP/βT = 2.7×10–4 K–1/44.8×10–6 bar–1 = 6.03 bar K–1.

Assuming that βT and βP are constants,

∆P = 6.03×65 = 391 bar.

b. Murnaghan Equation of State
If we assume that the isothermal bulk modulus BT (= 1/βT) is a linear function of the

pressure, then

BT(T,P) = (1/βT)  =  –v(∂P/∂v)T = BT(T,0) + αP (93)

where α = (∂BT/∂P)T. Therefore,

∂P βT (1,0)/(1 + αP βT (1,0)) = –dv/v. (94)

Integrating, and using the boundary condition that as P → 0, v → v0, we obtain the following

relation

 v/v0 = 1/(1 + (αPβT (1,0))(1/α), i.e., (95)

P(T,v) = ((v0/v) α – 1) (1/ αβT (1,0)). (96)

c. Racket Equation for Saturated Liquids
The specific volume of saturated liquid follows the relation given by the Racket

equation, namely,

v v Zf c c
TR= ( – ).1 0 2857

. (97)

d. Relation for Densities of Saturated Liquids and Vapors.
If ρf denotes the saturated liquid density, and ρg the saturated vapor density, then

ρRf = ρf/ρc = 1 + (3/4)(1 – TR) + (7/4)(1– TR)1/3, and (98)

ρRg = ρg/ρc = 1 + (3/4)(1 – TR) – (7/4)(1– TR)1/3. (99)

These relations are based on curve fits to experimental data for Ne, Ar, Xe, O2, CO, and CH4.
It is also seen that

ρRf – ρRg = (7/2)(1 – TR)1/3. (100)

90ºC. Assuming that the radiator is rigid, what is the final water pressure in the ra-
provision for the reservoir. The radiator water temperature increases from 25ºC to
A defective radiator does not have a pressure relief valve and there is no drainage



At low pressures,

ρRf  ≈ (7/2)(1 – TR)1/3 since  ρRf  >> ρRg

In thermodynamics, ρRf – ρRg is called order of parameter. If ρRg  is known at low pressures

(e.g., ideal gas law), then ρRf  can be readily determined. Another empirical equation follows

the relation

ρR,f = 1 + 0.85(1–TR) + (1.6916 + 0.9846ψ)(1–TR)1/3 (101)

where ψ ≈ ω.

e. Lyderson Charts (For Liquids)
Lyderson charts  can be developed based on the following relation, i.e.,

ρR = ρ/ρc = vc/v. (102)

The appendix contains charts for ρR vs. PR with TR as a parameter. In case the density is known

at specified conditions, the relation can be used to determine Pc, Tc and ρc. Alternatively, if the

density is not known at reference conditions, the following relation, namely,

ρ/ρref = vref/v = ρR/ρR,ref (103)

can be used.

f. Incompressible Approximation
Recall that liquid molecules experience stronger attractive forces compared to gases

due to the smaller intermolecular spacing. The molecules are at conditions close to the lowest
potential energy where the maximum attractive forces occur. Therefore, any compression of
liquids results in strong repulsive forces that produce an almost constant intermolecular dis-
tance. This allows us to use the incompressible approximation, i.e., v = constant.

D. SUMMARY
This chapter describes how some properties can be determined for liquids, vapors,

and gases at specified conditions, e.g., the volume at a given pressure and temperature. Com-
pressibility charts can be constructed using the provided information and fluid characteristics,
such as the Boyle temperature, can be determined. The relations can be used to determine the
work done as the state of a gas is changed. Various methods to improve the predictive accu-
racy are discussed, e.g., by introducing the Pitzer factor. State equations for liquids and solids
are also discussed.

E. APPENDIX

1. Cubic Equation
One real and three imaginary solutions are obtained for Z when TR>1. However,

when TR<1, we may obtain one to three real solutions.
The following method is used in spreadsheet software to determine the compressibil-

ity factor. Consider the relation

Z3 + a2 Z
2 + a1 Z + a0 = 0.

Furthermore, let

α = a2
2/9 – a1/3, β= –a2

3/27 + a1a2/6 – a0/2, and γ = α2 - β3.



a. Case I: γ > 0

i. Case Ia: α > 0

There is one real root for this case, i.e.

Z = Z = (α + γ 0.5)1/3 + ( α – γ 0.5)1/3 + 1/3.

ii. Case Ib: α < 0

Again, only one real root exists. If tan ϕ = (–p)1.5/q, tan θ = (tan(ϕ/2))1/3 if ϕ > 0,  and

–(tan(–ϕ/2))1/3 if ϕ<0, then

Z = (–2) (–α)0.5/tan(|2θ|) + 1/3.

b. Case II: γ  < 0

Three real roots  exist for this case. If cos φ = β/α1.5, then

Z1 = 2α1/2 cos(φ/3) + 1/3, 

Z2 = 2α1/2 cos(φ/3 + 4π/3) + 1/3, and 

Z3 = 2α1/2 cos(φ/3 + 8π/3) + 1/3.

i. Example 9

1.2 and PR = 10, and Z1, Z2, Z3 at TR = 0.9161 and PR = 0.602.
Solution

a× = 0.4275PR/TR
2.5 = 0.1862, and b× = 0.08664PR/TR = 0.06931

Using Eqs. (46) and (106), a2 = –1, a1 = a× – b×2 – b× = 0.1121, a0 = –a×b× =

–0.01291.
Therefore,
α = a2

2/9 - a1/3 = 1/9 – 0.1121/3 = 0.07374,

β = –a2 
3/27 + a1a2/6 – a0/2 = 1/27 – 0.1121/6 + 0.01291/2 = 0.02481, and

γ = β2 – α3 = 0.0002145.

Since, γ > 0 and α > 0, Case Ia is applicable, and

Z = (α + γ0.5)1/3 + (α – γ0.5)1/3 + 1/3

= (0.02481 + 0.00021450.5)1/3 + (0.02481 – 0.00021450.5)1/3 + 1/3
= 0.340 + 0.2166 + 0.333 = 0.8899.
In the second case, a× = 2.7109, b× = 0.722, a1 =1.4668, a0 = -1.9569 so that

α = -0.3778, β =0.7709, and γ = 0.6482.

Hence, Case Ib is applicable.
tan φ = (-α)1.5/β = 0.3012, i.e., φ = 16.76.

tan θ = (tan (φ/2))1/3 = 0.4366, i.e., θ = 27.84. Therefore,

Z = 2 (–α)0.5/tan(2θ) + 1/3 = 2 × 0.37780.5/tan (2×27.84) + 1/3

    = 0.8392 + 0.333 = 1.1725.
For the third case, a× = 0.3204, b× =0.05693, a1 =.2602, a0 = -0.01824, and

α = 0.02437, β = 0.002789, and γ = -6.78×10-6.

Consider the RK equation of state. Determine Z at TR = 1.5 and PR = 1.2, and at TR =



Case II applies, and there are three roots to the equation.
cos φ = β/α1.5  = 0.7329, i.e., φ = 42.87.

Z1 = 2α0.5 cos(φ/3) + 1/3 = 2 × 0.024370.5 cos(42.87/3) + 1/3

     = 0.3122 × 0.9691 + 1/3 = 0.3025 + 0.333= 0.6359.

Z2 = 2α0.5 cos(φ/3 + 120) + 1/3 = 0.3122 × cos (134.29) + 0.333

     = –0.2180 + 0.333 = 0.1153.
Z3 = 2α0.5 cos(φ/3 + 240) + 1/3 = 0.3122 × cos(254.29) + 0.33333

     = –0.08453 + 0.3333 = 0.2488
The spreadsheet software uses this methodology for solving the cubic equation.

2. Another Explanation for the Attractive Force
The net force acting on the molecules on a wall is proportional to the number of sur-

rounding molecules that exert an attraction force. The net force on each molecule near  the
wall equals the force exerted on the wall by collision minus the attraction force. Therefore, for
n molecules on the wall,  (n × the force exerted on the wall by collisions per molecule) – (n ×
attractive force per molecule) = (n × net force on the wall per molecule). Since the attraction

force per molecule ∝ n of  surrounding the system, then (n × force exerted on the wall by colli-

sion per molecule) – (n × n × constant) = (n × net force). Therefore, the net pressure equals the

pressure that would have been exerted in the absence of attraction forces minus the term (n2 ×
constant), i.e.,

P =(RT/(V – b´) – attraction force (which is ∝ n2)

= RT/(V – b´) – attraction force ∝ N2/V2 = RT/(V – b´) – a´/V2.

If we compare the attractive force component to the LJ force function (cf. Chapter 1),
the attractive force ∝ 1/l 6, i.e., the attractive force being proportional to the n2 seems to be the

reason that the exponent is 6 in the attractive force relation. (In the context of the gravitational
law F = G mEm´/r2, where G = 6.67×10-14 kN m2 kg–2, since g = 9.81 m s–2 at r = rE, F =

GmE/rE
2. If the radius of the earth is known, then its mass can be determined. This derivation

also enables a simplistic relation for the pressure due to inter-planetary forces between planets
in the universe.)

3. Critical Temperature and Attraction Force Constant
Consider an l×l cross section of a wall containing a single molecule M. Other

molecules that collide with M impart a momentum to it due to their velocity V. The
momentum transfer rate to M is mV2/3l. The molecule M also experiences attraction forces.

The attraction force between a molecular pair is 4(ε/σ)σ7/r7 according to the LJ model.

Now consider a semicircular segment characterized by the dimensions dr and dθ
located at a radial distance r from M. There are πrn´rdθdr molecules within that shell pulling

M away from the wall in the radial direction. The net force on the molecules in that direction is
(r2 dr dθ cosθ πn´ 24(ε/σ) σ7)/r7). Assuming the force field to be continuous and integrating

this expression over r = σ to ∞ and θ = 0 to π/2, the net force on M equals 3πn´(εσ2). We must

subtract this force from the momentum transfer rate. Dividing by the area l2, the pressure

equals mV2/3l3 – πn´(3εσ2)/l2. Since N´= l–3, the pressure

n´mV2/3 – πn´2(3εσ2) l ∝ R T/( v  – b) – a/ v2.



Therefore, a = NAvag
2 3πεσ2l is a weak function of the intermolecular spacing. In case l ≈ σ, a =

NAvag
2 3πεσ3. A more rigorous derivation based on the potential gives the relation a = 2.667

NAvag
2 .



Chapter 7

 7. THERMODYNAMIC PROPERTIES OF PURE FLUIDS

A. INTRODUCTION
In this chapter, we will make use of the properties of ideal gases, the critical proper-

ties of substances, and the state equations that can be applied to describe their behavior in or-
der to determine the thermodynamic properties of pure fluids.

B. IDEAL GAS PROPERTIES
The molecules of ideal gases can be considered to be point masses that are uninflu-

enced by intermolecular attractive forces, and follow the state relationship

P v = R T. (1)

The molecular energy of an ideal gas uo can be determined if the molecular structure and ve-
locity are known. (The subscript o is taken to denote ideal gas properties, which can be inter-
preted as the condition P → 0). The value of uo depends only upon the temperature. Using the

relation ho (T) = uo(T) + (Pv)o = uo (T) + RT, the internal energy may be expressed as:

uo (T) = ho(T) – RT. (2)

For ideal gases, cv,o = cp,o – R, where cp,o = dho/dT and cv,o = duo/dT. Therefore,

o o,ref ref T

T
h (T) - h (T ) = c (T)dT

ref p o∫ ,
, (3)

where the difference h0(T)-h0(Tref) is called thermal enthalpy. If  ho,ref = 0 at Tref = 0 K ,

o 0
T

h (T) = c (T) dT
p o∫ ,

. (4)

If  cp0 (T) = constant, then Eq. (4) states that h0(T) = cp0 T. Thereafter, uo (T) can be deter-
mined. Similarly, using the relation developed in Chapter 3,

so(T,P) = so(T) – R ln (P/Pref). (5)

Usually, Pref is taken as 1 atm, and

so(T) = T
T

ref p oc (T) dT T∫ ,
/ . (6)

Any substance, whether solid, liquid or real gas can be “converted” into a hypotheti-
cal ideal gas by removing the attractive forces and reducing the body volume of molecules to a
“point volume”(Chapter 6).

C.  JAMES CLARK MAXWELL (1831–1879) RELATIONS
Maxwell provided relations for several nonmeasurable properties in terms of measur-

able properties (e.g., T, v and P). The basis for the derivation of  relations is as follows. If

dz = (M(x,y) dx + N(x,y) dy)

is an exact differential, it must then satisfy the exactness criterion, i.e.,

(∂M/∂y) x = (∂N/∂x)y. 

The variable M (x,y) is called the conjugate of x and N(x,y) is the corresponding conjugate of
y. If the exactness criterion is satisfied, the sum (M(x,y) dx + N(x,y) dy) = dZ, the integration
of which yields a point (or state) function Z(x,y) that is a property (Chapter 1). Inversely if Z is
a property, then dZ is exact and, since dZ equals the aforementioned sum, the criterion for an
exact differential is satisfied.



1. First Maxwell Relation
The First law for a process occurring in a closed system can be expressed in the form

δQ – δW = dU. (7)

For a process occurring along an internally reversible path

δQrev = TdS and δWrev = PdV,

so that Eq. (7) can be written as

dU = TdS – PdV. (8)

For a unit mass, the corresponding relation is

du = Tds – Pdv. (9)

a. Remarks
Equation (9) is an expression of the combined First and Second laws for a closed
system. We observe that once s and v are fixed, du = 0. The relation u = u(s,v) is an
intensive state equation that is expressed in terms of intensive variables.
Assume that you are to visit a planet on which only s and v can be measured, but for
some reason not T and P. Equation (9) can be written in the form

du = T(s,v) ds – P(s,v) dv (10)

The slopes of u at specified s and v are

(∂u/∂s)v = us = T(s,v), and (∂u/∂v)s = uv = – P(s,v). (11)

The temperature T is the conjugate of s and (–P) the conjugate of v. It is noted that
(∂u/∂s) v → 0 as T → 0  and hence  u = u(v) as T → 0. Obtaining total differential of

T(s,v) and using Eq. (10),

dT = (∂T/∂s)v ds + (∂T/∂v)s dv, = uss ds + usv dv, (12)

where uss = ∂2u/∂s2, usv = ∂2u/∂s∂v. Similarly,

–dP = usv ds + uvv dv. (13)

These relations are useful in stability analyses (cf. Chapter 10).
At constant volume, i.e., along an isometric curve Eq. (9) yields the expression

Tdsv = duv, or T(∂s/∂T)v = (∂u/∂T)v = cv. (14)

Using the first of these two relations, the area under the resulting curve on a T–s dia-
gram represents the internal energy change for the isometric process. Rewriting Eq.
(10) in the form, we obtain the fundamental relation in entropy form s = s(u,v), i.e.,

ds = (1/T(s,u)) du + (P(s,u)/T(s,u)) dv.

Since du is an exact differential, Eq. (10) must satisfy the corresponding criterion,
namely,

(∂T/∂v)s = –(∂P/∂s)v, (15)

which is known as the First  relation. Table 1 summarizes the  relations.

2. Second Maxwell Relation
Adding the term d(Pv) to Eq. (9) and simplifying, we obtain the expression



dh = Tds + v dP. (16)

a. Remarks
Equation (16) is a form of the state equation h = h(s,P), and

(∂h/∂s)P = T(s,P), and (∂h/∂P)s = v(s,P). (17a)

We see that (∂h/∂s)P → 0 as T → 0, i.e., h = h(P) as T → 0. Furthermore,

dT = hss ds + hsp dP, and dv = hsp ds + hpp dP.

Using Eq. (16), ds = dh/T(s,P) – v(s,P) dP/T(s,P), i.e., s = s(h,P). At constant pressure,

T dsP = dhP.

Therefore, for an isobaric process, the area under the corresponding curve on a T–s
diagram represents the enthalpy. In addition,

T(∂s/∂T)P = (∂h/∂T)P = cP. (17b)

At the critical point, ∂T/∂s = 0 (cf. Chapter 3), and cp → ∞.

The second  relation has the form

(∂T/∂P)s = (∂v/∂s)P (18)

a. Example 1
Verify the Nernst Postulate, namely, cv → 0 and cp → 0 as T → 0.

Solution
Consider the relation

(∂s/∂T)v = cv/T.

Since the Third law states that s → 0 as T → 0, three possibilities exist for the slope

(∂s/∂T)v, namely,

(∂s/∂T)v → 0.

(∂s/∂T)v is finite.

(∂s/∂T)v → ∞ as either T → 0 or s → 0.

For the first two of these three cases as T → 0, cv/T → 0 or has finite values. There-

fore, in either case cv → 0 as T → 0. For the third case, since (∂s/∂T)v → ∞, we will

Differential Remarks
u du = Tds – Pdv T, –P ∂T/∂v = –∂P/∂s u = u(s,v)

h dh =Tds+vdP T, v ∂T/∂P = ∂v/∂s h = h(s,P)

a da = –sdT – Pdv –s, –P ∂s/∂v = ∂P/∂T a = a(T,v)

g dg = –sdT + vdP –s, v –∂s/∂P = ∂v/∂T g = g(T,P)

j dj = –P/T dv +
u/T2 dT

–P/T, u/T2 ∂j/∂v = –P/T,

∂j/∂T = u/T2

j = –a/T = s – u/T; Mas-
sieu function, j = j(T,v)

r dr = (v/T) dP +
(h/T2) dT

v/T, h/T2 ∂r/∂P = v/T,

∂r/∂T = h/T2

r = –g/T = s – h/T; Planck
function r = r(T,P)

Table 1: Summary of  relations

Conjugate Maxwell Relation



use the result from Chapter 3  that c ∝ T3 at low temperatures. Thereafter, assuming c

= cv, cv/T ≈ T2. Therefore, for all three cases, cv → 0 as T → 0.

Similarly, using the relation (∂s/∂T)P = cP/T, we can show that cP → 0 as T → 0.

3. Third Maxwell Relation
The Helmholtz function is defined as

a = u – Ts, and da = du – d (Ts). (19)

The entropy is a measure of how energy is distributed. The larger the number of quantum
states at a specified value of the internal energy, the larger the value of the entropy. Therefore,
if two systems that exist at the same temperature and internal energy, the Helmholtz function is
lower for the system that has a larger specific volume. Substituting from Eq. (9) for du in Eq.
(19),

da = –P dv – s dT, and a = a(v,T). (20)

a. Remarks
Equation (20) implies that

da = –P(v,T) dv – s(v,T) dT, where 

(∂a/∂T)v = – s(T,v) and (∂a/∂v)T = – P(T,v). (21)

Using the differentials of Eq.(21)

–ds = aTT dT + aTv dv, and –dP = avT dT + avv dv.

Using Eq. (20), the third  relation is derived as

(∂P/∂T)v = (∂s/∂v)T. (22)

Equation (22) provides a relation for s in terms of the measurable properties P, v, and T.
(The value of the LHS of the equation is measurable while the RHS value is nonmeas-
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Figure 1: Illustration of Maxwells Relations in terms of s and v.



urable.)  relations are illustrated in Figure 1 and Figure 2. Since a = u – Ts and s =
–(∂a/∂T)v, a/T = u/T + (∂a/∂T)v. Therefore,

∂((a/T)/∂T) = (1/T) ∂u/∂T – u/T2 – (∂s/∂T) v = cv/T – u/T2 – (∂s/∂T)v.

From the fundamental relation in entropy form, T(∂s/∂T)v = (∂u/∂T)v = cv, so that

∂((a/T)/∂T) = – u/T2 or ∂((a/T)/∂(1/T)) = u. (23)

Furthermore, since

daT = P dvT,

the area under an isotherm on a P–v diagram represents the Helmholtz function. The work
transfer during an isothermal process results in a change in the Helmholtz function. Recall
that “a” is a measure of the availability in a closed system. Knowing P=P (v,T), one can
obtain Helmholtz function “a”.
The Massieu function j is defined as

j = –a/T = s – u/T, i.e.,

dj = –da/T + a/T2dT = (1/T2)(PT dv – u dT) = j(T,v).

b. Example 2
The fundamental relation for the entropy of an electron gas can be approximated as

S(U,V,N) = B N1/6 V1/3 U1/2, where (A)

B = 23/2π4/3kBm1/2Navag
1/6/(31/3hP). (B)
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Here, kB denotes the Boltzmann constant that has a value of R /NAvag = 1.3804×10–26

kJ K–1, hP is the Planck constant that has a value of 6.62517×10–37 kJ s, m denotes the

electron mass of 9.1086×10–31 kg, N the number of kmoles of the gas, V its volume in

m3, and U its energy in kJ. Determine s , T, and P when u  = 4000 kJ k mole–1, and v
= 1.2 m3 kmole–1.

Solution
The value of B = 5.21442 kg1/2 k mole1/6 s K–1. From Eq. (A),

s  = S/N = (B/N) N1/6( vN)1/3( uN)1/2 = B v1/3 u1/2, i.e., (C)

s  = 5.21442 (kg1/2 K–1 Kmole1/6 s)(1.2 m3 k mole–1) 1/3 (4000 kJ kmole–1) 2.

Recalling that the units kg (m/s2) m ≡ J.

s  = 350 kg1/2 m kJ1/2 kmole–1 K–1. = 350.45 kJ kmole–1 K–1.

From the entropy fundamental equation

1/T = (∂ s /∂ u) ¯v .

Differentiating Eq. (C) with respect to u  and using this relation,

1/T = (1/2) B v1/3/ u1/2 = 0.04381 or T = 22.8 K. (D)

Similarly, since

P/T = (∂ s /∂ v)u,

Upon differentiating Eq. (C) and using the above relation,

P/T = (1/3) B u1/2/ v2/3 = 94.35 kPa K–1. (E)

Using the value for T = 22.83 K, the pressure P = 2222.4 kPa.. The enthalpy

h  = u  + P v  = 4000 + 2222.4 × 1.2 = 6666.9 kJ kmole–1.

Remarks
Eq. (C) can be expressed in the form

u( s , v) = s 2/(B2 v2/3). (F)

Equation (F) is referred to as the energy representation of the fundamental equation
(cf. Chapter 5).
Rewriting Eq. (D)

u  (T, v) = (1/4) B2 v2/3T2. (G)

Differentiating this relation with respect to T we obtain the result

cv = (∂u/∂T) v = (1/2) B2/3 v2/3 T. (H)

Dividing Eq. (E) by Eq. (D) we obtain the expression

u(P, v) = (3/2) P v . (I)

Likewise, using the entropy fundamental state equation (Eq. (A)), we can also tabu-
late other nonmeasurable thermodynamic properties such as a  (= u  – T s ) and g  (=
h  – T s ).
Eliminating u  in Eqs. (D) and (E) we obtain the state equation P = P(T, v) for an
electron gas in terms of measurable properties, i.e.,



P (T, v)= (B2/6) T2/ v1/3. (J)

If this state equation (in terms of P, T and v) is known, it does not imply that s , u ,
h , a , and g  can be subsequently determined. This is illustrated by considering the
temperature and pressure relations

T = ∂ s /∂ u , and P/T = ∂ s /∂ v . (K)

One can use Eq. (J) in (K). These expressions indicate that Eqs. (K) are differential
equations in terms of s  and, in order to integrate and obtains =s(T, v), an integra-

tion constant is required which is unknown. Therefore, a fundamental relation is that
relation from which all other properties at equilibrium (e.g., T, P, v , s , u , h , a , g ,
cp, and cv) can be directly obtained by differentiation alone. While the Eq. (A) repre-
sents a fundamental relation, we can see that the relation Eq. (J) does not.

c. Example 3
An electron gas follows the state equation

a (T, v) = –(1/4) B2  v2/3T 2, (A)

erties such as s , P, u , and h .
Solution

Using Eq. (21), we obtain the relation

(d a /dT)v = – s  = –1/2 B2T v2/3. (B)

The pressure is obtained from the expression

(d a /d v)T = –P = –(1/6) B2T2/ v1/3. (C)

Since u  = a + T s , using Eqs. (A) and (B), we obtain

u  = –(1/4) B2 v2/3  T2 + (1/2) B2T2 v2/3 = 1/4 B2T2 v2/3. (D)

Differentiating Eq. (D), we obtain an expression for the constant volume specific
heat, i.e.,

cv = (∂u/∂T)v = (1/2) B2T v2/3.

Furthermore, h  = u + P v  so that

h  = (1/4) B2T2 v2/3 + (1/6) B2T2 v2/3 = (5/12) B2T2 v2/3, and (E)

cP = (∂h/∂T)P = (5/12) B2(2T v2/3 + (2/3) T2 v–1/3(∂ v/∂T)P). (F)

The value of (∂ v/∂T)P can be obtained from Eq. (C).

Remarks
Alternatively, one can use Eq. (23) and get u  shown in Eq. (D) directly.
The Gibbs energy is a measure of the chemical potential, and

g  = h  – T s  = (5/12) B2T2 v2/3+ (1/2) B2T2 v2/3 = (11/12) B2T2 v2/3.

The above relation suggests that the value of the chemical potential becomes larger
with an increase in the temperature. A temperature gradient results in a gradient in-
volving the chemical potential of electrons. The state equation, P = (1/6) B2T2/ v1/3

indicates that v  increases (or the electron concentration decreases) as T increases at
fixed P. Hence, the warmer portion can have a lower electron concentration.

where B = 5.21442 kg1/2 K–1 kmole1/6 s. Determine the functional relations for prop-



Example 3 illustrates that the relation a  = a  (T,v) is a fundamental equation that
contains all the relevant information to construct a table of properties for P,u, h, g, s, etc., (e.g.
Tables A-4 for H2O, A-5 for R134a, etc.). One can plot the variation in h, g, and s with respect
to temperature as illustrated in Figure 3.

d. Example 4

Compare the result with the tabulated value of s1 = 0.7259, s2 = 0.6881.
Solution

Consider the RK state equation

P = RT/(v–b) – a/(T1/2v(v+b)) (A)

Note that the attractive force constant a is different from “a” Helmholtz function.
From the third  relation Eq. (22) and Eq. (A),

(∂s/∂v)T = (∂P/∂T)v= R/(v–b) + (1/2) a/(T3/2v(v+b)). (B)

Integrating Eq. (B),

s2(T,v2) –s1(T,v1) = 

Rln((v2–b)/(v1–b)) +(1/2)(a/(T3/2b)) ln(v2(v1+b)/(v1(v2+b))). (C)

Figure 3: Illustration of the variation in some properties,
e.g., h, s and g, with temperature.

Obtain an expression for the entropy change in an RK gas when the gas is isother-
mally compressed. Determine the entropy change when superheated R–12 is isother-
mally compressed at 60ºC from 0.0194 m3 kg–1 (state 1) to 0.0126 m3 kg–1 (state 2).



From Table 1 for R–12, Tc = 385 K, and Pc = 41.2 bar. Therefore a  =208.59 bar (m3

kmole–1) 2 K1/2, and b  = 0.06731 m3 kmole–1. The molecular weight M = 120.92 kg
kmole–1, and
a = a /M2 = 208.59 bar (m3 kmole–1) 2K1/2÷120.92 2(kg kmole–1)2

 = 1.427 k Pa (m3 kg–1) 2 K1/2, and
b = b/M = 0.557×10–3 m3 kg–1.

Since, R = 8.314 ÷ 120.92 = 0.06876 kJ kg–1 K–1,

s2 – s1 = 0.06876 ln[(0.0126 – 0.000557) ÷ (0.0194 – 0.000557)]

 + (1/2){172.5 ÷ (3331.5 0.000557)} ln [0.0126 (0.0194 + 0.000557)

  ÷ {0.0194 × (0.0126+ 0.000557)}].

 = – 0.06876 × 0.448 – 0.211 × 0.01495 = –0.03396 kJ kg–1 K–1.

4. Fourth Maxwell Relation
By subtracting d(Ts) from both sides of Eq. (16) and using the relation g = h – Ts, we

obtain the state equation

dg = v dP – s dT (24)

where g represents the Gibbs function (named after Josiah Willard Gibbs, 1839–1903). Equa-
tion (24) is another form of the fundamental equation. The intensive form g (= g(T,P)) is also
known as the chemical potential µ.

a. Remarks
Since, dg = v(T,P) dP – s(T,P) dT,

(∂g/∂T)P = –s(T,P) and (∂g/∂P)T = v(T,P) (25)

so that

–ds = gTT dT + gTP dP and dv = gPT dT + gPP dP.

The fourth Maxwell relation is represented by the equality

(∂v/∂T)P = –(∂s/∂P)T. (26)

The LHS of this expression is measurable while the RHS is not. Since s = –(∂g/∂T)P,

g = h – Ts = h + T (∂g/∂T)P or G = H + T (∂G/∂T)P.

This relation is called the Gibbs–Helmholtz equation.
Furthermore,

(∂(g/T)/∂T)P = (∂h/∂T) P – h/T2 – (∂s/∂T)P = –h/T2 or(∂(g/T)/∂(1/T))P = h (27)

Similarly from Eq. (24),

(∂g/∂P)T = v. (28)

These relations are used to prove the Third law of thermodynamics and are useful in
chemical equilibrium relations.
The phase change at a specified pressure (e.g., a piston containing an incompressible
fluid with a weight placed on it) occurs at a fixed temperature. In that case, dP = dT =
0 and Eq. (24) implies that dg = 0, i.e., gf (for a saturated liquid) = gg (for saturated
vapor at that pressure). Figure 3 illustrates the behavior of the properties h, s, and g
when matter is heated from the solid to the liquid, and, finally, to the vapor phase.



Note the discontinuities regarding the entropy and Helmholtz function during the
phase change, while g is continuous.
At constant temperature, dgT = vdP. Therefore, the area under the v–P curve for an
isotherm represents Gibbs function.
The Planck function is represented by the relation

r =  r(T,P) = –g/T = s – h/T, i.e.,

dr = – dg/T + g/T2 dT = (1/T2)(- vT dP + h dT).

The relations for du, dh, da and dg can be easily memorized by using the phrase
“Great Physicists  Have Studied Under Very Articulate Teachers” (G, P, H, S, U, V,
A, T) by considering the mnemonic diagram (cf. Figure 4). In that figure a square is
constructed by representing the four corners by the properties P, S, V, T, and by rep-
resenting the property H by the space between the corners represented by P and S, the
property U by the space between S and V, etc., as illustrated in Figure 4. Diagonals
are then drawn pointing away from the two bottom corners. Such a diagram is also
known as a thermodynamic mnemonic diagram. If an expression for dG is desired
(that is located at the middle of the line connecting the points T and P), we first form
the differentials dT and dP, and then link the two with their conjugates as illustrated
below
dG = – S(the conjugate of T with the minus sign due to the diagonal pointing towards
T) × dT + V (that is conjugate of P with the plus sign due to the diagonal pointing

away from P) × dP.

5. Summary of  Relations
These are four important relations, namely

s vT v =  P s∂ ∂( ) − ∂ ∂( )/ / , s PT P  =  v s∂ ∂( ) ∂ ∂( )/ / ,

v TP T =  s v∂ ∂( ) ∂ ∂( )/ / , and P Tv T =  s P∂ ∂( ) − ∂ ∂( )/ / .

Even though the relations were derived by using thermodynamic relations for closed systems,
the derivations are also valid for open systems as long as we follow a fixed mass.

Figure 4: Thermodynamic mnemonic dia-
gram.



For a point function, say, P = P(T,v), it can be proven that

(∂P/∂T)v (∂T/∂v)P (∂v/∂P)T = –1, i.e., (∂v/∂T)P = – (∂P/∂T)v/(∂P/∂v) T (29)

Equation (29) is useful to obtain the derivative (∂v/∂T) P if state equations are available for the

pressure (e.g., in the form of the VW equation of state). Likewise, if u = u(s,v),

(∂u/∂s)v (∂s/∂v)u (∂v/∂u)s = –1.

Using the relation ∂u/∂s = T, ∂s/∂v = P/T, and ∂v/∂u = –P, we find that, as expected,

T (P/T)(–1/P) = –1.

e. Example 5

pressibility coefficient βT = – (1/v)(∂v/∂P)T tend to zero as T → 0.

Solution
Example 1 shows that (∂s/∂T)v → 0 and (∂s/∂P)v →  0 as T → 0. From the fourth of

the  relations,

(∂v/∂T)P = –(∂s/∂P)T, so that (∂v/∂T)P → 0. 

Similarly, using the third  relation and the cyclic relations it may be shown that
(∂P/∂T)v = –((∂v/∂T)/(∂v/∂P)) = (∂s/∂v)T → 0 as T → 0. Since ∂v/∂T → 0, it is appar-

ent that ∂v/∂P → 0 as T → 0.

Remark
The experimentally measured values of βP and βT both tend to 0 as T → 0. Using the

relations the reverse can be shown, i.e., (∂s/∂T)v → 0 and (∂s/∂P)v → 0.

f. Example 6

that the liquid phase is incompressible.
Solution

During the elemental expansion of a two phase mixture of a specified quality x from
P to P + dP, and v to v + dv,

dh = Tds + v dP, and (A)

du = Tds – Pdv. (B)

Since,

dhf = d(uf +Pvf) 

For incompressible liquids,

dhf = duf + vf dP.

For a two phase mixture of vapor and liquid,

dh = x dhg + (1 – x) dhf = x dhg + (1 – x)(duf + vf dP).

When a refrigerant is throttled from the saturated liquid phase using a short orifice, a
two-phase mixture of quality x is formed. We are asked to determine the choking
flow conditions for the two-phase mixture, which occurs when the mixture reaches
the sound speed (c2 = – v2 (∂P/∂v)s). We must also derive an expression for the speed

of sound in a two-phase mixture. Assume ideal gas behavior for the vapor phase and

Show that both the isothermal expansivity βP = (1/v)(∂v/∂T)P and the isobaric com-



Assuming ideal gas behavior for the vapor phase, and if duf = cdT, then

dh = x cp,o dT + (1 – x)(cfdT + vf dP). (C)

Similarly,

du = x cvo dT + (1 – x) cfdT. (D)

Considering constant entropy in Eqs. (A) and (B), using Eqs. (C) and (D), dividing by
dT, we obtain the relation

(dP/dT)s = (x cp,o + (1 – x) cf)/(v – (1 – x)vf), i.e., (E)

(dv/dT)s = –(x cvo + (1 – x)cf)/P. (F)

Dividing Eq. (E) by Eq. (F), we obtain the relation

–(dP/dv)s = (x cp,o + (1 – x)cf)(P/(v – (1 – x)vf))/(x cvo + (1 – x)cf). (G)

Using the definition of the sound speed,

c2 = –v2(dP/dv)s,

where

v = xvg + (1 – x)vf, (H)

Eq. (G) can be written as

c2 = v2(xcp,o + (1 – x)cf) P/((v – (1 – x)vf)(xcvo + (1 – x)cf. (I)

Since vg = RT/P,

v = (xRT/P+ (1 – x)vf), and

c2= RT(x + (1 – x)(Pvf/(RT))) 2 (xcp,o + (1 – x)cf)/(x(xcvo + (1 – x)cf)). (J)

If x =1, then, as expected,
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Figure 5: Sound speed of a two phase mixture for R –134a



c2 = cp,o RT/cvo = γ RT. (K)

If x → 0, then

c2 = RT(Pvf/RT)2/x → ∞.

Using tabulated values for R–134a,

cf = 1.464 kJ kg–1 K–1, and cp,o at 298 K = 0.851 kJ kg–1 K–1.

Using the values for P = 690 kPa, R = 0.08149 kJ kg–1 K–1, cvo = 0.7697 kJ kg–1 K–1,
vf = 0.000835 m3 kg–1, and γ = 1.1. For the conditions x = 1, T = 298 K,

c = 163.4 m s–1.

A plot for c with respect to x is illustrated in Figure 5. The expression for the speed of
sound in a solid–vapor mixture is similar except that cf must be replaced by cS, spe-
cific heat of solid.

D. GENERALIZED RELATIONS
We will now derive generalized thermodynamic relations that express the nonmeas-

urable properties of any substance, such as s, u, and h, in terms of its measurable properties,
e.g., P, T, and v. We will first obtain generalized relations for the differential quantities (e.g.,
ds, du, and dh,) and, then, we will integrate these relations after applying the state equations.

1. Entropy ds Relation
Any thermodynamic property for a simple compressible substance can be expressed

as a function of two other independent thermodynamic properties. Therefore, for instance,

s = s (v,T), i.e.,

ds =  
s

v
dv +  

s

T
dT

T v

∂
∂







∂
∂





 . (30)

Eliminating  (∂s/∂T)v  with Eq. (14), we obtain

ds =  
s

v
dv +  c

dT

TT

v
∂
∂











 , (31)

where cv = f(T,v). Using the third  relation (cf. Eq. 22) the above expression can be expressed
in terms of measurable properties, namely,

ds =  
P

T
dv +  c

dT

Tv

v
∂
∂











 . (32)

Likewise, considering s = s(T,P),

ds = (∂s/∂T)P dT + (∂s/∂P)T dP.

Substituting from Eq. (17b) for the first term on the RHS of the above equation, and using the
fourth  relation Eq. (26) for its second term, we obtain the expression

ds = cp dT/T – (∂v/∂T)P dP (33)

Both Eqs. (32) and (33) provide relations for ds in terms of the measurable properties P, v, and
T. Equation (32) is suitable with a state equation of the form P = P(T,v) (e.g., the Van der
Waals equation), while Eq. (33) is more conveniently used when the state equation is ex-
pressed in the form v = v(T,P).



a. Remarks
Since (∂s/∂T)v = cv/T (and cv > 0 when T > 0), the gradient (∂s/∂T)v (taken along an

isometric curve) has a finite and positive slope for all T > 0. Similarly, the gradient
(∂s/∂T)P = cP/T has positive values (along isobars), since cP > 0 when T > 0.

Along an isotherm, dsT = – (∂v/∂T)P dPT (cf. Eq. 33). Since in the vicinity of T = 0 K,

(∂v/∂T)P = 0, this implies that s is independent of pressure at a temperature of abso-

lute zero.
Incompressible solids and liquids undergo no volumetric change, i.e., dv = 0. Since,
Eq. (32) states that ds = cv dT/T, and cv = cp = c = constant for this case,

s = c ln T + constant.

Consider Eq. (33),

ds = cp dT/T – (∂v/∂T)P dP = cp dT/T – βP v dP, (34)

where βP = (1/v)(∂v/∂T)P (and, likewise, βT = –(1/v)(∂v/∂P)T). (In Chapter 6 we have

learned that for liquids and solids the following relation relates the volume to the two
compressibilities, namely, v/vref = exp(βP (T–Tref) – βT (P–Pref)).)

For isentropic processes, ds = 0. and Eq. (34) yields the relation

dT/T = (βp v dP)/cp, so that

(∂T/∂P)s = T (∂v/∂T)P/cP = T v βP/cP = T βP/cp´, (35)

where cp´ = cp/v, kJ/K m3. If cP, βP and v are all approximately constant, then by inte-

grating Eq. (34), we can obtain isentropic relations for solids and liquids, i.e.,

ln T/Tref = (βP) v(P–Pref)/cP. (36)

If βP ≈ 0, the temperature remains constant as the pressure changes. In case βP > 0

(i.e., the liquid or solid expands upon heating), the temperature increases during com-
pression and decreases during expansion. Likewise, if βP < 0 (e.g., for rubber, or wa-

ter between 0 and 4ºC at 1bar), the temperature decreases with an increase in pres-
sure.
Alternately, using Eq. (32),

ds = cvdT/T + (∂P/∂T)v dv.

Since (∂P/∂T)v = –(∂v/∂T)P/(∂v/∂P)T = βP/βT,

ds = cvdT/T + (βP/βT) dv.

For isentropic processes, ds = 0, and

(∂T/∂v)s = – T (∂P/∂T)v/cv or (∂T/∂v)s = –T βP/(βT cv),

where both βT and βP are almost constant for most solids and liquids. Therefore,

dvs = –dTs βT cv/(T βP). (37)

The term βT is related to the stress–strain relation in solids. From the above relation

we find that when dvs < 0 (i.e., during isentropic compression) dTs > 0 if βP > 0 (i.e.,

the material expands upon heating) which implies that the temperature rises. On the



other hand, when a material is isentropically stretched (dvs > 0), dTs < 0. (This is
similar to the phenomenon of first compressing a gas and then releasing it.).
We now examine the phenomenon of the bending of a beam that is illustrated in
Figure 6. During the bending process, the upper layers of the beam are compressed
and dTs > 0. The bottom layers are stretched where dTs < 0. Therefore, temperature
gradients develop within the beam. The increase in the energy in the upper layers is
stored in the form of a vibrational energy increase in the atoms (that results in the
higher temperature) and partly as intermolecular potential energy. If the beam
changes periodically between the expanded and compressed states, the oscillation
causes the material to stretch, thereby increasing the intermolecular potential energy,
but decreasing the thermal energy. If the material has a negligible thermal conductiv-
ity, there is no heat transfer between the various isothermal layers within the beam,
and each layer will act as an adiabatic reversible system. Thus, if the beam is placed
in a vacuum, the material will keep vibrating. However, material with a finite thermal
conductivity will behave differently, since there is heat transfer within the various
layers. This heat transfer is a result of the transfer of vibrational energy between the
various layers in the beam, which results in a lower stretching for successive portions
of the cycle. The amount of energy available for stretching is less resulting in
thermo–elastic damping.
Consider a liquid at its saturation temperature at a specified pressure. As heat is sup-
plied to it isobarically, a portion of the liquid vaporizes, but the temperature is un-
changed. Since dT = dP = 0, Eq. (33) seems to suggest that ds = 0, which is an incor-
rect interpretation. In this case, cp (= (∂h/∂T)P) and ∂v/∂T both tend to infinity (due to

the fact that hfg and vfg are finite, while the temperature remains constant during the
boiling process). However, we can use other relations, such as T ds + v dP = dh to
obtain the relation ds = dh/T during isobaric vaporization which on integration yields
sfg = hfg/T

g. Example 7

its original state once the load is removed) determine:
The change in the solid temperature.
The internal energy change.
The temperature after the load is removed.

pressible substance
Solution

Since the process is adiabatic
and reversible we will use
the relation
(∂T/∂P)s = TvβP/cP or

(∆T/∆P)s=TovβP/cP.=

{250K×1.1×10-4m3kg-

1×48x10-6K-1 } /0.372kJkg-

1K-1 = 3.548x10-6 K/Kpa and
∆P = 100 × 1000 Kpa. Hence

dTs = 0.36 K and T will rise
to 250.36 K.

 T

Stretched

Figure 6: The bending of a beam.

Assume that To = 250 K, βP = 48×10–6 K–1, βT = 7.62×10–7 bar–1, v = 1.11×10–4 m3

kg–1, cp = 0.372 kJ kg–1 K–1, and cv = 0.364 kJ kg–1 K–1. Treat Cu as simple com-

Weights are gradually placed on an insulated copper bar in order to compress it to
1000 bars. If the compression is adiabatic and reversible (i.e., the material reverts to



Applying the First law to an adiabatic reversible process
dus = – Pdvs.
Recall from Eq. (37) that
dvs = –dTs βTcv/(T βP), i.e.,

dus = {P βTcv/(T βP)}dTs

Integrating and assuming that P is not a function of temperature and remaining at an
average value of 500 bar.
dus  = {500 bar × 7.62×10–7 bar–1 × 0.364 kJ kg–1 K–1

      ÷ (250 K × 48×10–6 K–1)}  0.36 K =  0.00416 kJ kg–1.

The temperature after the load is removed is 250 K, since the process is reversible.

h. Example 8

show that for this gas cv is only a function of temperature.
Solution

For an ideal gas

P = RT/v. (A)

 Using Eq. (A) and Eq. (32), we obtain

ds = R (dv/v) + cv (dT/T). (B)

Comparing Eq. (B) with the relation dZ = Mdx + Ndy, and using the criterion for an
exact differential we obtain

 ∂{(cv/T)/∂v}T = ∂ {(R/v)/∂T}v = 0.

since at constant volume (R/v) is not a function of temperature (or pressure). There-
fore, the term ∂{(cv/T)/∂v}T is not a function of v and, at most, is a function of tem-

perature alone.

i. Example 9
Obtain a relation for ds for a gas that follows the RK equation of state.

Solution
For an RK gas, a state relation of the form

P = RT/(v – b) – a/(T1/2 v(v + b)) (A)

can be used. Using Eqs. (A) and (32), we obtain the expression

ds = cv(dT/T) + (R/(v – b) + a/(2(T3/2 v(v + b))). (B)

Remark
We can show that cv is a function of both v and T for an RK gas by using the criterion
for an exact differential.

j. Example 10

P2 if the gas is air.
Solution

Recall that

ds = cvdT/T + (∂P/∂T)vdv, i.e., ds = cv dT/T + R dv/(v–b) (A)

A VW gas is used as the working fluid in an ideal power cycle. A relation between T
and v is required for an isentropic process (data for cvo(T) is available). If v1 = 0.006
m3 kg–1, T1 = 200 K, the compression ratio v1/v2 = 3, determine the values of T2 and

Obtain a relation for ds for an ideal gas. Using the criterion for an exact differential



Using the criterion for an exact differential,

(∂cv/∂v)T = ∂ [{R/(v – b)}/∂T]v = 0.

This implies that cv is not a function of volume and is a function of temperature alone,
i.e., cv = cvo(T). Since ds = 0 for the ideal cycle, upon integrating Eq. (A), 

∫cvo dT/T = – R ln(v – b) + C. (B)

Since, so = ∫cp,odT/T, we define

(s´)o(T) = ∫cvodT/T =∫(cp,o – R)dT/T = so – R ln T. (C)

We use Eqs. (B) and (C) to obtain the relation

(s´)o = – R ln {(v–b)} + C´.

Therefore,

(s2´)
o – (s1´)

o = R ln((v1– b)/(v2 – b)). (D)

Simplifying,

exp ((s2´)
o/R – (s1´)

o/R) = (exp (s2
o/R)/T2)/(exp(s1

o/R)/T1) = (v2 – b)/(v1 – b). (E)

Upon defining vr = exp (so/R)/T, Eq. (E) can be written in the form

vr2/vr1 = (v2 – b)/(v1 – b). (F)

Values of vr are usually tabulated. Once the volume ratio v2/v1 is specified, T2 can be
determined from Eq. (F). Using the VW equation of state, we can then determine P2.
Since,  v1 =0.006 m3 kg–1 at T1 = 200 K, the VW equation yields
P1 = 0.08314 × 200 ÷ (0.006 × 28.97 – 0.0367) – 1.368 ÷ (0.006 × 28.97)2

     = 121.3 – 45.3 = 76 bar.
At T= 200 K, vr1 = 1707. We will use the relation

vr2/vr1 = (v2 – b)/(v1 – b),

and the values v1 = 0.006 m3 kg–1, b = 0.0367 ÷ 28.97 = 0.00127 m3 kg–1.

Therefore,
v2 = 0.006 ÷ 3 = 0.002 m3 kg–1, and

vr2/vr1 = (0.002 – 0.00127) ÷ (0.006 – 0.00127) = 0.154, so that

 vr2 = 1707 × 0.154 = 262.9.

The tabulated values indicate that at vr2 = 263, T2 = 423 K.
Finally, using the VW equation of state
P2 = 0.08314 × 423 ÷ (0.002 × 28.97–0.0367) – 1.368 ÷ (0.002 × 28.97)2

     = 1656 – 408= 1248 bar.
Remarks

If a = b =0, Eq. (E) represents the state relation for ideal gas. For an ideal gas, the re-
lation yields vr2 = 469, T2 = 335 K, and P2 = 480 bar.
Applying Eq. (B) and assuming cvo to be constant, cv ln(T2/T1) = R ln((v1 – b)/(v2 –
b)), which can be simplified and written in the form

T2/T1 = [(v1 – b)/(v2 – b)](k–1), (G)

where k = cp,o/cvo.
Using (G) in VW equation of state
     (P2 – a/v2

2)(v2 – b)k = (P1 – a/v1
2)(v1 – b)k



k. Example 11

measurable properties of a simple compressible substance.
Show that cp/cv = k = βT/βs.

Determine a relation for the sound speed for an ideal gas.
Determine a relation for the sound speed for a VW gas.

Solution
Recall that the speed of sound

c2 = –v2(∂P/∂v)s = v/βs

ds = 0 =cv dT/T + (∂P/∂T)v dv, and (A)

ds = 0 = cpdT/T –(∂v/∂T)P dP. (B)

We multiply Eq. (A) by (T/cv) and Eq. (B) by (T/cp) and then subtract one of the re-
sulting relations from the other to obtain

 (∂P/∂T)v (T/cv) dvs + (∂v/∂T)P (T/cp) dPs = 0, or (C)

 (∂P/∂v)s = – k (∂P/∂T)v/(∂v/∂T)P, where (D)

k(T,v) = cp(T,v)/cv(T,v). (E)

Applying the expression for the speed of sound c2 = –v2(∂P/∂v)s = v/βs in Eq. (D),

c2 = v2 k(T,v)(∂P/∂T)v/(∂v/∂T)P. (F)

Using the cyclical rule

(∂P/∂v)T(∂v/∂T)P(∂T/∂P)v = –1 (G)

we obtain

(∂v/∂T) = – (∂P/∂T)/(∂P/∂v) (H)

Substituting from Eq. (H) in Eq. (F),

c2 = – k(T,v) v2 (∂P/∂v)T.= k(T,v) v/βT (I)

With c2 = v/βs, in Eq. (I)

 v/βs = k(T,v) v/βT,  or  k(T,v) = βT/βs.

In the case of ideal gases,

k = – (c2/v2)/(–RT/v2) = c2/RT or c2 = kRT. (J)

Typically we denote c as c0 for ideal gases.
For a VW gas,

∂P/∂v = – RT/(v – b)2 + 2a/v3 (K)

Thereafter, combining Eqs. (I) and (K)

c2 = k(T,v) v2 (RT/(v – b)2 + a/v3) (L)

Derive an expression for the sound speed (c2 = –v2(∂P/∂v)s = v/βs) in terms of the



Remarks
If, in the VW state relation, a = b= 0, the expression reduces to the sound speed for an
ideal gas. In that case, k = k(T).
High pressures often develop within the clearance space in turbine seals, and gas
leaks are governed by the resulting choked flow conditions. The value of the sound
speed through a real gas is required in order to evaluate this condition.
In the case of liquids and solids, a very large pressure is required to cause a small
change in the volume so that (∂P/∂v)T →  ∞ and, consequently, c → ∞. Therefore,

sound travels at faster speeds in liquids and solids.
Applying Eq. (L) to the case of an ideal gas, co

2 = k(T) RT, and dividing Eq.(I) by co
2

we obtain the expression,

(c2/co 
2) = – (k(TR, vR´)/(ko(TR) TR)) vR

2 (∂PR/∂vR´)TR.

2. Internal Energy (du) Relation
Combining the First and Second laws

du = T ds – P dv

Using Eq. (32) to eliminate ds, we obtain the expression

du = cv dT + (T(∂P/∂T)v – P) dv, (38)

which implies that the change in internal energy equals the energy stored in the form of trans-
lational, vibrational, and rotational energies plus the intermolecular potential energy.

a. Remarks
In the case of an ideal gas P = RT/v, so that

T(∂P/∂T)v – P = (RT/v)  - P = 0

Therefore, the potential energy term in Eq. (38) equals zero for ideal gases. Recall
from the discussion regarding the Lennard–Jones potential energy curve in Chapter 1
that the intermolecular potential energy term equals zero at larger intermolecular dis-
tances at which the intermolecular attraction force is zero. Consequently, energy is
not stored in the form of potential energy as the volume is changed at large volumes,
and a change in the gas volume (or the intermolecular distance) does not affect the
intermolecular potential energy.
Equation (38) is called the “Calorific Equation of State” and indicates that the internal
energy of a simple compressible substance (the solid, liquid, or gas phases) is a func-
tion of temperature and volume (cf. Figure 7). In it, the first term, cv dT, represents
the thermal portion of the energy (which varies due to changes in the translational, vi-
brational, and rotational energies, with each degree of freedom contributing an
amount equal to 2kBT per molecule, as discussed in Chapter 1).
Applying the First law to a closed system undergoing a reversible process, in the
context of Eq. (38)

δQrev = dU + PdV = mcvdT + (T∂P/∂T – P)dV + PdV (38’)

Eq.(38’) states that energy transfer δQrev is used to raise the thermal  energy by the in-

cremental amount mcvdT (e.g., te, re, ve), to overcome the intermolecular potential
energy barrier (T∂P/∂T – P)dV (i.e., ipe required to move the molecules against at-

tractive forces)  and  to perform boundary  PdV work. For an ideal gas, the intermo-
lecular potential energy equals zero so that heat transfer is used for PdV work if the
process  is isothermal.



In an adiabatic system the internal energy change cvdT + (T∂P/∂T – P)dv equals the

work performed on the system. Note that if V and T are held fixed, δQrev =0. How-

ever, this does not imply that Q = Q(V,T) since the functional form for the relation
changes, depending upon the process path between the initial and final states (i.e., Q
is not a property).
Consider Example 6 in Chapter 2. As we place a large weight on the piston, the gas is
adiabatically compressed and we perform Pdv work. The potential energy decrease of
the weight is converted into internal energy increase of the gas. The intermolecular
potential energy decreases during compression  (T∂P/∂T – P)dv  < 0, since the second

term in Eq. (38) decreases as the intermolecular spacing becomes closer. Eq. (38) im-
plies that the term cvdT must increase. If gas is ideal, then change in ipe =0; this im-
plies that temperature changes to a greater extent in a real gas than in an ideal gas).
For incompressible substances, dv = 0 and, consequently from Eq. (38), du = cv dT.
Attractive forces are very strong in such substances so that the intermolecular poten-
tial energy remains virtually constant.
In the case of solids and liquids it is useful to express Eq. (38) in terms of the isobaric
expansivity and isothermal compressibility. Since (∂P/∂v)T(∂v/∂T)P(∂T/∂P)v = –1, and

(∂P/∂T)v = βP/βT, Eq. (38) can be written in the form

du = cv dT + (T βP/βT – P) dv.

The values of βP and βT are approximately constant for most solid and liquid sub-

stances.
The volume of a two-phase mixture can be changed at a specified temperature and
pressure (e.g., that of water at 100ºC and 1 bar pressure) by altering its quality. There-
fore, while changes in the mixture volume are possible during phase transition at
given T, those in the pressure are not. Consequently, (∂v/∂P)T (= a finite value ÷ 0)

→∞, i.e., βT →  ∞. Similarly, (∂v/∂T)P → ∞ and hence βp → ∞ for a two-phase mix-

ture. Thus as we approach the critical point, βT  → ∞ and βP → ∞ .

Since the relation for du in Eq. (38) is an exact differential, applying the appropriate
criterion,

∂cv/∂v = (∂/∂T)(T(∂P/∂T)v – P) = T∂2P/∂T2 + ∂P/∂T – ∂P/∂T = T(∂2P/∂T2)v. (39)

cv0

u 0 (T)

v→→→→∞∞∞∞

u(T,v2)

v>v
2

v2>v1

v1

u

Figure 7: Illustration of the variation of the internal en-
ergy with respect to temperature.



Applying the state relations for liquids and solids (cf. Chapter 6) it can be shown that

T(∂2P/∂T2) v ≈ 0, i.e.,

cv = cv(T) alone. Integrating Eq. (39) between the limits v → ∞ (i.e., as P → 0) and v

= v, we obtain an expression for the deviation of the constant volume specific heat
from its ideal gas value, i.e.,

cv cvo = T P T v dvv− ∂ ∂∞∫ ( / )2 2

If the P–v–T behavior of a gas is known from either measurements or theory, and data
for cvo is available, the above relation can be integrated to evaluate values of cv.
At T = 0 K, it will be later shown that ∂P/∂T = 0. At that condition, du → (–Pdv), i.e.,

∂u/∂v → –P.

l. Example 12

nal energy and the intermolecular potential energy of the solid.
Solution

Integrating the relation βT v

v

P T
= −

∂
∂







1
,

ln /v v P PT2 1 2 1( ) = − −( )β    or v v v P PT2 1 1 2 1− ≈ − −( )β   (A)

Therefore,  v2-v1 = -0.845x10-7  m3 g–1, v2 =  1.1092×10–4 m3 kg–1 and which are

similar to the results obtained in Example 7.
Integrating Eq. (37),

( ln( / ) { / }T T P Tcv v v2 1 2 1= − −( )β β  or  T T P Tcv T v v2 1 1 2 1−( ) ≈ − −( )( / )β β (B)

Using the results from Eq. (A),

T T T P cv v P P K2 1 1 2 1 0 3651− = −( ) =( / ) .β

Consequently, the temperature following compression is 250.365 K. For an adiabatic
reversible process, the First law yields,

∆u = – ∫P dv = –∫P (∂v/∂P) dP = ∫βT P v dP = −( )P P vT2
2

1
2 2β /

     = ((1000 × 100)2÷2 – 1002÷2) × 1.11×10–4 × 7.62×10–9

     = 0.00423 kJ kg–1 or 4.23 J kg–1 (similar to example 7) (C)

We may  also use following equation:

du = cv dT + (T βP/βT – P) dv. (D)

The thermal portion of change in “u” is given as,

cv dT = 0.364 × 0.365 = 0.1329J kg–1. (E)

The intermolecular potential energy of the solid

The state of a copper bar is initially at a pressure of 1 bar and temperature of 250 K. It
is compressed so that the exerted pressure is 1000 bar. Assume that the compression
is adiabatic and reversible (i.e., the material reverts to its original state once the load
is removed), and that βP = 48×10–6 K–1, βT = 7.62×10–7 bar–1, v = 1.11×10–4 m3 kg–1,

cp = 0.372 kJ kg–1 K–1, and cv = 0.364 kJ kg–1 K–1. Determine the change in the inter-



∆(ipe) = (TβP/βT – P) dv

where the second term is same as on the RHS of Eq. (C). Therefore
∆(ipe) = (250 K × 48×10–6 K–1 ÷ 7.62x10–7 bar–1)

            × (-8.45x10-8 m3kg-1)×100 kPa bar-1 + 0.00423, or

 ∆ (ipe) = -0.1331 + 0.00423 = -0.1288 kJkg-1 (F)

The net change in the internal energy of the solid is
du = 0.1329 - 0.1288 = 0.0041  kJ kg–1.

Which is approximately the same as the answer in Eq. ( C). In this example, the tem-
perature increases by 0.365 K, increasing the thermal portion of the internal energy by
0.1329 kJ, but the IPE decreases by 0.1288 kJ (Eq.(F)) . At the minimum intermo-
lecular potential energy (Chapter 1) , compression should cause the "ipe" to increase.
Since the ipe decreases with compression, this indicates that the solid is not at that
minimum value.

m. Example 13

m3 kg–1?
Solution

We will use the relations

ds = cv dT/T + (∂P/∂T)v dv, and (A)

(∂P/∂T)v (∂T/∂v)P (∂v/∂P)T = – 1. (B)

Therefore,

 (∂P/∂T)v = – (∂v/∂T)P/(∂v/∂P)T = βP/βT, i.e., (C)

ds = cv dT/T + (βP/βT) dv (D)

For an adiabatic and reversible process, ds = 0, and

(∂T/∂v)s =.–TβP/(βTcv). (E)

For copper,
(∂T/∂v)s = – 5×10–5 K–1 × 298K  ÷ (8.7 × 10–7 bar–1 ÷ 100 kPa bar–1)

              ÷ 0.386 kN m kg–1 K–1 = –4.4370×106 K kg m–3.

On compression
dTs = (∂T/∂v)s dv = –4.437×106 × (–8.106×10–7) = 3.6 K.

Remarks
The compression of a solid in the elastic regime is isentropic. The First law indicates
that the work done (–Pdv) during adiabatic compression and du >0.  Equation (D)
provides the answer for the change in T when the volume changes for any simple
compressible substance. Typically βT > 0 for any substance. Those substances that

expand upon heating (e.g., gases, steel, water above 4ºC at P = 1 bar) βP > 0. From

Eq. (E),  (dT/dv) s < 0. Thus, upon compression (dv < 0), and dT > 0. Those sub-

A substance undergoes an adiabatic and reversible process. Obtain an expression for
(∂T/∂v)s in terms of cv, βP, βT and T. What is the value of  (∂T/∂v)s for copper, given

that βP = 5×10–5 K–1, βT = 8.7×10–7 bar–1, c = cv = 0.386 kJ kg–1  K–1, v = 1.36×10–4 m3

kg–1, and the temperature is 25ºC? What is the temperature rise if dv = –8.106×10–7



stances which contract upon heating (with a negative coefficient of thermal expan-
sion, e.g., rubber, water below 4ºC), βP < 0. Eq. (E) yields, dT > 0, upon expansion,

since dv > 0.
If cv, v and βP are constants, then Eq. (E) can be integrated to yield

ln (T2/T1) = (v2 – v1) βP/(βT cv). (F)

which is the same as Eq.(B) in Example 12.

3. Enthalpy (dh) Relation
Obtaining the total differential of the enthalpy h = h (T, P)

dh = (∂h/∂T)P dT + (∂h/∂P)T dP = cP dT + (∂h/∂P)T dP. (40)

Since dh = Tds + v dP, dividing the expression by dP, the following relation applies at constant
T

(∂h/∂P)T = T(∂s/∂P)T + v. (41)

Applying the fourth  relation, Eq.(26)  to Eq. (41), we obtain the expression

(∂h/∂T)P = –T(∂v/∂P)T + v. (42)

Subsequently, using Eq. (42) in  (40), we obtain

dh = cP dT + {v – T(∂v/∂T)P} dP. (43)

The relation h = h(T,P) is called the calorific equation of state. If a state equation is available
for v = v(T,P), Eq. (43) can be used to obtain dh.

a. Remarks
During vaporization T and P are constant, i.e., dT = dP = 0. Therefore, since cp → ∞
and ∂v/∂T → ∞, dh = cp dT  – T(∂v/∂T)P dP  ≠ 0.

It can be shown from  relation for Eq. (43) that

∂cp/∂P = – T∂2v/∂T2 (44)

n. Example 14

Simplify the relations for an incompressible liquid.
Solution

Rewriting Eq. (43),

dh = cp dT + (v – T βp v) dP, (A)

where βp = (1/v) (∂v/∂T)p. Therefore,

du = dh – d(Pv) = cp dT –Pdv – T βp v dP

However, v = v(T,P), so that

dv = (∂v/∂T)P dT + (∂v/∂P)T dP = v (βp dT – βT dP). (B)

Hence,

du = (cp – Pvβp) dT + v (PβT – TβP) dP (C)

Obtain an expression for dh and du for a liquid in terms of cp, βP, βT, cv, dT and dP.



For incompressible liquids βP = βT = 0, and Eqs. (A) can be  expressed in the form

dh = cp dT + v dP., i.e., h = h(T,P), and (D)

Further,

(dh/dT)P = cp. (E)

For an incompressible fluid Eq. (C) assumes the form

du/dT = cp, i.e., u = u (T) alone. (F)

Upon comparing Eqs. (E) and (F),

(∂h/∂T)p = du/dT = cp. (G)

Note that du/dT = (∂u/∂T)v, since v is constant. Therefore,

(∂h/∂T)p = du/dT = cp = cv = c only for incompressible liquids (H)

4. Relation for (cp–cv)
We will develop relations for (cp–cv) in terms of measurable properties and show that

cp > cv, which implies that k > 1. Differentiating the relation for enthalpy h = u + Pv,

(∂h/∂T)P = cp = (∂u/∂T)P +P(∂v/∂T)p.

The first term on the RHS (∂u/∂T)P can be simplified by dividing Eq. (38) by dT in order to

obtain , (du/dT)P = cv  + (T(∂P/∂T)v – P) (dv/dT)P ; then the above equation becomes,

cp = cv + (T∂P/∂T – P)(∂v/∂T)p + P(∂v/∂T)p, or (cp – cv) = (T(∂P/∂T)(∂v/∂T)p).

Using the cyclic relation (∂P/∂T)(∂T/∂v)(∂v/∂P) = –1, (∂v/∂T)P = –(∂P/∂T)/(∂P/∂v)), we obatin

the expression

(cp – cv) = – (T(∂P/∂T)2/(∂P/∂v)T). (45a)

Likewise, using the cyclic relation,

(∂P/∂T)v = –(∂v/∂T)P/(∂v/∂P)T = βP/βT, i.e.,

(cp – cv) = v T βP
2/βT (45b)

a. Remarks
For ideal gases βP = 1/T and βT = –1/P. Therefore, using Eq. (45b), (cp – cv) = (cp,o –

cvo) = R.
We can rewrite Eq. (45b) in the form (cp – cv) = Acp

2T, where the relation A =
vβP

2/(βTcP
2) is called the Nernst–Lindmann equation. For liquids and solids, v, βP, βT,

and cP are approximately constant and, consequently, A is a constant.
For incompressible liquids cp = cv. However for water at a temperature of 80ºC, cp =
4.19 kJ kg–1 K–1 and cv = 3.86 kJ kg–1 K–1.
The Gruneisen constant γ g v vP T v c= ∂ ∂( )/ / . Its value is constant over a wide tem-

perature range for many solid metals. Typical values of γg lie between 1 and 3. Using

the RHS of the Eq. (45a), the difference in specific heats equals (–T (a finite value) ÷
0) which  tends to infinity at the critical point.



If (∂P/∂v) >0 (recall from Chapter 6 that P decreases with v for real gases at tem-

peratures lower than Tc for a certain volumetric range), then (cp – cv) < 0, i.e., cp < cv.
You will learn in Chapter 10  that these states are unstable.
Using the relation βs = –1/v(∂v/∂P)s, we note that βT/βs = (∂v/∂P)T/(∂v/∂P)s.

o. Example 15

relation

P = RT/(v–b), (A)

and show that cp is a function of T alone.
Solution

Using Eq. (A)

v = b + RT/P, and (B)

using Eq. (43),

dh = cp dT + (v – T R/P) dP = cp dT + bdP, i.e., h = h(T,P). (C)

Using the criterion for an exact differential we can show that

dcp/dP = db/dT = 0. (D)

Therefore, cp is a function of temperature alone.
Integrating Eq. (C),

h = ∫cp (T) dT + bP + constant. (E)

E. EVALUATION OF THERMODYNAMIC PROPERTIES

1. Helmholtz Function
Most thermodynamic properties can be derived in terms of differentials of the Helm-

holtz function. Hence it is useful to derive a relation for “a” in terms of P, T, v, etc.. Consider
Eq. (20)

da = - s dT - Pdv 

Given the state equation P(T, V), Eq. (20) can be integrated to obtain “a” as a function of T
and v. Since “da” represents an exact differential, we can integrate the relation keeping either
T or v constant (see Chapter 1 for a discussion regarding the integration of an exact differen-
tial). We prefer to keep the temperature constant, since the P(T,v) (e.g., from the state equa-
tion) relation is known. At constant temperature, Eq. (20) assumes the following form for RK
fluid.

daT = – Pdv = – (RT/(v–b) – a/(T1/2 v(v+b))) dv

Integrating this expression (at constant temperature),

a(T,v) = – RT ln(v – b) + (a/(bT1/2)) ln(v/(v + b)) + f(T). (46)

If b→0, then ln(v/(v+b)) → –b/v  and after application of the Le Hospital rule Eq. (46) implies

that

a(T,v) = – RT ln v + (a/(T1/2)) + f(T), b→0.

Obtain an expression for the enthalpy change dh in a Clausius I fluid that follows the



Since the properties of ideal gases are generally known, we will evaluate the constant f(T) in
terms of ideal gas properties. For an ideal gas b → 0 (since the molecules are point masses)

and a → 0 (as there are no intermolecular attraction forces). Therefore,

ao(T,v) = – RT ln v + f(T), i.e., f(T) = ao(T,v) + RT ln v.

The same result follows by integrating the expression dao = – so dT – Po dv, where Po = RT/v,
at constant temperature,

dao t Pigdv, ;= −  then daT dao T P Pig− = − −



,  or − −P T v dv RT d v( , ) ln .

In general, for any state equation P(T,v),

a(T,v) – ao(T,v) = ∫P(T,v) dv – RT ln v.

The latter procedure is appropriate for Martin–Hou and Kesler type state relations that do not
contain specific terms (such as a) related to the intermolecular attraction forces and body vol-
ume b. For RK fluid

a(T,v) – ao(T,v) = RT ln {v/(v–b)} + {a/(bT1/2)} ln {v/(v+b)}, where (47)

ao(T,v) = uo(T) – T so(T,v) 

Note that as v → ∞, the RHS of Eq. (47) approaches 0 indicating that a → ao. We can describe

a residual Helmholtz function aRes, which is a correction to ideal gas behavior, as

aRes = a(T,v) – ao(T,v). (48)

Thereafter, dividing Eq. (47) by RTc, and using the equalities a = 0.4275 R2Tc
2.5/Pc, b =

0.08664 RTc/Pc, v = vR´vc´ (where vc´ = RTc/Pc), that equation can be expressed in dimension-
less form, i.e.,

(a(T,vR´) – ao(T,vR´))/(RTc) = 

                –TR ln(1 – (0.08664/vR´)) – (4.934/TR
2) ln (1 + (0.08664/vR)), or (49)

 (ao(T,vR´) – a(T,vR´))/(RTc) = TR ln (vR´/(vR´ –0.08664)) 

                                             – (4.934/TR 2) ln ((vR´+ 0.08664)/vR´) 

p. Example 16

0.0136 m3 kg–1. Determine:
The residue {a(T,v) – ao(T,v)} and the pressure using the RK state equation.
The pressure using ideal gas state equation.

RK state equation.
Solution

Using Eqs. (4) and (48)

aRes = a (T,v) – ao(T,v) = RT ln (v/(v–b)) + (a/(bT1/2)) ln (v/(v+b)).

Substituting the values a = 142.64 bar m6 K1/2 kmole–2, b = 0.02110 m3 kmole–1,
v  = 0.0136×18.02 = 0.245 m3 kmole–1,

 aRes(T,v) = 0.08314×100×873 ln {0.245÷(0.245–0.0211)} +

   {142.64×100÷(0.0211×8731/2)} ln {0.2425÷(0.245+0.0211)}

A mass of water exists at a temperature of 600ºC. Its specific volume is given as

The ideal gas volume vo at 600ºC at which the pressure equals that predicted by the



= 653.6 – 1890. 2 = – 1236.6 kJ kmole–1

The pressure, using the RK state equation,
P = RT/(v–b) – a/(T1/2v(v+b)), i.e.,
P = 0.08314×873 ÷ (0.245 – 0.0211) – 142÷(8731/2 0.245×(0.245 + 0.0211))

  = 250 bar.
Likewise, the pressure, using the ideal gas state equation,
P = RT/v = 0.08314×873÷0.245 = 296 bar.

The equivalent ideal gas volume
vo = RT/P = 0.08314×873÷250, i.e., vo = 00.0161 m3 kg–1.

Remarks
If one kmole of water occupies 0.245 m3 at 600ºC, in the presence of intermolecular
attraction forces the gas pressure will be 250 bar. If the attractive forces are somehow
removed (i.e., the gaseous water is made to behave ideally) while maintaining the
same specific volume, the gas pressure will rise to 296 bar.
From Example (16) it is apparent that (a(T,v) – ao(T,v)) ≠ (a(T,P) – ao(T,P)), since

although the temperature and volume are unchanged, the ideal gas pressure differs
from the real gas pressure. If the specific volume of the ideal gas state is changed so
as to obtain the same pressure P as that in the real gas state, then
(a(T,v)–ao (T,vo) = a(T,P)–ao(T,P)) = (a(T,v)–ao(T,v)) – (ao(T,vo)–a(T,v)). (50)
The first term in parentheses on the RHS can be evaluated using Eq. (50), while the
second term in parentheses can be evaluated as outlined below.

ao(T,vo)–ao(T,v) = (uo(T)–Tso(T,vo)) – (uo(T)–Tso(T,v)) = T(so(T,v) – so(T,vo)).

Recall that dso = cvo dT/T + Rdv/v, at a specified temperature

dso = Rdv/v.

Upon integrating this expression, we obtain

(so(T,v) – so(T,vo)) = R ln(v/vo) = R ln (v/(RT/P)) = R ln(Z).

Typically, Z<1, so that so(T,vo)>so(T,v), since a larger number of quantum states are
available as the volume is increased. Finally, Eq. (50) can be written in the form

a(T,P) –ao(T,P) =  aRes (T,P) = (a(T,v) – ao(T,v)) – RT ln Z. (51)

In dimensionless form

(a(T,P) –ao(T,P))/RTc = aRes(TR,vR´)/RTc + TR ln Z(TR,vR´) (52)

q. Example 17

Determine a(T,P) – ao(T,P) according to RK equation of state.
Solution

We will use the RK state equation

P = R T/( v– b) – a /(T1/2 v( v+ b)), (A)

with values for P = 250 bars, T = 873 K, R  = 0.08314 bar m3 kmole–1 K–1, a  = 142.6
bar m6 K0.5 kmole–2 and b  = 0.02110 m3 kmole–1.
Therefore,
v  = 0.245 m3 kmole–1, i.e., v = 0.245/18.02 = 0.0136 m3 kg–1, and
Z = Pv/RT = 250 × 0.245 ÷ (0.08314 × 873) = 0.844.

From Example 16,
aRes (T,v) = a(T,v) – ao(T,v) = – 1236.6 kJ kmole–1.

A mass of water is maintained at a temperature of 600ºC and a pressure of 250 bar.



Using Eq. (51)
aRes (T,P) = a(T,P) – ao(T,P) = –1236.6 + 8.314 × 873 ln(0.844) = –2467.6 kJ kmole–1.

Remark
At the same pressure, the molecules in the ideal gas move farther apart than in the RK
gas. Consequently, the ideal gas volume increases from 0.245 to 0.290 m3 kmole–1.
Therefore, so(T,v) <so(T,vo) so that ao (T,v) > ao(T,vo), i.e., (a(T,P) –ao(T,P)) < (a(T,v)
– ao (T,v)).

2. Entropy
Since

–s = (∂a/∂T)v, –so = (∂ao/∂T)v,

upon differentiating Eq. (47), we obtain the relation

sRes (T,v) = s(T,v) – so(T,v) = R ln {1–(b/v)} – (1/2){a/(bT3/2)} ln {1+(b/v)}, (53)

where sRes(T,v) denotes the residual entropy. The same result can be obtained using the relation

ds = cv dT/T + (∂P/∂T)vdv 

so that, at a specified temperature, dsT = (∂P/∂T)v dv. Using the RK equation of state,

dsT = (R(v–b) +(1/2) a/(T3/2 v(v+b)))dv. 

Upon integrating this relation,

s(T,v) = R ln(v–b) + ((1/2)a/(bT3/2)) ln(v/(v+b)) + f(T). 

If both a and b → 0, we obtain ideal gas entropy so (T,v). Using a similar procedure as for the

Helmholtz function, we can obtain a relation for sRes.
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Dividing this expression by R and rearranging,

–sRes(TR,vR´)/R = (so(T,v) – s(T,v))/R

                 = ln(1– (0.08664/vR´)) – (2.4670/TR
3/2) (ln(1+ (0.08664/vR´))) (54)

We observed from Example 16 that when the temperature and volume are maintained
the same for both the real and ideal gas states (i.e., they have the same intermolecular spacing
at a specified temperature), the ideal gas pressure differs from that of the real gas. To obtain
identical pressures at both states, the ideal gas volume must be increased so that its intermo-
lecular spacing is larger than that in the real gas. Clearly so(T,vo) = so(T,P), but so(T,vo)  >
so(T,v), since a larger number of quantum states are available at the larger intermolecular
spacing. Therefore, (s(T,P) – so(T,P)) < (s(T,v) – so (T,v)). Using a similar procedure as that
employed in case of the Helmholtz function,

sRes (T,P) = s(T,P) – so(T,P) = s(T,v) – so(T,vo), and

s(T,P) – so(T,P) = {s(T,v) – so(T,v)} + {so(T,v) – so(T,vo)} (55)

For ideal gases at a specified temperature,

(so(T,v) – so(T,vo)) = R ln(v/vo) = R ln(v/(RT/P)) = R ln(Z). (56)

Using Eqs. (56) in (55), we obtain the relation



s(T,P) – so(T,P) = (s(T,v) – so(T,v)) + R ln(Z), where (57)

Z =  Pv/(RT) = PRvR´/TR.

Dividing Eq. (57) throughout by R and employing Eq. (54), we obtain the entropy departure
function

–sres/R = (so(T,P) – s(T,P))/R =

(2.4670/(TR
(3/2)) ln(1+ (0.08664/vR´)) – ln (1– (0.08664/vR´)) – ln (TR/(PR vR´)). (58)

Appendix Figure B-6 illustrates a plot of  (sO(T,P)-s(T,P))/R vs PR with TR as a parameter.

r. Example 18

duced by the relation c p

mine its entropy at a pressure of 250 bar and a temperature of 873 K.
Solution

Typically, properties are tabulated with respect to arbitrary reference conditions, e.g.,
Tref and Pref. For saturated liquid water, it is customary to set that reference condition
at the triple point, i.e., Tref = TTP = 273 K and PTP = 0.00611 bar at which the entropy
is assumed to have a value of zero. Since

Tds + vdP = dh,

during vaporization at a specified pressure,

ds = dh/T, i.e., sg – sf = (hg – hf)/T = hfg/T.

Therefore,
sg(TTP,PTP) – 0 = hfg/T = 2503÷273 = 9.17 kJ kg–1 K–1.

Applying the RK equation at this state,
0.00611 = 0.08314×273÷( v–0.0211) – 142.64÷(2732× v( v+0.0211)), i.e.,

v  = 3715 m3 kmole–1.
The compressibility factor based on this value of the specific volume
Z(TTP,PTP) = P v/( R T) = 0.00611×3715÷(0.08314×273) = 1.

Furthermore, employing Eq. (53),
s(273, 3715) – so(273,3715) ≈ 0, and

using Eq. (57)
s(273, 0.00611) – so(273,0.00611) ≈ 0.

This result is expected, since the pressure is low so that the vapor behavior is like that
of an ideal gas. Hence,

s(273,0.00611) = so (273, 0.006 bar) = 9.17 kJ kg–1. (A)

Since.
d s o = c p,o dT/T – R dP/P,
integrating this expression between the states (873 K, 250 bar) and (273 K, 0.00611
bar), we obtain the relation

s K bar s K bar cp o dT T Ro o873 250 273 0 006
273

873
250 0 006, , . , / ln .( ) − ( ) = ∫







− ÷( )(B)

Using the given relation for c p,o,
s o(873K, 250 bar) – s o(273 K,0.006 bar) =

,o (kJ kmole–1 K–1) = 28.85 + 0.01206 T+100,600/T2, deter-
the triple point, and hfg = 2503 kJ kg–1. If the ideal gas specific heat of water is repro-
Determine the entropy of water assuming the relation s= 0 for the saturated liquid at



(28.85×ln(873÷273)+0.01206×(873–273) – (100600+2)(873–2–273–2)) –

(8.314×ln(250÷0.006)

= 41.38 – 88.30 = –46.92 kJ kmole–1 K–1.
On a mass basis
so(873 K, 250 bar) – so(273K,0.006 bar) = –46.92 ÷ 18.02 = –2.604 kJ kg–1 K–1, and

so(873 K, 250 bar) = 9.17 – 2.604 = 6.566 kJ kg–1 K–1.
From the results of Example (16), at P = 250 bars, and T = 873 K,
v  = 0.245 m3 kmole–1 and Z = 0.844.
Thereafter, using Eq. (53).

s  (T,v) – s o(T,v) = R  ln (1–(b/ v)) – (1/2)(a/(bT3/2)) ln(1+(b/ v))
= 8.314×ln(1–(0.0211÷0.245) –

   (0.5×142.64×100÷(0.0211×8731.5)) ln(1+(0.0211/0.245))

= –1.826 kJ kmole–1 K–1.
Then using Eq. (57),
s (T,P)– s o(T,P) = s(T,v)–so(T,v)+ R ln Z = –1.826–1.409 = – 3.235 kJ kmole–1 K–1,
or
s(T,P) – so(T,P) = – 0.180 kJ kg–1 K–1, i.e.,
s(T,P) = 6.566 – 0.180 = 6.386 kJ kg–1 K–1.

Remarks
Using the RK equation, we determined the values of s at specified temperatures and
pressures, and at specified temperatures and specific volumes. This enables the pro-
duction of T–s diagrams along with superimposed isotherms, isobars, and isometric
contours.
Instead of the RK equation, we can use the entropy departure charts, at PR (=
250÷220.9) = 1.132, and TR (=873÷647) = 1.349,

(so(T,P) – s(T,P))/R = 0.389. (C)

The value of s(873 K,250 bar) can be calculated thereafter.

3. Pressure
Oftentimes the state equation for a(T,v) are provided empirically. Thereafter the pres-

sure can be determined through the relation

(∂a/∂v) T = – P (59)

s. Example 19
Assume that

a(T,v) = ao(T,v) + RT ln(v/(v–b)) + (a/(bT1/2)) ln (v/(v+b)). (A)

Determine an expression for the pressure.
Solution

Consider the derivative of Eq. (A) with respect to the specific volume, i.e.,

∂a/∂v = –P(T,v) = ∂ao/∂v –RT (1/v – 1/(v–b)) – (a/(bT1/2))(1/v – 1/(v+b)).

Since

∂ao/∂v = – Po (T,v) = –RT/v, (B)

employing Eqs. (A) and (B),

– P (T,v) = –RT/v –RT (1/v – 1/(v–b)) – (a/(bT1/2))(1/v – 1/(v+b)). (C)



Upon simplification, Eq. (C) can be expressed in the form

P(T,v) = RT/(v–b) –(a/(T1/2 v (v+b))) (D)

Remark
Since we have used the RK equation to obtain an expression for a(T,v), the same state
equation is obtained in Eq. (D).

4. Internal Energy
If the volume of an ideal gas is expanded from v to vo while maintaining the same

pressure as in a corresponding real gas, its internal energy uo is unchanged, since the intermo-
lecular potential energy remains unaltered. Therefore, uo(T,vo) = uo(T,v) = uo(T). Furthermore,
since u = a +Ts,

u(T,v) – uo(T) = a(T,v) – ao(T) + T {s(T,v) – so(T,v)}. (60)

Using Eqs. (47) and  (53) in Eq. (60), we obtain the relation

u(T,v) – uo (T) = u(T,P) – uo(T) = RT ln {v/(v–b)} + {a/(bT1/2)} ln  {v/(v+b)} +

                                          RT ln {v/(v–b)} + (1/2){a/(bT1/2)} ln {v/(v+b)}.

Simplifying this expression.

u(T,v) – uo (T) = –(3/2)(a/(bT1/2)) ln(1 + (b/v)). (61a)

The term u(T,v) –uo(T) or u(T,P) – uo(T) = uRes is the residual internal energy, and is
typically less than zero. Substituting for a and b in terms of critical properties, Eq. (60) as-
sumes the form

uC R =  
Resu

RTc
= ou (T) u(T,v)

RTc
=

7.401

R
0.5T

(1 +
0.08664

vR
), ln−

−
′

, (61b)

where the difference uo(T) – u (T,v) represents the departure of the internal energy from that in
a corresponding ideal gas. Recall that

vR´ = v/vc´, vc´ = RTc/Pc.

These expressions form the basis for charts illustrating the behavior of –(uRes/RTc) with respect
to the reduced pressure, temperature, and specific volume.

a. Remarks
We recall from Eq. (23)) that ∂(a/T)/∂(1/T) = u. Thereafter, dividing Eq. (47)

throughout by T and then differentiating with respect to (1/T), we obtain Eq. (61).
The internal energy is generally higher in an ideal gas than in a corresponding real
gas.
Figure 8a presents a plot of u with respect to T at different specific volumes. At a
specified temperature, as the volume is increased to a large value, u→uo (the dashed

line QR). The slope of line QR yields the value of cvo, while the slope of line AB

yields the value of cv. Further uo,R = uo +
T

T

o

R

∫ cvodT.

The free volume per molecule is much larger in the gas or vapor phase than in the liq-
uid phase due to the greater intermolecular distance. Therefore, since the vapor has a
higher intermolecular potential energy (cf. the LJ diagram), the liquid has a lower in-
ternal energy.
The constant volume specific heat cv is obtained by differentiating Eq. (61a) with re-
spect to temperature at a specified specific volume, i.e.,



cv(T,v) – cvo(T) = 3/4(a/(bT(3/2) ln(1 + b/v). (62)

This difference is always positive, i.e., cv(T,v) > cvo(T). If a fluid is heated from the
saturated liquid to the saturated vapor state at constant temperature, then Eq. (62)
suggests that

cv(T,vf) – cv(T,vg) = 3/4 (a/(bT(3/2) ln((1 + b/vf)/(1+ b/vg)). (63)

In general, since vf <vg, cv(T,vf) > cv(T,vg). Dividing Eq. (62) by R and using the rela-
tions for a and b in terms of the critical properties Tc and Pc, Eq. (62) assumes the
form

(cv(T,v) – cv0(T))/R = 3.7007/TR
3/2 ln(1 + 0.08664/vR´). (64)

The variation of the reduced specific heat with PR and vR’ with respect to volume is
illustrated in Figure 9. The RK based relation for cv vs. v for H2O at 593 K is plotted
in Figure 10. Instead of the RK equation, if one uses  the following a hypothetical RK
equation with

P = RT/(v–b) – a/(Tnv(v+b)),

then we can show that

(cv(T,v) – cv0 (T))/R = (4.9342 n(n+1) /TR
n+1) ln(1 + 0.08664/vR´)).

If  -1 <n<0 (i.e., attractive forces increase with temperature), cv(T,v)  <  cv0 (T) and cv

could become negative! A negative specific heat implies that the temperature will in-

crease upon heat loss and vice versa. Further discussion is provided in Chapter 10.

(b)

A

(a)

A

U

R
UQ

U

B

Figure 8: (a) Illustration of the determination of the value of u
at state B from a known value uo at state Q. (b Illustration of
the determination of the value of h at state B from a known
value ho at state Q.



Using Equation (38),

(∂T/∂v) u = – (T(∂P/∂T) v – P)/cv.

If the fluid state is defined by the RK equation, the numerator in the above relation is
always negative, i.e., when an RK substance expands at constant internal energy, the
temperature decreases. Such an adiabatic throttling process for a closed system is dis-
cussed later.
Recall that cp – cv = – T (∂P/∂T)2/(∂P/∂v). If (∂P/∂v) ≈ 0 (in Chapter 6 we discussed

that for real gases the pressure decreases with a decrease in the specific volume over a
range of values of v when T < Tc), then cp – cv < 0, i.e., cp < cv. Therefore, the value
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Figure 9: (a) Values of reduced cvR with respect to
PR for an RK fluid. The middle values are unstable
and the upper values at specified values of PR and
TR correspond to a liquid–like solution, while the
lower values correspond to a gas–like solution. The
value of cv for a liquid is always higher than that for
a gas. (b) Values of reduced cvR with respect to vR´.
The variation in the values is monotonic unlike
those in relation to PR.



of  cp may be negative and ratio k (=cp/cv) <1 over a range of values of the specific
volume.
We will show in Chapter 8 that the internal energy of q mixture or any component in
a mixture can be obtained by using Eq. (61a).

t. Example 20

steam tables (Table A-4C)  is 3138 kJ kg–1. Employ the RK equation in your solution.
Solution

Since the critical properties for water are Pc = 220.9 bar and Tc = 647.3 K, PR = 1.132
and TR = 1.349, Therefore, upon applying the appropriate results from Chapter 6, vR´
= 1.007, and

–uC,R = 7.401/1.3490.5 ln(1 + 0.08664/1.007) = 0.526, i.e.,

uo – u = 0.526 × 0.461 × 647.3 = 157 kJ kg–1, or u = 3146 kJ kg–1.

The difference with respect to the steam tables is 0.25 %.

5. Enthalpy
The enthalpy residue can be obtained from the relation

h(T,P) – ho (T) = u(T,v) + Pv – (uo + (Povo)) = u(T,v)- uo + Pv – RT, (65)

where h(T,P) = h(T,v).Using the appropriate state equation for the pressure, and Eqs. (61) and
(65),  we obtain a relation for the residual enthalpy

hRes(T,P) = h(T,P) – ho(T) = [(3/2) {a/(bT1/2)}] ln {v/(v+b)}+ {RTv/(v–b)–a/(T1/2 (v+b)} – RT (66)

Figure 8b presents a plot of h with respect to T with P as a parameter. As h→ho, P→0.

In relation to ho,o, the ideal gas enthalpy at R is provided by the expression

ho,R = ho,Q +
T

T

Q

R

∫ Po dT.

In dimensionless form,

hC,R(TR,PR) = 7.401/TR
2 ln(1 + 0.08664/vR´) – (TR/(1– 0.08664/vR´)) +

 0.4275 /(TR
2  (vR´ + 0.08664)) + TR  (67)

Sometimes, hR is denoted as h(o) 
R in case a simple fluid is used or a two parameter equation of

state is used. At a specified value of PR, the dimensionless difference between the vapor and
liquid state enthalpies, i.e., the dimensionless enthalpy of vaporization is hfg/RTc = (hg –
hf)/RTc.

a. Remarks
The difference (cP – cP,o) is

cp – cP,o = (∂(h – ho)/∂T)P. (68)

In dimensionless form,

(cP,o – cP)/R = (∂hC,R/∂TR) PR .

Using Eq. (65),

Determine the internal energy of water at 250 bar and 600ºC if uo = 3302.7 kJ kg–1 at
that temperature. The corresponding tabulated value of the internal energy from the



cp – cP,o = (∂/∂T)(u–uo)v + (∂/∂v)(u–uo)T (∂v/∂T)P + P ∂v/∂T – R.

Therefore,

cp – cP,o = (cv–cv,o)v + ((∂/∂v)(u–uo)T + P)(∂v/∂T)P – R. (69)

This provides a recipe to determine cP for a real fluid. In general, the difference (cP,o –
cp) < 0, i.e., the specific heat of a real fluid is higher than that of an ideal gas.
For a non–ideal fluid, cv ≠ cP – R.

Consider the relation (ho – h) = uo – u + RT – P v, so that

∂(ho – h)/∂P = ∂(uo – u)/∂P – v – P ∂v/∂P.

Since ln(1 + b/v) → b/v as v becomes large (or as P → 0) and v ≈ RT/P under these

conditions, Eq. (60) yields the result  uo – u ≈ 3aP/(2R2T3/2) so that

∂(ho – h)/∂P = (3/2){a / (R2 T3/2)} – v + Pv2/RT. (70)

Since Z → 1 under these conditions,

∂(ho – h)/∂P  = (3/2)(a/RT3/2).

In dimensionless form

∂hC,R/∂PR = 0.6413/TR
1.5, PR → 0. (71)

In addition,

(∂Z/∂PR) PR →0 = 0.08664/TR – 0.4275/TR
5/2. (72)

As T →  0, dh (= T ds + v dP) → vdP, and ∂h/∂P = v. Since v has a finite value, the

enthalpy must change accordingly with pressure as T → 0.

For liquids and solids

Figure 10: A plot of cv with respect to v for water employ-
ing the RK equation at 593 K.



dh = cpdT + (v – T ∂v/∂T) dP = cpdT + (1 – TβP) vdP.

We will use the expression developed in Chapter 6 for v of liquids

v/vref = exp(βP (T–Tref) – βT (P–Pref)).

If cp, βT, and βP are constant, then along an isotherm

h(T,P) – h(T,Pref) = –(1 – TβP) (v –  vref)/βT.

Similarly, along an isobar

h(T,P) – h(Tref,P) = cp (T – Tref).

u. Example 21

c p,o =

and T = 600ºC.
Solution

The line ABM in Figure 11
represents the isotherm TTP

= 273 K. At P = 0.00611 bar
and T = 273 K, the RK
equation of state yields v  =
3717 m3 kmole–1 (or 206.3
m3 kg–1). This volume is the
same as that predicted by
the ideal gas state relation v
= R  T/P, since at low pres-
sure the vapor behaves as an
ideal gas. Recall that

uRes = u(T,v) – uo(T) = –(3/2)(a/(bT1/2)) ln(1+ (b/v)), i.e.,

uRes = –(3÷2)×(142.64×100÷(0.0211×273.151/2)) ln(1+(0.0211÷3717)) 

   = – 0.348 kJ kmole–1 or 0.019 kJ kg–1.

hRes = h(T,P)– ho(T) = ( u(T,P) + P v  – uo(T)) – R T = uRes + P v  – R T 

     = –0.348 kJ kmole–1.

M
2501 kJ

A B

C

Figure 11: P–h diagram illustrating the determination
of the enthalpy using the triple point as a reference.

Determine the value of ho–h at the triple point of water vapor. The conditions are TTP

= 273 K, PTP = 0.0061 bar.
If the value of hfg = 2501.3 kJ kg–1 at the triple point, assuming that h = 0 kJ kg–1 for
the saturated liquid at that point, what are the real and ideal gas enthalpies of the va-
por at that state?
What is the ideal gas en-
thalpy at 600ºC if 
2 8 . 8 5  +  0 . 0 1 2 0 6
T+100,600/T2 (in units of kJ
kmole–1 K–1)?
Determine h at P = 250 bar
and T = 600ºC.
Determine u at P = 250 bar



Since the vapor behaves like an ideal gas at the low pressure of 0.00611 bar, the value
of hRes at this condition is small.
The enthalpy at point B can be evaluated by using the relation

h(273.15 K, 0.00611 bar) = hg(273.15 K, 0.00611 bar) 

= hf(273 K, 0.0061 bar) +2501.3 = 2501.3 kJ kg–1.

The ideal gas enthalpy at point C is obtained by using the relation

ho(873 K) – ho(273.15 K) = ∫cp,odT = (1/18.02)∫(28.85+0.01206 T+100,600/T2)dT

                                        = 1205 kJ kg–1, i.e.,

ho(873K) = 2501.3 + 1205 = 3706.3 kJ kg–1.

At P = 250 bar, T = 873 K, v  = 0.245 m3 kmole–1 or 0.0136 m3 kg–1.

uRes = –((1.5)×142.64×100÷(0.02110×18730.5))(ln (1 + 0.0211÷0.245)) 

      = – 2835 kJ kmole–1 or –157 kJ kg–1.

Therefore,

h(873 K, 250 bar) – ho(873 K) = u(873 K, 250 bar) + Pv – {uo(873 K) + RT} 

                                               = u(T,P) – uo(T) + Pv – RT

= – 157 + 250×100×0.245÷18.02 – (8.314÷18.02)×873 = –220 kJ kg–1, and

h(873 K,250 bar) = 3706.3 – 220 = 3486.3 kJ kg–1.
u = h – Pv = 3486.3– 250×100×0.0136 = 3146 kJ kg–1.

Remarks
For determining the value of ho for H2O we use the triple point as the reference. Since
H2O behaves as an ideal gas at low pressures, we can select a value for h(0.35 bars,
200° C) from the steam tables for superheated vapor (Table A-4C) as 2878.4 kJ.kg.

The pressure is low so that h(0.35 bar, 200 °C) ≈ h0(200°C). In this case, h0(873 K)

can be determined. The real gas enthalpy h(250 bars, 873 K) can be determined using
the corrections. Such a procedure does not require knowledge of the reference condi-
tions hfg, TTP, TTP, etc..
Instead of using the RK equation, one can use the enthalpy correction charts that are
available. From these charts at TR = 1.349, PR = 1.132,

((ho(T) – h(T,P)))/(RTc) = 0.735, i.e.,
h = 3706 – (8.314×647.3÷(18.02))×0.735 = 3486 kJ kg–1.

Below, we compare the theoretical results with tabulated values obtained from the
steam tables (A-4C) at 600ºC and 250 bar.

v, m3 kg–1 h, kJ kg–1 u, kJ kg–1 s, kJ kg–1 K–1 Source
0.01361 3486 3146 6.2904 RK equation
0.01414 3491 3138 6.361 Steam Tables

The reference condition for the steam tables (Table A-4) is at the saturated liquid state
of water at its triple point. Consequently, at 273 K steam has an enthalpy of 2501.3 kJ



kg–1. The ideal enthalpy has almost the same value of 2503 kJ kg–1. With this ideal
gas enthalpy value, we can obtain values of the real gas enthalpy at any temperature
and pressure.
Similar procedures can be adopted for s. using the value s(273.15 K 0.0061 bar) = 0
for saturated liquid, s (273.15 K 0.0061 bar) for saturated vapor can be determined
using sfg = hfg/T where hfg is specified at triple point. Using Eqs. (53) and (57) we
evaluate sRes and hence sO (273.15 K, 0.0061 bar) then obtain sO (873 K, 250 bar) at
point C, sRes (873 K, 250 bar) and finally get s (873 K, 250 bar). We see from the
above examples that the general formulae for h and s at any state (T,P) can be ex-
pressed in terms of reference values href = sref = 0 Tref or Pref in the form

h(T,P) =  fg,refh  +  
refT

T  p0c  dT +  Resh (T,P)  Resh ( refT , refP )∫ − ,

where

hRes(T,P) = h(T,P) – ho(T) = u (T,P) – uo(T) + Pv – RT, and

 hRes(Tref,Pref) = h(Tref,Pref) – ho(Tref) = u (Tref,Pref) – uo(Tref) + Prefvref – RT.

Furthermore, using the relation

u(T,P) – uo(T) = –(3/2)(a/(bT1/2))  ln {1 + (b/v)},

we can invoke the RK state equation, i.e.,

P = RT/(v–b) – a/(T1/2 v(v+b)), where 

a = 0.4275 R2Tc 
2.5/Pc, and b = 0.08667 RTc/Pc. Typically hRes (Tref,Pref) ≈ 0, if Pref «

Pc. Similarly,

s(T,P) =  s  +  c T dT   R  P P  +  s (T,P) - s (T ,P )fg,ref po
T

T

ref
Res Res

ref ref
ref

( / ) ln ( / )∫ − ,

where sfg,ref = hfg,ref/Tref,

(s(T,P) – so(T,P)) = sRes = R ln(1–b/v) – (1/2) (a/(bT3/2))  ln(1+b/v) + R lnZ.

A similar relation can be obtained for the reference state. Typically sRes(Tref, Pref) ≈ 0.

v. Example 22

umes are, respectively, vf = 0.0014988 m3 kg–1, vg = 0.01549 m3 kg–1.
Solution

Vaporization occurs at constant temperature and pressure. Integrating the expression
dh = du + d(Pv), we obtain the relations

hfg = ug – uf + P(vg – vf), and (A)

ufg = ug(T,vg) – uf(T,vf) = –((3/2)(a/(bT1/2)) ln((vg + b)vf/((vf + b) vg)). (B)

Using the values a  = 14259 kN m4 kmole–2 K1/2, i.e., a = 43.912 kN m4 K1/2 kg–2 =
0.43912 bar m2 K1/2 kg–2, b  = 0.0211 m3 kmole–1, i.e., b = 0.00117 m3 kg–1, and the
provided values of vf and vg we obtain
ufg = – 1.5 × 1541 × ln (0.604) = 1165 kJ kg–1.

For sake of comparison, the steam tables provide a value of 1081 kJ kg–1.
If a = 0, i.e., there are no attractive forces, ufg = 0. We can use equation (A) to obtain
the value of hfg. Since the pressure is not provided, we will employ the RK state

Determine hfg for water at T = 593 K if the saturated liquid and vapor specific vol-



equation using the data for vg and T. (We will not use the vf data, since the RK equa-
tion is inaccurate in this limit.) Thus,
P = RT/(vg – b) – (a/T1/2)(1/(vg(vg+b))
 = (0.08314÷18.02)×593÷(0.01549–0.00117) –

      (0.43912÷5932)(1÷(0.01549(0.01549+0.00117))) = 121.2 bar.

The tables (A-4A) yield a value Psat = 112.7 bar. Likewise,
hfg = ufg + P (vg – vf) = 1165 + 121.2 × 100 × (0.01549 – 0.0014988) = 1335 kJ kg–1.

From the tables A-4A hfg = 1238 kJ kg–1.
Remark

The liquid possesses lower intermolecular potential and the translational energy. The
internal energy ufg is the energy required to overcome the strong intermolecular at-
tractive forces in the liquid due to a close molecular spacing and spread the molecules
apart (Chapter 1). It represents the potential energy increase in the Lennard–Jones
potential function at a specified temperature during the phase transition. Since each
unit mass must perform a boundary work of P (vg-vf) and hence energy transfer via
heat is used to supply “ipe” and boundary work. The vaporization enthalpy hfg = ufg +
P(vg – vf) includes both the intermolecular potential energy gain and the boundary
work performed in increasing the volume of unit mass from liquid to vapor states as
given by Eq. (B).

6. Gibbs Free Energy or Chemical Potential
We are interested in the difference (g(T,P) – go(T,P)) (rather than (g(T,v) – go(T,v))),

since g(T,P) is generally applied to phase equilibrium problems at specified T and P. Recall
that

g(T,P) = h(T,P) – Ts(T,P), so that

g(T,P) – go(T,P) = (h(T,P) – ho(T)) – T {s(T,P) –so(T,P)}.

Applying Eqs. (66), (57) and (61),

g(T,P) – go(T,P) = (3/2)(a/(bT1/2)) ln(v/(v+b)) + (RTv/(v–b) – a/(T1/2(v+b)) – RT

                               + RT ln (v/(v–b)) – (1/2)(a/(bT1/2)) ln (v/(v+b)) –RT ln ZRK.

                         = (RTv/(v–b) – a/(T1/2 (v+b)) – RT + RT ln (v/(v–b)) + 

                              (a/(bT1/2)) ln (v/(v+b)) –RT ln ZRK (73)

w. Example 23
Determine the relations for properties s, v, u, and h if g(T,P) is known.

Solution
Using the relations g = h – Ts, and dg = vdP – sdT,

(∂g/∂T)P = –s and (∂g/∂P) T = v (A)

Thereafter,

h = g + Ts and u = h – Ts. (B)

Remarks
Manipulating the relations for g (= h-Ts) and dg (= -s dT + vdP), we obtain the ex-
pression

dg = vdP – (h – g)dT/T, i.e., dg – g dT/T = v dP – h dT/T



Therefore,

T d(g/T) = vdP – h dT/T, or d(g/RT) = v dP/RT – h dT/(RT2), and

(∂(g/RT)/∂T)P = – h/RT2. (C)

Similarly,

(∂(go/RT)/∂T) P = – ho/RT2 so that (∂(gC,R/TR)/∂TR) PR
 = – hC,R/TR

2, and

(∂gC,R/∂TR)PR = –sC,R, and (∂gC,R/∂PR)TR = vC,R. (D,E)

x. Example 24

charts.
Solution

We will use the conservation equation
q  w  =  h hs− −2 1  and δ q =  T d s .
For an isothermal process,
q =  Tds =  T(s   s )∫ −2 1 .
Therefore,
− − − − w  =  (h h ) T (s s )s 2 1 2 1 .
For methane, Tc = 191 K, and Pc = 46.4 bar. Hence,
TR,1 = TR,2 = 230÷191 = 1.2, PR,1 = 150÷46.4 = 3.2, PR,2 = 250÷46.4 = 5.4.

From the discussion in Chapter 2, using the enthalpy correction charts (Appendix
Figure B-3)or the Kessler tables  (Table A-24A) at TR,2 = 1.2, PR,2 = 5.4, Z2 = 0.75.
Thus,
( ho2 – h2)/ R Tc = 3.172
Similarly, at TR1 = 1.2, PR = 3.2, and
( ho1 – h1)/ R Tc = 2.834.
Therefore,
h1 = ho1 – 2.834 × 8.314 × 191 = ( ho1 – 4500) kJ kmole–1,

( h2 = ho2 – 3.172 × 8.314 × 191 = ( ho2 – 5037) kJ kmole–1, and

h2 – h1 = ( ho2(T2) – ho1(T1) – 537) kJ k mole–1.
Since T2 = T1, ho2(T2) = ho1(T1), and
h2 – h1 = –537 kJ kmole–1.
For T 1.2,  P  =  3.2,  (s s ) /R = 1.737R R, , ( )1 1 01 1= −and  9 (Tables A-25A or Appendix
Figure B-4). Therefore,
( s o1 – s 1) = 14.4 kJ kmole–1 K–1.
For T 1.2,  P  =  ,  (s s ) /R =R R, , . ( ) .2 2 02 25 4 1 819= −and , and
( s o2 – s 2) = 15.1 kJ kmole–1 K–1.
Consequently,
s 2 – s 1 = 4.95 kJ kmole–1 K–1, and
ws = – 601 kJ kmole–1.

Remark
If the ideal gas state equation is used,
ws = –∫ vdP = –∫( R T/P)dP = – R T ln(P2/P1) = –8.314×230 ln(250÷150)

   = –977 kJ kmole–1.

sion of methane at 230 K from P1 = 150 bar to P2 = 250 bar. You may use the Kesler
Determine the reversible work required for the steady reversible isothermal compres-



7. Fugacity Coefficient
The fugacity coefficient φ is defined as

ln φ = (g(T,P) – go(T,P))/(RT). (74)

Using Eq. (73),

 ln φ = (v/(v–b) – a/(RT3/2 (v+b)) –1 

        + ln (v/(v–b)) +(a/(bRT3/2)) ln(v/(v+b)) – ln ZRK. (75)

This coefficient will be discussed later.

F. PITZER EFFECT
So far we have used two parameter state equations. Most such equations are explicit

expressions for the pressure in terms of v and T. Inclusion of the Pitzer factor ω improves the

accuracy of the state relations.

1. Generalized Z Relation
Applying Eqs. (43) and (38) at constant temperature, namely,

dhT = (v – T (∂v/∂T)P) dP, (76a)

duT = (T(∂P/∂T)v – P) dv, (76b)

and the relation

v = ZRT/P. (77)

Differentiating Eq. (77) with respect to temperature, we obtain the relation

(∂v/∂T)P = (∂Z/∂T)P RT/P + ZR/P.

Using this expression in Eq. (76a) and (76b), we obtain the expression

dhT= – (RT 2/P)(∂Z/∂T)P dP (78a)

duT=  (RT2/v)(∂Z/∂T)v dv (78b)

Since, TR = T/Tc and PR = P/Pc, and omitting subscript “T”, the Eq. (78a) becomes

dh/RTc = –(TR
2/PR)(∂Z/∂TR) PR

 dPR. (79)

We now introduce the Pitzer factor in the form

Z = Z(o)  (TR,PR) + ω Z(1)  (TR,PR), (80)

and introduce Eq. (80) into Eq. (79), so that

dh/RTc = –(TR
2) {(∂Z(o)/∂TR) PR

 + ω (∂Z (o)/∂TR) PR
} (dPR/PR). (81)

Upon integrating Eq. (81)

h/RTc = –(TR
2) ∫{(∂Z (o)/∂TR) PR

 + ω (∂Z (o)/∂TR) PR
} (dPR/PR) + f(TR). (82)

As PR → 0, h → ho, and Z → 1. Therefore, ∂Z/∂TR = 0, and Eq. (71) assumes the form

ho/RTc = –(TR
2)(∫{(∂Z (o)/∂TR) PR

 + ω (∂Z (o)/∂TR) PR
}(dPR/PR) PR→0  + f(TR). (83)



Subtracting Eq. (82) from Eq. (83), we obtain the expression
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where the first term on the RHS can be represented as
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and the second term is as

( ) / ( )( )
( )

h h RT  =  T
Z

T
 

dP

P
c R

R

R

R
P o

P

R

R

0
1 2

1

−
∂
∂→∫ . (86)

The superscript (0) implies that Z(o) is based on a simple fluid state equation, while the super-
script (1) represents a correction to the simpler fluid properties by considering more complex
effects. From Eqs. (84) to (86),  we obtain the expression

(ho – h)/(RTc) = (ho – h)(o)/(RTc) + ω(ho – h)(1)/(RTc). (87)

Similarly,

(so(T,P) – s(T,P))/R = (so(T,P) – s(T,P))(o)/R + ω(so(T,P) – s(T,P))(1)/R, (88)

(go(T,P) – g(T,P))/R = (go(T,P) – g(T,P))(o)/R + ω(go(T,P) – g(T,P)(1)/R, and (89)

φ(T,P) = φ(o)(T,P) + ωφ(1) (T,P) (90)

We can obtain Z(o) and Z(1) using the Kesler equation of state. Kesler charts have been gener-
ated for Z(o), Z(1), (ho – h)(o)/(RTc), and (ho – h)(1)/(RTc). See next section.

G. KESLER EQUATION OF STATE (KES) AND KESLER TABLES
Instead of the RK equation one can use the Kesler equation of state presented in

Chapter 6 to obtain values of thermodynamic properties for simple fluids (with the constants in
Table A-21) in the form ((h0-h)/RTc)

(0), (so(T,P) – s(T,P))(o), etc. The procedure can be repeated
for reference fluids (with with appropriate constants) using the Kessler equation of state and
obtain relations for ((h0-h)/RTc)

(ref), (so(T,P)– s(T,P))(ref), etc. Defining

((h0-h)/RTc)
(1) =(((h0-h)/RTc)

ref - ((h0-h)/RTc)
(0))/wref,

we can tabulate values for ((h0-h)/RTc)
(0) and for ((h0-h)/RTc)

(1) at any specified PR and TR.
Then for any other fluid,

((h0-h)/RTc) = ((h0-h)/RTc)
(0)  + w  ((h0-h)/RTc)

(1).

Similarly other properties like the entropy can be expressed, i.e.,

((s0-s)/RTc)
(1) = ((s0-s)/RTc)

ref - ((s0-s)/RTc)
(0),

See Tables A-24A to A-26B for tabulations of ((h0-h)/RTc)
(0), ((h0-h)/RTc)

(1), (s0-s)(0) /R, ((s0-
s)(1)/R, φ(o), and φ(1).

H. FUGACITY
Information regarding fugacity enables the evaluation of the chemical potential and

allows the characterization of phase and chemical equilibrium, as will be discussed later.



1. Fugacity Coefficient
One can use a state relation for g to obtain an expression for φ, e.g.,

dg = –s dT + v dP.

Assuming that a state relation is available for v = v(T,P), at constant temperature,

dg = v dP, or (91)

dg = d(Pv) – P dv (92)

a. RK Equation
If the RK equation is used in the context of Eq. (92),

g(T,v) = RTv/(v–b)–a/(T1/2(v+b))–RTln (v–b) + (a/(T1/2 b))ln(v/(v+b))) + f(T) 

If a = b = 0, for an ideal gas:

go (T,v) = RT –RT ln v + f(T).

This enable us to determine f(T), and

g(T,v) – go(T,v) = RT b/(v–b) – a/(T1/2(v+b)) 

                            – RT ln ((v–b)/v) + (a/(T1/2b)) ln(v/(v+b))). (93)

Dividing Eq. (93) by RT we obtain the relation

(g(T,v) – go(T,v))/RT = b/(v–b) – a/(RT3/2(v+b)) 

                                   – ln ((v–b)/v) + (a/(RT3/2b)) ln(v/(v+b))). (94)

The fugacity coefficient can be obtained from the expression

ln φ = (g(T,P) – go(T,P))/RT = gRes(T,P)/RT.

Proceeding as before,

g(T,v) – go(T,v) = g (T,P) – go(T,v) = g (T,P) – go(T,vo),

where vo denotes the ideal gas volume at the state (T, P). Manipulation of this expression re-
sults in

g(T,P) – go(T,vo) = g(T,v) – go(T,v) +go(T,v) –go(T,vo).

Since,

go(T,v) – go(T,vo) = ho(T) – Tso(T,v) – (ho(T) – T so(T,vo)) 

                           = RT ln vo/v = RT ln (RT/Pv) = –RT ln Z,

ln φ = (g(T,P) – go (T,P))/RT = g(T,v) – go(T,v) – RT ln Z. (95)

Using Eq. (94) in Eq. (95) we obtain

ln φ = 0.08664/(vR´–0.08664) – 0.4275/(TR 3/2 (vR´ + 0.08664)) 

                             – ln (1 –0.08664/vR´) – (4.9342/TR 3/2) ln (1 + 0.08664/vR´) – ln Z, (96)

where vR´(TR, PR) is known. As a → 0 and b→ 0, φ → 1. Further as vR´ → ∞ (i.e., as PR → 0),

φ → 1.



y. Example 25

1.349).
Solution

From previous examples, vR´ = 1.007 at PR = 1.132, TR = 1.349. Therefore,
ln φ = 0.08664 ÷ (1.007 – 0.08664) – 0.4275 ÷ (1.3493/2×(1.007 – 0.08664))

       – ln (1–0.08664 ÷ 1.007) – 4.9342 ÷ 1.3493/2 × ln (1 + 0.08664 ÷ 1.007)

     = 0.09414 –0.2495 +0.08997 – 0.2599 + 0.168= –0.1573, i.e.,
φ = 0.854

b. Generalized State Equation
Consider the generalized state equation

Pv = ZRT (97)

At given T, dg = v dP. Using Eq. (97),

dg = vdP = (ZRT/P) dP. (98)

For ideal gases

dgo,T = vo dP = (RT/P) dP = RT d ln P. (99)

Therefore,

d(g–go) = (v – vo) dP = vo(Z – 1) dP = RT (Z–1) dP/P.

Integrating between the limits of P → 0 and P,

g RT = g g RT = Z -1)
dP

P
s

P

P
Re / ( ) ( ) / ( ) (−

→∫0
0

, i.e., (100)

ln (φ = Z -1)
dP

P
R

R
P

P

R

R

→∫ 0
. (101)

Differentiating Eq. (101) at a specified temperature, we obtain the relation

d ln φ = d gres/RT = (Z–1) dP/P. (102)

2. Physical Meaning
We introduce the fugacity f, which has the same units as pressure. Following Lewis

(1875–1946), we define the fugacity f as

dg = v dP = RT d ln f. (103)

Noting the similitude with Eq. (99),

d((g – go)/RT) = (Z – 1) dP/P = d ln(f/P) = d ln φ (104)

Upon comparing Eqs. (104) and (102) we realize that

φ = f/P (105)

Integrating Eq. (104) at constant temperature

((g – go)/RT) = ln φ + F(T).

Determine the value of φ for water at 250 bar and 673 K (i.e., PR = 1.132, and TR =



As g →  go (i.e., P →  0), f →  P (i.e., φ → 1). (The ideal gas equation of state can,

therefore, be expressed in the form fv = RT where f= P for ideal gas). Hence F(T) = 0, and

((g – go)/RT) = ln φ.

The fugacity coefficient φ is a measure of the deviation of the Gibbs function from its ideal gas

value. One may express real gas equation of state Pv =ZRT as fv=Z’(TR,PR)RT where Z’

(TR,PR)= φ(TR,PR) Z(TR,PR). In the presence of intermolecular attraction forces, typically, for a

real gas h < ho and s < so. The corresponding value of g (= h–Ts) is less than or greater than go

(= ho–Tso), when, respectively, φ is smaller than or larger than unity.

Accounting for the Pitzer factor Z = Z(o) + ω Z(1), Eq. (105) assumes the form

ln φ = ln φ(o) + w ln φ(1) (106)

where

ln  = (Z -1)
dP

P
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a. Phase Equilibrium
In general, during boiling, the pressure and temperature remain constant. Since dg =

–s dT + v dP, for this process dg = 0. Consequently, as a fluid of unit mass undergoes change
from the saturated liquid state to the saturated vapor state, gf = gg. Using Eq. (105), we note

that the differences

(gf(T,P) – go(T,P))/(RT) = ln φf, and  (gg(T,P) – go(T,P))/(RT) = ln φg

are identical, since gf = gg. Therefore,

φf = φg, and ff = fg = fsat. (108)

For a phase change from an α (say, the solid phase) to a β phase (say, vapor) gα = gβ (for a

single component g is also called the chemical potential µ so that µα = µβ), φα = φβ, and fα = fβ.

This implies the existence of a single saturation curve along which the fugacities for both the
saturated liquid and vapor states are the same at given T. The inflexion of the curve occurs at
the critical point.

b. Subcooled Liquid
Integrating Eq. (103) along an isotherm from the saturated liquid state (T,Psat) at

which f = ff to a compressed liquid state (T, P)

( ) / ln( / )) ( / )g(T,P) g(T,P ) RT = f (T,P) f (T,P = v RT dPsat
f

sat

P

P

sat
− ∫ (109)

The Poynting correction factor POY is related to the RHS of Eq. (109), namely,

POY(T,P) =  f (T,P) f (T,P  v RT dPf
sat

P

P

sat
/ ) exp ( ( / ) )= ∫ (110)

In general, along an isotherm v ≈ vf so that

POY = exp(vf (P – Psat (T))/RT), i.e., (111)

(g(T,P) – g (T,Psat))/RT = ln (f/ff) = vf (P – Psat)/RT. (112)

A similar procedure can also be adopted  for solids.



Treating the liquid as incompressible, i.e., u (T,P) ≈ u(T, Psat), s(T,P) ≈ s(T,Psat), and

h(T,P) = u(T,P) + Pv(T,P) ≈ u(T,Psat) + Pvf(T,Psat).

c. Supercooled Vapor
Sometimes a vapor can be cooled to a temperature below saturation temperature

without causing condensation (Chapter 10). In the case of super-cooled vapor the thermody-
namic properties can be related to the saturation properties, At low pressure u(T,P) ≈ u (T,Psat),

h(T,P) ≈ h (T,Psat), s(T,P) ≈ s(T,Psat) – R ln (P/Psat), and g(T,P) ≈ go (T,P). Therefore,

g(T,P) = h–Ts ≈  h(T,Psat) – T(s (T,Psat) – R ln(P/Psat)) = g(T,Psat) + RT ln(P/Psat).

where Psat is at T.

z. Example 26
Determine the fugacity of pure water for the following cases:
Saturated vapor at 100ºC,
Saturated liquid at 100ºC,
Compressed liquid at 100ºC, and 200 bar.
Superheated vapor at 100ºC, and 0.5 bar.
Saturated vapor at 350ºC.
Super-cooled vapor at 90°C, 1 bar, assume ideal gas behavior

Solution
The saturation pressure at 100ºC is Psat = 1 bar. Since Pc = 220.9 bars, PR = Psat/Pc « 1,
at this state water vapor H2O(g) behaves as an ideal gas. Therefore,
f = Psat = 100 kPa or 1 bar.
Since P and T are constant, f is unchanged during the phase change. Therefore, for the
saturated liquid H2O(l) f = 100 kPa or 1 bar.
At constant temperature,
d (ln f) = vdP/(RT).
For liquids, v ≈ constant. For this problem, v = 0.001 m3 kg–1. Integrating from the

saturated liquid state at 100ºC and 1 bar to the compressed liquid state at 100ºC and 2
bar,
ln (f(T,P)/fsat(T)) = v(P – Psat)/(RT), i.e.,
ln (f(100ºC, 200 bar))/(f sat(100ºC)) = ((0.001×(20,000–100))/(8.314×373/18.02))

= 0.116.
Therefore,
(f(100ºC, 200 bar))/(fsat(100ºC)) = POY = exp (0.116) = 1.123, and
 f(100ºC, 200 bar)) ≈ 1.122×(fsat(100 ºC) = 1.123×fsat(100ºC) = 1.123 bar.

Superheated vapor behaves as an ideal gas at low pressures. Therefore, the fugacity
equals the pressure, i.e., f = 0.5 bar.
At 350ºC, Psat = 165 bar, PR = 165÷220.9= 0.75, TR = 623÷641 = 0.98, and Z ≈ 0.3.

Therefore, under these conditions water vapor behaves as a real gas and f ≠ P. Using

the fugacity coefficient charts, φ = 0.74, and f = 0.74×165 = 124 bar.

Since the behavior a ideal gas, f = Psat at 90°C = 0.7014 bars.

Remarks
The example illustrates that when the pressure is increased by a factor of 200, in the
case of liquids f changes by only 12 %. At a specified temperature the changes in the
values of f with respect to pressure (d lnf = vf dP) are small, since the liquid specific
volume vf is small. However, for the gaseous state, v is much larger than vf (often-



times by three orders of magnitude) so that f changes significantly as the pressure is
altered.

aa. Example 27
Employ the RK equation of state for the following problems.

bar).
Determine the corresponding value of go.
Determine the value of g for H2O(g) at P = 250 bar, and T = 873 K if c p

0.01206 T+100,600/T2 kJ kmole–1 K–1.
Solution

For water at its triple point, g(f, TTP, PTP) = hf,TP – T sf,TP = 0.
Since the vapor behaves as an ideal gas at the triple point,
ho – h(TTP, PTP) ≈ 0, and so – s(TTP, PTP) ≈ 0

Therefore, ho – Tso ≈ h – Ts so that g(TTP, PTP) = go.

Consequently, φ =1, and f = PTP = 0.006 bar.

We can get g(250, 873) by using the definition g = h–Ts and using correction charts
to determine ho– h and so–s entropy, ideal gas enthalpy and entropy at 250 bar, 873 K
or we can use

g (T,P) = go(T,P) + RT ln φ
Referring to Example 17,
ho(873K) = 3706 kJ kg–1.
Referring to Example 16
so(873, 250bar) = 6.566 kJ kg–1 K–1.
go(873,250) = ho(T) – T so(T,P) = 3706–873×6.566 = –2,026.1 kJ kg–1.

g(873,250) = go(873,250) + RT ln φ
From example 26,
 φ = 0.854, f = 0.854 × 250 = 214 bars.

g(873,250) = –2,026.1 + (8.314/18.02) ×873 ln 0.854 = –2089.7 kJ kg–1.

bb. Example 28

that data for usat(120ºC), and vsat(120ºC) are available.
Determine the properties u, h, s, g, and f for liquid water at120ºC and 100 kPa.

Solution
Psat(120ºC) = 199 kPa. Since P = 250 kPa, the liquid is in a compressed state. For this
state u(120ºC, 199 kPa) = usat(120ºC) = 503.5 kJ kg–1. Recall that

du = cvdT + (T(dP/dT)v – P) dv (A)

Assume that v = v(T) so that its value (v = 0.001063 m3 kg–1) along the 120ºC iso-
therm does not change. Therefore, since dv = dT = 0, du = 0, and
usat(120ºC, 250 kPa) ≈ u (120ºC, 199 kPa) = 503.5 kJ kg–1.

Furthermore,
h = u + Pv = 503.5 + 250 × 0.001063 = 503.5 kJ kg–1.

Using Eq. (112)
ln (f(T,P)/fsat(T)) = vf(P – Psat)/(RT)

           = 0.001063×(250 – 199)/((8.314/18.02)×393) = 0.000179,

POY = f(T,P)/f(T, Psat) = 1.000179, i.e.,
f(T,P) ≈ fsat(g)(T).

Determine the properties u, h and f for liquid water at 120ºC and 250 kPa. Assume

,o = 28.85 +

Determine the value of g for H2O(g) at its triple point of (TTP = 273 K, PTP = 0.0061



Since the pressure is relatively low, fsat(g) = Psat = 199 kPa, i.e., Thus fsat(l) = fsat(g) = 199
kPa.
Water boils at 100ºC when P ≈ 100 kPa. Therefore, we can expect the water vapor at

120ºC to be superheated. However, under some circumstances (to be discussed in
Chapter 10) water can exist as a superheated liquid at 120ºC and 100 kPa, instead of
as a superheated vapor. Since u is a function temperature alone for liquids,
u(120ºC,100 kPa) ≈ usat(120ºC) = 503.5 kJ kg–1.

Therefore,
h(120ºC,100 kPa) = usat(120ºC) + Pv = 503.5 + 100×0.001063 = 503.51 kJ kg–1,

s(120ºC,100 kPa) = ssat(120ºC) = 1.5276 kJ kg–1 K–1,
g(120ºC,100 kPa) = gsat(120ºC) + vf (P – Psat)
= (503.71 – 393×1.5276) + 0.00106×(199–100) = –96.53 kJ kg–1, and

ln (f/fsat) = vf(P – Psat)/RT = 0.001063(100–199)÷(0.4614×393) = –0.000578, i.e.,

f/fsat = 0.9994 or f = fsat × 0.9994 = 199 × 0.9994 = 198.4 kPa.

Remark
Note that the fugacity of the superheated liquid is lower than that of the corresponding
saturated liquid at the same temperature.

cc. Example 29

kmole–1.
Solution

The sssf energy balance for a reversible process has the form

δw = – vdP. (A)

For an isothermal process,

dgT = v dP. (B)

From Eqs. (A) and (B) we determine that

–δw = dgT, i.e., (C)

–w = g2 – g1. (D)

Since dg = RT d ln f, integrating this relation at constant temperature,

–w = g2 – g1 = RT ln f2/f1 = RT ln (φ2P2/(φ1P1)). (E)

From the fugacity charts, PR,2 = P2/Pc = 250÷46.4= 5.4, PR,1 = P1/Pc = 150÷46.4 = 3.2,

and TR,1 = TR,2 = T2/Tc = 230÷190.7 = 1.2, i.e., log1o φ2 = –0.358, log1o φ1 = –0.275.

Therefore, φ2 = 0.439, and φ1 = 0.531 so that

– w  = R T ln(0.439×250÷(0.531×150)) = 8.314 × 230 × ln 1.378 = 613 kJ kmole–1.

Remarks
If the gas behaves like an ideal gas, w12 = –∫vdP = – R T ln(P2/P1) = –8.314 × 230 ×
ln(250÷150) = –977 kJ kmole–1. The magnitude for the work done in case of an ideal

gas is much larger since the ideal gas involves higher pressure for the same volume
and hence requires more boundary work during compression.

Methane is reversibly compressed at 230 K in a steady state steady flow (sssf) device
from 150 bar to 1000 bar. Using the fugacity charts, determine work done in kJ



If gas is compressed isothermally in a closed system w12 =  ∫ P dv = (P2v2-P1v1- ∫vdP)

where second part on the right can be determined using fugacity charts

I. EXPERIMENTS TO MEASURE (uO – u)
It is possible to measure the difference (uo – u) for real gases using the Washburn ex-

periments (see Chapter 2). A mass m of high pressure gas stored in a tank A is discharged
through s narrow tube C into the atmosphere at B (Figure 12). The tank and the tube are main-
tained in a constant temperature bath D. Recall the following relation from Chapter 2, during a
short period of time “dt”.

m du + u dm = δQ – dm(h(TB,Po) + keo). (a)

Since the discharged gas pressure is atmospheric,
h(TB, Po) = ho(TB).

Ignoring the kinetic energy ke, Eq.(a) becomes

d(mu) = δQ+ dm ho(TB), i.e., m2u2 – m1 u1 = Q + (m2–m1) ho(TB).

Where states (1) and (2) are initial and final states of tank A With u2 = u0,  m2=m0,
(m0 u0 (TB) – m1u1 (T1, P1)) = Q + (m0 – m1) RTB and m0 = v/v0, with m1 = v/v1

V/vo uo – V/v1 u1 = Q + (V/vo– V/v1)(uo + RTB), i.e.,

ures

Figure 12. Washburn experiments (from A. Kestin, A Course in
Thermodynamics, McGraw Hill, NY, 1979, p 262, Volume I.
With permission.).



uo(TB) – u1(TB, P) = Q v1/V + (RTB v1/vo – RTB) = Q m1 + (Po V/m1 – RTB). (b)

With known Q, V, TB and PO we can determine the difference between the ideal and real gas
internal energies in this manner. The “P” in tank A can be altered and corresponding u0 – u1

can be determined from Eq. (b). Likewise, using the expression h = u + Pv,

ho(TB) – h1(TB, P) = Q m1 – (P – Po) V/m1.

The Washburn coefficient (∂u/∂P)T represents the slope of the difference (uo(TB) –

u1(TB, P)) with respect to pressure. The slopes for molecular oxygen and air, respectively, tend
to approach values of 6.51 and 6.08 kJ kmole–1 bar–1 as P → Po.

Differentiating Eq. (60), we obtain the relation

 ∂(uo(T) – u(T,v))/∂P = –(3/2)(a/(bT1/2))(∂v/∂P)/(v2(1+b/v)). (c) 

Since v has a  relatively large value (as P → Po), neglecting higher order terms in v,

 ∂(uo(T) – u(T,v))/∂P = –(3/2)(a/(bT1/2))(∂v/∂P)T,v→∞/v2.

Using the expression for ∂v/∂P given in Chapter 6 for RK equation,

(∂v/∂P)T = 1/((a(2v+b)/T1/2 v2 (v+b)2) – RT/(v–b)2).

As v → ∞,

∂v/∂P= –v2/RT. (d) 

Therefore using Eq.(d) in Eq.(c),

∂(uo(T) – u(T, v))/∂P = (3/2)(a/RT3/2).

Rewriting this expression in reduced form and using the RK state equation relation for a =
0.4275 R2 Tc

1.5/Pc,
(∂uC,R/∂PR) = 0.6413/TR

1.5 Using the values for a = 17.39  bar K1/2 m6 kmole–2 and R

= 0.08314 bar m3 kmole–1 K–1 for molecular oxygen, at 301 K, ∂(uo(T) – u(T,v))/∂P = 0.0601

m3 kmole–1 or 6.01 kJ kmole-1 bar-1 while the experimental value is given as 0.0651 kmole-1

bar-1.

J. VAPOR/LIQUID EQUILIBRIUM CURVE
In the previous sections we have used the real gas equations of state to determine

thermodynamic properties. In this section, we will obtain saturation properties, such as Psat,
Tsat, and hfg, and the Joule Thomson coefficient using these state equations.

1. Minimization of Potentials

a. Helmholtz Free Energy A at specified T, V and m
In Chapters 1 and 3 we have discussed the phenomena of evaporation, condensation,

and phase equilibrium. Evaporation occurs as a result of the chemical potential difference be-
tween the liquid and vapor phases of a fluid. If an evacuated rigid vessel of volume V is in-
jected with a liquid and then immersed in a constant temperature bath at conditions conducive
to evaporation, µl is initially higher, which is why evaporation occurs. As the vapor fills the

space within the vessel, the pressure increases, thereby increasing µg. Evaporation stops at a

saturation pressure Psat that is characteristic of the bath temperature T at which µl = µg. Recall

from Chapter 3 that

dA = –P dV – S dT – T δσ.



If we consider the evaporation to be an irreversible process that occurs in a rigid closed sys-
tem, δσ > 0 at the specified temperature, volume, and mass, i.e.,

dA = – T δσ so that dA < 0.

dd. Example 30

measure Reid’s vapor pressure.
Solution

The Helmholtz energy of systems liquid (A) and vapor (B)  (see Figure 13a)

A = AA  + AB, where (A)

AA = NA a A, and AB = NB a B (or Av = Nv a v). (B)

The value of AA changes, since the liquid mass decreases during vaporization. The
value of av changes since Pv changes. For the liquid phase,
uf (323 K) ≈ hf(323 K) = cw (T – 273) = 4.184(323 – 273) = 209.2 kJ kg–1,

sA = c ln(T/273.15) = 0.7033 kJ kg–1 K–1,
aA = uA – TsA = 209.2 – 323.15 × 0.7033 = –18.075 kJ kg–1,

so that initially
AA = NA a A = 0.1 × (–17.97 × 18.02) = –32.57 kJ (and Av = 0), and

A = AA + Av = –32.57 + 0 = – 32.57 kJ.
For an arbitrary amount of vapor accumulation, say 0.0002 kmole, since the total
number of moles of water N is unchanged,
NA = N – Nv= 0.1 – 0.0002 = 0.0998 kmole, i.e.,
AA = 0.0998 × (–18.075 × 18.02)= –32.506 kJ.

The vapor pressure
Pv = Nv R T/VB, where
VB = V – VA = V – NAWA/vA = 0.35 – 0.0998 × 18.02 ÷ 1000 ≈ 0.35 m3, i.e.,

Pv = 0.0002 × 0.08314 × 323.15 ÷ 0.35 = 0.01535 bar.

Furthermore,
uv ≈ uvo = hvo – RT = (hg,ref + cp,o(T –  273.15)) – RT

 = (2501.3 + 1.8× (323.15-273.15)) – (8.314 ÷ 18.02) × 323.15 = 2442.2 kJ kg–1.

sv(T, Pv) = sv(323 K, Pv) ≈ sg(273 K, PTP) + cp,o ln (323/273) – R ln pv/PTP

= 2501.3÷273.15 + 1.8 ln(323.15÷273.15)– 0.461 ln(0.015÷0.0061)

= 9.046 kJ kg–1 K–1, and
av = uv(T) – Tsv(T, Pv) = 2442.2 – 323.15 × 9.046 =– 477.36 kJ kg–1, i.e.,

A rigid container that has a volume of 0.35 m3 is completely evacuated and then it is
filled with 0.1 kmole of liquid water (Figure 13a). It is then immersed in an isother-
mal bath at a temperature of 50ºC. The liquid evaporates to form vapor, and the vapor
pressure is measured. We will refer to the liquid water as subsystem A and the va-
por–filled space above the liquid as subsystem B. Phase equilibrium is reached when
the vapor reaches a saturation pressure, i.e., when there is no net change in the mass
of either the liquid or the vapor. This occurs when the net evaporation ceases. Deter-
mine the change in Helmholtz function with respect to the vapor pressure Pv (= PB)
and determine the value of that pressure when Helmholtz function reaches a minimum
value. Assume that at T = 273.15 K hf = sf = 0, hfg = 2501.3 kJ kg–1 and that s (323 K,
PB) ≈ sg (273 K, PTP) + cp,o,v ln(T/TTP) – R ln PB/PTP, cp,o,v = 1.8 kJ kg–1 K–1, R = 0.46

kJ kg–1 K–1, c = 4.184 kJ kg–1 K–1. The constant volume reactor is typically adopted to



Av = 0.0002×(–477.36 × 18.02) = – 1.7204 kJ. A = AA+AB = -32.51-1.72= -34.23 kJ

By repeating the calculations we can obtain a chart for A with respect to Pv. The value
of A reaches a minimum at Pv = 0.124 bar (Figure 14) (which approximately equals
the tabulated value of 0.125 bar).

Remarks
If c=cpo or c=cpo=0, then  the saturation pressure at Amin  can be derived as

Psat/PTP = exp((hfg,TP/R) (1/Tref – 1/T)),

which is known as the Clausius Clapeyron equation (see later sections).
The saturation pressure Psat can also be obtained by minimizing the value of A = NA

a A + Nv a v using the Lagrange multiplier method subject to the constraint Nv + Nw =
N. In this manner we can prove that µw = µg.

Solids can similarly undergo a phase transition within the solid phase. These proc-
esses are unsteady, and thermodynamics–based analyses cannot provide information
on the time–dependent rate behavior of phase transition.

b. G at Specified T, P and m
If the experiment described in the previous section is repeated in an appropriate pis-

ton-cylinder-weight assembly containing a mixture of liquid water and air (Figure 13b) and
subsequently immersed in an isothermal bath, the temperature, pressure, and mass can be held
constant while evaporation occurs. The vapors so accumulated will move the piston. The pis-
ton motion will stop when the mixture volume reaches a particular value at which phase equi-
librium is reached. For this case,

Bath at T 

Pv 

system 

Vapor 

Liquid Bath 

(a) 

(b) 

Figure 13. Saturation pressure measurement at a) specified values of T, V,
m, and b) specified values of T, P, m.



       dG = V dP – S dT– T δσ.

And  from Chapter 3 we know that  G  must reach a minimum at fixed T, P, m. Equilibrium is
reached when the Gibbs free energy in the liquid and gas phases, G = GΡ + Gg reaches a mini-

mum value, i.e., when

µ H O2 (Ρ) = µ H O2 (g).

This energy minimum can be obtained by following a similar procedure to that used
in Example 30. If we assume that the pressure is low enough so that the gas mixture can be
treated as ideal gas. At phase equilibrium,

P H O2
 = P H O

sat

2
(T)= X H O2

P, where

The water vapor mole fraction XH2O = N H O2 (g)/(N H O2 (g) + Nair)

2. Real Gas Equations
The previous section required a knowledge of “c”, cp0, hfg and relations for “s”. In-

stead, a real gas state equation can be used to determine a relation for Psat(T) and by applying
the equality gΡ = gv. In order to do so, the critical conditions of the fluid must be known.

a. Graphical Solution
It is possible to characterize the variation in pressure with respect to specific volume

at T<Tc, e.g., the curve BECGNDUHJMAFL contained in Figure 16. At constant temperature,

dg = v dP. (113)

where “v’ is given by any real gas state equation presented in Chapter 6. As the fluid is com-
pressed from a large volume at low pressure, the pressure first increases (e.g., the curve
BECGN along which dP >0). Therefore, due to the work input, the Gibbs energy, which is a
measure of availability, also increases (cf.. Eq. (113)). With a further decrease in volume past
point N along the curve NHM, dP < 0, i.e., dg < 0 and hence “g’ decreases. The pressure de-
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crease continues until point M is reached, beyond which dP > 0, i.e., dg > 0 (along curve MFL)
and hence g increases again. Rewriting Eq. (113) we obtain the relation

dg = d(Pv) – Pdv. (114)

Using the RK state equation, P = RT/(v–b) –a/(T1/2 v(v+b)) and integrating between
the resultant expression between the limits vref and v, we obtain the relation

g – gref = (Pv – Prefvref) – RT ln((v – b)/(vref – b)) + (115)

                (a/bT1/2) ln((v/(v+b))((vref+b)/vref)). (116)

We arbitrarily set gref (vref) = 0. The resultant plot is presented in Figure 16. The vapor–like
curve BECKN and the liquid–like curve  MFL are apparent. The unstable branch NDUHJM
(along which the pressure decreases with decreasing specific volume) will be discussed in
Chapter 10. At the points F and G, gl = gg, which, according to the phase equilibrium condition,
must correspond to the saturation pressure.

We note from Eq. (113) that the slopes ∂g/∂P = vf along the liquid–like curve and
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∂g/∂P = vg along the vapor–like curve. (Further discussion of this behavior is contained in

Chapter 10.) A geometrical interpretation of the equality of gl = gg follows. Since, dg = d(Pv) –
Pdv,

dg =  P v v Pdv = 0
g

g
sat

v

v

α

β

α

β
α β∫ ∫− −( ) . (117)

Since, at equilibrium, gα(T, Psat) = gβ(T, Psat),

sat

v

v

P v v  =  P(T,v) dv  = 0( )α β
α

β

− ∫ .

If vα = vg, vβ = vl, the LHS of this relation represents the area FCEDGMF in Figure 17, while

the RHS represents the area FCEDGCMAF. This implies that the area FAMF = area MCGM.
The equality of the two areas is called Maxwells equal area rule

Apply Eq. (115) for the two phases α and β. At the equilibrium condition,

(gα(T,vα) – gref (T,vref)) = ((RTvα/(vα – b)–(a/T1/2)/(vα+b)) – (RTvref/(vref – b)

     – (a/T1/2)/(vref+b))) – RT ln ((vα–b)/(vref –b))

       + (a/(T1/2b)) (ln((vα(vref +b))/(vref(vα+b)))), and, (118a)

(gβ(T,vβ) – gref (T,vref)) = ((RTvβ/(vβ – b) – (a/T1/2)/(vβ + b)) – (RTvref/(vref – b) 

– (a/T1/2)/(vref + b))) – RT ln((vα – b)/(vref  – b)) 

                                     + (a/(T1/2b)) (ln ((vβ(vref +b))/(vref(vβ+b))). (118b)

Subtracting the first of Eqs. (118a) from Eq.(118b), and using the condition gα = gβ, after sim-

plification we obtain the expression

(RTvβ/(vβ – b) – (a/T1/2)/(vβ + b)) – (RTvα/(vα – b) – (a/T1/2)/(vα + b)) 

– RT ln ((vβ – b)/(vα – b)) – (a/(T1/2b)) ln((vβ (vα + b))/(vα (vβ + b))) = F = 0. (119)

Eq. (119) is satisfied at P = Psat.

ee. Example 31
Determine the saturation pressure for water at 593 K.

Solution
We will use an iteration method. First, we assume that Psat = 150 bar, a  = 142.64 bar
m6 kmole–2 K–1, b = 0.0211 m3 kmole–1. Using the RK state equation, vα = 0.0418 m3

kmole–1, vβ = 0.174 m3 kmole–1. Therefore, Eq. (119) implies that F = 3.0123.

Now, we will assume that Psat = 133 bars, so that vα = 0.0427 m3 kmole–1, vβ = 0.237

m3 kmole–1, and F = 0.238 which is almost zero.
The saturation pressure can be identified in this manner.

Upon normalizing Eq.(119) we obtain the relation



(TRvR´β/(vR´β – 0.08664) – 0.4275/(TR
1/2(vR´β + 0.08664))) 

– (TRvR´α/(vR´α –0.08664) – 0.4275/(TR
1/2(vR´α+0.08664)))

= TR ln((vR´β – 0.08664)/(vR´α – 0.08664))

– (4.9342/(TR
1/2)) ln((vR´β (vR´α + 0.08664))/(vR´α (vR´β + 0.08664))).

This equation can be applied to determine the behavior of PR
sat with respect to TR for RK flu-

ids.

b. Approximate Solution
The RK relation suggests that (cf. Chapter 6)

(dPR/dTR) ′vR
 = 1/(vR´ – 0.08664) + 0.2138/(TR 3/2 vR´(vR´ + 0.08664)). (120)

Along the critical isometric curve v´R,C = 0.3333, so that

(dPR/dTR) ′vR  = ′vR C,
= 4.054 + 1.528/TR

3/2. (121)

At the critical point, TR = 1, and

(dPR/dTR)c= 5.582.

The behavior of many substances can be described by the relation
ln PR = A – B/TR.

Differentiating this relation, d ln(PR)/d(1/TR) = – B. At the critical point PR = TR = 1, so that
A= B= 5.582. Therefore,

ln PR = 5.582(1 – 1/TR). (122)

T=Const

Figure 16: Maxwell equal area rule.



The approximate and exact solutions are compared in Figure 18, and found to be in excellent
agreement in the region TR > 0.5. In general, for simple fluids, the experimental curvefit yields

ln PR ≈ 5.31(1 – 1/TR). (123)

(According to this equation, Pitzer factor PR
sat at TR = 0.7 is  0.651; w = - 0.814).

3. Heat of Vaporization
The heat of vaporization hfg can be determined by directly applying a real gas state

equation. Since

ds = cv dT/T + (∂P/∂T)v dv,

at a specified vaporization temperature,

ds = (∂P/∂T)v dv, i.e.,

sfg = sg – sf = ∫(∂P/∂T)v dv.

The value of the RHS of the relation can be determined using a real gas state equation. Fur-
thermore, since

dh = T ds + v dP,
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Figure 17: The variation in PR with respect to 1/TR according to the RK equation of
state.



integrating this expression from the saturated fluid state to the saturated vapor state at the va-
porization temperature,

hfg = hg – hf = T(sg – sf) + ∫v dP. (124)

Recall that ∫vdP = gf – gg = 0. Therefore,

hfg = T (sg – sf) = Tsfg = T∫(∂P/∂T)v dv.

ff. Example 32

perature, Psat = 133 bar, vg = 0.237 m3 kmole–1, and vf = 0.0427 m3 kmole–1.)
Solution

Recall that

sfg = ∫(∂P/∂T)v dv = ∫(R/(v–b) + (1/2)(a/T3/2)/(v(v+b))) dv. (A)

Integrating this expression between the limits of vf and vg we obtain the relation

sfg/R = ln((vg–b)/(vf–b)) + (1/2)(a/(RbT3/2)) ln((vg (vf +b)/(vf (vg+b))). (B)

Applying Eqs. (112) and (B),

hfg,R = hfg/(RTc) = TRsfg/R = TR ln((vR,g´–0.08664)/(vR,f´ –0.08664)) 

       + (2.4671/TR
2) ln((vR,g´(vR,f´+0.08664)/(vR,f´ (vR,g´+0.08644))). (C)

For water at 593 K, Psat = 133 bar, and vg and vf are, respectively, 0.237 and  0.0427
m3 kmole–1. Using the values of a  = 142.64 bar m6 K0.5 kmole–2, b = 0.0211 m3

kmole–1 in Eq. (B), we obtain
sfg/R = ln((0.2368 – 0.0211) ÷ (0.04234 – 0.0211))

         + 0.5 × 142.64 × 100 ÷ (8.314 × 0.0211 × 5931.5))

         × ln(0.2368 × (0.04234 + 0.0211) ÷ (0.04234 × (0.2368 + 0.0211)))

       = 2.318 + 2.814 ln (1.3758) = 3.216, i.e.,
sfg = (8.314 ÷ 18.02) × 3.216 = 1.4839 kJ kg–1 K–1, and

hfg = Tfg = 593 × 1.4839 = 880  kJ kg–1.

According to the Steam  Tables A-4A, the corresponding value of hfg = 1239 kJ kg–1.
Remark

The real gas equation itself is approximate. The large error in the value obtained using
the real gas equation is due to the derivative (∂P/∂T)v, which produces divergent er-

rors.

4. Vapor Pressure and the Clapeyron Equation
Determination of saturation pressure involves inherent errors due to errors in real gas

state equations and critical properties. In this section we will not use real gas state equations;
rather we will use the criterion  of equality of  differential of Gibbs function for vapor and liq-
uid phases and knowledge of saturation pressure at a single temperature (or vice versa)  to de-
duce saturation relations.

Inside the vapor dome gf = gg along any isotherm (or isobar, FG in Figure 19). As the
state of a fluid is changed inside the dome, the saturation temperature and pressure change in
such a manner that

Obtain a relation for sfg and hfg in terms of T, vf and vg for a gas whose behavior can
be described by the RK equation of state. Determine sfg and hfg for water using this
state equation at 593 K. (The previous example showed that, for water at this tem-



dgf  along FL = dgg along GH  where (125)

For example, a change of gf along FL= change of gg  along  GH (Fig.18)

dgf = –sf dT + vf dP, and dgg = –sg dT + vg dP. (126)

Using  Eq. (125) in  Eq. (126) we find that

(dP/dT) = sfg/vfg.

Since Tds + vdP = dh, at constant pressure ds = (dh/T) so that sfg = hfg/T. Therefore,

(b) 

(a) 

Melting curve 

(other solids)  

O 

L H 

C 

(c) 

Figure 18: (a) Phase diagram for a substance that contracts upon melting.
(b) the variation of g with respect to T.



(dP/dT) = hfg/Tvfg. (127)

Equation (127) is called the Clapeyron equation. Referring to Figure 18,  Psat= 15 at T= 111°C

while Psat = 2 bar at 120°C. This slope is related to hfg, T and vfg at T= 1110C if ∆P and ∆T are

small. Thus, in bar ºC–1, ∆P/∆T = (2–1.5)/(120–111) = 0.56.

The slope (dP/dT) is represented by Eq. (127), and it varies, since hfg and vfg vary
along OC. It predicts the variation of saturation pressure with respect to temperature along the
vaporization curve OC in the phase diagram illustrated in Figure 19. The points O and C, re-
spectively, represent the triple point and the critical point. Using the relation Pv = ZRT in Eq.
(127), we obtain the relation

dP/dT = hfgP/(T2RZfg),

where Zfg = Zg – Zf. We may rewrite this expression in the form

d ln(P)/d(1/T) = –hfg/(RZfg) (128)

Equation (128) can be generalized to any phase transition from phase α to phase β phase, i.e.,

d ln(P)/d(1/T) = – hαβ/(R(Zβ – Zα)). (129)

Since both hfg and Zfg both decrease with an increase in the temperature, the RHS of Eq. (129)
is a weak function of temperature and can be generally treated as a constant. In that case,

ln(P) = –(1/T) hfgR/Zfg + C.               (130)
Using the equalities P = Pref

sat  and T= Tref, to determine the constant,

 (Psat/ Pref
sat) = exp((hfg/(RZfg))(1/Tref – 1/T)). (131)

a. Remarks
The slope dP/dT in Eq. (127) must be  the same near  the saturated liquid and the
saturated vapor states.
For the VW equation of state, the slope along the isochoric curve at the critical point,
(∂P/∂T) v Tc c,  = R/(vc–b). Using the value b = (1/3) vc, (∂P/∂T) v Tc c,  = (3/2)(R/vc) = (3/2)

 (Pc/ZcTc). In dimensionless form, the slope ( ∂PR/∂TR) vc  = 4, since Z c = 3/8 in context

of the VW state equation. Similarly, using the RK state equation (∂P/∂T) v Tc c,  = 1.861

Pc/(ZcTc), i.e., (∂PR/∂TR) vc  = 5.583. Using values for water, i.e., Tc = 647.3 K and Pc

= 220.9 bars, in the expression obtained using the RK state equation, (∂P/∂T) vc  =

2.433 bar K–1.
A first order phase transition is the one for which the property g remains continuous
from a phase α to another phase β. In general, the slopes  (∂g/∂T)α ≠  (∂g/∂T)β, and

(∂g/∂P)α ≠ (∂g/∂P)β. The properties v, u, h, s, and a are discontinuous (cf. Figure 20).

During a second order phase transition (e.g., critical point), the two phases cannot be
distinguished and the values of g and the first derivatives are continuous. However, in
this case the second derivatives are discontinuous, for instance, at the critical point.
Since ∂gf/∂T = –sf and ∂gg/∂T = –sg,  ∂gf/∂P = vf and ∂gg/∂P = vg, at the critical point

∂gf/∂T = ∂gg/∂T, ∂gf/∂P = ∂gg/∂P, and gf = gg. However, the value of  ∂2g/∂P2 =

(∂v/∂P)T is very large, since ∂P/∂v =0 at the critical point. Alternately, the transition

from phase α to β is a first order transition if hαβ ≠ 0. The transition at the critical

point is a second order transition and  hαβ = 0 there.

A fluid containing one component exhibits a single critical point.



In context of Eq. (128), we can evaluate the value of hfg/RZfg at low pressures, since
Zg » Zf, i.e., Zfg ≈ Zg. Assuming ideal gas behavior for the vapor, Zg = 1. Since vf « vg,

then Zf « Zg, Eq.(131) transforms into the relation

(Psat/ Pref
sat) = exp ((hfg/R)(1/Tref – 1/T)), (132)

where Tref denotes the saturation temperature at the reference pressure Pref
sat(Tref).

Equation (132) is called the Clausius Clapeyron equation and it also has the form

ln P = A – B/T, where A = ln Pref
sat  + hfg/RTref and B =hfg/R. (133)

For water, A = 13.082 and B = 4962 K. The slope of ln(P) with respect to T–1 is pro-
portional to heat of vaporization, and its value is nearly constant except in the vicinity
of the  critical point
The Antoine equation is a modified form of Eq. (133), namely,

ln P = A – B/(T+C). (134)

One can use experimental saturation  data at three different temperatures, evaluate A,
B and C and tabulate them for computer applications. An empirical relation that de-
scribes fluid behavior is of the form:

ln Psat = A +B/T + C ln T +DT.

(For water, ln Psat = 12.58 +(–4692)/T + 0.0124 ln T, where the value of Psat is in bar
and that of temperature in K.)
Differentiating this empirical relation and equating it with Eq. (126) we can determine
the hfg, provided vfg is known. (One solution is to consider vg ≈ RT/P at low pressures

and vf ≈ 0.)

Applying Eq. (127) during any  phase change

(dP/dT) = hαβ/(Tvαβ)  = (hβ – hα)/(T(vβ – vα)). (135)

Let α denote the initial solid phase s and β the final liquid phase f during the melting

of a solid so that vβ – vα = vsf = vf – vs. In the case of ice, vf < vs and hsf = (hf – hs) > 0,

i.e.,

(dP/dT) < 0.

As the pressure increases, the ice melting point TMP decreases, as illustrated in Figure
19(a). In case of a sublimation process, Eq. (135) suggests that

A = ln Pref
sat(Tref) + hsg/RTref, and B =hsg/R. (136)

gg. Example 33

boiling) temperature  at P = 0.5 MPa? Assume that hfg = 2258 kJ kg–1.
Solution

The value for water of R = 8.315/18.02 = 0.461 kJ kg–1 K–1. Applying Eq. (132),
0.5÷0.1 = exp((2258 ÷ 0.461) × (372.6–1  – T–1), i.e.,

T = 425 K (the steam tables (A-4) provide a value of 424.6 K).

hh. Example 34

equation in terms of vR,f´, vR,g´, and TR.
Solution

Consider the relation

Obtain  a relation for hfg/RTc with respect to PR for a substance using the RK state

The boiling point of water Tref at Pref = 0.1 MPa is 99.6°C. What is the saturation (or



hfg/RTc = (d Pref
sat /dTR)TR(vR,g´ – vR,f´). (A)

During phase change ∫ (P(T,v))dv = Psat (vg –vf),  where P(T,v) is given by any real

gas state equation. Differentiating with temperature,

(dPsat/dT) (vg – vf) – ∫(∂P/∂T) dv = 0, (B)

(dPR
sat/dTR)(vR,g´ – vR,f´) – ∫(∂PR/∂TR) dvR´ = 0, and (C)

PR = TR/(vR´– 0.0864) – 0.4275/(TR
2 vR´ (vR´ + 0.0864)). (D)
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Figure 19: (a) First order, and (b) second order phase transitions for several prop-
erties.



Therefore, using Eq. (D) in Eq. (C) for  (∂PR/∂TR) and  then applying Eq. (127) in re-

duced form

hfg/(RTc) = TR ln ((vR,f´ – 0.0864)/(vR,f´ –0.0864)) 

+ (2.4671/TR 3/2) ln((vR,g´(vR,f´ + 0.0864))/((vR,g´ +0.0864)vR,f´)). (E)

If vg and vf are known, hfg can be determined.

5. Empirical Relations

a. Saturation Pressures
Correcting for higher order effects, it is possible to write

ln PR
sat  =(ln PR)(o)+ ω(ln PR)(1). (137)

In general, for several hydrocarbons,

(ln PR)(o) = 5.92714  – (6.09648)/TR –1.28862 ln TR + 0.169347 TR
6, and

(ln PR)(1) = 15.2518 – (15.6875)/TR –13.4721 ln TR + 0.43577 TR
6.

The following relations are also applicable, namely,

(ln PR)(o) = 5.92714 (1 – 1/TR), and

(ln PR)(1) = 7.49408 – 11.18177 TR
3 +3.68769 TR

6 +17.92998 ln TR.

b. Enthalpy of Vaporization
The Clausius relation can be written in terms of reduced variables, i.e.,

hfg,R =  hfg/RTc = (d Pref
sat /dTR) TR (vR,g´ – vR,f´) (138)

An experimental correlation for ln PR with respect to 1/TR is available, i.e.,

(1/PR) dPR/dTR = C/TR
2, 

where C = 5.31  from experiments and 5.582 for an RK gas. Since

dP/dT = hfg P/(T2RZfg), i.e., dPR/dTR = (hfg/RTc) PR/(TR
2 Zfg),

hfg/RTc = C Zfg. (139)

A plot of ln(PR) with respect to 1/TR is linear, and has a slope proportional to hfg. The higher
the critical temperature, the higher this slope. If we assume that C= 5.31, then at the normal
boiling point (TNB) P=1 Eq.(123) yields,

– ln Pc = 5.31 (1–Tc/TNB),

where TNB denotes the normal boiling point in K and Pc in bars. Hence,

Tc/TNB = 1 + (1/5.31) ln Pc = 1 + ln (Pc 
0.179), Pc in bars

The dependence of Tc/TNB on Pc is a weak one so that Tc/TNB ≈ constant. Typically, the ratio

Tc/TNB has values in the range 1.5–1.8. Manipulating the above two relations, we obtain

hfg/RTNB ≈ 5.31+ ln Pc.

In general, for most nonpolar organic liquids, (hfg,NB/RTNB) ≈ 8–10. Other formulas have the

forms



hfg(T)/hfg,ref(Tref) = ((1 – TR)/(1 – TR,ref))
0.38 (Watson’s correlation), or

hfg(T)/hfg(TTP) = b1Ψ1/3 + b2Ψ0.79 + b3Ψ1.2o8 + b4Ψ + b5Ψ2 + b6Ψ3,

where Ψ = (Tc – T)/(Tc – TTP), b1 = 0.60176, b2 = 3.45913, b3 = 4.62671, b4 = –6.89614, b5 =

–1.10643, and b6 = 0.31522.

6. Saturation Relations with Surface Tension Effects
We have presented a physical interpretation of surface tension in Chapter 5. We now

discuss a more rigorous explanation of the phenomena based on the energy minimum princi-
ple. We first write an expression for energy change for a bubble (called the embryo phase β)

that has just appeared in a single component liquid (called the mother phase α). Surface ten-

sion forces exist between the vapor and liquid phases within a thin layer γ that lies adjacent to

bubble and has a thickness δ, volume Vγ, pressure Pγ, and entropy Sγ. As δ→0, then the volume

Vγ, appears like a surface. Now, consider an isolated system containing three subsystems α, β
and γ. Assume that the state of the combined system (α+β+γ) lies infinitesimally away from

equilibrium. Consequently, infinitesimal changes in volume occur in the α and β phases,

which also change the volume of the subsystem γ.

For the open subsystem α, the infinitesimal energy changed Uα = Tα dSα – Pα dV α+ µα dNα,

where dNα denotes the moles transferred from it. Similarly, for the β phase,

dUβ = Tβ dSβ – Pβ dV β+ µβ dNβ.

We assume that the surface tension region “γ”  has uniform properties that are distinct

from the α and β phases. Consequently,

dUγ = Tγ dSγ – Pγ dVγ – (–σ´) dVγ + µγ dN γ.

For sake of illustration, consider a section of a cylindrical bubble of length L that has an arbi-
trary arc length ds  and a surface tension layer thickness δ. Its volume dVγ ≈ δL ds. Let σ´ de-

note the tensile stress and Pσ the compressive stress exerted on the bubble. As δ→0, σ´dVσ =

σ´ δL ds ≈ σ ds L = σ dA where   σ= σ´ δ, and

dUγ = Tγ dSγ – Pγ dVγ + σ dA + µγ dN γ.

For the combined system

dU = dUα + dUβ + dUγ = TαdSα – PαdVα + µαdNα + TβdSβ – PβdV β + µβdNβ

                                     + TγdSγ – PγdVγ + µγdNγ + σ dA. (140)

(If the change in the properties of the region γ are neglected, dU = TαdSα – PαdVα + µαdNα +

TβdSβ – PβdV β + µβdNβ+ σdA.) The entropy of the isolated system cannot change, and for

constant S, V and M,

dS = dSα + dSβ + dSγ =0, i.e., dSα = –(dSβ + dSγ) (141)

Likewise,



dVα = – (dVβ + dVγ), and dNα = – (dNβ + dNγ). (142)

Using Eqs. (140)-(141) and the energy minimum condition dU = 0, we obtain the relation

dSβ(Tβ–Tα) + dSγ(Tγ–Tα) – dVβ(Pβ–Pα) – dVγ(Pγ–Pα)

+ dNβ(µβ–µα) + dNγ(µγ – µα) + σ dA = 0. (143)

Arbitrary changes in dSβ and dSγ must satisfy Eq. (143) so that Tβ = Tα = Tγ = T,

which is the thermal equilibrium condition, and the same argument regarding dNβ and dNγ

implies that µα = µβ = µγ = µ, which is the phase equilibrium condition. Therefore,

dVβ(Pβ – Pα) +dVγ (Pγ – Pα) – σ dA = 0.

The compressive pressure within the thin region on which surface tension forces oc-
cur varies from Pβ to Pα. If we include dVγ with the mother phase volume, then Pα = Pγ = P

(which is the condition related to vaporization from the mother phase α, which is a liquid).

Omitting the subscript  for the mother phase  α, 

dVβ (Pβ – P) + 0 – σ dA, = 0, i.e., (Pβ – P) = σ dA/dVβ. (144)

where β is the embryo phase. Similarly, for a condensation process from β   (which is mother

now) to α (embryo) and now combining  γ with  β , Pβ = P, and dVβ = – dVα, so that Eq. (144)

can be written in the form

(Pα – P) = σ dA/dVα.

Generalizing, if PE is the pressure of embryo phase (say, vapor for a boiling process or a liquid
drop in a condensation process) and P is the pressure of mother phase (say, liquid in a vapori-
zation process or vapor in condensation process), then

(PE – P) = σ dAE /d VE.

Pressure of embryo- Pressure of mother) = Surface tension × surface area change with volume

change of the embryo phase. Considering a spherical embryo of radius a,
AE /d VE  = d(4πa2)/d(4/3πa3) = 2/a, and

(PE – P) = σ dAE /d VE =2σ/a

a. Remarks
The pressure P denotes the mother phase pressure in case of both evaporation and
condensation. In general, for spherical drops, the difference between the pressures in-
side curved surface and in the bulk phase equals 2 σ/a.

The vapor bubbles may be generated sometimes at T > Tsat (P)  (cf. Chapter 10). The
liquid at this state is called superheated liquid. However, tables of properties are not
available at this condition. Hence, we have to generate properties of superheated liq-
uid in terms of saturation properties. Thus, a general derivation is presented below for
both phases. If the surface tension σ ≠ 0, the pressure in vapor and liquid phases is not

the same, even though the system is isothermal. Supposing that  β is the vapor phase

and α is the liquid mother phase, at phase equilibrium,

µβ(Pβ, T) = µα(Pα, T) or fβ(Pβ, T) =fα(Pα, T) (145)

Using the Poynting correction,
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Therefore, at equilibrium for any fluid,

φ(Pβ, T)Pβ= φ (Pα, T)Pα.

Then if β is  an ideal gas with fβ= Pβ and using this result in Eq. (148), and  since

φ(Psat (T), T) =1 for ideal gas behavior,  then Eq. (148) simplifies to

Pβ= Psat (T)  exp (  vα  (Pα - Psat (T)) /RT). (149)

Omitting the superscript for the mother phase and using  β= E (e.g., vapor embryo

phase)

PE= Psat (T)  exp (  v  (P - Psat (T)) /RT) (150)

which is also known as the Kelvin equation. Typically if P of mother phase is known,
then PE  (e.g., vapor bubble) is determined from Eq. (150). Then using PE – P =2 σ/a,

then the size “a” at equilibrium can be determined.
If the embryo is a liquid drop (α) and the mother phase is vapor (β) with vapor as an

ideal gas, vβ = RT/P, and vα ≈ constant; we obtain the Eq.(149) again.

Replacing  α by E (now liquid), and omitting subscript β for mother phase

P = Psat (T) exp (  vE (PE - Psat (T)) /RT)

Where PE - P= 2σ/a.

P = Psat (T) exp (  vE (P +  2 σ /a - Psat (T)) /RT) (151)

If P - Psat (T) « 2 σ /a, then

P = Psat (T) exp (  vE 2 σ /(aRT)) (152)

If σ = 0, then PE = P + 2 σ /a = P

In a multicomponent system, the Lagrange multiplier method described in Chapter 3
can be used to show that for a component k, µk

α = µk
β = µk

γ = µk.

ii. Example 35

late the embryo (vapor) pressure, if Pmother = 100 kN m–2.

A water bubble has a radius of 10–4 m, the surface tension σ = 7×10–5 kN m–1. Calcu-



Solution
Using the surface tension and radius correction,
Pembryo = Pmother + (2×7×10–5÷ 10–4) = 101.4 kN m–2.

b. Pitzer Factor from Saturation Relations
The following empirical relation can be used to describe the variation in the saturation

pressure with respect to temperature, namely,

ω = –1 – (log10( PR
sat)) TR =0.7. (153)

K. THROTTLING PROCESSES
Fluids can be cooled in heat exchangers in which the cooling is limited by the

two–phase nature of most coolants. Cooling can also be achieved by a sudden adiabatic expan-
sion, called a throttling process. The Joule Thomson coefficient provides information about the
extent of cooling during such a process.

1. Joule Thomson Coefficient
The application of the Joule Thomson Coefficient is illustrated through the following

example (that is schematically described in Figure 21). Assume that you can plug a thick ce-
ramic pipe with a porous sponge and flow a high–pressure gas through it. Significant pressure
losses will occur without a consequential change in the kinetic or potential energies. From en-
ergy balance analysis for an open system we can show that the sum of the enthalpies and the
kinetic and potential energies is constant, i.e., hi + kei + pei = he + kee + pee = constant. Here,
the subscripts i and e, respectively, denote the inlet and exit. When the inlet and exit areas are
equal, i.e., Ai = Ae, then ρivi = ρeve, where v denotes the flow velocity. For a negligible change

in the potential energy, hi + kei = he + kei(ρi/ρe)
2. Consequently, the temperature across the

sponge changes as the pressure is decreased, as illustrated in  Figure 21. In general, changes in
the kinetic energy are not large and we can assume that hi = he. (Although, strictly speaking,
for compressible fluids ρe ≠ ρi and, hence, he ≠  hi.)

Throttling is essentially an isenthalpic expansion process. The Joule Thomson coeffi-
cient (µJT) is defined as,

µJT = (∂T/∂P)h (154)

Since h = h(T,P),

dh = (∂h/∂T)P dT + (∂h/∂P)T dP = cp dT + (∂h/∂P)T dP.

For an isenthalpic process, dh = 0, i.e.,

µJT = (∂T/∂P)h = –(∂h/∂P)T/cP.

For an ideal gas, ∂ho/∂P = 0, so that the above equation can be re-written as

µJT = – ∂((h – ho)/cp)/∂P. (155)

where h- h0 is known for any specified equation of state (Eq. (66)) or from enthalpy correction
charts (Figure B-3) As illustrated by curve “iIABe”   in  Figure 21(b), for inlet pressures Pi <
PI, the temperature decreases with a decrease in pressure and µJT > 0. On the other hand, for a

flow with the same enthalpy, if Pi > PI, initially, µJT < 0 and temperature increases with de-

crease in pressure. Later, when P < PI, the temperature will fall. The point I Figure 21(b) is
called the inversion point where µJT changes sign. If inlet temperature is changed at same Pi

enthalpy changes and as such inversion points change as shown  by inversion curve KIL.



jj. Example 36

temperature?
Solution

µJT = (∆h/cp)/∆P = ∆T/∆P = (Te –203)/(40 – 60) = 0.31 K bar–1. Therefore, Te =

–73.2ºC.

a. Evaluation of µJT

Recall that

dh = cpdT + (v – T(∂v/∂T)P)dP.

Since dh ≈ 0 during throttling, we obtain the relation

µJT = (dT/dP)h = –(v – T(∂v/∂T)P)/cP = (T2/cP) ∂(v/T)/∂T, or (156)

µJT = (dT/dP)h= –(1 – TβP)/(cP/v). (157)

b. Remarks
For ideal gases, v = RT/P so that T(∂v/∂T) = v and, hence, µJT = 0. There is no tem-

perature change due to throttling for ideal gases.
For incompressible fluids ∂v/∂T = βP = 0, and µJT = –v/cP has a negative value. There-

fore, liquids generally heat up upon throttling.
If v < T(∂v/∂T)P or T βP < 1, µJT > 0, and vice versa.

At the inversion point, µJT = 0. Inversion occurs when Tinv βP = (T/v)(∂v/∂T)P = 1. For

a real gas Pv = ZRT, i.e., ∂v/∂T = ZR/P + (RT/P)∂Z/∂T. If (T/v)(∂v/∂T)P = 1, this im-

plies that ZRT/Pv + (RT2/Pv)∂Z/∂T = 1, or (∂Z/∂T)P = 0.

For cooling to occur, the inlet pressure must be lower than the inversion pressure.
Cooling of a gas can also be accomplished using isentropic expansion. We define µs =

(∂T/∂P)s that is related to the temperature decrease due to the work delivered during

an isentropic process. Recall that

ds = cp dT/T – (∂v/∂T)P dP.

For an isentropic process, ds = 0, and

µs = T(∂v/∂T)P/cP = TvβP/cP. (158)

Dividing Eq.(157) by Eq.(158),

µJT/µs = 1 – (1/(TβP)) (159)

Equation (159) provides a relation to indicate relative degree of heating of the isen-
tropic  to  isenthalpic throttling process.
For substances that expand upon heating βP > 0 and, hence, µs > 0. If βPT > 1, then

µJT < µs, i.e., the isentropic expansion results in greater cooling than isenthalpic ex-

pansion for the same pressure ratio.
The values of Tinv, βP, βT, and Psat can be directly obtained from the state equations,

while µJT, h, u, cv, and other such properties depend both on the equations of state and

The experimentally determined value of µJT for N2 is 0.31 K bar–1 at–70°C and 5

MPa. If the gas is throttled from 6 MPa and –67ºC to 4 MPa, what is the final exit



the ideal gas properties. Therefore, the accuracy of the state equations of state can be
directly inferred by comparing the predicted values of Tinv, βP, βT, and Psat with ex-

perimental data.
The entropy change during an adiabatic throttling process equals the entropy gener-
ated. Therefore, its value must be positive, since throttling is an inherently irreversible
process. We can determine ds by using the following relation:

dh = T ds + v dP.

Since dh = 0,
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Figure 20: (a) Illustration of a throttling process. (b) The
variation of temperature with respect to pressure during throt-
tling.



(∂s/∂P)h = – (v/T). (160)

During throttling, dPh < 0 and v/T > 0; hence Eq.(160) dictates that  dsh>0. From second
law for fixed mass adiabatic system, dsh (= δσ) =-(v/T) dPh> 0.

kk. Example 37
Obtain an expression for µJT for a VW gas in terms of v and T.

Solution
The Joule Thomson coefficient

µJT = – (∂h/∂p)T/cp, where (A)

(∂h/∂p)T = v – T (∂v/∂T)p. (B)

Using the VW equation of state

dP = R dT/(v – b) + (–RT/(v – b)2  + 2 a/v3)dv. (C)

Since dP = 0,

(dv/dT)p = (R/(v – b))/(RT/(v – b)2 – 2 a/v3) (D)

Therefore,

µJT = – (1/cp) (v – ((T R/(v–b))/(RT/(v–b)2 – 2 a/v3))), i.e., (E)

µJT = – (v/cp)(R T b v 2 – 2 a (v – b)2)/(RTv3 – 2 a (v – b)2)). (F)

Remarks
For many liquids v ≈ b, i.e.,

µJT ≈ –v/cp  for liquids. 

Since µJT < 0, incompressible liquids will heat up upon throttling.

In context of  Eq.(F), if b « v, (v–b)2 ≈ v2. Consequently, using Eq.(F),

µJT = –(v/cp) (RTbv 2 – 2 a v2)/(RTv3 – 2 a v2)). (G)

Dividing the denominator and numerator by RTv2,

µJT = – (v/cp)(b – 2a/RT)/(v –2a/RT) (H)

If v » (2a/RT), e.g., for high temperature vapors,

µJT ≈ ((2 a /RT)–b)/cp. (I)

At low temperatures, 2a/RT » b, and µJT >0, i.e., cooling occurs upon throttling. At

higher temperatures, µJT < 0 (i.e., the fluid is heated upon throttling).

In the limit T→∞ (when the fluid approaches ideal gas behavior), Eq. (F) implies that

µJT = –b/cp, i.e., µJTcp/vc´ = –b/vc´ = –1/8. This limiting value is based on the real gas

equation of state. However, for ideal gases, µJT = 0, since b→0 for the ideal gas point

mass molecules. Recall that b equals the geometrical free volume available for mole-
cules to move around. The corresponding result using the RK equation is µJT cP/vc´ ≈
–b/vc´≈ –0.08664.



2. Temperature Change During Throttling
Recall from Chapter 2  that the internal energy of unit mass of any fluid can be

changed by  frictional process  and by performing boundary deformation work (Pdv). For in-
compressible fluid, dv=0 and hence  boundary deformation work is zero; thus "u" can change
only with a frictionless process (e.g., flow of liquids through pipes) where the mechanical part
of energy  “vdP”  is converted into internal energy using frictional processes. Thus a  combi-
nation of both of the processes Pdv and  vdP result in temperature change during the throttling
process.

a. Incompressible Fluid
Assume that an incompressible fluid is throttled from a higher to a lower pressure un-

der steady state conditions. Let us follow unit mass as it enters and exits the throttling device.
Since dv=0, there is no deformation work and hence u cannot change due to Pdv. However the
unit mass is pushed into the throttling device with a pump work of vPi, while the same mass is
pushed out with a pump work of vPe. Thus there must have been destruction of mechanical
energy from vpi to vPe which is  converted into thermal energy (see Chapter 2) resulting in an
increase of u and hence an increase of T during throttling. The energy increases by an amount
du = –vdP ≈ –v(Pe – Pi). (Alternately dh =du+ pdv+ vdp = du +0+ vdp=0.)  Also, recall that µJT

≈ – v/cP < 0. Further throttling is inherently irreversible process and hence entropy always in-

creases in adiabatic throttling process (e.g., increased T causes increased s).

b. Ideal Gas
Now consider a compressible ideal gas. Visualize the throttling process as a two step

procedure. First the specific volume is maintained as though fluid is incompressible and the
energy rises by the amount du = –vdP. This leads to gas heating. Now let the volume increase
during the second stage (i.e expansion to low pressure). The volume increase cannot change
the intermolecular potential energy, since the gas is ideal, but Pdv work is performed. This
leads to decrease in the internal energy. The total energy change is du = – vdP – Pdv = – d(Pv),
i.e., or du + d(Pv) = dh = 0. For ideal gases, dh = cpdT, and, hence, dT = 0. In this case, the

energy decrease by the Pdv deformation work equals the energy increase due to pumping (=-
vdP)

c. Real Gas
In a real gas the additional work required to overcome the intermolecular attraction

forces (or the increase in the molecular intermolecular potential energy, “ipe”) must be ac-
counted for. Then the temperature can  decrease if increase in “ipe” is significant. Consider the
relation

dh = du + d(Pv) = du +P dv + v dP.

Since du = cv dT + (T (∂P/∂T)v – P) dv,

 dh =cvdT + (T(∂P/∂T)v – P)dv + Pdv + vdP. (161)

The terms on the RHS of this equation, respectively, denote (1) the change in the temperature
due to change in the molecular translational, vibrational, and rotational energies, (2) the inter-
molecular potential energy change, (3) the deformation work, and (4) the work required for
pumping. During throttling, dh = 0, the intermolecular potential energy increases, the work
deformation is positive, and dP < 0 so that vdP <0. In case if vdP ≈ 0, then it is apparent that

the net change in the molecular translational, vibrational, and rotational energies is negative,
i.e., dT < 0. Recall (15), i.e.,

µJT = – (v –T (∂v/∂T)P)/cp = – v/cp + {T (∂v/∂T)P}/cp.



The first term on the RHS of this expression represents the heating effect due to flow work,
while the second term accounts for the entire Pdv work and the energy required to overcome
the intermolecular forces. Generally, both the terms are important for fluids.

3. Enthalpy Correction Charts
The Joule Thomson coefficient µJT = – (∂h/∂P)T/cP. However,

– (∂h/∂P)T = –(∂(h–ho)/∂P)T – (∂ho/∂P)T = –(∂(h–ho)/∂P)T –0 = {∂hC/∂P}T.

Therefore,

µJT = {∂hC/∂P}T/cP, and µJT,R = µJTcPPc/RTc = (∂hR,C/∂PR) TR
. (162)

where hR,c are given in enthalpy correction charts (Appendix, Figure B.3). The behavior of hR,C

is illustrated in Figure 22. Its value increases with a decrease in the pressure at a specified
value of TR along the curve ABI. Consequently, (∂hR,c/∂PR) TR

 < 0, and µJT < 0. On the other

hand along curve ICD (∂hR,c/∂PR) TR
 > 0. Point I represents the inversion point. The tempera-

ture change during throttling that accompanies a pressure change can be determined using the
enthalpy correction charts. Recall that ∆h ≈ 0, i.e., h2 – h1 = 0, i.e., (ho2 – hC,2) – (ho1 – hC,1) = 0.

Assuming a constant specific heat and considering ideal gases, this leads to the relation (T2 –
T1) = (hC,1 (TR1, PR1) – hC,2 (TR2, PR2)) /cP,o.

ll. Example 38

sume that cP,o = 1.039 kJ kg–1 K–1.
Solution

We will select pressures of 4.1 and 5.1 MPa (that lie in the vicinity of 4.6 MPa) at TR

= 203/126.2 = 1.6, and PR,1 = 41/33.9 = 1.2 and PR,2 =  51/33.9 = 1.5.
At these conditions hR,C,1 = 0.667, hR,C,2= 0.531, hC,1 = 8.314× 126.2= 700 kJ kmole-1,

hC,2=  557 kJ kmole-1 so that µJT,R = (0.667 – 0.531)/(1.5 – 1.2)= 0.453.

Consequently, (cP,o – cP)/R = (∂hR,C/∂TR) PR  = 1.35 ≈ (∂hR,C/∂TR) PR  = 1.5 = (0.583 –

0.774)/0.2 = –0.955.
Now R = (8.314/28.02)=0.297 kJ kg–1 K–1,cP =0.955×0.297+1.039=1.322 kJ kg–1 K–1,

i.e.,
µJT = µJT,R RTc/(Pc cP)

[h0(T) -h(T,P)]/RTc A

B

I
C

D

P

Figure 21: Use of the enthalpy correction charts to de-
termine the inversion conditions.

Determine µJT for N2 at –70ºC and 4.6 MPa using the enthalpy correction charts. As-



 = 0.453 × 0.297 (kJ kg–1 K–1)126.2 K ÷(33.9 bar×1.322 kJ kg–1 K–1) = 0.379 K bar–1.

4. Inversion Curves

a. State Equations
The inversion conditions can be obtained by several means. For instance, either of the

cubic equations of state, the enthalpy correction charts, or empirical state equations can be
used. Inversion occurs when  1= TβP = (T/v) (∂ v/∂T)P     (cf. Eq. (157))

(∂ ln v/∂ ln(T))P = 1. (163)

mm. Example 39
Obtain an expression that describes the inversion curve of a VW gas.

Solution
We will use Eq. (F) developed in Example 37, namely,

µJT = –(1/cp) (R T b v 3 – 2 a v (v – b)2)/(RTv3 – 2a (v – b)2)). (A)

At the inversion, µJT = 0, so that

Tinv = 2 a (v – b)2/(R b v2). (B)

In dimensionless form,

Tinv,R = (27/4) (vR´ – (1/8))2/vR´2 (C)

If the value of vR´ is known, Tinv,R can be obtained using Eq.(C). The corresponding
pressure Pinv,R is obtained by applying the normalized VW equation of state, i.e.,

PR = TR/(vR´ – (1/8)) – (27/64)/vR´ 2. (D)

The inversion curve is obtained by assigning a sequence of values for vR´ and calcu-
lating the corresponding values of TR (cf. Eq. (C)), and then determining PR from the
state equation. Inversion curves for various state equations are presented in Figure 23.

Remarks
For a large specific volume, (v – b)2 ≈  v2(1 – 2b/v). Using Eq. (A) one can subse-

quently show that

µJT ≈ ((2a/RT)–b)/cp, and

Tinv/Tc ≈ 2a/bR Tc = 2 (27/64) (R2Tc
2/Pc)/((1/8)(RTc/Pc)RTc) = 27/4. (D)

b. Enthalpy Charts
The enthalpy correction charts  (Appendix, Figure B-3) that plot (ho – h)/RTc with re-

spect to PR with TR as a parameter can be used to determine the inversion points.
The Joule Thomson coefficient µJT = 0 when (∂T/∂P)h = 0. The inversion condition

can be determined using the relation (∂h/∂P)T = 0, i.e., [∂ {(ho – h)/RTc}/∂P]T= 0. The peak

value of (ho – h)/RTc) with respect to PR at a specified value of TR yields the inversion point.

c. Empirical Relations
For several gases, such as CO2, N2, CO, CH4, NH3, C3H8, Ar, and C2H4, the inversion

curve is approximately described by the expression

PR = 24.21 – 18.54/TR – 0.825 TR
2. (164)



5. Throttling of Saturated or Subcooled Liquids
The cooling or heating of a vapor during throttling is partly due to the destruction of

the mechanical part of the energy  as well as boundary deformation work that occurs. When a
saturated liquid is throttled from (P1,T1) with enthalpy hf1, the final pressure P2 < P1 and tem-
perature T2 <  T1. As the pressure decreases, Tsat also decreases  with decreased enthalpy of
saturated liquid to hf2. Then the difference  hf1- hf2 is used to evaporate a portion of the liquid
since h = hf1. Recall that ln P = A – B/T,  (eq. (153)) i.e.,

ln (P1/P2) = B/T1 (T1/T2 –1) or T2– T1 = – T1/(1 +B/(T1 ln (P1/P2))).

Therefore, defining the average Joule Thomson coefficient,

µJT = (T2– T1)/(P2 – P1) = –T1/(P2 – P1) (1 +B/(T1 ln (P1/P2))), or

       ≈ (T1/(P2 – P1) –BP1/T1) when (P1  – P2) « P1. (A)

The quality x2 at the exit can be determined as follows. Assuming state 1 is a saturated liquid,

h2 = h1 = hf1 = x2hg2 + (1 – x2)hf2 = x2hfg,2 + hf1 + cl(T2 – T1), i.e.,

x2hfg,2 = –cl (T2 – T1), or

x2 = cl  (T1 – T2)/hfg,2 (B)

Using Eqs. (A) and (B)

x2 = (clT1/hfg,2)/(1 + B/(T1 ln(P1/P2))). (C)

where B = hfg/R. If we assume that hfg,2 = hfg,1, then

x2 ≈ (cl T1/hfg,1)/(1 + B/(T1 ln(P1/P2))).

For water, B  ≈  529 K, while for R134 A, B ≈ 2762 K.
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Figure 22: Inversion curves for various state equations.



6. Throttling in Closed Systems
Consider a large insulated tank that is divided into two sections A and B. Section A

consists of high pressure gases at the conditions (PA,1, TA,1) and section B consists of low pres-
sure gases at the state (PB,1, TB,1). If the partition is ruptured, the tank will assume a new equi-
librium state. The state change occurs irreversibly and the entropy reaches a maximum value.
The new equilibrium state can be obtained either by differentiating S = SA + SB with respect to
TA subject to the constraints that U,V and m are fixed, or by applying the energy balance
equations.

nn. Example 40

volume VB = 3VA.
Solution

Applying the RK equation to section A

119 = 0.08314×177÷( vA,1–0.02681) – 15.59÷(1771/2 vA,1( vA,1+0.02681) bar. (A)

Therefore,, vA,1= 0.0915 m3 kmole–1. (Alternatively, we can use the values TR = 1.4

and PR = 3.5 to obtain Z = 0.74 from the appropriate charts. Thereafter, using the re-
lation P v  = ZRT, that value of v  can be obtained.)
Similarly, vB,1= 0.167 m3 kmole–1 (for which, PR,B,1 = 1.5 TR,B,1 = 1.2, and Z = 0.68).
Using the relations, VA/ vA,1 + VB/ vB,1 = 8 and VB = 3VA, we obtain the expression
VA (1/vA,1 + 3/vB,1) = 8, i.e.,
VA = 0.277 m3, VB = 0.831 m3 so that V = 1.108 m3.
Thereafter,
v2 = 0.139 m3 kmole–1, NA = 3.024 kmole, and NB = 4.976 kmole.
Recall that the internal energy u – uo = (3/2 a/bT1/2) ln(v/(v+b)). In section A,
u – uo = –1684.7 kJ kmole–1, i.e., UA,1– UA,1,o = –5094.8 kJ.
Similarly, in section B,
u – uo = –1056.8 kJ kmole–1, i.e., UB,1– UB,1,o = –5258.6 kJ.
Applying the First law to the tank, Q – W = ∆U = 0, so that

UA,1 + UB,1 = U2, i.e.,
U2 = UA,1,o – 5094.8 + UB,1,o – 5258.6 = UA,1,o  + UB,1,o  –10353.4 kJ.
Now,
U2 – U2,o = UA,1,o + UB,1,o  – 10353.4 – U2o = N(3/2 a/bT1/2) ln (v/(v+b))
               = 697799/T2

1/2 ln(0.139÷(0.139+0.02681) = –123,070/T2
1/2 kJ.

If cvo is a constant, then
NAcvoTA1 + NBcvoTB1 – NcvoT2 – 10353.4 = –123,070/T2

1/2 kJ.
Therefore,
12.5×(3.024 × 177 + 4.976×151 – 8× T2) = 10353.4 – 123,070/T2

1/2 kJ, or

T2 = 156 K.
Using the RK equation,
P2 = 0.08314×156÷(0.139 – 0.02681)×15.59÷(156 1/2×0.139×(0.139+0.0261))

    = 61.45 bars
Remarks

Likewise, for isenthalpic throttling in sssf devices we can use the relation for (h – ho).

Eight kmole of molecular nitrogen is stored in sections A and B of a rigid tank. Sec-
tion A corresponds to a pressure PA,1 = 119 bar and temperature TA,1 = 177 K. In sec-
tion B, PB,1 = 51 bar and TB,1 = 151 K. The partition is suddenly ruptured. Determine
the final equilibrium temperature T2. Assume that cv = cvo = 12.5 kJ kmole–1 K–1 (cvo

does not depend upon the temperature), and that the gas behavior can be described by
the RK equation of state P = RT/(v–b) – a/(T1/2 v(v+b)), where a = 15.59 bar m6

kmole–2, b = 0.02681 m3 kmole–1, Tc = 126.2 K, and Pc = 33.9 bar. Assume that the



The entropy generated during adiabatic throttling can be determined using a similar
procedure.
Such calculations are useful in determining the final pressures and temperatures for
shock tube experiments. These experiments involve a pressurized gas in a section A
that is separated by a diaphragm from section B. During the experiment, this dia-
phragm is ruptured.

7. Euken Coefficient – Throttling at Constant Volume
During the adiabatic expansion of pressurized gases, the following relation applies.

du = cv dT +(T ∂P/∂T – P) dv.

The Euken coefficient µE is related to a constant volume throttling process during which du =

0, i.e.,

µE = (∂T/∂v)u = –(T ∂P/∂T – P)/cv = – T2(∂/∂T(P/T))u/cv. (165)

For an RK fluid,

µE = –(3/2) a/(T1/2 v (v–b))/cv. (166)

This coefficient is always negative, i.e., a specific volume increase is accompanied by a tem-
perature decrease during adiabatic irreversible expansion in a rigid system. The corresponding
entropy change is obtained by applying the relation

du = Tds – P dv, i.e.,

(∂s/∂v)u = P/T. (167)

Using Eqs. (165) and (167), we obtain the expression

µE = –T2(∂2s/∂T∂v)u/cv.

For an adiabatic throttling process, ds = δσ. Hence from Eq. (167),

δσ = dsu = P/T dvu.

Since dv > 0 and P/T > 0, ds > 0.
For an equation of state P = RT/(v-b) - a/Tn vm, Eq.(165) transforms to µE = (∂T/∂v)u

= - (n+1) a/(cv T
n vm). If cv has a constant value, one can integrate and obtain T(n+1) = (n+1)2

a/(cv (m-1) v (m-1))+ C, m ≠ 1. If m=2, n=1, then for constant u, T2 =(4 a/(cv v))+ C.

As per this model, at constant values of u, as v → 0, T→ ∞ and T → (Tig
) (n+1) as v →

∞, since attractive forces become negligible as we approach ideal gas (ig) limit. Hence, adia-

batic throttling of a closed system yields, T(n+1) - Tig
 (n+1) = (n+1)2 a/{cv (m-1) v (m-1)}

Recall from Chapter 6 that a = RTc 
(n+1)(m+1)2 vc 

(m-1) /(4 m). Therefore, (TR
(n+1) - Tig,R

(n+1))(cv/R) = (n+1)2 (m+1)2
)((m

2-1)/4m)(m-1)/(4 m (m-1) vR’ (m-1)). For m=2, n=1 (Berthelot
equation), the reduced temperature change with pseudo-reduced volume change at constant
energy is provided by the expression (TR

(n+1) - Tig,R
 (n+1))(cv/R) = (27/16) (1/ vR´).

a. Physical Interpretation
Consider a container with two sections A and B. Section A is filled with pressurized

gases and the second part B contains a vacuum. If the partition in Section A is instantaneously
removed, the gas in Section A expands into Section B. As a result of this process the overall
internal energy remains constant, but the intermolecular spacing increases (hence, the term
(T∂P/∂T – P)dv > 0). Consequently, thermal portion of the energy cvdT must decrease (i.e., dT



< 0)  in order to compensate for the increase in the intermolecular potential energy. (In the case
of an ideal gas, there is a negligible change in the intermolecular potential energy, since the
specific volume is very large. Therefore, (T∂P/∂T – P) dv = 0 and there is no change in tem-

perature.) Note that  no net boundary work is performed for a rigid system.

L. DEVELOPMENT OF THERMODYNAMIC TABLES
It is apparent from the information contained in the Chapters 6 and 7 thus far that a

set of expressions can be developed for the thermodynamic properties of a fluid that exists in
any phase if a state relation is known. For example, properties for superheated vapors as H2O
and R134 (Tables A-4 and A-5) can be generated using the real gas state equations.

Table 2: Reference conditions and ideal gas properties for a few fluids.

Property Steam Freon 22 R134A R152A Ammonia Nitrogen Carbon diox-
ide

Freon 12

Chemical for-
mula

H2O CF3CH2F NH3 N2 CO2

Wm 18.015 86.476 102.03 66.05 17.03 28.013 44.01 120.92
Pc (bar) 220.9 49.775 40.67 45.20 112.8 33.9 73.9 41.2
Tc (K) 647.3 369.15 374.30 386.44 405.5 126.2 304.15 385.0
Tref (K) 273.16 233.14 233.14 233.15 64.143 216.55 233.15
Pref (bar) 0.006113 1.0495 0.512615 .7177 .1253 5.178 .6417

href (kJ kg–1) 0.01 0.0 0.0 150.3 301.45 0.0
uref (kJ kg–1) 0.0 0.0 0.0 150.4 301.01 –0.04

0.0 0.0 0.0 2.431 3.72 0.0
hfg(kJ kg–1) 2501.3 233.18 1389.0 215.188 524.534 169.59

Ao 30.54 22.54 16.778 17.229 29.75 28.58 29.1519 26.765†

Bo 0.01030 0.1141077 0.2865 0.4757 .025 .00377 –.001573 0.17594†

Co 0.0 130196.35 0 0 –154808.  50208 0.292×10–6 –.27 10–7†

Do 0.0 –0.329×10–4 –2.276×10–4 2.893×10–4 0.0 0.0 0.5283×10–5 –0.103×10–6†

Eo 1.135×10–7 6.740×10–8

1. Procedure for Determining Thermodynamic Properties
Thermodynamic properties can be determined, once the state equation, critical con-

stants, and corresponding ideal gas properties are known. Some useful formulas are listed be-
low and some thermodynamic data is listed in Table 2. The reference conditions should be
specified. For example for water, the reference condition is generally specified as that of the
saturated liquid at the triple point. The choice of reference conditions is arbitrary. Here,

vR´ = v/vc´, vc´ = RTc/Pc

vR = v/vc,
Z = PR vR´/TR

uc,R = – uR e s/(RTc) = (uo (T) –
u(T,P))/RTc,
hc,R

 = (ho(T) – h(T,P))/RTc,
sc,R = (so(T,P) – s(T,P))/R,
cP,c R = (cP (T,P) – cP,o(T))/R,
cv,c,R = (cv (T,P) – cv,o(T))/R,
µJT,R = µJTcp/vc´,

gc,R = (go(T,P) – g(T,P))/RTc,
ac,R = (ao(T,P) – a(T,P))/RTc

φ = f/P = exp((g(T,P)– go(T,P))/RT)

Tsat with gf = gg   and
Tinv with µJT = 0

The constants are used in the formula c
po

 =

Ao + BoT + CoT
–2 + DoT

2 + EoT
3. In the

Figure 23: Schematic illustration of a method
of determining the thermodynamic properties
of a material using a P–h diagram.

sref (kJ kg–1 K–1)



range 0 K < T < 1000 K, the maximum error is less than 8%.

oo. Example 41
Determine the thermodynamic properties of water at 250 bar and 600ºC using the RK
equation of state. Assume that cp,o = 28.85 + 0.01206 T + 1.002×105/T 2 kJ kmole–1

K–1, hfg,ref = 2501.3 kJ kg–1, Pc = 220.9 bar, and Tc = 647.3 K. The reference conditions
are those for the saturated liquid at its triple point, i.e., 273.15 K and 0.006113 bar.
The molecular weight of water is 18.02 kg kmole–1.

Solution
A schematic diagram of the procedure followed is illustrated in on a P–h diagram in
Figure 25 and  Figure 24.
First, the reference condition is selected at which hf = sf = 0 (e.g., the saturated liquid
state at the triple point of water at point A in the figure).
At the reference condition hg = 0 + hfg = 2501 kJ kg–1 (point B in Figure 25 and
Figure 24). Therefore,
sg = hfg/T = 2501.3÷273 = 9.17 kJ kg–1 K–1,

The entropy of the saturated vapor at 273.15 K and 0.0061 bar is 9.17 kJ kg– 1

K–1above the entropy of saturated liquid at same temperature and pressure.
For the vapor at 273 K and 0.0061 bar (i.e., at PR,ref = 0.000028 and TR,ref = 0.422) the
reduced correction factor (ho – h)/RTc ≈ 0, since the pressure is low and the intermo-

lecular attraction forces are weak. Therefore,
ho = h = 2501 kJ kg–1

at the triple point (point B in Figure 25 and Figure 24). Similarly,
so = s = 9.17 kJ kg–1 K–1  or  165.2 kJ kmole–1 K–1.
The values of ho(873 K)  and so(873 K, 250 bar) can be obtained using the specific
heat relations for an ideal gas, i.e.,

hfg

h(873,60

)

Figure 24: Schematic illustration of the determination of enthalpy of a
vapor or a real gas with respect to the values at the reference condi-
tion.



ho = 3706 kJ kg–1

    = 66782 kJ kmole–1.
This corresponds to the  point D. Similarly,
so(873 K, 250 bar) = 6.47 kJ kg–1 K–1  or  116.6 kJ kmole–1 K–1.
The ideal gas internal energy uo  at 873 K can be determined using the relation
uo = ho – RT = 66782 – 8.314 × 873 = 59,524 kJ kmole–1.

The correction or residual factors at 873 K and 250 bar can be obtained. From charts
we see that at PR = 1.13,  TR = 1.35, Z = 0.845. Therefore,
 (ho – h)/RTc = 0.735, (uo – u)/RTc =  0.526, and (so – s)/R = 0.389.
Consequently,
u = 3146 kJ kg–1, and s = 6.29 kJ kg–1 K–1.
Thereafter, the enthalpy can be determined using the relation h = u + Pv = u + ZRT.
Hence,
h = 3146 + 0.845 × (8.314 ÷ 18.02) × 873 = 3486 kJ kg–1,

which is represented by point C.
Other properties can be similarly obtained.

2. Entropy
Applying the  relation at a temperature of absolute zero, (∂v/∂T)P = –∂s/∂P = 0. There-

fore, there is no entropy change with pressure at T = 0 K and s(Pref, 0 K) = 0. Two paths reach
state B from state “0”: path 0 FLMB, path 0 DEAB. Consider the path 0DEAB illustrated in
Figure 25. The entropy s(T,P) equals the sum of the entropy change along the paths 0D and
DE), the entropy addition at E due to the change from the solid to gas phase, entropy change
due to superheating EA and the entropy change along AB. Therefore, at any state (T,P)
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Figure 25: Schematic illustration of an entropy calculation
starting from a temperature of absolute zero; C: critical
point.



where ∂s/∂P = –(∂v/∂T)P. Given a state equation, the above equation can be integrated to de-

termine the conditions at point B in Figure 25. If Pref is a small pressure, the entropy at point A
corresponds to the ideal gas value and, hence, cp(Pref, T) = cp,o and sB(T,P) – sA(T,Pref) = s(T,P)
– so(T,Pref) = s(T,P) – s0 (T,P) + R ln (P/Pref).

M. SUMMARY
Ideal and real models of gas behavior are important, since they can be used to obtain

the thermodynamic properties of substances, which are used in conservation and balance
equations. The ideal gas models are accurate at high temperatures and low pressures. In states
in the vicinity of saturated vapor and at relatively higher pressures, the real gas models provide
more accurate predictions of properties. Using the real gas state equations we are able to de-
termine differences in fluid behavior from its ideal state for properties, such as u, h, s, cv and
cp. However, determination of µJT, inversion temperature, saturation temperature do not require

ideal gas properties. Further, the corresponding values of Z, hR,c, and sR,c  and hfg  along the
saturation lines can be obtained.



Chapter 8 

 8. THERMODYNAMIC PROPERTIES OF MIXTURES

A. PARTIAL MOLAL PROPERTY
In Chapter 7, we discussed how the thermodynamic properties of pure components of

a substance could be determined and used in the four important conservation and balance
equations for design of thermal systems (mass, energy, entropy and availability). Thermal
systems, however, generally involve mixtures of several substances, possibly in multiple
phases. In this chapter, we will discuss the state equations, generalized thermodynamic rela-
tions, and thermo-physical-chemical properties for species k in a mixture as well as non-
reacting mixtures.

For pure simple substances, a pair of properties can be used to determine the state of a
system. Using those two properties, we can then determine the other system properties. More
than two properties are required for a corresponding situation involving a mixture to account
for the mixture composition.

1. Introduction
The mixture composition can be represented by the mole fraction XK or mass fraction

YK, or the molality Mo.

a. Mole Fraction
The mole fraction is denoted by Xk for gases, and xk for liquids. For gases,

Xk= Xk,g = Nk,g/N, and (1a)

for liquids,

Xk(l) = Nk(l)/N. (1b)

The subscript k denotes the k–th component of a mixture. The subscript “g” for the gas phase
is generally omitted herein.

b. Mass Fraction
Likewise, the mass fraction can be defined. For gases

Yk,g = mk,g/m, and (1c)

for liquids

Yk(l) = mk(l)/m. (1d)

c. Molality
The molality is used to describe liquid solutions, i.e.,

Mo = 10–3× kmole of solute ÷ kg of solvent                                                         (1e)

d. Molecular Weight of a Mixture
The mixture molecular weight M is the mixture per unit mole of the mixture, namely,

M  = ΣXkMk (1f)

A solution is dilute if the mole fraction of the solute is much smaller than that of the solvent.
More generally, a mixture is dilute when the value of the mole fraction of a particular compo-
nent dominates the mole fractions of the other components.



a. Example 1

density is 1230 kg m–3. Determine the solution composition and molecular weight.
Solution

Mo = 3.75 gmole of H2SO4/kg of water
In a mixture containing a kg of solvent and 3.75×10–3 kmole of H2SO4, the total moles

are
(1000÷18.02) + 3.75 = 59.24 gmole.

Since M for H2SO4 is 98 kg kmol–1, the total mixture mass is
1000 g + 3.75 × 98 = 1367.5 g.

Therefore,
x H SO2 4

 = 3.75÷59.24 = 0.063,

Y H SO2 4
 = 367.5 ÷ 1367.5 = 0.27, and

M = 1367.5 ÷ 59.24 = 23.08 kg kmole–1.

2. Generalized Relations
Recall that the internal energy of a mixture containing K components is

U = U(S,V,N1, N2, ..., NK), (2a)

dU = TdS – PdV + ΣκµkdNk, and (2b)

(∂U/∂S)V,N  = T, (∂U/∂V)S,N = –P, (∂U/∂Ni)S,V, N N N Nj i K1 2, ,..., ,...,≠
 = µ1, (2c)

where T denotes the thermal potential, P the pressure potential, µi the chemical potential of the

i–th species in the mixture. All three potentials are expressed in terms of partial derivatives of
U. Likewise,

H = H(S, P,N1, N2.....NK), (3a)

dH = TdS + VdP + ΣκµkdNk, and (3b)

(∂H/∂S)P,N  = T, (∂H/∂P)S,N = V, (∂H/∂Ni)S, P, N N N Nj i K1 2, ,..., ,...,≠
 = µ1. (3c)

Since A = U – TS, subtracting the term (TdS + S dT) from Eq. (2b) provides the relations for
A shown below.

A = A(T,V,N1, N2.....NK), (4a)

dA = –SdT – PdV + ΣκµkdNk, and (4b)

(∂A/∂S)V,N  = –T, (∂A/∂V)S,N = –P, (∂A/∂Ni)S,V, N N N Nj i K1 2, ,..., ,...,≠
 = µ1. (4c)

We now subtract (TdS + SdT) from Eq. (3b) to obtain

G = G(T, P,N1, N2.....NK), (5a)

dG = SdT + VdP + ΣκµkdNk, and (5b)

(∂G/∂T)P,N  = –S, (∂G/∂P)S,N = V, (∂G/∂Ni)S, P, N N N Nj i K1 2, ,..., ,...,≠
 = µ1. (5c)

Consider a lead–acid battery containing 3.75 Mo of an H2SO4 acid solution. The acid



a. Remarks
The nonmeasurable properties, e.g., A, G, and S, can be expressed in terms of the
measurable properties P, V, T, N1, N2, N3, …, etc. The chemical potential, which gov-
erns the direction of species transfer in a mixture, can be expressed in various forms.
For a closed system with no chemical reactions dNk = 0.
Based on the previous discussion, a thermodynamic property B (for instance, B = V)
can be expressed as

B = B(T, P, N1,..., NK). (6a)

The extensive property B is a partly homogeneous function of degree 1 with respect
to N1, N2 ,N3, …, i.e., if the temperature and pressure are held constant and the num-
ber of moles of each species in the mixture is doubled (although the corresponding
mole fractions remain unchanged), the value of B is also doubled.
The corresponding partial molal property of the i–th species can be written in the
form

b̂i  = (∂B/∂Ni)T, P, N N N Nj i K1 2, ,..., ,...,≠
. (6b)

(For instance, b̂i  = v̂i .) On a mass basis,

b̂i
m  = (∂B/∂mi)T, P, N N N Nj i K1 2, ,..., ,...,≠

. (6c)

3. Euler and Gibbs–Duhem Equations
The total differential of Eq. (6a) is

dB =  ( B / T ) dT + ( B / P ) dP + b dNP,N T,N
k=1

K

k k∂ ∂ ∂ ∂ ∑ ˆ , i.e., (7a)

Since B = N b ,

d(Nb ) =  Ndb bdN N( b / T ) dT + N( b / P ) dP + b dNP,N T,N
k=1

K

k k+ = ∂ ∂ ∂ ∂ ∑ ˆ (7b)

Furthermore, since Nk = XkN, dNk = XkdN + NdXk, further simplification of Eq. (7b) results in
the expression

N db
db

dT
dT

db

dP
dP b dX dN b b Xk

k

K

k k
k

K

k{ } { }− − − + − =
= =

∑ ∑
) )

1 1

0 (8)

Since N is arbitrary and the value of dN can vary, it is apparent from Eq. (8) that the coeffi-
cients of N and dN must vanish. Equating the coefficient of dN to zero, we obtain

b b Xk
k

K

k=
=

∑
)

1

, i.e., B b N b Nk
k

K

k= =
=

∑
)

1

, (9a)

where B= S, U, H, V, etc. Likewise,

db
db

dT
dT

db

dP
dP b dXk

k

K

k= + −
=

∑
)

1

. (9b)

The relation in Eq. (9a) is known as the Euler equation. Since all the differentials are exact, we
infer from Eq. (9b) that

b  = b(T, P, X1, X2, ... , XK–1). (10)



Note that X1 + X2 + ... + XK = 1.
The number of independent variables in Eq. (10) is ((K–1)+2) = K+1, while in Eq. (6)

it is K+2. At constant temperature and pressure, Eq. (9b) assumes the form

db b dXk
k

K

k=
=

∑
)

1

. (11)

Differentiating Eq. (9a) ,

db b dX db Xk
k

K

k k
k

K

k= +
= =

∑ ∑
) )

1 1

. (12a)

Equating Eq. (12a) with Eq. (9b), we obtain the relation

db

dT
dT

db

dP
dP X db

k

K

k k+ − =
=

∑
1

0
)

. (12b)

Upon multiplying this expression by N,

∂
∂





 +

∂
∂





 − =

=∑B

T
dT

B

P
dP N db

P N T N
k kk

K

, ,

ˆ
1

0 . (12c)

At a specified temperature and pressure

X dbK K

)
=∑ 0. (13)

The expressions in Eqs. (12a)–(12c) and (13) are various forms of the Gibbs–Duhem (GD)
equations, and apply to liquid, solid, and gas mixtures.  Combining Eqs. (12a) and (13) we
obtain

db b dXk
k

K

k=
=

∑
)

1

. (14)

a. Characteristics of Partial Molal Properties
Since

b̂ k = (∂B/∂Nk)T, P = b̂ k (T, P,N1, N2, ..., NK),

applying Euler’s theorem for species k =1 for a partly homogeneous function of order zero,

N1∂ b̂ 1/∂N1 + N2∂ b̂ 1/∂N2 + N3∂ b̂ 1/∂N3 +.... = 0, i.e.,

or, more generally,

Σk(Nk∂ b̂ j/∂Nk) = 0, j=1, 2,...K.  (15a)

Dividing Eq. (15) by N

Σk(Xk∂ b̂ j/∂Nk) = 0, j=1, 2,...K.  (15b)

Consider partial molal property of species 1. Differentiating the partial molal property
b̂ 1 = ∂B/∂N1 with respect to N2, we obtain the relation

∂ b̂ 1/∂N2 = ∂2B/∂N2∂N1 = ∂/∂N1(∂B/∂N2) = ∂ b̂ 2/∂N1, (15c)



which is a form of Maxwell’s relations. Similarly, ∂ b̂ 1/∂N3 = ∂ b̂ 3/∂N1. Using Eq. (15c) in  Eq.

(15a)

Σj(Nk ∂ b̂ k/∂Nj) = 0, j=1, 2,...K. (15d)

Dividing by N

X
b

Nk
k

jk

K ∂
∂

=
=

∑
)

1

0,           j=1,2…K.

With j=1 in Eq. (15d) ,

N1∂ b̂ 1/∂N1 + N2 ∂ b̂ 2/∂N1 + N3∂ b̂ 3/∂N1 + ... = 0. (15e)

Note that the partial derivatives  ∂ b̂ 1/∂N1 imply that N2, N3, etc., are constant  Since N1 = X1

N,  then dN1 = dX1 N + X1 dN. If only N1 is altered, then the values of all Nj≠1 are constant. In

that case

dN1 = dX1 N + X1 dN 1, or (1 – X1) dN1 = dX1 N, i.e., dN1 = dX1 N/(1 – X1).

Using this result in Eq. (15e)

∂ b̂ 1/∂N1  =    (1-X1)(∂ b̂ 1/N∂X1),  ∂ b̂ 2/∂N1 = (1-X1)(∂ b̂ 1/ N∂X1),…. .

Hence, Eq. (15e) with j=1 simplifies to the form
X1∂ b̂ 1/∂X1+X2∂ b̂ 2/ ∂X1+X3∂ b̂ 3/∂X1+... = 0, i.e., ΣkXk(∂ b̂ k/∂X1) = 0,

Generalizing  for any “j”

 ΣkXk(∂ b̂ k/∂Xj) = 0, j=1,2…K (16)

Gibbs function is extensively used in phase and chemical equilibrium calculations.  Thus it is
useful to summarize the relations for B=G. i.e.,

 = G(T, P, N1, N2, ..., NK), then

g= Σk ĝ k Xk, and g = Σk ĝ k
mYk. (17)

where the second summation is on mass basis. The partial molal Gibbs function ĝ k is the
chemical potential µk of a species, i.e.,

ĝ k = (dG/dNk)T, P, Nj i≠
. (18a)

Equation  (12c) implies  that

0 = – s  dT + v  dP + X1 d ĝ 1+ X2 d ĝ 2 + ..., and (18b)

0 = – S dT + V dP +N1 d ĝ 1+N2 d2 + ... , (19a)

where (∂G/∂T)P,N = –S and (∂G/∂P)T,N = V. At a specified temperature and pressure

X1 d ĝ 1+ X2 d ĝ 2 + ... = 0. (19b)

b. Physical Interpretation
Consider the extensive property V of a k–component mixture. Each species in the

mixture contributes an amount Vk towards the total mixture volume, and its partial molal vol-
ume



v̂ k = (∂V/∂Nk)T, P = v̂ k (T, P, N1, N2, ..., NK),

When the same component is considered in its pure state at the same temperature and pressure,
its specific volume vk, and, in general, v̂ k ≠ vk.

If a liter of water is added at standard conditions to three liters of pure alcohol, you
will find that both species completely mix at the molecular level. This is an example of a mis-
cible mixture. Under standard conditions, the total mixture volume is not four liters, suggesting
that the mixture must have contracted due to a change in the intermolecular attractive forces.
The volume occupied by 1 kmole of water, i.e., 6×1026 water molecules in the mixture is its

partial molal volume. As more water is added to the mixture the total volume increases as
shown by curve ADBC in Figure 1. The slope of the mixture volume with respect to the num-
ber of moles of water provides a measure of the partial molal volume. The point A in the figure
represents a condition corresponding to trace amounts of water in the mixture, while point B
represents alcohol  in trace quantities. An immiscible mixture is formed if two species do not
mix at a molecular level and, in that case, the partial molal volume loses meaning.

Measured,
3.83 L

Ideal,
4 L

3 L

1 L

Methanol(j)

(a)

(b)

NH2O

V

Partial

Molal

volumeD

B

C

(C )

A

Figure 1 a. Mixing of two miscible species. b. Mixing of two
immiscible species. c. Determination of the partial molal vol-
ume from a plot of total mixture volume vs. the number of
moles of water in a water/alcohol mixture.



i. Remarks
In Chapters 1 and 6 we have discussed the functional form for the intermolecular at-

traction forces given by the Lennard– Jones empirical potential Φ(l) between a pair of mole-

cules. For like pairs of molecules,

Φ(l) = 4ε((σ/l)12 – (σ/l)6). (20a)

For an unlike molecular pair consisting of species k and j,

Φ(l) = 4εkj((σkj/l)12 – (σkj/l)6), (20b)

where εkj = (εkεj)
1/2, and the collision diameter σkj = (σk+σj)/2. Note that concentration effects

on σkj  and εkj  are not included in this model. If Fk (= ∂φ/∂l) denotes the intermolecular attrac-

tion forces between the molecules of species k, and Fkj denotes the corresponding forces be-
tween dissimilar molecules of the two species k and j,

Fkk = 4(ε/l)(6(σ/l)6 – 12(σ/l)12), and (21a)

Fkj = 4(εkj/l) ((σkj/ l)6 – (σkj/l)12). (21b)

Consider the following scenarios: (1) Fkj = Fkk. In this case an ideal solution (or ho-
mologous series) is formed, e.g., a mixture of toluene and benzene. (2) Fkj > Fkk. This is an
example of a non ideal solution (e.g., the volume contraction upon mixing of water in alcohol).
(3) Fkj < Fkk. Also a non ideal solution, but in this case there is a volumetric expansion upon
mixing).

If Fkj » Fkk at all concentrations, the mixture is miscible at a molecular level. Alterna-
tively, if Fkj «Fkk, at all concentrations, the mixture is completely immiscible. In some cases,
the mixture is miscible up to a certain mole fraction beyond which Fkj « Fkk. Such mixtures are
called partially miscible mixtures.

In miscible mixtures, energy must be initially utilized to overcome the intermolecular
attraction forces between like molecules (e.g., k–k). Inserting a molecule of j and forming the
j–k pairs alters the intermolecular attraction forces. Consequently, the system may reject en-
ergy (during exothermic mixing) or require it (endothermic mixing).

In an ideal solution Fkk = Fkj, and v̂ k(T, P, X1, X2, ...) = vk(T, P). Recall that

V = Σk v̂ k(T, P,X1, X2, ...)Nk.

Therefore, for an ideal mixture

Vid = Σk vk(T, P)Nk. (22)

This relation is called law of additive volumes or the Amagat–Leduc Law for mixtures. It is
particularly valid for gas mixtures at low pressures.

Similarly, for any property (other than the entropy),

Bid = Σk bk(T, P)Nk. (23)

Mixing is always an irreversible process. For adiabatic ideal mixing, i.e., when there is no
volumetric change and heat is neither absorbed nor removed. Since the Second Law states
that

dS – δQ/Tb = δσ, 

the difference in the entropy after and before mixing is given by the expression

Sfinal – Sinitial  – 0 = σ,



where σ > 0. Furthermore, since Sinitial = Σk s k(T, P)Nk and Sfinal = Σk ŝk(T, P)Nk,

Σk( ŝk(T, P) – s k(T, P)) Nk > 0.

Even after ideal mixing, the entropy of a species k inside the mixture at T and P is
larger than the entropy of the pure species at same temperature and pressure. This is due to the
increase in the intermolecular spacing between the k and j molecules, which increases the
number of quantum states for each species (Chapter 1).

4. Relationship Between Molal and Pure Properties

a. Binary Mixture
For a two component system, Eq. (14) suggests that at specified values of T and P

db b dX b dX= +
) )

1 1 2 2 (24a)

Since X1 + X2 = 1, Eq. (24a) assumes the form

db b dX b dX= − +
) )

1 2 2 2{ } , i.e.,. db dX b b/ 2 1 2= − +
) )

(24b)

Since the mixture property is provided by Eq (9a),

b b X b X= +
) )

1 1 2 2 (24c)

Multiplying Eq (24b) by X2 , rearranging and simplifying,
)
b 1X2=  

)
b 2X2 -  X2 d b /dX2

and using Eq. (24c) to eliminate  
)
b 2X2

)
b 1=  b -  X2 d b /dX2 (24d)

Similarly

)
b 2=  b -  X1 d b /dX1 (24e)

Equations (24d) and (24e) express the partial molal property of the species in terms of the mo-
lal property of the mixture.

b. Multicomponent Mixture
Similarly we can extend the derivation to a multi-component mixture, i.e.,

ˆ ( / ) , ,
,

b b X b Xi k k T P k i
k k i

K

= − ∂ ∂ ≠
= ≠
∑
1

. (25)

b. Example 2

Figure 2. Assume that v1 = 0.04072 m3 kmole–1, v2 = 0.0181 m3 kmole–1.
Determine the specific volume v id under ideal mixing.
Plot v̂ 1 and v̂ 2 with respect to X1.
v̂ 1, x1

→1, v̂ 1, x1 →0 (species 1 is in infinite dilution or in trace amounts).

v̂ 2, x2
→1, v̂ 2, x2

→0 (species 2 is in infinite dilution or in trace amounts)

Determine an approximate expression for v in terms of X1 when X1→0.

a constant temperature bath held at 25oC and 1 atm. The variation of X1 is shown in
A small amount of liquid water (species 2) is added to liquid  methanol (species 1) in



Solution
The specific volume of any mixture or solution

v v x v x= +ˆ ˆ
1 1 2 2 . (A)

For an ideal solution,

v̂ 1
id = v1, v̂ 2

id = v2, i.e., (B)

v id = v1 X1 + v2 X2 (C)

Similarly on mass basis  vid = v̂ 1
m Y1

m + v̂ 2
m Y2

m. Since v1, and v2 are fixed once
the temperature and pressure are specified, and X2 = (1–X1), using Eq. (C), we obtain
the relation

v id = v1 X1 + v2 (1– X1). (D)
Equation (D) indicates that a plot of v id with respect to X1 is linear. However, meas-
urements indicate that this is not so.
Using the measured results for v  with respect to X1 shown in Figure 2, it is possible
to obtain v̂ 1 and v̂ 2 using Eqs. (24d) and (24e) with b  = v . Since X1 + X2 = 1, dX1 =
–dX2, and

v1 = v  + (d v/dX1)(1– X1), (E)

ˆ / ,v v X dv dX2 1 1= −  (F)

Figure 2 shows a plot of specific volume, partial molal volumes of methanol (1) and

G
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J
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Q

E

A
R

L

P M

C
F

B

S

X1

Figure 2: Partial and molal volumes of methanol (1) and water (2) at 25 C, 1 atm (From
Smith and Van Ness, Introduction to Chemical Engineering Thermodynamics, 4th Edi-
tion, McGraw Hill Book Company, 1987, p. 428. With permission.)



water (2) at 25ºC, 1 atm while Figure 3 illustrates a graphical method that can be used
to determine v̂ 2 by applying Eq. (F).  For instance, a tangent to the v– X1 curve at
point R yields the slope d v/dX1, and the intercept PS represents v̂ 2 at that value of X1

(i.e., at R). As X1→1, the mixture is virtually pure so that species 1 is mainly sur-

rounded by like molecules, and

v̂ 1, x1
→1 = v1 = 0.04072 m3 kmole–1. (Point D, Figure 2).

As X1→0, Eq. (E) yields

v̂ 1, x1
→0 = v x1 →0 + (d v/dX1) x1 →0 ≈ + →v dv dX X2 1 01

( / ) . (G)

However the slope (d v/dX1) x1 →0≠0. Then (G) yields

( / ) .dv dX X1 01
0 0194→ = . (H)

We must, therefore, resort to experiments from which we find that
v̂ 1, x1 →0 = v̂ 1 = 0.0375 m3 kmole–1 (point G, Figure 2)

At this condition, species 1 is in trace amounts and is surrounded mainly by unlike
molecules with force fields dominated by molecules of species 2.  Likewise,
v̂ 2,X1 →1  = v2 = 0.0181 m3 kmole–1, (point A) and

v̂ 2,X2 →0  = v2 = 0.015 m3 kmole–1 (point M).

Applying Eq. (A) as. X1→0, and X2→1, using Eq.(G),

v  = X1 v̂ 1,X1 →0 + X2 v̂ 2,X2 →1 = X1 v̂ 1,X1 →0 + (1-X1) v2

Simplifying,

v  = + −→v X v vX2 1 1 0 21
(ˆ ), (I)

An extension to multiple components is given in remarks. Since,
v̂ 1, x1 →0 = 0.0375 m3 kmole–1, and

v̂ 2 = v2= 0.0181 m3 kmole–1, since X2→1.

Q

S

T

P

N

D

A

v̂
2v̂

Figure 3: Determination of partial molal properties.



Then for small values of X1, Eq. (I) yields
v  = 0.0181 + 0.0194  X1.

Thus the mixture volume increases linearly with X1 as X1 → 0. Similarly, as X2→0,

one can show that
v  = 0.0407 (1 – X2) + 0.015 X2

Remarks
The expression v id = v1 X1 + v2 X2 = v1 X1 + v2 (1–X1)= ( v1 – v2) X1 + v2 is also
known as the Law of Additive Volumes (or the Lewis–Randall rule for volume). The
law presumes that the intermolecular attraction forces between unlike molecules are
the same as those between like molecules. This is a reasonable assumption for succes-
sive homologous series of hydrocarbons (e.g., pentane, hexane, etc).
Using a Taylor series expansion,

V(N1+dN1,N2+dN2,N3+dN3,..) = V(N1,N2,N3,..) + ∂V/∂N1dN1 + ∂V/∂N2dN2 +... .

Suppose initially there is only species 1 and hence initial amounts of N2, N3 .. etc. are
equal to zero.  Assume that small amounts of  species 2, 3, 4, … are being added to
species 1. In that case, δN1 = 0, and δN2 = N2, δN3  = N3, δN4 = N4,  … are small.

Therefore,

V(N1, 0+N2, 0+N3) = V(N1) + ∂V/∂N1×(0) + ∂V/∂N2 N2 + ∂V/∂N3 N3 + ... , i.e.,

V(N1, N2, N3, ...) = V(N1) + v̂ 2 N2 + v̂ 3 N3 + ... .

Dividing throughout by the total number of moles N (recall that N→ N1),

v  (X1→1, X2→0) = v1 + v̂ 2N2/N + v̂ 3N3/N + ... = v1 + v̂ 2X2 + v̂ 3X3 + ... .

where X2, X3, …  denote mole fractions of trace species. In a salt (solute – species 2)
and water (solvent – species 1) solution, an upper limit X2,upper ≈ 0.3 exists at standard

conditions, which is called the solubility limit. In a mixing tank, the addition of salt
beyond a 30% salt mole fraction usually results in the settling of solid salt. Therefore,
one may not reach the limit X2→1 or X1 → 0  in a solution.

c. Example 3

and salt (solute – species 2) solution:

V = 1.001 + 16.625N2 + 56.092 N2
3/2 + 119.4 N2

2, (A)

v̂ 2

in terms of N2, and determine the value of v̂ 1. Determine 

kmole. Obtain an expression for v̂ 1 in terms of N2, and one in terms of X1.
Solution

Differentiating Eq. (A),

v̂ 2 = ∂V/∂N2 = 16.625 + 84.138 N2
1/2 + 238.8 N2 in units of l kmole–1. (B)

As N2→0 (or X2→0), the solute volume at infinite dilution

v̂ 2 = 16.625 l kmole–1.
Furthermore, V = v̂ 1 N1 + v̂ 2 N2, i.e.,

v̂ 1  = (V – v̂ 2N2)/N1. (C)

Since a liter of water corresponds to a 1 kg mass,

ˆ ˆ
,v or vX2 0 22→

∞  in liter per
where V is expressed in units of liters, and N2 in kmole. Obtain an expression for 

The following relation describes the volume change in a water (solvent – species 1)



N1 = 1 kg/18.02 kg kmole–1 = 0.0555 kmole,
Therefore, applying Eq. (C),

v̂ 1 = 18.02 – 505.4 N2
3/2 – 2151.6 N2

2 in units of l kmole–1. (D)

The mole fraction X2 = (1 – X1) = N2/(N2 + N1) = N2/(N2 + 0.055), i.e.,
N2 = 0.055 (1/X1 –1), and

v̂ 1 = 18.04–6.625(1/X1–1)3/2–6.567(1/X1 –1)2, X1>0, in units of l kmole–1.

Example 4

mixture volume using an ideal mixture model.
Solution

The RK equation has the form

P = RT/( v  – b) – a /(T1/2 v( v  + b)).

Therefore,
v1 = 0.09 m3 kmole–1, and VA = 2 × 0.09 = 0.18 m3.

v2 = 0.10 m3 kmole–1, and VB = 3 × 0.1 = 0.3 m3.

Vid = vN = ( v1 X1 + v2 X2)N = v1 N1 + v2 N2 = 2 × 0.09 + 3 × 0.1 = 0.48 m3.

Remarks
This is an illustration of the law of additive volumes. When the partition is removed,
the total volume is the same as the combined original volume at the same temperature
and pressure.
The actual volume V = v̂ 1N1 + v̂ 2N2 can differ from Vid, i.e., if the partition is re-
moved in the rigid system, the final pressure may not be 100 bar.

d. Example 5

of N2 (species 2) at 160ºC and 100 kPa, and 25ºC and 100  kPa.
Solution

Since the 433 K temperature is high, we expect each species to behave as though it is
an ideal gas in its pure state. Therefore,
Vid = 0.3 v1 = (433 K,100 kPa) + 9.7 v2(433 K,100 kPa), where
v1(433 K, 100 kPa) = 8.314 × 423 ÷ 100 = 36 m3 kmole–1 (from the tables for super-

heated vapor v1 = 35.8 m3 kmole–1), and
v2(433 K, 100 kPa) = 8.314 × 423 ÷ 100 = 36 m3 kmole–1.

Vid = 0.3 × 36 + 9.7 × 36 = 10 × 36 = 360 m3.

At 298 K,
Vid  = 0.3 v1(298 K, 100 kPa) + 9.7 v2(298 K, 100 kPa).
Although water exists as a liquid under these conditions, in the mixture it exists as a
vapor. Therefore,
Vid  = 0.3 v1(298 K, 100 kPa, liquid) + 9.7 v2(298 K, 100 kPa)
       = 0.3 × 0.018 + 9.7 × 24.8 = 240.5 m3.

If we use a hypothetical gaseous state for water at 25ºC and 100 kPa, then using the
ideal gas law
Vid  = 0.3 v1(298 K, 100 kPa) + 9.7 v2(298 K, 100 kPa)

Determine Vid for a gaseous  mixture of 0.3 kmole of H2O (species 1) and 9.7 kmole

A large flexible tank is divided into two sections A and B by a partition. Section A
consists of 2 kmole of C2H2 (species 1) at 320 K and 100 bar, and section B consists
of 3 kmole of CO2 (species 2) at the same temperature and pressure. The partition is
removed, but the temperature and pressure are maintained constant. Determine VA,
and VB using the RK equation of state for each component before mixing and the total



= 0.3 × 24.8 + 9.7 × 24.8 = 248 m3.

Remarks
It is more accurate to determine Vid using the specific volumes of pure components in
the same state as they exist in the mixtures.
We have used a hypothetical state to determine the volume pure water, since the wa-
ter changes phase in the mixture.
Suppose we have 0.3 kmole of H2O(l) in compartment A at P =100 kPa and 9.7 kmole
of N2  at P= 100 kPa in compartment of B of a PCW assembly, which is immersed in
a bath at 25°C. If the partition is removed and allowed to equilibrate at 25°C,

100KPa, then the vapor will become H2O(g). Since the water changes phase after
mixing, it must be endothermic, i.e., heat must be supplied from the thermal bath to
evaporate the water molecules. Therefore, after mixing, Fkj « Fkk.

5. Relations between Partial Molal and Pure Properties
We have discussed the partial molal volume and now focus on other partial molal

properties.

a. Partial Molal Enthalpy and Gibbs function
Since the enthalpy H(T, P, N1, N2, ... .) = U(T, P, N1, N2, ... .) + PV(T, P, N1, N2, ... .),

the partial molal enthalpy ĥ i = (∂H/∂Ni)T, P, N N N Nj i K1 2, ,..., ,...,≠
 can be expressed as

ĥ i = (∂U/∂Ni)T, P, N N N Nj i K1 2, ,..., ,...,≠
 + P(∂V/∂Ni)T, P, N N N Nj i K1 2, ,..., ,...,≠

, i.e., (26)

ĥ i = û i + P v̂ , where (27)

û i = (∂(N u)/∂Ni)T, P, N N N Nj i K1 2, ,..., ,...,≠
= N(∂ u/∂Ni) T, P, N N N Nj i K1 2, ,..., ,...,≠

+ u .

Similarly, since G = H – TS,

ĝ i = (∂H/∂Ni)T, P, N N N Nj i K1 2, ,..., ,...,≠
 – T(∂S/∂Ni)T, P, N N N Nj i K1 2, ,..., ,...,≠

, i.e., (28)

ĝ i = ĥ i – T ŝ i. (29)

Likewise,

â i = û i – T ŝ i. (30)

b. Differentials of Partial Molal Properties
Applying the Gibbs–Duhem equation

(∂B/∂T)P,NdT + (∂B/∂T)T,NdP – Σkd b̂ kNk  = 0 (12c)

in terms of the Gibbs energy, i.e., B = G, ∂G/∂T = –S, and ∂G/∂P = V, so that

–S dT + V dP – Σkd ĝ k Nk = 0.

In terms of intensive properties, this relation may be written in the form

–Σk ŝkNkdT + Σk v̂ kNkdP – Σkd ĝ kNk = –ΣkNk(d ĝ k+ ŝkdT– v̂ kdP) = 0, i.e.,

For arbitrary Nk>0,

d ĝ k = – ŝk dT + v̂ k dP. (31)



Differentiating Eq. (29) and using (31) to eliminate dgk
ˆ ,

d ĥ k = Td ŝk + v̂ kdP. (32a)

Dividing Eq. (32) by dT at constant pressure, the partial molal specific heat

ĉpk = ∂ ĥ k/∂T = T ∂ ŝk/∂T. (32b)

Subtracting the term d(Pvk) from Eq. (32a), we obtain the relation

d û k = T d ŝk – P d v̂ k. (33a)

Similarly

ĉvk =(∂ û k /∂T) = T (∂ ŝk/∂T). (33b)

These relations for partial molal properties are similar to those for pure substances.
Maxwell’s relations can be likewise derived. Subtracting d(T ŝk) from Eq. (33a), we obtain the
relation

d âk = – ŝk dT – P d v̂ k. (34)

This implies that ŝk = –∂ âk/∂T, P = – ∂ âk/∂ v̂ k. These expressions are similar to those for pure

properties. Maxwell’s relations can be likewise derived. Furthermore, from Eq. (32a)

∂ ĥ k/dP = T∂ ŝk/dP + v̂ k. (35)

Using the Maxwell’s relations we can show that

∂ ĥ k/dP = – T ∂ v̂ k/dT + v̂ k.

For the entropy, the G–D relation is

(∂S/∂T)P,N dT + (∂S/∂P)T,N dP – Σkd ŝk  Nk  = 0 (36)

Since S = Σk ŝkNk and ∂ ŝk/∂T = ĉpk/T, we may use Maxwell’s relations to simplify the second

term, i.e., (∂S/∂P)T,N = –(∂V/∂T)P, where V =  ΣkΝk v̂ k so that

ΣkNk( ĉp,k/T)dT – Σk(Nk∂ v̂ k/∂T) dP – Σkd ŝkNk = 0, or

ΣkNk(( ĉp,k/T)dT – (∂ v̂ k/∂T)dP – d ŝk) = 0.

Therefore,

d ŝk = ( ĉp,k/T)dT – (∂ v̂ k/∂T) dP. (37)

Using Eqs. (37) in Eq. (32a),

d ĥ k = ĉp,k dT + ( v̂ k – T (∂ v̂ k/∂T)) dP, (38)

which is again similar to the corresponding expression for a pure substance. Likewise,

d û k = ĉv,k dT + (T(∂P/∂T) – P) d v̂ k (39)

Equations (37) to (39) are similar to the corresponding expressions for a pure substance. Thus
if state equations are available for mixtures, û k , ĥ k  and ŝk can be determined.



i. Remarks
Maxwell’s relations can be obtained using Eqs. (31)–(34). These relations are similar

to those for pure components.
Consider the derivative (∂/∂Ni(∂V/∂T)P, N N N Nj i K1 2, ,..., ,...,≠

) T, P, N N N Nj i K1 2, ,..., ,...,≠
. Switching or-

der of differentiation, the expression equals the term

(∂/∂T(∂V/∂Ni)T, P, N N N Nj i K1 2, ,..., ,...,≠
)P, N N N Nj i K1 2, ,..., ,...,≠

 = ∂ v̂ i/∂T.

Likewise,

(∂/∂Ni(∂S/∂T)P, N N N Nj i K1 2, ,..., ,...,≠
) T, P, N N N Nj i K1 2, ,..., ,...,≠

 = T ∂ ŝ i/∂T = ĉpi, (40)

which is again an expression that is similar to that for a pure substance.

6. Ideal Gas Mixture

a. Volume
Since gases are ideal, there are no intermolecular forces.  Hence an ideal gas v̂ k = vk,

and, hence,

V(T, P, N1, N2, ...) = Σk vk(T, P) Nk.

Using the ideal gas law for each component,

V(T, P, N1, N2,...) = Σk( R T/P)Nk = V1 + V2 + ... = N( R T/P). (41)

Equation (41) is a representation of the law of additive volumes. For a mixture the relation
assumes the form

PV = N R T = (N1 + N2+ ...) R T. (42)

Equation (42) suggests that

(∂V/∂Nk)T, P, N N N Nj k K1 2, ,..., ,...,≠
 = v̂ k = R T/P = vk. (43a)

Therefore,

v ig = ΣkXk v̂ k = ΣkXk vk (43b)

b. Pressure
Another form of Eq. (42) is

P = N1 R T/V + N2 R T/V + ... = p1(T,V,N1) + p2(T,V,N2) + … . (44)

If each component alone occupies the whole volume, the pressure exerted by component k is
pk=Nk R T/V (which is called component pressure and is the same as the partial pressure for
ideal gases). Then the pressure exerted by the mixture

P = Σkpk(T,V,Nk), (45)

which is also known as Dalton’s law of additive pressure.

e. Example 6

using the ideal gas mixture model at 1 bar and 298 K.
Solution

The mixture consists of 0.5, 2.5, 1.5 and 2 kmole of C3H8, O2, CO2 and H2O, respec-
tively.

Partially combusted products consist of propane (C3H8): 0.5, O2 : 2.5, CO2: 1.5,  and
H2O: 2 kmoles  at T = 298 K and P= 1bar. Determine the partial molal volume of CO2



V = ( R T/P) ΣkNk, and

v̂ CO2
 = (∂V/∂N CO2

)T, P, N N N Nj k K1 2, ,..., ,...,≠
 = R T/P = v

 = 0.08314×298÷1 = 24.78 m3 kmole–1, and is the same for all species.

Thus V = vN= 161.07 m3.
If a room contains the mixture at T and P, we can hypothesize that 0.5  kmole (i.e.,
3×1026 molecules) occupies 12.39 m3 while O2 occupies 61.95 m3.

c. Internal Energy
The internal energy of a system is the combined energy contained in all of the mole-

cules in the system. In ideal gases the internal energy of a species in a mixture equals its en-
ergy in a pure state at the temperature and total pressure of the mixture. Therefore,

U0(T,N) = Σk uk,0(T) Nk. (46)

Eq. (46) is known as Gibbs-Dalton (GD) law Dividing throughout by N

u0(T,X) = ΣkXk u0(T) (47)

d. Enthalpy
Since

H0 = U0 + PV0, (48)

as before,

H0(T,N) = Σk hk,0(T)Nk

hk(T)  = uk,0 + P vk = uk,0 + R T, ideal gas (49a)

Similarly

h0(T) = ΣkXk hk,0(T) (49b)

e. Entropy
Two gases A and B are contained in a chamber on two sides of a rigid partition in

volumes VA and VB at specified values of temperature and pressure. The partition is removed
and the gases are allowed to mix in a volume V, but the pressure and temperature are un-
changed. For an ideal gas

dS = NB c v,odT/T + NB R (dV/V).

A change in volume occupied by, say, species B from VB to V (e.g., if there are two adjacent
rooms with O2 and N2 in each room and if the partition between them is removed, the N2 now
occupies a larger volume making more quantum states available for energy storage) results in
an entropy change at same temperature. Then,

SB, mix (T,V, NB) – SB (T, VB , NB) = NB R ln(V/VB).

The volume V = N R  T/P and VB =NB R  T/P, i.e.,

S – SB = NB R ln(V/VB).

The volume V = N R  T/P and VB =NB R  T/P, i.e.,

SB mix (T,V, NB) – SB (T,VB, NB) =NB R ln(N/NB) = –NB R ln(XB).

Dividing by NB,



ŝB(T, P, XB) – s B(T, P) = – R ln(XB).

Further,

SB,final – SB,initial =NB R ln(N/N´) = –NB R ln(XB), i.e., 

ŝB(T, P, XB) – s B(T, P) = – R ln(XB). (50)

Similarly ˆ ( , , ) ( , ) lnS T P X S T P R XA A A A− = − . Since Xk  < 1, ŝk > s k, indicating that mixing
causes the entropy to increase. The mixture entropy

Sig = S0 = NB ŝB (T, P, XB) + NA ŝA(T, P, XA). (51)

Recall that

s (T, P) = so(T)– R ln(P/1), i.e., ŝk(T, pk) = s k
o(T)– R ln(pk/1), where (52)

s c T dTk p k o
T

T

ref

0 = ∫ ( / ), , . (53)

Now we will generalize Eq. (51) for several components in a mixture and add a subscript “0”
to denote that the gas is ideal, i.e.,

S0(T, P, N) = Σk ŝk0 Nk, and s  = S0/N = Σk ŝk0Xk, or (54)

S0 (T, P, N) = Σk ŝk0(T, pk) Nk, and s  = S0/N = Σk ŝk0 (T, Pk) Xk, and (55)

s  =  Σk ŝk Xk = Σk ŝk(T, Pk) Xk = Σk( ŝk(T, P) – R  lnXk) Xk. (56)

f. Gibbs Free Energy
The Gibbs free energy G = H– TS so that

ĝ k = ĥ k – T ŝk. Then

ĝ k,0 = µk,0 = hk,0 – T( s k,0(T, P) – R  ln Xk) = gk,0(T, P) + R  T ln Xk. (57)

In mixtures, as Xk increases, so does ĝ k, since RT ln Xk < 0. The property ĝ k is a measure of
the free energy or availability of the k–th species in the mixture. Rewriting,

g0 = ΣkXk ĝ k,0(T, P,X1,Y2,…)=ΣkXk gk,0(T, Pk)=ΣkXk( gk,0(T, P)+ R T lnXk). (58)

f. Example 7

bar. What is this chemical potential N2 species in the mixture?
Solution

Recalling that partial molal Gibbs function is same as chemical potential, and omit-
ting the subscript “o”
µ N2

,.mix = µ N2
(298, 2 bar) + RT ln X N2

             = 298 – 298×(ln(298÷273) – 0.297×ln(2÷1)) + 0.297×298 ln(0.6)

A mixture contains 60% N2 and 40% O2 at 298 K and 2 bar. The mixture is placed in
a cylinder A that is connected by a rigid semipermeable membrane to another cylin-
der B that contains pure N2 at 298 K. Cylinder B is maintained at constant pressure
through  a piston with adjustable weights. When the pressure in cylinder B is rela-
tively low, N2 is transferred from A to B. As the pressure in cylinder B is raised (by
placing weights on the piston), the transfer of N2 from cylinder A to B ceases at 1.19



             = 333.2 – 45.2 = 288.0 kJ per kmole of N2

7. Ideal Solution

a. Volume
A liquid mixture in which all of the components are miscible at the molecular level is

called an ideal solution, provided the following condition is satisfied, i.e.,

v̂ k = vk, and v id = ΣkXk vk
id = ΣkXk vk. (59)

In an ideal solution, the forces between the unlike  molecules are assumed to be the same as
those between like molecules.

b. Internal Energy and Enthalpy
In ideal mixture of liquids or real gases,

h id = ΣkXk hk, and (60)

u id = h id –  P v id = ΣkXk( hk – P vk). (61)

c. Gibbs Function
At a specified temperature, the change in the Gibbs free energy of a pure component

(i.e. when it is alone at T and P) is given as  (Chapter 7)

d gk  = vk(T, P) dP, i.e., (a)

If the composition and temperature in a mixture are held fixed and the pres-
sure is altered then applying  Eq.(31)  for k in a mixture

d ĝ k = v̂ k (T, P, Xk) dP (62a)

Then from Eqs. (a) and (62a)

d( ĝ k– gk) = ( v̂ k(T, P, Xk) – vk(T, P))dP. (62b)

If a mixture of fixed composition is subjected to an incremental pressure dP, and the pure
component is also subjected to the same pressure increment, this expression provides the dif-
ference between two Gibbs function ĝk and gk due to difference in v̂k and vk . For example,
H2O in the solution is compressed from 200 to 250 kPa, with v̂H O2

 = 0.015 m3 kmole–1, dgH O
ˆ

2

= 0.75 kJ kmole-1. On the other hand, vH2O = 0.018 m3 kmole-1  and d g  H2O = 0.9 kJkmole-1.
Integrating

ĝ k – gk = ∫( v̂ k – vk)dP + f(T, Xk).

In an ideal solution at any temperature and pressure, v̂ k = vk and hence

ĝ k
id – gk = f(T, Xk).

As P→0 at a specified temperature and composition the same relation should hold good.

Hence ĝ k
id and gk approach their corresponding values in an ideal gas. Therefore, f(T, Xk) =

R T ln Xk. consequently, in an ideal solution

ĝ k
id = gk(T, P) + R T ln Xk or ĝ kid - gk (T, P)  =  R T ln Xk. (62c)

d. Entropy
Since,



ĝ k
id = ĥ k – T ŝk(T, P, Xk) = ĥ k – T s k(T, P) + R T ln Xk i.e.,

then

ŝk(T, P, Xk) = s k(T, P)– R  ln Xk. (63)

The entropy of the ideal mixture is

Sid (T, P, N) = Σk s k(T, P, Xk)Nk, and s id = Sid/N = Σk s k(T, P, Xk)Xk. (64)

g. Example 8

in the liquid is 0.001, what is the entropy of H2O in the lake water?
Solution

Air consists of O2 and N2 molecules that have weak attractive forces between them-
selves in the atmosphere. However once these molecules enter liquid water, they are
surrounded by H2O molecules which exert strong attractive forces and hold the gas
molecules in the liquid phase. Thereby, small amounts of air become dissolved in liq-
uid water.
ŝ H O2

 (25ºC, 1 bar, 0.999) = s H O2
(25ºC, 1 bar) – R  ln X H O2

.

Pure water exists at 25ºC and 1 bar as a compressed liquid. We will assume that the
liquid is incompressible and that s H O2

(25ºC, Psat = 0.032 bar) = s H O2
(25ºC, 1 bar) =

6.621 kJ kmole–1 K–1. Therefore,
ŝ H O2

 (25ºC, 1 bar, 0.999) = 6.621 – 8.314 × ln 0.999 = 6.629 kJ kmole–1.

8. Fugacity

a. Fugacity and Activity
As in Chapter 7 we define the fugacity for a component as

d gk  = R T d (ln fk(T, P)) (65)

In analogy with the pure component (Eq. (65)), we can write Eq. (62a) in the form

d ĝ k = v̂ k dP = R T d ln ( f̂ k(T, P, Xk)). (66)

The fugacity of species k in the mixture f̂ k is different from fk since v̂ vk k≠ . Note  that  f̂ k  is
not  the partial molal fugacity of the k–th species in the mixture.

If v̂ k(P, T, Xk) is known, Eq. (66) may be integrated at a given composition to obtain
f̂ k (T, P). Subtracting Eq. (66) from Eq. (65)

d( ĝ k – gk) = R T d(ln ( f̂ k(T, P,Xk)/fk(T, P))) = ( v̂ k (T, P,Xk) – vk(T, P))dP. (67)

We introduce the activity of the k–th species in the mixture

α̂ k = ( f̂ k(T, P, Xk)/fk(T, P)), (68)

α̂ k = fugacity of species k in the mixture ÷ fugacity of pure species k. (69)

Note that fugacity of k in mixture depends upon concentration. Generally, the species k is pre-
sumed to be more active in the mixture if its concentration is higher. The activity could also be
different if intermolecular forces between dissimilar molecules are different from those of
similar molecules. Substituting with Eq. (68) in Eq. (67), and integrating the results at a speci-
fied temperature,

ĝ k(T, P,X1,X2..) – gk (T, P) = R T ln α̂ k + f(T). (70)

Lake water at 25ºC and 1 bar absorbs air from the atmosphere. If the air mole fraction



Since the above equation is applicable even when k exists in large amounts at which
ˆ , ˆ .g gk k k→ →α 1 0 then f(T) =0, and

ĝ k(T, P,X1,X2..) – gk (T, P) = R T ln α̂ k= ∫ ( v̂ k (T, P,Xk) – vk(T, P))dP (71)

Note that if ( v̂ vk k− ) is known as a function of P. Then  ( ĝ gk k− ) and hence α̂ k can
be obtained as a function of T, P, Xk. The partial molal Gibbs function of a species  is very
important in determining the condition for its phase equilibrium (cf. Chapter 9) in a multicom-
ponent mixture and as well as at chemical equilibrium (cf. Chapter 12). The fugacity is a useful
property. For instance, since the chemical potentials  µ k = ĝ k equal one another for the vapor

and liquid in multiphase systems, i.e., f̂ k,liq = f̂ k,vapor. The value of the Gibbs function is nor-
mally a large negative number (g→(–∞) when Xk→0 and g→0 as Xk→1), particularly for

chemically reacting species, but the corresponding fugacity values lie between zero and unity.

b. Approximate Solutions for ĝ k

In order to determine the value of  ĝ k, we require the values of pure properties and
activities. Here, we present some approximate schemes to evaluate ĝ k.

i. Ideal solution or the Lewis–Randall Model
For an ideal mixture,

ĝ k
id(T, P, X1, X2, ...) – gk(T, P) = R T ln α̂ k

id. (72)

Using  Eqs. (62c), (68) and (72),

α̂ k
id = f̂ k

id(T, P, Xk)/fk(T, P) = Xk, i.e., (73a)

f̂ k
id(T, P, Xk) = Xk fk(T, P). (73b)

Equation (73b) is known as the Lewis–Randall (LR) Rule, which assumes that v̂ k = vk. Errors
due to the model are lowest for adjacent homologous series, e.g., n–hexane and n–heptane, and
methanol  and  ethanol. Line AC in Figure 4 illustrates the LR model for H2O: N2 mixture.

ii. Henry’s Law
The ideal solution model for component 1 of a binary mixture oftentimes fails when

X1→0, i.e., when species 1 is surrounded by a large amount of species 2. Consider a mixture of

3 mole percent of H2O (component 1) and 97 % (mole %)  of N2  (component 2) at 1 bar and
300 K. Under these conditions, water (component 1) exists as a vapor in the mixture. The rela-
tion f̂ 1

id = X1 f1(300 K, 1 bar) = f1(300 K, Psat) + v f(1 – Psat)/( R T) yields liquid–like fugacities
(see Chapter 7 for fk). This is clearly inappropriate for the H2O  which exists as vapor in the
mixture. Since there are very few water molecules in the mixture, the  N2 molecules impose the
force fields in the H2O–N2 mixture which are negligible attractive force fields. Therefore, the
water exists in vapor form in the mixture. At low values of X1, the actual fugacity of compo-
nent 1 in the mixture corresponds to that of gaseous H2O.

We can obtain (d f̂ 1/dX1) at low values of X1 (e.g., slope at A for curve AEC in Figure
4) assuming that this gradient is constant and determine the value of f̂ 1, a method known as
Henry’s Law (HL), i.e.,

f̂ 1
id(HL) = X1(d f̂ 1/dX1) x1 →0. (74)

Line ADB represents f̂H O
HL

2
 in a H2O–N2 mixture, which is valid when X H O2

→0. The extrapo-

lated fugacity of H2O at B is called a hypothetical fugacity at X H O2
=1 and is obtained from

HL. Note that when water exists at low concentrations at 25ºC and 1 bar, the water in the
mixture may exist as a gas while at high concentrations it may exist as liquid with N2 dissolved



in liquid. Similarly we can use the slope at point C to determine f̂H O
HL

2
 when X N2

→0. Henry’s

Law accurately predicts the fugacity of a component k when Xk→0, while the Lewis-Randall

Rule predicts f̂ k reasonably well when Xk→1.

c. Standard States
Instead of expressing ĝ k in terms of gk(T, P), we can express ĝ k in terms of g(T,

Po), where Po denotes a reference pressure. If we add and subtract gk(T, Po) to the LHS of Eq.
(71), then

ĝ k(T, P,Xk) – gk(T, Po) – ( gk(T, P) – gk(T, Po)) 

          = ĝ k(T, P,Xk) – gk(T, Po) – R T ln (fk(T, P)/fk(T, Po)) = R T ln α̂ k, i.e.,

 ĝ k(T,P,Xk)– gk(T,Po) = R T ln (fk(T,P) α̂  k/fk(T,Po))= R T ln( f̂ k(T, P)/fk(T,Po)).(75)

If we choose Po = 1 bar, then Eq. (75) assumes the form

ĝ k(T, P,Xk) – gk(T,1) = R T ln ( f̂ k(T, P)/fk(T,1)). (76)

Alternately, sometimes the standard state can be selected for species k in a mixture it-
self rather than for the pure component at T, Po, i.e., in the context of Eq. (75) P = Po for the
k–th species in the mixture. Consequently,

ĝ k (P
o, T) – gk(T, P) = R T ln α̂ k (T, Po; T, P), where (77)

α̂ k (T, Po; T, P) = f̂ k(T, Po)/fk (T, P). (78)

Subtracting Eq. (77) from Eq. (71) ,

ĝ k (T,P, Xk)– ĝ k(T, Po)= R T ln( α̂ k(T,P)/ α̂ k(T,Po; T, P) = R T ln ( f̂ k(T, P)/ f̂ k(P
o,T)). (79)

The state (Po,T) is called the standard state of component k in the mixture. Typically Po=1bar.
We have discussed four possible ways to express ĝ k(T, P) in terms of the Gibbs

function of (1) a pure component at specified T and P (cf. Eq. (71)); (2) for a pure component
at (T, Po) (cf. Eq. (75)); (3) for a pure component at (T, 1 bar) (cf. Eq. (76)); and (4) for the
k–th species in mixture at (T, Po) (cf. Eq. (79)).

HLid
OHf ,

2
ˆ

B

LRid
OHf ,

2
ˆ

Figure 4: Illustration of  Lewis Randall Rule and Henry’s Law for the
estimation of fugacity.



i. Gas Mixtures
In the context of Eq.(76), if the mixture consists of real gases and the component k is

a gas in its pure state at any temperature and pressure,
ĝ k(T, P, Xk) – gk,o(T, 1) = R T ln (fk(T, P) âk/1).

For an ideal mixture of real gases âk = Xk, i.e.,

ĝ k(T, P, Xk) – gk,o(T, 1) = R T ln (fk(T, P) Xk /1). (80)

For an ideal gas mixture at fk(T, P) = P, i.e.,

ĝ k(T, P, Xk) – gk,o(T, 1) = R T ln (P Xk/1) = R T ln(pk/1). (81)

ii. Liquid Mixtures
For a liquid mixture, the standard state can be chosen for the pure liquid component at

any temperature, but at atmospheric pressure. Applying Eq. (76),

ĝ k(T, P, Xk(l)) – gk(T, 1) = R T ln (fk(l) (T, P) α̂ k(l)/fk(T,1)). (82)

The Poynting correction can be used thereafter to simplify this expression for fk(T,1) (cf.
Chapter 7) in terms of saturation properties. The procedure for solid mixtures is similar to that
for liquid mixtures.

d. Evaluation of the Activity of a Component in a Mixture.
We have discussed how to determine the value of ĝ k

id for ideal solutions (Eqs. (72)
and (62c)) For non ideal mixtures, if a relation for v̂ k in terms of Xk, T, and P is available, then
a relation for ĝ k(T, P,Xk) can be obtained (Eqs. (62a) and (71).  Recall from Eq. (62c)

ĝ k
id– gk = R T ln Xk. (62c)

Further, from Eq. (71)

RT v v dPk k kln ˆ (ˆ )α = −∫ , (71)

and the activity α̂ k = f̂ k(T, P)/fk (T, P). can be obtained as a function of T, P, Xk.

e. Activity Coefficient
Subtracting Eq. (62c) from Eq. (71), we obtain the relation

ĝ k – ĝ k
id = R T ln ( α̂ k/ α̂ k

id) = R  T ln γk, (83)

where the activity coefficient γk is defined as

γk = α̂ k/ α̂ k
id (84)

γk = ( f̂ k/(Xk φk P)) = ( φ̂k/ φk), where  (85)

φ̂k = f̂ k/(Xk P).  (86)

While activity includes the effects of concentration and intermolecular forces between dis-
similar molecules (component k in mixtures), the activity coefficient separates the effects of
concentration on the activity. Thus, the activity coefficient is strongly dependent upon the de-
gree of intermolecular forces. Rewriting Eq. (83).

ĝ k – ĝ k
id = R  T ln  (γk) = R  T ln  ( φ̂k/ φk)  (87)

If the ideal state is selected as that for an ideal gas,



ĝ k – ĝ k,o = ĝ k
Res = R  T ln  ( φ̂k),  (88)

since φk = 1 for an ideal gas.

We will now relate the fugacity coefficient φ̂k in terms of Z.  Multiplying Eq. (88) by
Nk,

G- G0 = Σ R  T   Nk ln  ( φ̂k)  or  g  - g  
0 =  Σ R  T Xk  ln ( φ̂k).  (89)

Define

N ln φ =  ΣNk ln  ( φ̂k), so that  (90a)

 ln φ = Σ X k ln  ( φ̂k).  (90b)

Then Eq. (89) assumes the form

G- G0 = Σ R  T Nk ln   ( φ̂k) = R  T N ln φ, or g  - g  
0 = R  T ln φ.

Differentiating with respect to Nk and using Eqs. (90a) and (90b),

(∂(N ln φ)/∂Nk)T,P, nj=  ln φ +  N (∂(ln φ)/∂Nk)T,P, nj , i.e.,

(∂ (N ln φ) /∂Nk)T,P, nj    =ln  ( φ̂k)  (91)

Recall from Chapter 7 that

ln φ = ∫0
P(Z-1) dP/P.  (92a)

Multiply Eq. (91a) by N and differentiate with respect toNk,

ln  ( φ̂k) =(∂ (N ln φ)/∂Nk)T,P, nj = (∂/∂Nk)(∫0
P(NZ-N) dP/P)(∫0

P( Ẑk -1) dP/P), (92b)

where (∂/∂Nk)(NZ)= Ẑk, since Ẑk  = (∂/∂Nk)(NZ)=(∂/∂Nk)(PV/ R  T)= v̂ k/ ( R  T/P) = v̂ k/ vko

= v̂ k/ vo = specific volume of  k-th component in the mixture /ideal gas specific volume  of the
same component.

f. Fugacity Coefficient Relation in Terms of State Equation for P
Recall that G = A+ PV, i.e.,

G- G0 = Σ R  T  Nk ln ( φ̂k) = A(T,P,N) - A0 (T,P, N) + (PV – N R  T)  

         = A(T,V,N) - A0 (T,V,N) – N R  T ln Z + (PV – N R  T)

                 = -∫∞
V(P- NRT/V) dV - N R  T ln Z + (PV – N R  T).  (93)

Differentiating Eq. (93) with respect to Nk,

  R  T Ln  ( φ̂k) = -∫∞
V(∂P/∂Nk - R T/V) dV - (P – N R T/V) (∂V/∂Nk) 

- R  T ln Z - N R T ∂/∂Nk (ln Z) + P (∂V/∂Nk) – R T)

=∫∞
V(∂P/∂Nk - R T/V) dV +  (N R T/V)( v̂ k) 



- R  T ln Z - N R T(∂/∂Nk) (ln Z)  – R T.

Since ln (Z) = ln (PV/N R T), then, ((1/Z)((∂Z/∂Nk) = ( v̂ k /V – 1/N), and

R T ln ( φ̂k)  = -∫∞
V(∂P/∂Nk - R T/V) dV + (N R T/V) ( v̂ k)

                               - R T ln Z - N R T ( v̂ k /V – 1/N)– R  T), i.e.,

R  T ln ( φ̂k)  = ∫∞
V(∂P/∂Nk – ( R T/V)) dV - R T ln Z  (94)

g. Duhem– Margules Relation

i. Multiple Components
At a specified temperature and pressure, the Gibbs–Duhem Equation (after multiply-

ing Eq. (13) by N) yields the expression

N1 d ĝ 1 + N2 d ĝ 2+ ... = 0.  (95)

Using the definition

ĝ k = ĝ k
id + R T ln γk, where ĝ k

id = gk (T, P) + R T ln Xk,

we obtain the relation

ĝ k = gk (T, P) + R T ln (Xk γk) (96)

Using Eq. (96) in the Gibbs–Duhem Equation (95), one obtains the Duhem–Margules Relation
at given T and P , i.e.,

ΣkNk d ln (Xkγk) or ΣkXk d ln (Xkγk) = 0. (97)

ii. Binary Components
In a mixture containing two components,

N1 d( g1+ R T ln (X1γ1)) + N2 d( g2 + R T ln (X2γ2)) = 0, i.e.,

N1 d ln(X1γ1))+N2 d ln (X2γ2)) = X1(d ln X1+d ln γ1) + X2(d ln X2+d ln γ2) = 0, or

X1 dX1/X1 + X1 d ln γ1 + X2 dX2/X2 + X2 d ln γ2 = 0.

Since X1 + X2 =1, dX1 + dX2 =0. Therefore,

X1 d ln γ1+(1–X1) d ln γ2=0, i.e., X1d/dX1(ln γ1) dX1 + X2 d/dX1(ln γ2)dX1=0, or

X1 (d/dX1) (ln γ1)  =  X2 (d/dX2) (ln γ2) = 0. (98)

Recall that γ k = f̂ k/(Xk fk(T, P)), i.e.,

X1 (d/dX1) (ln f̂ 1)  =  X2 (d/dX2) (ln f̂ 2) = 0.

With X2 = 1- X1,

X1 (d/dX1) (ln f̂ 1)  =  - (1-X1)) (d/dX1) (ln f̂ 2) = 0. (99)



We will see later that for ideal gas mixtures f̂ k = pk  . Thus if we know the experimental value
of the partial pressure p1 (or f̂ 1) and its variation with X1, then the variation of p2 (or f̂ 2) with
respect to X1 is provided by Eq. (99).

h. Ideal Mixture of  Real Gases
In an ideal mixture of real gases,

( f̂ k
id/ fk)) = Xk  = α̂ k

id  i.e., f̂ k
id = Xk fk  = Xk φk P, where (100)

α̂ k 
id = Xk, and γ k

 id = 1 (101)

The activity of k–th species in an ideal  mixture of real gases equals its mole fraction in the
mixture.

i. Mixture of Ideal Gases
In an ideal gas, φk = 1, and fk = P. Therefore,

f̂ k
ig  = P Xk = pk, (102)

which is the partial pressure of the k–th species. The activity of the k–th species in a mixture of
ideal gases equals its mole fraction in the mixture, and its fugacity equals its partial pressure.

h. Example 9
Determine f O2

for pure oxygen at 100 bar and 200 K, and f̂O
id

2
and 

and 20% O2 mixture at 300 K and 100 bar.
Solution

At 100 bar and 200 K, PR = 100÷50 = 2, and TR = 1.3. From the fugacity charts φ O2
 =

0.75, and
f O2

 = φ O2
 P = 75 bar.

Recall that
( g O2

(T, P) – g O2 ,o (T, P))/ R T = ln (φ O2
) = –0.288.

The value of  gO2 of a real gas is lower than in an ideal gas.
At 300 K and 100 bar, the activity.
α̂ O

id

2
 = f̂O

id

2
/f O2

 = X O2
f O2

/f O2
 = X O2

 = 0.2, and

f̂O
id

2
 = 0.2×75= 15 bar.

Remarks
The value of the partial Gibbs function
of oxygen ĝ O2

 in the mixture is lower

than in its pure state.

Example 10

and 100 kPa, and at 25ºC and 100 kPa.
Solution

Since the pressure is low, we expect
each gas to behave as an ideal gas in its
pure state. Therefore, at 160ºC and 100
kPa,
Hid  = 3 h1 (433 K ,100 bar) + 97 h2

(433 K ,100 bar), where
Figure 5: Schematic illustration of actual
and hypothetical states.

Determine the enthalpy Hid for a mixture
containing  3 kmole of H2O (species 1)
and 97 kmole of N2 (species 2) at 160ºC

α̂ O
id

2
 in an 80 % N2



h1 = 2796.2 kJ kg–1 × 18.02 kg kmole–1 = 50387 kJ kmole–1 (Steam Tables A-4 C).

h2 = 433 kJ kg–1 × 28.97 kg kmole–1 = 12544 kJ kmole–1.9  (or use  N2 Tables ,  A-

16)
Therefore,
Hid = 3 × 50,387 + 97 × 12,544 = 1,342,000 kJ.

At 298 K and100 bar, water exists as a liquid when in its pure state, but in the mixture
it exists as a vapor. We will specify
Hid  = 3 h1(298 K, 100 bar, liquid) + 97 h2(298 K, 100 bar)
       = 3 × 105 × 18.02 + 97 × 298 × 28.97 = 843000 kJ.

If we use a hypothetical ideal gas state for pure water at 25ºC and 100 kPa, then
Hid  = 3 h1(298 K, 100 bar, ideal gas) + 97 h2(298 K, 100 bar)
       = 3 × 18.02 × 2547 + 97 × 28.97 × 298 = 975000 kJ.

Remarks
It is more accurate to determine Hid using enthalpies of pure components in the same
state as they exist in a mixture. We have defined a hypothetical state to determine the
pure substance property to account for the phase change from the “natural phase” of
the pure state. This process is schematically illustrated in Figure 5. The fugacity can
be likewise determined.

i. Example 11

vs = 193.12 l kmole–1, vw = 18 l

work required to produce the pure water ?
Solution

v  = v̂w Xw + v̂ s Xs (A)

For an ideal solution v̂w = vw , v̂ s = vs. Therefore, the specific volume of sea water
v  = 18 L × 0.989 + 193.12 × 0.011 = 19.93 l kmole–1.

Ẇopt = (Σk Ṅk  
)ψ k)i – (Σk Ṅk  

)ψ k)e, i.e., (B)

w opt = ψ sw – (Xw
)ψ w(T, P) + Xs 

)ψ s(T, P)), and (C)

ψ sw = Xw ψ̂ w(T, P, Xw) + Xs ψ̂ s(T, P, Xs). (D)

Recall that

ψ̂ k (T, P, Xk) = ĥ k(T, P, Xk) – To ŝk(T, P, Xk).
For an ideal solution

ψ̂ k
id(T, P, Xk) = hk(T, P) – To ( s k(T, P) – R  ln Xk) = ψ k(T, P) + R To ln Xk. (E)

Using Eq. (E) in Eq.(D),

ψ sw = Xw( ψ w(T, P) + R To ln Xw) + Xs ( ψ s (T, P) + R To ln Xs). (F)

Substituting Eq. (F) in  Eq. (C) ,we obtain the relation
w opt = Xw R To ln Xw + Xs R To ln Xs  = R To(Xw ln Xw + Xs ln Xs),

Determine the specific volume of sea water (1.1% NaCl2 or common salt on mole ba-
sis) based on the ideal solution model. Assume that 
kmole–1 (cf. Figure 5), where the subscripts s and w, respectively, denote salt and
water. We will use the subscript sw to denote sea water. We wish to separate the sea
water into pure water and salt. What is the amount of work required to produce pure
water from a kmole of sea water at 298 K? Assume an ideal solution model. If a very
large amount of sea water is processed to produce a kmole of pure water (accompa-
nied with a negligible change in composition in the remaining sea water), what is the



Since Xs = 0.011, Xw= 0.989,
w opt =  8.314×298×(0.989×ln 0.989 0.011×ln  0.011)

         = -150 kJ per kmole of sea water or -152  kJ/kmole of pure water.
Note that there is complete separation of water and salt here.
Suppose d Ṅw,pure  is small amount of pure water flow rate leaving the unit. Then

δ Ẇopt=(Σk Ṅk ψ̂ k)i–(Σk Ṅk ψ̂ k)e=( Ṅ sw,i ψ sw,i)–( Ṅw,e ψ̂ w,e+ Ṅ s,e ψ̂ s,e)

          –(dNw,pure ψ w,pure). (H)

 Since Ṅw,e = Ṅw,i – d Ṅw,pure, and Ṅ s,e = Ṅ s,i, then,

Ẇopt = ( Ṅw,i ψ̂ w,i + Ṅ s,i ψ̂ s,i)–( Ṅw,i ψ̂ w,e + Ṅ s,i ψ̂ s,e)

          + d Ṅw,,pure ψ̂ w,e–d Ṅw,pure ψ w,pure. (I)

Furthermore, since the composition change is negligible, ψ̂ w,e  ≈ ψ̂ w,i, ψ̂ s,e ≈ ψ̂ s,i ;

Eq.(I) assumes the form,

δ Ẇopt = d Ṅw,pure ( ψ̂ w,e– ψ w,e) = d Ṅw,pure ( ψ w,e + R T ln Xw,e – ψ w,e)

           = d Ṅw R T ln Xw,e, i.e.,

δ Ẇopt/d Ṅw,pure = R T ln Xw,e = 8.314 × 298 × ln(0.989)

                          ≈ –27.40 kJ kmole–1 of pure water.

Note that there is no complete separation of salt from sea water. Thus, the salt con-
centration in sea water leaving the system is higher.

j. Relation between Gibbs Function and Enthalpy
Recall from Chapter 7 that

gk – gk,o = R T ln fk/P, i.e., ∂(( gk – gk,o)/ R T)/∂T = ∂/∂T(ln fk/P). (103)

Furthermore,

gk/T = hk(T, P)/T – sk(T, P), i.e., ∂/∂T (gk/T) = ∂/∂T (hk/T) – ∂sk/∂T, and

T dsk + vk dP = dhk, i.e., T ∂sk/∂T = ∂hk/∂T.

Following Eq. (27) of Chapter 7 and applying for k the component in a mixture,

∂/∂T( ĝ k/T) = ∂/∂T( ĥ k/T) – (∂ ŝk/∂T) 

= ∂/∂T( ĥ k/T) – (1/T) (∂ ĥ k/∂T) =– ĥ k/T
2, i.e., (104)

∂/∂T (( ĝ k – gk,o)/ R T) = –( ĥ k – hk,o)/T
2. (105)

Since d ( ĝ k – gk,o) = d ln( f̂ k/P),

 ∂/∂T (ln ( f̂ k/P)) = – ( ĥ k – hk,o)/RT2.  (106)



k. Excess Property
The difference between the actual property of a mixture and the corresponding prop-

erty if it is considered as an ideal mixture is called the excess property. For instance, the excess
volume

VE = V–Vid=ΣkNk v̂ k–ΣkNk vk = ΣkNk( v̂ k– vk) = N v–N v id  = N( v– v id), and (107)

vE = v  – v id, i.e., VE  = N vE. (108)

At a specified temperature and pressure vk remains unchanged, and the change in the
excess property due to a change in the number of moles of a substance is

dVE = dV – ΣdNk vk, or (109)

vE = Σk v̂ k Xk – Σk vk
id Xk , i.e., (110)

vE = ΣkXk( v̂ k – vk
id), so that (111)

vE = Σk vk
E Xk, where (112)

v̂ k
E = ( v̂ k – v̂ k

id). (113)

Then for any extensive property B, the excess property is defined as,

ˆ (ˆ ˆ )b b bk
E

k k
id= − .

Likewise, if two pure components are mixed, then the corresponding Gibbs free en-
ergy change is called the free energy of mixing. The excess Gibbs function GE can be deter-
mined in terms of the state (T, P, Xk). We can also determine the excess enthalpy and entropy
of a nonideal mixture. For instance,

gE = g  – g id = ( h  – h id) – T( s  – s id), where (114)

∂( gE/T)/∂(1/T) = hE (cf. Eq. (27), Chapter 7). (115)

Similarly,

(∂ gE/∂P)T = vE, and  - s E = (∂ gE/∂T)P, i.e., (116)

ĝk
E =∂GE/∂Nk = ∂(N gE)/(∂Nk) =  ˆ ˆg gk k

id− = R T ln  γ k (117)

The Margules correlation for gE in a binary mixture is given by the relation

gE/ R T = X1 X2  (A12 X2 + A21 X1)= X1 (1–X1) (A12 (1–X1) + A21 X1),

where A12 etc are generally functions of T and P.  Expressing in terms of moles

GE/RT = N gE/ R T =N1(N2/(N1+N2))(A12N2/(N1+N2)+A21N1/(N1+N2)) 

                = N1N2/(N1+N2)
2)(A12N2+A21N1).

Differentiating with respect to N1 and using Eq. (117)

((N2/(N1+N2)
2)–2N1N2/(N1+N2)

3)(A12N2 +A21 N1)+(N1N2/(N1+N2)
2)A21 = ln γ1.

This relation can be simplified, and the activity coefficient determined, i.e.,



ln γ1 = X2
2(A12 X2 + 2(A21–A12) X1), and ln γ2 = X1

2(A21 X1 + 2(A12–A21) X2).(118)

As X1→0, X2→1, and ln γ1
4 = A12. Likewise, as X2→0, then X2→1, and ln γ2

4 = A21.

We can solve for the constants A12 and A21 if the values of the activity coefficients are known
functions of concentration. Using the Equations (118),

A12 = ((ln γ2
2)/X1

2–(1–2X2)(ln γ1)/X2
2)/(4–(1–2X1)(1–2X2)), and (119a)

A21 = ((ln γ1
2)/X2

2–(1–2X1) (ln γ2)/X1
2)/(4–(1–2X1)(1–2X2)) (119b)

We will see later that liquid–vapor equilibrium data can be used to determine γk and, conse-

quently,  gE correlation and the constants A12 and A21 can be obtained. Thereafter, the excess
enthalpy can be determined. The enthalpy of mixing

∆ hmixing = hE = h  – h id = ΣkXk( hk – hk).

Then for any extensive property B,

bk 
E = (bk – bk

id). (120)

Similarly one may define UE, u  E, HE, h  E, GE and gE.
Since mixing can be endothermic or exothermic, the enthalpy of a mixture can change

compared to a corresponding ideal solution. Figure 6 illustrates excess enthalpy for ethanol-
water solution. The enthalpy of mixing describes the amount of heat that is removed or added
when a kmole of mixture is formed and maintained at the same temperature and pressure that
its pure components were. If H<Hid at that temperature and pressure, (e.g., the mixing of
H2SO4 and H2O), then heat must be removed during mixing; hence  the mixture contains a
lower enthalpy as compared to its pure components. Similarly, if HE>0, heat must be added,
e.g., during the mixing of methanol and benzene. One may also define the properties UE, u  E,
HE, h  E, GE SE, sE, and gE. In an ideal solution, all excess properties except for the excess

entropy and excess Gibbs function equal zero. In a regular solution, the excess entropy of
mixing is equal to zero. A regular solution is a non-ideal solution in which the excess entropy
increase (if any) is balanced by entropy decrease through energy removal from the mixture in
order to maintain the same temperature and pressure.

l. Osmotic Pressure
Consider a U tube that is partitioned into symmetrical columns A and B by a

semipermeable membrane that is permeable only to water (W), as illustrated in Figure 7. Dis-
tilled water (W) at 20ºC is poured into column A up to a height LA,1 and column B is filled
with sea water (S) at the same temperature to a height LB,1 = LA,1. (Ignoring density differ-
ences, the pressure on either side of the membrane is approximately equal.) Water molecules
will permeate from column A to column B and, consequently, the solution in B will become
diluted. At species equilibrium, the height in section A will decrease to LA,2, and that in section
B will increase to LB,2.

Water permeation occurs, since gW,A > ĝW,B at the initial state. For the distilled water
in Section B , ĝW,B

id = gW(T, P) + R T ln XW,B. The water mole fraction in column B, XW,B <
1 while for water in portion A,  gW(T, P) = gW,A(T, P). Therefore, ĝW,B

id< gW,A(T, P). As the
flow continues, ĝW,B increases due to increase in XW,B  and as well as slight increase in pres-
sure. The gW,A decreases since the pressure decreases. At equilibrium, ĝW,B = gW,A, the water
transport ceases. Note that volume displaced in column A may not equal the volume gain in
column B, since v̂W may not equal to vW unless the solution is ideal.

The product (LB,2–LA,2)ρB,2g is referred to as the osmotic pressure. It represents the

pressure required by the solution to maintain equilibrium with the solvent. In this case solution



in column B is dilute when equilibrium is reached as compared to the initial condition so that
ρB,2 ≠ ρB,1.

Instead of allowing distilled water to be transferred through the membrane, we can
place a piston on column B, thereby increasing the pressure in that column. If the pressure is
increased to the point when mass transfer ceases, the difference PB–PA equals the osmotic pres-
sure for the solution at the conditions (T, P, XW,B). The higher the solute concentration (or the
lower the solvent concentration XW,B), the larger is the osmotic pressure required to maintain
the species at equilibrium. Tap water has a lower salt concentration as compared to sea water.
Therefore, tap water has a lower osmotic pressure (is hypoosmotic) compared to sea water
(which may be  hyperosmotic).

Rainwater, which is almost as pure as distilled water, has negligible solutes, can per-
meate through the surfaces of leaves, which contain biological cell–sustaining solutions. As
water transport continues, the leaves swell, and, consequently, the pressure in the leaves in-
creases. At a critical value of the internal pressure, water permeation ceases due to species
equilibrium. A similar process occurs in the root of a plant where distilled water enters and
permeates to other parts of the plant containing solutions.

XCH3OH

hE,

kJ/kmole

Figure 6: Enthalpy of an ethanol–water solution. (from Smith and Van Ness,
Introduction to Chemical Engineering Thermodynamics, 4th Edition,
McGraw Hill Book Company, 1987, p. 431).



i. Ideal Solution
For the k–th component in an ideal solution, recall that

µ̂k(T, P, X1, X2, ...) = µk(T, P) + R T ln Xk. (121)

In an ideal solution of salt (s), sugar (su) and water (w),

µ̂w,B(T, PB, Xs, Xsu) = µw(T, PB) + R T ln Xw.

For incompressible liquids,

µ̂w,B(T, PB) = µw(T, PA) + vw(PB – PA). (122)

Using Eq. (122) in Eq. (121),

µ̂w,B (T, PB, Xs, Xsu) = µw(T, PA) + vw(PB – PA) + R T ln Xw. (123)

In the context of Figure 7,  at species equilibrium,

µ̂w,B(T, PB, Xs, Xsu) = µw(T, PA). (124)

Therefore, Eq. (123) assumes the form,

R T ln Xw = –vw(PB – PA), (125)

where (PB – PA) is the osmotic pressure, which prevents the mass transport across the mem-
brane.

If water is the dominant component in the solution, in that case

R T ln Xw = R T ln (1 – (Xs + Xsu)) ≈ – R T (Xs + Xsu)= – R T (1-Xw)

Using Eq. (125),

(PB – PA) = R T(1 – Xw)/vw, (126)

which is known as the van’t Hoff
relation for osmotic pressure. We
note from Eq. (126) that the higher
the solute concentration,  the larger
the osmotic pressure.

Rheological fluids in-
volving solutes and solvents are
used to minimize friction effects in
bearings. The oil bearings gener-
ally involve a pressure gradient,
which causes the local chemical
potentials to differ. Therefore, a
solute may move from a region of
higher potential to one of lower
potential. This results in irreversi-
bility and loss of work as energy is
lost due to the chemical damping
of the oscillations in the local con-
ditions. Another example pertains
to a diesel or gasoline liquid drop-
let, which consists of a solution of
several pure liquid hydrocarbons.
A species gradient within the liquid

Figure 7: (a) Salt water (in column B) and distilled wa-
ter (in column A) are separated by a semipermeable
membrane, (b) The flow of distilled water occurs from
column A into the salt water solution in column B, (c) a
possible method to prevent the transport of water from
column A to B by the application of pressure in column
B.



droplet can cause differences in the local chemical potentials causing diffusive mass transport
but resulting in irreversibility.

j. Example 12

CO2
in Section B. The weight in

perature as 273 K in estimating enthalpy and entropy of ideal gases.
Solution

For an ideal mixture of real gases in Section B

µ̂  id CO2
 (T,P X CO2

) = µ CO2 (T, P) + R T ln X CO2
, where (A)

µ  CO2 (T, P)= µ  CO2, o (T,P)+ R T ln φ. (Β)

We will now determine the value of φ.

TR = 320÷304 = 1.05 , PR = 100÷73.9 = 1.35 , and φ = 0.62. (C)

For the ideal gas state

µ  CO2, o = h  CO2, o – T s  CO2, o, where (D)

hCO2, o = c p,o(T – 273) = 10.08×(320 – 273) = 474 kJ kmole–1,

(or use Tables A-9) and
s  CO2, o = 10.08 × ln (320÷273) – 8.314 × ln(100÷1) = –36.686 kJ kmole–1 K–1

(or use Tables A-9)
Using these results in Eqs. (B) and (D),

µ  CO2, o = 474 – 320 × (–36.69) = 12214 kJ kmole–1, (E)

µ  CO2 (T, P)=12,214 + 8.314 × 320 × ln (0.62)= = 10942 kJ kmole–1, and (F)

µ̂ id
CO2 (320 K, 100 bar, X CO2

=0.4) = 10,929 + 8.314 × 320 ln(0.4)

                                                       =8505 kJ kmole–1.
At equilibrium

 µ̂ id
CO2 (320 K, 100 bar, X CO2

=0.4) in B = µ CO2
(320 K, P) in A (G)

= 8505  kJ kmole–1, where

µ CO2
(320 K, P)  = µ  CO2, o (320, P) + R T ln φ (320, P). (H)

Here, φ is evaluated using fugacity charts at 320 K and specified pressure. The proce-

dure is to assume a value for P (say, 30 bar), obtain the value of φ from the tables or

charts and assesss whether Eq. (G) is satisfied, and finally calculate µ CO2
(320 K, P)

from Eq. (H). For  P =30 bar
TR = 320÷304 = 1.05, PR = 30÷73.9 = 0.41, and φ = 0.89, i.e.,

s  CO2, o (320 K, 30 bar) = –26.7 kJ kmole–1 K–1.

 A rigid semipermeable membrane connects the mixture container B at 320 K, 100
bar  with another piston–cylinder assembly A, which contains pure CO2 also at a tem-

40% CO2 and  60% acetylene at 320 K. Determine µ
Section A is adjusted  that equilibrium is reached  between Sections A and B (i.e, ther
is  no flow of CO2).  Determine the required pressure P in Section A.
Assume cp0 = 10.08 kJ/kmole K (or see Table A-6C) and select the reference tem-

perature of 320 K but unknown pressure P. The section B  consists  of a mixture of



µ  CO2, o (320, 30) = 474 – 320 × (–26.7) = 9008kJ kmole–1, and

µ CO2
 (320, 30) = 9008+ 8.314 × 320 × ln 0.89 = 8698 kJ kmole–1.

k. Example 13
Determine 

molal Gibbs function for liquid water 

gH O2
(373 K, 100 kPa) = h  – T s  = 419.04 – 373 × 1.3069 = –68.4 kJ kg–1.

                                    = –1233.2 kJ kmole–1.
Using the ideal solution model,
ĝH O2

(373 K, 100 kPa, X H O2
=0.92) = gH O2

(373 K, 100 kPa) + RT ln(0.92)

                                                      = –68.4 + (0.4614×373 ln(0.92)

                                                      = –1491.2 kJ kmole–1.
Using Eq.(126)
Psalt water – Pwater = - (8.314× 373 ln (0.92))/(18.02× 0.001) = 14349 kPa.

Remark
gH O2

 decreases as salt is added so that the availability of liquid water in the salt solu-

tion is lower compared to in the pure component, since mixing causes irreversibility.

 

320 K, P, CO2

only

Section  A

320 K, 45

bar, 40 %

CO2, 60 %

ace

Section B

Semi-Permeable

Membrane

Figure 8: Illustration of directional control on species flow (Example 12).

gH O2
for pure liquid water at 100ºC and 100 kPa. Determine the partial

ĝH O2
at 100ºC and 100 kPa in sea water that has

molal salt concentration of 8 %. Use the ideal solution model. What is the osmotic
pressure between the salt  water and  pure water at 373 K?

Solution



B. MOLAL PROPERTIES USING THE EQUATIONS OF STATE
We have seen before that the partial molal and hence mixture properties can be de-

termined if the partial molal volume (ˆ )vk is known. The mixture equations of state are useful in
obtaining relations for v̂k in terms of vk .

1. Mixing Rules for Equations of State
The simplest model is the ideal solution model. The  specific volume of species k

within the  mixture is assumed to be same as the specific volume of pure species k, i.e.,

v̂k  = vk .

a. General Rule
The equation of state for a mixture can be obtained by implementing mixing rules

(e.g., in order to the VW equation of state to a mixture, the constants a and can be determined
by applying these rules). It is possible to formulate various mixing rules, i.e.,

β = ΣkXkβk, (127a)

β = (ΣkXkβk
1/2)2, (127b)

β = (ΣkXkβk
1/3)3, (127c)

β = (1/4) ΣkXkβk + (3/4) (ΣkXkαβk
1/3)(ΣkXkβk

2/3), or (127d)

β = ΣkXjXkβkj, (127e)

where βk represents appropriate constant in a state equation. In Kay’s rule to be discussed later,

βk could represent either Tc,k or Pc,k in Eq. (127a). Consider the Clausius–I Equation of State

for a pure substance (Chapter 6). The same equation can be applied by replacing “b” with
“bm”, and

P = R T/( v  – bm), 

where “bm” can be defined using one of the mixing rules (Eqs. (127a) to (127e)) with bm = β,

and bk =  βk.

l. Example 14

tion

P = R T/( v  – b), (A)

where 

For a pure fluid,

v  = R T/P + b .

b denotes the body volume. What is the total volume VA + VB under those
conditions? If the partition between the two sections is removed and the gases al-
lowed to mix, what is the partial molal volume of the two gases if they are maintained
at 100 bar and 320 K? What is the total volume at this state?

Solution

A piston–cylinder assembly contains two sections. Section A contains 2 kmole of
acetylene, while section B contains 1 kmole of CO2. The body (or collisional) volume
of CO2 and acetylene are, respectively, 0.043 and 0.0326 m3 kmole–1. Determine the
volumes of both gases in their pure states at 100 bar and 320 K using the state equa-



Therefore, for CO2,
v CO2

 = 0.08314 × 320 ÷ 100 + 0.043 = 0.306 m3 kmole–1, and

for acetylene,
v C H2 2

 = 0.08314 × 320 ÷ 100 + 0.036 = 0.302 m3 kmole–1.

The total volume
VA + VB = 0.302 × 2 + 0.306 = 0.910 m3.

For the mixture
v  = R T/P+ bm, i.e., V = N R T/P+N bm = (N1+N2+...) R T/P + (N1 b1+N2 b2+...), and
v̂ i = (dV/dNi) T, P, N N N Nj i K1 2, ,..., ,...,≠

  =  R T/P + b i.

The partial volumes of the gases in the mixture are
v̂ CO2  = (0.08314 × 320 ÷ 100) + 0.043 = 0.306 m3 kmole–1, and

v̂ C H2 2
 = 0.198 m3 kmole–1.

We find that the partial molal volumes are the same as the pure volumes, since the
mixture is an ideal mixture in context of the given state equation (B).
Since
V = v̂ CO2

N CO2
 + v̂ C H2 2

N C H2 2
, then

V = 2 × 0.302+ 1 × 0.306 = 0.91 m3  = Vid.

b. Kay’s Rule
Kay’s Rule is based on a pseudo–critical temperature Tcm and a like pressure Pcm for a

gas mixture, while adopting the same equation of state as that used for the pure components of
the mixture. The pseudo–critical temperature for a mixture is obtained by applying a linear
mixing rule (cf. Eq. (127a)). The pseudo–critical properties

Tcm = X1 Tc1 + X2 Tc2 + ..., and Pcm = X1Tc1 + X2Tc2 + … . (128)

The assumption is that the real gas state equations for pure components are also valid for mix-
tures, but with these pseudo–critical properties. In the context of the RK state equation

P = R T/( v  – bm) – a m/(T1/2 v( v  + b)), (129)

The constants a m and bm are evaluated by using the pseudo–critical properties, i.e.,

a m = (0.4275 R 2Tcm
2.5/Pcm, and bm = 0.08664 R Tc/Pc. (130)

Other state equations can be similarly applied.

m. Example 15

CO2
using Kay’s rule and ap-

plying both the RK equation and the compressibility charts.
Solution

The pseudo–critical temperature and pressure are, respectively,

Tcm = X C H2 2
Tc, C H2 2

 + X CO2
Tc, CO2

 = 0.60 × 308.3 + 0.4 × 304 = 307 K, and (A)

Pc = X C H2 2
 Pc, C H2 2

 + X CO2
Pc, CO2

 = 0.6 × 61.4 + 0.4 × 73.9 = 67 bar. (B)

Therefore, in the context of the RK state equation

P = R T/( v  – bm) – a m/(T1/2 v( v  + b)), (C)

bm = 0.08664 R Tcm/Pcm = 0.08664×0.08314×307÷67 = 0.033 m3 kmole–1, and (D)

A 2 m3 rigid tank contains a mixture of 40% carbon dioxide and 60% acetylene by
volume at 320 K and 100 bar. Determine N CO2

, and P



a m=0.4275 R 2Tcm
2.5/Pc=0.4275×0.083142×3072.5÷67=73.83 bar m6K0.5kmole–2. (E)

At 100 bar and T = 320 K, we can solve for the three roots of v . Choosing the root
with the highest value,
v= 0.08655 m3 kmole–1, i.e., N = V/ v  = 2 ÷ 0.08655 = 23.2 kmole.

Therefore,
N CO2

 = X CO2
 × 23.2 = 0.4 × 23.2 = 9.28 kmole.

Now, consider the state equation

PV = NZ R T, (F)

where Z is obtained from the compressibility charts using the reduced properties PR =
P/Pcm = 100 ÷ 67 = 1.49, and TR = T/Tcm = 320 ÷ 308 = 1.04. At these conditions,

from the charts, Z = 0.32. Using this result in Eq. (F),
100.0 × 2 = N × 0.32 × 0.08314 × 320, i.e., N = 23.6 kmole, and

N CO2
 = 0.4× 23.6 = 9.4 kmole.

n. Example 16
A 2 m3 rigid tank contains a mixture of 40% carbon dioxide and 60% acetylene by
volume at 320 K and 100 bar. Use Kay’s rule and the RK equation to determine the
internal energy and enthalpy of the mixture. Assume that cp,o, CO2

and cp,o, C H2 2
 remain

constant and select values at 300 K. In order to determine u and h of real gas mixture,
assume that each component exists in the ideal gas state and that the enthalpy is
zero–valued at 0 K. Furthermore, cv,o, C H2 2

= 36.12 kJ kmole–1 K–1 (or see Tables A-

6C)

Solution
Treating the mixture as an ideal gas, its internal energy

u .o(T) = X CO2
 uo, CO2

 (T) + X C H2 2
uo, C H2 2

 (T), (A)

where uko = c vk,oT. Therefore,
uo, C H2 2

  = c v,o, C H2 2
T = 36.12 × 320 = 11559 kJ kmole–1.

uo, CO2
 = c v,o, CO2

T = 0.657 × 44.01× 320= 28.91 × 320 = 9253 kJ kmole–1.

uo = 0.6×11559 + 0.4× 9253 = 10,637 kJ kmole–1 of mixture.

The mixture behaves like a pure component with a pseudo-critical temperature and
pressure. We will assume that the relations derived for pure components are valid for
mixtures, i.e.,
( uo – u)/ R Tcm =  7.4013/TR

1/2 ln (1 + 0.08664/vR´).
Recall that
v= 0.08655 m3 kmole–1, and vc´ = 0.08314 × 307 ÷ 67 = 0.381 m3 kmole–1.

Therefore,
vR´ = 0.08655 ÷ 0.381 = 0.227, and TR = 320 ÷ 307 = 1.042, and

( uo – u)/ R Tcm =  7.4013 ÷ (1.042)1/2 ln(1 + 0.08664 ÷ 0.227) = 2.344, or

( uo – u)  = 2.344 R  Tcm = 2.344 × 8.314 × 307 = 5983 kJ kmole–1, i.e.,

u  = 10637 – 5983 = 4654 kJ kmole–1.
Similarly,
h  = u+ P v  = 4654 + 67 × 100 × 0.08655 = 5234 kJ kmole–1.



c. Empirical Mixing Rules
Various other mixing rules are available. For instance, we can use a square rule (cf.

Eq. (127b)) to determine a , and a linear rule (cf. Eq. (127a)) for b .

a m = (ΣkXk a k
1/2)2 (131)

bm = ΣkXk bk (132)

Therefore, the RK equation assumes the form

Z3 – Z2 + ( a m
∗ – bm

∗2 – bm
∗) Z – a m

∗ bm
∗ = 0, where (133)

a m
∗ = (ΣkXk a k

∗1/2)2, bm
∗ = ΣkXk bk

∗, (134a, b)

a k
∗=0.4275PR,k/TR,k

2.5, bk
∗=0.08664PR,k/TR,k, (134c,d)

PR,k=P/Pc,k, and TR,k=T/Tc,k.

Once a m
∗ and a m

∗ are defined, one can derive pseudo–critical temperature Tcm and pressure

Pcm at which Eqs. (134a) and (134b) are satisfied, i.e.,

a m
∗ = 0.4275 R 2 Tcm

2.5/Pcm, and bm
∗ = 0.08664 R Tcm/Pcm.

Using Eqs (134c) and (134d) in Eqs. (134a) and (134b), we obtain the relations

Tcm = Σ Xk (Tck 
5/2 /Pck

1/2) 2/ Σ Xk (Tck/Pck), and

Pcm = Tcm / Σ Xk (Tck/Pck).

Another mixing rule for the RK equation involves using Eq. (127e) for a and Eq.
(127a) for b , i.e., .

a m = ΣiΣjXiXj a ij, bm = ΣiXi b i, where (135)

a ij = 0.42748 R 2Tc,ij
2.5/Pc,ij, Pc,ij = Zc,ij R Tc,ij/ vc,ij, (136)

Zc,ij = (Zc,i + Zc,i)/2, and vc,ij = (( vc,i
1/3 + vc,j

1/3)/2)3. (137)

d. Peng Robinson Equation of State
The Peng Robinson state equation can be written in the form

P = R T/( v– bm) – a m/( v2+2 bm v– bm
2), where (138)

a ij = (1–δij)( a i a j)
0.5, i≠j, a ii = a i,

and the mixing rule of Eqs (127a) and (127e) apply. i.e.,  a m = ΣkXjXk a  kj and bm = ΣkXk bk.

e. Martin Hou Equation of State
The Martin Hou state equation has the form

P = R T/( v– b) – 
i=∑ 2

5
Fi/( v– b)i + F6(T)/eav, where (139)

Fi(T) = Ai + BiT + Cie
(–T/

Tc ). (140)



f. Virial Equation of State for Mixtures
Recall that

Z = 1 + BP/ R T, where (141)

B = ΣiΣjXiXj Bij, Bij = ( R Tc,ij/Pc,ij)(B
o + ωijB

1), (142)

ωij = (ωi + ωj)/2, and Tc,ij =(Tc,i Tc,i)
1/2(1 – kij). (143)

The parameter kij ≈ 0 for most cases and is zero for a pure component.

o. Example 17
The compressibility factor Z can be determined using the following relation

Z = 1 + (BP/( R T)), where (A)

B = ΣiΣjXiXj Bij, (B)

Bij = (RTc,ij/Pc,ij)B
o, (C)

Bo = 0.083 – 0.422/TR
1.6, (D)

Tc,ij = (Tc,iTc,j)
(1/2) (1 – kij), (E)

Pcij  = Zc,ij R Tcij/vc,ij, (F)

Zc,ij = (Zc,i + Zc,j)/2, and (G)

vc,ij  = (vc,i
1/3 + vc,j

1/3)/2. (H)

In a binary mixture, show that the partial molal volume of component 1 is

v̂ 1 = (∂V/∂N1)T,P, N2
 = R T/P + b´, where (I)

b´ = d(NB)/dN1 = B11(1 – X1) X2(2B12 – B11 – B22). (J)

Determine the partial molal volume of component 1 in a binary mixture.
Solution

The total volume
V = NZ R T/P = (1 + BP/ R T) N R T/P = N R T/P + NB.
The partial molal volume
v̂ 1 = ∂V/∂N1 = R T/P + b´, where

b´ = ∂(NB)/∂N1.

Using Eq. (B),
b´ = (∂/∂N1) (N(X1X1B11 + X1X2B12 + X2X1B21 + X2X2B22)).

We assume that B21 = B12 so that
∂(NB)/∂N1 = B11(1 – X1)X2(2B12 – B11 – B22), i.e.,

v̂ 1 = (dV/dN1)T,P, N2
 = R T/P + b´.

The specific volume of the pure component is
v1  = R T/P + B11, i.e.,
v̂ 1 – v1 = (1 – X1) X2 (2B12 – B11 – B22).



2. Dalton’s Law of Additive Pressures (LAP)
According to Dalton’s Law of Additive Pressures (LAP),

P(T,V, N1, N2, ...) = p1(T,V,N1) + p2(T,V,N2) + ... + pk(T,V,Nk) + ... , i.e., (144)

P = Σkpk(T,V,Nk) (145)

where pk denotes the component pressure of the k–th species. For a real gas,

PV = Nm Zm R  T, (146)

and Dalton’s law yields the relation

pkV = NkZk R  T. (147)

Applying Eqs. (26) and (130)

Zm = ΣkXkZk(pk,T). (148)

Then using Eqs. (147) and (146),
pk(V,T,Nk) = Zk Nk R  T/V = P (Xk Zk (pk, T)/ [ΣkXkZk(pk,T)))

Note that in this case

pk(V,T,Nk) ≠ XkP unless Zk’s are equal or Zk =1. (149)

p. Example 18

CO2
and P CO2

using Dalton’s Law of Ad-

ditive Pressures and the VW equation of state.
Solution

The CO2 mole fraction X CO2
 = 0.4, and the ratio

v CO2
/ v C H2 2

 = 40 ÷ 60 = 0.67. (A)

The pressure

P CO2
 = R T/( v CO2

 – b CO2
) – ( aCO2

/ vCO2

2 ), where (B)

aCO2
 = 3.643 m6 kmole–2, and b CO2

 = 0.0427 m3 kmole–1. Likewise,

P C H2 2
 = R T/( v C H2 2

 – b C H2 2
) – ( aC H2 2

/ vC H2 2

2 ), where (C)

aC H2 2
 = 4.41 m6 kmole–2, and b C H2 2

 = 0.051 m3 kmole–1.

The total pressure

P = P CO2
 + P C H2 2

 = 100 bar. (D)

Assume a value for vC H2 2
and  use Eq. (A) to solve for vCO2

. Use these values in Eqs.

(B) and (C) to determine pC2H2, pCO2 and finally use Eq. (D) to check if the total pres-
sure is indeed 100 bar. If not, iterate again.
The converged values are

 v C H2 2
 = 0.324 kmole m–3 and  v CO2

 = 0.486 kmole m–3.

Using Eqs. (B) and (C),
PCO2 = 44.6 bar and P C H2 2

 = 55.6 bar, and

Therefore,
N CO2

 = V/ vCO2
 = 2÷0.486= 4.12 kmoles, NC2H2 = 6.15 kmoles.

A 2 m3 rigid tank contains a mixture of 40% carbon dioxide and 60% acetylene by
volume at 320 K and 100 bar. Determine N



The total number of moles , N= 10.27 kmole.
Remarks

The pressure pCO2 = 44.6 bar, while the CO2 partial pressure  is 0.4 × 100 = 40 bar.

Therefore, pCO2 ≠ XCO2 P.

3. Law of Additive Volumes (LAV)
When a mixture is separated into its components, but the volume is held fixed, the

intermolecular separation distance increases, and, consequently, the intermolecular forces de-
crease in value. The same molecules in a mixture have a closer intermolecular spacing, thereby
exerting stronger intermolecular forces. Then LAP does not model the force fields particularly
at high pressures. If the pressure is held constant instead of the volume, in that case the inter-
molecular forces are appropriately simulated. Therefore,

V(T,P,N1,N2,...) = N1 v1(T,P) + N2(T,P) v2(T,P) + ... -= ΣkNk vk. (150)

However the LAV may yield erroneous values when a component is in trace amounts. For
instance, if humid air is at high pressure and low temperature, separating air and water into the
two components results in liquid water with a volume corresponding to the liquid state while
the actual state in the mixture is gaseous.

4. Pitzer Factor for a Mixture
We can apply Kay’s rule to determine the compressibility factor for a mixture Zm

(0)

from the compressibility charts. This value can be corrected by including the Pitzer factor by
applying Eq. (127a) with βk = ωk and β = ω. Therefore,

ω = ΣkXk ωk. (151)

However the method will have problems for a component in trace amounts (e.g., wet air at
25°C, 1 bar in which H2O exists in trace amounts; Dalton’s law may yield better results.)

5. Partial Molal Properties Using Mixture State Equations
Any partial molal property can be determined if a mixture equation of state can be

developed.

a. Kay’s rule
Since v  = V/N, for a mixture, VW equation of state assumes the form

P = N R T/(V – N bm) – N2 a m/V2, where (152)

a m = (27/64) R 2 Tcm
2/Pcm and bm = (1/8) R Tcm/Pcm. (153)

The pseudo–critical temperature and pressure are functions of composition. The partial molal
volume

v̂ i = (∂V/∂Ni)T, P, N N N Nj i K1 2, ,..., ,...,≠
(154)

can be obtained by  differentiating Eq (152). It is noted that the pseudo–critical temperature
Tcmand pressure Pcm are also functions of composition. See example below.

q. Example 19

v̂CO2 and deter-
mine v̂CO2

.

Solution
Using Kay’s rule, for a 2 component mixture

A two–component mixture consisting of 40% carbon dioxide (1) and 60% acetylene
(2) on molal basis  at 320 K and 100 bar is well–described by Kay’s rule and the VW
equation of state. Obtain an expression for the partial molal volume 



Tcm = X1 Tc1 + X 2 Tc2, and Pcm = X 1 Pc1 + X 2 Pc2, where
X1 = N1/N, X2 = N2/N, and N = N1 + N2.
The total differential of Eq. (152)

dP = N R dT/(V – bmN) + dN R T/(V – bmN) 

     – (N R T/(V – bm N)2)(dV– d bmN – bmdN)

     – 2NdN a m/V2 – N2d a m/V2 + (2N2 a
m/V3)dV. (A)

If we keep T, P, and N2 are held constant, then dN = dN1. Consequently, Eq. (A) as-
sumes the form,

0 = 0 + dN1 R T/(V – bmN) – (N R T/(V – bmN)2)(dV – d bmN – bmdN1)

   – 2N dN1 a m/V2 – N2d a m /V2 + (2N2 a
m/V3) dV, i.e., (B)

0 = R T/(V – bmN) – (N R T/(V – bmN)2) (dV/dN1 – (d bm/dN1)N – bm) 

   – 2N a m/V2 – N2(d a m/dN1)/V
2 + (2N2 a

m/V3)dV/dN1. (C)

The partial molal volume

v̂ 1 = dV/dN1 = (2N a m/V2 – R T/(V – bmN) – (N R T/(V – bm N)2)

((d bm/dN1)N+ bm) + N2(d a m/dN1)/V
2)/((2N2 a

m/V3) – (N R T/(V– bm N)2). (D)

Differentiating Eq. (153) with respect to N1,

(d a m/dN1) N2
=(54/64) R 2Tcm(dTcm/dN1)/Pcm–(27/64) R 2Tcm

2(dPcm/dN1)/Pcm
2, (E)

(d bm/dN1) N2
 = (1/8) R (dTcm/dN1)/Pcm – (1/8) R Tcm(dPcm/dN1)/Pcm

2, (F)

(dTcm/dN1) N2
=(1/N)Tc,1–(N1/N

2)Tc,1–(N2/N
2)Tc,2=(1/N)(Tc,1–X1Tc,1–X2Tc,2), and(G)

(dPcm/dN1) N2
 = (1/N)Pc,1–(N1/N

2)Pc,1–(N2/N
2)Pc,2 = (1/N)(Pc,1–X1Pc,1–X2Pc,2). (H)

In case of infinite dilution, as N1→0, Tcm→Tc2 and Pcm→Pc2, so that

(dTcm/dN1) N2
 = → (Tc1 – Tc,2)/N, and (dPcm/dN1) N2

 → (Pc1 – Pc,2)/N, i.e., 

v̂ 1 = ((2 a m/ v2) – ( R T/( v  – bm)) – ( R T/( v  – bm)2)(N(d bm/dN1) + bm)

      + (Nd a m/dN1)/V
2))/((2 a m/ v3) – ( R T/( v  – bm)2), (cf. Eq. (D)). (I)

As X1→0,  N1→0, bm→b2 and v→ v2. Similarly Eqs. (E) and (F) can be rewritten as

N(d a m/dN1) N2
 = (27/64)2 R 2Tcm(NdTcm/dN1)/Pcm

                         – (27/64) R 2Tcm
2(N(dPcm/dN1))/Pcm

2, and (J)

N(d bm/dN1) N2
 = (1/8) R (N(dTcm/dN1))/Pcm – (1/8) R Tcm(N(dPcm/dN1))/Pcm

2. (K)

Using these relations, for the acetylene and CO2 mixture



Tc,m = 0.6×309 + 0.4×304.2 = 307.08 K, and

Pcm = 0.6×62.4 + 0.4×73.9 = 67 bar, i.e.,

v  = 0.0985 m3 kmole–1, v C H2 2
 = 0.09989 m3 kmole–1, and v̂ C H2 2

 = 0.10085 m3

kmole–1.
v  = v̂ C H2 2

X C H2 2
 + v̂ CO2

X CO2
 = 0.10085 × 0.6 + 0.4 × v̂ CO2

, i.e.,

v̂ CO2
 = 0.0964 m3 kmole–1.

The variation of  v id , v̂ ace ,  and v̂CO2   are  illustrated in Figure 9.

r. Example 20

( h2,o – ĥ 2).
Solution

Recall  the expression for a mixture at given T
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Figure 9: The variation of v̂ C H2 2
, v̂ CO2

, v , and v id with respect to the composition for an

acetylene and CO2 mixture modeled using Kay’s mixing rule and the VW equation of state at
320 K and 100 bar.

A two–component mixture consisting of 40% carbon dioxide (1) and 60% acetylene
(2) by volume at 320 K and 100 bar is well–described by Kay’s rule and the VW
equation of state. Determine ( uo – u), ( u1,o – û 1), ( u2,o – û 2), ( ho – h), ( h1,o – ĥ 1),



d uT = (T∂P/∂T – P)d v   = (T R /( v  – bm) – RT/( v  – bm) + a m/ v2)dv.

Integrating (see Chapter 7)

uo(T) – u  (T,v) = am/ v , i.e., (A)

Uo – U = N a m/ v  = N2 a
m/V, N= N1 + N2 (B)

From the previous example, v  = 0.0985 m3 kmole–1, so that
uo – u  = a m/ v  = 4.1042×100÷0.0985 = 4,166.7 kJ kmole–1, and

ho – h  = uo + R T – ( u  + P v) = ( uo – u) + R T – P v
             = 4166.7 + 8.314 × 320 – 100 × 100 × 0.0985 = 5842.2 kJ kmole–1.

Differentiating Eq. (B) with respect to N1, and using definition of a partial molal
property,
û 1,o– û 1 = 2N a m/V + N2d a m/dN1/V – N2 a

m v̂ 1/V
2

              = 2 a m/ v  + Nd a m/dN1/ v  – a m v̂ 1/ v2.
Since û 1,o = u1,o;   assuming u1,o = c vo,1 T,
u C H2 2 ,o = 36.12 × 320 = 11558 kJ kmole–1.

Recall that v̂ C H2 2
 = 0.09989 m3 kmole–1, i.e.,

û 1,o– û 1 = 2 ×  4.1042 × 100 ÷ 0.0985 + 0.333 × 100 ÷  0.0985 – 4.1042 × 100 ×
0.09989 ÷ 0.09852 =  4446.1 kJ kmole–1, and
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Figure 10. The variation of ( uo – u), ( uCO2,o – ûCO2), ( uace,o – û ace), and
( uo– u id) with respect to the composition for an acetylene and CO2 mixture
modeled using Kay’s mixing rule and the VW equation of state at 320 K
and 100 bar.



h1,o – ĥ 1 = 4446.1 + 8.314 × 320– 100×100× 0.09984  = 6107.7 kJ kmole–1.

Since u  = X1 û 1 + X2 û 2,
u2o – û 2 = ( uo – u  – ( u1o – û 1) X1)/(1– X1)
               = (4166.7 –  4446.1 × 0.6)÷(1– 0.6) = 3747.7 kJ kmole–1.

Similarly,
h2o – ĥ 2 = 5444.0 kJ kmole–1.

b. RK Equation of State
We will now develop relations based on the RK state equation. Consider RK equation

of state.  For component 1 in a k–component mixture, at given P and T as N1 is varied

∂P/∂N1 = 0 = (∂P/∂ a m) (∂ a m/∂N1) + (∂P/∂ bm) (∂ bm/∂N1) + (∂P/∂ v) (∂ v/∂N1)  i.e., (155)

Multiplying  Eq.(155) by N

N∂P/∂N1=0=(∂P/∂ a m) (N∂ a m/∂N1)+ (∂P/∂ bm) (N∂ bm/∂N1)+(∂P/∂ v)(N∂ v/∂N1). (156)

Furthermore,

N∂v/∂N1 = N∂/∂N1(V/N) = v̂ 1 – v , i.e., (157a)

Generalizing,  N∂ τ /∂N1 =  τ̂  1 - τ  where  τ = s, u, h etc (157b)

v̂ 1 – v= –(∂P/∂ a mN∂ a m/∂N 1 + ∂P/∂ bm N∂ bm/∂N1)/(∂P/∂ v)), or (157c)

v̂1 – v1 = ( v  – v1) – (∂P/∂ a mN∂ a m/∂N1 + ∂P/∂ bm N∂ bm/∂N1)/(∂P/∂ v)). (158)

(Note that the sum ΣkXk v̂ k = v .) Applying the RK equation of state,

∂P/∂ a m = –1/(T1/2 v( v  + bm)), (159a)

∂P/∂ bm = R T/( v  – bm)2 + a m/(T1/2 v( v  + bm)2) (159b)

∂P/∂ v  = – R T/( v  – bm)2 + ( a m /(T1/2) (1/( v2 ( v  + bm)) +1/( v  ( v  + bm)2))

           = – R T/( v  –bm)2 + ( a m/(T1/2 v2( v  + bm)2))(2 v  + bm). (159c)

Applying the mixing rules,

a m = (ΣkXk a k
1/2)2, i.e., N2 a

m = Am = (ΣkNk a k 
1/2)2, and (159d)

∂Am/∂N1 = 2(ΣkNk a k
1/2) a 1

1/2 = 2N(ΣkXk a k
1/2) a 1

1/2 = 2N a m
1/2 a

1
1/2. (159e)

N bm = Bm = ΣkNk bk, so that (159f)

∂Bm/∂N1 = b1, and (159g)

∂ a m/∂N1=∂(Am/N2)/∂N1=(∂Am/∂N1)/N
2–2Am/N3=2 a m

1/2 a
1

1/2/N–2 a m/N. (159h)

Therefore,



N∂ a m/∂N1 = 2 a m
1/2( a 1

1/2 – a m
1/2), and (160)

N∂ bm/∂N1 = ( b1 – bm). (161)

As a  and b  both tend to zero, ∂P/∂ a m  → (–1/T1/2) v2, ∂P/∂ bm  →  – R T/ v2, ∂P/∂ v  →
– R T/ v2, N∂ a m/∂N1 → 0, and N∂bm/∂N1 → 0. Therefore, ( v̂ 1 – v) → ( v1,o – vo) → 0.

If a 1 = a 2 = ..., and b1 = b2 = ..., then N ∂ a m/∂N1 → 0 and N ∂ bm/∂N1 → 0 so that

v̂ 1 →  v1 – v  and  v̂ 2 = v2 – v , although v̂ 1 ≠ v1,o.  Since a m = a 1, v  = v1, i.e., the mixture

specific volume equals that of the pure component at the same temperature and pressure, in a
manner similar to the ideal solution model (Law of additive volumes).

Other partial molal properties can be similarly obtained. For instance, differentiating
(Uo – U) with respect to N1 at a specified temperature and pressure and keeping the number of
moles of all species other than species 1  constant, one obtains the following:

(∂/∂N1)(Uo – U) = u1,o – û 1, where (162)

Uo – U = N uo – N u . (163)

Differentiating Eq. (163) with respect to N1, and definition of partial molal property

u1,o– û 1 =  ( uo – u) + N∂( uo – u)/∂N1, and (164a)

û 1 – u1 = ( u1,o – u1) – (( uo – u) + N∂( uo – u)/∂N1). (164b)

Similarly

ŝ1 – s 1 = ( s 1,o – s 1) – (( s o – s ) + N∂( s o – s )/∂N1). (164c)

Dividing this relation throughout by R Tc1

( û 1– u1)/( R Tc1) = f (TR1,PR1)–(f(TRm,PRm,Tc1/Tcm)+f(TRm,PRm,Tc1/Tcm,Pc1/Pcm)).

Furthermore, using the mixture RK equation of state,

uo – u  = (3/2)( a m/(bmT1/2) ln(1 + bm/ v) = F( a m, bm, v , T).

At specified pressure and temperature,

∂( u– uo)/∂N1=(∂F/∂ a m)(∂ a m/∂N1)+(∂F/∂ bm)(∂ bm/∂N1)+(∂F/∂ v)(∂ v/∂N1), i.e.,

N∂( u  – o)/∂N1 = (∂F/∂am)(N∂ a m/∂N1) + (∂F/∂ bm)(N∂ bm/∂N1)

+ (∂F/∂ v)(N∂ v/∂N1),where (165)

F = u  – uo = (3/2)( a m/( bmT1/2) ln(1 + bm/ v) = F( v , T, a m, bm), i.e., (166a)

∂F/∂ a m = (3/2)(1/( bmT1/2) ln(1 + bm/ v),

∂F/∂ bm  = (3/2)( a m/( bm
2T1/2)ln(1+ bm/ v)

+(3/2)( a m/( bmT1/2)(1/(1+ bm/ v))(1/ v), and (166b)

∂F/∂ v  = (3/2)( a m/( bmT1/2) (1/(1 + bm/ v))(– bm/ v2). (166c)



Using Eqs. (166) in Eq. (165), we can obtain an expression for N∂( u  – uo)/∂N1. Us-

ing the result in Eq. (164b) we can, thereafter, obtain ( u1.o– û 1). Likewise,

h1,o – ĥ 1 = u1,o + R T – ( û 1 + P v̂ 1) = u1,o – û 1  + ( R T – P( v̂ 1 – v  + v))

= u1,o– û 1–P v+ R T–P( v̂ 1– v) = ( u1,o– û 1)+ R T(1–Z) –P ( v̂ 1– v), i.e., (167)

ĥ 1 – h1 = ( h1,o – h1) – ( u1,o – û 1) – R T(1 – Z) + P ( v̂ 1 – v).

In case of the entropy, the evaluation of Eq. (164c) requires the following term. Fol-
lowing Chapter 7 we can obtain expression  ( s o – s ) of a mixture. Let

F1=(( s o – s )=– R  ln(1–( bm/v))+(1/2) a m/( bmT3/2)) ln (1+( bm/ v))– R ln ZRK, (168)

(∂( s o– s )/∂N1)=(∂F1/∂am)(N∂ a m/∂N1)+(∂F1/∂ bm)(N∂ bm/∂N1)

+  (∂F1/∂ v)(N∂ v/∂N1) + (∂F1/∂Z)(N∂Z/∂N1), where

∂F1/∂ a m =  (1/2)(1/( bmT3/2)) ln (1+( bm/ v)). (169)

∂F1/∂ bm = R (1/(1–( bm/ v)))  – (1/2)( a m/( bm
2 T3/2)) ln (1+( bm/ v)) 

     + (1/2) ( a m/( bmT3/2)) (1/(1+( bm/ v)))(1/ v), (170)

∂F1/∂ v  = R ( bm/ v2) (1/(1–( bm/ v)2)–(1/2)

                                  ( a m/( bmT3/2))(1/(1+( bm/ v)))(1/ v2), (171)

∂F1/∂Z = R /Z, and (172)

N∂Z/∂N1 = N∂/∂N1(V/Vo) = N( v̂ 1/Vo – vo V/Vo 
2) = ( v̂ 1/ vo – Z)

               = ( v̂ 1 – v  + v)/ vo – Z) = ( v̂ 1 – v)/ vo + Z – Z) = ( v̂ 1 – v)/ vo. (173)

The results from Eqs. (168) to (173) can be used in Eq. (164c) to determine ŝ1o– s 1.

s. Example 21

Use the RK mixing rule.
Solution

The critical properties of the components are Tc1 = 308.3 K, Pc1 = 61.4 bar, Tc2 =
304.2, and Pc2 = 73.8 bar.
Furthermore,
a 1 = 80.316 m6 kmole–2, b1 = 0.0362 m3 kmole–1, and
a 2 = 64.622 m6 kmole–2, b2 = 0.0297 m3 kmole–1, i.e.,
a m = (0.6 × 80.3161/2 + 0.4 × 64.6221/2)2 = 73.834 m6 kmole–2, and

bm = 0.6 × 0.0362 + 0.4 × 0.0297 = 0.0336 m3 kmole–1.

Thereafter (Eqs. (160) and (161)),

A two–component mixture consists of 40% carbon dioxide (component 2) and 60%
acetylene (component 1) by volume at 320 K and 100 bar. Assume cp,o,1 = 44.43 kJ
kmole–1 K, and cp,o,2 = 37.4 kJ kmole–1 K. Determine its thermodynamic properties.



N d a m/dN1 = 2 × 73.8341/2 (80.3161/2 – 73.8341/2) = 6.346 m6 kmole–2.

N d bm/dN1 = (0.0362–0.0336) = 0.0026 m3 kmole–1.
The pressure,
P = R T( v  – bm) – a m/(T1/2 v  ( v  + bm),
At 100 bar and 320 K,
v  = 0.0894 m3 kmole–1, and Z = 0.336.
Therefore, using Eq. (157c)
v̂ 1– v  =–(∂P/∂ a m N∂ a m/∂N1+∂P/∂ bmN∂ bm/∂N1)/(∂P/∂ vm)),where Eqs (159) yield

∂P/∂ a m = –1/(3201/2 0.0894 × (0.0894 + 0.0336)) = –5.0837 bar kmole2 m–6, and

∂P/∂ bm =  0.08314×320÷(0.0894–0.0336)2+73.834÷(3201/2 0.0894(0.0894+0.0336)2)

              = 8545 + 3052 = 11597 bar kmole1 m–3.
∂P/∂ v  = – 8545 + 7250 =–1295 bar kmole1 m–3.

Hence,
v̂ 1 – v  = –(–5.0837 × 6.346 + 11597 × 0.0026) ÷ (–1295)= –0.00163 m3 kmole–1.

This value compares favorably with that obtained using Kay’s Rule.
Furthermore,
F = uo – u  = (3/2) ( a m/( bmT1/2) ln (1 + bm/ v) = 5879 kJ kmole–1.
∂F/∂ a m = (3/2) (1/( bmT1/2) ln(1 + bm/ v) = 0.796 kJ kmole1 m–6

∂F/∂ bm = –(3/2)( a m/( bm
2T1/2) ln(1+ bm/ v)+(3/2)( a m/( bm T1/2)(1/(1+ bm/ v))(1/ v)

= –1749 + 1498 = –251 kJ m–3.
∂F/∂ v  = (3/2) ( a m/( bm T1/2) (1/(1 + bm/ v))(– bm/ v2) = –563 kJ m–3.

N∂( u  – uo)/∂N1 = 0.796×6.346– 51×0.0026+(–563)×(–0.00163)

                            = 531.65 kJ kmole–1.
u1,o– û 1 = ( uo– u) + N∂( uo– u)/∂N1 = 5879+532 = 6411 kJ kmole–1.

h1,o – ĥ 1 = (u1,o – û 1) + R T (1 – Z) – P( v̂ 1 – v)
                = 6409 + 8.314 × 320 × (1–0.336) – 100 × 100 × (–0.00163)

                = 8192 kJ kmole–1.
F1 = so(T, P, a m, bm) – s(T, P, a m, bm)
     = – R  ln (1 – ( bm/ v)) + (1/2)( a m/( bmT3/2)) ln (1 + ( bm/ v)) – R  ln ZRK

= –8.314×ln(1–0.0336÷0.0894) + 0.5×(73.834×100/0.0336×3201.5)

× ln(1+0.0336÷0.0894) – 8.314× ln (0.336) = 19.11 kJ kmole–1 K–1.

∂F1/∂ a m =  (1/2) (1/( bmT3/2)) ln (1+( bm/ v))

= 0.5× ln (1+0.0336÷0.0894) ÷ (0.0336×3201.5)

= 0.000829 kJ kmole1 m–6 K–1.
∂F1/∂ bm = ( R / v)(1/(1–( bm/ v))) – (1/2)( a m/( bm

2T3/2)) ln(1+( bm/v)) +

               + (1/2)( a m/( bmT3/2)) (1/(1+( bm/ v))) (1/ v).
=  (8.314 ÷ 0.0894) ÷ (1 – 0.0336 ÷ 0.0894) – 0.5 × 73.834 × 100

÷ (0.03362 × 3201.5) ln (1 + 0.0336 ÷ 0.0894) + 0.5 × 73.834 × 100

÷  (0.0336 × 3201.5) ÷ (1 + (0.0336 ÷ 0.0894)) (1 ÷ 0.0894)

= 149 – 182.3 + 156.1 = 122.8 kJ m–3 K–1.
∂F1/∂ v  = R  ( bm/ v2) (1/(1–( bm/ v)2) – (1/2)( a m/(T3/2)) (1/(1+( bm/ v)))(1/ v2)

                            = 8.314 × 0.0336 ÷ 0.08942 ÷ (1 – (0.0336 ÷ 0.0894)2)

                            – 0.5 × 73.834 × 100 ÷ (3201.5)(1 ÷ 0.08942) ÷ (1 + 0.0336 ÷ 0.0894)

= –17.95 kJ m–3 K–1.
∂F1/∂Z = – R /Z = –8.314/0.336 = –24.74 kJ kmole–1 K–1.



N ∂Z/∂N1 = N∂/∂N1(V/Vo) = N( v̂ 1/Vo – voV/Vo
2) = ( v̂ 1/ vo – Z)

= ( v̂ 1 – v  + v)/ vo – Z = ( v̂ 1 – v)/ vo.
vo = 0.08314 ×320/100 = 0.267 m3 kmole–1, i.e.,

( v̂ 1 – v)/ vo = –0.00163 ÷ 0.267 = –0.0610.

Recall that,
ŝ1,o(T,P,N1,N2,,..) – ŝ1(T,P,N1,N2,,..) = ( s o(T,P) – s (T,P)
                                                             + N∂/∂N1( s o(T,P, a m, bm) – s (T,P, a m, bm).

N∂/∂N1( s o(T, P, a m, bm) – s (T, P, a m, bm)) =  0.000829 × 6.346 + 122.8× 0.0026

             + 34.99× (–0.00163) – 24.74 × (–0.061) = 1.78 kJ kmole–1 K–1, i.e.,

ŝ1,o(T,P,N1,N2,,..) – ŝ1(T,P,N1,N2,,..) = 19.11 + 1.78 =  20.89 kJ kmole–1 K–1.
ŝ1 = ( s 1,o – R ln X1) – 20.89 kJ kmole–1 K–1.

ĝ 1,o – ĝ 1 = ( ĥ 1,o – T ŝ1,o) – ( ĥ 1 – T ŝ1) = ( ĥ 1,o – ĥ 1) – T ( ŝ1,o – ŝ1)
                = 8192 –320 × 20.89= 1507.2 kJ kmole–1.

ln f̂ 1/P = – ( ĝ 1,o – ĝ 1)/ R T = –0.5665, and

φ1 = f̂ 1/P = 0.5675.

Remarks
We have shown before that as a m → 0, bm →  0, v̂ 1 →  v  = v1. Similarly, it can be

shown that the relation N∂( uo – u)/∂N1  tends to negligible values as a m → 0 and bm

→ 0. Therefore, u1,o – û 1 = uo – u .  However, uo = u , i.e., u1o = û 1. Similarly,

∂F1/∂ a m → 1/(2 T3/2 v) , ∂F1/∂ bm → R / v , ∂F1/∂ v  → 0, and ∂F1/∂Z → R  as a m →
0 and bm → 0 . Consequently, ∂/∂N1(N(so(T,P,N1,N2,,..) – s(T,P,N1,N2,,..)) →  0 so

that ( ŝ1,o(T,P,N1,N2,,..) – ŝ1(T,P,N1,N2,,..)) = s o(T,P) – s  (T,P) → 0, and ŝ1 – ŝ1,o =

s 1(T,P) – R ln X1. According to the ideal solution model, a 1 = a 2 = ... = a m  and b1

= b2 = ... = bm. Therefore, ∂ a m/∂N1 = 0, ∂ bm/∂N1 = 0, ∂ v/∂N1 = 0, and ∂Z/∂N1 = 0

with the result that ( ŝ1,o – ŝ1) = so(T,P)– s(T,P).  However, the difference so(T,P)–
s(T,P) is not necessarily negligible, and ( ŝ1 – ŝ1,o) = ( ŝ2 – ŝ2,o) = … = a constant
value at a specified temperature irrespective of composition. In a like manner we can
determine the value of v̂ 1

E = v̂ 1 – v̂ 1
id = v̂ 1 – v1, and values of other thermodynamic

properties.

t. Example 22
Determine the mixture properties of the acetylene– CO2 mixture discussed in the pre-
vious examples. For acetylene, Tref = 188.7 K, Pref  = 1 bar, cp,o = 50.98 + 0.01623 T –
1079988/T2 kJ kmole–1,  T in K and hfg = 653.61 kJ kg –1. In case of CO2, Tref =
216.55 K, Pref  = 5.178 bar, cp,0 = 29.159 – 0.001573 T –2.92×10–7/T2 + 5.2813×10–6

T2 kJ kmole–1, and hfg = 524.53 kJ kg –1. (You  can also use Tables  A-6C for specific
heats.)

Solution
We can determine that (h C H2 2

 – h C H2 2 ,o) = 653.6 kJ kg –1 at Tref and Pref, i.e.,

h C H2 2 ,o(320 K) = 21907 kJ kmole–1 using the ideal gas specific heat data. Similarly,

h CO2 ,o(320 K) = 40172.5 kJ kmole–1, and

ho(320 K) = 0.6 × 21907 + 0.4 × 40172.5 = 29213 kJ kmole–1.

The mixture properties a m and bm are obtained using the mixing rule, i.e.,
a m = 73.78 m6 kmole–2, and bm = 0.03356 m3 kmole–1.



Consequently, using the RK state equation, the specific volume of mixture at 100 bar
and 320 K is 0.0904 m3 kmole–1 or 0.0027 m3 kg–1.
Utilizing the relation,

ho – h   = ( uo – u) + R T – P v  = 7577 kJ kmole–1, i.e.,
h  = 21636 kJ kmole–1.

The mixture molecular weight
Mmix = 33.228 kg kmole–1, i.e.,

h = 651.13 kJ kg–1, and u = h – Pv = 623.925 kJ kg–1.
Since, s1,o = hfg/Tref  at Tref, s1,o(100×6 bar, 320 K) and s2,o(100×0.4 bar, 320 K) can be

determined. The mixture entropy is
so,mix = 0.6 × s1o(100×0.6 bar,320 K) + 0.4× s2o(100×0.4 bar,320 K).

Applying the entropy correction equations,
so,mix(100 bar, 320 K, X1=0.4) – s(100 bar, 320 K, X2=0.6)

= 18.89 kJ kmole–1 K–1, and
smix (100 bar, 320 K, X1=0.4, X2=0.6)

= 132.15 kJ kmole–1 K–1  or 3.98 kJ kg–1  K–1.

C. SUMMARY
This chapter presents relations for determining the partial properties of a component

and of mixtures of gases (real or ideal), liquids and solids. The simplest scheme is to assume
an ideal mixing model. The concepts of excess property and activity coefficients are intro-
duced to describe the deviation of real behavior from the ideal model. Mixing rules are intro-
duced for real gas mixtures and a methodology is presented for deriving partial molal proper-
ties from state equations.



Chapter 9 

 9. PHASE EQUILIBRIUM FOR A MIXTURE

A. INTRODUCTION
In this chapter we will consider the phase equilibrium of a multicomponent mixture,

e.g., gasoline, diesel and kerosene fuels. We will discuss variations in the boiling (or conden-
sation) temperatures and the vapor (or liquid) phase composition with respect to changes in the
liquid (or vapor) mixture composition at a specified pressure.

1. Miscible, Immiscible and Partially Miscible Mixture
In a miscible mixture its components are mixed at a molecular level, e.g., molecular

oxygen and nitrogen in the atmosphere, and salt and water in the oceans. Typically, most gas
phase mixtures are miscible, since the intermolecular distances are far apart and Xk < 1. In
immiscible mixtures the intermolecular forces between like molecules are too strong to allow a
dissimilar molecule sandwiched between similar molecules. In that case, Xk = 1 for the k–th
species, e.g., in case of an oil–water mixture. Partially miscible fluids are miscible in a mixture
until a critical mole fraction beyond which they become immiscible. For instance, salt can be
dissolved in water up to a certain concentration beyond which it settles, and it is possible to
have a mixture consisting of a salt–water solution and pure salt. Slurries are mixtures that
contain additional species called surfactants, which act as a bridge between the (usually two)
immiscible species. For instance, the introduction of surfactants into an oil–water mixture
forms a slurry that is physically mixed, but is unmixed at the molecular level.

2. Phase Equilibrium
Water exists as a liquid at 20ºC at pressures in excess of 2.34 kPa. This is the satura-

tion pressure or bubble point of water at 20ºC. During an isothermal process, a vapor bubble
forms as the pressure equals the saturation pressure. As the pressure is further lowered, all of
the water will exist as superheated vapor. Therefore, at a specified temperature, water can exist
as a compressed liquid (P>Psat), as a two–phase mixture (P = Psat), or as superheated vapor
(P<Psat). In the compressed liquid or superheated states, the water exists in a single phase and
two independent properties, say (T, P), are required to specify the state, i.e., there are two de-
grees of freedom present. In the saturated liquid or vapor region, one independent property,
e.g., temperature, specifies Psat (conversely, the pressure specifies Tsat). In a mixture consisting
of two components (say, methanol and water) an additional parameter related to the component
concentration, e.g., the mole fraction is required to describe the state of the system. Methanol
is highly volatile and has a higher Psat as compared to water at the same temperature. There-
fore, a mixture may have different compositions in the corresponding liquid and vapor phases.
The phase change phenomenon is schematically illustrated in Figure 1.

a. Two Phase System
Consider a two component mixture consisting of water (normal boiling point 100ºC)

and methanol (normal boiling point 65ºC) in a piston–cylinder–weight assembly immersed in
an isothermal bath. Suppose the molal concentration of water is 60 % and, consequently, 40 %
for methanol  and the mixture temperature is 20ºC. At a pressure of 200 kPa there is no phase
change for this mixture (cf. Figure 2). The same holds true for any methanol–water mixture of
arbitrary composition at the same temperature and pressure. If the pressure is decreased to 6.2
kPa (while the mixture temperature is still 20ºC), a vapor bubble appears, but inside the vapor
bubble the mole fraction of water vapor at steady state is 0.23 (so that the mole fraction of
methanol is 0.77) even though the liquid water content is 60 % . This is an example of phase
equilibrium between a liquid mixture and a vapor bubble. Upon decreasing the pressure to 5.0
kPa additional vapor is formed, the composition of which can be determined by developing
phase equilibrium criteria, as will be discussed below. During evaporation, it is possible to



maintain the liquid at constant composition by introducing appropriate amounts of the compo-
nent(s) into the piston–cylinder–weight assembly.

Recall from Chapter 3 that ĝ k
α = ĝ k

β at phase equilibrium. This can also be inferred

by using the results from Chapter 8 for a fixed mass system, i.e.,

d ĝ k = – ŝk dT + v̂ k dP. (1)

At constant temperature and pressure, d ĝ k = 0 so that during phase transition ĝ k remains un-
changed. (This result is true also for pure components.) The partial molal Gibbs function is
related to the fugacity (since, d ĝ k = d ln f̂ k) so that at equilibrium ĝ k

α = ĝ k
β or f̂ k

β = f̂ k
α.

b. Multiphase Systems
Consider a k–component mixture consisting of π phases. At a specified temperature

and pressure (cf. Appendix A)

ĝ 1(1)= ĝ 1(2) = ĝ 1(3) = ... = ĝ 1(π), ĝ 2(1) = ĝ 2(2) = ĝ 2(3) = ... = ĝ 1(π),

…, and ĝ k(1) = ĝ k(2) = ĝ k(3) = ... = ĝ 1(π), (2)

where the  subscripts  1(2) refer to the component 1 in phase 2 .

ĝ k(α) = gk(α)(T,P) + R T ln( f̂ k(α)/fk(α)) = ( gk(α),0(T,P)+ R T ln fk(α))+ R T ln f̂ k(α)/fk(α)

P =200 kpa

T=20 C,
CH3OH = 40 %
H2O : 60 %

T=20 C, H2O

P=6.2 kPa

Figure 1: Illustration of phase change in a single– and two–component mix-
ture.



   = gk(α),0 (T,P) + R T ln f̂ k
α. (3)

Where gk(α),0 (T,P) refers to ideal gas Gibbs free energy.

Similarly,

ĝ k (β) = gk(β),0(T,P) + R T ln f̂ k(β), and (4)

f̂ k(α)= f̂ k(β) (5)

Expanding the last equation

 ˆ ˆ ...ˆ , ˆ ˆ ...ˆ ˆ ˆ ...ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f f f f f f f f fk k k1 1 1 2 1 2 1 2 2 2 1 2= = =π π π .

c. Gibbs Phase Rule
In a single phase consisting of a pure component, the temperature and pressure can be

independently varied, i.e., it possesses two degrees of freedom (F = 2). In order for two phases
of a single component to coexist, a single degree of freedom (F = 1) must exist, i.e., either the
temperature or pressure.  For example, one can maintain vapor and liquid phases for H2O at
say T= 20 C (Psat = 2.34kPa), T = 100 C (Psat = 100 kPa)  etc. In this case “T” is an independ-
ent variable and Psat is dependent on T within the wet region. If a single component simultane-
ously exists in three phases of (e.g., at the triple point of the substance), there are no degrees of

P=6.2 kPa

GF
2.3

6.2

B

T=13 C

6.2

Figure 2: Illustration of Raoult’s Law. The component states
are described in terms of a P–v diagram for the pure compo-
nents.



freedom, and F = 0 (for instance, at the triple point of ice, liquid water, and water vapor at
273.15 K and 0.0061 bar). If all three phases are desired, then neither the temperature nor the
pressure can be altered.

For a single phase consisting of two components, there are three degrees of freedom
(the temperature, pressure, and the mole fraction of either species). Two phases of two compo-
nents must possess two degrees of freedom in order to exist. For three phases of two compo-
nents to exist, there must be a single degree of freedom. In general, the number of degrees of
freedom of an N–component mixture containing π phases is (cf. Appendix A)

F = K + 2 – π. (6)

B. SIMPLIFIED CRITERIA FOR PHASE EQUILIBRIUM

1. General Criteria for Any Solution
The higher the intermolecular attractive force in a substance, in general, the higher is

its boiling temperature. The normal boiling points of water and methanol in their pure states
are, respectively, 100ºC and 80ºC, indicating that the attractive forces between water mole-
cules are higher than between methanol molecules.

Consider a liquid mixture of 40% water and 60% alcohol at 20ºC and 8.03 kPa. If the
water existed by itself at that temperature and pressure, it would be a compressed liquid (cf.
point A in Figure 2), since its saturation pressure is 2.3 kPa. Likewise, if methanol existed
alone at that temperature and pressure, it would exist as superheated vapor (point B in Figure
2), since the saturation pressure for methanol at 20ºC is 11.8 kPa. At 20ºC and 8.03 kPa, the
mixture exists in a liquid state due to the relatively small number of methanol molecules that
can vaporize per unit surface area of the liquid mixture. (Consequently, the partial pressure of
the methanol vapor in the gas phase is lower and corresponds to the methanol evaporation rate.
The methanol molecules, which have lower intermolecular attraction forces among themselves
than do water molecules, and, consequently, a lower boiling point than water, are held in a
liquid state due to the surrounding water molecules). In summary, intermolecular forces be-
tween dissimilar molecules and the reduced surface area for evaporation/condensation of each
species in the mixture, alter the evaporation and condensation characteristics.

Oftentimes, we must determine the “bubble point” or the pressure at which an
initial bubble appears in the mixture at a specified temperature and the corresponding vapor
phase compostion using a phase equilibrium condition for a multicomponent mixture (Eqs.(2)
and (6))

2. Ideal Solution and Raoult’s Law

a. Vapor as Real Gas Mixture
If α represents the liquid and β the vapor phase, then for an ideal solution in the liquid

phase and an ideal mixture of real gases,

Xk(α) fk(α)(T,P) = Xk(β)
 fk(β), (7)

where fk(α) denotes the fugacity of component k in its pure state in the α phase (i.e., the same

phase as the mixture) and at the same temperature and pressure and Xk mole fraction. The fu-
gacity of the liquid phase at any temperature and pressure

fk(α)(T,P) = fk(α) (T,Psat) POY(α), where POY = exp( ( ( )v
P

P

sat

α∫ (T,P)/RT) dP). (8)

where POY is the Poynting correction factor (Chapter 7). Likewise, in the vapor state



fk(β)  (T,P) = fk(β)(T,Psat) POY(β), where POY = exp ( ( ( )v
P

P

sat

β∫ /RT)dP). (9)

where v(β) can be obtained as a function of T and P using any real gas equation of state (Ap-

pendix B).

b. Vapor as Ideal Gas Mixture
In general, the RHS of Eq. (7) is related to the partial pressure of the k–th component

if  β is the gas phase and Eq. (7) assumes the form

Xk(α) fk(α) (T,P) = Xk P (10)

Typically, vf has a small value and we can neglect the term POY so that

fk(α) (T,P) = fk(α) (T,Psat) = fk(β)(T,Psat) = Pk
sat , and (11)

pk = Xk(α) Pk
sat (12)

Note that the capital lettered Pk
sat represents the saturation pressure of pure species k at given

T. The relation in Eq. (12) is known as Raoult’s law, which can be used to solve problems
pertaining to multicomponent phase equilibrium

Consider two components (namely, 1 and 2) at a specified temperature and pressure
in two phases α (liquid) and β (vapor). In that case

f1(α)X1(α)= X1βf1(β), f2(α)X2(α) = X2,βf2(β),  X1(α)+ X2(α)= 1, and X1(β)+ X2(β)= 1 (13)

Unknowns, X1(α), X2(α), X1(β),  and X2(β). Knowing f1(α), f1(β), f2(α), f2(β),  and four equations (cf.

Eq. 13), we can solve for the four unknowns at specified T and P.

i. Remarks
The ideal solution model allows us to express partial molal properties in terms of pure
properties and molal concentrations.
For a miscible liquid mixture under phase equilibrium

f̂ 1(f) = f̂ 1(g). (14)

In the future,  subscript (g) for gas phase will be omitted

For an ideal liquid mixture, Eq.(14) becomes

f̂ 1(f)(T,P,X1) = X1(l) f1(f)(T,P).  (15)

For a mixture immiscible in the liquid phase, but which is miscible in the gas phase,
the phase equilibrium condition implies that f̂ 1(g) e., fugacity of component 1 in the
vapor mixture = f1 (T, P), i.e., the fugacity of the pure component in the liquid phase
since the component 1 is immiscble.

a. Example 1

Law, and the equality ˆ
( )gH O2 l  = ˆ

( )gH O g2
.

Solution
The partial pressure of water
p H O2

 = X H O2 1(l) PH O
sat

2
(T).

Sea water consists of salt (the solute) and water (the solvent). Determine the boiling
temperature of solution with an 8% salt concentration at 1 bar.  Use both Raoult’s



At 100 kPa, since X H O2 (l) = 0.92,

100 = 0.92 PH O
sat

2
(T), i.e., PH O

sat

2
(T) = 108.7 kPa.

At this pressure, using the tables
T = 102.1ºC,
which is the boiling point of the salt water.
At phase equilibrium

ˆ
( )gH O2 l  (T,P,X H O2 (l)) = ˆ

( )gH O g2
(T,P,X H O2

) (A)

Using the ideal solution model for the liquid phase in context of Eq. (A),

ˆ
( )gH O2 l  (T,P,X H O2

) = gH O2 ( )l  + R T ln X H O2
. (B)

Similarly, for the gas phase,

ˆ
( )gH O g2

(T,P,X H O2
) = gH O g2 ( )(T,P) + R T ln X H O2

. (C)

Assuming the gas phase to consist of only water vapor, i.e., X H O2
,l = 1, using Eqs.

(A)–(C),

gH O2 ( )l + R T ln X H O2 (l)= ˆ
( )gH O g2

(T,P,1). (D)

If we assume the boiling point to be 100ºC,

ˆ
( )gH O g2

(373 K, 100 kPa, 1) = gH O g2 ( )(373 K, 100 kPa) 

= hH O g2 ( ) (373 K, 100 kPa) – 373 × sH O g2 ( ) (373 K, 100 kPa) + 0

= 2676.1 × 18.02 – 373 × 7.3549 × 18.02 = –1212 kJ kmole–1. (E)

In the liquid state, X H O2
,l = 0.92, and using Eq. (B),

 (373 K,100 kPa,0.92)= gH O2 ( )l (373 K,100 kPa)+8.314×373×ln 0.92, and (F)

gH O2 ( )l  (373 K,100 kPa) = hH O2 ( )l  – T sH O2 ( )l  

  419.04 × 18.02– 373 × 1.3069 × 18.02 = –1212 kJ kmole–1. (G)

Using Eqs. (E)–(G),
ˆ

( )gH O2 l  (373 K, 100 kPa, 0.92) = –1212–8.314×373 ln 0.92 = –1407.6 kJ kmole–1, i.e.,
ˆ

( )gH O2 l – ˆ
( )gH O g2

 = –1470.6 –(–1212) = 258.6 kJ kmole–1.

The partial molal Gibbs free energy of the liquid phase water is lower than in the gas
phase, since the water mole fraction in the liquid phase is lower than unity. The liquid
temperature must be increased in order to raise the value of ˆ

( )gH O2 l  so that it equals

that of the vapor phase water.
In this context assume that the boiling point TBP equals 110ºC or 383 K. In that case,
for the liquid phase water, Eq. (E) yields

ˆ
( )gH O2 l  (383 K,100 kPa,0.92)= gH O2 ( )l  (383 K,100 kPa)+8.314*383*ln 0.92. (H)

The Gibbs energy of liquid water at 383 K and 100 kPa is unavailable from the tables,
since this is a superheated vapor state for pure water. The Gibbs energy of saturated
liquid water at 383 K is available at a pressure of 143 kPa, i.e.,



gH O2 ( )l  (483 K, 143 kPa) = hH O2 ( )l  – T sH O2 ( )l

          = 461.3 – 383 × 1.4185 = –81.99 kJ kg–1 = – 1477.5 kJ kmole–1. (J)

We will use the relation

dgT = v dP. (K)

Assuming the liquid  to be incompressible, and integrating Eq. (K) between the limits
(T,Psat) and (T,P), for the hypothetical liquid water state,

gH O2 ( )l  (T,P) – gf(T,Psat) = v f(P – Psat).

where for water v f = 0.018 m3 kmole–1 at 373 K. Thus

gH O2 ( )l  (383 K, 100 kPa) = g f(383 K, 143 kPa) + 0.018×(100 – 143)

= –1477.5 + 0.018×(100 – 143) = –1478.2 kJ kmole–1, i.e., (L)

It is seen that vf (P-Psat) term is negligible. Hence

gH O2 ( )l  (T,P) ≈ g f (T,Psat) = –1477.5 kJ kmole–1. (K)

Using Eq. (B), the partial molal Gibbs function of liquid water can be determined, i.e.,

ˆ
( )gH O2 l  (383 K,100 kPa, 0.92) = –1476.7 + R T ln (0.92) = –1742 kJ kmole–1. (M)

For the gaseous water,

ˆ
( )gH O g2

(383 K, 100 kPa) = gH O g2 ( )(383 K, 100 kPa) + R T ln (1).

In the gaseous state, water is superheated, and from the tables

ˆ
( )gH O g2

(383 K,100 kPa)=2696.4×18.02–383×7.41×18.02= –2580.5 kJ kmole–1. (N)

Therefore,

ˆ
( )gH O2 l  (383 K, 100 kPa, 0.92) – ˆ

( )gH O g2
(383 K, 100 kPa) = 838 kJ kmole–1.

Using Eqs. (H) and (N) we can interpolate for the temperature at which
( ˆ

( )gH O2 l – ˆ
( )gH O g2

) = 0. That temperature is 102.2ºC.

Remarks
We have assumed the ideal solution model applies in the liquid phase.  This model as-
sumes that the attractive forces between water–water molecules equal those between
water–salt molecules. Therefore, the change in the boiling temperature of water in the
mixture compared to that of pure water is uninfluenced by attractive forces.
When additional salt is introduced into the solution the mole fraction of liquid water
is reduced. At phase equilibrium, the random condensation rate of a component k of a
mixture must equal the random evaporation of that component from the liquid phase.
The surface of a mass of pure water exposed to the gas phase contains only liquid
water molecules, and the condensation and evaporation rates equal one another at a
gas–phase pressure of 100 kPa at a temperature of 373 K. In the case of salt water the
same area  will accommodate a smaller number of liquid water molecules (due to the
presence of salt molecules), which reduces the evaporation rate. Phase equilibrium
considerations imply that a smaller number of vapor molecules consequently con-
dense, and the vapor pressure at 373 K must be lower than 100 kPa. In order to
achieve the same vapor pressure as is generated by the pure component, the liquid



temperature must be raised as salt is added to water in order for the same number of
molecules to evaporate as for the pure component.  (Similar arguments apply for the
depression of the freezing point of a salt–water solution with salt addition).
We will now obtain a simple relation for change in boiling point  when solute is
added in a solvent. The application of Raoult’s law yields,

PH O
sat

2
 = (P/Xk(l)) (O)

Recall from Chapter 7 (Clausius Clapeyron relation) that we can approximately ex-
press PH O

sat

2
 in the form

ln PH O
sat

2
 = A – B/T. (P)

Employing Eq. (O) in (P) and solving for T,

T = B/(A – ln(P/Xk(l))). (Q)

For the pure component Xk, (l)=1, and

Tpure = B/(A –  ln (P)). (R)

Using Eqs. (Q) and (R),

(1/Tpure – 1/T)  = (1/B) ln Xk(l). (S)

Since T = Tpure + δT, and δT/Tpure « 1, the LHS of the above relation can be expanded

in a binomial series. Retaining only the first order terms, Eq. (S) yields

δT = –( Tpure
2 /B) ln Xk(l) (T)

Recall from the Clausius Clapeyron relation, Chapter 7  that B = hfg/R. Therefore,

δT = –( Tpure
2 R/hfg) ln Xk(l). (U)

In case of water B = 5205.2 K and Tpure  = 373 K. For the case Xk(l) = 0.92, δT = 2.23

K, i.e., the boiling temperature TBP = 102.3 C.
At a specified pressure, the boiling temperature is increased by the amount δT. In the

current example, the salt concentration  is much less compared to water. Thus
XH2O(l)= 1– Xsalt,Xsalt << 1, then ln XH2O(l) = ln (1– Xsalt) . –Xsalt. Using this result in

Eq. (U), the boiling point elevation is given as

δT = (Tpure
2 R/hfg) Xsalt, (V)

For H2O, one can show that  δT =  28.441 Xsalt. Sometimes we write δT = kb Mosolute,

where Mosolute is the molality  of the solution (Eq.(1e), Chapter 8). Comparing this
empirical expression with Eq. (V) and replacing the molal fraction with molality (see
Example 1 in Chapter 8), we can show that

kb = R Tpure 
2/(1000 × hfg) = (8.314/18.02)×3732/(1000×2257) =  0.51 (W)

Since gas phase consists of only H2O, the salt water is purified by distillation process.
The anti–freeze in your car consists of glycol and water solution. The glycol is almost
non–volatile while water is volatile. Thus we can use Eq. (U) to determine the rise in
boiling temperature with addition of glycol. The freezing point depression with addi-
tion of salt can also be determined using similar derivation.



b. Example 2

state. Determine:
The water vapor pressure.
The mole fraction of the vapor at the droplet surface.

sure is held constant (e.g., injection of a liquid fuel spray in gas turbines).
The Gibbs energy of water in the liquid and vapor phases at the elevated pressure.

Solution
The pressure in the liquid droplet equals that of the ambient, while the water vapor
pressure pv is lower. In the droplet X H O2 (l) = 1, and applying Raoult’s Law at the drop-

let surface
pv = X H O2 (l) PH O

sat

2
(T).

The saturation pressure of water PH O
sat

2
 = 0.7014 bar at 90ºC. Hence pH2O = 0.7014bar

The gas phase consists of multiple components so that
pv = X H O2 (l) P, i.e., X H O2 (l)  = 0.7014.

If total pressure is 10 bar, the at T = 90 C,
X H O2 (l) = pv /P = 0.7014÷10 = 0.07014, i.e., XAir = 0.92986.

Note that increased P at same T reduces the mole % .
The Gibbs free energy
g H O2  (Ρ)(90ºC, 10 bar) = h H O2 (Ρ)(90ºC, 10 bar) – Ts H O2  (Ρ)(90ºC, 10 bar)

                                   ≈ hH O
sat

2 ( )l (90ºC) – T sH O
sat

2 ( )l (90ºC)

                                   = 376.92 – 363 × 1.1925 = –55.96 kJ kg–1.

The vapor adjusts its mole fraction in the gas phase such that
g H O2  (Ρ)(90ºC, 10 bar) = g H O2  (g)(90ºC, 10 bar, XH2O).

In an ideal gas mixture, pH2O(g) = 0.07014 * 10 = 0.7014 bar
gH O l2 ( )  (90ºC, 10 bar) = ˆ

( )gH O g2
 (90ºC, 0.7014 bar).

C. PRESSURE AND TEMPERATURE DIAGRAMS

1. Completely Miscible Mixtures

a. Liquid–Vapor Mixtures
This case is illustrated through the following example.

c. Example 3

to Raoult’s Law. The saturation pressure correlations for the pure components are:

ln psat
1 (mm of Hg) = 20.61 – 4719.2/T K, and (A)

ln psat
2 (mm of Hg) = 20.60  – 5205.2/T K. (B)

A solution consists of 40% methanol (species 1) and 60% water (species 2). Assume
that methanol is completely miscible in water and that the solution behaves according

The mole fraction of water vapor in case the pressure is raised to 10 bar, but the pres-

In general, when hydrocarbon droplets burn in air, the droplets first vaporize, follow-
ing which the vapor is transported away from the droplet surface before burning.
Phase equilibrium is often assumed between the drop and the surrounding air. In this
problem we will determine the partial pressure of a vapor at the surface of a droplet.
Consider a water droplet at a uniform temperature of 90ºC that is vaporizing in air at a
pressure of 1 bar. The air consists of a mixture of oxygen and nitrogen, while the
droplet consists of a pure water. Assume ideal gas behavior to apply in the gaseous



form?

in the vapor–liquid mixture, and the vapor–phase composition.

termine the liquid composition and the quality at this pressure.
Solution

Water is a low volatility substance and methanol is highly volatile. At 20ºC a vapor
bubble first appears in pure water at Psat

2  = 17.03 mm of (0.0224 bar), while for

methanol it appears at a higher pressure Psat
1  = 90.33 mm of mercury (0.119 bar).

However we are interested in determining the pressure at which bubble is formed
from a liquid mixture. A two-phase mixture forms when a bubble embryo first ap-
pears in the continuous mother phase of liquid, and Raoult’s Law can be applied at
this point.  Applying Raoult’s Law for each component in the mixture,

p1 = X1(l) Psat
1 , (C)

p2 = X2(l) Psat
2

(D)

Using Eq. (A), at T = 20ºC, Psat
1  = 90.33 mm of Hg, (0.119 bar) i.e., from Eq. (C)

p1 = 0.4 × 90.33 = 36.13 mm of Hg(0.048 bar). (E)

Similarly from Eq.(D)

p2 = 0.6 × 17.03 = 10.22 mm of mercury (0.013 bar). (F)

Adding Eqs. (E) and (F), the pressure at which a vapor bubble forms

P = p1 + p2 = 46.35 mm of mercury (0.061 bar). (G)

Generalizing the result for a multicomponent mixture

P =ΣXk(l) Pk
sat(T) 

Since this state (0.0612 bars ,20ºC) lies on the saturated liquid line, at this pressure,
the quality W = 0.

p1 = X1 P, (H)

where X1 is the vapor phase mole fraction of species 1. From Eqs, (E), (G), and (H),

X1 = p1/P = 36.13 ÷ 46.35 = 0.78. (I)

Similarly,

X2 = 10.22 ÷ 46.35 = 0.22. (J)

The vapor phase has a different composition as compared to the liquid composition.
Generalizing the result for a multicomponent mixture

Xk = pk/ ΣXk(l) Pk
sat   =    Xk(l) Pk

sat /ΣXk(l) Pk
sat . (K)

Applying Raoult’s law,

X1  = (X1(l) Psat
1

/(X1(l) Psat
1

 + X2(l) Psat
2

), and (L)

X2  = (X2 Psat
2

/(X1 Psat
1

 + X2 Psat
2

), i.e., (M)

At 20ºC, what is the pressure at which virtually the entire liquid has vaporized? De-

At this pressure and at 20ºC, determine the quality W, i.e., the ratio of moles of vapor

If the temperature is maintained at 20ºC, at what pressure will a vapor bubble begin to



When almost the entire liquid is vaporized X 1 = 0.4 and X 2 = 0.6, and from Eqs. (L)
and (M) we have
X1(l) = 0.112, X2(l) = 0.888, and

P = (X1(l) Psat
1

 + X2(l) Psat
2

) = 0.112 × 90.33 + 0.888× 17.03 = 25.24 mm of Hg.

The last liquid drop contains 11% methanol and 89% water. One can alter the liquid
composition and obtain plots of P vs X H O2 (l) as shown by curve MFLKH in Figure 3.
Generalizing for K components, one can solve for  Xk(Ρ) using the K linear relations

(Eqs. (K)) and the known vapor phase mole fractions,  Xk. At the saturated vapor state
the quality W= 1.

Remarks
Consider a 40% methanol and 60% water mixture at 20 °C in a PCW assembly so that

pressure is at 0.132 bar (State C). As we start slowly removing smaller weights one
after another, the first vapor bubble (embryo phase) appears in the liquid (mother
phase) at a pressure of 46.35 mm of mercury (or 0.061 bar, Figure 3 point F). This
pressure is the vapor pressure at 20ºC and the pressure and temperature specify the
saturated liquid state of the mixture.  At phase equilibrium, inside that bubble, the
mole fraction of water vapor is 0.22 and mole fraction of methanol is 0.78 (point D).
The vapor in the embryo is still at 46.35 mm of Hg. Although water constitutes 60 %
of the liquid phase (point F), it constitutes only 22 % of the vapor phase (Point D),
since it is less volatile due to a lower vapor pressure. By altering the composition, the
P-X k(Ρ) diagram can be obtained as M DVGH.

Now consider an 88.8% water and 11.2% methanol solution at 20ºC. The first vapor
bubble appears at a pressure of 24.36 mm of mercury (point  K, 0.0325 bar) and the
vapor composition is 60% water and 40% methanol (point G). Thus, for X 2(Ρ) = 0.6, P

= 0.061 bar, and X2 = 0.22 while at X2(l) = 0.888, P = 0.0322 bar, and X2 = 0.6. As
X2(l) → 1.0, P → Psat

2
t (i.e., 17.03 mm of mercury or 0.0225 bar, point H). As X2(l) →
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(1)–water (2) solution.



0 (and, consequently, X1(l) →  1) P = Psat
2

t (90.33 mm of mercury or 0.119 bar, point

M). A line connecting the pressures through the bubble points is called the bubble line
(saturated liquid line, MFKH) at which the first bubble appears.
Consider a methanol–water mixture with X2(l) = 0.6 at 20ºC. The mixture is in com-
pressed liquid state at a pressure of 100 mm of mercury (point C, 0.132 bar). As the
pressure is reduced below 0.061 bar (46.4 mm of Hg or the bubble pressure), say, to
0.0422 bar (32 mm Hg, point W), phase equilibrium requires that X2(l) = 0.8 and X2 =
0.43, Representing the initial molal fraction of species 2 as Z2,  then at “W” (cf.
Figure 3),

Z2 = (N2(l) + N2 (g))/N, i.e., (K)

Rewriting,

Z2 = (X2(l)Nl + X2 Ng)/N = X2(l)(1–W) + X2W, (L)

where W = Ng/N denotes the molal quality. Consequently,

W = (X2(l) – Z2)/(X2(l) – X2). (M)

If Z2 = 0.6, P = 32 mm of mercury (i.e., 0.042 bar), X2(l) = 0.8, X2 = 0.43, and, hence,
W = 0.54. Therefore, 54 % of the original mixture exists as vapor, while 46% is in the
liquid state. Water (species 2) constitutes 43% of the vapor. We can apply the ideal
gas equation for gas phase to compute the vapor volume. In order to specify the state
at 20ºC for a two-phase mixture, we require additional information, such the overall
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kPa) for a methanol (species 1)–water (species 2) solution.



mixture composition Z. Different pressures then lead to different vapor phase compo-
sitions. At same T, for a two component mixture, we can have two phase mixture
within MFLKH (saturated liquid line for a mixture or bubble line) and MDVGH
(saturated vapor or dew line) with different pressures. For example, at 20ºC, Z2 or
X2(l) = 0.6, the pressure can be varied from 46.5 mm of mercury (0.0614 bar) at satu-
rated liquid line to 24.36 mm of mercury (0.0322 bar) at saturated vapor line (see the
vertical line FWG) but still maintain two phase mixture. Thus, we can have two de-
grees of freedom (say T and P) for existence of two phases at given composition. On
the other hand, for a pure component such as water if T = 100 C, two phase mixture
(vapor and liquid) exists only at a single pressure of P =760 mm of mercury or 1 bar.
If the pressure is raised, liquid is formed. Decreasing the pressure produces super-
heated vapor.
If Z2 = 0.6 then at X2 = 0.6, Eq. (M) suggests that W = 1 regardless of the value of
X2(l). Since W = 1, all of the liquid has evaporated at this condition, which is called
the saturated vapor state (that starts along (line MDVGH – Figure 4). At this state, the
vapor concentrations equal the original liquid molal concentrations. Further reduction
of pressure causes the vapor mixture to become superheated (state S).
Consider point S, which is at the superheated state, say at X2 = 0.6  If the pressure of
the superheated vapor mixture (the mother phase) is increased, at some pressure a liq-
uid drop (the embryo phase) appears (Point G). In this manner, varying the mole frac-
tion of a component X2, one can identify the dew point (Figure 3) curve or the satu-
rated vapor curve. In context of Figure 3, the region below the dew point curve
MDVGH (cf. Figure 3) is the superheated region, while the region within it and the
saturated liquid line  MFLKH is called the wet region. The region above the saturated
liquid line MFLKH is called the compressed (or subcooled) liquid region.
P–Xk(l)–T Diagram: The methodology of Example 3 can be repeated at various tem-
peratures to obtain a three–dimensional space diagram. The maximum temperature at
which a species exists in the liquid phase is its critical temperature (647 K in the case
of water and 313 K for methanol. At this temperature the intermolecular separation
distances are the same for the saturated liquid and the saturated vapor. When Tc,1 < T
< Tc,2, in that case the diagram does not extend to X1(l) =1, since T > Tc,1.
T–Xk Diagram: This case is illustrated through  Example 4 and Figure 4.

d. Example 4

sume that it follows Raoult’s Law and the following relations apply

ln Psat
1 (in mm of Hg) = 20.61 – 4719.2/T,  T in K and (A)

ln Psat
2 (in mm of Hg) = 20.60 – 5205.2/T,  Tin K  . (B)

graph of T with respect to X2(l), X2, and Z2.

Solution
Applying Raoult’s Law to each component,

p1 = X1(l) Psat
1 , and (C)

p2 = X2(l) Psat
2 . (D)

Using Eq. (A) at 20ºC, Psat
1  = 90.33 mm of Hg. Then

The normal boiling point is defined when Psat = 100 kPa. From the above relations,
the normal boiling point of species 1 is 64.7oC and that of species 2 is 100oC. Draw a

A solution consists of 40% of methanol (species 1) and 60% water (species 2). As-



P = p1 + p2 = (1 – X2(l)) Psat
1 (T) + X2(l) Psat

2 (T) = 760 mm of Hg. (E)

From Eqs. (A), (B), and (E),

P = 760 = (1–X2(l)) exp (20.61 – 4719.2/T) + X2(l) exp (20.60  – 5205.2/T). (F)

Eq.(F) is non-linear in T at specified X2(l); however it is linear in X2(l) at specified T.

The graphs can be generated as follows. If T = 75ºC, P = 760 mm, then one solves
for X2(l)  from Eq.(F): X2(l) = 0.451, X1(l)= 1 – X2(l) = 0.549, Psat

2  = 128.41 mm, then

using Eq. (D)

p2 = X2(l) Psat
2 (T)= 0.451 × 128.41  = 57.9 mm = X2 P = X2 × 760, i.e.,

X2 = 0.169 so that X1 = 0.831. Figure 4 illustrates T-X2(l)-X2 diagram  at specified

pressure while Figure 5 qualitatively illustrates T-X2(l)-X2 at various pressures.

b. Relative Volatility
The relative volatility is defined as

Rv,21 = (X2/X2(l))/(X1/X1(l)) (16)

 If X2 = X2(l)  and X1 =X1(l)  , then Rv,21 =1. If Rv,21 > 1, this implies that component 2 is highly

volatile compared to 1 and vice versa.
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Figure 5: P–X–T diagram for a binary mixture, where C denotes the critical point; MFH the
bubble line, and MVH the vapor line (from G. J. Wiley, and R. Sonntag, Fundamentals of
Classical Thermodynamics, 3 rd Ed., John Wiley & Sons, 1986. With permission.).



c. P–T Diagram for a Binary Mixture
The generation of this graph is illustrated through the following example.

e. Example 5

sume that it follows Raoult’s Law and the following relations apply

ln Psat
1 (in mm of Hg) = 20.61 – 4719.2/T, T in K, and (A)

ln Psat
2 (in mm of Hg) = 20.60 – 5205.2/T, T in K . (B)

graph of P with respect to T with X2(l) as a parameter.

Solution
Applying Raoult’s Law to each component,

p1 = X1(l) Psat
1 , and (C)

p2 = X2(l) Psat
2 , so that (D)

P = p1 + p2 = (1 – X2(l)) Psat
1 (T) + X2(l) Psat

2 (T). (E)

Fix a value for X2(l). Vary T, obtain P from Eq. (E).  Thus P vs T at given X2(l) can be
plotted.

d. P–Xk(l)–T diagram
We can repeat Example 3 for various temperatures and qualitatively obtain 3 D plot

as shown in Figure 5. For example, if species 2 is water at 20ºC, the curve MFH represents the
bubble line while MVH represents the dew line. Repeating the calculation at T2 

sat = 40ºC, we
can obtain similar curves. The line HC2 descrbes the saturation pressure of pure species 2
while the line MC1 shows the corresponding curve for species 1. We know that maximum
temperature for species 2 is the critical temperature (647 K) while the corresponding tempera-
ture is 313 K for methanol. When Tc, 1 < T< Tc,2, then the P-T-Xk(l)-Xk diagram will not extend
to X1(l)  =1 since T > Tc,1 and hence it is always vapor at x1 =1. Similarly if T > Tc,2 then it will
not extend near X2(l)  =1. But it can have curves for some intermediate values of X1(l) and X2(l).

e. Azeotropic Behavior
The term azeotrope is used for situations that have no composition change. During the

boiling of a binary mixture, at a certain liquid composition, the vapor composition can be the
same as the liquid composition i.e., X2 = X2(l). Therefore, the liquid components cannot be

separated. This state is an azeotrope. At a specified total pressure, as the mixture composition
is changed, an azeotropic mixture reaches a minimum ( Q in Figure 6 ) or maximum in the
boiling temperature (e.g., water–antifreeze mixtures). In a nonazeotropic mixture the boiling
temperature varies monotonically with composition (e.g., water–NH3 mixtures, Figure 4 for
H2O:methanol mixtures). Figure 6 presents a T–Xk(l) diagram that illustrates the azeotropic

behavior of a binary mixture of species A and B. At point Q the azeotropic composition has a
corresponding temperature TQ.

f. Example 6
Lake water at 25ºC is exposed to ambient air at 1 bar. Phase equilibrium occurs and
Raoult’s Law can be assumed to be applicable. Assume that air is dissolved in the liq-
uid water so that Xair(l) = 0.019. What is the mole fraction of the water vapor in the gas
phase? What will this vapor mole fraction be if no air is dissolved in the liquid water?

The normal boiling point is defined when Psat = 100 kPa. From above relations, the
normal boiling point of species 1 is 64.7oC and that of species 2 is 100oC. Draw a

A solution consists of 40% of methanol (species 1) and 60% water (species 2). As-



liquid solution.
Solution

We will use the expressions

µk(T,P,Xk,) = µk(T,P) + RT ln Xk = µk(T,Psat) + RT ln (pk/P
sat(T)), and (A)

µk (T,P,Xk(l)) = µk (T,Psat) + vf(P – Psat) + RT ln Xk(l). (B)

Equating Eqs. (A) and (B),

vf(P – Psat) + RT ln Xk(l) = RT ln (pk/P
sat(T)), where,

pk/(Xk(l) P
sat(T)) = exp (vf(P – Psat)/RT) = POY. (C)

Ignoring the Poynting correction, and applying Raoult’s Law for water,
p H O2

 = X H O2 ,l PH O
sat

2
(25C) = 0.981 × 3.16.

When p H O2
 = 3.1 kPa and P = 100 kPa,

X H O2
 = 3.1÷100 = 0.031.

In the absence of any dissolved air, X H O2 ,l = 1 so that P H O2
 = Psat = 3.16 kPa, and

X H O2
 = 3.16÷100 = 0.0316.

The water vapor mole fraction at 25ºC is reduced if air is dissolved in liquid water.

If the RHS of Eq. (C) has a significant value, then

Figure 6: The T–Xk, –Xk diagram for a binary azeotropic mixture con-
taining two species A and B, where g denotes the dew line (saturated
vapor), f the bubble line (saturated  liquid), and Q the azeotropic point.
(From A. Bejan, Advanced Engineering Thermodynamics, John Wiley
and Sons., 1988, p. 271. With permission)

Include the POY correction factor to answer the question. If the partial pressure of the
water vapor at phase equilibrium is 3.1 kPa, determine the mole fraction of air in the



p H O2
/(0.981×3.16) = exp(0.001(100–3.16)÷(0.461×298)) = 1.000705, i.e.,

p H O2
 = 3.10215, and X H O2

 = 0.0310215.

g. Example 7

pressure of 60ºC and 433 mm of Hg. At 60ºC, Psat
2  = 144

mm of Hg. Determine f̂ 1(g), f̂ 2(g), f̂ 1(l), and f̂ 2(l).

Solution
The specified pressure is greater than Psat

2  but less than Psat
1 . Therefore, at the speci-

fied temperature and pressure, pure water exists as compressed liquid while pure al-
cohol exists as superheated vapor.

f̂ 1(g)= X1(l) f1(l)  (60ºC, 433 mm of hg) = X1(l) × 433 mm of mercury = 0.87 × 433 =

377,
since the fugacity of the vapor equals the vapor pressure, assuming ideal gas behav-
ior.
Similarly,

f̂ 2(l)= X2(l) f 2(l)(60ºC, 433 mm of Hg), ≈ X2(l) f2(g)(60ºC, 144 mm of Hg), where

f2(g) ≈ 144 mm of Hg,

since the liquid fugacities do not change significantly with pressure. Hence,
 f̂ 2(l)= 0.4 × 144 = 57.6 mm of Hg.

Likewise.
f̂ 1(l) = X1(l)  f1(l)(60ºC, 433 mm of Hg).

In its pure state, the alcohol exists in the form of a vapor. We must determine the fu-
gacity at the hypothetical liquid state (T,P = 60ºC and 433 mm of Hg). We will as-
sume that
 f1(l)  (60ºC, Psat

1  at 60 C) ≈ f1(l)(60ºC, 625 mm of Hg),

since the term
v(l)(433 – 625) « fl (60 C, 625 mm of Hg).

However,
 f1(l)(60ºC, 625 mm of Hg) = f1(g)(60ºC, 625 mm of Hg)

= 625 mm of Hg, since the vapor is assumed to be ideal.
Therefore,
f̂ 1(l) = 0.6 × 625 = 375 mm of Hg.

f̂ 2(l)= 0.13 × f2 (60ºC, 433 mm of Hg).

We will use a hypothetical ideal gas state for f2(60ºC, 433 mm of Hg), i.e.,
 f̂ 2(g)=  0.13 × 433 mm of mercury = 56 mm of Hg.

Remarks
We see that  f̂ 2(g) ≈ f̂ 2(l), and  f̂ 1(g) ≈  f̂ 1(l), thereby satisfying the phase equilibrium

criterion.
We have assumed ideal gas behavior for the hypothetical vapor state. Real gas be-
havior can also be accounted for, as shown below. Recall that f2(60ºC, 433 mm of
Hg) must be calculated for a hypothetical liquid state. To do so, we can first deter-
mine the fugacity of saturated vapor or liquid at the state (60ºC, 144 mm of Hg). Then
we can employ the relation
d(ln(f)) = ∫vdP/(RT) = ∫(Pv/(RT))d(ln P) = ∫Zd(ln P).

Psat
1 = 625 mm of Hg, and 

An ideal solution contains alcohol (species 1 present on a 60% mole basis in the liq-
uid phase and 87% in the vapor phase) and water (species 2) at a temperature and



Integrating between the limits Psat and P, and assuming that Z = Zsat, we obtain the
relation
ln(f/fsat) ≈ Zsatln (P/Psat), or (ln (φ))/(ln (fsat/Psat)) = Zsat (60ºC, 144 mm of Hg).

A plot of ln (φ) with respect to PR at specified TR is approximately linear.

h. Example 8

Cox–Antoine relation can be assumed to apply, i.e.,

ln Pk
sat = Ek + Fk/(T + Gk), k = 1,2 (A)

gas–phase composition.
Solution

Applying Raoult’s Law for miscible mixtures pk = xk Pk
sat , k=1,2, since

p1 + p2 + p3 = P, X1,l Psat
1

 + X2,l Psat
2

 + p3 = P, i.e., (B)

p3 = pair = P – (X1,l Psat
1  + X2,l Psat

2 ). (C)

At 20ºC, Psat
1  = 44.245 mm of Hg, and Psat

2  = 0.00338 (i.e., species 2 is almost non-
vaporizable). Therefore,
p1 = X1,l Psat

1
= 0.6 × 44.245 = 26.55 mm of Hg, and

p2 = (1–X1,l) Psat
2  = 0.4 × 0.00338 = 0.001352 mm of Hg.

Using Eq. (C),
pair = 760 – (26.55 + 0.001335) = 733.45 mm of Hg, i.e.,
X1=  26.55÷760 = 0.0349, and

Xair = 733.45 ÷ 760 = 0.965,

 (Since hexadecane is virtually nonvaporizing, we neglect its mole fraction.) The mass
fraction of n–heptane
Y1 = 0.0349 × (7 × 12 + 16 × 1) ÷ (0.0349 × 100 + 0.965 × 28.97) = 0.11, i.e.,

Y3 = 0.89
The variation of the temperature of a droplet containing a binary mixture consisting of
n–heptane  (60 %) and hexadecane with respect to the n–heptane mole fraction is il-
lustrated in Figure 7 at P=100 kPa.

i. Example 9

fractions of oxygen and nitrogen in liquid water. Recall that in air (X O2
/X N2

) = 3.76.

Solution
We will assume that Raoult’s Law applies, i.e.,

X O2( )l
  = X O2

 P/ PO
sat

2
(T), and (A)

X N2( )l
  = X N2

 P/ PN
sat

2
(T). (B)

Dissolved air in water provides the oxygen and nitrogen that are necessary to sustain
marine life. Obtain approximate relations that can be used to determine the trace mole

where Ek, Fk, and Gk are constant for a specified fuel component. If the pressure is
expressed in mm of Hg, E1 = 15.89, F1 = –2911.32, and G1 = –56.4, and E2 = 24.66,
F2 = –10660.2, and G2 = 54.1 when 1 < P< 40 mm of Hg. Determine the partial pres-
sures of the two species 297 K in air if the ambient pressure is 100 kPa and  the

A fuel droplet contains a binary mixture of 60% n–heptane (species 1) and 40% hexa-
decane (species 2). Assume that air (species 3) is insoluble in the liquid phase. The



In air X N2
/X O2

 = 3.76. Furthermore,

(X O2( )l
/X N2( )l

) = (X O2
/X N2

)/( PN
sat

2
(T)/ PO

sat

2
(T)) (C)

Since PN
sat

2
(T) ≈ PO

sat

2
(T),

(X O2( )l
/X N2( )l

) = (X O2
/X N2

) = 3.76.

Remarks
As the temperature rises, the value of Pk

sat  for a substance increases. Hence Xk,l de-

creases. The warming of river water decreases the O2 and N2 concentrations in it.

j. Example 10

cuss the effects with salt addition at 111.4ºC.
Solution

Psat(111.4ºC) = 1.5 bar.  The total volume

V = mg vg + mf vf = m (x vg + (1–x) vf) (A)

    = m (0.2× 1.159 +0.8× 0.001053) = m (0.233).

Therefore,
m = 20×0.001/0.233 = 0.0858 kg

Using the ideal gas law for the vapor phase

m = Vf/vf + (V – Vf)/(RT/Po), (B)

Vf = (m – Po V/RT)/(1/vf – Po/RT) ≈ vf (m – Po V/RT). (C)

The pressure increases as additional gas is injected, thereby increasing the Gibbs en-
ergy of the liquid and vapor phases.
In case of liquid water,

gl(T,P) = gl (T,Psat) + vl (P – Psat). 

For an ideal gas mixture in the vapor phase,

ĝ H O2
(T,P,XH2O) = g H O2

(T,p H O2
) = gH2O(T,Psat) + ∫ vH2O(g)dP 

                            = gg (T,Psat) + R T ln(p H O2
/Psat). (D)

Equating Eq. ( C)  with Eq. (D)

v  (P – Psat) = RT ln (p H O2
/Psat), or ln(p H O2

/Psat)  = (vl (P – Psat))/(RT) (E)

This relation is known as the Kelvin–Helmholtz formula which  shows the effect of
total pressure on partial pressure of vapor. Note that the partial pressure of H2O in the
vapor phase is not the same as saturation pressure at T.
For water, vl = 0.001053 m3 kmole–1, Psat = 1.5 bar, and for this case P = 2 bar, and T
= 384.56 K. Therefore, the partial pressure of H2O in vapor phase,

p H O2
 = 1.500445 bar.

a value close to saturation pressure at T= 384.6K  since vf is small. Further

A 20-liter rigid volume consists of 80% liquid and 20% vapor by mass at 111.4ºC and
1.5 bar. A pin is placed on piston to prevent its motion. Gaseous nitrogen is isother-
mally injected into the volume until the pressure reaches 2 bar. What is the nitrogen
mole fraction in the gas phase? Assume that N2 does not dissolve in the liquid.
What happens if there is no pin during the injection of N2. Instead of adding N2, dis-



X H O2
  = 0.75022, and XN2 = 0.24798.

The vapor mass
mv = pvVv/RT = pv(V – Vf)/RT, and

the liquid mass
mf = Vf/vf.

Adding the two masses,
m = pv(V – Vf)/RT + Vf/vf.

Therefore,

Vf = (m – pvV/RT)/(1/vf – pv/RT) ≈ vf(m – pvV/RT). (F)

Since Pv after N2 injection is slightly higher than  Pv before N2 injection, there should
be more vapor; thus the volume of liquid decreases. According to Le Chatelier, the
system counteracts the pressure increase by increasing the volume of the vapor phase.
If we ignore the term (vf (P – Psat))/(RT), in Eq. (A) this implies that pH2O = Psat and Xv

= 0.75.
The injection of nitrogen implies that XH2O<1. Pressure remains constant. Therefore,
)
gH O2

 = gH O2
 (T,P) + R T ln XH2O. Since XH2O <1, 

)
gH O2

< 
)

lgH O2 ( )  (T,P), as long as the

temperature and pressure are maintained, vaporization continues until all of the liquid
vaporizes.
Similarly when we add salt in water( or an impurity), the Gibbs function of the liquid
H2O decreases which causes the vapor molecules to cross over from the vapor into the
liquid phase.

Remarks
At a specified temperature, an increase in pressure causes the "g" of liquid  to increase
slightly. The Gibbs  free energy of the vapor equals that of the liquid. If the vapor is
an ideal gas, the enthalpy of the vapor will remain unchanged. The slight Gibbs en-
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ergy increase must  then cause the entropy of vapor to decrease which corresponds to
an increase in the partial pressure of vapor.
Consider a component k of a liquid mixture that exists in equilibrium with a vapor
phase that also contains a mixture of insoluble inert gases. In this case,

µk(l)(T,P) = µk(g)(T, P).

If the vapor phase is isothermally pressurized, then
µk(l)(T,P) + dµk(l) = µk(g)(T,P) + dµk(g(, vk(l)dPl = vk(g) dPg and dPl/dPg = vk

g/vk
l.

An increase in the pressure in the vapor phase requires a large change in the liquid
phase pressure to ensure that liquid–vapor equilibrium is maintained.

2. Immiscible Mixture

a. Immiscible Liquids and Miscible Gas Phase
This case is illustrated through the following example.

k. Example 11

pressure and temperature. You may assume that

ln Psat
2 =  13.97 – 5205.2/T (K), and (A)

ln Psat
1 = 13.98 – 4719.2/T (K). (B)

Solution
Employing Eqs. (A) and (B), the normal boiling points of species 1 (methanol) and 2
(water) are, respectively, 64.4 and 100ºC.
We will employ Raoult’s Law, in which the liquid mole fractions for water and
methanol must be set to unity, since they are immiscible. Therefore,

Psat
2 (T) =  X2 P, and (C)

Psat
1 (T) =  X1 P. (D)

Upon adding Eqs. (C) and (D), we obtain the expression

Psat
2 (T) + Psat

1 (T) = P. (E)

Figure 8 shows the T- Xk(l)-Xk diagram.

Remarks
In case of immiscible mixtures, partial pressures are only a function of temperature
alone. Irrespective of the liquid phase composition, at a specified temperature, Psat

2

can be obtained from Eq. (A), while Psat
1  can be, likewise, obtained using Eq. (B).

Using Eqs. (C) and (D), we obtain the values of X1 and X2 for a specified pressure,
and plots of temperature can be plotted with respect to composition, as shown in
Figure 8. The lines BME and EJGA in that figure are called the dew lines for species
1 and 2, respectively. The region above the curve BMEJGA is the superheated vapor
mixture region while that below the curve CELD is the compressed liquid region.
Consider the following scenario. A vapor mixture is contained in a pis-
ton–cylinder–weight assembly, such that P = 1 bar, X2 = 0.6, and T = 100ºC (cf. point
S).  Species 2 exists in the form of superheated vapor, since p2 = 0.6 bar at T = 100ºC.
The cylinder is now cooled. The saturation temperatures Tsat

2  = 86.5ºC at p2 = 0.6 bar,

and Tsat
1  = 43.87ºC at p1 = 0.4 bar. The assembly contains a vapor mixture only, as

long as T>86.5ºC. As the vapor mixture is cooled, a liquid drop appears at T = 86.5ºC

Consider binary vapor mixture of methanol (species 1) and water (species 2) that are
assumed to be immiscible in the liquid phase. Illustrate their behavior with respect to



(point G). (If the gas phase composition is changed to X2 = 0.2, in that case the first
liquid drop appears at 61ºC (point E)). If the mixture is cooled to 70ºC (cf. point H),
phase equilibrium – that is manifested in the form of Eq. (C) – implies that vapor
phase mole fraction must reduce to X2 = 0.3 (cf. point J), i.e., more of species 2 must
condense. It also implies that X1 must increase to 0.7 from the initial mole fraction of
0.4.  Eqs (D) and (B) dictate that Tsat

1  = 52ºC, so that species 1 at 70ºC exists in the
form of a superheated vapor. Upon further cooling to 60ºC, phase equilibrium re-
quires that X2 = 0.19 (cf. point E), and Tsat

1   increases to 60ºC. Any further cooling
causes both species 1 and 2 to condense, where the condensate phase is an immiscible
binary mixture.  Within the region EJGADE (i.e., for X2 > 0.19, 60ºC <T < 100ºC),
liquid species 2 and vapor mixture must coexist. In region BMEC (X2 < 0.19, 60ºC <
T <64.7ºC), liquid  species 1 and vapor mixture must  coexist. At 60ºC, X2 = 0.19,
and both the liquid and vapor mixture coexist.
At point E there are two liquid phases and one vapor phase. According to Gibbs phase
rule, F = K + 2 – π = 2 + 2 – 3 = 1. Therefore, there is one independent variable in the

set (P, T, X2). In case the pressure is fixed, then the temperature and X2 are fixed (i.e.,
60ºC, and X2 = 0.19) for coexistence the three phases to coexist. If the mixture is
cooled from 100ºC (cf. point K), species 1 condenses, increasing the mole fraction of
species 2 until  X2 =  0.19.
Now assume that the liquid mixture is heated at the condition X2(l) = 0.6 and P = 1 bar
in a  piston–cylinder–weight assembly. At low temperatures, the sum of the saturation
pressures (cf. Eq. (E)) is insufficient to create the imposed 1 bar pressure. Therefore,
at T < 60ºC (point Q), the fluid exists as a compressed liquid. At ≈60ºC (cf. point L),

the sum of the saturation pressures is roughly 1 bar. The temperature at this condition
can be predicted using Eqs. (A), (B), and (E) as 60ºC. Consequently, the values of X1

and X2 can be determined as 0.81 and 0.19 using Eqs. (C) and (D). Thus first vapor
bubble at a 1 bar pressure appears at 60ºC. At this point there are three phases (two
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immiscible liquid phases, since they are immiscible, and a vapor phase). As more heat
is isobarically added, the temperature cannot rise according to Eq. (E), but the vapor
bubble can grow. If the heating process begins with 0.4 kmole of species 1 and 0.6
kmole of species 2 and vaporization occurs until the vapor phase is at state E (i.e.,
Tsat

1  = 60ºC), since the vapor phase mole fraction of species 1 is 0.81, the ratio of the

moles of species 2 that are vaporized to those of species 1 is 0.19÷0.81. Therefore, for

every 0.4 kmole of species 1 that are vaporized, the moles of species 2 that are va-
porized equal 0.4×0.19÷0.81 = 0.094 kmole. Hence, the vapor mixture contains 0.4

kmole of species 1, 0.094 kmole of species 2, and 0.6–0.094 = 0.506 kmole of species
2 remain in the liquid phase. Now the species 1 from liquid have been completely va-
porized. Once T>60ºC, further vaporization of species 2 occurs, thereby increasing
the mole fraction of species 2 in the vapor state, and it is possible to determine the
value of  X2 along the curve EJGA. As the temperature reaches 86.5ºC (cf. point G),
all of the initial 0.6 kmole of species 2 in the liquid phase vaporize so that  X2= 0.6.

b. Miscible Liquids and Immiscible Solid Phase
Oftentimes two species  1 and 2 are miscible in the liquid phase, but are immiscible in

the solid phase and each species forms its own aggregate in the solid phase (i.e., upon cooling
of the liquid mixture, the two species form two separate solid phases). In this case, at phase
equilibrium,

f̂ 1(l) = f̂ 1(s), and  f̂ 2(l)  = f̂ 2(s) (17a)

Under the ideal solution assumption and since X1(s) = 1 due to immiscibility

X1,l f1(l)(T,P) = f1(s)(T,P). (17b)

For example, pure H2O  at a temperature of –5ºC and a pressure of 1 bar should exist as ice.
However, if the water is a component of a binary solution (e.g. salt addition), then f̂ H O2 ( )l  =

X H O2 (l)  fH2O(l)  (–5ºC, 1 bar) = X H O2 (l)  fH2O(l)  (–5ºC, Psat) POY(l), where POY = exp (v(l)  (P –

Psat)/RT). Generalizing,

X1(l)  f1(l)(T,P) = X1(l)  f1(l)  (T,P1 
sat) POY1(l)  = f1,s(T,P1

sat) POY1(s). (18)

Since f1(l)  (T,P1
sat) = f1(s)  (T,P1

sat),

X1(l)  POY1(l)   = POY1(s), and  X2(l)  POY2(l)   = POY2(s). (19)

However, X1(l)  + X2(l)  = 1, so that

POY1(s)/POY1(l)  + POY2(s)/POY2(l)   = 1 (20)

Following example 11, the pressure can be determined from Eq. (20) at a specified tempera-
ture. The mole fractions X1(l)  or X2(l)  at that pressure can be obtained using Eq. (19).

3. Partially Miscible Liquids

a. Liquid and Gas Mixtures
Many liquids are miscible within a certain range of concentrations. The solubility of

liquids with one another generally increases with the temperature. The corresponding pres-
sure–temperature relationships are a combination of the corresponding relationships for misci-
ble and immiscible liquids. Figure 9 illustrates the T-Xk(l) -Xk diagram for a partially miscible

liquid.
In the context of Figure 9 assume that methanol and water are partially miscible. Let

X1(l)  denote the methanol mole fraction and X2,l the water mole fraction in the liquid. Suppose



that water (species 2) is soluble in methanol (species 1) up to 10% by mole fraction at 40ºC.
As the temperature is increased, the increased “ve” can overcome the attractive forces between
methanol molecules and hence its solubility increases as the temperature approaches 60ºC.
Line FLC represents the boundary between miscibility and immiscibility. When solubility re-
mains constant, the line is vertically oriented (cf.  line VF). Water is insoluble from X2(l)  = 0.1

to X2(l)   = 0.8 say at temperatures less than 40ºC, but at 60ºC it is immiscible for values of X2(l)

< 0.7. Region I is a miscible liquid mixture but rich in species 2, while region II is a miscible
liquid mixture but rich in species 1. The boundary DQG represents the variation of miscibility
with temperature in the region richer in X2,l. The region above line CED is similar to the im-

miscible case we have just discussed.
Consider the vapor mixture at a 90% water vapor concentration (point K). As we cool

the vapor from state K to M, first a liquid drop appears containing both species that has a com-
position corresponding to point R, while the vapor has a composition corresponding to point M
as discussed for miscible liquids. As the temperature is decreased to point N, the last liquid
will have composition at N (at the bubble line) while the vapor is at state T. If temperature is
further decreased, a liquid mixture fixed at a composition N forms.

If we start at point S, then we obtain the first drop at point T with drop composition
corresponding to N, which is in the miscible region. As we cool further to point U, the liquid
composition is at D (miscible limit at 60ºC) while the vapor is at E. However there is still wa-
ter and methanol  vapor left in the mixture. Condensation will occur at a constant vapor com-
position with the liquid-I composition at D (rich in species 2) and liquid-II composition C (rich
in species 1). If the temperature drops below 60ºC, there are two separate liquid phases I
(composition rich in species 2 along DQG) and II (composition lean in species 2 along FLC).
However, the fraction of species 2 in liquid–II will increase since the solubility of species 2
increases (DQG) while the fraction of species 2 in liquid–II will decrease (FLC).

b. Liquid and Solid Mixtures
When a solid (a solute, such as salt) is dissolved in a liquid (a solvent, e.g., water), the

dissolved solid  can be considered as a liquid in the liquid solution. It is pertinent to know the
maximum amount of solute that can be dissolved in a solvent. We will denote the salt in solid
phase as s(s) and that in the liquid as s(l). At the equilibrium state of a saturated liquid solution
with a solid salt,

f̂ s(l) = Xsl fs(l)(T,P) = fs(s)(T,P), where (21)

fs(s)(T,P) = fs(s)(T,Psub) POYs(s), and (22)

POYs(s) = exp [vs(s)(P–Psub)/RT]. (23)

The Psub denotes the saturation pressure for the sublimation of a salt at a specified temperature.
Since fs(s)(T,P) = fs(g)(T,Psub),

fs(s)(T,P) = fs(g)(T, Psub) POYs(s). (24)

If the vapor phase behaves as an ideal gas,

fs(s)(T,P) = Psub POYs(s). (25)

Similarly,

fs(l)(T,P) = φs(l)(T,P) P. (26)

Employing Eqs. (21) and (26)

Xs(l) φs(l)(T,P) P = Psub(T) POYs(s), and (27)



Xs(l) = (Psub(T) POYs(s))/(P φs(l)). (28)

At low pressures, an increase in the pressure causes the solubility to decrease while at higher
pressures the value of φs(l)  may decrease and, consequently, the solubility may also increase.

D. DISSOLVED GASES IN LIQUIDS
Gases dissolve in liquid solutions through a process called absorption. (This should

not be confused with adsorption, which is a process during which molecules are attached to a
the surface of a solid material due to strong intermolecular forces.) The solubility of a compo-
nent in a mixture is expressed as a ratio of the maximum amount of solute that can be present
in a specified amount of solvent. In case of gases, the solubility is typically expressed in units
of ppm. We will treat dissolved gaseous species within a liquid as though they behave like
liquids.
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1. Single Component Gas
As carbon dioxide is dissolved in water, at some concentration a vapor bubble con-

taining pure CO2 will start to form. At that saturated condition.

f̂ CO2 (l)(T,P,X CO2 ,l) = f CO2
(T,P). (29)

Employing the ideal solution model,

X CO2 (l)  f CO2 (l)(T,P) = f CO2
(T,P).

If the gas phase behaves as an ideal gas X CO2 ,l f CO2 (l)(T,P) = P, else

f CO2 (l)(T,P) = f CO2 (l)(T,Psat)POY CO2 (l), where

POY CO2 (l)  = exp {v CO2 (l)  (P – Psat)/RT}, and f CO2 (l)(T,Psat) = fCO2(g)(T,Psat) = Psat.

Therefore,

X CO2 (l)  = P/ {PCO2
sat POY CO2  (l)}. (30)

In general, POY CO2  (l)  ≈ 1, and

X CO2 (l)  = P/PCO2
sat. (31)

Generalizing for solute k dissolved in a solvent,
Xk (l)  = P/Pk

sat.

This methodology works for values of Psat(T) > P. In the case of carbon dioxide dissolved in
soda water at  25ºC, Psat = 66.7 bar. Consequently, at P=1 bar, X CO2 (l)  = 1÷67 = 0.015, imply-

ing a solubility of 1.5%. As the temperature increases, Psat increases and the solubility of gases
decreases. This is an opposite trend to the solubility of liquid components in liquids or of sol-
ids in liquid. Recall that chemical potentials of solute in vapor and liquid phases determine
whether k is absorbed in or distilled from the solvent. For example, when the pure distilled
water is exposed to pure carbon dioxide, if µ CO2 ,g > µ CO2 (l), the carbon dioxide is transferred

(absorbed) from the gas into the liquid phase. If µ CO2 ,g < µ CO2 (l), carbon dioxide is transferred

(distilled) from the liquid to the gas phase.
The relation shown in Eq. (31) presumes Raoult’s  law  or ideal solution behavior. At

low carbon dioxide mole fractions, since a relatively large number of water molecules sur-
round the molecules of carbon dioxide, the liquid water molecules dominate the intermolecular
attraction forces. If the attractive forces between water molecules significantly differ from
those between the CO2 molecules, the ideal solution model breaks down. The ideal solution
model is also not applicable at higher pressures, since the dioxide no longer behaves as an
ideal gas.

2. Mixture of Gases
Consider a gaseous mixture (e.g., of carbon dioxide and oxygen) above a liquid sur-

face. In that case f̂ CO2 (l) = f̂ CO2 (g), and using the ideal solution model

X CO2 (l) f CO2 (l)(T,P) = X CO2
 f CO2 (g)(T,P) 

Treating the gases as ideal,

X CO2 (l) f CO2 (l)  (T,P) = X CO2
 P = p CO2

, 

and proceeding as before



X CO2 (l) POY CO2 (l) PCO
sat

2
 = X CO2

 P = p CO2
, i.e.,

X CO2
 = p CO2

/( PCO
sat

2
 POY CO2 (l)), or (32)

p CO2
 = X CO2 (l) PCO

sat

2
 POY CO2 (l). (33)

In this case, the total pressure that appears in Eq. (31) is replaced by the partial pres-
sure.  In power plants, water exists under large pressures and hence air may  be dissolved in it
in the boiler drums. Since solubility decreases at low pressures, the air is released in the con-
denser sections (Eq. (31)). Oxygen is corrosive to metals, and it, therefore, becomes necessary
to remove the dissolved air or oxygen from water prior to sending water to the boiler. Deaera-
tors are used to remove the dissolved gases from water. They work by heating the water with
steam (Psat increases, Eq. (31)), and then allowing it to fall over a series of trays in order to
expose the water film so that the gases are removed from the liquid phase as much as possible.

Another example pertains to diving in deep water. The human body contains air cavi-
ties (e.g., the sinuses and lungs). As a diver proceeds to greater depths, the surrounding pres-
sure increases. In order to prevent the air cavities from collapsing at greater depths, the divers
must adjust the air pressure they breathe in. They do so by manipulating their diving equip-
ment to equalize the cavity pressures with the surrounding water pressure. Consequently, the
pressurized air gets  dissolved in the blood (Eq. (31)).  Upon rapid depressurization, in the
process of reaching phase equilibrium, the dissolved air is released into the blood stream in the
form of bubbles that can be very harmful to human health. Raoult’s Law may be applied to
estimate the concentration of air in blood. Similarly when a person develops  high blood pres-
sure, the amount of soluble O2 and CO2 may increase.

If we assume blood to have the same properties as water, we can determine the solu-
bility of oxygen at a 310 K temperature and 1 atm pressure as follows. The vapor pressure data
of oxygen can be extrapolated from a known or reference condition to 310 K using Clau-
sius–Clayperon equation (which is valid if (hfg/Zfg) is constant), namely,

( Pk
sat /Pref)  = exp ((hfg,k/(RkZfg,k))(1/Tref – 1/T)). (34)

The saturation pressure at 310 K can be determined using the relation ln (Psat) = 9.102 – 821/T
(K) bar, i.e., Psat(310 K) = 635 bar. In air, at 1 atm p O2

 = 0.21 bar, and the resulting solubility

of O2  in water is 300  ppm.
Another example pertains to hydrocarbon liquid fuels (e.g., fuel injected engines)

that are injected into a combustion chamber at high pressures (≈ 30 bar). The gaseous carbon

dioxide concentration in these chambers is of the order of 10%. At 25ºC, the solubility of the
dioxide in the fuels is ≈0.1×3 MPa÷61MPa = 0.005. This solubility increases as the pressure is

increased.

3. Approximate Solution–Henry’s Law
Rewrite Eq. (33) as,

pk = Xk,l Hk(T,P), where (35)

Hk(T,P) = Pk
sat  (POY)k(l). (36)

Where “k is the solute dissolved in a liquid solvent. The symbol Hk denotes Henry’s constant
for the k–th gaseous species dissolved in the liquid solution. The units used for Hk are typically
those of pressure. Since vf has a relatively small value, POY ≈ 1. Therefore,

Hk(T,P) ≈ Hk(T) = pk
sat(T), i.e., (37)



Hence Eq. (35) is written as,

pk = Hk(T) pk
sat(T). (38)

At 25ºC, for molecular oxygen and nitrogen, respectively, H(25ºC) = 4.01×104 and

8.65×104 bar when p O2
<1 bar, and p N2

<1 bar. The ideal solubility of oxygen in water is Xk,l =

0.21x106/40100 = 5.2 ppm. This result is only approximate. The solubility of O2 in water is
found to be as high as 170 ppm.

Rewriting Eq. (35)

Xk,l =  pk/Hk(T,P). (39)

Multiplying Eq. (39) by the number of moles per unit volume nl,

Xk(l)nl  = pk nl/Hk(T,P), so that (40)

nk(l) = (Xk nl/Hk(T,P)) P, i.e., nv,k  =  Hk´ P, where (41)

Hk´ = X k(l)/Hk(T,P) ≈ Xk nl/Hk(T) = Xk nl/ pk
sat(T). (42)

Eq. (41) states that moles of gas dissolved in a unit volume liquid is proportional to total pres-
sure. For carbon dioxide that exists in a liquid solution with water, Hk´ = 0.0312 k mole  of
CO2 m

–3 bar–1 at 25ºC. Since the volume at STP for the gas is 24.5 m3, Hk´ = 0.764 m3 of CO2

(STP) per m3 of liquid per bar. The solubility of oxygen in blood is 0.03 mL (STP) per liter of
blood per mm of Hg. If partial pressure of oxygen in the lungs is 100 mm of Hg, the dissolved
oxygen is 3 mL per liter of blood or 4 mg per liter of blood. Figure 10 presents the variation of
H(T) for various dissolved gases in liquid water.

E. DEVIATIONS FROM RAOULT’S LAW
Consider two species k and j that form a binary mixture. The attraction force between

similar molecules of species k is denoted as Fkk and between dissimilar molecules as Fkj. The
following scenarios ensue: (1) Fkj = Fkk so that the ideal solution model and Raoult’s Law ap-
ply, e.g., toluene–benzene mixtures and mixtures of adjacent homologous series; (2) Fkj > Fkk

implying a nonideal solution in which contraction occurs upon mixing, e.g., acetone–water
mixtures and other examples of hydrogen bonding; and (3) Fkj < Fkk, which corresponds to a
nonideal solution in which the volume expands upon mixing, e.g., ethanol–hexane and other
polar–non polar liquids. In case of the second scenario, since the intermolecular attraction
forces are stronger between k–j pairs than between k–k molecular pairs, the vapor pressure of
species k  can be lower than that predicted using Raoult’s Law, which is referred to as a nega-
tive deviation from the Law. In case (3) the attraction forces are lower, and a larger amount of
vapor may be produced as compared with the Raoult’s Law prediction, i.e., both the second
and third scenarios  suggest that we must involve activity coefficients, γk(l). It will now be

shown that

pk = γk(l) Xk,l pk
sat . (43)

where γk(l) = f̂  k(l)(T,P)/ f̂ k(l)
id(T,P) = f̂  k(l)(T,P)/(Xk(l) fk(l)(T,P)).

1. Evaluation of the Activity Coefficient
We have previously employed the ideal solution model to predict the vapor pressure

of a component k in an ideal solution. If the measured component vapor pressure differs from
that prediction, then it is apparent that the ideal solution model is not valid. We can determine
the activity coefficient (that represents the degree of non-ideality from the measured vapor
pressure data) as follows.



γk = f̂ k/ f̂ k,id = f̂ k/Xk fk(T,P). (44)

At phase equilibrium,

f̂ k(g)=  γk(g) Xk fk(g)(T,P) = f̂ k(l) and (45)

γk(g) Xk fk(g)(T,P)= f̂ k(l)  = γk (l)  Xk,lfk(l)  (T,P). (46)

Since the vapor is assume to be an ideal gas mixture γk(g) =1, and f k(g)(T,P) = P. Therefore,

pk = γk(l) Xk,l fk(l)(T,P), where (47)

fk,l(T,P) = fk(l)(T,Psat) POY ≈ fk(l)(T,Psat) = Psat, i.e.,

pk = γk(l) Xk,l fk(l)(T,P) = γk(l) Xk,l P
sat = γk(l) pk,Raoult. (48)

Thus, γk(l) is a measure of the deviation from Raoult’s law. With respect to the measured vapor

pressure at a specified value of Xk, namely,

γk(l) = pk/(Xk,l pk
sat), or γk,l = pk/pk,Raoult. (49)

Figure 10: Henry’s constant H(T) for the solubility of gases in water. (From S. S. Zum-
dahl, Chemistry, DC Heath and Company, Lexington, Mass, 1986. With permission.)



Recall that the γk’s for any phase are related to ( gE/( R T)) (see Eqs. (114) to (117), Chapter 8).

If,

X1(l) X2(l) R T/ gE = B´ + C´ (X1(l) - X2(l)), (50)

then we obtain the Van Laar Equations:

ln γ1 = A(T) X2(l)
2/((A(T)/B(T)) X1(l) + X2(l))

2, ln γ2 =  B(T) X1(l)
2/((X1(l) 

        + (B(T)/A(T)) X2(l))
2, where (51)

 A (T) = 1/(B´- C´), and (52)

B(T) = 1/(B´ + C´). (53)

The constants A and B are generally weak functions of temperature, and for the bi-
nary mixture, one can solve for A and B as

A = ln γ1(l) (1+ (X2(l) ln γ2(l))/(X1(l) ln γ1(l)))
2, (54)

B=  ln γ2(l) (1+ (X1(l)  ln γ1(l))/(X2(l) ln γ2(l)))
2. (55)

At the azeotropic condition, at which Xk(l) = Xk, Eq. (47 ) assumes the form

pk = Xk(l) P = γk(l)  Xk(l) pk
sat . (56)

Thus,

γk(l)(Xk,azeotropic)= P/ pk
sat(T). (57)

The Wilson equation for activity coefficient has the form

ln γ1(l) = AX2,l
2/((A/B) X1(l) +X2(l))

2, ln γ2 (58)

           =  B X1(l) 
2/(X1(l) +(B/A)X2(l))

2, (59)

ln γ2(l) = – ln(X2(l) + X1(l)A21)+ X1(l)(A12/(X1(l)+ X2(l) A12) 

           – A21/(X2(l)+ X1(l) A21)).

As X1(l)  → 0,

ln γ1(l)  = – ln A12 + 1 – A21,and ln γ2(l)  = – ln A21 + 1– A12, where (60)

Aij = (vj/vi) exp (– aij/R T),

and vj denotes the molal volume of species j, and aij is a known constant that is independent of
composition and temperature, where aij ≈ aji.

F. SUMMARY
This chapter summarizes relations for obtaining saturation properties for miscible and

immiscible mixtures. Using the phase equilibrium criteria of equal fugacities of any given
component in all phases, the composition in any phase can be determined at specified values of
T and P. Relations for dew point, bubble point, vapor/liquid composition, solubilities, etc., are
obtained. The methodology is extended to nonideal solutions.



G. APPENDIX

1. Phase Rule for Single Component

a. Single Phase
Both pressure and temperature can be varied independently for a single phase for a single
component.  The system is bivariant with two degrees of freedom, i.e., F = 2.

b. Two Phases
If water is maintained at 180ºC with the condition that two phases must coexist, the pres-
sure P must be held at 1 MPa. Likewise, at 170ºC, P = 0.8 Mpa. Therefore, only one of the
two properties (P,T) is an independent variable in a two phase system. This system is
monovariant with a single degree of freedom.

c. Three Phases
The three phases of water coexist only at T = 0.01ºC and P = 0.006 bar. It is not pos-

sibly to vary either T or P if the three phase condition is desired. This system is invariant with
a zero degree of freedom.

d. Theory
We have seen that the phase rule

F = 3–π (Α)

applies, where π denotes the number of phases. At phase equilibrium between three phases,

say, the α, β, and γ phases,

µα(P,T) = µβ(P,T) = µγ(P,T). (Β)

Eqs. (B) represent two equations µα =µβ and µβ = µγ and, since there are two unknowns P and

T, the solutions are uniquely fixed so that F = 0.

2. General Phase Rule for Multicomponent Fluids
In a K component system,

ΣKXk = 1. (Β)

In this case, the number of variables specifying the chemical potential of each component in
each phase is ((K–1) +2). Thus for any phase j

µk j j j K jX X X P T( ) ( ) ( ) ( )( , , , , , )1 2 1K − , j = 1,2, …, π, and k = 1,2, …, K–1. (C)

The mole fractions of any component in the different phases are, in general, different.
From the phase equilibrium condition for any species k

µk KX X P T( ) ( ) ( )( , , , , )1 1 1 1 1K − = µk KX X P T( ) ( ) ( )( , , , , )2 1 2 1 2K − =…= µ π π πK KX X P T( ) ( ) ( )( , , , , )1 1K − , (D)

which represents a set of (π–1) equations. Overall, there are (π–1)K  equations available that

relate the composition variables 1
1

k 1 2 K-1 2 K-1X ,... X  X ... X  ...  X ... X( , ), ( , , ), , ( , , )( ) ( ) ( ) ( ) ( )−1 1 1 π π  and the

two intensive variables P and T. The total number of variables then equals (π(K–1)+2).  Since

these variables are related by (π–1)K equations, the  number of  degrees of freedom is

F = π (K–1) + 2 – (π–1)K = K – π + 2, (E)

which is known as Gibbs phase rule. The phase rule is usually applied to a system of K com-
ponents and π phases at specified values of P and T.



l. Example 12

steam.?
Solution

K = 1 (for a single component), π = 1 (for a single phase). Therefore, F = 2.

Remarks
For a mixture of liquid water and steam, K = 1, π = 2, and F = 1. It is a monovariant

system.
Likewise, for a mixture of ice, liquid water, and steam, F = 0.

m. Example 13

grees of freedom.
F = 2 + 2 – 1 = 3.

Solution
This is a trivariant system, e.g., we can independently assign the variables T, P, X1.

F = 2 + 2 –2 = 2

n. Example 14

namely, liquid and gaseous. Determine the number of degrees of freedom.
Solution

If the system is nonreacting,
F = 3 + 2 – 2 = 3

If the system is reacting according to the chemical reaction
H2SO4(l) + Ca(s) → H2 (g) + CaSO4(s),

the chemical equilibrium condition  requires that
ĝ H SO2 4

 + ĝCa(s) = ĝ H2
 + ĝ CaSO s4 ( ).

This restriction reduces the number of freedom by 1, and
F = 3 – 1 = 2.

If the number of equilibrium reactions are R (Chapter 12), the number of degrees of
freedom is modified to be

F = K +2 – π – R.

Generalizing for all work modes,
F = K + 1 + work modes – π – R

o. Example 15

rium with the liquids.  What is the phase rule for this case?
Solution

F = K + 2 – π, where π = 3 (the two pure solid phases and the one liquid phase) and K

= 2, so that
F = 2 + 2 – 3 = 1.

3. Raoult’s Law for the Vapor Phase of a Real Gas
If a liquid mixture exists at a high pressure and low temperature, its vapor phase must

be treated as a real gas mixture, i.e.,

f̂k
1 (T,P,Xk,l) = f̂k

g (T,P,Xk).

Applying an ideal solution and ideal mixture model,

Consider a binary mixture of species 1 and 2 in the liquid phase, which on cooling
forms two separate pure solids, one for each component. These solids are in equilib-

Consider a nonreacting system containing H2SO4(l), Ca(s), and H2(g) in two phases,

A single liquid phase is desired for a mixture of water and alcohol. Determine the de-

How many independent intensive variables are required to fix the state of superheated



Xk,l f̂k
1 (T,P) = Xk f̂k

g (T,P).

A species may exist as a gas at a specified temperature and pressure when alone (e.g., water at
110ºC, 100 kPa), but as a liquid in a liquid mixture with another higher boiling temperature
component. In that case,

ln (fk(T,P)/fk(T,Psat)) = 
P

P

sat∫ (vk/(RT)) dP.

If the hypothetical state is a liquid, then

ln ( fk
l(T,P)/ fk

l(T,Psat)) = 
P

P

sat∫ ( vk
l /(RT)) dP.

Since vk
l  is a small quantity,

fk
l(T,P) = fk

l(T,Psat).

Similarly, for the gaseous state,

ln ( fk
g (T,P)/ fk

g (T,Psat)) = 
P

P

sat∫ ( vk
g /(RT)) dP.

Since ∫Z d(ln P) = ∫(v/RT) dP = (Pv/RT) – ∫((P/RT) dv)), applying the RK equation either

for the liquid or gaseous state, we can apply the expression

∫(v/RT)dP = (v/(v–b) – a/(RT3/2(v+b))) – ln (v–b) + (a/(RT3/2b)) ln (v/(v+b)).



Chapter 10 

 10. STABILITY

A. INTRODUCTION
The entropy maximum and energy minimum principles will be used to derive the sta-

bility criteria for a fluid that exists at a specified state. This will allow us to stipulate the phase
change conditions (e.g., evaporation and condensation) for single and multicomponent fluids.
Applications will also be presented.

The various equilibrium states of mechanical systems are illustrated in Figure 1.
States B, C, D, and F represent mechanical equilibrium positions (or states) while A is a non-
equilibrium position (and, hence, not a state). The equilibrium states B, C, and D can be classi-
fied according to their stability behavior by conducting perturbation tests as follows. An equi-
librium state is disturbed from its initial state by a small amplitude perturbation that changes
the potential energy. If a ball returns to its original state, that state is stable. The mechanical
stability behavior can be characterized by several states. Figure 1 illustrates a stable state (e.g.,
state D corresponding to a minimum potential energy), an unstable state (e.g., state C that has a
locally maximum potential energy), a metastable state (e.g., state B that can be perturbed to
potential energy levels, but which have finite constraints that require a relatively large distur-
bance to overcome), and a neutrally stable state (e.g., state F that has an invariant potential
energy). A disturbance at state C that is a point of maximum potential energy will cause a ball
placed there to move to either of positions B or D that are more stable. Therefore, stability can
also be defined with respect to a disturbance from an equilibrium state. State C is unstable
since any disturbance causes the ball to move towards either State B or State D which are the
next equilibrium states in the immediate vicinity of State C. Thus State C is impossible to
achieve in a practical system. The state C is equivalent to a nickel standing on its edge in the
absence of a disturbance. A slight disturbance, however, can cause the nickel to fall flat on the
surface.

If the ball at B is disturbed (e.g., by a potential energy disturbance) by a finite
amount, then ball may move to a more stable state D which has the lowest energy of all states
illustrated in Figure 1. The rate at which the ball returns to its original state depends upon the
friction between the ball and surface. If the potential energy constraint mgZ is removed, the
ball will eventually roll to position D. State D is the most stable equilibrium state, state C is
unstable and state B is
a metastable equilib-
rium state. As long as
constraints exist in the
mechanical system of
Figure 1 and the distur-
bances are minor, a
metastable system is
also a stable system.

During a me-
chanical disturbance
test the potential energy
is changed from its
initial level in order to
determine if its value
increases or decreases.
In that context, state C
is unstable since d(PE)
< 0, but state D is sta-

Zc

ZD

ZB

Figure 1: Illustration of various mechanical states.



ble since d(PE) > 0 with disturbance. A distur-
bance to State D (cf. Figure 1) creates a non-
equilibrium situation (i.e., towards higher poten-
tial energy locations as d(PE) > 0), which induces
the ball to roll back. This process brings the ball
back to state D and decreases the potential energy
by converting it into kinetic energy. Any pertur-
bation of a stable equilibrium state causes a proc-
ess that tends to attenuate the disturbance. This is
also known as the Le Chatelier principle and is a
consequence of the Second Law.

Consider a thermodynamic system with
water as working fluid (cf. Figure 2). The path
AFGH is a 40 bar isobar and all states along
AFGH are stable analogous to the state D in
Figure 1. However, it is possible to reach superheated liquid states along FM (except the point
M) which are analogous to state B in Figure 1. Similarly, if vapor at state H is cooled. Simi-
larly if vapor at state G is cooled, it can be cooled to a vapor state to along GN in the form of
subcooled vapor. Again, states along path GN (except at point N) are analogous to state B.
Likewise, the states along the path MN are analogous to state C in Figure 1. In a manner simi-
lar to mechanical stability tests, we can test the stability of fluids along the paths HGN or AFM
by perturbing the system (e.g., by disturbing the volume from a value V to V + dV) and deter-
mining if the system returns to its original state. The rate of return to the stable equilibrium
state  for any fluid depends upon transport rate processes, e.g., heat and mass transfer, which is
beyond the scope of classical thermodynamics.

If one strikes a match in air, the match simply  burns and extinguishes. This implies
that the constituents of air do not react at a significant rate. On the other hand, if a match is
ignited in air in the presence of a significant amount of gasoline vapors (i.e., if the reactive
mixture is in metastable equilibrium), small temperature disturbances can ignite the mixture. In
general, if a disturbance decreases the entropy of an isolated system at specified values of U, V
and m, then the system must initially have been at a stable equilibrium state (SES). Note that
what is known as “equilibrium” in the context of classical thermodynamics yields only an av-
erage state (e.g., an average system temperature or pressure) while any real system is inces-
santly dynamic at its microscopic level. Thus, a system should be stable with inherent micro-
scopic and small natural disturbances.

B. STABILITY CRITERIA

1. Isolated System
An example of an isolated system is one constrained by rigid adiabatic and impermeable

walls, i.e., with specified values of U, V, and m. An isolated system is at equilibrium when its
entropy reaches a maximum value so that δS = 0. At this state, if the system is perturbed such

that the values of U, V, and m of the system are unchanged (e.g., by increasing the temperature
or internal energy by an infinitesimal amount), the perturbations are dampened since the sys-
tem is stable. The perturbations at fixed values of U, V, and m actually decrease the entropy,
i.e., δS < 0 at stable equilibrium. (e.g., consider adiabatic chemical reactions, Chapter 11).

a. Single Component
In Chapters 6 and 7 we employed the real gas state equation and evaluated various

thermodynamic properties. Let us consider the compression of water in the context of the RK
equation of state is, say, at 593 K and 1 bar. The volume of water decreases (or its intermo-
lecular spacing decreases) and the pressure first increases, then decreases with a further de-
crease in the volume, and again increases. Since the intermolecular spacing continuously de-
creases, stability analysis can help determine the state at which the fluid becomes a liquid.

T

v
Figure 2: Thermodynamic states of wa-
ter.



First, let us consider an isolated system with specified values of U, V and m and ex-
press S = S(U, V, m). From Chapter 7,

s = s (T,v) and u = u(T,v), i.e., s = s(u,v), (1)

which is the entropy fundamental equation.

a. Example 1

28 kJ kmole–1. Select the reference condition such that

s = cv0 ln (u/cv0 + a/(v cv0)) + R ln (v–b).

Plot the entropy vs. volume for an internal energy value of 7000 kJ kmole–1.
Solution

Since

du = cv dT + (T (∂P/∂T)v – P) dv, 

duT = (T(∂P/∂T)v – P) dv. (A)

Using

P = RT/(v–b) – a/v2 (B)

in Eq. (A),

duT = T(R/(v–b)) – (RT/(v–b) – a/v2) = (a/v2) dv 

Integrating at constant temperature,

u(T,v) = –a/v + f(T). (C)

In case a = 0,

u0(T) = f(T). (D)

Eliminating f(T) between  Eqs. (C) and (D),

u(T,v) = u0(T) – a/v. (E)

Assuming constant (ideal gas) specific heats and u = uref,0 at T = Tref,

u0 (T) – uref,0 = cv0(T – Tref), (F)

Eq. (E) assumes the form

u = cv0 (T–Tref) + uref,0 – a/v, i.e., (G)

T = ((u–uref,0) + a/v)/cv0 + Tref. (H)

Similarly, we can integrate the expression

ds = cvdT/T + ∂P/∂T dv

at constant temperature to obtain the relation

s(T,v) = s0(T,v) – R ln (v/(v–b)). (I)

Using the ideal gas relation for s0(T,v),

s0(T,v) – sref,0(TRef,vref) = cv0 ln (T/TRef) + R ln (v/vref),

Consider the Van der Waals equation of state. Obtain an expression for s = s(u,v) for
water assuming the specific heat to be constant and equal to the ideal gas value cv0 =



s(T,v) = cv0 ln (T/TRef) + R ln (v/vref) + sref,0(T,vref)– R ln (v/(v–b)). (J)

Further, using Eqs. (H) and (J) to eliminate the temperature,

s =cv0 ln((u–uref,0)/(cv0Tref)+(a/(vcv0Tref) + 1)+R ln((v–b)/vref +sref,0(TRef,vref). (K)

Setting ,

sref,0(Tref ,vref) =cv0 ln(cv0 Tref) + R ln vref,      uref,0 = cv0 Tref

we obtain the expression

s = cv0 ln (u + a/v) + R ln ((v–b)). (L)

For ideal gases, a = b =0, and Eq. (K) leads to the relation

s0 = cv0 ln  (u/(cv0 TRef)) + R ln (v/vRef) (M)

This expression leads to a plot of s vs. both u and v for a real or ideal gas.
Using the values ¯a  = 5.3 bar m6 kmole–2, ¯b  = 0.0305 m3 kmole–1, u  = 7000 kJ
kmole–1, Tref = 1 K, v ref = 1 m3 kmole–1, c v0 = 28 kJ kmole–1 K–1, u ref,0 = c v0 Tref = 28
kJ kmole–1 in Eq. (K), a plot of s vs. v at u = 7500 kJ kmole–1 is presented in Figure 3.

Remarks
The relation s =s (u,v) is the entropy fundamental equation. It is somewhat more diffi-
cult to manipulate the RK equation and obtain an explicit expression for s = s(u,v)
using Eq. (L).

b. Example 2

internal energy. What is the entropy change during the process? (Use Figure 3.)

Solution
The fluid molecules are distributed uniformly in the tank and initially, v1 = v2 = v  =
0.4÷4 = 0.1 m3 kmole–1. Using  Figure 3 or Eq. (K) of Example 1, we note that  ¯s  =

149.83 kJ kmole–1. The state is represented by point D in the figure, and the extensive
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Figure 3: Variation in the entropy vs. volume for water
modeled as a VW fluid at u = 7500 kJ kmole–1.

Consider a rigid and insulated 0.4 m3 volume tank filled with 4 kmole (24×1026 mole-

cules) of water, and an internal energy of 7500 kJ kmole–1. Divide the tank into two
equal 0.2 m3 parts. Assume that water follows the VW state equation. What is the en-
tropy of each section? Assume that section 1 is slightly compressed to 0.14 m3 while
the section 2  is expanded to 0.26 m3, but maintaining the same total volume and total



entropy of each section is initially

SD = (S1 = N1 ¯s1) = (S2 = N2 ¯s2) = 2×149.83 =299.7 kJ. (A)

The total entropy of the tank is S = 2SD = 299.7 + 299.7 = 599.4 kJ. After the pertur-
bation,

v 1 = 0.14÷2 = 0.07 m3 kmole–1, u1 = 7500 kJ kmole–1, and

v 2 = 0. 26÷2 = 0.13 m3 kmole–1, u2 = 7500 kJ kmole–1.

The corresponding states are represented by points M and N in Figure 3, i.e.,

SM= S1 = N1 ¯s1 = 2×149.8 = 299.6 kJ, and 

SN = S2= N2 ¯s2 = 2×149.9 = 299.9 kJ.

The total entropy after the disturbance

S = S1 + S2 = SM + SN = 599.5 kJ.

Remarks
We note that the entropy (at specified values of U, V and m) increases after the dis-
turbance, i.e., SM + SN > 2 SD. Therefore, the initial state is unstable and changes in
the direction of increasing entropy. At states B and E disturbances no longer cause a
further increase in the entropy.

2. Mathematical Criterion for Stability

a. Perturbation of Volume

i. Geometrical Criterion
Consider the state B illustrated in Figure 3 which undergoes a small disturbance ∆V at

a specified value of U. Due to the disturbance, Section 1 of the system in Example 2 reaches
state L while Section 2 reaches state M (Figure 3) . With respect to stability

δS = δS1 + δS2 < 0, i.e., (2)

δS = (SL(U,V–∆V,N) – SB(U,V,N)) + (SM(U,V+∆V,N) – SB(U,V,N)) < 0.

Since

δS = SL(U,V–∆V,N) + SM(U,V–∆V,N) – 2SB(U,V,N) < 0, i.e.,

(SL(U,V–∆V,N) + SM(U,V–∆V,N))/2 < (SB(U,V,N). (3)

The entropy after a disturbance decreases in order that the initial state of the system is stable.
In the context of Figure 3, the ordinate of the midpoint C of the chord LCM that connects the
points L and M is represented by the LHS of Eq. (3) while the RHS represents the ordinate of
the point B. Therefore, the chord LCM must lie below the curve LBM for the system to be
stable. The curve LKBHM satisfying the criteria given by Eq. (3), is a concave curve with re-
spect to the chord LCM. On the other hand, the midpoint of the chord MAN lies above the
convex curve MDN, thereby violating this stability criterion. We find that for a system to be
stable the fundamental relation for S = S (U, V, N) one must satisfy the concave condition,
which is established by Eq. (3).



ii. Differential Criterion
The discussion so far pertains to disturbances, which are of large magnitude ∆V. Con-

sider a disturbance is in the neighborhood of state B (cf. Figure 3) that extends from state K at
(U, V–∆V, N) to state H at (U, V + ∆V, N). In that case

(δS = (SK(U,V–∆V,N)–SB(U,V,N)) + (SH(U,V+∆V,N)–SB(U,V,N))) < 0, (4)

where δS denotes the entropy change due to the disturbance. The entropy should decrease fol-

lowing disturbance at the stable points A, B and E illustrated in Figure 4.  Expanding SK and
SH in a Taylor series

SK(U, V–∆V, N) = SB + (∂S/∂V)B(–dV) + (1/2!)(∂2S/∂V2)B(–dV)2 + ..... , and

SH (U, V+dV, N) = SB + (∂S/∂V)B(dV) + (1/2!) (∂2S/∂V2)B (dV2) + ... , i.e.,

δS = SB + (∂S/∂V)B(–dV) + (1/2!)(∂2S/∂V2)B(–dV)2 + ... +

         SB + (∂S/∂V)B(dV) + (1/2!)(∂2S/∂V2)B(dV)2 + ... – 2 SB(U, V, N) < 0.

We will represent the contribution to the disturbance by the first derivatives in the form

dSB = (∂S/∂V)B(–dV) + ((∂S/∂V)B(dV) = 0,

and by the higher–order derivatives as
d2SB = (1/2!)(∂2S/∂V2)B(–dV)2 + (1/2!)(∂2S/∂V2)B(dV)2 + ….

So that Eq. (4) assumes the form

(δS = (dS)B + (d2S)B) < 0.

Since (dS)B = 0,

(δS = (d2S)B = (∂2S/∂V2)B(dV)2) < 0.

Omitting the subscript B, the general criteria for stability at any given state that

(dS) = 0, and (d2S) < 0, (5)

which are the same as the conditions for entropy being maximized at specified values of U, V
and N (stable points A, B and E  and unstable point D in Figure 4).   Since (dV)2 > 0, the rela-
tion

(∂2S/∂V2) < 0 (6)

must be satisfied in the neighborhood of an equilibrium state for it to be stable. If case the sec-
ond derivatives are zero, the third derivatives in Taylor series are included to obtain the stabil-
ity condition d3S < 0, and so on.

c. Example 3

svv = ∂2s/∂v2 < 0 at all volumes.

Solution
We will employ the relations

Tds – P dv = du and ds = du/T + P/T dv.

At constant internal energy

Assume that water follows the ideal gas state equation and show that for a unit mass,



(∂s/∂v)u = P/T, and

since for ideal gases, P/T = R/v,
sv = (∂s/∂v)u = R/v = f(v) alone, and

svv =(∂2s/∂v2) u =  –R/v2 < 0

Remark
This illustrates that ideal gases are stable at all states.
Figure 5 contains plots of  ¯s  vs.  ¯v  at various values of  ¯u . At very high values of

¯u  (e.g., at temperatures larger than the critical temperature), the fluid is stable for any vol-
ume, i.e., there is no increase in entropy in the presence of a disturbance at any state. For a
solid there are certain regimes in which stability criteria are not satisfied and disturbances re-
sult in phase transitions. e.g., in case of water from ice–phase I, to ice–phase II.

Since, in our illustrations, U, V and N (or m) were specified during a disturbance, the

D

U(D) plane

d2S>0

d2S < 0

d2S < 0

Disturbed

Volume

D

Figure 4: Illustration of the entropy perturbation following a disturbance in the vol-
ume of sections 1 and 2 of a rigid container.



relation

δWopt = – dU + T0 δS,

with disturbance at a stable state yields

δWopt = T0 δS < 0. (7)

If the system is initially unstable (cf. State D in Figure 1), then δWopt > 0, i.e., the system could

have performed work during the entropy increase in the isolated system.

b. Perturbation of Energy
Repeating the procedure outlined in the previous section, but with the disturbance pa-

rameter in terms of U, it is again possible to show that for stability

SUU = (∂2S/∂U2) < 0, (8)

which is identical to the “concavity condition” described previously.
Consider the plot of entropy vs. internal energy at specified values of N (or m) illus-

trated by the curve ABCDEFGH in Figure 6 for a fluid following a real gas equation of state.
At some equilibrium states d2S >0 (i.e., these states are unstable) and at others, d2S < 0 (stable
states). In the context of Figure 6 consider the fluid at state B at which the curve ABC is con-
cave with respect to U. Here, the stability criterion is satisfied. On the other hand, curve DEF
is convex, the criterion is violated.

A plot of (∂S/∂U)V = 1/T vs. U is presented in Figure 6b and that of  T vs. U is illus-

trated in Figure 6c. It is apparent that for certain ranges of U (UD to UF), T decreases with in-
creasing U. Mathematically, the stability condition ∂2S/∂U2 < 0 is equivalent to the condition

 (∂/∂U)(∂S/∂U) < 0, i.e., ∂/∂U(1/T) < 0 or –1/T2(∂T/∂U) < 0. (9)

In the context of Eq. (9), since (∂U/∂T) = mcv, then mcv > 0, and at a specified value of either

m or N,

cv > 0 (10)
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for a state to be stable. In Figure 6c, cv has positive values along the branch ABCD but nega-
tive values along DEF, which violates the thermal stability criterion provided by Eq. (10). The
negative cv values imply that temperature decreases when energy is added and increase when
heat is removed. Consider water at 25ºC and 1 bar in an insulated cup and assume that it has
negative specific heat. Divide the water into two equal sections A and B. We now discuss the
meaning of thermal stability. If the water is  thermally disturbed  with a small amount of  heat
transfer δQ from A to B, then A will continue to become warmer than B (due to larger storage

of energy as intermolecular potential energy and less as vibrational energy) with the distur-
bance. The entropy generation is still positive for the adiabatic cup since δσ = δQ (1/TA

–1//TB) > 0 as TA > TB. It still satisfies Second Law with entropy generation indicating that the
initial state is thermally unstable.

The specific heat cv > cvo for fluids following the RK equation, where cvo > 0. This
implies that a curve representing variations in S vs. U must be concave (i.e., it must have a
decreasing radius of curvature) with respect
to U at a specified value of V. In other
words, thermal stability is always satisfied
for satisfying most of the real gas state
equations. Read Example 17 for instances
when this may be violated.

d. Example 4

(suu = ∂2s/∂u2) < 0 at all volumes.

Solution
Consider the relation T ds – P dv =
du. At fixed volume

∂s/∂u = 1/T.

Differentiating this expression,
∂2s/∂u2 = –1/T2(∂T/∂u)v.

Since
(∂u/∂T)v = cv,

(∂2s/∂u2 = –1/(cvT
2)) < 0.

Remarks
For a real gas,

(∂cv/∂v)T = T(∂P/∂T2)v,

i.e., for a VW gas
(∂cv/∂v)T = 0,

which implies that cv = f(T) = cv0(T) >0
A VW gas is thermally stable at all points.

c. Perturbation with Energy and Volume
The discussion so far has pertained to disturbance in the internal energy at specified

volume or in the volume at specified values of U. If the volume and energy are both perturbed,
the following conditions must be satisfied, i.e.,

δS = S(U+dU, V+dV, N) + S(U–dU, V–dV, N) – 2 S(U, V, N) < 0, i.e.,

S(U+dU, V+dV, N) + S(U–dU, V–dV, N) < 2 S(U, V, N).

Expanding this expression in a Taylor series, and retaining terms up to the second derivative,

G

H

H
F

F

G

Figure 6: Qualitative illustration of the varia-
tion of a) entropy, b) ∂S/∂U=1/T  and c) tem-

perature with respect to the internal energy.

Consider a VW gas and show that



δS = (∂S/∂U dU + ∂S/∂V dV + (∂/∂U + ∂/∂V)2 S) + 

        (–∂S/∂U dU – ∂S/∂VdV +(∂/∂U + ∂/∂V)2 S) < 0

Since,

dS = (∂S/∂U dU + ∂S/∂V (–dU)) + (∂S/∂V dV + ∂S/∂V (–dV)) = 0, then

(∂/∂U + ∂/∂V)2 S < 0

Expanding this relation, we obtain the expression,

(d2S = ∂2S/∂U2 dU2 + 2(∂2S/∂U∂V)dU dV + ∂2S/∂V2 dV2) < 0, i.e.,

(d2S = SUUdU2 + 2 SUVdU dV + SVVdV2) < 0. (11)

Multiplying Eq. (11) by SUU, since SUU < 0, Eq. (11) assumes the form

(d2S = SUU
2 dU2 + 2 SUU SUV dU dV + SUU SVV dV2) > 0, i.e., (12)

(SUU dU + SUV dV)2 + (SUU SVV – SUV
2) dV2 > 0 (13)

Now, (SUU dU + SUV dV)2 > 0, and since dV2 > 0, it is apparent from the perspective of stability
that

 (SUU SVV – SUV
2) > 0, (14)

which is the stability condition in the presence of volumetric and energetic fluctuations within
a system. The stability criterion at a given state can be summarized as

D1,U = SUU = ∂2S/∂U2 < 0, and D1,V = SVV = ∂2S/∂V2 < 0, (15)

In determinant form, the stability criterion is

D
S S

S S
UU UV

VU VV
2 0= > (16)

where D2 is determinant of second order. If D1,U < 0, and D2 > 0, then D1,V < 0.  It is noted that
since ∂s/∂u = 1/T, then svu =(∂2s/∂v ∂u)= –(∂T/∂v)u/T

2.

e. Example 5
For an ideal gas show that Eq. (16) applies for all volumes.

Solution
From Example 1 we note that svv < 0, and from Example 2 that suu < 0.
Since ∂s/∂u = 1/T, then svu = ∂2s/∂v ∂u = –(∂T/∂v)u/T

2.

If the energy of an ideal gas is specified, its temperature cannot change with respect to
changes in the volume. For this reason (∂T/∂v)u = 0. Therefore,

svu = 0, and
using Eq. (16)

suu suu – svu  svu > 0,
which satisfies the stability criterion.

f. Example 6
Apply the RK equation of state



P = RT/(v–b) – a/(T1/2 v(v+b)) (A)

satisfied at  these states.
Solution

The plot of pressure vs. volume is contained in Figure 7. Since,

∂s/∂v= P/T, and (B)

∂s/∂u = 1/T, then (C)

∂s/∂v= R/(v–b) – a/(T3/2 v(v+b)). (D)

Differentiating this expression with respect to v at constant u, we obtain the relation

svv=(∂2s/∂v2)u =– R/(v–b)2+a(2v+b)/(T3/2 v2(v+b)2) +(3/2)a(∂T/∂v)u/(T
5/2 v(v+b)). (E)

Recall that

du = cvdT + (T∂P/∂T – P) dv, hence,

(dT/ dv)u = - ((T∂P/∂T – P))/ cv.

In the context of the RK equation of state

(∂T/∂v)u= – ((3/2) a/(cv T
1/2 v(v+b))) (F)
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Figure 7: Plot of pressure and Gibbs energy with respect to volume for water using the RK
equation of state.

to water at 593 K. (a) Plot the pressure with respect to volume; (b) determine sVV, sUU

and sUV at v = 0.1 and 0.4 m3 kmole–1; and (c) check whether the stability criteria are



Similarly differentiating Eq. (C) with respect to u, we obtain the relation

suu = ∂2s/∂u2 = – (∂T/∂u)v/T
2 = – 1/(cvT

2), (G)

and differentiating Eq. (C) with respect to v, we have

svu = ∂2s/∂v∂u = –(∂T/∂v)u/T
2. (H)

Thus, all of the differentials involved with the stability criterion represented by Eq.
(16) can be evaluated.
For v = 0.4 m3 kmole–1; and T = 593 K, P = 95.4 bar, cv = 30.09 kJ kmole–1 K, a =
142.64 bar m3 kJ kmole–2, b = 0.02110 m3 kmole–1, (∂T/∂v)u = –173.04 kmole K m–3,

∂2s/∂v2 = –31.92 kJ kmole m–6 K– 1 , ∂2s/∂u2 = –9.4×10–8 kmole kJ–1 K–1, and

∂2s/(∂v∂u) = 0.000492 kmole m–3 K–1. For stability,

D
S S

S S
UU UV

VU VV
2 0= > , so that (16)

(suusvv – svu
2 = = 2.77×10–6 kmole2 m–6 K–2) > 0.

When calculations are repeated at   v= 0.1 m3 kmole–1, D2  < 0
Remarks

The fluid is unstable at (0.1 m3 kmole–1, 593 K), while at (0.4 m3 kmole–1, 593 K) it is
stable.
Even though suu < 0, svv < 0, suu svv– svu

2  can change sign at  selected range of vol-
umes at 593 K.

d. Multicomponent Mixture
We will now extend the procedure to multiple components using Kestin’s approach.

Recall that

dS = (1/T) dU + (P/T) dV.

Since ∂S/∂U = SU = 1/T and ∂S/∂V = SV = P/T, then

dS =SU (U,V) dU +SV (U,V) dV.

Furthermore,

d2S = d(1/T) dU + d(P/T) dV = d(SU(U,V)) dU + d(SV(U,V)) dV, or

d2S= (SUU dU +SUV dV) dU + (SVV dV +SVU dU) dV 

      = SUU dU2 + 2 SUV dU dV + SVV dV2. (17)

For a system to be stable, dS = 0 and d2S < 0. (This is somewhat analogous to the criteria de-
scribing the maximum value of a function y = y (x) where dy/dx = 0 at the maxima, but d2y/dx2

< 0.)
Consider the expression for the entropy change in a multicomponent mixture (cf.

Chapter 3),

dS = dU/T + P/T dV – Σ k(µk/T) dNk,

where S = S (U,V,N1,N2,...). this expression leads to the relation

 d2S = d(1/T) dU + d(P/T) dV – Σ k d(µk/T) dNk 



= –dT/T2 dU + dP/T dV – P dT/T2 dV – Σ kdµk/T dNk + Σ kµk dT/T2 dNk 

= dT/T (–dU/T – P/T dV + Σ k µk/T dNk) + (dP/T) dV – Σ k(dµk/T) dNk.

= dT/T (dS) + (dP/T) dV – Σ k(dµk/T) dNk.

The stability criterion is represented by the expression

(d2S = –(dT/T)(dS)+(dP/T) (dV)–Σ k(dµk/T)(dNk)) < 0, U,V, m specified, or (18)

– d(T) dS + d(P) dV – Σkd(µk)(dNk) < 0,

where the terms within the parentheses ()  are all intensive properties. Rewriting this expres-
sion, we obtain

d2S U,V,N = – d(T dS – P dV + Σkµk dNk) < 0 (19)

The term within the parentheses in Eq. (19) is dU and it is apparent that  U = U(S,V,N), i.e.,

d2SU,V,N = – d (dU) < 0 

Thus the criterion (d2S)U,V,N < 0 at specified values of U, V, and N implies that

(d2U)S,V,N > 0, (20)

which indicates that for a stable system U reaches a minimum value at specified values of S, V
and N. Similar expressions can be obtained in terms of A, H, and G. In developing expressions
analogous to Eq. (20) we will use the relations

dU = T dS – PdV + Σkµk dNk,

dH = T dS + V dP + Σkµk dNk, (21a)

dA = – SdT – P dV + Σkµk dNk, and (21b)

dG = –S dT + V dP + Σkµk dNk. (21c)

For instance, if we consider that S(H,P,N), then

(d2SH,P,N = –d(dH)) < 0, and (d2H)S,P,N > 0 (22a)

for the enthalpy to be a minimum at specified values of S, P, and N. Similarly,

(–d(dA) = –d2AT,V,N) < 0, or d2AT,V,N > 0 (22b)

which is the criterion for A having a minimum value at specified values of T, V and N. Like-
wise.

–d(dG) = – d2GT,P,N < 0, or d2GT,P,N > 0 (23)

is a criterion for G being minimum at specified values of T, P and N.

i. Remark
The differential

d(µk)dNk = (∂µk/∂N1 dN1 + ∂µk/∂N2 dN2 + ...) dNk = (Σj(∂µk/∂Nj) dNj) dNk.

Hence,



Σ kd(µk) dNk = Σk(Σj(∂µk/∂Nj) dNj) dNk. (24)

ii. Criterion for Binary Mixture
Consider a binary mixture at specified values of U, V, and N (= N1 + N2) that under-

goes disturbances in U, V, N (i.e., of the third order). We can expand Eq. (16) as a third order
determinant to obtain the stability criterion, i.e.,

D
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VU VV VN

NU NV NN

3 0= > . (25)

For a k–component mixture the generalized criterion is
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For disturbance of order K+1, the stability criterion D1 < 0, D2 > 0, D3 > 0, ... DK+1 > 0 results
in k+1 inequalities.

e. System With Specified Values of  S, V, and m
In this case the criterion for a system to be stable is that the internal energy U must

reach a minimum value, i.e., d2U > 0. For a perturbation in volume at a specified entropy, since

dU = T(S,V) dS – P(S,V) dV (27)

dUS = – P(S,V) dVS, and d2US = – dP dVS = – (∂P/∂V)S dVS dVS.

Since d2US > 0, this implies that

–(∂P/∂V)S > 0 or (∂P/∂V)S < 0. (28)

Recall from Chapter 3 that the sound speed c2 = – v2(∂P/∂v). The fact that (∂P/∂v)s < 0

implies that the c2 > 0 and is a real quantity. (The sound speed is of the order of the average
molecular velocity, which cannot be negative, Chapter 1.) On a plot of U vs. V the slope
∂U/∂V represents (–P) provided the entropy is held fixed (isentropic expansion or compres-

sion).
Recall from Chapter 7 that

((∂P/∂V)S = k(∂P/∂V)T) < 0, and cp = cv +T v βP
2/βT, (29)

where βT = –(1/v)(∂v/∂P)T and  βP = (1/v)(∂v/∂T)P. Using the two relations in Eqs. (29) we ob-

tain the expression

((∂P/∂v)s = (∂P/∂v)T T v2 βP
2/cv) < 0.

Since cv > 0 and βP
2 > 0, stability is ensured for all possible variations in case

(∂P/∂v)T < 0 or βT > 0. 

Then from Eq. (29), it is apparent that, from the perspective of stability, cp > 0 and k > 1, i.e.,



cp > cv.

The criterion given by Eq. (29) is called the mechanical stability condition (i.e., re-
lated to a mechanical or volumetric disturbance) in the context of which (∂P/∂V)T < 0. Due to

this condition a fluid does not generally break down into two phases upon mechanical pertur-
bation (one a dense liquid and the other a dilute vapor phase). Even a minute disturbance will
cause unstable behavior in case (∂P/∂V)T < 0. Therefore, if the volume decreases during an

isothermal process, the fluid pressure must increase in order for the fluid to be stable.

g. Example 7
Is an ideal gas stable at all pressures and volumes at a specified temperature?

Solution
Considering the ideal gas equation of state P = m RT/V,

((∂P/∂v)T = –mRT/V2) < 0.

An ideal gas is stable at all states.

h. Example 8
Is an RK gas stable at all pressures and volumes at a specified temperature?

Solution
An RK gas behaves according to the equation

P = RT/(v–b) – a/(T1/2v(v+b)), i.e., (A)

 (∂P/∂v)T = –RT/(v–b)2 + a(2v + b)/((T1/2v2(v+b)2). (B)

For stability,

(∂P/∂v)T < 0 if a(2v + b)/((T1/2 v2(v+b)2) < RT/(v–b)2, or (C)

a(v–b)2 (2v+b)/(v2(v+b)2) < RT3/2. (D)

and for critical isotherm

a(v–b)2 (2v+b)/(v2(v+b)2) < RTc
3/2. (E)

Remark
At T>Tc, the pressure decreases monotonically with increasing volume. Therefore,
since, (∂P/∂v)T < 0 and the stability criterion is always satisfied, it is not possible to

form two phases in the supercritical region.

f. Perturbation in Entropy at Specified Volume
For a system to be stable, the internal energy must be at a local minimum when the

entropy is disturbed but the volume is held fixed. Recall that

(∂U/∂S)V = T(S,V), 

so that for a local minimum,

D1 =USS = (∂2U/∂S2) > 0, where (∂2U/∂S2) = (∂T/∂S)V = T/Cv, (30)

which implies that Cv  or cv > 0, since the temperature is a positive quantity. The condition cv >
0 implies that the internal energy  and entropy must be a monotonic function of temperature
with positive slope at a specified volume. The temperature will increase if the entropy is in-
creased for a specified volume of a fluid.



g. Perturbation in Entropy and Volume
Again, we will employ the relation dU = TdS – PdV so that

d(dU) = d2U = d(T(S,V)) dS – d(P(S,V)) dV.

Since T = US and P = UV,

dT =USS dS + USV dV, and – dP =UVV dV + UVS dS, so that

(d2U = USS dS2 + 2USV dS dV + UVV dV2) > 0.

Since USS > 0, multiplication by USS yields

(USS dS + USV dV)2 + (UVV USS – USV
2)dV2 > 0 (31)

Hence, the condition for stability is

(UVVUSS – USV
2) > 0. (32)

If (UVVUSS – USV
2) < 0, Eq. (31) still holds if |(USS dS + USV dV)2| > (UVVUSS – USV

2)dV2, i.e.,
depending upon strength of the disturbances dS and dV, Eq. (31) may or may not be satisfied
when Eq. (32) is violated.

Writing Eq. (32) in determinant form

D
U U

U U
SS SV

VS VV
2 0= > . (33)

In case USS > 0, then dividing Eq. (32) by USS, we obtain the inequality (UVV – USV
2/USS) > 0

or UVV > USV
2/USS. Since USV

2 > 0, if USS > 0, this implies that UVV > 0. Therefore, if D1 > 0
and D2 > 0, we satisfy the condition that UVV > 0. At the limit of intrinsic stability, D1 = D2 =
0.

i. Binary and Multicomponent Mixtures
For a multicomponent mixture,

d2U = d(T) dS – d(P) dV + Σ kd(µk)dNk, i.e.,

in case of a binary mixture

d2U = d (T) dS – d(P) dV + d(µ1) dN1 + dµ2 dN2.

In addition to the conditions D1 > 0, and D2 > 0 the following condition applies to a binary
mixture, namely,

D
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At the limits of intrinsic stability, D1 = D2 = D3 = 0 for a binary mixture. Extending the result
to a k–component mixture, it can be shown that the determinant of (k+1)th order must be posi-
tive, i.e.,
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h. System With Specified Values of  S, P, and m
Consider the relation

dH = T dS + V dP.

Since intensive properties are not additive, we cannot obtain enthalpy variations by perturbing
P to P±∆P at a specified entropy and mass, but keeping the overall pressure constant. If the

entropy is specified

(∂H/∂P)S = V, and (∂2H/∂P2)S = (∂V/∂P)S.

We have previously shown that (∂P/∂V)S < 0, i.e., (∂2H/∂P2)S < 0. In the case of entropy per-

turbations

(∂2H/∂S2)P = (∂T/∂S)P = T/CP > 0, (36)

which implies that Cp or cp > 0. Thus the enthalpy and entropy increase monotonically with
increasing temperatures at a specified pressure. A plot of H vs. S at specified P shows convex-
ity with respect to S for stable states. The derivation for a multicomponent system is left as an
exercise for the reader.

i. System With Specified Values of T, V, and m
In this case A is to be minimized with respect to the disturbance at specified values of

T, V, and m. Figure 8 illustrates plots of A with respect to V and T. For a single component,
dA = –S dT – P dV.

The system can undergo disturbances in V while keeping the overall volume constant, i.e.,

dAT = – P dV, or (36)

AV = (∂A/∂V)T = –P, and dAT = – P dVT. (37)

Consequently,

(d2AT = d(dAT) = – d(P(V,T)) dV = –(∂P/∂V dV) dV = – (∂P/∂V)T dV 2) > 0.

The relation d2A > 0 implies that

AVV = – (∂P/∂V)T > 0, or (∂P/∂V)T < 0.

The resultant curve of A vs. V will be convex with respect to V for a system to be stable.

Figure 8b and Figure 8d illustrate the stable and unstable branches.  At the critical point ∂P/∂V

= 0, ∂2P/∂V2 = 0 and, hence, AVV = 0. Here, ∂3P/∂V3 must have a negative value in order for

stability conditions to be satisfied.

i. Example 9
Show that at the critical point ∂3P/∂V3 < 0 for a fluid following the VW equation.

Solution
For a VW fluid,

∂P/∂v= – RT/(v–b)2 + 2a/v3, and ∂2P/∂v2= 2RT/(v–b)3 – 6 a /v4, i.e., (38)

∂3P/∂v3 = – 6RT/(v–b)4 + 24a/v5.



At T = Tc, and v = vc, ∂P/∂v = 0, ∂2P/∂v2 = 0. The third derivative w.r.t. v,

(∂3P/∂v3 = – 6RTc/(vc–b)4 + 24 a/vc
5 = – 6RTc/((2/3)vc)

4 + 24(9/8)(RTcvc)/vc
5

              = – (243/8) RTc/vc
4 + 27 RTc/vc

4 = – (27/8) RTc/vc
4) < 0. (39)

This stability condition is satisfied at the critical point.
Remark

The specific heat cv is finite at the critical point, but (cp–cv) = –T(∂P/∂T)2/(∂P/∂v)→∞
at that state.

i. Perturbations With Respect to Temperature
Since the temperature is an intensive property, if two sections of a specified volume

are disturbed, δT ≠ δT1 + δT2. In this case,

AT = (∂A/∂T)V = –S.

Recall that, from the energy minimum principle, ((∂S/∂T)V = cv/T) > 0. Consequently,

(ATT = (∂2A/∂T2)V = – (∂S/∂T)V = - cv/T) < 0.

ii. Binary and Multicomponent Mixtures
For a binary mixture,

∂∂∂∂2A/∂∂∂∂T2

Figure 8: Qualitative variation of a) A with respect to T, b) -(∂2A/∂V2)T= (∂P/∂V)T with re-

spect to V, c)  A  with respect to T, and d) (∂2A/∂T2)V with respect to T .



dA = – S dT – P dV + Σ(µ1 dN1 + µ2 dN2), i.e., (40)

D1,V = AVV > 0, D1,T = ATT < 0, and D
A A

A A
VV VN

N V N N
2

1 1 1

0= > . (41)

These relations are readily extended for multicomponent fluids.

j. System With Specified Values of  T, P, and m
In this case, for a system to be stable, the Gibbs energy must be minimized in the

presence of disturbances in P and T. Consider the relation,

dG = – S dT + V dP. (42)

i. Perturbations With Respect to Pressure

Considering perturbations with respect to the temperature,

GP = (∂G/∂P)T = V, and (GPP = (∂2G/∂P2)T = (∂V/∂P)T) < 0 (43a)

At the critical point,

(∂P/∂v)T = 0, and (∂2P/∂v2)T = 0, i.e.,

both (∂v/∂P)T and (∂2g/∂P2)P tend to infinity.

ii. Perturbation With Respect to temperature
Similarly,

GT = (∂G/∂T)P = –S, GTT = (∂2G/∂T2)P = – (∂S/∂T)P = – CP/T. (43b)

Since Cp or cP > 0, (∂2G/∂T2)P < 0.

iii. Perturbations With Respect to P and T
Since G is to be minimized at stable conditions, one can show that

(GPP GTT – GTP
2) >  0 (44)

Recall that GPP = ∂V/ ∂P, GTT = - Cp/T , GTP =  (∂V/ ∂T)P  

k. Multicomponent Systems
For a mixture, ∆GE = G – Σκ( ¯g k(T, P)Nk). A plot of ∆G vs. Z1 (= N1/(N1 + N2)) is

presented in Figure 10 for a binary mixture. Upon mixing two pure components, the Gibbs
energy of the mixture is lower than the sum of Gibbs energies of the two pure components,
Σκ( ¯g k(T, P)Nk), i.e., ∆GT,P < 0 for 1 > Z1 > 0.

Disturbances in the mixture state can place the local properties along either curve (a)
or (b). If there is local disturbance at state C on curve (a), a negative increment in Z1 causes a
larger Gibbs energy drop dG– (= GA–GC) to state A as compared to a positive increment to
state D, i.e., dG+ (= GD–GC). Therefore, in this hypothetical case, the net disturbance (dG– +
dG+) > 0, causing the mixture to return to its original state C. Curve (b) also satisfies the con-
dition ∆G < 0. However, we have introduced a hypothetical kink in the curve at states M and

N. If there is a local disturbance in N1 (or Z1) at state E, then |dG +| < |dG–| so that (dG–+dG+) <
0, which implies that at fixed temperature and pressure the disturbance is undamped. This can
result in the formation of two phases or two components, depending upon the local state.



In the context of this discussion, it is apparent that

GA + GD > 2 GC.

Expanding GA and GD in terms of GC we obtain the expression

 (GC + (∂G/∂N1)C(dN1)A + (∂2G/∂N1
2)C(dN1

2)A + … + GC + (∂G/∂N1)C(dN1)D 

+(∂2G/∂N1
2)C(dN1

2)D + …) < 2 GC. (45)

However,

(dN1)D + (dN1)A = 0, i.e.,

(∂2G/∂N1
2)C ((dN1

2)D + (∂2G/∂N1
2)C(dN1

2)A) > 0. (46)

C. APPLICATION TO BOILING AND CONDENSATION
We will illustrate an application of stability criteria to boiling and condensation (i.e,

the formation of two phases) through the following example.

j. Example 10

irrespective of its phase, i.e.,

P = RT/( ¯v  – ¯b ) – ¯a /(T1/2 ¯v ( ¯v + ¯b )) (A)

P

Iosthermal

bath

∂∂∂∂G/ ∂∂∂∂P ∂∂∂∂2G/∂∂∂∂T2

Figure 9: Variation of a) G with  T, b) ∂G/∂T, c) G with P, d) ∂2G/∂T2.

Water is contained in a piston–cylinder–weight assembly that is immersed in a con-
stant–temperature bath at 593 K. Assume that the fluid obeys the RK equation of state



¯v ; Using

¯g v s .
¯v .

Solution
This problem
was solved in
Chapter 7. A
brief summary is
presented. Using
the values ¯a  =
142.64 bar m3

K0.5 kmole–1, ¯b
= 0.02110 m3 k
mole–2, and T =
593 K in Eq. (A),
a plot of P vs. ¯v
is readily obtained as shown in Figure 11. The first term in Eq. (A) occurs due to the
collisions of high velocity molecules, while the second term appears due to attractive
forces that result in a pressure reduction. As the fluid is compressed from state B, the
pressure increases along the path BECGKN. If the fluid at state N is compressed fur-
ther, it instantaneously condenses into a liquid state L. Similarly, the fluid that is ini-
tially at state L can be expanded to a low pressure along the path LFARM. If the fluid
at M is expanded further, it vaporizes instantaneously.
Since d g _ T = ¯v  dP, it is possible to integrate Eq. (A) between the limits v and vref,
i.e.,

∫d ¯g T = ¯g (T, ¯v ) – ¯g (T, ¯v  ref) = ∫ ¯v  dP, to obtain

¯g (T, ¯v ) – ¯g (T, ¯v  ref) = P ¯v  – Pref ¯v  ref – ( R T ln(( ¯v– ¯b )/( ¯v  ref– ¯b )) – 

                                ( ¯a/( ¯bT1/2)) ln (( ¯v / ¯v ref)( ¯v ref– ¯b )/( ¯v– ¯b )).

We will now arbitrarily set ¯v ref = 4.83 m3 kmole–1 (so that Pref = 10 bar at 593 K)
and ¯g ref = 0.  This enables us to produce a plot of  ¯g  vs.  ¯v  (cf. Figure 11). Using
the same values of v, one can obtain g vs. P as shown in Figure 12.

Remarks
The fluid is in a saturation state at states G and F at which the vapor and liquid coex-
ist. The Gibbs free energy for both phases is equal. (The saturation pressure according
to the RK equation is 133 bar at 593 K.)
Path QBECGN is a stable vapor branch, since ∂P/∂ ¯v<0 (or ∂ ¯v /∂P <0). The lowest

value of  ̄ g  at specified values of T and  P (cf. Figure 12) indicates that P < Psat = 133
bar, i.e., the vapor has a lower free energy when it is compared to the liquid curve
QRAF.
Path FL is a stable liquid branch since ∂P/∂ ¯v<0 (or ∂ ¯v /∂P <0).

Path GKN represents metastable vapor (i.e., an equilibrium condition with a finite
constraint).
The state N represents an intrinsic stability limit for the vapor at which ∂P/∂v = 0.

The state M is an intrinsic stability limit for the liquid at which ∂P/∂v = 0.

Figure 10: Variation of ∆G with mole fraction in a binary mix-

ture.

Obtain a plot for
P vs .  
the relation dgT =
v dP,  obtain a
plot for 



Path MRAF corresponds to metastable liquid with intermediate values of ¯g .
Path NDHJM is an unstable branch since ∂P/∂ ¯v  > 0 and the highest values of ¯g  are

to be found here.

1. Physical Processes and Stability
Consider the isothermal compression of water at 593 K. (cf. Figure 11). As the fluid is

compressed from state B towards states E, C, G, etc., the volume decreases with the increase in
pressure, since the intermolecular spacing decreases. The intermolecular attraction forces
slowly increase as the states E, C, G, etc., are approached. At larger volumes (i.e. lower pres-
sures)  the first term in RK equation dominates, i.e., b « v, P ≈ RT/v so that P ∝ 1/v at a speci-

fied temperature. The Gibbs energy value is lower at larger volumes, and gradually increases
as the pressure is raised (BECG in Figure 11), indicating that the fluid accumulates a larger
potential to perform work. The rate of pressure increase with decreasing volume is lower at
smaller volumes due to the larger intermolecular attraction forces and the second term in the
RK equation a/(T1/2v(v+b)) becomes significant. Beyond a maximum pressure at state N, the
intermolecular attraction forces are so large that this second term dominates and tends to lower
the pressure. Consequently, the pressure starts to decrease with compression at smaller vol-
umes due to the very small intermolecular spacing. (The pressure can sometimes be negative
indicating that the fluid is under tension. In case of water the tension can be as high as –40 bar
without evaporation occurring.) Consequently the “g” decreases along NDUHJM. Upon com-
pression beyond states M, R, A, etc., the body volume effect (which reduces the space avail-
able for the movement of molecules) becomes dominant and results in a higher number density
so that the first term in the RK equation again dominates. Thereupon, the pressure again in-
creases rapidly and P ≈ RT/(v–b), i.e., P ∝ 1/(v–b) and the Gibbs energy again increases

(MRAFL).
All fluid states along the path BECGKNDHJMRFL are equilibrium states. The sta-

bility criterion ∂P/∂v < 0 suggests that the path NDUHJM is an unstable branch along which

inherent disturbances exist  and hence a uniform intermolecular spacing  or stable state cannot
be maintained.

a. Physical Explanation
At  T = 593 K, gF= gG  at P = 133 bars. Hence Psat = 133 bar; the fluid in the context

of Example 10 typically changes its state from vapor to liquid (from state G to F along line
GHF  (cf. Figure
11)). However the
G i b b s  e n e r g y
changes ∆gGH = gH

– gG  and ∆gFH =

gH – gF represent
the adverse poten-
tials at the satura-
tion condition that
the fluid has to
overcome to either
form a vapor em-
bryo at state G
from the liquid
mother phase at
state L, or a liquid
embryo at state F
from the vapor
mother phase at
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Figure 11: Plot of P (and ¯g ) vs. volume using the RK equation.



state G (Figure 13a). We note from Figure 11 or Figure 12 that when P < 50 bar, a single state
is possible (i.e., superheated vapor). If 50 < P < 155 bar, there are three possible states for the
same Gibbs energy value, and when P > 155 bar there is a single liquid solution (i.e., com-
pressed liquid).

Consider a constant T, P, and m system at an arbitrary state J. A reduction in the fluid
volume from a value vJ reduces the internal pressure exerted by the fluid further compressing
the fluid. Assume that equilibrium is achieved at a liquid volume vA at which PA = PJ  (Figure
12). Likewise a corresponding vapor state C exists at which PC = PJ  with a volume vC. The
implication is that at the pressure PJ there are three plausible solutions for the Gibbs energy.
The questions are as follows. Which are stable states? Which are nonstable?

Since dGT =VdP, dGembryo = (V(∂P/∂V)) dV. An increased volume (e.g., during

evaporation) implies that ∂P/∂V < 0 so that ∂G/∂V < 0. Suppose a disturbance  at J causes the

embryo phase  to expand to a volume slightly higher than vJ from state J, the volume increase
tends to increase the embryo phase pressure. Since the embryo phase pressure is higher than
the mother phase pressure, which is held fixed, the embryo expands to larger and larger vol-
umes, eventually to the vapor state B. The first bubble during boiling is formed through this
process. The embryo phase bubble is associated with a lower Gibb’s free energy  (Figure 12)
as compared to the mother phase that is still at state J. In Chapter 3 we discussed that a Gibbs
energy gradient produces a species flow from a system at a higher Gibbs  energy to that at a
lower Gibbs energy. In that context, the molecules from the mother phase migrate to the vapor
phase during vaporization as long as the pressure and temperature are maintained constant.  If
the disturbance at J results in reduction of volume, the embryo pressure decreases; since the
mother phase is at higher  pressure, embryo is compressed further until it forms a liquid droplet
at A. In the case of flow processes, a sudden condensation or vaporization produces a severe
pressure disturbance or a sudden acceleration of the flow, leading to local turbulence (e.g., in
boiler tubes and in clouds).
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In the context of the above discussion, we now consider the H2O at 140 bar and 593 K
for which the specific volume vD is at an unstable state. An embryo may form, but a decrease
in the embryo volume causes the pressure to decrease below 140 bar, which results in com-
pression of the embryo by the mother phase that is still at 140 bar. This accelerates the forma-
tion of a drop at state L. Since the Gibbs energy of the compressed liquid at state L is lower
than that of the mother phase at state K, the fluid molecules will tend to migrate to the liquid
state. State H is also unstable and only a microscopic disturbance is required to drive the state
to either of states F or G. At saturation, the two minima are equal, i.e., gF = gG = gsat . This
process is called a first order phase transition during which both the liquid and vapor states are
probable, which is a consequence of boiling at a specified temperature and pressure. In this
case, the liquid and vapor molecules can exchange phase if a disturbance is strong enough to
overcome the potential (gH – gG), which results in a wet mixture. Note that thermodynamics do
not specify the time scales (called relaxation time scale) required to effect the change from
meta-stable or unstable state to stable state. Constitute equations for the transport processes are
required to determine those time scales.

These examples pertain to phase equilibrium. An analogous situation exists during
chemical equilibrium where, at a specified temperature and pressure, the Gibbs energy of
products reaches a minimum value.

2. Constant Temperature and Volume
Consider a fluid of mass m within a rigid

tank of volume V that is immersed in a bath at a
temperature T for which the real gas state equa-
tion yields the P-v diagram presented in Figure
11. The states F and G represent the saturated
states at a specified temperature. At state K
(Figure 14) the fluid is in the form of slightly
sub–cooled vapor. We will divide the system into
two parts 1 and 2, and disturb the volume such
that portion 1 expands slightly to state K″, while

portion 2 shrinks to K′, but the total volume is

fixed. Then, PK' > PK" and portion 2 will expand
back so that the system eventually reverts to its
original state K.

Consider the fluid at State D (cf. Figure
14). If the fluid is disturbed so that the mother
phase volume (say, portion 1) slightly expands to
vD" while the embryo volume (portion 2) con-
tracts to vD' with the total  volume held fixed,
since vD" ≈ vD and vD' « vD, PD" ≈ PD, while PD >

PD'. The mother phase is at a higher pressure than
the embryo phase, which undergoes increasing
compression. The pressure in the embryo first
decreases along path HJM (cf. Figure 11) but
starts increasing again along path MRL (the liq-
uid path) until state L is reached at which the
pressure in the embryo equals PD. A disturbance
can occur at several locations inside the system
creating a large number of drops that can combine
to form a continuous liquid phase. However,
since liquid drops generally occupy a smaller
volume than the gas phase in a fixed volume sys-

(c )

(b )

(a )

C

Figure 13: Variation in the value of g at
a specified value of T, but for different
pressures. (a) P = Psat; (b) P>Psat; (c) P <
Psat.



tem, the entire vapor body may not condense, and a wet mixture may form.
At equilibrium, there cannot be any potential gradients between the liquid and vapor

phases so that gliquid = gvapor. At a specified temperature, this condition occurs at a particular
value of the saturation pressure Psat, which allows us to determine the volume or quality x, i.e.,

v = xvg + (1–x) vf, or x = (v–vf)/(vg – vf). (47)

The volume at a stable state v > vG. For the condition vN < v < vG, a metastable vapor
state exists and a mixture of vapor and liquid is formed, but at a higher quality. If vF < v < vM,
then a metastable liquid state exists and a vapor-liquid mixture of lower quality is formed. The
condition vM < v < vN is unstable and a mixture of vapor and liquid of medium quality is
formed.

When phase transformation from a metastable state occurs at a specified temperature
and volume, the Helmholtz energy is minimized. Figure 15 presents a plot of  a¯  and P vs.  v¯ .
State D on the P- ¯v  diagram (P = 140 bar, vD = 0.1 m3 kmole-1, T = 593) corresponds to the
point Q on the ¯a- ¯v  curve. A disturbance increases ¯a  within the mother phase if the volume
decreases and vice versa. However, the value of the Helmholtz energy increase is smaller than
its decrease with the result that ¯a
decreases (at fixed T and V). Conse-
quently, the fluid eventually reaches
a vapor state and ¯a  is minimized.
At a specified temperature and vol-
ume the pressure (i.e., P = 133 bar, v
= 0.1 m3 kmole-1, T = 593 K) and
quality adjust such that the Helm-
holtz energy is at a minimum value
(e.g., with vapor at State G where a¯
= 20.6 MJ and liquid at State F with
a higher value of ¯a  = 23.2 MJ).

k. Example 11

ues of ¯s , ¯u , and 

¯s , ¯u , and ¯a  at this state?
Assume that cΡ = 5.96 kJ kg-1 K-1.

Solution
¯v  = 2.662/27 = 0.0986 m3 kmole-1.

Applying the RK equation at 593 K and 140 bar (State D  in Figure 11),
Psat = 133 bar.

Since P > Psat at 593 K, and P < PN = 155 bars the state is metastable.
We will use the method described in Chapter 7 to determine the fluid properties. For
instance,

¯h (320ºC, 0.0986 m3 kmole-1) = 44633 kJ kmole-1 or 2477 kJ kg-1,
¯u (320C, 0.0986 m3 kmole-1) = h – P ¯v

   = 43252 kJ kmole-1 or 2400 kJ kg-1, and
¯s  (320C, 0.0986 m3 kmole-1) = 91.34 kJ kmole-1 or 5.07 kJ kg-1.

Thereafter,

D
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K’D’

L DP

v

Figure 14. A Pressure-volume diagram for illustrating
fluid stability along an isotherm.

2.662 kmole of water are
contained in a rigid tank of
volume 27 m3 at 320ºC and
140 bar. What are the val-

¯a  at
this state? If the tempera-
ture and volume are main-
tained constant, what is the
most stable equilibrium state, and what are the values of 



¯a  = ¯u  – T ¯s  = 43252–593×91.34 = –10,912 kJ kmole-1 or –606 kJ kg-1,

and
¯g  = ¯h  – T ¯s  = –9,532 kJ kmole-1.

At a specified value of T and V, the value of ¯a  decreases until it reaches a minimum.
The fluid at state D transforms into a wet mixture, but gliquid = gvapor. Hence, P must
equal 133 bar so that ¯a  is minimized, i.e.,
 ¯v  = (1–x) vf (320ºC, Pnew) +x vg (320ºC, Pnew) = 0.0986 m3 kmole-1

The pressure Pnew = Psat, which is the saturation pressure at phase equilibrium (that
equals 133 bar).
Applying the RK equation at 593 K and 133 bar,

vf (320ºC, 133 bar) = 0.04275, m3 kmole-1or 0.00237 m3 kg-1, and
vg (320ºC, 133 bar) = 0.236 m3 kmole-1or 0.0131 m3 kg-1, i.e.,
x = (0.0986 – 0.04275)/(0.236 – 0.04275) = 0.289, and
¯a  = ¯a  f (1–x) + ¯a  g×= –11,114 kJ kmole-1.

Remarks
At equilibrium ¯a  = –11,114 kJ kmole-1, which is lower than the –10,912 kJ kmole-1

value at the metastable point at the same temperature and volume. The disturbance
creates a wet mixture. State K (593 K, 0.211 m3 kmole-1) is a metastable state which,
when disturbed, produces a wet mixture with a higher quality at the same temperature
and volume, since the initial volume is larger.
At specified values of T and P, g reaches two possible minimums. Such multiple
states do not exist for the Helmholtz energy at specified values of T and v.

3. Specified Values of S, P, and m
Consider water at 140 bar and 0.211 m3 kmole-1 (cf. state K in (cf. state K in Figure

11). When S and P are specified, a disturbance creates two phases. At a fixed pressure, gf = gg

and T = Tsat. The mixture quality is adjusted such that

x = (sinitial – sf)/sfg.

4. Specified Values of S (or U), V, and m
In this case, we can assume a temperature T1, and determine Psat(T1), vf (T1), and

vg(T1) so that

x(T1) = (v– vf(T1))/(vg(T1) – vf(T1)).

The quality must satisfy the relation

x(T1) = (s– sf(T1))/(sg(T1) – sf(T1)),

otherwise another temperature T2 must be assumed and the procedure repeated. In this case,
the internal energy is minimized.

In case U is specified, then the relation

x(T1) = (u– uf(T1))/(ug(T1) – uf(T1))

must be satisfied.

D. ENTROPY GENERATION DURING IRREVERSIBLE TRANSFORMATION
The change from an unstable or a metastable state to a stable state is irreversible and,

hence, entropy is generated. Recall that

δq/T – ds = δσ, (48)

where δq denotes the heat transferred from a reservoir at a temperature T. At a specified vol-

ume,



δqv = du, i.e., δσ = du/T – ds = (du – Tds)/T = da/T. (49)

Therefore, in the context of the example # 11,

σ=(ametastable/unstable–astable)/T=(–10,912–(–11,114))/593=0.3406 kJ kmole-1 K-1. (50)

For a unit mass

δσ = ds – δq/T, (51)

and if the transformation occurs at specified values of T and P, applying the First Law δqP = dh

so that Eq. (51) assumes the form

δσ = ds – dh/T = (Tds–dh)/T.

Since T is constant,

δσ = – dg/T.

Integrating this expression, we obtain

σ = (gmetastable/unstable – gstable)/T. (52)

For instance, during the change from state D (metastable) to L (stable liquid) (cf.
Figure 11), σ = (–9530.5 – (–9776.2))÷593 = 0.414 kJ kmole-1 K-1, while for a change from D

to the metastable vapor state K, σ = (–9530.5 – (–9638.8)) ÷593 = 0.183 k kmole-1 K-.
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E. SPINODAL CURVES

1. Single Component
For the branches ECGKN and MRAFL in Figure 15, ∂P/∂v < 0 and (d2A)T,V,m > 0.

Along the branch NDHJM, ∂P/∂v > 0 and (d2A)T,V,m < 0. The points M and N at which

(∂P/∂v)T = 0, are the limits of intrinsic stability and are called “spinodal points”. At the spi-

nodal points M and N, ∂P/∂v = 0 and (d2A)T,V,m = 0. At a specified temperature, the spinodal

points yield the maximum pressure at which the fluid exists as vapor (cf. state N) and the
minimum pressure at which it exists as liquid (state M). The spinodal points can be predicted
by applying the state equations as illustrated through the following example.

l. Example 12
Use the relation

P = RT/(v–b) – a/(T1/2 v(v+b)) (A)

along these points.
Solution

At the spinodal points ∂P/∂v = 0. Differentiating Eq. (A),

 (∂P/∂v = – RT/(v–b)2 + (a/(T1/2 v(v+b))) (1/v + 1/(v+b))) = 0.

Thereafter, solving for the temperature,

T = ((a(v–b)2/(R v(v+b))) (1/v + 1/(v+b)))2/3. (B)

Using Eqs. (A) and (B) we obtain the relation
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Figure 16. The spinodal curves for any fluid.

To obtain an expression for P vs. v and T vs. v for water along the spinodal points plot
P vs. v at 567, 593 and 615 K for water. Obtain an expression for the reduced values
PR and TR vs. vR' along the spinodal points, and plot PR and TR vs. vR' and PR vs. TR



P = (R(v–b))1/3 ((a/(v(v+b))) (1/v + 1/(v+b)))2/3

 – (a/(v(v+b)))2/3 (R/((v–b)2 (1/v + 1/(v+b))))1/3 (C)

With the values a  = 142.59 bar m6 K1/2 kmole-2 and ¯b  = 0.0211 m3 kmole-1 in the
context of Eq. (B), we obtain a plot of T vs. ¯v , and using Eq. (C) we can obtain a
plot of P vs. ¯v .
Using Eq. (C), one can also obtain the spinodal pressure vs. volume for water at the
temperatures 567, 593 and 615 K (cf.).
We can normalize Equations (B) and (C) so that

TR=((0.4275(vR'–0.08664)2/(vR'(vR'+0.08664))) (1/vR'+1/(vR'+0.08664)))2/3, and (D)

PR = TR/(vR' – 0.08664) – 0.4275/(TR
1/2 vR' (vR' + 0.08664)) (E)

Figure 16 presents a plot of PR vs. vR' and TR vs. vR' and Figure 17 contains a plot of
PR vs. TR along the spinodal points. The curves CGV and CFL denote the vapor and
liquid spinodal curves. Figure 18 presents plots of Z vs PR with TR as a parameter for
nonpolar fluids for the spinodal and saturation conditions at any given state.

Remarks
Along the spinodal points on the curves CGV and CFL, cv > 0. Therefore, (∂2U/∂S2) =

(T/mcv) ≠ 0, but the condition (∂2U/∂2V)S,m = (∂P/∂V)T = 0 is satisfied.

As the critical temperature Tc is approached, the vapor and liquid spinodal volumes
merge into a single value vc so that d2A = 0 without exhibiting a maxima or a minima.
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Since ∂P/∂v = –(∂T/∂v)P (∂P/∂T)v, if ∂P/∂v = 0 (i.e., βT→∞), then (∂T/∂v)P = 0.

Therefore, the coefficient of thermal expansion βP→∞ at the spinodal point (since,

typically, ∂P/∂T ≠ 0).

Applying the results from Chapter 7, we can plot the inversion pressure with respect
to the temperature (curve IQ in Figure 17). The regimes where µJT > 0, µJT < 0, and

µJT = 0 are indicated in the figure.

The spinodal curves are useful to predict the degree of liquid superheat and vapor
subcooling of vapors at a specified pressure. Consider a fluid which has saturation
temperature of T1 =  T

sat at P1 (cf. Figure 19, 593 K at P =133 bar). Figure 19 plots
three curves of pressure with respect to volume for the temperatures T1, T2, and T3.
The temperatures T2 and T3 are selected such that the vapor spinodal pressure at N
corresponding to T2 coincides with the liquid spinodal pressure at M corresponding to
T3. The points F and G represent the saturated liquid and vapor states at the condition
(P1, T1 =  T

sat). The liquid at a pressure P1 can be superheated to the temperature T3

(i.e., from state F to M) without boiling and the vapor can be likewise subcooled to T2

(i.e., from state G to N) without condensation. This phenomenon is illustrated through
the following example.

m. Example 13
Consider the RK equation of state

P = RT/(v–b) – a/(T1/2 v(v+b)). (A)

615.001ºC and 133 bar?
Solution

Figure 18. Z curves: spinodal, saturation and other isotherms. (From W. G. Don-
gand, J. H. Lienhard, Can. J. Chem.Eng., 64, pp. 158-161, 1986. With permis-
sion.)

Determine the maximum temperature to which water can be superheated at 133 bar
without boiling and the temperature to which water vapor can be subcooled at the
same pressure without condensation occurring. Assume that Tsat = 593 K at P = 133
bar for water when it is modeled by the RK equation of state. What is the fluid state at



From Example 12, the temperatures at which ∂P/∂v = 0 are represented by the relation

T = ((a (v–b)2/(R v(v+b))) (1/v + 1/(v+b)))2/3. (B)

There are two spinodal vapor and liquid volumes at particular temperature, e.g., the
states M and N at 133 bar in Figure 19.
Using (B) and the RK equation to eliminate the temperature, we obtain the expression

P = (R (v–b))1/3((a/(v(v+b)))(1/v + 1/(v+b)))2/3

– (a/(v(v+b)))2/3(R/((v–b)2(1/v + 1/(v+b))))1/3. (C)

Eq. (C) is useful for obtaining the vapor spinodal curves AN and liquid spinodal ON
(cf. Figure 19).
Using the values R  = 0.08314 bar m3 kmole-1 K-1, a  = 142.59 bar m6 K1/2 kmole-2, b
= 0.0211 m3 kmole-1, P = 133 bar in Eq. (C), vM = 0.0597 m3 kmole-1 (cf. Figure 19,
liquid–like spinodal point) and vN = 0.158 m3 kmole-1 (vapor-like spinodal point). and
vN = 0.158 m3 kmole-1 (vapor-like spinodal point). Thereafter, applying these results
in Eq. (B), for the liquid TSp,l = 615 K and for the vapor TSp,v = 567 K. Therefore,
water can be superheated at 133 bar by 615–593 = 22 K and the vapor subcooled by
567–593 = –26 K.

One can use Charts in Fig. 17 to predict the degree of superheating and sub-
cooling at any given pressure.  With P = 133 bars, PR = 0.602, then TR along spinodal
liquid is  0.95 while along spinodal vapor is  0.88 while TR along saturated line is
0.92. The corresponding T’s are 614.5, 569, and 593 K. Sometimes the RK equation
may be crude to determine the degree of superheating. Recall from Chapter 6 that  a
= c3 R 2Tc

2.5/Pc, and b  = c4 R Tc/Pc where  from theory c3  = 0.4275, c4  = 0.08664.  If

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

v, m3/kmole

P
, b

ar
s

567
593
615

T3 = 615 K

T1= 593

T2 = 567

A

N SF
G

Vapor

Liquid

 Vapor Spinodal Curv

 Liquid  Spinodal Curv

B

M

D

Figure 19: Spinodal curves at 567, 593, and 615 K for water mod-
eled according to the RK equation of state. If the pressure is main-
tained at 133 bar, Tsat = 593 K according to the relation with vapor
at state G and liquid at state F. The vapor can be subcooled to 567
K (cf. the spinodal point N) and the liquid superheated to 615 K
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c3 and c4 are selected to be different to fit the experimental data for P,v,and T, it is
equivalent to modifying  Tc and Pc’s (Chapter 6) . The charts in Figure 17 can still be
used with modified critical properties (Chapter 6).

Subcooling also occurs during ice formation and in sublimation processes.
Pure distilled water can be cooled to –8ºC without forming ice.

2. Multicomponent Mixtures
The spinodal analyses can also be applied to mixtures.

n. Example 14

temperature. Assume that the mixture follows the RK equation of state.
Solution

The stability of two components require that

D1 = AVV ≥ 0, and (A)

D
A A

A A
VV VN

N V N N
2

1

1 1 1

0= ≥ (B)

Selecting the mixing rule for the RK equation of state

am = (Σ Yk ¯ak
1/2)2, so that (C)

Am = am N2, ¯b m = Σ Yk ¯b k, and Bm = bm N. (D)

The pseudo critical temperature and pressure can be expressed as

Tc´ = (0.08664/(0.4275 R)(am/bm))2/3, and Pc´ = 0.08664 RTc´/bm, i.e.,

am = (0.6 × 142.60.5 + 0.4 × 2201/2)2 = 171.6 bar k1/2m6 kmole-2,

bm = (0.6 × 0.0211 + 0.4 × 0.0462) = 0.03115 m3 kmole-1, and

Tc´ = 564.9 K and Pc´ = 130.6 bar.
Using the condition AVV = 0 we determine that ∂P/∂V = 0. In Figure 20 the vapor spi-

nodal points are represented by the curve VGC and the liquid spinodal points by the
curve CFL. However, this condition alone does not satisfy the stability criteria for a
mixture. The following additional spinodal condition must be satisfied, i.e.,

AV N1
 = ∂/∂N1(AV) = –∂P/∂N1. (E)

Since

P = NRT/(V–Bm) – Am/(T1/2 V(V+Bm)), (F)

where Bm = Nbm, Am = N2 am, ∂Bm/∂N1 = b1, ∂Am/∂N1 = 2 (a1 a)1/2 (cf. Chapter 8),

∂P/∂N1 = RT/(V–Bm) + NRT (∂Bm/∂N1)/(V–Bm)2 – (∂Am/∂N1)/(T
1/2 V(V+Bm)) 

             + Am (∂Bm/∂N1)/(T
1/2 V(V+Bm)2) (G)

Substituting Eq. (G) in Eq. (E), and multiplying the resultant expression by N, we
obtain the relation

N AV N1
 = –RT/(v – bm) – RTb1/(v – bm)2

Consider a mixture that contains 60% water (species 1) and 40% methyl alcohol (spe-
cies 2). Determine the spinodal curves for the mixture as a function of pressure and



            + 2(a1am)1/2/(T1/2v(v + b)) – ab1/(T
1/2v(v + bm)2). (H)

An additional spinodal condition for a mixture is obtained by using the following
equality, i.e.,

AV N1
 = 0, since N > 0. (I)

Substituting Eq. (I) in Eq. (H), we obtain a relation for the temperature, i.e.,

T3/2 = (((v – bm)2/(R(v – bm + b1) v(v + bm)2)) (2 (a1am)1/2 (v + bm) – ab1))
2/3. (J)

Thereafter, using Eq. (F) the pressure at which AV N1
 = 0 is obtained (cf. Figure 20 -

curve MNC´ for the liquid and C´HB for vapor). The pressure along which AVV = 0 is
represented by the curves LFC (for the liquid) and CGV (for the vapor). Figure 20
also illustrates the bubble point J along the saturation curve YJC at 50 bar for Tsat =
475 K.
We now discuss the criteria. When AVV = 0, the mixture can be superheated to 520 K
(point F) without a bubble forming, and a vapor mixture can be subcooled to 430 K
(point G) without condensation. The presumption is that any minor disturbance within
the system occurs due to volumetric changes alone (i.e., there is a uniform composi-
tion within the disturbed space). However, if the composition is also locally nonuni-
form due to a disturbance (i.e., due to fluctuations in N1) then the spinodal condition
corresponds to AV N1

 = 0. Accordingly, the curve BHC´RNM is the spinodal vapor

curve.
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Within HG, ∂2A/∂N1
 2 > 0 but ∂2A/∂V2 < 0. If a disturbance occurs due to changes in

both V and N1, then the conditions ∂2A/∂V2 > 0 (i.e., ∂P/∂V < 0) and ∂2A/∂N1
2 > 0 re-

quire that the system lie within GF at 50 bar.

F. DETERMINATION OF VAPOR BUBBLE AND DROP SIZES
From Chapters 5 and 7 we note that for a vapor bubble (embryo phase, E) in a liquid

(mother phase, M), the pressure difference is given as

(PE – PM) = 2 σ/rv, (53)

which is called the Laplace equation. This relation allows us to determine the minimum bubble
size during evaporation and the maximum drop size at a metastable state using the spinodal
pressure relations at a specified temperature.

o. Example 15

that the surface tension σ = 10.5×10–6 kN m-1.

Solution
The bubble pressure is higher than the liquid pressure due to the effect of surface ten-
sion. The vapor can exist at a metastable state. The bubble radius

rB = 2 σ/(PE – PΜ), i.e., (A)

rB = (2×10.5×10–6)/((155–133)×100) = 9.549×10–9 m.

Eq. (A) indicates that higher the value of PE, the smaller the bubble size.
Remarks

Various bubbles have different diameters depending upon the various metastable
states of the bubbles. For instance, at 133.1 bar, rB = 2.1 µm.

If the mother phase is a vapor at 593 K and 133 bar, the liquid drops exist at a higher
pressure in the form of compressed liquid.
Consider superheated vapor at 593 K and 50 bar. The lowest pressure in the liquid
state at 593 K is 55 bar, which leads to the formation of metastable liquid drops. The
associated drop size is rd = 2×10.5×10–6/((55–50)×100) = 0.042 µm

p. Example 16

10.5×10–6 kN m and the liquid molar volume to be 0.018 m3 kmole-1.

Solution
The pressure

Pβ =Psat exp (vα(Pα–P sat)/RT)

= 133 exp (0.018 × (1–133)/(0.08314 × 593)) = 126.7 bar.

Since Pβ =Pα + 2 σ/r, r = 1.67×10–9 m.

Superheated liquid water (α phase) exists at 593 K and 1 bar along with a vapor em-

bryo (β phase) at the same temperature. The saturation pressure at 593 K is 133 bar.

Determine the size of the embryo bubble assuming that the surface tension  σ =

Water boils with the mother liquid phase at 593 K and 133 bar. The vapor embryo is
at the same temperature as the liquid, but at a different pressure. Assume that the RK
equation applies and that the vapor pressure is 155 bar. (According to the RK equa-
tion of state, for water Psat = 133 bar at 593 K.) Determine the bubble size. Assume



G. UNIVERSE AND STABILITY
The size of the universe is determined to be 10 billion light years. There may be 100

billion galaxies in the universe. The dimension of our galaxy, the Milky Way, is of the order of
100,000 light years (1 light year is equivalent to roughly 6 trillion miles and 1 megaparsec
equals the distance light travels in 3.26 million years). Galaxies tend to group together in clus-
ters and the clusters in super clusters.

Since the gravitational forces within the universe exceed those determined just with
the observable matter, the imbalance is attributed to dark matter (black holes, white stars, etc.,)
unseen with existing technology. The amount of dark matter controls the gravitational force
and, hence, balances the forces due to the motion of the galaxies. When balanced, it is a flat
universe, but when galaxies expand, it is an open universe. When it collapses upon itself, it is
called a closed universe. It is thought that there is 90% dark matter in the universe. The current
evidence seems to suggest that the universe is expanding with increasing velocity, which ap-
pears to contradict the Big Bang theory that suggests a slowing velocity. The expanding uni-
verse is believed to be open so that a light beam will never return to its point of origination.
The density of the open universe is believed to roughly equal 1.3 times the mass of a single H
atom. If that density were instead equal to 130 times the mass of an H atom, it is believed that
the universe would be closed.

New theories suggest a pouring of energy from “virgin” vacuum into the bubble of
the universe containing dark matter. Since this violates the First law, the existence of an anti-
energy in virgin vacuum has been proposed. Thus, energy input to a bubble produces an out-
ward pressure that causes the universe to expand with increasing velocity. While the Big Bang
problem reduces to a fixed mass with dark matter and fixed energy, the new approach suggests
adiabatic throttling into “virgin” vacuum (no dark matter). The new theory also implies a non-
adiabatic closed system (i.e., fixed dark matter and other observable mass) universe.

A recent image obtained by Chandra X-ray Observatory shows a cosmic "cloud sys-
tem” with pressure fronts in the system and they show a colder 50 million degree central re-
gion embedded in an elongated cloud of 70 million degree gas all of which is muddied in an
"atmosphere" of 100 million degree gas. The size of the cosmic cloud system containing hun-
dreds of galaxies is six million light years across. There is enough gaseous matter to make
more galaxies. The galaxies may collide and merge over billions of years and release a large
amount of energy, which can heat the cluster gas.

The universe is also presumed to have a “nonzero” substance  called  “aether” with
non-zero levels of energy, pressure, and density; it is also the medium of transmission of light
and  electromagnetic radiation. From the thermodynamics perspective, a question arises if we
can we apply the stability criteria developed so far to the “cosmic clouds” or to the universe
with a modified real gas state equation with a generalized power law for attractive forces. The
following is a hypothetical analysis of the authors. First, we will assume that the universe
obeys the state equation

P = R´T/(v–b) – a/Tnvm, (54)

where P denotes the repulsive pressure. It is proportional to energy content per unit volume of
free space minus the reduction in pressure due to attractive forces between matter. The variable
b refers to the volume of the matter per unit mass, a is the attractive force constant, R´ is a pro-
portionality constant that is not necessarily equal to universal gas constant, and the “pseudo-
temperature” T is  proportional to the sum of the average translational and rotational  energies.
The attractive force model between clouds is assumed be similar to the model derived for real
gases (Appendix of Chapter 6) except that the power law is modified. Since the boundary of
the universe is at zero pressure, any small positive pressure will expand the universe and vice
versa. Thus if P= 0, forces are balanced or the universe is flat. From Eq. (54),

T(n+1) = (a (v-b)/ (R’vm))≈ = (a / (R’vm-1)) if v»b.



For the Berthelot type of equation, n=1, m=2,

 T = ±(a / (R’v))1/2.

The flat universe solutions seem to suggest both positive and negative temperatures. While we
rule out negative temperatures for planetary matters, we are not sure about the dark matter or
“aether”.  Remember that if T<0, the first term in Eq. (54) causes attraction while the second
term causes repulsion. Since T = T(v) for a flat universe, u= u(T) and u0(a=0,T)–u(T) = (2
(aR´/v))1/2 or  2 R´T. Further, h = u +Pv = u, since P =0.

We now discuss what happens during expansion or contraction if the universe follows
Eq. (54) at fixed values of u. One consequence is that an increase in volume will form liquid
like or condensed subsections (i.e., regions in which the matter/dark matter/clouds is closely
packed) within the universe. Alternately, is may be possible to form vapor like (or expanded)
subsections in which the matter is loosely packed. An example of the stability of the universe
follows. Note that a true stability model of the universe must include all planets in all the gal-
axies, comets, asteroids, space dust, cosmic clouds, etc.

q. Example 17

equation

P = R’T/(v–b) – a/Tnvm. (A)

behaves as a Berthelot gas (m=2, n=1)?
Solution

Using Eq. (A)

(∂P/∂T)v = R’/(v–b) + n a/Tn+1 vm. (B)

Recall that

du = cv dT + (T (∂P/∂T)v – P) dv. (C)

Note  that this  expression yields only change in the value of u for the universe due to
a change in the random energy (the dT term) and  ipe (the dv term)
At a specified value of u,

(∂T/∂v)u =– ((T (∂P/∂T)v – P)/cv (u,v)). (D)

Substituting Eq. (B) in Eq. (D) we obtain the relation

(∂T/∂v)u = – a (n+1)/(Tn vm cv (u,v)). (E)

Similarly,

(∂s/∂v)u= P/T =R’/(v–b) – a/(Tn+1 vm). (F)

Differentiating Eq. (F) with respect to v

Where the attractive force model is assumed to be similar to the model derived  for
real gases (Appendix of Chapter 6) except that the power law is modified.. Due to in-
creased pressure in the beginning, a cloud of mass starts expanding. We will derive
the criterion for the stability of the system at a specified internal energy and mass in
terms of the temperature and volume. What should be the range of values of n for
which thermal stability maybe affected? What will be the change in average tem-
perature with change in volume as the universe expands or contracts? Next, for the
purpose of illustration, what will be the relation for T if the universe/cosmic clouds

We will address the stability of mater in the universe through a crude  “elementary”
thermodynamic analysis.  First, we will assume that the universe obeys the state



∂2s/∂v2 = –R’/(v – b)2 + ma/(Tn+1vm+1) + (a(n + 1)/(Tn+2 vm)) (∂T/∂v)u. (G)

Substituting Eq. (D) in Eq. (G) we have

∂2s/∂v2 =–R’/(v – b)2 + m a/(Tnvm+1) – (a (n + 1)/(Tn+1 vm))2/cv(u,v)). (H)

Mechanical Stability:
For a system to be stable, ∂2s/∂v2  < 0. Multiplying Eq. (H) by T(2n+2)v(2n+1) and ap-

plying this criterion,

m a T(n+1) vm  < (a2(n + 1)2 v/(cv(u,v))) + R’ v(2m+1) T(2n+2)/(v – b)2.

Assuming that m =2, n =0 (i.e., assuming that the universe behaves as a VW gas,

2 a T v2 < (a2 v/(cv(u,v))) + R’ v5 T2/(v – b)2, (I)

which is a quadratic equation in terms of T. For a VW gas cv = cv0(T), and

2 a T v2  < (a 2 v/(cv0(T))) + R’ v5 T2/(v – b)2. (J)

A quantitative criterion for stability can be provided by Eq. (J). (The current tem-
perature in the universe is  about 3 deg. K.) For a VW gas

u – uref = cv0(T – Tref)– a((1/v) – (1/vref)). (K)

Assume that uref = –cv0 Tref  + a/vref , i.e.,

u = cv0 T– a /v, so that (L)

T =(u + a /v)/cv0. (M)

Note that the temperature as defined in real gas state equations (e.g., Eq. (M)) is pro-
portional average energy per molecule. Amo Penzios and Robert Wilson of Bell Labs
found that the universe emits radiation with a pattern similar to a blackbody radiation
of a container at temperature 3 K (more precisely 2.726 K). The universe has cooled
to the current temperature from 10 32 K due to expansion from the Big Bang which
occurred about 12 billion years back. Thus σSBTuniv

4 = urad,  where σSB is the Stefan-

Boltzmann constant (5.67×10-11 kWm-2K-4). Once the temperature is known, u can be

determined using Eq. (M). The temperature decreases with increasing volume and
vice versa.
Thermal Stability:
Consider the relations

( / ) ( / )∂ ∂ = ∂ ∂c v T P Tv T v
2 ,

(∂P/∂T) v = R’/(v-b) + na/Tn+1 vm,  m>0, and

(∂2P/∂T2) v = - n(n+1)a/Tn+2 vm, m>0.

Note that a can be evaluated in terms of force field constants as described in Chapter
6 in context of the VW equation of state. Hence, ∂cv/∂v = - n(n+1)a /Tn+2vm. In order

that cv> cv0, this slope must be negative. Otherwise, cv<cv0 as the volume is decreased
and the slope may become negative causing thermal instability, thereby creating a sun
and a freezing system with a positive entropy generation. Therefore, n(n+1) > 0. If n>
0, n(n+1) is always positive. If  (n+1) < 0 i.e, n <–1, then n(n+1) > 0. Thermal stabil-
ity is affected in the universe if –1< n<0. It is possible to create a warming planet and
a freezing planet simultaneously as the volume is decreased if -1<n<0 below certain
volumes.



Adiabatic Throttling of the Universe:
As the volume of the adiabatic universe changes (in the context of the Big Bang the-
ory) in the empty space, energy must remain constant. Recall from Chapter 7, Eqs.
(165) and (166), that for adiabatic throttling at constant internal energy (∂T/∂v)u = –(T

∂P/∂T – P)/cv = –T2(∂/∂T(P/T))u/cv = - (n+1) a/(cv T
n vm). If cv > 0. Therefore, the av-

erage temperature decreases with an increase in volume and vice versa for any value
of n (the inverse happens if cv < 0). If cv is constant, one can integrate to obtain T(n+1)

= (n+1)2 a/(cv (m-1) v (m-1))+ C(n+1)  where m ≠ 1 and C is a constant. Then (T(n+1)-

C(n+1)) = ((n+1)2 a/(cv (m-1) v (m-1))). Per this model, at constant values of u, as v → 0,

T→ ∞ and T → constant as v → ∞, since attractive forces become negligible. If m=2,

n=1 (Berthelot), then at constant values of u, T2 =(4 a/(cv v))+ C2. Then (T2- C2) =(4
a/(cv v)) for adiabatic throttling of the universe. For continuum C = Tig, (T2- (Tig)2)
=(4 a/(cv v)).

Remarks
Recall Eq. (C). If a fixed mass system undergoes a reversible adiabatic process, du = -
δw = -P dv = cv dT + (T (∂P/∂T)v – P) dv and, hence, dT =  -T (∂P/∂T)v dv/cv. Using

Eq. (B), dT= -(RT/(v–b) + n a/Tn vm)dv /c. While the numerator is always positive, a
negative specific heat implies that dT>0 if dv >0 (expansion process). If the process is
isometric, one can show that dT = δq/cv so that heat rejection will cause dT>0 imply-

ing negative specific heats.
For a continuum, the RMS of the microscopic thermal part of the energy (te+re+ve) is
proportional to the temperature. Similarly, if one makes an approximation that the
RMS  otational energy for a  dense cluster of objects is also proportional to the tem-
perature, then it is possible to use the Maxwell–Boltzmann type of distribution for the
various speeds of the objects within a cluster.
We quote “Because universal gravitation is, well, universal, every body in the uni-
verse attracts every other body. A true model of the system would not only include the
solar system but also the thousands of asteroids, billions of comets, and every spec of
dust in the solar system, every space probe that has ever been launched, and every
passing atom of hydrogen, but it would also have to take into account things like the
gravitational attraction of Alpha Centauri, M31, and the most distant quasar,”
http://math.bu.edu/INDIVIDUAL/jeffs/stability.html.

H. SUMMARY
Criteria for thermodynamic stability are derived at specified values of (U,V,m),

(S,V,m), (H,P,m), (S,P,m), (T,V,m), and (T,P,m). The real gas state equations fail the stability
criteria within certain ranges of volumes for specified values of the temperature, which is the
result of phase change. Spinodal conditions are provided for fluids. Physical explanations of
boiling and condensation, superheating and supercooling are provided. Finally, the state equa-
tions are extrapolated to explain the stability of the universe.



Chapter 11

 11. CHEMICALLY REACTING SYSTEMS

A. INTRODUCTION
Chemical reactions result in a rearrangement of atoms among molecules. Examples of

chemical reactions include photosynthesis, metabolism, combustion, petroleum refining, and
plastics manufacture. Combustion occurs due to exothermic oxidation reactions.

Energy cannot be extracted from a system that is constrained unless the thermody-
namic constraint is removed. fossil fuels such as coal, oil, and natural gas are stored below the
earth’s surface and are in thermal, mechanical and chemical equilibrium. If the fuels are al-
lowed physical contact with air, i.e., if the chemical constraint is removed, it is possible to re-
lease chemical energy. The direction of heat flow is determined by a temperature gradient or
potential, that of fluid flow by a pressure gradient or a mechanical potential. We will learn in
this chapter that the gradient of the Gibbs energy or chemical potential determines the direction
in which a chemical reaction proceeds.

B. CHEMICAL REACTIONS AND COMBUSTION

1. Stoichiometric or Theoretical Reaction
A stoichiometric or a theoretical reaction results in the complete combustion of fuel

as illustrated below. Consider the reaction

CH4 + a O2 → b CO2 + c H2O (1)

involving one kmole of fuel and “a” kmoles  of molecular oxygen. The species on the left hand
side of Eq. (1) are usually called reactants (which react and are consumed during the overall
chemical reaction) and those on the right hand side are termed products (which are produced as
a result of the chemical reaction). In the case of a steady flow reactor, the input and output
streams contain the following quantity in kmole of the elements (C, H, and O).

Input = Output
C 1 = b
H 4 = 2 c
O 2a = 2b + c

We deduce from the carbon atom balance that b = 1, from the H atom balance that c = 2, and
from the O atom balance that a = (2b+c)/2. Consequently, Eq. (1) can be written in the form of
the stoichiometric reaction

CH4 + 2 O2 → CO2 + 2 H2O. (2)

Consider, for the sake of illustration, the combustion of 10 kmole of CH4, 25 kmole of
O2, 5 kmole of CO2 and 3 kmole of H2O during which the fuel completely burns. Thus only 10
kmole of CH4 are consumed in the reactor. Applying Eq. (2), we readily determine that 20
kmole of O2 are utilized during the process, and hence  5 kmole of O2, 15 (=10 + 5) kmole of
CO2 and 23 (= 20+3) kmole of H2O leave the combustor. The stoichiometric coefficients do
not necessarily represent the amounts of species entering or leaving a reactor.

Note that when air is to supply the oxidizer, each kmole of O2 is associated with 3.76
kmole of molecular nitrogen. During the combustion of  methane in air, the stoichiometric
air–to–fuel (A:F) ratio is

(A:F)mole = (2 + 2×3.76)÷1 = 9.52 kmole of air to 1 kmole of fuel. (3)



On mass basis, the A:F ratio is

(A:F)mass = (2×32 + 2×3.76×28)÷(1×16) = 17.16 kg of air/kg of fuel. (4)

More accurately, air is a mixture containing 78% N2, 1% Ar and 21% O2. If the argon is in-
cluded,

CH4 + 2 (O2 + 3.71 N2 + 0.05 Ar) → CO2 + 2 H2O + (7.42 N2 + 0.1 Ar). (5a)

In this case, (A:F)mole = 9.52, but on a mass basis it changes to

(A:F)mass = (2×32 + 7.42×28 + 0.1×40) ÷1617.24 = 17.24.

2. Reaction with Excess Air (Lean Combustion)
Fuel and air are often introduced separately (i.e., without premixing) into a combus-

tor, e.g., in a boiler. Due to the large flowrates and short residence times there is no assurance
that each molecule of fuel is surrounded by the appropriate number of oxygen molecules re-
quired for stoichiometric combustion. Therefore, it is customary to supply excess air in order
to facilitate better mixing and thereby ensure complete combustion. The excess oxygen re-
mains unburned and appears in the products, e.g.,

CH4 + 3 (O2 + 3.76 N2) → CO2 + 2 H2O + O2 + 11.28 N2. (5b)

In this case, the A:F ratios are

(A:F)mole = (3×3.76+3)÷1=14.28, and (A:F)mass = (3×3.76×28+3×32)÷16=25.74.

The excess air percentage  (mole % basis which is equally valid for mass % basis) is

((A:F) – (A:F)stoich)×100÷(A:F)stoich = (3–2)×100÷2  = 50 %.

3. Reaction with Excess Fuel (Rich Combustion)
Incomplete combustion occurs when the air supplied is less than the stoichiometric

amount required. For this condition, the products of incomplete oxidation may contain a mix-
ture of CO, CO2, H2, and H2O.

4. Equivalence Ratio, Stoichiometric Ratio
The equivalence ratio

φ = (F:A)/(F:A)stoich = (A:F)stoich/(A:F) =  (O2 :F)stoich /(O2:F) (6)

As an example, if φ = 0.5 for methane–air combustion, this implies that the excess is air sup-

plied for every kmole of fuel that is burned. In general, for methane–air combustion

CH4 + (2/φ)(O2 + 3.76 N2) → CO2 + 2H2O + 2((1/φ)–1) O2 + (2/φ)×3.76N2, or (7)

Another term used to represent the fuel–air mixture composition is the stoichiometric ratio

SR = (actual air supplied)/(stoichiometric air demand of fuel) = 1/φ.

For instance, if φ  = 0.5, then SR = 2, i.e., the air supplied is two times as large as the

stoichiometric or theoretical air demand of the fuel.

a. Example 1
Consider the metabolism of glucose in the human body. As we breathe in air, we
transfer oxygen from our lungs into our bloodstream. That oxygen is transported to
the cells of our tissues where it oxidizes glucose. Write down the stoichiometric reac-
tion for the consumption of glucose (s) C6H12O6 by pure oxygen and by air. Deter-



is consumed per minute?
Solution

The stoichiometric or theoretical reaction equation for this case is

C6H12O6 + a O2 → b CO2 + c H2O (A)

Applying an atom balance,

Carbon C: 6 = b, (B)

Hydrogen H: 12 = 2 c, i.e., c = 6, and (C)

Oxygen O: 6 + 2a = 2 b + c, i.e., a = 6. (D)

Therefore, the stoichiometric relation assumes the form

C6H12O6 + 6 O2 → 6 CO2 + 6 H2O. (E)

The corresponding stoichiometric or theoretical reaction equation in the case of air is

C6H12O6 + 6 (O2 + 3.76 N2) → 6 CO2 + 6 H2O + 22.56 N2. (F)

When excess air is supplied,

400% excess air = (supplied air–stoichiometric air)×100/stoichiometric air 

= (supplied air – (6 + 22.56)) × 100 ÷ (6+22.56), i.e.,

the supplied  air = 142.8 kmole of air/kmole of glucose. (G)

Therefore, the excess air as a percentage of theoretical air equals

(A:F/(A:F)stoich) × 100 = 142.8÷28.56 = 500%. (H)

The equivalence ratio

φ = ((A:F)stoich/(A:F)) = 28.56÷142.8 = 0.2. (I)

The actual reaction equation with 400% excess air or five times the theoretical air is

C6H12O6 + 5×6(O2 + 3.76 N2) → 6CO2 + 6 H2O + a O2 + b N2. (J)

Applying the atom balance for

Oxygen O: 5×6×2 = 6×2 + 6×1 + 2a, i.e., a = 24, and (K)

Nitrogen N: b = 30×2×3.76÷2 = 112.8, i.e., (L)

C6H12O6 + 5×6 (O2 + 3.76 N2) → 6CO2 + 6 H2O + 24 O2 + 112.8 N2. (M)

The air consumption is specified as 360 L hr––1 or 0.0147 kmole hr–1. Therefore, the
glucose consumption per hour is

ω = 0.0147÷142.8 = 0.0001029 kmole hr–1. (N)

mine the amount of air required if 400% excess air is involved, express (A:F) in terms
of the percentage of theoretical air and the equivalence ratio, and write the associated
reaction equation. If the human breathing rate ≈360 L(STP) hr––1, how much glucose



The mass of one kmole of glucose is 180.2 kg, so that the glucose consumption per
hour in terms of mass is

m = 00.0001029 kmole hr–1 × 180.2 kg kmole–1 = 18.6 g hr–1 or 0.31 g min–1. (O)

Remarks
The ratio of CO2 to O2 is called respiratory quotient (RQ) in the medical literature.
For glucose, the stoichiometric reaction indicates that RQ =1. Fats (e.g., palmitic
acid) are also used by the body for metabolism. The stoichiometric reaction for fat is
given as

C15H31COOH + 23 O2 → 16CO2 + 16 H2O.

The RQ is given as 0.7. Since older persons have problems with excreting CO2, then
fats are preferable compared to glucose due to lower RQ values.

5. Dry Gas Analysis
The products of combustion are analyzed on a volumetric or molar basis in order to

determine if combustion is complete. In the context of Eq. (5b) the percentage of CO2 in the
products equals (1×100÷(1+2+1+11.28) = 7%. This is an example of a wet analysis, since the

products also include water vapor. If the combustion products are analyzed with water re-
moved as a constituent, this is called a dry gas analysis. Again, applying Eq. (5b), the CO2

percentage on a dry basis is 1×100/(1+1+11.28) = 7.53%. The volume percentages of the con-

stituents of an ideal gas mixture are identical to their molar percentages. The measured dry or
wet gas compositions can be used to determine (A:F) as illustrated in the following example.

b. Example 2

formula CHx and is completely burned. Determine the values of “x” and (A:F).
Solution:

If the reactant CHx and is completely consumed, the exhaled products consist of only
CO2 H2O, N2 and O2. The stoichiometric relation for this chemical activity is

CHx + a O2 + b N2 → c CO2 + d H2O + e O2 + f N2. (A)

There are seven unknowns, namely x, a, b, c, d, e, f. From an atom balance of the
elements C, H, O, and N we obtain the following four equations, i.e.,

C: 1 = c, (B)

H:×= 2 d, (C)

O: 2 a = 2 c + d + 2 e, and (D)

N: 2 b = 2f, where (E)

b/a = 3.76. (F)

From the dry gas analysis:

Percentage of CO2 = c × 100 ÷ (c + e + f) (G)

Percentage of O2 = e × 100 ÷ (c + e + f) (H)

A dry gas analysis of the gas exhaled by a human lung is as follows– O2:16.5% and
CO2:3.1%. Assume the “fuel” burned by humans is characterized by the chemical



The seven equations are obtained using the seven equations Eqs. (B)–(G), i.e.,

c = 1, (I)

d = x/2, (J)

e = (2 a – 2 c – d)/2 = a – 1 – x/4, (K)

f = b = 3.76 a, (L)

(Percentage of CO2)/(Percentage of O2) = c/e = 3.1÷16.5 = 0.19, (M)

c + e + f = c÷0.031 = 32.26, (N)

Hence,
e = 1÷0.19 = 5.26,

f = b = 32.26 – 1– 5.26 = 26,
a = 6.91,
5.26 = 6.91 – 1– x/4, i.e.,× = 2.6, and

d = 1.3.
Consequently, the chemical relation assumes the form

CH2.6 + 6.91 O2 + 26 N2 → CO2 + 1.3 H2O + 5.26 O2 + 26 N2. (A)

The air fuel ratio
A:F = (6.91 + 26)÷1 = 32.91, and (A:F)mass = 65.

For a stoichiometric reaction, the corresponding relation is

CH2.6 + 1.65 O2 + 1.65×3.76  N2 → 1 CO2 + 1.3 H2O + O2 + 1.65×3.76 N2, and

(A:F)mass = 16.
Remarks

Once the exhaust gas composition is known, the fuel used and the A:F ratio for the
combustion process can be determined. Modern gas analyzers that incorporate the ap-
propriate software for determining (A:F) are widely used.
For the sake of illustration, consider the oxidation of the following fuel
CHmOn NpSq+ air → (1-e) CO2, e CO, H2O, SO2, O2, N2, Ar.

For stoichiometric oxidation, astoich =(1+q+m/4-n/2).
If the percentages CO2 and CO are measured, then

Ndry, number of dry moles in products = 1/(xCO2 + xCO).
e = xCO × Ndry.

a= (Ndry – (e/2 - m/4 + n/2 +p/2))× xO2,a, φ = astoich/a= (A:F)stoich/(A:F).

Here, xO2,a denotes the ambient oxygen concentration (mole fraction), and a the actual
oxygen content supplied.
If the percentages O2 and CO are measured, then

B =(xO2 – xCO/2)/(1-xCO/2).
a= (1+q+m/4-n/2 + B(n/2+p/2-m/4))/(1-B/xO2,a),
φ = astoich/a== (A:F)stoich/A:F.

Ndry = (a /xO2,a - m/4 + n/2 +p/2)/(1 - xCO/2).
A generic wet gas analysis of human exhalation is as follows – N2: 78%, O2: 16%,
CO2: 3%, and H2O: 3%.



The wet exhaust from a diesel engine generally comprises N2: 77%, O2: 13.54%, CO2:
5%, and H2O: 4%.

c. Example 3

composition on both a wet and dry basis.
Solution:

The reaction equation is

CH4 + a (O2 + 3.76 N2) → CO2 + 2H2O + b N2 + d O2 (A)

From an O atom balance,

2 a = 2 + 2 + 2 d, or a = 2 + d. (B)

The exhaust contains 3% O2 on a dry basis, i.e.,

d/(1 + 3.76 a + d) = 0.03. (C)

Therefore,

d = 0.2982, and (D)

a = 2.2982. (E)

Also, from an N atom balance

b = 3.76 a. (F)

Therefore,

(A:F) = 2.2982 × 4.76 ÷ 1 = 10.9, and (G)

Eq. (A) assumes the form

CH4 + 2.3 (O2 + 3.76 N2) → CO2 + 2 H2O + 8.6 N2 + 0.3 O2. (H)

The composition is as follows:

56 C

T
DP

S

PH2O=17 kpa

Figure 1: Schematic illustration of the determination of the dew
point.

Consider the combustion of natural gas (which is assumed to have the same properties
as CH4). Determine (A:F) if the products contain 3% O2 (on a dry basis), and the



CO2 % in exhaust (wet) = 100×(1÷(1+2+3.76×2.2982+0.2982)) = 8.4%,

CO2 % in exhaust (dry) = 100×(1÷(1+3.76×2.2982+0.2982)) = 10.1%,

N2 % in exhaust (wet) = 100×(3.76×2.2982÷(1+2+3.76×2.2982+0.2982)) = 72.4%,

N2 % in exhaust (dry) = 100×(3.76×2.2982÷(1+3.76×2.2982+0.2982)) = 86.9%.

Remark
Using Eq. (H), the mole fraction of water on wet basis has a value equal to
2÷(1+2+8.6+0.3) = 0.17. Consequently, the partial pressure of water is 0.17 bar if the

mixture pressure is atmospheric. At this pressure Tsat = TDP = 56ºC, where TDP de-
notes the dew point temperature. Inversely, if TDP is known, the water percentage and
(A:F) can be determined (cf. Figure 1).

C. THERMOCHEMISTRY

1. Enthalpy of Formation (Chemical Enthalpy)
Elemental C(s) can be burned in O2 at 25ºC and 1 bar to form CO2 The combustion

reaction process is exothermic, but the product temperature can be reduced through heat trans-
fer. The enthalpy of formation of CO2 , hf CO

o
, 2

 in this context equals the amount of heat added

or removed to form the compound at 25°C and 1 atm from its elemental constituents (which

themselves exist in their natural state at that temperature and pressure). The subscript f denotes
formation and the superscript o denotes that the value corresponds to a pressure of 1 atm.

Another example involves the formation of NO from elemental nitrogen and oxygen in
their natural form at STP (at that condition nitrogen exists as N2 and oxygen in the form of O2).
In this case.

1/2 N2 + 1/2 O2 → NO + 90,592 kJ kmole–1 of NO

This chemical reaction requires a heat input of 90,592 kJ kmole–1. Using the First law,

Q = h f NO
0

, = 90,512 kJ kmole–1 = hNO  – (1/2 hN2
+ 1/2 hO2

). (8)

It is apparent that hNO  > (1/2 hN2
+ 1/2 hO2

). If we arbitrarily set hN2
= hO2

= 0, then hNO=

hf NO
o
,  = 90,592 kJ kmole–1, which implies that the energy contained in NO at 298 K and 1 atm

is 90,592 kJ more than the energy associated with N2 and O2 . This energy can be interpreted
as that absorbed or released when the atoms form the compound. (cf. Figure 2). See Tables A-
27A and A-8 to A-19 for a tabulation of enthalpy of formation of various substances.

2. Thermal or Sensible Enthalpy
Once a compound is formed at 298 K and 1 atm, its temperature can be raised by

adding heat isobarically, and, consequently, the enthalpy of that compound increases. The dif-
ference between the enthalpy at a temperature T and at 298 K is the thermal or sensible en-
thalpy

h  =  c dTt
o

p
o

T

298∫ , (9)

where p
oc  refers to the specific heat of the species at 1  bar. (For an ideal gas the superscript ° is

redundant, since cp ≠ cp(P).) As an example, NO requires 22,230 kJ kmole–1 of energy to raise

its temperature from 298 K to 1000 K (cf. Figure 2). In this context

 ht,T-ht,298  = ∆h  c dT =  h - ht K p,k
o

t,1 00K
o

t,298K
o

,1000
298

1000

0= ∫ . (10)

See Tables A-8 to A-19 for tabulation of ∆ht,T = ht,T-ht,298  of several ideal gases.



3. Total Enthalpy
The total enthalpy of a species at any state (T,P) equals the value of its chemical en-

thalpy at 298 K at 1 atm (when species are formed from elements) plus the additional enthalpy
required to raise the temperature of the same species from 298 K to T and  pressure from 1 bar
to P. At P = 1 bar (≈ 1 atm),

hk
0 (T)  = hk,f

0  + h t, 298→T = hk
0 (T)  = hk,f

0  + c dTp

T

0

298
∫ (11)

In the case of NO at 1000 K and 1 atm, the total enthalpy is

hf NO
o
, (1000 K) = hf NO

o
, + ( hf NO

o
, ,1000K – hf NO

o
, ,298K)= = 90592 + 22230 = 112822 kJ kmole–1.

Figure 2 schematically illustrates how the total enthalpy can be determined. This concept is
useful when considering chemical reactions.

Now consider the pressure effect. The enthalpy of a species at an arbitrary pressure
and temperature equals its enthalpy at that temperature and a 1 bar pressure and the additional
enthalpy required (or extracted) to change the pressure to P, i.e.,

h(T,P) = ho(T) + ∆hT,1→P, where (12)

ho(T) = hf
o + ht

o
, 298→T, and (13)

Recall from Eq. (43) of Chapter 7 that  for any pure substance we had defined  the change in
enthalpy dh = cP dT + (v – T(∂v/∂T)P) dP = change in thermal part of enthalpy + change in

CA

298 K

hf
0

B

ht,T

h

N2

Figure 2: Illustration of chemical and thermal enthalpies.

NO

O2



intermolecular potential  part of enthalpy. Note that this expression does not contain hk,f
0 since

Eq.(43) of Chapter 7 expresses only the change in enthalpy of given species k but not the ab-
solute value of enthalpy of species k. Thus the term ∆hT,1→P in Eq. (12)  represents the change

in intermolecular potential  part of enthalpy as pressure is raised from 1  to P bars for the speci-
fied species. The term ∆hT,1→P represents a correction for real gas behavior. For ideal gases

∆hT,1→P = 0.

4. Enthalpy of Reaction
The amount of heat added (∆HR < 0) or removed (∆HR > 0) when the reactants enter

and the products leave an isothermal system is called the enthalpy of reaction, i.e.,

∆ R T
o

oducts,T
o

ac ts T
oH = H H, Pr Re tan ,− . (14)

For instance, consider the oxidation of CO to CO2 at 298 K and 1 atm, i.e.,

CO + 1/2 O2 → CO2,

for which HProducts = 1 × hCO2 = – 393,520 kJ, and HReactants = 1 × hCO + 1/2 O2 = –110,530 kJ.

Therefore,

∆ R T
oH ,  = –282,990 kJ (kmole of CO)-1, i.e.,

when a kmole of CO is burned 282,990 kJ of heat must be removed in order for the products to
leave at the same temperature as the reactants (298 K).  since the values of the enthalpy of re-
action are normally tabulated at a temperature of 298 K, the subscript T=298 K is omitted. If a
reaction involves either oxidation or combustion, then the enthalpy of reaction ∆ R

oH is termed
as the enthalpy of combustion ∆ C

oH .

5. Heating Value
The heating value of a fuel

HV = – ∆ C
oH  = HReac- Hprod. (15)

The lower heating value

LHV = HReac- Hprod, H2O(g)

when the products are assumed contain water in gaseous form, and the higher or gross heating
value

HHV = HReac- Hprod, H2O(l)

when the products are assumed to contain water in liquid form. Generally, HV, ∆ R
oH , and

∆ C
oH  are tabulated at 298 K and 1 atm.

For gaseous fuels the heating values are stated on a volumetric basis. If the HV on a
mole basis is known, one can obtain HV´ based on a volumetric basis using the relation HV´ =
HV in kJ/24.5 m3 or  HV’ = HV in BTU/lb mole /392 ft 3.

d. Example 4

∆ R
oH , and 

and 40% carbon dioxide (volume %), what is its higher heating value at 298 K?
Solution

The stoichiometric combustion of methane can be represented by the chemical reac-
tion

In the context of the combustion of methane determine the values of HHV, LHV,
∆ C

oH at 298 K. Further, if biogas is assumed to consist of 60% methane



CH4 + 2 O2 → CO2 + 2 H2O, i.e., (A)

- HHV = ∆ ∆C
o

R
o

oducts
o

ac ts
o

f CO
o

f H O
o

f CH
oH H = H H h h h= − = + −Pr Re tan , , ,2 2 4

2 , i.e., (B)

- HHVCH4
 = ∆ C

oH  = ∆ R
oH

          = (–393,520 kJ kmole–1.  of CO2)+2×(–285,830 kJ kmole–1.  of H2O) –

             (–74,850 kJ kmole–1.  of CH4) =–890,330 kJ kmole–1 of fuel
HHVCH4

 = 890,330 kJ kmole–1 of CH4,

HHV’= 890330/24.5  = 36340 kJ/m3 of CH4

LHVCH4
= - ∆ R H O g

oH , ( )2  = =[(–74,850 kJ kmole–1.  of fuel) – (–393,520 kJ

kmole–1  of CO2) - (2 kmole of H2O(g)/kmole of fuel)×(–241,820 kJ kmole–1.

of H2O(g))]  = 802310 kJ kmole–1 of fuel
LHV’ = 802310/24.5 =  32747 kJ m-3.
Since HHV of N2 =0, HHVBiogas = 0.60 × 36340 + 0.4 × 0 = 21804 kJ m-3.

Remarks
For methane, ∆ R

oH  = – 890330 kJ kmole–1.  of fuel represents the amount of heat that
is to be removed for the products to exit a combustor at 298 K. If this amount of heat
is not removed, the temperature of the products rises, which is characteristic of com-
bustion.
At 25ºC, for any fuel the LHV = (HHV – moles of H2O produced per mole of fuel ×
hfg × 18.02 ÷ moles of fuel). For instance, in the case of methane at 298 K the LHV =

(890330 – 2×2442.3×18.02) = 802,310 kJ kmole–1  of fuel.

The HHV per unit mass of O2 for most hydrocarbon fuels is approximately the same.
For methane, this value equals (55472÷4) = 13870 kJ kg–1 of O2, in the case of gaso-

line (i.e., CH2.46), the value is (48304÷(1.615×32÷14.5) = 13550 kJ kg–1 of O2, and for

n–octane it is (47880÷(8+4.5)×32÷114 = 13640 kJ kg–1 of O2.

6. Entropy, Gibbs Function, and Gibbs Function of Formation
The discussion about the enthalpies of reacting species is useful for applying the First

law of thermodynamics Now we will introduce methodologies for determining the entropy,
Gibbs function and other species properties, which are useful in the application of the Second
law.

Since for an ideal gas,

ds = cp0 dT/T – R dP/P,

then for a pure component

sk(T,P) – sk(Tref,1) = sk
0(T) – R ln (P/1), where (16)

s c T dTk p k
T

T

ref

0 = ∫ ( / ).

It is usual to select the conditions Tref = 0 K, P = 1 bar, and sk(Tref,1) = 0 for an ideal gas. The
Gibbs function for a pure component k is

k k kg  =  h    -    T s . (17)

For instance, the Gibbs function under these conditions for molecular hydrogen is

g  = h  – T s  = 0 – 298×130.57 = –38910 kJ kmole–1.  of H2,



and in the case of water it is

g  = h  – T s   = –285830 – 298×69.95 = –306675 kJ kmole–1.  of H2O.

Since combustion problems typically involve mixtures, the entropy of the k–th component in a
mixture must be first determined, e.g., following the relation

ŝk(T,P,Xk ) = sk
o (T) – R ln (pk/1), where pk = Xk P.

The Gibbs function of the k–th mixture component  ĝ k can be obtained by applying the ex-
pression

ĝ k = ĥ k – T ŝk.

For ideal gases.

ĥ k = h  k, and hk = h f,k + ∆ hk.

Alternately, the values of gk(298K, 1 bar) for any compound can also be  determined
by ascertaining the Gibbs function of formation gk,f under those conditions. The value of ¯g k,f

is identical to the Gibbs energy of formation ∆G for a reaction that forms the compound from

its elements that exist in a natural form. For instance, in the case of water,

gf H O, 2
= ∆ R H O

oG , 2
= gH O2

(298K,1 bar)– gH2
(298 K,1 bar)– gO2

(298 K,1 bar). (18)

The value of ¯g k,f(298K, 1 bar) is assigned as zero for elements that exist in their
natural form.  Table A-27A contains values of  ̄ g k,f(298K, 1 bar) of many substances.

e. Example  5

and the Gibbs energies of formation for H2O(l) and of H2O(g).

Solution

g H O2 ( )l  = h H O2 ( )l  – T ¯s H O2 ( )l  = –285830 – 298 × 69.95 = –306675 kJ kmole–1. (A)

For the chemical reaction

H2 + 1/2 O2 → H2O(l), (B)

∆G = g H O2 ( )l  – g H2
 – 1/2 g O2

, where, (C)

g H2
 = h H2

 – T s H2
 = 0 – 298×130.57 = –38910 kJ kmole–1, and (D)

g O2
 = 0 – 298×205.04 = –61102 kJ kmole–1. (E)

Applying Eqs. (A), (D), (E) in Eq. (C),

∆G = –306675 – (–38910)–0.5×(–61102) = –237,214 kJ kmole–1. (F)

Therefore, the Gibbs function of a kmole of H2O(l) is 237214 kJ lower than that of its
elements (when they exist in a natural form at 25ºC and 1 bar). As in the case of the
enthalpy of formation, the Gibbs function of all elements in their natural form can be
arbitrarily set to zero (i.e., g f, H2

 = 0, g f,O2 = 0). Thereafter, the Gibbs energy of for-

mation is

Determine the Gibbs energy for water at 25ºC and 1 bar. Under those conditions, also
determine the change in the Gibbs energy when H2O(l) is formed from its elements,



 g f, H O2 ( )l
 = ∆G = –237214 kJ kmole–1. (G)

For water vapor at an arbitrary temperature and pressure,

g f, H O g2 ( )
(T,P) = h H O g2 ( ) (T,P) – T s H O g2 ( ) (T,P). (H)

If the vapor is assumed to be an ideal gas, then

h H O g2 ( ) (T,P) ≈ h H O g2 ( ) (T,Psat) = h H O2 ( )l (T,Psat) + h fg(T,Psat). (I)

Similarly,

s H O g2 ( ) (T,P) = s H O g2 ( ) (T,Psat) – R ln  (P/Psat) 

                     = s H O2 ( )l (T,Psat) + hfg(T,Psat)/T – R ln (P/Psat). (J)

Applying Eqs. (I) and (J) in Eq. (H), we obtain

g H O g2 ( ) (T,P) = h H O2 ( )l (T,Psat) – T s H O2 ( )l (T,Psat)+ RT ln (P/Psat). i.e.,

g H O g2 ( ) (T,P) = g H O2 ( )l (T,Psat) + R T ln (P/Psat). (K)

If water is treated as an incompressible fluid, then,

dg H O g2 ( )  = vf dP.

Integrating this expression between the limits Psat and P

g H O2 ( )l (T,P) – g H O2 ( )l (T,Psat) = –vf(P–Psat), i.e.,

g H O g2 ( ) (T,P) = (g H O2 ( )l (T,P) – vf(P–Psat)) + RT ln (P/Psat). (L)

Typically, vf (P–Psat) ≈ 0 so that Eq. (L) assumes the form

g H O g2 ( ) (T,P) ≈ g H O2 ( )l (T,P) + RT ln(P/Psat). (M)

for water at 298 K, Psat = 0.03169 bar. Therefore, at 1 bar water does not exist as gas.
However, we can define a hypothetical state for water as an ideal gas at 25ºC and 1
bar and thereafter use Eq. (K) to determine g H O g2 ( ) , i.e.,

g H O g2 ( ) (298K,1 bar) ≈ g H O2 ( )l (298K, 1 bar) + RT ln (1/0.03169), so that

g H O g2 ( )  – g H O2 ( )l  = 8.314× 298× ln (1/0.03169) = 8552 kJ kmole–1. 

Therefore,

g f, H O g2 ( )
 = g f, H O2 ( )l

 + 8552 = 228662 kJ kmole–1.

Remark
Generalizing Eq. (L) for any ideal gas species,

gk(g)(T,P) = (gk(l)(T,P) – vf,k(P–Psat)) – RT ln (P/Psat) (N)



D. FIRST LAW ANALYSES FOR CHEMICALLY REACTING SYSTEMS

1. First Law
Consider a control volume (illustrated in Figure 3) whose boundary is penetrated by k

material streams that bring in various species at the rates Ṅ1, Ṅ2, Ṅ3… into the volume. The
chemical processes within the CV are governed by the First law of thermodynamics, i.e.,

dEcv/dt = Q̇  cv – Ẇcv + Σk,i Ṅk eT k,
 – Σk,e Ṅk eT k,

(19)

The methalpy eT k,  = ( h+ ke + pe )k includes the enthalpy of formation, thermal enthalpy, as

well as the kinetic and potential energies wherever appropriate. Methalpy, eT k, = ( h+ ke

+ pe )k The values of  ke k= MkVk
2/2000,  pe k= Mkg kZk/1000 (in SI units), and MkVk

2/(2 gc J),
pek = MkgkZk/(gc J) (in English units). If the latter two energies in the methalpy are neglected
(as they often can be), then

dEcv/dt = Q̇  cv – Ẇcv + Σk,i Ṅk eT k, – Σk,e Ṅk eT k,

Let ṄF  denote the molal flow rate of fuel through one of the inlet streams that flow into a
combustion chamber. Dividing Eq. (19) by ṄF  and simplifying the resultant expression we
obtain the relation

(1/ ṄF) dEcv/dt = ( Q̇  cv / ṄF)– ( Ẇcv/ ṄF) + Σk,I( Ṅk / ṄF) ¯eT,k – Σk,e( Ṅk/ ṄF) ¯eT,k

For SSSF processes d( )/dt = 0, and

( Q̇  cv / ṄF)– ( Ẇcv/ ṄF) + Σk,i( Ṅk / ṄF) ¯eT,k – Σk,e( Ṅk/ ṄF) ¯eT,k = 0.

Replacing the subscript “i” by R and “e” by P to indicate the reactant and product streams,
respectively,

¯eT,R =  Σk,i( Ṅk / ṄF) ¯eT,k  and ¯eT,P = Σk,e( Ṅk/ ṄF) ¯eT,k

and we obtain the following more convenient form

q– w  = e T,P – e T,R. (20)

Neglecting the potential and kinetic energies, we obtain the relation

q– w  = hP – hR,

where hR denotes the enthalpy of the reactant stream  Σk,i ( Ṅk / ṄF) h ,k, and hP the enthalpy of

the product stream Σk,e ( Ṅk / ṄF) hk.

f. Example 6

h f,glucose = –1.26×106

kJ kmole-1, and the higher heating value of glucose is 15628, kJ kg-1.
Solution

The reaction equation with 400 % of excess air (or 5× theoretical air) is

C6H12O6 + 5× 6 (O2 + 3.76 N2) → 6CO2 + 6 H2O + 24 O2 + 112.8 N2.

We now conduct an energy balance, i.e.,
dEcv/dt = Q̇  cv – Ẇcv + Σk,i Ṅk h ,k – Σk,e Ṅk hk

Glucose, i.e., C6H12O6, is oxidized in the human body in its cells. Air is inhaled at 298
K, and a mixture of air and metabolism products (CO2, H2O, O2 and N2) is exhaled at
310 K. Assume that glucose is supplied steadily to the cells at 25ºC and that 400%
excess air is utilized during its consumption. If the breathing rate of humans is 360
L/hr, determine the amount of heat loss from the human body, 



Ignoring the breathing (PdV) and other forms of work
0 = Q̇  cv + 1×(–1.26×106) – 6×(–393520 + 9807 – 9364)

   – 6×(–241820 + (10302 – 9904)) – 24 × (0 + 9030 – 8682)

   –112.8×(09014 – 8669).

Hence,

qcv = –2.5×106 kJ kmole-1 of glucose.

M F =  6×12.01 + 12×1.01 + 6×16 =  180.2 kg kmole-1. Therefore,

qcv = 13872 kJ kg-1 of glucose.
The air consumption is 360 L hr-1 or 0.360 m3 hr-1×(24.45 m3 kmole-1) = 0.0147

kmole hr-1 so that the glucose consumption is
0.0147÷142.8 = 0.0001031 kmole hr-1, or

0.0001031 kmole × 180.2 kg kmole-1 × 1000 g kg-1 hr-1 ÷ 60 min hr-1

= 0.31 g min-1.
The heat loss rate

Q̇ cv = ṁF qcv = 0.31 g min-1 × 13872 J g-1 ÷ 60 s min-1  = 72 W.

We can interpret this result that the hypothetical human body considered in this ex-
ample has the same energy consumption as a 70 W light bulb. In reality, the body
burns a mixture of glucose (which is a carbohydrate with a H/C ratio of two) and fats
(e.g., palmitic acid). Palmitic acid has a higher heating value HHV = 39125.5 kJ kg-1

and participates in the energy consumption through the stoichiometric reaction

C15H31COOH + 23 O2 → 16CO2 + 16 H2O.

Our typical food consists of carbohydrates (HHV = 18000 kJ dry kg-1), fatty acids
(HHV = 40000 kJ dry kg-1), and proteins (HHV = 22000 kJ dry kg-1) of which almost
96 %, 98 % and 78 % are metabolized, respectively. In general, the larger the amount
of moisture in food, the lower is its heating value. Fats have a lower moisture content
and, therefore, have a larger heating value while the carbohydrates having relatively
more moisture have a smaller value.

g. Example 7

kJ kg–1.
Solution

The chemical reaction governing the burning of coal is

CH0.8 O0.3 + 1.05 O2 → CO2 + 0.4 H2O.

The amount of CO2 produced per kg of coal consumed is
44.01/(12.01 + 0.8×1.01 + 16×0.3) = 2.498 kg per kg of coal.

Note that 1 kWh = 1 kJ s–1 × 3600 s hr–1  × 1 hr–1  = 3600 kJ.

The overall efficiency = Work output/Gross heat value released by combustion, i.e.,
per kWh of power produced

0.3 = 3600 kJ ÷ (gross heat value released by combustion).

Therefore, the
gross heat value released by combustion per kWh = 3600÷0.3 = 12000 kJ.

Consequently, the

Determine the amount of carbon dioxide (which is a greenhouse gas) emitted  if coal
is used as a fuel.  Assume that the chemical formula for coal is CH0.8 O0.3, its gross
heating value is 30,000 kJ kg–1, and the power plant efficiency is 30%. Compare your
answer with the result for natural gas (CH4) that has a gross heating value of 50,000



amount of fuel burned per kWh
= 12000÷30000 = 0.4 kg, and the

amount of CO2 released = 2.498
× 0.4 = 0.999 kg per kWh of power.

In the case of methane, the
CO2 produced per kg of fuel

consumed  = 44.01÷16.05 = 2.74, and the

fuel consumed per kWh =
12000÷50000 = 0.24 kg.

Therefore, the
CO2 produced = 0.24 ×  2.74 =

0.658 kg kWh–1 or 0.183 kg MJ–1.
Remarks

The CO2 emitted when natural gas is used
as a fuel is reduced due to the higher
heating value of methane.
The Boie equation is an empirical relation that can be used to determine the  HHV of
many C-H-N-O fuels including solid and liquid fuels. The relation is

HHV, kJ kg–1 = 35,160×C + 116,225×H – 11,090×O +6,280×N +10,465×S

where C, H, O, N, and S denote the mass fractions of carbon, hydrogen, oxygen, ni-
trogen, and sulfur in the fuel. Using this relation, the formula for the mass of CO2

emitted per MJ of heat input is

kg of CO2 per MJ of heat input = C×44.01×1000÷

(35,160×C + 116,225×H – 11,090×O +6,280×N +10,465×S), or

kg of CO2 per MJ of heat input = 1000 ÷ (798.9 + 2640.9 (H/C) –252 (O/C) +

                                                      142.7 (N/C) + 237.8 (S/C)).

Therefore, the higher the H/C ratio and the lower the O/C ratio, the lower the CO2

emission to the atmosphere.

h. Example 8

haled, and 

hr–1, determine the amount of heat loss from the human body.
Solution

400% excess air is equivalent to 5 times theoretical air, i.e.,

C6H12 O6 + 5×6(O2 + 3.76 N2) → 6CO2 + 6H2O + 24O2 + 112.8N2.

The energy balance is

dEcv/dt = Q̇  cv – Ẇcv + Σk,i Ṅk e T,k – Σk,e Ṅk e T,k (19)

Neglecting the potential and kinetic energies,

Prod 
Reac 

Figure 3: Illustration of the First Law
for a chemically reacting system.

Consider the metabolism of glucose (i.e., C6H12O6) in the human body that breathes in
air at 298 and exhales a mixture of CO2, H2O, O2, and N2 at 37ºC. Assume that there
is a steady supply of glucose to the human body at 25ºC, that 400% excess air is in-

h f,glucose = –1.26×106 kJ kmole–1. If the inhalation occurs at a rate of 360 l



dEcv/dt = Q̇  cv – Ẇcv + Σk,i Ṅk hk – Σk,e Ṅk hki.e.,

0 = Q̇  cv – Ẇcv + Σk,i Ṅk h ,k – Σk,e Ṅk hk

Ignoring the breathing (PdV) and other forms of work,

0  = Q̇  cv + 1 × (–1.26×106) + 0 – 6×(–393520+443)–

        6×(–241820+398)–24×(0+348)–112.8×345, i.e.,

¯q c.v. = ( Q̇ / ṄF)  = –2.5x106 kJ per kmole of glucose.
Since the molecular weight of glucose is

6×12.01 + 12×1.01 + 6×16 = 180.2 kg kmole–1,

qcv = - 13872 kJ per kg of glucose.
The air consumption is 360 l hr–1 or

0.360 m3 hr–1 ÷ (24.45 m3 kmole–1) = 0.0147 kmole hr–1.

Therefore, the
glucose consumption per hr = 0.0147÷142.8 = 0.0001031 kmole hr–1, or

0.0001031 kmole ×180.2 kg kmole–1 × 1000 g kg–1 hr–1

= 18.6 g hr –1or 0.31 g min–1.
The heat loss rate

= Q̇  cv = ṁF qcv =  0.31 g min–1 × 13872 J g–1 ÷ (60 s min–1)  = 72 W.

Remarks
The human body is a complex system. For a detailed analysis of this problem we must
determine the work required for a body to function and a knowledge of the chemical
enthalpies of the constituents of the metabolic process. Hence, due to change in meta-
bolic activity, increased amount of heat may be liberated which will be exhibited
through composition of nasal gases. If glucose is not transported to cells or is not
metabolized, its concentration will increase in the bloodstream, which is known as the
diabetic condition.

The body burns 0.7 kJ min–1 kg–1 of energy during aerobic dancing, 0.8 kJ
min–1 kg–1 while running a mile in 9 minutes, 1.2 kJ min–1 kg–1 for a 6 minute mile,
and 0.3 kJ min–1 kg–1 while walking. Due to a change in metabolic activity, an in-
creased amount of heat may sometimes be liberated (e.g., fever), which will also be
manifested through the composition of the human exhalation gases.

2. Adiabatic Flame Temperature
Consider a flammable premixed mixture of methane and air jet that emerges from a

burner. The contour of the hottest location is often called the flame (cf. Figure 4). The maxi-
mum possible flame temperature is called the adiabatic flame temperature which is attained in
the absence of heat losses and work transfer.

a. Steady State Steady Flow Processes in Open Systems
We will apply the energy balance equation in the context of Figure 4 at steady state,

in the absence of work transfer, and neglecting the kinetic and potential energies so that

dEcv/dt = Q̇  cv – Ẇcv + Σk,i Ṅk e T,k – Σk,e Ṅk e T,k

Dividing by the molar flow of fuel, for an adiabatic combustor,

0 = hP – hR, (21)



where  Σk,e ( Ṅk / ṄF) hk  = hP and  Σk,i ( Ṅk / ṄF) hk = hR. This implies that the total enthalpy

of the products leaving the combustor equals that of the entering reactants, which allows us to
calculate the adiabatic flame temperature.

b. Closed Systems
The energy balance for a closed system results in the relation

Q – W = UP – UR = Σk,P  ( Nk,P / NF) hk,p – Σk,R (Nk,R /NF) hk R, where (22)

uk =  hk – (P v)k

For ideal gases,

u=  h  – R T, i.e.,

q– w  = uP – uR.

Here, uR denotes the internal energy  of the reactants per kmole of fuel  Σk,R (Nk,R /NF) u  k R,

and uP the enthalpy of the products per kmole of fuel, Σk,P  (Nk,P /NF), u  k,p

i. Example 9

for case (b). Assume ideal gas behavior and that ρoctane(l) = 703 kg m–3.

Solution
Normally, the adiabatic flame temperature is calculated assuming complete combus-
tion. Therefore, if a stoichiometric amount of oxygen is supplied

C8H18(l) + 12.5 O2 → 8CO2 + 9 H2O.

In this context, when 40% excess air is supplied,
Supplied O2 = 12.5×1.4 = 17.5 moles per mole of fuel, and

Supplied N2 = 17.5×(79÷21) = 65.83 moles per mole of fuel.

Therefore, the reaction equation assumes the form

C8H18(l) + 17.5 O2 + 65.83 N2 → 8CO2 + 9 H2O + 5 O2 + 65.83 N2.

a) The energy balance equation for a steady state steady flow device is

0 = (Σ Ṅk hk)i – (Σ Ṅk hk)e.

This equation can be solved by iteration. The adiabatic flame temperature in this case
is 1900 K.
b) The corresponding energy balance equation for a rigid closed system is

Q – W = UP – UR.

The work W = ∫PdV = 0, since dV = 0, and Q = 0 since we assume that the system is

adiabatic. Therefore,

UP = UR.

In this context,

uoctane(l) = ¯h octane(l) – P ¯v   = –249950 kJ – 1 bar × 100 kN m–2 bar–1 ÷
        (703 m3 kg–1) × 114 kg kmole–1 = –249950–16.2 ≈ –249950 kJ kmole–1.

Liquid octane enters a reactor with 40% excess air, with both the fuel and air being at
298 K and 1 atm. Determine the adiabatic flame temperature in the case of (a) steady
state steady flow device, (b) a rigid closed system. Also determine the final pressure



For an ideal gas P ¯v  = R T, i.e.,
u O2 ,298 K = h O2 ,298 K – 8.314× 298 = –2478 kJ kmole–1.

u N2
,298 K = h N2 ,298 K – 8.314× 298 = –2478 kJ kmole–1.

Therefore,
uR = (1×(–249950)+17.5×(–2478)+65.83×(–2478)) = –456406 kJ kmole–1.

At 2400 K,
u CO2

 = h CO2
 – 8.314 × 2400 = –393520 + (125152 – 9364) – 8.314 × 2400

         = –297685 kJ kmole–1.
Hence,

uP – uR = (8(–393520+115798)–8.314×2400) +

    9×(–241820+93744)–8.314×2400) +

    5×(0+74467)–8.314×2400) +

    65.83×(0+70645)–8.314×2400)) – (–456406)

≈ 174000 kJ kmole–1.

Assume that T = 2200 K,
uP – uR ≈ – 389,000 kJ kmole–1.

Interpolating, we obtain that the adiabatic flame temperature
T ≈ 2340 K.

The pressure rise,
P2/P1 = N2 R T2/(N1 R T1)
         = 87.83×2300÷(83.33×298) = 8.13 bar.

Remarks
You can repeat these calculations for air that is preheated to 700 K. The open system
adiabatic flame temperature is roughly 2200 K, which is about 300 K higher than
1910 K when 298 K air is used. If the preheat required for heating the secondary air is
supplied by the combustion products at 2200 K, then the combustion products tem-
perature drops to 1910 K.  In other words, if one tracks the temperature in such a
system, it will rise gradually from 298 K to 2200 K (with an enthalpy above the con-

Fuel  and air

Flame

Fuel  and air

Figure 4: Schematic diagram of a flame and its idealization.



ventional value without preheating) during an adiabatic process and decrease 1910 K
once heat is removed for preheating the combustion air. Such a scheme is called Ex-
cess Enthalpy Combustion (EEC), which is useful for fuels particularly of low heating
values or combustion involving large amount of excess air in order to stabilize the
flame. On the other hand, if one wants to maintain a temperature of 1910 K without
preheating, then the oxygen concentration  must be reduced as is done in High Tem-
perature Air Combustion (HiTAC) systems.

E. COMBUSTION ANALYSES IN THE CASE OF NONIDEAL BEHAVIOR
Nonideal gas behavior can manifest itself at high pressures (e.g., in gas turbines) or at

low temperatures (e.g., in the context of gas mixtures stored in containers). We address that in
this section.

1. Pure Component
If the reference condition pertaining to the enthalpy of any species k is set in the con-

text of the natural state of its elements at 298 K and 1 bar, then

hk(298 K, 1 bar) = hf k
o
, . (23)

We define an enthalpy correction ∆hk,corr to account for departures from ideal gas behavior so

that

∆hk,corr(298 K, 1 bar) = hk
o (298 K) – hk(298 K, 1 bar).

2. Mixture
The component k exists in a mixture. Thus enthalpy ĥk  of the k-th species in a mix-

ture is different from the enthalpy of the component in its pure state hk . Defining the enthalpy

difference in terms of an excess function ĥk
E ,

ĥk
E  = ĥk (T,P) – hk (T,P). (24)

For an ideal gas ĥk
E  = 0. In the case of entropy, the usual reference condition is set at 0 K and 1

bar, and the excess function is similarly defined, i.e., ŝk
E  = ŝk (T,P) – sk (T,P). Assuming an

ideal gas mixture.

ŝk
E ,id = ŝk ,id (T,P) – sk (T,P) = – R  ln Xk. (25)

In the case of liquid mixtures,

ŝk
E ,id = ŝk ,id (T,P) – sk (T,P) = – R  ln Xk, l. (26)

j. Example 10

and 195 bar in an ideal mixture of real gases, when XNO = 0.05.
Solution

The enthalpy of NO at 298 K and 1 bar is 90592 kJ kmole–1. If it were considered as
an ideal gas under those conditions, TR = 1.66 and PR = 1÷64.8 = 0.0154. There-

fore, ∆hcorr ≈ 0.001 kJ kmole–1, and

hNO
o (298 K, 1 bar) = 90592 + 0.001 ≈ 90592 kJ kmole–1.

Since
hNO

o (200 K) –  hNO
o (298 K) = – 2950 kJ kmole–1,

hNO
o (200 K) = 90592 – 2950 = 87642 kJ kmole–1.

Determine the enthalpy, internal energy, entropy, and Gibbs energy of NO at 200 K



In order to determine the real gas enthalpy at 200 K and 195 bar, we use the relations
PR = 195÷64.8 = 3, TR = 200÷180 = 1.11, and ∆hcorr/RTc = 3.353,

so that
∆hcorr = 8.314×180×3.353 = 5018 kJ kmole–1, and

hNO
o (200, 195) = 87642 – 5018 = 82624 kJ kmole–1.

Since we assume an ideal solution model,
ĥk (T,P) = hk (T,P).

Recall that
v̂k

E  = v̂ k – vk.

If the ideal solution model is adopted v̂k
E  = 0, i.e., v̂ k =  vk.

Using the relation,
û k = ĥk  – P v̂ k

at the conditions TR = 1.11 and PR =3, Z = 0.475. Therefore,
 û k = ĥk – Ẑk  R T = 86624 – 0.475× 8.314×200 = 85834 kJ kmole–1.

At 298 K,
sk

o (298 K) = 210.7 kJ kmole–1 K–1.
At TR = 1.66, PR = 0.0154,

∆sNO, corr = sk ,0 (298 K) - sk (298 K, 1bar) = 0.001 kJ kmole–1 K–1  i.e.,

sNO
o  (298 K, 1 bar) = 210.761 -0.001 ≈ 210.8 kJ kmole–1 K–1.

Likewise,
sNO

o  (200 K) = 198.8 kJ kmole–1 K–1.
From the entropy charts

( s NO,o(T,P)–( s  NO(T,P)) = 2.202×8.314 = 18.31 kJ kmole–1 K–1, i.e.,

 s NO(T, P) = –18.3 + 198.8 = 180.5 kJ kmole–1 K.
Finally, using the ideal solution model

ŝNO =  s  (T,P) – R ln XNO, and
 ŝNO(200 K,195 bar) = 180.5 – 8.314 × ln 0.05 = 205.4 kJ kmole–1 K.

Therefore,
ĝNO = ĥNO – T  ŝNO = 82,624– 200× 205.4 = 41544 kJ kmole–1.

Remark
The partial molal Gibbs function or chemical potential plays an important role in de-
termining the direction of a chemical reaction in a system and the composition of the
system at chemical equilibrium.

F. SECOND LAW ANALYSIS OF CHEMICALLY REACTING SYSTEMS

1. Entropy Generated During an Adiabatic Chemical Reaction
If a chemical reaction is irreversible under adiabatic conditions, then, according to

Second law, δσ > 0. The question is  “why?”. Combustion is usually a process of oxidation of

fossil fuels to CO2 and H2O. Fuel and oxygen are called reactants in this case, while CO2 an
H2O are called products. The chemical bonds between the atoms in fuel are broken dring com-
bustion, energy is converted into thermal energy which is eventually stored as te, ve, re (ran-
dom energy) in a large number of quantum states. Hence, the entropy of the products is higher
than that of the reactants. When combustion occurs in an adiabatic vessel, the energy is con-
served. In such a process, the entropy difference between the products and reactants is due to
the entropy generated during the process.



k. Example 11

amounts, i.e., 0.1, 0.2, …, 0.9, 1 kmole.
Solution

For a steady adiabatic process that involves no work,

dEcv/dt = Q̇  cv – Ẇcv + Σk,i Ṅk h ,k – Σk,e Ṅk hk e. (A)

Denoting hR = Σk,i Ṅk h ,k,    ¯h P=  Σk,e Ṅk hk, Eq. (A) may be expressed in the form

 hP – hR = 0. (B)

For every kmole  of CO consumed, a half kmole of oxygen is consumed and a kmole
of carbon dioxide is produced. For instance, in the case 0.2 moles of CO react,

hR = 1× hCO(298 K) + 0.5× hO2
(298 K) + 1.88 hN2

(298 K)

      = 1×(–110530) + 0 + 0×(–393520)+1.88×0 = –110530 kJ, and (C)

hP = 0.8× hCO(T) +0.4× hO2
(T) +0.2× hCO2

(T) + 1.88× hN2
(T)

=0.8×(–110530+(hT–h298)) + 0.4×(0+(hT– h298)) 

+ 0.200×(–393520+(hT–h298)) + 1.88 × (0+(hT–h298)). (D)

Equating Eqs. (C) and (D) one can iteratively solve for T, which in this case is 846.6
K. Figure 5 presents the variation of T and entropy generated  versus the moles of CO
that are burned. The corresponding entropy balance equation is

dScv/dt = Q̇  cv /Tb + Σk,i Ṅk s k – Σk,e Ṅk s k + σ̇ (E)

which for steady state and adiabatic conditions assumes the form

0 = Q̇  cv /Tb + Σk,i Ṅk s k – Σk,e Ṅk s k + σ̇ , or  σ̇ = + Σk,e Ṅk s k – Σk,i Ṅk s k (F)

Denoting  SR= (ΣNk s k)i, SP = (Σ Nk s k)e, and  ŝk (T,P,Xk) = s k (T,pk) = s k
o – R  ln

(pk/1), we obtain

σ= SP – SR. (G)

Since SR is specified and σ > 0,  SP must increase with the burned fraction. For in-

stance, if 0.2 moles of CO react, the product stream contains 0.8 moles of CO, 0.4
moles of oxygen, 0.2 moles of the dioxide, and 1.88 moles of nitrogen which is inert.
In that case,

pCO = NCOP/N = 0.8×1/(0.8+0.4+0.2+1.88) = 0.244 bar.

Similarly, pO2
 = 0.122, pCO2

 = 0.0.061, and pN2
 = 0.573. Hence,

SP =  0.8× s CO(T, pco) +0.40× sO2
(T, pO2

)+0.20× sCO2
(T, pCO2

)+

        1.88× sN2
(T, pN2

) = 0.8×( sCO
o (846.6 K) – 8.314 × ln 0.57/1) +

One kmole of CO, 0.5 kmole of O2, and 1.88  kmole of N2 enter an adiabatic reactor
and produce CO2 due to the exothermic reaction of the monoxide and oxygen. Deter-
mine the temperature and entropy of the products assuming that CO reacts in varying



        0.4×( sO
o

2
(846.6 K) – 8.314×ln 0.122/1) + 0.2×( sCO

o

2
(846.6 K) –

     8.314× ln 0.061/1)+1.88 ×( sN
o

2
(846.6 K)–8.314×ln  0.573/1) = 779.3 kJ K–1.

Figure 5 plots the variation in  Sp with respect to the CO burned fraction.

l. Example 12

cose at 298 K, 1 bar is 212 kJ kmole–1 K–1.
Solution

The chemical reaction can be represented by the equation

C6H12O6 + 5×6(O2 + 3.76 N2) → 6 CO2 + 6 H2O + 24 O2 + 112.8 N2. 

We will apply the entropy balance equation

dScv/dt = Q̇  cv /Tb + Σk,i Ṅk s k – Σk,e Ṅk s k + σ̇ (A)

at steady state. At the inlet pO2
 = 0.21 bar, and pN2

 = 0.79 bar, and since sk
o (300 K)

has values of 205.03 and 191.5 kJ kg–1 K–1 for O2 and N2, respectively, sk (T, pk) for
these two species is, respectively, 218.01 and 193.46 kJ kg–1 K–1. Therefore, the inlet
entropy  is given  as

Si =Σk,i Ṅk s k =  1×212+30×218.01+30×3.76×193.4662 

    = 28663 kJ K–1 per kmole per second of glucose consumed. (B)

At the exit (at 310K in units of kJ kg–1 K–1),
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Figure 5: Variation of the adiabatic temperature and entropy with
the CO burned fraction.

Determine the entropy generated during the oxidation of glucose within the cells of
the human body assuming that the reaction takes place at 310 K under steady state
conditions using 400 % excess air that is at 300 K and 1 bar. The entropy of glucose
at 310 K is 288.96 kJ kmole–1 K. Determine the entropy generation per kmole of glu-
cose burned assuming that no work is done during the purely biochemical process.
The typical consumption rate of glucose is 0.31 g min–1 for a 65 kg human. If the ac-
cumulated entropy generation over the lifetime  of any biological species is limited to
10000 kJ kg–1 K–1, obtain the life expectancy for a human. The value of “s” for glu-



sO
o

2
 = 205, sN

o

2
 =191.54, sCO

o

2
 =213.7, and sH O

o

2
 = 188.8.

The total amount of products for a kmole of glucose consumed is (24+112.8+6+6) =
148.8 kmole. Therefore,

X O2
 = 24÷148.8 = 0.161, Similarly X N2

 = 0.758, X CO2
= 0.0403, and Y H O2

 =

0.0403.
sO2

(310 K, p O2
) = 205.066 – 8.314 × ln (1× 0.16) =  220.2 kJ K–1 per kmole

of O2.
The corresponding values of the other entropies at the exit (at 310K in units of kJ
kmole–1 K–1) are

sN2
 =193.84, sCO2

 = 240.42, and sH O2
 = 215.49.

Se= Σk,e Ṅk s k

      =  6×24.42 + 6×215.49 + 24×220.2 + 112.8×193.64

      =  29900 kJ K–1 per kmole per second of glucose consumed.
Applying this value in the context of Eqs. (A) and (B) and assuming the heat loss
from an average human body to be 2.5×106 kJ per kmole of glucose consumed  (ex-

ample 6) ,

0 =  –2.5×106÷310  + 28633– 29900 + σ̇ , i.e.,

σ̇ = 9300 kJ K–1 per kmole per second of glucose consumed, or
σ̇ = 9300÷180.2 = 52 kW K–1 per kg per second of glucose consumed.

The typical consumption rate of glucose is 1.031×10–4 kmole per hr (i.e., 0.31 g

min–1) for a person weighing 65 kg. Therefore, the entropy generated per second due
to the irreversible metabolic activity is 52×0.31÷(1000×60) = 2.67×10–4 kW K–1. The

entropy generated per unit mass of that person is 2.67×10–4÷65 = 4.1×10–6 kW kg–1

K–1.  Since the total entropy that can be generated σm = 10,000 kJ kg–1 K–1, the life-

time of that person is
10000 kJ kg–1 K–1÷(4.1×10–6 kJ s–1 kg–1 K–1×3600 s hr–1×24 hr day–1 × 365

days year–1) = 77 years.
Remarks

The entropy generated per unit mass of a human is 4.1×10–6 kW kg–1 K–1. The human

body has more than 60 trillion cells, which are constantly repaired and restored to an
“original” state, but with some imperfections (e.g., aging). The cells require energy
from metabolism to do so. The imperfections accumulate over time affecting the cell
performance. If the size of each is of the order of 1 mm, there are 106 cells m–3. As-
sume that the density of humans is roughly 1000 kg m–3 and σ̇ cell = 4.1x10–9 kW K–1

per cell. Other organisms may have to burn more energy per cell  (see Chapter 2) and
hence generate more entropy. Consequently, they may have a shorter life span. If Ti =
37ºC, the only irreversibility is due to the chemical reaction.
Typically, the entropy advection terms are small. Therefore,

σ̇ = - Q̇  cv /Tb  = ˙
,mF b  HV /Tb 

where the fuel burn rate ˙
,mF b    is a function of body temperature and generally in-

creases with an increase in  body temperature (e.g., thorough fever, jogging, etc.).
Under normal conditions, the term ˙

,mF b  HV is the basal metabolic rate (BMR). The
BMR seems to decrease due to aging. However it cannot decrease below a critical
BMR (1 W kg–1)  which supports life functions. The corresponding critical entropy



generation is 0.00322 W kg–1 K–1. The above relations neglect entropy advection
through perspiration and excretion.
In general the body burns a mixture of glucose, palmitic acid and proteins. The en-
tropy of palmitic acid under standard conditions is 452.37 kJ kg–1 K–1. Most metabolic
thermodynamic calculations assume a mixture of glucose and palmitic acid. Figure 6
shows the entropy generated in kg–1 K–1 per kmole of fuel and in kg–1 K–1 per kJ of
metabolism when a  mixture of fat and glucose is burned. Since the lifetime = σm/ σ̇ m

≈  σmTb/ q̇ cv, the higher the specific metabolic rate, the lower is the life expectancy. It

can be shown from scaling laws that q̇ cv, ≈ C mB
–n (n = 1/3 from the theory in  Chap-

ter 2 and from experiments n= 0.26 and C = 0.003552 for analyses  SI units). There
fore, the life span, tlife(years)  ≈  (3.17x10-8 σm mB

nTb/C) from theory. From experi-

ments tlife(years) = 11.8 mB
k where k =0.20. Assuming n ≈  k, Tb = 310 K, C=

0.003552, σm = 4265 kJ kg–1 K–1 rather than 10,000 as we had assumed. The earlier

empirical law seems to predict a lower life span.  Similarly, the warmer the body
temperature, the longer the life span assuming that biological/metabolical reactions
are unaffected (this is not generally true). Experiments on water fleas have revealed
an increase in their life spans as the ambient temperature is increased from 5 to 15ºC,
but this reduces thereafter, since their metabolism is affected.
If the human body is unhealthy, it requires a higher energy or metabolic rate to cure
itself, and, consequently, the entropy generated is larger for a sick person, which
shortens the anticipated life span.

2. Entropy Generated During an Isothermal Chemical Reaction

m. Example 13

stantaneous mixing at entry and ideal gas behavior.
Solution

In general, mixing and reaction occur on finite time scales. However, we will assume
that the mixing time is so short compared to the reaction time that an instantaneous
mixing assumption applies.  Consider a reactant mixture  consisting of 5 kmole of
CO, 3 kmole of O2, and 4 kmole of CO that has a total mass of 5×28 + 3×32 + 4×44 =

412 kg. We will follow this  mass as the reaction occurs. Assume that CO is oxidized
according to the chemical reaction

CO+ 1/2 O2 → CO2.

Since only 1% of the inlet CO undergoes this reaction, then at the exit the number of
moles of CO

NCO,e = 5 – 0.01×5 = 4.95 kmole.

Hence, the depletion in the CO dNCO = –0.05 kmole. Likewise,
N CO2 ,e = 4 + 0.05 = 4.05 kmole.

N O2 ,e = 3 – 0.05 × 0.5 = 2.975 kmole.

At constant pressure, the First law for  a closed system yields
δQP = ∆H.

The enthalpy change per kmole of the mixture
∆ h  = hP – hR.

The product enthalpy,

The following species are introduced into a reactor at 3000 K and 101 kPa:  5 kmole
s–1 of CO, 3 kmole s–1 of O2, and 4 kmole s–1 of CO2. One percent of the inlet CO
oxidizes to form CO2. Determine δσ for a fixed mass of the reactants. Assume in-



hP = 4.95 × hCO,e + 4.05 × h CO2 ,e + 2.975 × h O2 ,e.

Now,
hCO(T,P) = hCO,o(T) = ( hf

o + h t,3000 – h t,298)CO, i.e.,

hCO = –110,530 + 93562 = –16979 kJ kmole–1.
Similarly,

h CO2
 = –393520  + 152891 = –240629 kJ kmole–1, and

h O2
 = 0 + 98036 = 98036 kJ kmole–1.

Therefore,
∆ HR

o (3000 K) = –272720 kJ kmole–1 of CO.

Since the gases are assumed to be ideal, ĥ k(T) = hk(T), and
He = 4.95 × (–16979) + 2.975 × (98036) + 4.05 × (–240,629)

     = –766936 kJ  (or -1862 kJ/kg of mixture)
The reactant enthalpy

HR = 5 × (–16989) + 3.0× (98098) + 4 × (–240,658)

      = –753283 kJ kmole–1 (or -1828 kJ/kg of mixture)
Therefore,

δQ=HP– HR = –13653 kJ (or -33.1 kJ/kg of mixture)

This is the amount of heat that has to be removed from a kmole of the product mix-
ture so that the products can be maintained at 3000 K.
The entropies for ideal gases are

s CO(T,P) = ( sCO
o (3000K) – 8.314× ln (P/1))

                = 273.508 – 8.314 × ln 1 = 273.58 kJ K–1 kmole–1 of CO,

sCO2
(T,P) = 334.08 kJ K–1 kmole–1, and

sO2
(T,P)  = 284.4 kJ K–1 kmole–1.

At the inlet,
XCO = 5/(5+4+3) = 0.417, X O2

 = 0.25, and X CO2
 = 0.3323, i.e.,

ŝCO (T,P,XCO) = s CO (T,P) – R  ln XCO
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Figure 6: Variation of entropy generation per kmole of fuel and per unit metabo-
lism.



          = 273.58 – 8.314 × ln 0.417 = 280.85 kJ K–1 kmole–1,

ŝ O2
(T,P,X O2

) = 284.4 – 8.314 × ln 0.25 =295.9 kJ K–1 kmole–1, and

ŝ CO2
(T,P,X CO2

) = 334.08 – 8.314 ln 0.33 = 343.3 kJ K–1 kmole–1.

At the exit,
XCO = 0.413, X O2

 = 0.248, and X CO2
 = 0.338, so that

ŝCO (T,P,XCO,e) = 273.58 – 8.314 × ln (0.413) = 280.93 kJ K–1 kmole–1,

ŝ O2
= 284.4 – 8.4314 × ln 0.248 = 296.0 kJ K–1 kmole–1, and

ŝ CO2
 = 334.08 – 8.314 × ln 0.338 = 343.1 kJ K–1 kmole–1.

The exit entropy,
Se =  4.95 × 280.93 + 2.975 × 296 + 4.05 × 343.1 = 3660.8 kJ.

The reactant entropy
 SR = 5.00 × 280.85+ 3 × 295.9  + 4 × 343.3  = 3665.1 kJ K–1 , i.e.,

d S= 3665.1  – 3660.8  = –4.3 kJ K–1 kmole–1.
Therefore,
δ σ  = dS – δQ/T = –4.3 –(–13,636)÷3000 = 0.245 kJ K–1  or 0.0006 kJ/kg of mixture

Remarks
For an elemental reaction δσ > 0 (cf. Figure 7).

Since no entropy is generated due to nonuniform temperature or pressure gradients
within the fixed mass, the finite value of δσ arises due to the irreversible chemical re-

action.
In such a system there are no thermal or mechanical irreversibilities. For this system

dS – δQ/T = δσ, i.e.,

T δσ = T dS – δQ = T(Se – Si) – (He – Hi) = Gi – Ge = T δσ
         =  3000× 0.935 = (2806 kJ K–1 kmole–1 > 0), and

dG = Ge – Gi = –  δσ < 0.

Here,
G = H – TS = Σ ĥ kNk – T ΣNk ŝk = ΣNk( ĥ k – T ŝk) = Σ Nk ĝ k.

The Gibbs energy of a fixed mass at a specified temperature and pressure decreases as
the chemical reaction proceeds.  Since G is a measure of availability, the availability
decreases during this irreversible process (Fig. 7).
In the next section we find that the direction of reaction (i.e., from the reactant CO to
the product CO2) must be such that δσ > 0 or dGT,P < 0. If this is untrue, then the as-

sumed reaction is impossible.

G. MASS CONSERVATION AND MOLE BALANCE EQUATIONS
In Chapter 2 we derived the conservation equations for mass and energy. In

multicomponent reacting systems, species are both consumed and generated due to chemical
reactions. For instance, if a mole of CO and 2 moles of O2 are admitted into a combustor, and
if we will find that 1 kmole of CO2 is produced and 1.5 kmoles of O2 remain, then we can
assume that complete combustion has occured. Even though the mass leaving (1× 44 + 1.5 ×32

= 92 kg) is same as the mass entering  (1×28+2×32 = 92 kg) the combustor, the total moles

exiting the reactor (1+1.5 = 2.5) are different from those entering it (1+2 = 3), implying that
moles (or species) have been generated. The reactor produced 1 kmole of CO2 (or 44 kg) but
consumed 1 kmole of CO (= 28 kg) and 1/2 kmole of O2 (= 16 kg). In chemically reacting
systems, the mass production rate of species k is ṁk,gen  and mass conservation the species is
written in the for



dmk /dt = ( ṁk,i + ṁk,gen - ṁk,e), (27)

where dmk/dt denotes the mass accumulation rate within the reactor volume V and ṁk,gen  the
generation rate of species k due to chemical reaction. Summing over all species,

dmcv /dt = Σdmk /dt = (Σ ṁk,i +  Σ ṁk,gen -  Σ ṁk,e) = ṁi - ṁ e, (28)

where ṁi = Σ ṁk,i, ṁ e= Σ ṁk,e, Σ ṁk,gen = 0, since mass is conserved.

Writing Eq. (27) in vectorial form,

(d/dt) ∫ρk dV = ∫ρk·
r
Vkd

r
A   +  ∫ ṁk,gen´´´dV (29)

where  ∫ ṁk,gen´´´ denotes the mass generated per unit volume of reactor and ρk the density of

species k. Using the Gauss divergence theorem, we can write the species conservation equation
in differential form as

∂ρk /∂t + ∇·ρk 
r
Vk = ṁk,gen´´´. (30)

Summing over all species

∂ρ /∂t + ∇·ρ
r
V  = 0. (31)

Since mk = Nk Mk, Eq. (27) has the following form in terms of mole balance

dNk /dt = Ṅk,i  + Ṅk, gen - Ṅk, e (32)

where Ṅk, gen denotes the number of moles of species k produced by the chemical reaction. As
mentioned before Σ Ṅk,gen = Ṅgen ≠ 0. Summing over all species

ΣdNk /dt  = dN/dt = Σ Ṅk,i  +Σ Ṅk, gen - Σ Ṅk, e   = Ṅ i  + Ṅgen - Ṅe (33)

Similarly proceeding as in Chapters 2 to 4  for the energy conservation, entropy and availabil-
ity balance equations, we write the mole balance equation in integral form as

(d/dt) ∫nk dV = ∫nk·
r
Vd

r
A  + ∫ ˙

,′′′Nk gen dV, (34)

where  nk = moles of species k per unit volume. Further using the Gauss divergence theorem,

G meter

σσσσ meter

412 kg

Figure 7: Illustration of entropy generation and decrease in G
of a fixed mass with reaction. The value of G keeps decreas-
ing as a reaction proceeds.



 ∂nk /∂t +  ∇.nk 
r
V  = ˙

,′′′Nk gen . (35)

1. Steady State System
Under steady state conditions  dNk/dt = 0, dN/dt = 0,dmk /dt = 0, dm/dt = 0 and from

Eq. (28), ṁi  = ṁ e. Likewise, from Eq.(33), Ṅ i  + Ṅgen  = Ṅe.

n. Example 13

efficiency of 90%, write the mass conservation and mole balance equations.
Solution

The reaction equation is written as follows:

2 CO + 3 O2 → NCO,e CO + NCO2,e CO2 + NO2,e O2. (A)

Since mass does not accumulate within the reactor, the atom balance for C and O at-
oms yields

2 = NCO,e + NCO2,e, and (B)

2 + 6 = NCO,e + 2 NCO2,e + 2 NO2,e, i.e., (C)

 0.4 = (2 - NCO,e)/2. (D)

With the three equations Eqs. (B) through (D), we can solve for the three unknowns
NCO,e, NCO2,e and NO2,e, i.e.,

NCO,e = 1.6, NCO2,e = 0.4, and NO2,e = 2.8.
The mass conservation implies

dmCO /dt = 2×28+ ṁCO,gen - 1.6×28 = 11.2 + ṁCO,gen.

Similarly,

dNCO/dt  = 2 + ṄCO, gen - 1.6 = 0.4 + ṄCO gen

Normally ṄCO, gen is a negative quantity since CO is consumed. The term dNCO/dt
represents the accumulation (destruction, since negative) rate of CO in the reactor.
Similarly for CO2,

dNCO2 /dt = 0 + ṄCO2 gen - 0.8,
where ṄCO2, gen > 0, since CO2 is a product that is generated. In the initial periods
when the combustor is being fired, the CO2 concentration gradually increases due to
the term dNCO2 /dt.
Similarly for 90% efficiency,

NCO,e = 0.2 NCO2,e = 1.8, and NO2,e = 2.1
dmCO /dt  = 2×28+ ṁCO,gen - 0.2×28×28 = 50.4  + ṁCO,gen.

The combustor is operating steadily so that dmcO/dt = 0,
ṁCO,gen =  - 50.4 kg/s

Similarly ,
dNCO /dt  = 2 - 0.2  + Ṅ  CO, gen = 1.8+ ṄCO, gen.

Since dNCO/dt = 0,

Ṅ  CO, gen =  - 1.8 k mole s-1, and

A combustor is fired with 2 kmole of CO and 3 k mole of O2. When the combustor is
just started, very little CO burns. As it warms up, more and more CO are burnt. As-
sume that mass does not accumulate within the reactor. At the point when the com-
bustor achieves 40% efficiency, write the mass conservation, mole balance and en-
ergy conservation equations. If the combustor reaches a steady state with combustion



dNCO2 /dt = 0 + Ṅ  CO 2,gen - 1.8,
If the combustor is operating steadily then dNCO2/dt = 0, and

Ṅ  CO 2,gen = 1.8 k mole s-1,  Ṅ  O 2,gen = -0.9 kmole s-1.

H. SUMMARY
Chemical reactions occur when species rearrange their atoms and different com-

pounds with different bond energies are produced. Dry and wet gas analyses are presented in
this chapter, which are an analytical tool to measure species transformations. Examples are
presented for determining (A:F) from dry gas analyses. The enthalpy of formation or chemical
enthalpy, thermal enthalpy and the total enthalpy are defined. Energy conservation (First law)
and entropy balance (Second law) of reacting systems are introduced and illustrative examples
are provided. Finally mass conservation and mole balance equations for reacting systems are
presented.



Chapter 12 

 12. REACTION DIRECTION AND CHEMICAL EQUILIBRIUM

A. INTRODUCTION
Nature is inherently heterogeneous and, consequently, natural processes occur in such

a direction so as to create homogeneity and equilibrium (which is a restatement of the Second
Law). In the previous sections, we assumed that hydrocarbon fuels react with oxygen to pro-
duce CO2, H2O, and other products. We now ask the question whether these products, e.g.,
CO2, and H2O, can react among themselves to produce the fuel and molecular oxygen. If not,
then why not?  What governs the direction of reaction? Now we will characterize the parame-
ters that govern the predominant direction of a chemical reaction. We will also discuss the
composition of reaction products under equilibrium conditions.

B. REACTION DIRECTION AND CHEMICAL EQUILIBRIUM

1. Direction of Heat Transfer
Prior to discussing the direction of a chemical reaction, we will consider the direction

of heat transfer. Heat transfer occurs due to a thermal potential, from a higher to a lower tem-
perature. Thermal equilibrium is reached when the temperatures of the two systems (one that is
transferring and the other that is receiving heat) become equal. Due to the irreversible heat
transfer from a warmer to a cooler system, δσ > 0.

2. Direction of Reaction
The direction of heat transfer is governed by a thermal potential. For any infinitesimal

irreversible process δσ > 0. (For heat transfer to take place from a lower to a higher tempera-

ture δσ < 0, which is impossible.) Likewise, the direction of a chemical reaction under speci-

fied conditions is also irreversible and occurs in such a direction such that δσ > 0.The direction

of a chemical reaction within a fixed mass is also such that δσ > 0 due to chemical irreversi-

bility.  For instance, consider the combustion of gaseous CO at low temperatures and high
pressures, i.e.,

CO + 1/2 O2 → CO2 (1a)

At high temperatures and at relatively low pressures

CO2 → CO + 1/2 O2. (1b)

Reaction (1a) is called an oxidation or combustion reaction, and Reaction (1b) is
termed a dissociation reaction. The direction in which a reaction proceeds varies depending
upon the temperature and pressure. We will show that the chemical force potentials FR(=
)
gCO+(1/2)

)
gO2) for the reactants  and FP (=

)
gCO2) for the products govern the direction of

chemical reaction at specified values of T and P. If FR>FP, Reaction 1a dominates and vice
versa if FR<FP, just as the thermal potential T governs the direction of heat transfer.

Consider a premixed gaseous mixture that contains 5 kmole of CO, 3 kmole of O2 and
4 kmole of CO2,  placed in a piston–cylinder–weight assembly (PCW) at a specified constant
temperature and pressure. It is possible that the oxidation of CO within the cylinder releases
heat, in which case heat must be transferred from the system to an ambient thermal reservoir.
An observer will notice that after some time the oxidation reaction (Reaction (1a)) ceases when
chemical equilibrium is reached (at the specified temperature and pressure). Assume that the
observer keeps an experimental log that is reproduced in Table 1.



In the context of Reaction 1a, if 0.002 kmole of CO (dNC O) are consumed, then
1/2×(0.002) = 0.001 kmole of O2 (dN O2

) are also consumed and 0.002 kmole of CO2 (dNCO2)

are produced. Assigning a negative sign to the species that are consumed and using the associ-
ated stoichiometric coefficients,

Table 1: Experimental log regarding the oxidation of CO at specified conditions.

Time, sec CO, kmole CO2, kmole O2, kmole
0 5 3 4
tA 4.998 2.999 4.002
tB 4.5 2.75 4. 5
tC 4.25 2.625 4.75
tD 3.75 2.375 5.25
tE 3.75 2.375 5.25

dN dN dNCO O CO
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= +
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yielding a constant number of 0.002. One can now define the extent of the progress of reaction
ξ  by the relation

d ξ = dN CO2
/ ν CO2

, (2)

where dN CO2
 denotes the increase in the number of moles of CO2 as a result of the reaction and

ν CO2
 the stoichiometric coefficient of CO2 in the reaction equation. During times 0 < t < tA,

dξ = (4.002–4.0)/1 = 0.002.

Generalizing, we obtain the relation

dξ = dNk/ξk.

The production of CO2 ceases at a certain mixture composition when chemical equilibrium is
attained (time tE in Table 1).

3. Mathematical Criteria for a Closed System

i.     Specified Values of U, V, and m
For a closed, fixed mass system (operating at specified values of U, V and m) under-

going an irreversible process (cf. Chapter 3)

(dS – δQ/Tb = δσ) > 0.

We wish to determine irreversibility due to reaction alone and eliminate other irreversibilities
due to temperature and pressure gradients within the system, we set Tb =T. Thus

(dS – δQ/T = δσ) ≥ 0 with “>0” for irreversible,  “=0” for reversible process (3)

For an adiabatic reactor,

(dSU,V = δσ) ≥ 0 (4)

Thus for adiabatic reactions within a rigid vessel, the entropy S reaches a maximum.

ii. Specified Values of S, V, and m
Recall from Chapter 3 that



dU = TdS  – P dV – T δσ. (5a)

Note that Eq. (5a) is valid for a process where irreversible process (δσ > 0) or reversible proc-

ess (δσ =0) occurs. For a system operating at specified values of S, V, and m,

(dUS,V = – T δσ) ≤ 0, with “<0” for irreversible,  “=0” for reversible process (5b)

iii. Specified Values of S, P, and m
Likewise, since

dH = T dS  + V dP – Tδσ,

for specified values of S, P, and m

(dH = – T δσ) ≤ 0.  (6a)

iv. Specified values of H, P, and m

(dSH,P = δσ) ≥ 0.  (6b)

which is similar to Eq. (4). Note that adiabatic reactions in a constant pressure closed system
involves constant enthalpy and the entropy reaches a maximum value.

v. Specified Values of T, V, and m
Recall that

dA  = –S dT – P dV – T δσ, i.e., (dAT,V = –T δσ) ≤ 0. (7)

For isothermal reactions within a rigid vessel, the Helmholtz function A reaches a minimum.

vi. Specified Values of T, P, and m
Similarly,

dG  = – S dT  + V dP – T δσ, i.e., (8a)

(dGT,P = –T δσ) ≤0. (8b)

For isothermal and isobaric reactions within a fixed mass, the Gibbs’ function G reaches a
minimum. Note that Eq. (8a) is valid for a process where irreversible process (δσ >0) or re-

versible process (δσ =0) occurs. However if state change occurs reversibly between two equi-

librium states G and G+dG, then

dG  = – S dT  + V dP.

In order to validate equation (8b) for an irreversible process of a fixed mass, we must deter-
mine the value of either δσ or dG during an irreversible process (cf. Example 8). As was

shown in Chapter 3 when we considered an irreversible mixing process and in Chapter 7 when
we considered an irreversible evaporation process at specified (T,P), we must determine the
value of G for the reacting system as the reaction proceeds.

4. Evaluation of Properties During an Irreversible Chemical Reaction
The change in entropy between two equilibrium states for an open system is repre-

sented by the relation (cf. Chapter 3 and Chapter 8)

dS = dU/T + P dV/T – Σµk dNk/T. (9a)

Similarly,



dU = T dS – P dV + Σµk dNk. (9b)

Equation (9b) can be briefly explained as follows. For a fixed mass closed system, dNk =0.
Thus, dU = TdS- PdV, and the change in internal energy ≈ heat added - work performed. How-

ever, if mass crosses the system boundary and the system is no longer closed (e.g., pumping of
air into a tire), chemical work is performed for the species crossing the boundary (=Σµk dNk).

Likewise,

dH = T dS + V dP + Σµk dNk, (9c)

dA = –S dT – P dV + Σµk dNk, (9d)

dG = –S dT + V dP + Σµk dNk (9e)

It is apparent from Eqs. (9a) to (9e) that

-T (∂S/∂Nk)U,V =-T (∂S/∂Nk)H,P =  (∂U/∂Nk) S,V= (∂A/∂Nk)T,V = (∂G/∂Nk)T,P =  ĝ k =µk, and (9f)

-TdSU,V,,m = - TdSH,,P,m  = dUS,V,m= dHS,P,m = dAT,V,,m= dGT,P,,m =  Σµk dNk. (9g)

a. Nonreacting Closed System
In a closed nonreacting system in which no mass crosses the system boundary dNk =

0. Therefore for a change in state along a reversible path,

dS = dU/T + P dV/T, (10)

dU = T dS – P dV, dH = T dS + V dP

dA = –S dT – P dV, and dG = – S dT + V dP.

It is apparent that for a closed system

Σµk dNk = 0. (11)

b. Reacting Closed System
Assume that 5 kmole CO, 3 kmole of O2 and 4 kmole of CO2 (with a total mass equal

to 5×28+3×32+4×44= 412 kg) are introduced into two identical piston–cylinder–weight as-

semblies A and B. We will assume that system A contains anti-catalysts or inhibitors which
suppress any reaction while system B can engage in chemical reactions which result in the
final presence of 4.998 kmole of CO, 2.999 kmole of O2 and 4.002 kmole of CO2. The species
changes in system B are dNCO= -0.002, dNO2= -0.001 and dNCO2 = 0.002 kmole, respectively.
The Gibbs energy change dG of system B is now determined by hypothetically injecting 0.002
kmole of CO2 into system A and withdrawing 0.002 kmole of CO and 0.001 kmole of O2 from
it (so that total mass is still 412 kg) so as to simulate the final conditions in system B. The
Gibbs energy GA = G + dGT,P. System A is open even though its mass has been fixed. The
change dGT,P, during this process is provided by Eq. (9e). Thus,

dGT,P;A = (–0.002)µCO + (–0.001) µ O2
 + (+0.002) µ CO2

. (12)

Since the final states are identical in both systems A and B, the Gibbs energy change dGT,P;B

during this process must then equal dGT,P;A. Therefore,



dGT,P;B = – Tδσ = dGT,P;A, i.e., (Σµk dNk)A < 0. (13)

The sum of the changes in the Gibbs energy associated with the three species  CO, CO2, O2 are

dGT,P;B = – Tδσ = (µCO dNCO +µO2 dNO2  + µCO2 dNCO2 )< 0, i.e., (14a)

dGT,P,B  =(–0.002)µCO + (–0.001) µ O2
 + (+0.002) µ CO2

= -Τδσ < 0 (14b)

Note that system B is a chemically reacting closed system of fixed mass.
Recall that for irreversible processes involving adiabatic rigid closed  systems dSU,V,m

> 0 and from Eq. (9g), Σµk dNk < 0. This inequality involves constant (T,V) processes with A

being minimized or constant (T,P) processes with G being minimized.  If (S,V) are maintained
constant for a reacting system (e.g., by removing heat as a reaction occurs), then  dUS,V,m =
ΣµkdNk < 0  In this case S is maximized at fixed values of U, V and m, while U is minimized

at specified values of S, V, and m. The inequality represented by Eq. (13) is a powerful tool for
determining the reaction direction for any process.

c. Reacting Open System

If in one second, a mixture of 5 kmole of CO, 3 kmole of O2, and 4 kmole of CO2

flows into a chemical reactor and undergoes chemical reactions that oxidize CO to CO2, the
same criteria that are listed in Eqs. (4) through (8) can be used as long we follow a fixed mass.
As reaction proceeds inside the fixed mass, the value of G  should  decrease at specified (T, P)
so that dGT,P ≤ 0.

5. Criteria in Terms of Chemical Force Potential
The reaction CO+ 1/2O2 → CO2,  must satisfy the criterion provided by Eq. (14b) to pro-

ceed. In the context of the above discussion, dividing Eq. (15) by 0.002 or the degree of reac-
tion,

dGT,P /0.002 = (–1) µCO + (–1/2) µ O2
 + µ CO2

  < 0. (14c)

Recall that µ κ =   ĝ k, i.e.,

dGT,P = Σ νk ĝ k  =  Σ νkµk  ≤ 0, (14d)

where k and νk represent the reacting species and its stoichiometric coefficient for a reaction.

In case of the reaction CO+ 1/2O2 → CO2, νCO  = -1, νO2 = -1/2, νCO2 = 1. Equation (14c) can

be alternately expressed in the form

µCO + νO2µ O2
 > µ CO2

.

Defining the chemical force for the reactants and products as

FR = µCO + (1/2) µ O2
, and FP = µ CO2

  for reaction CO+ 1/2O2 →CO2 (15)

The criterion dGT,P< 0 leads to the relation FR > FP. This criterion is equally valid for an adia-
batic closed rigid system (U, V, m specified), and adiabatic and isobaric system (H, P, m speci-
fied), isentropic rigid closed system (S, V, m specified), isentropic and isobaric systems (S, P,
m specified),  and, finally, isothermal and isovolume systems (T, V, m specified).

From  Eq. (2),

dξ = dNk/νk = dNCO/(-1) = dNCO2/(+1) = 0.002. 



Replacing 0.002 in Eq. (14c) by dξ, the stoichiometric coefficients by νk, and generalizing for

any reaction

(∂G/∂ξ)T,P = Σµkν k < 0. (16)

The Gibbs energy decreases as the reaction progresses and eventually reaches a minimum
value at equilibrium. Defining the chemical affinity as

F =  –(∂G/∂ξ)T,P, (17)

Equation (16) assumes the form

(-(∂G/∂ξ)T,P = F = -Σµk ν k) > 0. (18a)

Similarly, following the relations for dA, dU and dS, we can show that

(-(∂A/∂ξ)T,V = F = -Σµk ν k) > 0, (18b)

(-(∂U/∂ξ)S,V = F = - Σµk ν k) > 0, (19a)

(-(∂H/∂ξ)S,P = F = - Σµk ν k) > 0, and (19b)

(T(∂S/∂ξ)U,V = T(∂S/∂ξ)H,P =F = -Σµk ν k) > 0. (20)

The last expression shows that the entropy increases in an isolated system as chemical reaction
proceeds. For a reaction to proceed under any of these constraints, the affinity F > 0.

In the CO oxidation example, the values of F for the reactants and products are

FR = µCO + (1/2) µ O2
, and FP = µ CO2

. (21)

Since (FR – FP) > 0 for oxidation to proceed,

FR > FP, (22)

which is similar to the inequality Thot > Tcold that allows heat transfer to occur from a hotter to a
colder body. In a manner similar to the temperature (thermal potential), FR and FP are analo-
gous intensive properties called chemical force potentials. The chemical potential µk is the

same as partial molal Gibb’s function 
)
g k, (= 

)
h k - T 

)
s k), which is a species property. Each spe-

cies has a unique way of distributing its energy and, thus, fixing the entropy. A species distrib-
uting energy to a larger number of states has a low chemical potential and is relatively more
stable. During chemical reactions, the reacting species proceed in a direction to form more
stable products (i.e., towards lower chemical potentials). The physical meaning of the reaction
potential is as follows: For a specified temperature, if the population of the reacting species
(e.g., CO and O2) is higher (i.e., higher value of FR) than the product molecules (i.e., CO2 at
lower FP), then there is a high probability of collisions amongst CO and O2 resulting in a reac-
tion that produces CO2. On the other hand, if the population of the product molecules (e.g.,
CO2) is higher (larger FP value) as compared to the reactant molecules CO and O2 (i.,e., lower
FR), there is a higher probability of collisions amongst CO2 molecules which will break into
CO and O2. If the temperature is lowered, the molecular velocities are reduced and the transla-
tional energy may be insufficient to overcome bond energy among the atoms in the molecules
that is required to the potential F(T, P Xi).

a. Example 1
Five kmole of CO, three of O2, and four of CO2 are instantaneously mixed at 3000 K
and 101 kPa at the entrance to a reactor. Determine the reaction direction and the val-



tor?
Solution

We assume that if the following reaction occurs in the reactor:

CO+ 1/2 O2 → CO2, then (A)

FR > FP (B)

so that the criterion dGT,P < 0 is satisfied. The reaction potential for this reaction is

FR = (1) µCO + (1/2) µ O2
, and (C)

FP = (1) µ CO2
. (D)

For ideal gas mixtures,

µCO = ĝCO = gCO(T,P) + R T ln XCO = gCO(T,pCO). (E)

The larger the CO mole fraction, the higher the value of  µCO and, hence, F.

gCO(T,P) = hCO(T,P) – T s CO(T,P)

                = ( h f,CO
0 +  ( h t,3000K – h t,298K)CO)– 3000×( sCO

o (3000) – 8.314(ln×P/1))

               = (–110530+93541) –3000×273.508–8.314×ln 1) 

gCO = –837513 kJ per kmole of CO. (F)

Similarly, at 3000K and 1 bar,

gO2
 = –755099 kJ kmole–1, and gCO2

= –1242910 kJ kmole–1. (G)

The species mole fractions

XCO = 5÷(5+3+4) = 0.417, X O2
 = 3÷(5+4+3) = 0.25, and X CO2

 = 0.333. (H)

Further,
µCO = ĝCO (3000K, 1 bar, XCO = 0.417)

       = gCO(3000K, 1 bar) + 8.314×3000×ln(0.417)

       = –837513 + 8.314 × 3000 × ln 0.467

              = –856504 kJ kmole–1 of CO in the mixture. (I)

Similarly,

µ O2
 = (3000K, 1 bar, X O2

=0.25) = –789675 kJ per kmole of O2. (J)

µ CO2
 = (3000K, 1 bar, X CO2

=0.333) = –1270312 kJ per kmole of CO2. (K)

Therefore, based on the oxidation of 1 kmole of CO,

FR = –856504 + 1/2(–789675) = –1254190 kJ, and (L)

FP =–1270312 kJ, i.e., (M)

ues of FR, FP, and G. What is the equilibrium composition of the gas leaving the re-
actor? How is the process altered if seven kmole of inert N2 is injected into the reac-



FR > FP, (N)

which implies that assumed direction is correct and hence CO will oxidize to CO2.
The oxidation of CO occurs gradually. As more and more moles of CO2 are produced,
its molecular population increases, increasing the potential FP. Simultaneously, the
CO and O2 populations decrease, thereby decreasing the reaction potential FR until the
reaction ceases when chemical equilibrium is attained. Thus chemical equilibrium is
achieved when FR = FP, i.e., dGT,P=0 . This is illustrated in Figure 1. The correspond-
ing species concentrations are

N CO2
 = 5.25 kmole, NCO = 3.75 kmole, and N O2

 = 2.375 kmole.

 (Recall the evaporation example discussed in Chapter 7 where A reaches a min imum
value at specified values of T, V and G. From a thermodynamic perspective, this
problem is similar to placing a cup of cold water in bone dry air. Evaporation will oc-
cur when dGT,P < 0, but after a finite amount of water is transformed into the vapor,
evaporation will cease at which g H2O(l) = gH2O(g) and dGT,P = 0.)

The Gibbs energy at any section
G = Σµk Nk = µCO N CO + µ O2

N O2
 + µ CO2

N CO2
, i.e.,

G = -856504×5 -789675×3-1270312×4 = -11,732,793 kJ.

Figure 2 plots values of G vs NCO2. The plot in Figure 2 shows that G reaches a mini-
mum value when FR=FP.
Nitrogen does not participate in the reaction. Therefore, dN N2

= 0 and, so, the expres-

sions for FR and FP are unaffected. However, the mole fractions of the reactants
change so that the values of FR and FP are different, as is the equilibrium composition.
The G expression for this case is

G = Σµk Nk = µCO N CO + µ O2
N O2

 + µ CO2
N CO2

 + µ CO2
N CO2

 + µN2 NN2
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Figure 1: The reaction potential with respect to the number of moles of CO2 produced.



Remarks
The overall reaction has the form

5 CO + 3 O2 + 4 CO2 → 3.75 CO + 2.375 O2 + 5.25 CO2.

The assumed direction (i.e., CO + 1/2 O2 → CO2) is possible if dGT,P < 0 or FR > FP.

The mixture is at equilibrium if dGT,P = 0 (as illustrated in Figure 2) or FR = FP. If FR

< FP, the reverse reaction CO2 → CO + 1/2 O2 becomes possible.

6. Generalized Relation for the Chemical Potential
Recall from Chapter 8 that

µk = ĝ k = gk(T,P) + R T ln α̂ k , where (23)

âk = f̂ k/fk is the ratio of the fugacity of species k in a mixture to the fugacity of the same spe-
cies in its pure state. Equation (15) can be generalized for any reaction in the form

Σ ĝ k dNk = Σ gk(T,P) + R T ln α̂ k ) dNk ≤ 0, (24)

where the activity coefficient âk equals the species mole fraction for ideal mixtures and the
equality applies to the equilibrium state.

b. Example 2
Consider the reactions

C (s) + 1/2 O2 → CO, and (I)

C(s) + O2 → CO2 (II)
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E

Figure 2: Illustration of the minimization of the Gibbs energy at equilibrium with respect to the
number of moles of carbon dioxide produced.



O2 in a reactor at 1 bar and 298 K. Assume that c p,C/
T–86700/T2 in SI units and T is in K. Assume ideal mixture.

Solution
If |(FR –FP)|I > |(FR– FP)|II, then the first reaction dominates and vice versa. Note that
the reaction potentials are functions of the species populations and hence vary as a re-
action proceeds. Using Eq. (23),

FR = gC(T,P) + R T ln α̂ k . (A)

Since solid carbon (C(s)) is a pure component  and hence the activity âC(s) = 1.
Further,

h h c dTC f C
o

p C
K

T

= + ∫, ,
298

.

where hf C
o
, = 0 kJ kmole–1, and (B)

s C= sC
o (298K) + ( / ),c T dTp C

K

T

298∫ .

Now,

sC
o  (298K) = 5.74 kJ kmole–1 K–1. (C)

Hence, using Eqs. (B) and (C), gC
o = gC(298K, 1 bar) = h298K – 298× s C (298K), i.e.,

gC
o = 0 – 298×5.74 = –1711 kJ kmole–1. (D)

For solids and liquids, g T Pk ( , ) ≈ gk
o (T) . Assume that 0.001 moles of C(s) react with

0.0005 moles of O2 to produce 0.001 moles of CO. Hence,
p O2

 = X O2
P = (50– 0.0005) ÷(0.001+(50–0.0005)) = 0.9999 P = 0.9999 bar.

Therefore,
 s O2

= 205.03 – 8.314 × ln 0.9999 = 205.03 kJ K–1 kmole–1, i.e.,
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Figure 3: The reaction potentials for reactions I and II with respect to the number
of moles of carbon that are consumed.

Which of the two reactions is more likely when 1 kmole of C reacts with 50 kmole of
R = 1.771+0.000877



g O2
(298K, 1 bar) = 0 – 298 × 205.03 = –61099 kJ kmole–1. (E)

Similarly,
XCO = 0.001÷(0.001 + 49.9995) ≈ 0.00002, and

s CO(T, pCO) = 197.54 – 8.314×ln (0.00002) = 287.5 kJ K–1 kmole–1, so that

gCO(298K, 1 bar) = –110530 – 298 × 287.5 = –196205 kJ kmole–1. (F)

Employing Eqs. (D) and (E),
FR = gC + 1/2 g O2

= –1710 + 0.5 × (61099) = –32260 kJ, and

FP = gCO = –196205kJ kmole–1, i.e.,
FR – FP = –32260 + 196205 = 163945 kJ.

For reaction I,
(dG/|dNC|)I = (dG/|dξ|)I = –(FR – FP)I  = –163945 kJ.

For reaction (II), the corresponding amount of O2 consumed is 0.0001 kmole while
0.0001 kmole of CO2 is produced. Therefore,

N O2
 = 50 – 0.001 = 49.999,

X O2
= 0.999 × (0.0001 + 49.999) = 0.999,

X CO2
= 0.001 × (0.001 + 49.999) ≈ 0.00002, and

Consequently,
s O2

=  205.03 – 8.314 × ln (0.999) ≈ 205.03 kJ K–1 kmole–1,

s CO2 =  213.74  – 8.314 × ln (0.0002) ≈  303.70 kJ K–1 kmole–1,

g O2
= –61099 kJ kmole–1, and

g CO2
 = -393546- 298 × 303.70 = –484048 kJ kmole–1.

For this reaction

FR = –1710+(–61099) = –62810 kJ, and FP = = –484048 kJ kmole–1, i.e., (G)

FR – FP = –62810 + 484048 = 421238 kJ.
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Hence,
(dG/|dNC|)II = (dG/dξ)II = - (FR – FP)II = –394390 kJ.

The variations in the reaction potentials for reactions I and II with respect to the num-
ber of moles of carbon that are consumed at a reactant temperature of 298 K are pre-
sented in Figure 3, and the corresponding variation in GI and GII in Figure 4. At 298 K
CO2 production dominates. The analogous variations in GI and GII at 3500 K are pre-
sented in Figure 5. At the higher temperature CO formation is favored.

Remarks
Since,

gk(T, P, Xk) = hk– T s k = hk – T ( sk
o – R ln P Xk/1)

                        = hk – T { sk
o – R  ln (P/1)} + R T ln Xk

                        = gk(T,P)+ R T ln Xk,
in general, the values of gk(T, P, Xk) are a function of the species mole fractions. If
we assume that | gk(T,P)| » | R T ln Xk,|, then gk(T, P, Xk) ≈ gk(T,P).

This offers an approximate method of determining whether reaction I or II is favored.
For instance, if the reactions are assumed to go to completion, ∆GI = gCO – ( gC +

1/2 g O2
). Likewise, we can evaluate ∆GII to determine whether |∆GII| > |∆GI| ;if so,

the CO2 production reaction is favored. Values of ∆G(T,P) at 1 bar, i.e., ∆Go(T) are

tabulated. (Tables 27A and 27B at T= 298 K)
In addition to reactions I and II, consider the following reactions:

C(s) + CO2 → 2 CO, (III)

CO + 1/2 O2 → CO2, and (IV)

H2 + 1/2 O2   → H2O. (V)

Figure 6 plots value of ∆Go with respect to the temperature for these five  reactions.

For instance, for reaction III,  ∆Go (298 K) = 2 gCO – ( gC  + g CO2
) = 120080 kJ,
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for reactions I and II at 3500 K.



which a positive number or FR = gCO2 + gC < FP =2 gCO . This implies that the reac-
tion cannot proceed in the indicated direction. In reaction III, the reaction potential of
the products (FP) is initially low and the value of FR is higher. However, the equilib-
rium state is reached at a very low CO concentration when dGT,P = 0, i.e., FR = FP.
Thereafter, FP > FR or dGT,P > 0, and the reaction does not proceed. In other words,
∆Go>0 implies that

C + CO2 → large amounts of leftover C and CO2 + small amounts of CO2. (H)

On the other hand for reaction II, ∆Go < 0 implies that

C + O2 → small amounts of leftover C and O2 + large amounts of CO2. (I)

Generally, the value of ∆Go for a reaction indicates the extent of completion of that

reaction. A relatively large negative value of ∆Go implies that FR » FP, and this re-

quires the largest decrease in the reactant population (or extent of completion of reac-
tion) before chemical equilibrium is reached. Normally, a positive value for ∆G im-

plies that the reaction will produce an  insignificant amount of products (reaction III).
We will now show that the value of ∆Go for reaction IV can be obtained in terms of

the corresponding values for reactions I and II. For reactions I, II, and IV, respectively

∆G I
o (298 K) = gCO – ( gC + 1/2 g O2

), (J)

∆G II
o  (298 K) = g CO2

 – ( gC + g O2
),and (K)

∆G IV
o  (298 K) = g CO2

 – ( gCO + 1/2 g O2
), (L)

where the gk’s are evaluated at 298 K, i.e., gk= gk
o . Equation (L)  assumes the form

∆G IV
o  (298 K) = g CO2

–( gC + g O2
)–{ gCO–( gC+1/2 g O2

)}= ∆G II
o – ∆G I

o , i.e., (M)

∆G IV
o (298 K) =∆Go II- ∆Go I = g CO2

(298 K) – gCO(298 K)

                        = –394390 + 137137 = –257253 kJ.
We can arbitrarily set gk

o = 0 for the elemental species C and O2  at T=298 K so that

∆Go I  (298 K)= g0
f,,CO (298 K), ∆Go II  (298 K)= g0

f,,CO2 (298 K).

where g0
f,,k is called Gibbs’ function of formation  of species k from elements in

natural form.

C. CHEMICAL EQUILIBRIUM RELATIONS
For the reaction CO2 → CO + 1/2 O2 to occur, FR (= ĝ CO2

) >  FP (= ĝCO+ 1/2 ĝ O2
). In

general,

dGT,P = Σ ĝ k dNk ≤ 0. (25)

Since the change in the mole numbers is related to the stoichiometric coefficients, then at
specified values of T and P,

Σνk { gk dNk (T,P) + R T ln α̂ k } ≤ 0. (26)

e.g., for the reaction CO2 → CO + _ O2 ,  νCΟ2= −1, νCO = +1, ν O2 = +1/2 .



1. Nonideal Mixtures and Solutions
Rewriting Eq. (26),

Σln α̂ ν
k

k  ≤ –Σνk gk (T,P)/( R T). (27)

We define the term

K(T,P) = Π α̂ ν
k

k  = exp (–Σνk gk (T,P)/( R T)) (28)

which is constant at specified values of T and P and Eq. (27) assumes the form

Π α̂ ν
k

k   ≤  K(T,P), or (28a)

K(T,P)  ≥  Π α̂ ν
k

k  (28b)

The physical meaning of this relation is as follows. Consider an ideal gas mixture of 5 kmole
of CO, 3 kmole of O2 and 4 kmole of CO2 in a PCW assembly in which a reaction proceeds at
fixed (T,P). Here, âk = Xk and  K(T,P) remains constant while Xk changes.  Equation (28)
must be satisfied as the reaction proceeds and the equality holds good at chemical equilibrium.

Unlike the superheated steam tables in which properties are tabulated as functions  of
(T,P),  K(T,P) is tabulated typically only at P0, the standard pressure, since simple relations are
available (particularly for ideal gases) to relate K(T,P) to  K(T,P0). Such a relation is provided
below. Recall from Chapter 8 that for a species k at a state characterized by specified (T,P)

gk (T,P) = gk (T,Po) + ( R T ln (f k(T,P)/f k(T,Po)), (29)

where f. is the fugacity of species k. If that species is an ideal gas, fk(T,P) = P and fk(T,P0) = P0.
The second term on the RHS represents the deviation from this behavior at Po. Selecting Po = 1
bar,

gk(T,P) = gk
o (T) + ( R T ln (f k(T,P)/f k(T, 1bar)), so that (30)

using this relation in Eq. (28),
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K(T,P) = exp(–Σνk gk
o (T)/( R T)) exp(– Σνk ln (f k(T,P)/f k(T, 1bar))). (31)

Now let us define

ln Ko(T) = –Σνk gk
o (T)/( R T), i.e., (32)

Ko(T) = exp (–Σνk gk
o (T)/( R T))= exp (–∆Go/( R T)), where (33)

the term Ko(T) is conventionally called the equilibrium constant (a misnomer since it is a func-
tion of temperature and is constant only if the temperature is also held constant) and is tabu-
lated for many standard reactions in  Table A-28B. Using Eqs. (31) and (32), the relation be-
tween K(T,P) and Ko(T) is

K(T,P) = Ko(T) Π (f k(T,P)/f k(T, 1bar)) (−νk). (34)

Subsequently, using Eq. (34) in Eq. (28b), as the reaction proceeds, the following inequality
must be satisfied:

Ko(T) ≥  Π (f k(T,P) α̂ k /f k(T, 1bar)) νk . (35’)

At chemical equilibrium

Ko(T) =  Π (f k(T,P) α̂ k /f k(T, 1bar)) νk . (35a)

In order to evaluate f k(T, 1bar) and the corresponding Ko(T) it is convenient to define the state
of each species k at a standard state corresponding to a pressure of 1 bar.

a. Standard State of an Ideal Gas at 1 Bar
If one considers the state of  species k to be an ideal gas at 1 bar, then f k(T, 1bar) = 1.

Hence, using Eq. (30),

gk(T,P) = gk
o  (T) + R T ln (fk(T,P)/1) (35b)

where gk
o  (T)  is evaluated  at the temperature T assuming the species k to be an ideal gas.

Since the substance is non-ideal at the state (T,P), the second term  in Eq. (35b) accounts for
the correction due to non-ideal behavior.

The values of gk
o (T)  can be determined using the expression

gk
0 (T) =  hk

0(T)   -  T sk
0 (T), (35c)

where the term hk
0(T) includes chemical and thermal enthalpies. The gk

0 (T) can also be es-
timated using Gibbs function of formation (Chapter  11).   Unless otherwise stated, Eq. (35c)
will be for determining the values of gk

0(T).

b. Standard State of a Nonideal Gas at 1 Bar
Consider the following chemical reaction
H2O(l)  + CO(g) → CO2(g) + H2(g).

The reaction involves both liquid H2O(l) and gaseous species. With Eq. (30), we obtain:

k  k  

  0 k 

k 
g    T ,    P  =  g    T    +    R  T    

f   T  ,    P 

f    T ,    l l l

l

l
( ) ( )

( )

( )
( ) ( ) ( )

( )ln , where (36a)

f k(l) (T, P) = f k(l) (T,Psat) POYk ≈ f k(l) (T,Psat),

and the Poynting correction factor is (cf. Chapter 8)



POY            v dP / RT       1k P
P

ksat= ∫{ } ≈exp ( )( )l  

Since POY ≈1 for most liquids and solids, Eq. (36a) assumes the form

k  k  

  0
g    T ,    P   g    T   

l l( ) ( )( ) ≈ ( ) (36b)

c. Example 3
Determine the value of gH O2 ( )l (40ºC, 10 bar) and 

standard state.  Also determine the value of 

mixture in which water constitutes 85% on mole basis.
Solution

For water,
gH2O(l) (313 K,10 bar) =

g
H O g

o

2 ( )
(313 K) + 8.314×313×ln ( fH O2 ( )l (313 K, 10 bar)/1)

= gH O g2 ( )(313 K, 1 bar) + 8.314×313×ln ( fH O2 ( )l (313 K, 10 bar)/1), where (A)

fH O2 ( )l (T,P)/  fH O2 ( )l  (T,Psat) = POY. (B)

In the case of water, Psat = 0.07384 bar at 40ºC, and

POY = exp( vdP RT/ ( )
.0 074

10

∫ ) = exp(0.00101×(10–0.074)×100÷(0.461×313))

         = exp(0.0000695) = 1.007 ≈ 1. (C)

Therefore,

fH O2 ( )l (T,P)/ fH O2 ( )l (T,Psat) ≈ 1. (D)

Since f H2O(l)(T,Psat) = f H2O(g)(T, Psat) and the vapor is an ideal gas, then f H2O(g)(T, Psat)
= Psat = 0.07384 bar and

fH O2 ( )l (313 K, 1 bar) = 0.074 bar. (E)

Using Eqs. (A) and (E),

g
H O

o

2 ( )l
(313 K,10 bar) ≈ g

H O g

o

2 ( )
(313 K, 1 bar) + 8.314×313×ln (0.07384/1). (F)

Now,

g
H O g

o

2 ( )
(313 K, 1 bar) = ( h

H O g

o

2 ( )
 – T s

H O g

o

2 ( )
)313 K, 1 bar 

                                   = –241321 – 313 × 190.33 = –300894 kJ kmole–1. (G)

Using Eqs. (A), (E), and (F),

g
H O

o

2 ( )l
(313 K,10 bar)  = –300894 + 8.314 × 313 × ln (0.07384/1) 

                                = –307675 kJ kmole–1. (H)

If the liquid state is selected at 1 bar instead of an ideal gas state, Eq. (A) becomes

gH O g2 ( )(40ºC, 10 bar) for water va-

por. Select the standard state to be at 1 bar at 40ºC. Assume ideal gas behavior at the
ˆ

( )
g

H O

id

2 l
at 40ºC and 10 bar for a salt water



gH O2 ( )l (T,P)= gH O2 ( )l (T,1 bar) + 8.314 ln( fH O2 ( )l (T,P)/ fH O2 ( )l (T,1 bar)), where (I)

At given T, RT d ln (f) = v dP (Chapter 8) and hence

ln( fH O2 ( )l (T,P)/ fH O2 ( )l (T,1 bar)) = v
1

10

∫ dP/ R T

= 0.00101×(10–1)×100÷(0.461×313) = 0.0063, so that (J)

fH O2 ( )l (313 K, 10 bar) ≈ ( fH O2 ( )l (313 K, 1 bar) (K)

Using Eqs. (I) and (K),

g
H O

o

2 ( )l
(313 K,10 bar) = g

H O

o

2 ( )l
(313 K,1 bar), where (l)

g
H O

o

2 ( )l
(313 K, 1 bar) = ( h

H O

o

2 ( )l
 – T s

H O

o

2 ( )l
)313 K, 1 bar

= –285830+4.184×(40–25)×18.02–313×(69.95+4.184×18.02×ln (313÷298))

= –307752 kJ kmole–1 = g
H O

o

2 ( )l
(313 K, 10 bar), (M)

which almost equals the previous answer (Eq. (H)).

ˆ
( )

g
H O

id

2 l
(T,P) = g

H O2 ( )l
(T,P) + R T ln XH O2

, i.e.,

ˆ
( )

g
H O

id

2 l
(313 K, 10 bar) = g

H O2 ( )l
(313 K, 10 bar) + 

8.314 × 313 × ln 0.85 = –308159 kJ kmole–1.

Remarks
We have selected the standard state with regard to both the liquid and gaseous states.
For liquids or solids, g(T,P) ≈ go(T)  fk(T,P) ≈ fk(T,1) and hence K(T,P) ≈ Ko(T).

2. Reactions Involving Ideal Mixtures of Liquids and Solids
For ideal mixtures of liquids and solids α̂ k = Xk , and Eq. (28b) assumes the form

K(T,P) ≥ Π Xk
kν ,    k : liquid and solid phases, (37)

where Xk denotes the mole fraction of solid  or liquid species k (e.g., CaSO4(s) in a mixture of
Fe2O3(s) , CaSO4(s), and CaO(s)). For a solid,

gk(s)(T,P) = gk(s)(T, 1 bar) + R T ln (fk(s)(T,P)/fk(T,1 bar)).

Since,

(fk(s)(T, P)/fk(T, 1 bar)) = POY = exp (–vs(P – 1)/( R T)), and POY ≈ 1,

gk(s)(T, P) ≈ gk(s)(T, 1 bar).

If K(T, P) is evaluated with respect to gk(s)(T, P) (≈ gk(s) (T, 1 bar)), then for solids and liquids

K(T, P) ≈ Ko(T) ≥ Π Xk
kν , liquid or solid mixtures (38)



3. Ideal Mixture of Real Gases
For an ideal mixture of real gases

 α̂ k =  
ˆ ( , , )

( , )

f T P X

f T P
k
id

k

k

 =  Xk, (39)

where f̂k  denotes the fugacity of component k inside the mixture and fk the pure species fu-
gacity (cf. Chapter 8).  Selecting the standard state for all species to be that for an ideal gas at 1
bar, using Eq. (35a)

Ko(T) ≥ Π(Xkfk(T,P)/1), ideal mix of real gas mixtures, (40)

where fk(T,P) are in units of pressure (bar). Recall that fk(T,P) = φk P where φk is the fugacity

coefficient

4. Ideal Gases
For ideal gases, fk(T, P) = P and  α̂ k  (T,P,Xk) = Xk. Therefore, fk (T, 1 bar) = 1, and

Eq. (35a) assumes the form

Ko(T) ≥ Π{Xk (P/1) νk }, or (41a)

Π {Xk (P/1) νk } ≤ Ko(T). (41b)

Alternately, one may use the relation k  ĝ (T,P) = gk
o  (T) + R T ln (pk/1) where pk = Xk P  and

group all terms involving gk
o  (T) on one side and the  partial pressure terms on the other side.

For the reaction  CO + 1/2O2 → CO2, it can be shown that

-∆G0(T)/ ¯R T  ≥ ln (pCO2/1)1 - ln (pCO/1)1 - ln (pO2/1)1/2), where

∆G0(T) = ¯g 0
CO2 (T) - ¯g 0

CO (T)- 1/2 ¯g 0
O2 (T). For convenience the ¯g 0

k
 values are tabulated

in Tables A-8 to A-19. Equation (41b) stipulates  that at any specified temperature, Ko(T) is
constant and while the reaction occurs, the partial pressure terms on the left hand side of Eq.
(41b) keep  increasing to approach the value of Ko(T).

Since

pk = Xk, (42)

Π(pk/1) νk  ≤ Ko(T). (43)

Some texts use the nomenclature Kp instead of Ko to indicate that partial pressures are involved
on the left hand side of Eq. (43).

a. Partial Pressure
Consider the following  reaction

CO2 → CO + 1/2 O2. (44)

The relation for the equilibrium constant is

Ko(T) = exp(∆Go(T)/ R T)), i.e., (45)

Rewriting Eq. (43),

Ko(T) ≥ (pCO/1)1 (p O2
/1)1/2/(p CO2

/1)1. (46)



b. Mole Fraction
Replacing the partial pressures with mole fractions (e.g., pCO = XCO P),

Ko(T) ≥ { (P/1)1/2  (XCO)1(X O2
)1/2/(X CO2

)1 }. (47)

Furthermore, since

Xk = Nk/N, (48)

Equation (47) assumes the form,

Ko(T) ≥  [{P/(1×N)}1/2 (NCO)1(N O2
)1/2 ]/(N CO2

)1. (49)

We have retained the 1 bar term in Eqs. (47)–(49) to indicate that the equilibrium constant is a
dimensionless quantity.

d. Example 4
CO2

 =

1.2 kmole, N N2
= 6.6 kmole. In which direc-

if we maintain T and P?
Solution

Consider one of the directions for the reaction, say,

CO2 → CO + 1/2 O2,

gk
0 (T) =  hk

0(T)   -  T sk
0 (T)

Using Table A-8,
gCO

o  = –110530 + 49517 – 1800 × 254.8 = –519650  kJ kmole–1.

Similarly, using Table A-9,
gO

o

2
 = 51660  - 1800  x 264.701 = -424800 kJ kmole–1, and

 from Table A-19
gCO

o

2
 =  –  393546 +79399 – 1800 × 302.892 = -859355  kJ kmole–1, and

∆Go = (1)×(–519650)+(1/2)×(–424800)+(–1)×(–859355)= 127305 kJ.

 (If one uses the “g’ values in Tables A-8, A-9, and A-19, then ∆Go =

(1)×(–269164)+(1/2)×(0)+(–1)×(–396425)= 127261 kJ, which is the almost the same

answer that we have obtained above.)
Ko(T) = exp  (–127305÷ (8.314×1800)) = 0.00020.

From Tables A-28 B log 10 (K0(T)) = -3.696, i.e., K0(T) = 0.0002.
For the reaction CO2 → CO + 1/2 O2 to occur, Eq. (46) must be satisfied. For the

specified composition,
XCO = 3.6/12 = 0.3, pCO = 0.3 × 20 = 6 bar.

Similarly pO2= 1 bar, pCO2 = 2 bar. The ratios of the partial pressures
(pCO/1)1 (p O2

/1)1/2/(p CO2
/1)1 = (6/1)1 (1/1)1/2/(2/1)1 = 3.

The criterion
Ko(T) = 0.0002 ≥ (pCO/1)1 (p O2

/1)1/2/(p CO2
/1)1, or

pCO/1)1 (p O2
/1)1/2/(p CO2

/1)1 ≤Ko(T) = 0.0002

is violated.
Therefore, CO will oxidize to CO2, i.e., the reverse path is favored.

Consider a mixture with the following composition at 1800 K and 2 MPa, i.e., N

O2
= 0.6 kmole, NCO = 3.6 kmole, and N

tion will the following reaction proceed: CO + 1/2 O2 → CO2, or CO2 → CO + 1/2 O2



e. Example 5
A piston–cylinder assembly c

centration of O2 molecules decreases. Determine the equilibrium composition.
Solution

If x denotes the moles of O2 and y the moles of O, then

2x + y = 4. (A)

Chemical equilibrium is attained after the following reaction

O2 → 2 O (B)

ceases, i.e., according to equality sign in Eq. (46)

Ko(T) = (pO/1)2/(p O2
/1), where

p O2
 = X O2

 P = (x/(x+y))P, and (C)

pO = (y/(x+y))P (D)

Therefore, equilibrium is attained when

Ko(T) = (y2/(x(x+y)))(P/1).

Since P = 1 bar, Ko(T) = 0.0127, and

0.0127 = (y2/(x(x+y))) (E)

Using Eqs. (A) and (E), we obtain a quadratic equation in terms of x, i.e.,

(4–2x)2 = 0.0127×(4–x).

We can solve for x and select the root, such that x>0, and y>0, i.e.,
x = 1.8875 kmole, and y = 4 – 2x = 4 – 2 × 1.8875 = 0.225 kmole.

Remarks
This problem can also be solved by minimizing G (= x ĝ O2 (T,P, XO2)  + y ĝ N2 (T,P,

XN2))  at the specified values of T and P, subject to restriction given by Eq. (A). When
there are a large number of species, say O, O2, O3, etc., we resort to the minimization
of the Gibbs energy and the LaGrange multiplier method can be used. See later parts
of this chapter.

f. Example 6

0.79 N2 + 0.21 O2 → a NO + b NO2 + c N2 + d O2. (A)

following decomposition reactions

N2 + O2 → 2 NO, and (B)

N2 + 2 O2 → 2 NO2. (C)

Determine the NO and NO2 concentrations at chemical equilibrium, assuming the

One kmole of air is in a closed piston–cylinder–weight assembly placed at 298 K and
1 bar. Trace amounts of NO and NO2 are generated according to the overall reaction

ontains 2 kmole of O2. A weight is placed on the top of
piston such that the pressure is 1 bar. The gas is then instantaneously heated to 3000
K and maintained at this temperature. We find that O atoms are formed  and the con-



The values of Gibbs function of formation 

g j
o(298 K) = 0 kJ kmole–1. Assume that the gases are ideal.

Solution
For reactions (B) and (C)

Ko
NO = (pNO/1)2/((p N2

/1) (p O2
/1)), and (D)

K NO2
 = (p NO2

/1)2/((p N2
/1) (p O2

/1)2). (E)

(We will use the expression for Ko
NO, NO2

 = exp (–∆ G NO NO
o

, 2
/ R T), where

∆ G NO
o  = 2 gNO

o – gN
o

2
– gO

o

2
= 2 × 86550 = 173100 kJ per kmole of N2.)

Therefore,
Ko

NO = 4.54×10–31,

Since NO exists in trace quantities the partial pressures of N2 and O2 in Eq. (D) are
virtually unaffected by reactions (B) and (C). Hence,

(pNO/1) = (4.54 × 10–31×(0.79/1)×(0.21/1))1/2 = 2.75×10–18, i.e.,

XNO = 2.75×10–18 or NO =  2.75×10–12 ppm.

Similarly,

Ko NO2   = exp (–∆Go NO2 /RT) = (p NO2
/1)2/((p N2

/1)(p O2
/1)2), where

∆ G N O
o

2
= 2 gNO

o

2
 – gN

o

2
– 2 gO

o

2
= 2×51310 = 102620 kJ per kmole of N2.

Thus,
Ko NO2  = 1.03×10–18,

(p NO2
/1) = (4.54×10–31×(0.79/1)×(0.21/1)2)1/2 = 1.69×10–10, and

X NO2
  = 1.69×10–4 ppm.

g. Example 7

changes, say to 101 kPa?
Solution

Assume that the chemical reaction proceeds according to the reaction
CO2 → CO + 1/2 O2

so that
Ko(T) = ((pCO/1)(p O2

/1)1/2)/(p CO2
/1), where

pCO = XCO P = (NCO/N) P, and
N = NCO + N O2

 + N CO2
+ NN2

Therefore,

Ko(T) = (NCON O2

1 2/ ){P/(1×N)}1/2/N CO2
. (A)

The conservation of C and O atoms provide two additional equations. The overall
balance equation in terms of the three unknown concentrations is

5CO + 3O2 + 4CO2 + 7N2 → NCOCO + N O2
O2 + N CO2

CO2 + NN2  N2 (B)

5 kmole of CO, 3 of O2, 4 of CO2, and 7 of N2 are introduced into a reactor at 3000 K
and 2000 kPa. Determine the equilibrium composition of gas leaving reactor, assum-
ing that the outlet (product) stream contains CO, O2, N2, and CO2. Will the equilib-
rium composition change if the feed is altered to 6 kmole of CO, 3 kmole of CO2, 3.5
kmole of O2, and 7 kmole of N2 enter the reactor? Assume that the outlet stream con-
tains the same species. Will the CO concentration at the outlet change if the pressure

go(298 K) for NO and NO2 are, respec-
tively 86550 and 51310 kJ kmole–1, and for the elements “j”  in their natural forms



There are four unknowns NCO, NCO2 and NO2)  and we have three  atom balance
equations.

Carbon atoms:  NC= 5 + 4  = NCO + NCO2 (C)

Oxygen atoms: NO= 5 ×1 + 3×2 + 4 ×2 = NCO ×1 + N CO2
 × 2 + N O2

× 2 (D)

Nitrogen atoms :  NN =7× 2 = NN2× 2 (D’)

The fourth equation is given by equilibrium condition at 3000 K:  CO2 ⇔  CO + 1/2

O2    reaction, log10K = –0.48. Using this value in Eq. (A)

0.327 = (NCON O2

1 2/ )(P/(1×N))1/2/N CO2
. (E)

Using Eq. (C),

NCO = NC – N CO2
, i.e., NCO = 9 – N CO2

. (F)

Further, using Eqs. (D) and (F),

N O2
 = (NO – NC – N CO2

)/2, i.e., (G)

N O2
 = (19 – 9 – N CO2

)/2. (H)

Therefore, the number of moles at the exit

N = NCO + N O2
 + N CO2

 + NN2 = (NC – N CO2
) + (NO – NC)/2 + N CO2

 

    = NN2 + (NO + NC – N CO2
)/2 = 21 – N CO2

/2 (I)

Applying Eqs. (A) and (G)–(I), at 20 bar, at the exit
N CO2

 = 6.96 kmole, and

NCO = 2.04 kmole, N O2
 = 1.52 kmole, and N = 17.52 kmole.

When the feed stream is altered to react 6 kmole of CO, 3 kmole of CO2, 3.5 kmole of
O2, and 7 kmole of N2, the respective inputs of C, O and N atoms remain unaltered at
9, 19 and 14  respectively. Therefore, the equilibrium composition is unchanged. This
indicates that it does not matter in which form the atoms of the reacting species enter
the system. The same composition, for instance, could be achieved by reacting a feed
stream containing 9 kmole of C(s) (solid carbon, such as charcoal), 9.5 kmole of O2

and 7 kmole of N2 (which is treated as an inert in this problem).
From Eq. (A) we note that for a specified temperature, the value of Ko(T) is unique.
Therefore, if the pressure changes, the temperature does not. Eq. (E) dictates that  the
composition is altered and more CO2 is produced as the pressure is increased.

h. Example 8

pressure. What is the resulting equilibrium composition and Gibbs energy?
Solution

We leave it to the reader to show that at equilibrium

Consider  a PCW assembly that is immersed in an isothermal bath at 3000 K.  It  ini-
tially  consists of 9 kmole of C atoms and 19 kmole of O atoms (total mass =
9×12.01+ 19×16 = 412 kg)  is allowed to reach chemical equilibrium at 3000 K and 1

bar. What is the equilibrium composition?  What is the value of the Gibbs energy? If
we keep placing sand particles one at a time on the piston to a final pressure of 4 bar,
i.e., we have allowed sufficient time for chemical equilibrium to be reached at that



N CO2
= 5.25 kmole, NCO = 3.7 kmole, and N O2

= 2.37 kmole. (A)

Therefore,

N = ΣNk = 11.37 kmole. (B)

The Gibbs energy,

G = N CO2
ĝ CO2

+ NCO ĝCO + N O2
ĝ O2

, where (C)

ĝ CO2
= gCO

o

2
(T)+ R T ln(p CO2

/1) = hf CO
o
, 2

+( h t,T– h t,298K)-[ s 0 - R T ln(X CO2
P/1)], (D)

X CO2
= N CO2

/N = 0.462.

At 3000 K and 1 bar, ĝCO2= –1262000 kJ kmole–1, ĝCO = –865200 kJ kmole–1 and
ĝO2 = –794400 kJ kmole–1. Hence,

G = – 11,753,000 kJ,
which at this equilibrium state must be at a minimum value.
At a temperature of 3000 K and a pressure of 4 bar, the equilibrium composition
changes to

N CO2
= 6.4 kmole, NCO = 2.6 kmole, and N O2

= 1.8 kmole, and (E)

N = ΣNk = 10 kmole, and G = –11374000 kJ. (F)

Remarks
There is no entropy generated since there is no irreversibility. The difference in the
minimum Gibbs free energies (i.e., at the equilibrium states) between the two states
(3000 K,10 bar) to (3000 K,4 bar) is

dG = –SdT + VdP, dGT = VdP = (N R T/P) dP, or
G2 (3000,1) –G1 (3000, 4)  = (–11374000) – (–11757000) = 383000 kJ.

If N ≈ constant ≈ (11.37+10)/2 = 10.69 kmole, then dGT = (N R T/P) dP. Integrating,

G2-G1 ≈ N R T ln (P2/P1) = 369455 kJ.

The relations dU= T dS- P dV, dH = T dS + V dP, dG = -S dT + V dP, etc., for closed
systems can be applied even for chemical reactions  as long as  we connect a reversi-
ble path between the two equilibrium states. However these equations can not be ap-
plied during irreversible chemical reactions. Such a statement is also true for non-
reacting systems.
If we compress the products very slowly from 1 to 4 bar isothermally at 3000 K, the
reaction tends to produce more CO2, i.e., NCO2 increases from 5.25 to 6.4 kmole. In-
stead, rapid compression to 4 bar produces an insignificant change from the composi-
tion at 1 bar, i.e., the products will be almost frozen at NCO2 = 5.25, NCO = 3.75, NO2 =
2.37 even though the state is now at 3000 K and 4 bar. The products during this initial
time are in a nonequilibrium state. The value of G at this state is GFrozen =
5.25× ĝCO2(3000, 4 bar, XCO2=5.25/11.37) + ^gCO(3000, 4 bar, XC O=3.75/11.37) +

^gO2(3000, 4 bar, XO2=3.75/11.37) = 5.25 × (-1,227,400) + 3.75 × (-830,600) + 2.37

× (-759,800) = -11,360,000 kJ, which is higher than G = -11,374,000 kJ at the equilib-

rium composition corresponding to 3000 K, 4 bar. If we allow more time at the state
(3000 K, 4 bar) and examine the composition after a long while, then chemical equi-
librium will have been reached, and G will have approached its minimum value of
–11,360,000 kJ.



A similar phenomenon occurs when these reacting gases flow at the slowest possible
velocity through a diffuser where the pressure at the diffuser exit is 4 bar.  If we fol-
low the 412 kg mass when it flows through the diffuser, it will reach its equilibrium
composition given by Eq. (D). However, if the same mass flows at high velocity, the
composition at the exit of the diffuser can be almost the same as at the inlet.

5. Gas, Liquid and Solid Mixtures
Consider the following chemical reactions

CaCO3(s) → CaO(s) + CO2(g), (50)

H2O(l)  + CO(g) → CO2(g) + H2(g), and (51)

CaO(s) + SO2 (g) + 1/2 O2(g) → CaSO4(s). (52)

All three reactions consider species in two separate phases called heterogeneous reactions. For
reaction given by Eq. (52) the equilibrium relation follows from Eq. (35a), i.e.,

K T
f T P f T

f T P

f T

f T P

f T

f T P

f

CaSO s CaSO s CaSO s

SO g SO g

SO g

O g O g

O g

CaO s CaO s

CaO s

0 4 4 4

2 2

2

2 2

2

1

1 1

( )
( , ) ˆ / ( , )

( , ) ˆ

( , )

( , ) ˆ

( , )

( , ) ˆ

(

( ) ( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

=
α

α α α
TT, )1

(53)

If CaSO4 and CaO are fully mixed at the molecular level, assuming that the solid mixture is an
ideal solution,

 α̂ CaSO s4 ( )= X CaSO s4 ( ), and  α̂ CaO(s)= XCaO(s), where X CaSO s4 ( )+ XCaO(s)=1. (54)

For the ideal solution f k(s)(T, P) ≈ f k(s)(T, 1). Assuming ideal gas behavior for SO2 ,

 α̂ SO2
= X SO2

,  α̂ O2
= X O2

, f SO2
(T, P) = P, and f O2

 (T, P) = P. (55)

Therefore, Eq. (53) assumes the form

Ko(T) = (X CaSO s4 ( )/(X SO2
X O2

1/2
 XCaO(s)) (P/1)–3/2. (56)

i. Example 9

solid participating in the same reaction. Assume that    g

g H O g2 ( ) = –228572 kJ kmole–1, g

Determine   (p H O g2 ( ) )(p

40% volatile H2SO4(l)  and 60% nonvolatile liquid.

Solution
Pure H2SO4 (l)
The problem involves a mixture of phases. We will select the standard state to be the
liquid state for H2SO4(l) . Then from Eq. (35a),

Ko(T) = Π(f k(T,P) α̂ k/f k(T, 1 bar)) νk .

The gaseous species are assumed to be ideal so that
f k(g)(T, P) = P, f k(g)(T, 1 bar) = 1, and α̂ k(g)(T, P, Xk) = Xk.

In the liquid phase at 1 bar
f H SO2 4

(T, P)/f H SO2 4
(T, 1 bar) ≈ 1.

Determine the relations between the partial pressures and temperature for the follow-
ing scenarios: pure H2SO4(l)  dissociating upon evaporation, H2SO4(l)  → H2O(g) +

SO3(g), and an ideal mixture of 40% volatile H2SO4(l)  and 60% nonvolatile liquid or

H SO2 4
= –690013 kJ kmole–1,

SO g3( ) = –371060 kJ kmole–1 at 298 K and 1 bar.

SO g3( )) at 298 K for pure H2SO4 (l) and  for an ideal mixture of



Further, since the liquid is pure,
α̂ H SO2 4

= 1, and

α̂ Ko(T) =(p H O g2 ( ) /1)1(p SO g3( ) /1)1 .

At 298 K, when X H SO2 4
 = 1

(p H O g2 ( ) )(p SO g3( )) = 1.44×10–16,

which indicates that the partial pressures are very low, i.e., there is negligible disso-
ciation.
Ideal Liquid Mixture:
Since the liquid phase is in an ideal mixture, the activity of H2SO4(l)  = X H SO2 4

, and

Ko(T) = (P X H O g2 ( ) /1)1 (P X SO g3( ) /1)1/X H SO2 4

          = (p H O g2 ( ) /1)(p SO g3( ) /1)/X H SO2 4
, i.e.,

(p H O g2 ( ) )(p SO g3( )) = X H SO2 4
Ko(T).

The Gibbs energy change
∆Go(T) = g H O g2 ( )  + g SO g3( )  – g H SO2 4

             = –228572 –371060 + 690013 = 90381 kJ kmole–1, and
ln Ko(T) = – ∆Go(T)/ ( R T) = –36.48, i.e.,

Ko(T) = 1.44×10–16.

At 298 K, when X = 0.4,
(p H O g2 ( ) )(p SO g3( )) = 0.4×1.44×10–16= 0.576×10–16.

Remarks
During the vaporization of H2SO4(l) it is possible to produce H2O, SO2, SO3, and O2,

rather than H2SO4(g). The pertinent reactions are

H2SO4(l)  → H2O(g) + SO2(g) + 1/2 O2(g), and

H2SO4(l)  → H2O(g) + SO3(g)

At equilibrium, can you determine the SO2 and SO3 concentrations?

j. Example 10

equilibrium constant for the reaction at 298 K, treating the gaseous species as ideal.
Solution

Since CO, H2 and CO2 are treated as ideal gases, fk = P, âH2O  = 1, fH2O(l) (T,P) ≈ fH2O(l)

(T,1)  and  for others α̂ k  = Xk so that Eq. (35a) transforms to

Ko(T) = (p H2
/1)(p CO3

/1)/((pCO/1) X H O2
) = (p H2

/1)(p CO3
/1)/(pCO/1)

          = exp (–( gH
o

2
+ gCO

o

2
– gCO

o – gH O
o

2
)/ R T). (A)

Using tabulated values,
gH O

o

2 (l) = h H O2
– T s H O2

            = –285830 – 298×69.95 = –306675 kJ kmole–1 of H2O(l) ,
gCO

o  = –110530 – 298×197.56 = –169403 kJ kmole–1 of CO,

gCO
o

2
 = –393520 – 298×213.7 = –457203 kJ kmole–1 of CO2, and

gH
o

2
 = 0 – 298×130.57 = –38910 kJ kmole–1 of H2.

Therefore,
∆Go = –38910 – 457203 – (–169403 – 306675)

Consider the water gas shift reaction H2O(l)  + CO → H2(g) + CO2(g). Determine the



        = –20035 kJ kmole–1 of CO, and
Ko(298 K) = exp (20,035÷(8.314×298)) = 3250.4.

Remarks
Since Ko(298 K) is extremely large, X CO3

X H2
/XCO is also large, and, consequently,

the value of XCO at chemical equilibrium is extremely small. Therefore, if CO gas is
bubbled through a vast reservoir of H2O(l) at 298 K, very little unreacted CO is left
over. Note that the results pertain only to an equilibrium condition. However, the time
scale required to reach it may be inordinately large.

k. Example 11

of SO3 at 1200 K if Ko(1200 K) = 2.93×107.

Solution
Assume the standard for solids to be solid and for gases to be ideal gases at P = 1 bar
and  use the approximation that f k(s)(T,P) ≈ f k(s)(T, 1bar).

Since gas SO3 behaves like an ideal gas,
α̂ SO3

 = X SO3
, f SO3

(T, P) = P.

The solid phase contains both CaSO4 and CaO. Assuming the ideal solution model for
the solid phase,

α̂ CaSO4
= X CaSO4

, and α̂ CaO = XCaO = 1 – X CaSO4
.

The equilibrium relation for the reaction is,
Ko(T) = X CaSO4

/(XCaO (P X SO3
)/1).

If the solids are not mixed at the molecular level, they exist separately. Therefore,
X CaSO4

 = XCaO = 1, and

Ko(T) = 1/((P X SO3
)/1).

In the unmixed case,
2.93×107 = 1/(p SO3

/1), i.e., p SO3
= 0.41×10–8 bar.

Remarks
If the pressure P = 1 bar, then for the unmixed case X SO3

= p SO3
/P = 0.41×10–8 or

0.0041 ppm (parts per million). If the pressure is isothermally increased, the value of
p SO3

 remains unchanged, but X SO3
decreases, i.e., more of the sulfate will be formed.

In many instances, in power plants SO2 released due to coal combustion is allowed to
react with lime in order to produce sulfates according to the following reaction

CaO(s) + SO2 + 1/2O2 → CaSO4 (s).

The equilibrium relation for this reaction is
Ko(T) = 1/((p SO2

/1)(p O2
/1)1/2)) = (1/(X SO2

X O2

1/2)) (P/1)–1/2.

Increasing the pressure at constant T,  causes X SO2
to decrease so that a lesser amount

of SO2 will be emitted, i.e., more SO2 is captured from the combustion gases.

l. Example 12

CO? Also explain what happens if the outlet contains C(s), CO, and O2.

One kmole each of C(s) and O2 enter a reactor at 298 K. The species CO, CO2, and O2

leave the reactor at 3000 K and 1 bar at equilibrium. Find the value of the equilibrium
composition at the exit. What is the heat transfer across the boundary? What will hap-
pen if the inlet stream is altered to contain 1/2 kmole of oxygen and one kmole of

Consider the reaction of SO3(g) with CaO(s), a process that is used to capture the SO3

released during the combustion of coal, i.e., CaO(s) + SO3(g) → CaSO4(s). Determine

the equilibrium relation assuming that the sulfates and CaO are mixed at the molecu-
lar level (i.e., they are mutually soluble) and are unmixed. What is the partial pressure



Solution
The overall chemical reaction is

C(s) + O2 → a  CO2 + b CO + c O2 (A)

The species leaving the reactor are in an equilibrium state so that the following reac-
tion must be in equilibrium, namely,

CO2 → CO + 1/2 O2. (B)

From an atom balance,

C atoms 1 = a + b (C)

O atoms: 2 = 2a + b + 2c. (D)

Therefore,

b = 1 – a, and c = (1 – a)/2. (E,F)

The total moles leaving the reactor are

N = a + b+ c = (3 – a)/2. (G)

The exit equilibrium condition requires that

Ko(T) =  pCO  pO2 _ /pCO2 (H)

For the carbon dioxide dissociation reaction at 3000 K,
Ko(3000 K) = 0.327.

Since,
XCO = b/N, X CO2

= a/N, X O2
= c/N, and pk = Xk×1 bar,

Solving the three unknowns a,b and c from Eqs. (B), (C) and (H)
a = 0.563, b = 0.437, and c = 0.219.

Applying the First Law

dEcv/dt = Q̇  cv – Ẇcv + Σ,k Ṅ ik 
)
h i,k – Σk Ṅe,k

)
h e,k, (I)

Under steady state, dEcv/dt =0, and there is no work transfer. Thus, for every kmole of
C(s),

q
Q

Nc s

=
˙

˙
( )

== 0.563 h CO2
(3000 K) + 0. 437 hCO(3000 K) + 0. 219 h O2

(3000 K) –

hC(s)(298 K) – 1/2 h O2
(298 K) = 121426 kJ per kmole of C(s) consumed. (J)

If the inlet stream is altered to contain 1/2 kmole of oxygen and one kmole of CO, the
atom balance remains unchanged. Therefore, the outlet composition will remain un-
altered. However, the heat transfer will change, since the inlet stream containing CO
and O2 has a lower enthalpy as compared to the mixture of C(s) and O2. Hence, the
value of Q will be lower.
If CO,O2 and C(s) are  present at the outlet, the overall chemical reaction is

C(s) + 1 O2 → b CO + c O2 + d C(s) (K)

There are two atom balance equations, and we will also consider the following reac-
tion to be in equilibrium, i.e.,

C(s) + 1/2 O2 → CO, so that (L)



Ko(T) = pCO/1/((p O2
/1)1/2 (fC(s)(T,P)/fC(s)(T,1)))

Since (fC(s)(T,P) ≈ fC(s)(T,1)),

Ko(T) = pCO/1/((p O2
/1)1/2) = (XCO/X O2

) (P/1)1/2. (M)

Hence, from O atom and C atom balances
2= b+2c,  b + d = 1; thus c = (2-b)/2,  d = (1-b), and N = b+c = (b + 2)/2, so that

(b = 2/{(P/2)1/2/Ko(T) + 1})< 1, and d = 1 – b.
For the C(s) + 1/2 O2 → CO,

Ko(3000 K) = 106.4.
Since Ko(3000 K) is relatively large, Eq. (M) suggest that X O2

 ≈ 0, i.e., almost all of

the oxygen is consumed and converted into product.

m. Example 13

O2
, NCO, N CO2

, and

exit.
Solution

O atom balance: 2a = 2 N O2
 + NCO + 2 N CO2

, and (C)

KA = NCO/N O2

1/2 (P/(1×N))1/2. (D)

Likewise,

KB = (NCO N O2

1/2/N CO2
(P'/N)1/2, (E)

where P' = P/1. Hence,

KB/KA = N O2
/N CO2

, and (F)

Since 2a = 2 N O2
 + NCO + 2 N O2

(KA/KB),

N O2
= (2a – NCO)/(2(KA/KB +1)), and (H)

N = NCO + (2a – NCO)/(2(KA/KB + 1)) + (KA/KB) (2a – NCO)/(2(KA/KB + 1))

    = (2 a + NCO)/2. (I)

Therefore, Eq. (D) becomes

KA = (NCO/((2a – NCO)/(2(KA/KB + 1)))1/2) (2 P'/(2 a + NCO))1/2, or

KA/(KA/KB + 1)1/2 = NCO (4 P'/(4a2 – NCO 2))1/2, i.e., 

KA
2 KB/(KB + KA) = 4 NCO

2 P'/(4a2 – NCO
2), (J)

NCO(T) = 2 a/(1 + 4 (P'/KA) (1/KA+1/KB))1/2, and (K)

XCO(T) = NCO/N = 2/(1 + (1 + 4 (P'/KA) (1/KA + 1/KB))1/2)). (L)

X CO2
can be similarly expressed. The required carbon atom input is

Let the number of kmole of O2 entering a reactor equal the value a, while the number
of moles of O2, CO, CO2, and C(s) leaving that reactor equal N

NC(s). Assume the following reactions (respectively, A and B) to be in equilibrium:
C(s)+ 1/2 O2 →  CO, and CO2 →  CO + 1/2 O2. Determine NCO(T) and minimum

amount of carbon(s) that should  enter the reactor so as to maintain equilibrium at the



NC,in ≥ NCO + N CO2
, (M)

where the equality applies to the minimum carbon input required for achieving
chemical equilibrium. A mathematical expression for the minimum carbon input is

NC,in,min/a = [{(KA/KB)+1}/{1+4(1/KB+1/KA)P'/KA}/2 + 2(KA/KB)]/(2+KB/KA).

6. van’t Hoff Equation
The van’t Hoff Equation for Ko(T) is due to Jacobus Henricus van't Hoff

(1852–1911). It presents a relation between the equilibrium constant  Ko(T) and the enthalpy of
reaction  ∆HR.

a. Effect of Temperature on Ko(T)
Recall  from Chapter 7 that

(∂( gk/T)/∂(1/T))P = hk. (57)

Consider the reaction: CO2 → CO + 1/2 O2, for which

(∂( gk/T)/∂(1/T))P = hk, and (58)

∆G(T, P) = gCO(T, P) + 1/2 g O2
(T, P) – g CO2

(T, P), i.e., (59)

∂(∆G/T)/∂(1/T) = ∆HR(T,P). (60)

The enthalpy of reaction

∆HR (T, P) = hCO(T, P) + 1/2 h O2
(T, P) – h CO2

(T, P). (61)

At 1 bar,

d(∆Go/T)/d(1/T) = ∆H R
o (T). (62)

Since ln Ko(T) = –∆Go/ R T,

d ln Ko(T)/dT = ∆H R
o (T)/ R T2, (63)

which is known as the van’t Hoff equation. If ∆HR
0 ≈ constant,

ln Ko(T) = – ∆H R
o / R T + constant, (64)

which is a linear relationship.  Figure 7  presents plots of ln Ko(T) vs 1/T for various reactions
and the approximate relation of Eq. (64) appears to be valid. If Ko = K ref

o  at T = Tref, the con-
stant in Eq. (64) can be eliminated, i.e.,

ln (Ko/K ref
o ) = –(∆H R

o / R ) (1/T – 1/Tref). (65)

This relation can be written in the form

ln Ko(T) = A – B/T, where (66)

A = ln K ref
o  + (∆H R

o / R ) (1/Tref), and (67)

B = (∆H R
o / R ). (68)



Eq. (66) is a linear relationship. Figure 7 presents plots of ln Ko(T) vs. 1/T. If Tref = To, we can
simplify the constant A so that

A = (–∆Go(To)/ R To) + (∆H R
o (To) / R To).

Since ∆Go = ∆H R
o  – To∆S R

o

A = ∆S R
o (To)/ R , and (69)

B = ∆H R
o (To)/ R . (70)

If ∆H R
o  > 0 (e.g., endothermic decomposition reactions), B> 0 and Ko(T) increases with tem-



perature. Conversely, if ∆HR
0 < 0 (e.g., exothermic combustion reactions), B < 0. At the tran-

sition temperature Ttrans the value of K equals unity. Applying Eqs. (66), (69), and (70),

Ko(T) = 1= exp(∆S R
o / R ) exp (–∆H R

o / R Ttrans) 

= exp (–(∆H R
o – Ttrans∆S R

o )/ R Ttrans)), i.e.,

Ttrans = (∆H R
o /∆S R

o ). (71)

The transition temperature is the temperature at which significant amount of products start to
be formed.

n. Example 14

mine the transition temperature (i.e. at which K0(T) =1).
Solution

Recall  from Eq. (65) that

Ko(T) = Ko(To) exp{(–∆Ho/ R ) (1/T – 1/To)}, (A)

where K(T0) = exp (–∆Go/ R T0) and

∆Go = ∆Ho – T∆So = 336500 – 298×455.8 = 200672 kJ kmole–1, i.e.,

Ko(To) = exp (–∆Go/ R To) = 6.67×10–36, or (B)

Ko(T) = 6.67×10–36 exp {– (336500/8.314)(1/T – 1/298)} (C)

By setting Ko(T) =1,  the  transition temperature Ttrans = 336500÷456 = 738 K.

Remarks
Since,

Ko(T) = (p NH3
/1 (p H O2

/1) (p SO3
/1), (D)

and Ko increases with temperature, decomposition is also favored at higher tempera-
tures.

o. Example 15

the equilibrium of liquid and vapor.
Solution

Consider an isothermal and isobarically maintained air duct into which water droplets
are injected. The chemical potentials of the liquid drops and the vapor are different,
which cause a transfer of species from one phase into the other (from liquid to vapor
during evaporation). The liquid droplets will eventually reach equilibrium with the
vapor. At the equilibrium condition

H2O(l) → H2O(g), and (A)

Ko(T) = p H O2 (g)/1 (B)

Derive the Clausius–Clapeyron Relation from the van’t Hoff equation by considering

Determine the equilibrium constant for the reaction NH4HSO4(l) → NH3(g) + H2O(g)

+ SO3(g). At 298 K, ∆Ho = 336500 kJ kmole–1 and ∆So = 455.8 kJ kmole–1 K. Deter-



If the equilibrium constant is known at a reference temperature Tref,

Ko
ref(T) = p H O2 ,ref(g)/1, and (C)

from the van’t Hoff equation

ln (Ko/ K ref
o ) = – (∆H R

o / R ) (1/T – 1/Tref). (D)

For the vaporization process,

∆H R
o  = hg – h f, or ∆H R

o  = h fg, i.e., (E)

ln (p H O2 (g)/p H O2 (g),ref) = – ( h fg/ R ) (1/T –1/Tref), (F)

which is a relation for the change in the partial pressure of the vapor as the tempera-
ture changes. This is almost same as the Clausius–Clapeyron Relation

ln (P/Pref) = – (( hg – h f)/T/ R ) (1/T–1/Tref). (72)

b. Effect of Pressure
Since,

d ĝ k,T  = v̂ kdP and d ĝ /∂P  = v̂ k,

(∂(∆G)/∂P)T = Συk v̂ k = ∆VR, (73)

where ∆VR denotes the volume change between the products and the reactants. In this context,

since ln K(T,P) = – ∆G(T,P)/ R T and using Eq. (73),

∂ (ln K(T,P))/∂P = – ∂(∆G/ R T)/∂P = –(1/ R T) ∆VR. (74)

For an incompressible species (e.g, during the reaction Na(s) + Cl(s) → NaCl(s)),

∆VR ≈ constant, and

ln (K(T,P)) = –(1/ R T) P ∆V R
o  + constant.

If the value of K(T,Pref) is known, then,

ln (K(T,P)/Kref(T,Pref)) = –(1/ R T) ∆V R
o (P – Pref). (75)

For ideal gases, ∆VR = Σ υk( R T/P), i.e.,

ln (K(T,P)) = –(Συk)  ln P + Constant. (76)

p. Example 16
Consider the reaction

CO2 → CO + 1/2 O2. (A)

versa.
Solution

Recall that

d(ln Ko)/dT = ∆H R
o / R T2, (B)

That occurs in an isobaric and isothermal reactor. Discuss the effect on the equilib-
rium composition when the temperature is increased at a specified pressure and vice



where ∆H R
o  > 0 for the reaction. Hence, d(ln Ko)/dT > 0, and the value of K increases

with an increase in the pressure. Consequently, since

Ko(T) = (pCO/1) (p O2
/1).0.5/(p CO2

/1), (C)

The value of p CO2
 decreases (as does that of X CO2

). The effect of increasing the tem-

perature is to dissociate more CO2.
Simplifying Eq. (C),

Ko(T) = XCO(X O2
)0.5 (P/1)0.5/X CO2

. (D)

The value of Ko is a function of temperature alone. Therefore, increasing the pressure
should cause the value of X CO2

 to increase, i.e., a relatively lower amount of disso-

ciation will occur. Since each mole of CO2 that dissociates produces 1.5 moles of the
other two species, a lower dissociation results in a smaller amount of product (in
terms of moles), thereby lowering the pressure (which counteracts the pressure in-
crease).  This is an example of the Le Chatelier principle which states that any inho-
mogeneity or disturbance that is introduced into a system must result in a process
which counteracts that inhomogeneity or disturbance.

q. Example 17

for the reaction CO2 → CO + 1/2 O2,

ln Ko = A – B/T (A)

amounts
Solution

Assume that the overall combustion reaction is represented by the equation
CH4 + a (O2 + 3.76 N2) → CO2 + 2H2O + b N2 + d O2.   (B)

It is by now straightforward to determine that a = 2.2982, b = 8.641, and d = 0.2982.
The carbon dioxide concentration in the exhaust on a wet basis is

100 × (1 ÷ (1 + 2 + 3.76 × 2.2982 + 0.2982))% = 8.4%.

Likewise the nitrogen concentration is 72.4%. Note that CO is not produced during
combustion according to our model, but is instead formed due to dissociation of CO2

through the reaction CO2 → CO + 1/2 O2. The equilibrium constant for that reaction

Ko(T) = pCO(p O2
).0.5/(p CO2

), i.e., pCO = Ko(T) p CO2
/(p O2

)0.5. (C)

Since CO exists in trace amounts, p CO2
= 0.084 bar and p O2

 = 0.025 bar (in proportion

to their concentrations).
Applying Eq. (A) at 1500 K, Ko(T) = 3.28×10–6, i.e.,

pCO/1 = 3.28×10–6 (0.084/1)/(0.025/1)0.5 = 1.743×10–6.

At one bar, XCO = pCO/P = pCO/1 bar = 1.743×10–6.

Remark
Figure 8 presents the CO concentration in ppm for methane and solid carbon com-
bustion with 20% excess air. The CO concentration does not significantly differ when
the fuel changes from methane to carbon. Similarly, one can determine the equilib-
rium concentrations of other trace species, such as O, H2.

where A = 9.868 and B = 33742.4 in the appropriate units. Assume that CO is in trace

Consider the combustion of CH4 in air at 1 bar. Determine the number of moles of
products produced (and, in particular, the CO concentration) per kmole of fuel con-
sumed if the oxygen mole fraction in the products is 3% on a dry basis. Assume that



7. Equilibrium for Multiple Reactions
This concept will be illustrated through the following example.

r. Example 18

termine the equilibrium composition.
Solution

The overall chemical reaction is

CH4 + 2(O2+ 3.76 N2) → 

N CO2
CO2 + NCO CO + N H O2

H2O + N H2
H2 + N O2

O2 + N N2
N2 + NOH OH. (A)

There are seven species of unknown composition. The four atom conservation equa-
tions for C, H, N, and O atoms are:

C atoms: 1 = N CO2
 + NCO, (B)

H atoms: 4 = 2×N H O2
 + 2×N H2

 + NOH, (C)

N atoms: 7.52×2 = 2×N N2
, and (D)

O atoms: 2×2 = 2×N CO2
 + NCO + N H O2

 + 2×N O2
 + NOH. (E)

 We, therefore, require three additional relations. At equilibrium, for the reactions

CO2 → CO + 1/2 O2, K
o CO2  = pCO(p O2

)0.5/(p CO2
), (F)

H2O → H2 + 1/2 O2, K H O2
 = (p H2

)(p O2
)0.5/(p H O2

), and (G)

OH → 1/2H2 + 1/2 O2, KOH = (p H2
)0.5(p O2

)0.5/(pOH). (H)
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Figure 8: The CO emission due to the combustion of carbon and CH4 at a 20%
excess air level.

Consider the stoichiometric combustion of one kmole of CH4 with air. The products
are at 2250 K and 1 bar stream and contain CO2, CO, H2O, H2, O2, N2, and OH. De-



Assume for example NCO, NO2, NCO2. Solve for  other species from Eqs. (B) to (E).
Then check whether Eqs. (F) to (H) are satisfied. If not iterate. We have developed a
spreadsheet based program which presents solution for all species at any given T and
P, and any given air composition.  The results (in terms of one kmole of methane con-
sumed) are

N CO2
 = 0.910, NCO = 0.09, N H O2

 = 1.96, N H2
 = 0.04, N O2

 = 0.064, and

N N2
 = 7.52

Remark
If it exists in trace amounts, the NO concentration at equilibrium can be determined
during combustion by considering the following reactions, i.e.,

NO → 1/2 N2 + 1/2 O2, for which (I)

KNO = (p H2
/1)0.5(p O2

/1)0.5/(pNO/1). (J)

8. Adiabatic Flame Temperature with Chemical Equilibrium
The energy balance equation applicable during combustion in a reactor is

dEcv/dt = Q̇  cv – Ẇcv + Σ,k Ṅ ik 
)
h i,k – Σk Ṅe,k

)
h e,k,. (77)

a. Steady State Steady Flow Process
At steady state dEcv/dt = 0. For an adiabatic reactor, Q̇  cv  = 0.  Since  Ẇcv  = 0,

Σk Ṅ ik 
)
h i,k – Σk Ṅe,k

)
h e,k= 0 or   Ḣ I = Ḣe  = 0 where  = Ḣ  = Σk Ṅk

)
h ik (78)

For ideal gas mixtures or ideal solutions, 
)
h k  =  hk  =  h0

f,k   + ( h t,T   -  h t,298) k

b. Closed Systems
The energy balance for an adiabatic closed system is

dEcv/dt = Ẇcv.

If the boundary work is neglected (e.g., for a fixed volume), dEcv/dt = 0. If other forms of the
energy are neglected and we assume that E = U,

(Σ  Nk 
)
uk

) products -  (Σ  Nk 
)
uk

) reactants = 0 or Ureactants = Uproducts  (79)

where 
)
u k  = 

)
h k – P  v̂ k and for ideal gas mixtures 

)
u k = uk = hk - R T.

s. Example 19

product temperature and composition.
Solution

First let use assume T. The problem of solving for the composition becomes similar to
previous examples.  The overall chemical reaction is

CH4 + 2(O2+ 3.76 N2) → 

N CO2
CO2 + NCO CO + N H O2

H2O + N H2
H2 + N O2

O2 + N N2
N2. (A)

There are six species of unknown composition. The atom conservation equations for
C, H, N, and O atoms are:

Consider the stoichiometric combustion of 1 kmole of CH4 with air at  1 bar. The spe-
cies enter an adiabatic reactor at 298 K (state 1) and the products leaving it are deter-
mined to be the species CO2, CO, H2O, H2, O2, and N2 at equilibrium. Determine the



C atoms: 1 = N CO2
 + NCO, (B)

H atoms: 4 = 2×N H O2
 + 2×N H2

, (C)

N atoms: 7.52×2 = 2×N N2
, and (D)

O atoms: 2×2 = 2×N CO2
 + NCO + N H O2

 + 2×N O2
. (E)

We, therefore, require two additional relations to solve for six unknowns. At equilib-
rium, for the reactions

CO2 → CO + 1/2 O2, K
o CO2  = pCO(p O2

)0.5/(p CO2
), (F)

H2O → H2 + 1/2 O2, K H O2
 = (p H2

)(p O2
)0.5/(p H O2

). (G)

The energy balance is used to solve for T. For ideal gas mixture

(Σ N k hk)i – (Σ N k hk)e = 0. (H)

This problem is solved iteratively. Solving, the adiabatic temperature is 2249 K.
The equilibrium composition is

N CO2
 = 0.91, NCO = 0.09, N H O2

 = 1.96, N H2
 = 0.04, N O2

 = 0.064,

N N2
 = 7.52, and Q = 29 kJ.per kmole of CH4

Table A-27C tabulates the equilibrium flame temperature and entropy generated at 298 K  in
an adiabatic reactor for  selected fuels.

9. Gibbs Minimization Method

a. General Criteria for Equilibrium
At a specified temperature and pressure, for any composite system, (dGT,P = ΣµkdNk)

≤ 0, where the equality holds at equilibrium. The Gibbs energy for a chemical reaction de-

creases as the reaction progresses (cf. dGT,P <0) until it reaches a minimum value. Since, G =
G(T,P,N1, N2...), the criteria for the  G minima are

dGT,P = 0 and d2GT,P > 0.  (80a,b)

Consider methane–air combustion at specified temperature and pressure according to
the overall reaction

CH4+a O2+b N2 → c CO+d CO2+e O+f O2+g NO+h H2O+i H2+j N2 +k C(s),

where a and b are known There are nine unknown species concentrations and four atom bal-
ance equations for C, H, N, and O atoms. Therefore, five equilibrium relations are required,
which may include the reactions

CH4 → C(s) + 2 H2, (A)

CO2 → CO + 1/2 O2, (B)

H2O → 1/2 O2 + H2, (C)

O2 → 2 O, and (D)



N2 + O2 → 2 NO. (E)

We may also select a linear combination of reactions. For instance, subtracting reaction (B)
from reaction (C) we obtain the reaction

H2O – CO2 → 1/2 O2 + H2 – CO – 1/2 O2, i.e., 

H2O + CO → CO2 + H2, (F)

which is the familiar water gas shift reaction. Note that reaction (F) does not provide an inde-
pendent equilibrium relation that can be selected in addition to reactions (A)–(E). The solution
procedure becomes far more complex as we encounter literally hundreds of species in a realis-
tic applications. Therefore, it is useful to adopt a more general procedure during which the
species concentrations are adjusted until the Gibbs energy reaches a minimum value at equilib-
rium, i.e., dGT,P = 0 and d2GT,P > 0 subject to the atom balance constraints and the specified
temperature and pressure. The LaGrange multiplier method is useful in this regard.

t. Example 20

with G= G(T, P, N O2
, NO) and minimizing  G subject to atom  conservation.

Solution
The O atom conservation equation is

 2 N O2
 + NO = 4 (A)

The Gibbs energy of the mixture must keep decreasing as the reaction proceeds and
equilibrium is achieved when it is at the minimum.

G = Σµk Nk, i.e., (B)

G = G(T, P, N O2
, NO) = µ O2

N O2
+ µONO. (C)

We will minimize Eq. (C) at the specified pressure and temperature subject to the
atom balance constraint Eq. (A). Using the LaGrange multiplier scheme

F = G(T,P,N O2
,NO) + λ (2N O2

+ NO – 4) = 0, and ∂F/∂N O2
= 0, ∂F/∂NO = 0. (D)

From Eq. (D),

∂F/∂N O2
 = ∂G/∂N O2

 + 2λ = 0, i.e., µ O2
 + 2λ = 0 (and µO + λ = 0). (E)

Assuming the ideal mixture model to apply,

µ O2
 = ĝ O2

 = g O2
(T,P) + R T ln X O2

. (F)

Further, assuming ideal gas behavior,

g O2
(T,P) = gO

o

2
 + R T ln (P/1). (G)

Therefore,

µ O2
= gO

o

2
+ R T ln (p O2

/1), and (H)

µO = gO
o  + R T ln (pO/1), so that (I)

A piston–cylinder assembly contains two kmole of O2 at 1 bar and 3000 K. The pres-
sure and temperature are maintained constant. Chemical reaction proceeds and O at-
oms are formed at the expense of O2. Determine the equilibrium composition starting



( gO
o

2
+ R T ln (p O2

/1)) + 2 λ = 0, and (J)

( gO
o  + R T ln (pO/1)) + λ = 0. (K)

Multiplying Eq. (K) by 2 and subtracting it from Eq. (J),

gO
o

2
 – 2 gO

o  + R T ln (p O2
/1)– 2 R T ln (pO/1) = 0, i.e.,

(pO/1)2/(p O2
/1) = exp (–(2 gO

o – gO
o

2
)/( R T)) or (NO)2(P/N)(2–1)/N O2

= Ko, where (L)

N = N O2
+ NO. (M)

The equilibrium constant

K = exp (–∆Go/ R T), where ∆Go = 2 gO
o  – gO

o

2
. (N)

With the values NO = 4 – 2N O2
 and N = 4 – 2N O2

 + NO2 = 4 – N O2
,

(4 – 2N O2
)2(P/(1(4 – N O2

)))/N O2
 = Ko. (O)

the pressure P = 1 bar,

(N O2
)2 – 4 N O2

 + 42/(4+Ko) = 0. (P)

Now,
gO

o

2
= –755102 kJ kmole–1, and gO

o = –323359 kJ kmole–1.

We can solve for N O2
 and selecting the root, such that N O2

> 0 and NO > 0, i.e.,

N O2
 = 1.8875, NO = 0.225, and Gmin = –1.52×106.

b. Multiple Components
The solution can be explicitly obtained for two components. We will now generalize

the methodology for multicomponent systems. The procedure to minimize G = G(T,P,N1, N2,
…, NK) subject to the atom balance equations is as follows.

Formulate the atom balance equations for each element “j”

Σkdjk Nk = Aj, j = 1, …, J, k = 1, …, K,  (81)

where djk denotes the number of atoms of an element “j” in species k (e.g., for the element j=O
in species k =CO2,  d = 2)  and Aj is the number of atoms of type j entering the reactor. This
relation can be expressed using the La Grange multiplier method, i.e.,

λj(Σk djk Nk – Aj),  j = 1, …, J, k = 1, …, K.  (82)

The Gibbs energy at equilibrium must be minimized subject to this condition.
We create a function

F = G + Σjλj(Σk djk Nk – Aj),  j = 1, …, J, k = 1, …, K,  (83)

such that

∂F/∂Nk = (∂G/∂Nk)T,P + (Σjλjdjk) T,P = 0, j = 1, …, J, k = 1, …, K, i.e.,  (84)

Next, we minimize F with respect to Nk, k = 1, …, K, and for each species,

µk + Σjλjdjk = 0,  j = 1, …, J, k = 1, …, K.  (85)



the term µE,k = Σjλjdjk is the combined element potential of species k. We can interpret λj as the

element potential of element j in species k, λj djk as contribution by element j to the k-th spe-

cies potential and the summation of the potential of all elements j in  species k as the combined
elemental potentials in species k.

Example 21

gas behavior.,
Solution

The stoichiometric amount of O2 can be determined from the stoichiometric relation
(C10H20) + 15 (O2 + 3.76 N2) = 10 CO2 + 10 H2O + 56.4 N2

With 5% excess air, the O2 supplied = 16.5 kmole, the N2 supplied is 62.04 kmole.
(C10H20) + 15. 8 (O2 + 3.76 N2) → Products.

This system is an open system. Now we follow a fixed mass (140+528+ 1737= 2405
kg) as it travels the reactor. We will assume that this mixture is instantaneously
heated to 2500 K at 1 bar and then calculate assuming various values for the moles of
the 8 species subject to the atom conservation relations for C, H, N, and O. We will
then select the composition at which G has a minimum value at this T and P using the
LaGrange multiplier method to arrive at the composition.
The four elements C, H, N and O  are denoted by the subscript j and the eight species
denoted by subscript k. The coefficients djk, i.e., d11 = 1, d12 = 1, … are provided in
the following table:

Coefficients djk

Element j→ C H N O

Species k ↓
CO 1 1
CO2 1 2
H2 2
H2O 2 1
NO 1 1
N2 2
OH 1 1
O2  2

The atom conservation equations (Σk djk Nk – Aj)  (see Eq. (81)) yield the relations:

j = 1 (C atoms):

1NCO + 1N CO2
+ 0N H2

+ 0N H O2
 + 0NNO + 0NN2+0NOH + 0NO2– 10 = 0, (A)

j = 2 (H atoms):

0 NCO + 0 N CO2
+ 2 N H2

+ 2 N H O2
 + 0NNO + 0NN2+1NOH + 0NO2– 20 = 0, (B)

j = 3 (O atoms):

1NCO + 2 N CO2
+ 0 N H2

+ 1 N H O2
 + 1NNO + 0NN2+1NOH + 2NO2  - 31.6 = 0, (C)

 j = 4 (N atoms):

0 NCO + 0 N CO2
+ 0N H2

+ 0 N H O2
 + 1NNO + 2NN2+0NOH + 0NO2  - 118.6= 0, (D)

Dividing these equations by the total moles (N= ΣNk), we obtain the relations

A steady flow  reactor is fired with 1 kmole of C10H20, with 5 % excess air. The spe-
cies (1 to 5) leaving are CO, CO2, H2 H2O, OH, O2, NO, and N2 at T= 2500 K and 1
bar.  Determine equilibrium composition of species leaving the reactor. Assume ideal



1XCO + 1X CO2
+ 0X H2

+ 0X H O2
 + 0XXO + 0XN2+0XOH + 0XO2– 10/N = 0, (E)

 0 XCO + 0 X CO2
+ 2 X H2

+ 2 X H O2
 + 0XNO + 0XN2+1XOH + 0XO2– 20/N = 0, (F)

1XCO + 2 X CO2
+ 0 X H2

+ 1 X H O2
 + 1XNO + 0XN2+1XOH + 2XO2  - 31.6/N= 0, (G)

 0XCO + 0 X CO2
+ 0X H2

+ 0 X H O2
 + 1XNO + 2XN2+0XOH + 0XO2  - 118.6/N = 0, (H)

and N is solved from the identity

ΣXk = 1. (I)

G = G(T,P,N1, N2, …, NK). (J)

Multiplying Eqs. (A)–(D), respectively by λC, λH, λN and λO,  and adding with Eq. (J)

we form a function

F = G + λC (NCO + N CO2
– 10) + λH(2N H2

+ 2N H O2
 + NOH   - 20) + 

λO(NCO + 2N CO2
+ N H O2

+ NOH+ NNO+ 2 NO2 – 31.6) + 

λN (NNO + 2 NN2 –118.6) (K)

that is minimized at equilibrium, i.e.,

∂F/∂NCO = (∂G/∂NCO)T,P + λC + λO = 0, (L)

∂F/∂NCO2 = (∂G/∂NCO2)T,P + λC + 2λO = 0, and (M)

∂F/∂N H2
 = (∂G/∂N H2

)T,P + 2λH = 0. (N)

Rewrite Eqs. (L) to (N) in the form

µCO + λC + λO = 0, (O)

µCO2 + λC + 2 λH = 0, and (P)

µ H2
 + 2λH = 0,where µk  = (∂G/∂Nk)T,P. (Q)

Recall that for an ideal mixture of gases  or ideal mix of liquids or solids

µk = ĝ k = gk(T,P) + R T ln (Xk). (R)

Divide by  R T, namely,

µk / R T = ( gk(T,P)/ R T) + ln (Xk1). (R´)

Divide Eqs. (O) through (Q) by R T and using Eq. (R´)

 ( gCO(T,P)/ R T) +  ln (XCO).+ λC´ + λO´ = 0, (S)

 ( gCO2(T,P)/ R T) + ln (XCO2).+ λC´ + 2 λH´= 0, and (T)



( gH2(T,P)/ R T) + ln (XH2)  + 2λH´ = 0, (U)

 where   λj´ = λj/ R T.

The values of ln (Xk) can be determined from the linear equations Eqs. (S) to (U) for
assumed values  of modified LaGrange multipliers of λC´, λH´,  λN´, and λO´. Then we

can check whether these four multipliers satisfy the four-element conservation equa-
tions Eqs. (E) to (H). Thus, knowing the values of µk, those of Xk can be determined

from linear equations such as Eq. (R). Irrespective of the number of unknown species,
the assumptions for the LaGrange multipliers are made only equal to number of atom
balance equations. Good starting values can be obtained by assuming complete com-
bustion, determining those mole fractions to obtain initial guesses for employing Eqs.
(S) to (U). For  T = 2500 K and P = 1 bar, gk = hk– T s k, and

gCO= –701455 kJ kmole–1, g H2
=  - 419840  kJ kmole–1,

g CO2
= –1078464 kJ kmole–1, and so on (S)

Good starting values could be λC´, λH´, λN´, and λO´ = 19.7, 12.5, 14.0, 17.1, respec-

tively. The converged solutions are provided below.
NCO = 2.04 kmole, N CO2

 =  7.96, N H2
 = 0.42, N H O2

 = 9.24,

NNO = 0.57, NN2 = 59, NOH = 0.69 , NO2 = 1.52,
N = ΣNk = 81.4 kmole.

The NASA equilbrium code uses a descent Newton-Raphson method with a typical
number  of iterations equal to 8-12.

D. SUMMARY
The chemical force potentials of reacting and product species can be used to determine the

direction of reaction just as the temperature (thermal potential) can be used to determine the
direction of heat transfer. While the First Law is used to determine the equilibrium tempera-
ture, the Second Law is  used to maximize the entropy at specified values of U, V, and m or
minimize G at given values for T, P, and m for determining the chemical equilibrium compo-
sition.

E. APPENDIX
Combustion reactions customarily involve compounds consisting of elemental C, H,

N, and O. Consider the reaction

H2O → H + OH, (A)

For which we are asked to determine the value of Ko.  If the Ko value is available for the reac-
tions involving elements in their natural forsm,

H2 + 1/2 O2 → H2O, (B)

1/2H2  → H, and (C)

1/2 H2 + 1/2 O2 → OH, (D)

Then for reactions (B)–(D)

– R T ln KH O
o

2
= gH O

o

2
 – gH

o

2
– 1/2 gO

o

2
, (E)

– R T ln KH
o = gH

o  – 1/2 gH
o

2
, and (F)



– R T ln KOH
o  = gOH

o  – 1/2 gH
o

2
 – 1/2 gO

o

2
. (G)

Likewise, for reaction Eq. (A),

– R T ln Ko =  = gH
o – gOH

o  – 1/2 gH O
o

2
, i.e., (H)

Substituting  gH
o from Eq. (F) ,  gOH

o  from Eq. (G) and  gH O
o

2
from Eq. (E) , we obtain

Ko = KOH
o KH

o / KH O
o

2
. (I)

Similarly, for the equilibrium constant for the reaction CO2 → CO + 1/2 O2, one can write by

observation, K0 = KCO
o / KCO

o

2
. Note that Ko (T) will not appear for elements in natural form.



Chapter 13

 13. AVAILABILITY ANALYSIS FOR REACTING SYSTEMS

A. INTRODUCTION
Combustion is a process during which chemical energy is converted into thermal en-

ergy. The ultimate objective is to convert chemical energy into useful work. The extent to
which this conversion is possible can be determined through an availability analysis. We have
discussed availability concepts for nonreacting systems in Chapter 4. This chapter presents
availability analyses for reacting systems. We will also discuss a methodology of determining
the maximum possible work potential of various fuels. For instance, in this context, it is often
required to determine the maximum possible work per gallon of gasoline or other liquid fuel
produced from an automobile engine operating in the ambient.

B. ENTROPY GENERATION THROUGH CHEMICAL REACTIONS
Availability (or exergy) analyses employ the Second Law to predict system irreversi-

bilities. The combustion–related chemical reactions generate irreversibilities that decrease the
availability and lower the conversion efficiency of chemical energy into useful work. The gen-
eral entropy balance equation is

dScv/dt = Q̇  cv /Tb + Σk,i Ṅk s k – Σk,e Ṅk s k + σ̇ (1)

(1/ ṄF) dScv/dt = ( Q̇  cv /Tb)(1/ ṄF)+ Σk,I( Ṅk/ ṄF) s k – Σk,e( Ṅk/ ṄF) s k + σ , (2)

where ṄF denotes the rate of change in the moles of fuel, and ν k = ( Ṅk/ ṄF) is the reaction
coefficient (which is not necessarily equal to the stoichiometric coefficient). It follows that

σ=(1/ ṄF) dScv/dt - ( Q̇  cv /Tb ) (1/ ṄF)- Σk,I ν k s k + Σk,e ν k s k, (3)

and under steady state steady flow conditions

σ= (Σ ν k ŝk)e - Σ( q j/Tb,j) - (Σ ν k ŝk)i. (4)

a. Example 1

conditions are 300 K and 1bar, and 400% excess air is involved.
Solution

The overall reaction with 400 % excess air can be expressed as

C6H12 O6+ 5 × 6 (O2 + 3.76 N2) → 6CO2 + 6 H2O + 24 O2 + 112.8 N2, (A´)

where q  = -2.5×106 kJ kmole–1 of glucose (from examples 1 and 6 in Chapter 11). At

steady state

σ=  (Σ ν k ŝk)i - Σ( q j/Tb,j) - (Σ ν k ŝk)e. (A)

Recall that sk
o (T) = ŝk = (T,pk). Therefore, for the species on the LHS of Eq. (A)

(Σ ν k ŝk)i = 1×288.96+30×218.01+30×3.76×193.4662, i.e.,

(Σ ν k ŝk)i = 28652  kJ K–1 k–1 glucose. (B)

At the exit (involving product species on the RHS of Eq. (A´)),

Determine the entropy generated during the oxidation of glucose within the cells of
the human body assuming that the reaction occurs at 310 K. Assume that steady state
conditions apply, the entropy of glucose at 310 K is 288.96 kJ kmole–1 K–1, the inlet



X O2
 = 24÷148.8= 0. 161, X N2

= 0.758, X CO2
= 0.0403, and X H O2

= 0.0403.

Hence,
s O2

(310K, p O2
) = 205.066 – 8.314×ln (1×0.16) = 220.2 kJ  kmole–1 K–1,

s N2
= 193.8  kJ kmole–1 K–1, s CO2

= 240.4  kJ kmole–1  K–1, and

s= 215.5  kJ kmole–1 K–1, i.e.,
(Σ ν k ŝk)e = 6×213.7+ 6×238.6 + 24×220 + 112.8×193.9

 = 29866 kJ kmole–1  of glucose.
Using Eq. (A) and specifying the control volume boundary just inside the human skin,

σ  =   29866- (- 2.5×106÷310) – 28652  = 9279  kJ K–1 kmole–1 of glucose.

Remarks
Entropy is generated since the inhalation temperature is different from the exhalation
temperature, and due to the irreversible chemical reaction.
If Tb = Te = TI = 37 C, the entropy generation is due to chemical irreversibilities
alone.
The typical consumption of glucose is 0.31 g min–1 for a 65 kg person. Therefore, the
entropy generated per second due to that person’s irreversible metabolic rate is
(9279/180.2)×0.31/(1000×60) = 2.66×10–4 kW K–1 or 4.1 ×10–6 kW kg–1 K–1. This

number is typically higher for smaller–sized animal species.

C. AVAILABILITY

1. Availability Balance Equation
The general availability balance equation is

d(Ecv- T0 Scv)/dt = Σ ˙ ( ),
,

Q
T

TR j
R j

1 0−  + (Σ Ṅk
)ψ k)i - (Σ Ṅk 

)ψ k)e - ṁ- İ, (5)

where İ  = To σ̇ cv  ≥ 0 since combustion is typically an irreversible process and the absolute

stream availability ψ̂ k = ( êT – To ŝ) k = ( ĥ+ ke + pe–To ŝ)k. Recall that species stream avail-
ability (or species stream exergy or relative availability) is defined as

)ψ k’ = 
)ψ k - 

)ψ k,0, (6a)

where 
)ψ k,0 (pk,e, T0) is the thermo-mechanical absolute stream availability of each species and

pk,e is the partial pressure of species k, pk,e = Xk,e P0. One may write Eq. (5) in terms of species
stream exergy also.

For ideal gases, sk = sk
o– R ln (pk/Pref), where the reference state is generally assumed

to be at Pref = 1 bar. Therefore, neglecting “ke” and “pe”,

ψk = ψk
o + R To ln(pk/1) where pk is expressed in units of bar. (6b)

Dividing Eq. (5) by the molal flow rate of the fuel,

(1/ ṄF) d(Ecv–ToScv)/dt = 

(Σ ν k ψ̂ k)i + Σ qR,j(1–To/TR,j) – (Σ ν k ψ̂ k)e – w cv – i , (7a)

where w cv = ( Ẇcv/ ṄF) and i  = ( İ / ṄF) = To σ . In terms of “i”,

i  = –(1/ ṄF)d(Ecv–ToScv)/dt + (Σ ν k ψ̂ k)i + 

            Σ qR,j(1–To/TR,j) – (Σ ν k ψ̂ k)e – w . (7b)



If a gas turbine combustor is started from cold conditions, the energy within it (dEcv/dt) starts
accumulating and the entropy increases (dScv/dt) due to a temperature rise within the combus-
tor. Consequently, the stream availability at the exit will be zero initially and starts raising over
time so that the work output from turbine increases until a steady flow steady state is achieved,
when

i  = (Σ ν k ψ̂ k)i + Σ qR,j(1–To/TR,j) – (Σ ν k ψ̂ k)e – w . (8)

The optimum work is obtained when i  = 0, i.e.,

w opt = (Σ ν k ψ̂ k)i + Σ qR,j(1–To/TR,j) – (Σ ν k ψ̂ k)e. (9)

In the absence of work and thermal reservoirs (that are typical of an adiabatic combustor),

i  = (Σ ν k ψ̂ k)i – (Σ ν k ψ̂ k)e. (10)

In general, we are interested in the change in the availability of streams entering or exiting the
reactor. Let

ΨR = Ψ1 = (Σ ν k ψ̂ k)I, and ΨP = Ψ2 =(Σ ν k ψ̂ k)e, then (11)

i  = ΨR – ΨP = Ψ1 – Ψ2 = change in absolute availability, where (12)

 ψ1,2(T,P,To) = eT,1,2 (T,P)–Tos1,2 (T,P) = (h1,2 (T,P)+ke1,2+pe1,2)–Tos1,2(T,P). (13)

For a steady flow process from an entry (state 1) to an exit (state 2), under negligible kinetic
and potential energy changes,

ψ1–ψ2=((H1–Ho)–To(S1–S0))–((H2–Ho)–To(S2–S0))=H1–H2–To(S1–S2), (14a)

where on a unit mass basis

ψ1 – ψ2 =h1 – h2 –To (s1 – s2). (14b)

If To = T1 = T2 = T, Eq. (14) assumes the form

ψ1 – ψ2 = G1 – G2. (15)

For ideal gases, s = so– R ln (P/Pref), where the reference state is generally assumed to be at Pref

= 1 bar. Therefore,

ψ1,2 = ψo + R To ln(P1,2/Pref).

b. Example 2

versibility.
Solution

The overall reaction can be expressed as

C4H10 + 9.75O2 + 36.66N2 → 4CO2 + 5H2O + 3.25O2 + 36.66N2 (A)

The reaction coefficients are

1 kmole of butane enters a steady state steady flow reactor at 298 K and 250 kPa with
50% excess air. Combustion is assumed to be complete, and the products leave the re-
actor at 1000 K and 250 kPa. Determine the heat transfer, reactant and product en-
tropies, the absolute availability of the reactants and products, the entropy change
between the exit and inlet, the entropy generation, the optimum work and the irre-



ν CO2
= (N CO2

/NF)e = 4, ν H O2
 = 5,  ν O2

 =  3.25  and ν N2
 = 36.66,  for the exit

stream and ν N2
 = 36.66 and ν O2

 = 9.75 for the inlet stream.

The energy equation is

dEcv/dt = Q̇  cv – Ẇcv + Σk,i Ṅk ¯eT,k – Σk,e Ṅk ¯eT,k (B)

neglecting the kinetic and potential energies, we obtain the expression

(1/ ṄF) dUcv/dt = q  – w  + (Σ ν k ĥ k)i – (Σ ν k ĥ k)e.

At steady state and ideal gas conditions, ĥ k = hk, and since w  = 0, we have the sim-
plified relation

q  + (Σ ν k ĥ k)i – (Σ ν k ĥ k)e = 0, i.e. (C)

q  = Hp – HR, where (D)

Hp = (Σ ν k ĥ k)e and HR = (Σ ν k ĥ k)i. (E)

HR = –126148 kJ kmole–1 of C4H10, and
HP = 4×(–393,520  + 33,425) + 5×(–241,827 + 25,978) + 3.25×(22,707) +

        36.66×(21,460) = -1,659,104 i.e.,

q  = HP – HR = –1533044 kJ kmole–1 of C4H10.
Likewise, we may show that

SR = (Σ ν k ŝk)i = 9212.3 kJ kmole–1 of fuel K–1,

ΨR = (Σ ν k ψ k)i  =  –2869892 kJ kmole–1 of fuel,

SP = (Σ ν k ŝk)e = 11363.7 kJ kmole–1 of fuel K–1,

ΨP = (Σ ν k ψ k)i  =  –5045283 kJ kmole–1 of fuel K–1, and

SP – SR = 11363.7 – 9212.3 = 2154.5 kJ kmole–1 of fuel K–1.
Note that ŝk = sk

o  – R  ln (pk/1),  pk = Xk P

Table 1. Units: pk are in bar, h  in kJ kmole–1, and the entropies in kJ kmole–1 K–1.
ν k h Xk pk=XkP ŝ sk

o ( h–To ŝ)k

Reactants
C4H10 1 –126148 0.021 0.0527 310.2 334.7 –225887
O2 9.75 0 0.2057 0.5141 205.1 210.7 –62781
N2 36.66 0 0.7733 1.933 191.6 186.1 –55428

CO2 4 –360470 0.0818 0.205 269.3 282.52 –444302
H2O(g) 5 –215849 0.1022 0.256 232.7 244.05 –288561
O2 3.25 22707 0.0665 0.166 243.6 258.51 –54326
N2 36.66 21460 0.7495 1.874 228.2 222.99 –44973

Applying the entropy balance equation for a steady state steady flow process,

(1/ ṄF) dScv/dt  = (Σ ν k ŝk)i + Σ( q j/Tb,j) –  (Σ ν k ŝk)e+ σ ,

σ  = SP – SR – Σ ( q j/Tb,j). (F)

Using the values Tb = 298 K and q  = –1533044 kJ,

Products



σ  = 11363.7 – 9212.3 –(–1533044)÷298 = 7294 kJ kmole–1of fuel K–1.

The optimum work relation is

(1/ ṄF)d(Ecv – To Scv)/dt  = (Σ ν k ψ k)i + Σ qR,j(1– To/TR,j) – (Σ ν k ψ k)e – w – i .

Under steady state conditions if there is no thermal reservoir, then

w opt = Ψ R  − Ψ P, where Ψ R = (Σ ν k ψ k)I, and Ψ P  = (Σ ν k ψ k)e, i.e., (G)

w opt = 2175291 kJ kmole–1 of C4H10.
Therefore,

i  = w opt – w cv = 2175291 kJ kmole–1 of C4H10, since w cv = 0.

c. Example 3

combustion with 20% excess air. Show that

w  = Ψ R – Ψ P – i  – P vF, kJ kmole–1of burnt fuel (A)

Determine the optimum work per kmole of burned liquid octane (C8H18).
Solution

The mass of the automobile is variable, since the liquid fuel weight in the fuel tank
decreases over time due to fuel consumption. Hence, this is an unsteady problem. As-
sume that the species in the exhaust are CO2, H2O, O2, and N2. From the availability
balance relation

d(Ecv- T0 Scv)/dt = Σ ˙ ( ),
,

Q
T

TR j
R j

1 0−  + (Σ Ṅk
)ψ k)i - (Σ Ṅk 

)ψ k)e - Ẇcv- İ (B)

Consider the system control surface to exist around the automobile where TR= To.
Neglecting the kinetic and potential energies and considering an adiabatic car, Eq. (B)
simplifies to the form

d(Ucv–ToScv)/dt = (Σ Ṅk
)ψ k)i - (Σ Ṅk 

)ψ k)e - Ẇcv- İ (C)

Since Ucv = NF uF and Scv = NF s F and uF and s F are constants, then

d(NF( uF–To s F))/dt = +(Σ Ṅk
)ψ k)i - (Σ Ṅk 

)ψ k)e - Ẇcv- İ

– ṄF,b( uF–To s F) = (Σ Ṅk
)ψ k)i - (Σ Ṅk 

)ψ k)e - Ẇcv- İ (D)

where the fuel burn rate (dNF/dt) = – ṄF,b. Now

( uF – To s F) ≈ hF – P vF – To s F = ψ F – P v (E)

Dividing Eq. (D) by the fuel burn rate,

ψ F+(Σ( Ṅk/ ṄF,b) ψ̂ k)i–(Σ( Ṅk/ ṄF,b) ψ̂ k)e–( Ẇ/ ṄF,b)–( İ/ ṄF,b) = 0, or

ψ F + (Σ ν k ψ̂ k)i, – (Σ ν k ψ̂ k)e – w  – i  – P vF = 0, i.e., (F)

w = Ψ R – Ψ P – i  – P vF, where Ψ R = ψ F + (Σ ν k, ψ̂ k,)i, Ψ P = (Σ ν k ψ̂ k)e.

Note that Ψ R = (Σ Ṅk
)ψ k)i denotes the availability of air crossing the boundary of car.

The optimum work

Consider that fuel and air enter an automobile engine at 298 K and 1 bar (state 1), and
the car exhaust exits at the same pressure, but at 400 K (state 2). Assume complete



w opt = Ψ R – Ψ P – P vF.
The reaction equation that represents the complete combustion of a kmole of C8H18

with 20% excess air is
C8H18(liq) + 15 O2 + 15×3.76 N2 = 8CO2 + 9H2O + 2.5O2 + 15×3.76 N2.

At the inlet
Ψ R = ( ψ F + ν O2

ψ̂ O2
 + ν N2

ψ̂ N2
)i, where

ψ F = hF – To s F = –249910 – 298×360.79 = – 357425 kJ per kmole of fuel. (G1)

In the case of air
X O2

 = 15÷(15 + 15×3.76) = 0.21, and

ψ̂ O2
 = h O2

 – To s O2
(To, p O2

) = 0–298×(205.04–8.314×ln (0.21×1÷1)), i.e., (G2)

ψ̂ O2
= – 64969 kJ per kmole of O2.

Likewise,
X N2

 = 0.79, and ψ̂ N2
= – 57651 kJ per kmole of N2.

Using Eqs. (E)–(G2),
Ψ R = ψ F + (Σ ν k ψ̂ k)i = (–357,425) + 15×(–64969) + 56.43×(–57,651) =

 –4585118 per kmole of fuel burned.

Ψ P = ( ν CO2
ψ̂ CO2

+ ν H O2
ψ̂ H O2

 + ν O2
ψ̂ O2

+ ν N2
ψ̂ N N2

)e, where (H)

X CO2
 = 8÷(8+9+2.5+56.43) = 0.1053 and p CO2

 = 0.1053×1 = 0.1053 bar,

Similarly, X H O2
 = 0.1185, X O2

= 0.0329, X N2
= 0.7432.

We can now determine the values of ψ̂ k,e, e.g.,

ψ̂ CO2
 = (–393520+13372–9364)–298×225.225 = –456,629 kJ (kmole CO2)

 –1. (I)

Hence,

Ψ P = (Σ ν k ψ̂ k)e = – 9835835 kJ per kmole of fuel burnt, and (J)

w opt = (– 4585118 – (– 9835835)) – 100×114÷703 = 5250700 kJ per kmole of burned

fuel, or  122569 kJ gallon–1 assuming the liquid density to be 703 kg m–3.
Remarks

The work that can be developed by a 20 gallon (1 gallon = 3.7854 l) tank of octane is
2451374 kJ. Since 1 kW hr = 3600 kJ, in the case of this example Wopt = 681 kW hr,
and an automobile with a power output of 100 kW (a 6 cylinder engine) can be ideally
driven for 6.81 hrs and at 50 kW can be  driven  for 13.62 hrs. At a speed of 60 mph
for a 6 cylinder car this allows the vehicle to cover a distance of 409 miles at a maxi-
mum of 20.5 miles per gallon for 100 kW engine and 41 MPH for 50 kW engine. The
typical work output of an automobile is roughly 42500 kJ gallon–1 due to nonideal
conditions.

d. Example 4

same temperature and pressure at equilibrium. Determine the optimum work.
Solution

The equilibrium composition for this problem is readily determined as 2.888 CO,
1.944 O2 and 4.112 CO2 using a similar procedure given in Example 7 of Chapter 12.
The overall reaction can thereafter be represented by the equation

5CO + 3O2 + 2CO2 → 2.888CO +1.944O2 + 4.112CO2. (A)

Five kmole of CO, three kmole of O2, and two kmole of CO2 are fully mixed when
they enter a combustor at 3000 K and 1 bar. The products leave the combustor at the



Wopt = availability in – availability out = ΨR – ΨP, where (B)

ΨR = (5 ψ̂ CO + 3 ψ̂ O2
 + 2 ψ̂ CO2

)i, and (C)

ΨP = (2.888 ψ̂ CO + 1.944 ψ̂ O2
+ 4.112 ψ̂ CO2

)e. (D)

Now,
ψ̂ CO, i = hCO(T,pCO)– To s CO = gCO + (T – To) s CO  =

(–110530) + 96395.7 – 298×(274.6– 8.314×ln ((5÷(5+3+2)) ×1)) =

(–0.9772×105) kJ per kmole of CO,

ψ̂ O2 , i = 0 + 98152.9 – 298×(284.4–8.314×ln ((3÷10) ×1))=

               0.1042×105 kJ per kmole of O2, and

ψ̂ CO2 , i = –393520 + 152347.9 – 298× (332.9– 8.314×ln 0.2) =

(=–0.3444×106) kJ per kmole of CO2.

Therefore,

ΨR = –1.146×106 kJ (E)

At the exit (in units of kJ),
ψ̂ CO, e = –0.9866×105, ψ̂ O2 ,e = 9699.5, and ψ̂ CO2 ,e = –0.3424×106 kJ, i.e.,

ΨP = –1.6215×106 kJ (F)

Hence,
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Figure 1: The irreversibility produced by burning methane and air, with both reactant streams at
298.15 K.



Wopt = (– 1.146 + 1.6215) ×106 = 475500 kJ per 5 kmole of CO consumed, or (G)

95100 kJ per kmole of CO entering the reactor.
This is an example of isothermal availability since Treac= Tprod.

2. Adiabatic Combustion
In several applications, such as gas turbines, boilers, and residential gas burners,

combustion occurs at constant pressure. The higher the combustion temperature, the larger is
the availability. Therefore, when excess air is used (which induces smaller equivalence ratios
φ), the combustion product temperatures decrease, which increases irreversibility and lowers

the availability. This is illustrated in Figure 1 in terms of the irreversibility (= To σ). (Recall

that the overall combustion reaction, say, of methane, in terms of the equivalence ratio can be
represented by the reaction equation CH4 + (2/φ) (O2 + 3.76N2) → CO2 + 2H2O + 2(1/φ–1) O2

+ (2/φ) 3.76N2.) Figure 2 presents the entropy generated per unit amount of heat released for

hydrocarbon fuels under adiabatic combustion. Hence even though enthalpy is conserved,
availability is lost during irreversible chemical reactions.

e. Example 5

complete and  H2O exists as a gas at 298 K, 1bar.
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Figure 2: Entropy generation per unit amount of heat released (based on the higher heating value of
the fuel) during adiabatic combustion of various hydrocarbon fuels under stoichiometric conditions.

Consider the adiabatic and stoichiometric combustion of molecular hydrogen with air.
The inlet conditions to the burner are at 298 K and 1 bar (state 1). The products leave
the combustor  at state 2. Determine the irreversibility. If the products are cooled back
to 298 K (state 3), determine the optimum work. Assume that combustion of H2 is



Solution
The overall chemical reaction is

H2 + 1/2 O2 + 1.88 N2 →H2O + 1.88 N2.

Recall that σ = Wopt/To, where

Wopt = Ψ1 – Ψ2.

With the values
X H2

 = 1÷(1+0.5+1.88) = 0.296, X O2
= 0.148, X N2

= 0.556,

Ψ1= N H2
ψ̂ H2

 + N O2
ψ̂ O2

+ N N2
ψ̂ N2

, where, for instance

ψ̂ H2
 = h H2

(T,p H2
) – To s H2

and p H2
 = X H2

P,

Ψ1= (0 – 298 × (130.57 – 8.314 ×  ln(1 × 0.296÷1))) +

        1/2 × (0 – 298 × (205.03 – 8.314 × ln(1 × 0.148÷1)))

        1.88 × (0 – 209 × (191.5 – 8.314 × ln(1 × 0.556÷1))) = –184920 kJ

The adiabatic flame temperature is obtained by considering the energy balance
dEcv/dt = Q̇  cv – Ẇcv + Σk,i Ṅk ¯eT,k – Σk,e Ṅk ¯eT,k.

Under ideal gas conditions ĥ k = h  k, and assuming negligible contributions from the
potential and kinetic energies, steady state, and a single step overall chemical reac-
tion, and in the absence of work

(Σ ν k hT,k)i  = (Σ ν k hT,k)e, or H1 = H2, where

H1 = h H2 ,i + ν O2 , i h O2
,i + ν N2

h N2 ,i = 0 (elemental species), and

H1 = ν N2 , e h N2
,e + ν H O2 ,e h H O2

,e = 0.

Solving iteratively, T2 = Tad = 2528.7 K.
Ψ2= N H O2 ,e ψ̂ H O2

,e  + N N2 , e ψ̂ N2 , e, i.e.,

Ψ2 = 1 × (–241820 + 99704 – 298 × (276.4 – 8.314 × ln (1×0.347÷1)))

        + 1.88 (0 + 75597 – 298 × (260.7 – 8.314 × ln(1 ×  0.653÷1))) =

         (– 233079) kJ.
Wopt,12 = –184920 – (–233079) = 48159 kJ per kmole of fuel burnt.
i12 = 48159 kJ per kmole of fuel.
σ 12 = 48159÷298 = 162 kJ K–1 per kmole of fuel.

If the gases are cooled from T2 = 2528.7 to T3 = To = 298 K, but with the same com-
position,

Wopt,23 = Ψ2 – Ψ3, where

Ψ3 = 1× (–241820 +298× (188.72 – 8.314 × ln (1 × 0.347÷1)))

         + 1.88 × (0 –298×(191.5–8.314×ln (1×0.653÷1))) =

         (–408259) kJ per kmole of fuel, i.e.,
Wopt,23 = –233079– (–408259) = 175180 kJ per kmole of fuel.

Remarks
The stream exergy at state 1 is Ψ 1 - Ψ 0 = Ψ 1 - Ψ 3 = Wopt 13 = -184,920 – (-408259)
= 223,339 kJ; Even though state 2 has the same enthalpy as state 1, the stream exergy
at state 2 is Ψ 2 - Ψ 0 = Ψ 2 - Ψ 3 = Wopt,23 = 175,180. Defining the availability frac-
tion at state 2 as ξopt,23= Wopt,23 /Wopt,13 = 0.78, which indicates that approximately

22% of maximum possible optimum work that was otherwise available at state 1 is
lost during the irreversible adiabatic combustion.
The calculations can be repeated for a stoichiometric mixture of methane and air en-
tering the burner at 298 K and 1 atm. In this case, the flame temperature, optimum
work and availability fraction at the flame temperature are Tad= 2325 K, Wloss=236



MJ/kmol, and ξopt,23= 0.72 (i.e., the availability loss fraction is 0.28). The combustion

temperature of 2325 K is achieved when the combustion proceeds without any loss of
heat to the surroundings (Hproducts-Hreactants). The only irreversibility is due to the
chemical reaction. We see, therefore, that a combustion reaction is highly irreversible
and wasteful of availability, even when it is conducted so that enthalpy of combustion
is retained in the combustion products. An availability analysis reveals that chemical
processes may be degrading the energy quality while conserving its quantity.

3. Maximum Work Using Heat Exchanger and Adiabatic Combustor
In a typical boiler, the hot combustion gases from a nearly adiabatic combustor are

provided to the heat exchanger section where they are cooled from a temperature Tad to Texch.
During this process the gases generally transfer heat to a fluid, e.g., liquid water in the boiler
section of a Rankine cycle steam engine. The hot fluid then transfers heat to a heat engine pro-
ducing work with a certain η. In case of a Carnot cycle η = (1–To/THE), where THE denotes the

characteristic heat engine temperature, where, Texch≥THE. Ideally, Texch=THE.
The work obtained

W = Q η. (16)

If the combustor heat loss equals

Qc, Hproducts = Hreactants – Qc, (17)

for a Carnot engine

W = (Hreactants – Qc – Hexch) (1– To/THE). (18)

For an adiabatic combustor

W = (Hreactants – Hexch) (1– To/THE).

The Carnot efficiency increases by raising THE, but the heat transfer from the com-
bustion products to the heat exchanger is lowered. Due to this  tradeoff, there is an optimum
value of THE at which W is maximized. Figure 3 presents the variation of W with respect to
THE = Texch for stoichiometric methane–air combustion with variable cpo(T). The optimum tem-
perature value Topt = 858 K at which W = 397 MJ/kmole.

The assumption of constant specific heats simplifies the calculation. Let (Hreac – Hexch)
= m cp(Tad – Texch), where Texch = THE. In this case,

W = mcp(Tad – Texch)(1– To/THE)= mcp(Tad – THE)(1 – To/THE). (19)

Differentiating Eq. (19) with respect to THE, and equating the resultant expression to zero,

THE = (Tad To)
1/2. (20)

Using this result, the expression for the maximum work assumes the form

Wmax = mcpTad(1– (To/Tad)
1/2)2

. (21)

In addition to the chemical irreversibility during adiabatic combustion, irreversibilities exist
during the heat transfer from hot products to the heat exchanger fluid. (For stoichiometric
methane–air Tad = 2328 K and To =298 K. Eq. (19) yields the temperature optimum Texch = THE

= 833 K assuming constant specific heat values.)

4. Isothermal Combustion
A fuel cell and biological reactions, such as photosynthesis, are examples of situations

involving isobaric and isothermal chemical reactions. Here,



d(Ecv- T0 Scv)/dt =  Σ ˙ ( ),
,

Q
T

TR j
R j

1 0−   + (Σ Ṅk
)ψ k)i -  (Σ Ṅk 

)ψ k)e - Ẇcv- İ (22)

Assuming steady state conditions in the absence of work, and heat exchange only with the am-
bient, i.e., Q̇  R,j = Q̇ 0 and TR,j = To,

İ =    (Σ Ṅk
)ψ k)i -  (Σ Ṅk 

)ψ k)e. (23)

In this case the irreversibility is caused by entropy generated during the combustion process
σ̇ c , and during the irreversible heat transfer due to the temperature gradient within the system

σ̇  HE (i.e., the combustion chamber temperature T and the ambient temperature To). The total
entropy generated

σ̇ cv  = σ̇ c + σ̇ HE. (24)

We can evaluate these entropies by using the entropy balance equation, i.e.,

dScv/dt = Σ
˙

,

Q

T
j

b j

 + (Σ Ṅk 
)
s k)i - (Σ Ṅk 

)
s k)e - σ̇ cv . (25)

If the system boundary lies just within the reactor walls, leaving out the thin thermal boundary
layer, then Tb,j = T

dScv/dt = Σ
Q̇

T
0  + (Σ Ṅk 

)
s k)i - (Σ Ṅk 

)
s k)e - σ̇ c (26)

Employing the First Law, i.e.,

dEcv/dt = Q̇  0 – Ẇcv + Σk,i ṄkeT,k – Σk,e Ṅk eT,k, (27)

And eliminating Q̇ 0 between Eqs. (26) and (27),

σ̇ c=-(dEcv/dt) (1/T) + Ẇcv/T+Σk,i ṄkeT,k/T–Σk,e ṄkeT,k/T+dScv/dt+(∑ Ṅk
)
s k)e–(∑ Ṅk

)
s k)I. (28)

At steady state conditions,  for pure combustion process with negligible ke and pe,

T σ̇ c = (Σ Ṅ ĝ k)e – (Σ Ṅ ĝ k)I  , reaction at temperature T (29)

The irreversibility for an isothermal and isobaric process due to chemical reaction alone can be
expressed as

T0 σ̇ c = (To/T)((ΣNk ĝ k)i – (Σ Nk ĝ k)e),  reaction at temperature T

For ambient temperature reactions (e.g., in a fuel cell or in plant leaves),

T0 σ̇ c = (Σk Nk  ĝ k)e – (Σ Nk ĝ k)I , reaction at  ambient temperature T0 (30)

The irreversibility due to heat transfer alone is

σ̇ HE = – Q̇ 0 (1/T o – 1/T).

f. Example 6

exists in a liquid or in a gaseous state.

The stoichiometric combustion of molecular hydrogen in air proceeds in a premixed
state. The reactants enter a combustor at 298 K and 1 bar and the products leave at the
same temperature and pressure. Determine the values of σ and ∆hc if the water formed



Solution
The overall chemical reaction is

H2 + 1/2 O2 + 1.88 N2 →H2O + 1.88 N2.

Recall that σ = Wopt/To, where

w opt = Ψ1 – Ψ2.

With the values
X H2

 = 1÷(1+0.5+1.88) = 0.296, X O2
= 0.148, X N2

= 0.556,

ĝ H2
= (0–298×(130.57 – 8.314 × ln (1×0.296÷1)) = –41926 kJ kmole–1,

ĝ O2
= 0–298×(205.03 – 8.314 × ln (1×0.148÷1)) = – 65832 kJ kmole–1,

ĝ N2
= –298×(191.5 – 8.314 × ln (1×0.556÷1)) = –58521 kJ kmole–1,

Ψ1 = G1 = (–41,926) + 1/2×(–65,832) + 1.88×(–58,521) =

   –184861 kJ per kmole of H2.
Treating H2O as a gas,

X H O2
= 1÷(1+1.88) = 0.347, X N2

= 0.653,

ĝ H O2
= –241820–298×(188.71–8.314×ln(1×0.347/1)) = –300678 kJ kmole–1,

ĝ N2
= –298×(191.5–8.314×ln(1×0.653/1)) = –58123 kJ kmole–1,

Ψ2 = G2 = (–300768) + 1.88×(0 –58 123) = –4100392 kJ per kmole of H2,

w opt = –184861 –(–4100392) = 22178 kJ per kmole of H2.
All of this work is lost. Therefore,

σ= 225090÷298 = 755.34 kJ kmole–1 K, and

∆hc = 0  –(–241820) = 241820 kJ per kmole of H2.
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Figure 3: Work output with respect to THE. for stoichiometric methane–air combustion considering
variable specific heat cpo(T).



Treating H2O as a liquid,
ĝ H O2

= g H O2
= –285830 – 298 × 69.95 = –306675 kJ per kmole of H2,

Ψ2 = 1× 1 (–285830–298 × (69.95)) +

  1.88 (0 – 298 × (191.5 – 8.314 ×  ln (1×1÷1))) =

  (–413961) kJ per kmole of H2, and
w opt = 229098 kJ per kmole of H2.

Consequently,
σ= 229098÷298 = 768.8 kJ kmole–1, and

∆hc = 285830 kJ per kmole of H2.

5. Fuel Cells
Combustion is a process during which irreversible exothermic oxidation reactions

convert the chemical energy of fuels into thermal energy and then, oftentimes, into electrical
energy through an elaborate conversion process that results in low conversion efficiencies.
Typically, only about 35% of the chemical energy of a fuel is eventually converted into electri-
cal energy in a steam power plant. Fuel cells offer a more efficient alternative. In a fuel cell
chemical energy is converted into electricity through the release of electrons by chemical reac-
tion. The process is almost reversible and hence the irreversibility is greatly reduced in these
cells in comparison with combustion.  Prior to description of the fuel cell, let us illustrate the
basics of oxidation states and the electron transfer during chemical reaction.

a. Oxidation States and electrons
Consider the reaction of butane C5H12 with O2 producing the products CO2 and H2O.

The oxidation states for this reaction are provided by the number of electrons gained or lost.
The mass of a C atom is twelve times larger than of H atom so that the electrons surrounding H
atoms are pulled more strongly towards the carbon atoms (Chapter 1). The five C atoms in the
fuel gain y=12 electrons. The oxidation state of each C atom in the fuel is -12/5 (= y/x, where x
denotes the number of carbon atoms in the fuel) while that of each H atom is +1. The oxygen
molecule is symmetric and its oxidation state is zero. Consider each of the five CO2 molecules
in the products. Atomic O atom is heavier than C atoms. The four outer electrons of each of the
carbon atoms are pulled towards the O atom. In this context, the oxidation state of each C atom
is +4 while the oxidation state of each O atom is -2. There is a net loss of 5×4 = 20 electrons

from the 5 carbon atoms in 5 CO2. Thus as the carbon in C5H12 is burned, the oxidation state of
C changes from -12/5 to +4 in CO2. There is a net loss of (12/5) + 4 electrons (=y/x + 4) per C
atom in the fuel. For this example, the 5 C atoms in the fuel lose 32 (= x× ((y/x) +4)= y+4 x)

electrons. The oxidation state of H atom is unchanged. The oxidation states of O atoms in CO2

and H2O are -2 and -2. Hence, the O atoms in the five CO2 molecules and six H2O molecules
gain 5×2×(-2) +6×1×(-2) = 32 electrons, which are transferred from the five C atoms in C5H12

to the oxygen atoms in the products during the chemical reaction. The fuel cell achieves such a
transfer through an external load. Generalizing for any fuel denotes by CxHy, the number of
electrons transferred is 4x + y. In the case of pure H2 (i.e., x=0), the analogous number of
electrons is two.

b. H2-O2 Fuel Cell
The operational principle of a H2-O2 fuel cell is illustrated in Figure 4. At the  anode

2
- +H  2 e  +  2 H→ ,

and at the cathode

2 H  +  2 e  + O   H O (1)+ -
2 21 2/ → .



In a fuel cell chemical reactions occur at the ambient temperature To. In a hydrogen–powered
fuel cell, separate streams of H2 and O2 are converted into liquid water at To. Consequently, the
absolute availability for the H2 at the inlet is g H2

. The maximum possible work under the

steady state steady flow characteristic of  a fuel cell can be determined using the familiar rela-
tion:

d(Ecv- T0 Scv)/dt =  Σ ˙ ( ),
,

Q
T

TR j
R j

1 0−   + (Σ Ṅk
)ψ k)i -  (Σ Ṅk 

)ψ k)e - Ẇcv- İ (31)

Ẇopt  =  (Σ Ṅ ĝ k)i – (Σ Ṅ ĝ k)e (32)

The fuel cell efficiency is

ηfc = w/∆hc. (33)

The maximum possible efficiency is

(ηfc)opt = wopt/∆hc = (–∆g)/∆hc = –(∆hR – T∆sR)/∆hc. (34)

Assuming the higher heating value applies, ∆hc = HHV = – ∆hR, then

(ηfc)opt = 1 + T∆sR/∆hc. (35)

If the value of ∆sR (= sprod- sreac) >0 at the fuel cell operating temperature, (e.g.,  by adding heat

to maintain isothermal conditions for an endothermic reaction), then (ηfc)opt>1. The availability

or exegetic efficiency for a hydrogen–oxygen fuel cell can be defined as

ηavail= W/(exergy of H2). (36)

electrical work

0.5 O2

T= 25 C
P= 1 b

H2O (l)

2e- 2e-

2H+

porous
anode electrolyte cathode

Figure 4: Principle of operation of a fuel cell.



g. Example 7

kmole–1.
Solution

The fuel cell temperature T = To = 25ºC, and the two reactant streams enter sepa-
rately. Consequently,

Ẇ opt = (Σk Ṅ gk)i – (Σ Ṅ gk)e.

Assume that Ṅ H2
= 1 kmole s–1. In that case, Ṅ O2

= 1/2 kmole s–1, and Ṅ H O2
= 1

kmole s–1, and
(Σ Ṅk gk)i = g H2

+ (1/2) g  O2
, where

g H2
 = 0 – 298 × 130.574 = –38911 kJ kmole–1, and

g H2
 = 0 – 298 × 205.033 = –61100 kJ kmole–1, i.e.,

(Σ Ṅk gk)i = –69461 kJ per kmole of H2.

Likewise,
(Σ Ṅk gk)e = –306675 kJ per kmole of H2, so that

w opt = Greactants – Gproducts= –69461 + 306675 = 237214 kJ per kmole of H2.
At the cathode of a fuel cell positive potential is applied; the reaction is given as

2H+ + 2e– + 1/2O2 → H2O(l),
and at the anode the pertinent reaction is

H2 → 2e– + 2H+.

Overall, a molecule of H2 generates 2 electrons, i.e., a kmole of H2  or 6.023 × 1026

molecules generates 2×6.023×1026 electrons. An electron carries a charge of

1.602×10–19 Coulomb so that a kmole of H2 generates a charge of 1.602×10–19 ×  2

× 6.023 × 1026 Coulomb.

The electrical work
Welec = Voltage in volts × charge in coulombs =

            237214 kJ per kmole of H2 × 1000 J kJ–1 ÷
            (1.602×10–19 × 2 × 6.023 × 1026 Coulomb) =

            1.229 V.
The optimum fuel cell efficiency

(ηfc)opt = w opt/∆hc = 237214/285830 = 0.83.

Remarks
A short formula for determining the voltage of a fuel cell is Volts = (∆G per kmole of

fuel in kJ) × 1.036×10–5÷(Number of electrons generated per molecule of the fuel).

Fuel cells may be connected in series to obtain a higher voltage than an individual cell
provides.
For fuel cells using hydrocarbon fuels,  the anodic reaction is

CxHy + 2x H2O → x CO2 + (4x+y)H+ + (4x+y)e–,

and the cathodic reaction is
(x+y/4)O2 + (4x+y)H+ + (4x+y)e– → (2x+y/2)H2O.

The overall reaction can be represented as

Find the maximum work deliverable in a fuel cell by 1 kmole of H2 with O2 if it is
isothermally reacted at 25ºC and 1 bar to produce liquid water. Both reactants enter
the cell separately. Determine the maximum voltage developed by the fuel cell. Con-
sider also the scenario for the reaction of a stoichiometric amount of H2 with O2.
What is the  maximum possible fuel cell efficiency. Assume that ∆hc = 285830 kJ



CxHy + (x + y/4) O2 → x CO2 + y/2 H2O.

Therefore, for a hydrocarbon fuel CxHy, the electrons generated per molecule are rep-
resented by the relation (4x+y).
In the context of the H2 fuel cell, had we supplied work or applied an emf of 1.23 V,
the reaction could have been reversed to produce H2 and O2 from H2O. In this case,
water that is formed from the hydrogen and oxygen could be converted back into the
respective fuels through a reversible process so that σ = 0.

In Example 5, we considered the adiabatic combustion of H2 in air that produced hot
gaseous products at 2529 K. That process produced an irreversibility of 48160 kJ
kmole–1. If our objective is to obtain gases at 2529K but with no entropy generation,
i.e., σ = 0 it can be achieved, through a thought experiment illustrated in Figure 5. We

can supply H2 and stoichiometric air first  to a fuel cell to produce 229,100 kJ  of
work and water(g) at 298 K as illustrated in this example. Then, we can heat a mix-
ture of H2O and N2 to 2529 K using a Carnot type heat pump to supply necessary heat
to raise the temperature from 298 K to 2529 K. You can readily calculate that the
heating requires 180940 kJ of work input. In the ideal fuel cell and heating combina-
tion case, we obtain a net electrical work of 48160kJ (= 229100 – 180940) kJ, while
still producing hot gases at 2529 K; therefore this work capability of 48,160 kJ is lost
when we use adiabatic combustion.

D. FUEL AVAILABILITY
At steady state, the maximum work under thermo-mechanical equilibrium conditions

is expressed by the relation

Ẇ opt = (Σ Ṅk ψ̂ k(Ti,pk,i))i – (Σ Ṅk ψ̂ k(Te,pk,0))e.

WHP
Q0

WFuel cell

Fuel , T1

Air, T1

Products

T2 =T1
Fuel Cell

Ambience,  T0

Q

Wopt

Products

T3=Tad

Figure 5: A schematic illustration for achieving a temperature equal to the adiabatic flame
temperature but without irreversibility. The fuel is H2 at 298K, oxidizer is air at 298K. Here,
WFuel Cell = 229,100 kJ, WHP = 180,940, Wopt = 48,160 kJ, Tad = 2529 K, Q0 =108,900 kJ, and
Q = 285830 kJ.



where exit partial pressures are not necessarily same as the ambient. Recall that in case of
combustion this equation can be divided by the number of moles of fuel ṄF flowing into the
combustor to yield the availability under thermomechanical equilibrium conditions.

( w opt = ΨR – ΨP)TM, where (37)

ΨR or P, TM = (Σ ν k ψ̂ k)i or e, TM = (Σ ν k ψ̂  k(To, pk,0)). (38)

Here, the exit is considered to be in thermomechanical equilibrium at a total pressure of P0, pk0

denotes the partial pressure of a species k in the thermomechanical equilibrium state with the
ambient (or standard atmosphere), but each component is not necessarily in chemical equilib-
rium with the corresponding components in the ambient.

Consider a special case in which fuel and air, although not premixed, both enter a
combustor separately at the state (To, Po). The reaction products are discharged at partial pres-
sures pk,∞ so that products are in thermo-mechanical-chemical equilibrium with the ambient.

The optimum work under such a condition where each species is discharged at the partial pres-
sure corresponding to the ambient is called the fuel availability. In this case,

ΨR = (Σ ν k ψ̂ k)i, =  ( ψ F(To,Po) +  ν O2
ψ O2

(To, p O2 ,o))   = 

         ( gF(To, Po) + ν O2
g O2

(To,p O2 ,o)), and (39a)

ΨP,TMC = (Σ ν k ψ̂ k)e,TM = (Σ ν k gk(To, pk, ∞))e. (39b)

Then,

w opt,TMC =  AvailF = ΨR -  ΨP,TMC 

=  ( gF(To, Po) + ν O2
g O2

(To,p O2 ,o)) – (Σ ν k gk(To, pk, ∞))e.

Nitrogen need not be considered, since the partial pressures and moles of N2 at the inlet and
exit are equal. Table A-27B tabulates the fuel availability assuming X O2 ,∞ = 0.2035, X CO2 ,∞

=0.0003, X H O2 ,∞ = 0.0303, XN2, ∞ = 0.7659

h. Example 8
Determine the fuel availability for methane. Assume that To = 298 K, p

p CO2 ,o =0.003, and p

802330 kJ kmole–1, determine the ratio of the fuel availability to LHV.
Solution

Consider the overall reaction
CH4 + 2O2 → CO2 + 2H2O.

The CO2 and H2O so produced joins the atmosphere in gaseous form at partial pres-
sures corresponding to the environment. The fuel availability

AvailF = w opt = ΨR – ΨP,TMC.

ΨR = ( ψ CH4
(To,Po) +  2 ψ O2

(To, p O2 ,o)) , where

ψ CH4
(To,Po) = h CH4

– To s CH4
(To,Po) = –74850–298 × 186.16 =

              (–1.303×105) kJ kmole–1,

ψ O2
(To, p O2 ,o)) = h O2

– To s O2
(To, p O2 ,o) =

                                0 – 298 × (205.04 – 8.314× ln (0.2055÷1)) =

                                (–65022) kJ kmole–1, i.e.,

O2 ,o = 0.2055,

H O2 ,o = 0.0188. If the lower heating value LHV of methane is



ΨR = 1×(–130300) +2×(–65022) = –260300 kJ per kmole of CH4.

Likewise,
ψ CO2

= h CO2
– To s CO2

(To, p CO2 ,∞) =

 (–393520 – 298 × (213.7 – 8.314 × ln (0.003÷1)) =

 (–472000) kJ per kmole of CO2,
ψ H O2

= h H O2
– To s H O2

(To, p H O2 ,∞) =

              (–241820) – 298 × (188.7 – 8.314 × ln (0.0188÷1)) =

               –307900 kJ per kmole of H2O, i.e.,
ΨP,TMC = 1×(–472000) + 2×(–307000) = – 1088000 kJ per kmole of fuel.

Therefore,
AvailF = –260300 – (–1088000) = 827500 kJ per kmole of fuel.

The ratio
AvailF/LHV = 827500÷802330 = 1.031.

Remarks
This procedure can be repeated for butane, for which AvailF =2767296 kJ per kmole
of fuel and the ratio AvailF/LHV = 2767296÷2708330= 1.0218.For most hydrocarbon

fuels, the ratio of fuel availability to the lower heating value is in the range 1.02–1.07.
An empirical relation for  (Moran)

AvailF/LHV = 1.033 + 0.0169  (H /C) – 0.0698/C, gaseous hydrocarbon, C:
carbon atom, H: hydrogen atom  and
AvailF/LHV = 1.0422 + 0.0119  (H /C) – 0.042/C, liquid HC

The fuel availability AvailF = w opt,TMC, where

w opt,TMC = ( gF(To, Po) + ν O2
g O2

(To,p O2 ,o)) – (Σ ν k gk(To, pk, ∞))e.

For ideal gases

g(T,pk) = hk(To) – To s k(T,pk) = hk(To) – To( s k(T,1) – R  ln (pk/1)) =

             = ( hk(To) – To s k(T,1)) + R To ln (pk/1) = 

                 gk
o (To) + R To ln (pk(bar)/1), i.e.,

w opt,TMC = ( gF
o (To) + ν O2

gO
o

2
 (To) + ν O2

R To ln (p O2
/1)) – 

                (Σ ν k gk
o (To)e– (Σ ν k R To ln (pk, ∞/1))e, i.e.,

w opt,TMC/( R To) = – ∆Go/( R To) + ln ((p O2
, ∞/1)

νO2 /(Π(pk, ∞/1) νk ) e). (40)

Typically, ∆Go/( R To) » ln ((p O2
,∞/1)

νO2 /(Π(pk, ∞/1) νk ) e), so that

w opt,TMC ≈ – ∆Go.

Further, since ∆Go = ∆Ho – To ∆So and ∆Ho »To ∆So

w opt,TMC ≈ –∆Ho = –(LHV).

Therefore, the ratio of fuel availability to LHV is roughly unity.



The chemical availability of a fuel AvailF is a measure of the maximum possible
work. The actual work output W is generally lower than AvailF, and the exergetic efficiency

ηavail= W/AvailF.

E. SUMMARY

This chapter illustrates the irreversibility during adiabatic and isothermal reac-
tions. For specified inlet and exit states in a combustor, the optimum work relations are derived
and illustrated for a car burning gasoline and fuel cells. Finally, a methodology is provided for
calculating the maximum possible work from a given fuel and a schematic is presented for
achieving the maximum work.



 14. PROBLEMS

A. CHAPTER 1 PROBLEMS

Problem A1 
Must a mixture be necessarily homogeneous?

Problem A2 
What is irreversible thermodynamics?

Problem A3 
If a differential is exact, does this mean that it is related to a point function?

Problem A4 
Can the electron mass be ignored when it crosses the system boundary, but still treat a
system as closed during electric heating?

Problem A5 
Is a composite system a homogeneous system?

Problem A6 
Consider the sum δz or dZ = 6xy3 dx + 9x2y2 dy. Is Z a point function of x and y (i.e.,

a property), or a path function (non–property)?

Problem A7 
Compute the partial derivative (∂v/∂T)P for the relation P(T, v) = R T/( v– b) –

a /(T1/2 v( v+ b)) when T = 873 K and v  = 0.245 m3 kmol–1, assuming that a  =
142.64 bar m6 K1/2 kmol–2 and b  = 0.0305 m3 kmol–1.

Problem A8 
Perform line integration of the following differentials, first along constant values of x
and then along constant values of y from (2, 5) to (4, 7): xy3 dx + 3 x2y2dy, and
2exydy + exy2dx and determine which one is path independent. Verify your results
employing the mathematical criteria for exact differentials. Obtain an expression for
z(x, y) for any one of the above differentials that can be expressed as dz.

Problem A9 
Perform cyclical integration along constant values of x, i.e., (2,5) to (2,7), and along
constant values of y, i.e., (2,7) to (4,7), and along constant values of x, i.e., (4,7) to
(4,5), and along constant values of y, i.e., (4,5) to (2,5) for the following expressions:
xy3 dx + 3 x2y2dy, and 2exydy + exy2dx and show which one is path independent.

Problem A10 
Using the LaGrange multiplier method solve the following problem. Find the maxi-
mum volume V of a tent for a fixed cloth surface area S. Assume that the tent is of
triangular cross section of equal side x and y units long. Note floor is also laid with
cloth. If S = 2 m2 determine x in m, y in m and V in m3. Show that at the optimum
condition.

Problem A11 
Using the LaGrange multiplier method solve the following problem. Find the maxi-
mum volume V of closed tent for a fixed cloth surface area of S m2. Assume that (1)
the tent is of triangular cross section of equal side x and y units long. Note that the
floor is also to be laid with cloth, and (2) the tent is a rectangular parallelepiped of
dimensions x, y and z. If S = 20 m2, determine x, and y in m and V in m3 at the opti-
mum condition for both cases.



Problem A12 
Consider the function φ = x3 y/t + x2y2/t3 + x y3/t7. Is this a fully homogeneous func-

tion? Is this function partly homogeneous and, if so, with respect to what variables?
Show that the Euler equation applies if this is a partly homogeneous function.

Problem A13 
Using the LaGrange multiplier method find the maximum volume V of tent for a
fixed cloth surface area of 2 m2. Note that the floor is also laid with cloth. (Hint: z ≥
0, x ≥ 0, x2 > 2(1 – xz)).

Problem A14 
Determine (∂u/∂x)y and (∂u/∂y)x for the following equations: u – x2y + y3u + yu2 + 8x

+ 3, and u2xy + ux2 + xy2 + u3 + uxyz – 0.

Problem A15 
Show whether the following equations are exact or inexact: (a) du = 3 x2 dy + 2 y2 dx.
(b) du = y dx + x dy. (c). du = 2xy dx + (x2+1) dy. (d) du = (2x+y) dx + (x–2y) dy. (e)
du = (xy cos (xy) + sin (xy))dx + (x2 cos(xy) + ey) dy.

Problem A16 
Obtain the value of the line integrals using the equations in Problem 10a–c and the
path described by moving clockwise along the sides of a square whose vertices are (1,
1), (1, –1), (–1, –1), (–1, 1).

Problem A17 
Minimize the distance between the point (1,0) to a parabola (choose a parabolic equa-
tion) without using the LaGrange Multiplier method, and using the LaGrange multi-
plier method.

Problem A18 
Consider the exact differential dS = dU/T + (P/T) dV. Since S = S(U,V), let M = 1/T
= M(U,V) and N = P/T = N(U,V). Write the criteria for the exact differential of dS.
Similarly, write down the criteria for the following exact differentials: dS = dH/T –

A

B
Rigid
Diathermal

Figure Problem A.19



(V/T) dP; dT = –dA/S –P/S dV; dT = –dG/S + V/S dP; dP = dG/V + S/V dT; dV = –S
dT/P –dA/P.

Problem A19 
1 kg of Ar is contained in Section A at P = 1 bar, T = 100ºC. This gas is in contact
through a diathermal wall with another piston–cylinder section B) assembly contain-
ing 1 kg partly liquid water (quality x = 0.5) and vapor at 100ºC with a weight at top.
As we compress the gas in Section A, the temperature tries to increase, but because of
the contact with Section B, T remains at 100ºC. Answer the following True or False
questions:
a) The composite system consists of a pure substance.
b) The composite system has two phases for H2O and one single phase for Ar

gas.
c) The composite system is homogeneous.
d) The total volume cannot be calculated for the composite system.
e) There is no heat transfer between Sections A and B.
f) There is no work transfer between Sections A and B.
g) There is work transfer from Section A to B.
h) The quality in Section B decreases.

Problem A20 
If the number of molecules per unit volume (n') ≈ 1/l3 where l is the average distance
(or mean free path between molecules), determine the value of l for the gases in your
classroom at 25ºC, 1 bar (assume the ideal gas law is applicable). Express your an-
swer in µm and Angstrom (1 A = 10 –10 m) units. Assume that your classroom is filled
with pure oxygen.

Problem A21 
In the context of the above problem, do you believe that the ideal gas law is applica-
ble at this intermolecular distance (i.e., that the attractive force between adjacent
molecules is negligible)? Assume that l0 corresponds to the liquid state of oxygen.
The molal liquid volume of oxygen is given as 0.02804 m3/kmol.

Problem A22 
Natural gas has the following composition based on molal percentage: CH4: 91.27,
ethane: 3.78, N2: 2.81, propane: 0.74, CO2: 0.68, n–Butane: 0.15, i–Butane: 0.1, He:
0.08, i–pentane: 0.05, n–pentane: 0.04, H2: 0.02, C–6 and heavier (assume the species
molecular weight to be 72 kg kmol–1): 0.26, Ar: 0.02. Determine the molecular
weight, the methane composition based on weight percent, and the specific gravity of
the gas at 25ºC and 1 bar.

Problem A23 
Prove Eq. (7a) beginning your analysis from Eq. (7).

Problem A24 
A bottle of 54.06 kg of distilled water is purchased from a grocery store. a) How
many kmols of water does it contain? b) If the bottle volume is 54.05 L, what is the
specific volume of water in m3/kg and m3/kmol? c) How many molecules of H2O are
there in the bottle? d) What is the mass of each molecule? e) Determine the approxi-
mate distance and force between adjacent molecules.

B. CHAPTER 2 PROBLEMS

Problem B1 
Is the relation h = u + Pv valid only for a constant pressure process?



Problem B2 
Is the earth a closed or an open system?

Problem B3 
If you type this entire text on a computer, will the mass of the computer increase?

Problem B4 
Is ∫Pdv work boundary work or flow work?

Problem B5 
What is physical interpretation of cv and cp?

Problem B6 
What is the Poincare Scheme?

Problem B7 
Is it true that in a closed or an open system, work and heat transfer can occur across
the system?

Problem B8 
Is there a difference between a quasiequilibrium and an internally reversible process?

Problem B9 
An incompressible liquid (v = constant) undergoes adiabatic internally reversible
compression in a open system. If you follow a unit mass, then is the change in internal
energy a) zero, or b) non-zero?

Problem B10 
An incompressible liquid (v = constant) undergoes internally reversible compression
in a closed system. Then is the work input per unit mass zero?

Problem B11 
What does the term quasiequilibrium mean?

Problem B12 
When can a nonquasiequilibrium process not be represented on a P–v diagram or a
T–s diagram?

Problem B13 
Is it generally true that we can use the equality δW = –PdV in the relation δQ–δW =

 dU?

Problem B14 
When is the relation δQ–δW = dU equivalent to the expression δQ–δW = dH?

Problem B15 
What is the physical meaning of a characteristic time for a process involving the
heating of a house?

Problem B16 
For a steady state process involving an open system dmcv/dt = 0, i.e., mcv is constant.
Is this always true for a closed system?

Problem B17 
For a steady state open system dUcv/dt = 0 . Is it true that the reverse statement,
dUcv/dt = 0, implies that the open system must be steady. The latter statement is a)
true b) false. (Hint: consider the heating of ideal gas in an oven where P is constant.)



Problem B18 
Gas cylinders normally use pressure regulators to control the downstream pressure at
PR. At any set regulator pressure PRrg, the mass flow leaving the regulator is given by
ṁ = 4040 Areg PReg/TReg

1/2, kg/s, P in bar, Treg in K and A in m2 (choked flow). Thus,
the pressure downstream of the regulator is fixed at Preg and the flow from the cylin-
der leaves at conditions P and T. As the flow leaves, the cylinder pressure (P) de-
creases with time (t). Assume Treg = T, i.e., the cylinder temperature. Assume that the
cylinder is adiabatic. If the initial cylinder pressure and temperature are 100 bar and
300 K, and regulator pressure is 3 bar, determine the time for pressure in the cylinder
to decrease to 50 bar.

Problem B19 
The space shuttle is powered by booster rockets and the main shuttle engines are fired
with H2 and O2. The empty weight of the system is 76000 lb and after charging the
booster and shuttle tank, the weight increases to 1500,000 lbs. Given the following
conditions, calculate the altitude reached by the shuttle 2 minutes after firing: Thrust
(F) 3000,000 lbf, where F = mvgas/gc, vgas = 0.4 (kgc RT)1/2, T = 6000 R, Firing Rate =
constant. Note that the mass of the system varies during lift off due to discharge of
propellants.

Problem B20 
A closed adiabatic system with a weightless piston at the top contains air at 100 kPa,
227ºC. The ambient pressure is also 100 kPa (Area of piston: 100 cm2; volume at
state 1: 0.1 m3). Suddenly a weight of 1 kN is placed and system reaches state 2. a)
Sketch the process on a PV diagram, and b) determine P2, T2 and V2.

Problem B21 
Air at 100 psia, and 40 F, is held in a tank of 20 ft3 volume. Heat is added until the
remaining air in the tank is at 240ºF, while some air is bled from the tank to hold the
pressure constant at 100 psia. Determine the heat transfer, assuming the air to be an
ideal gas with constant specific heats.

Problem B22 
A cooker “A” of 30 cm diameter and volume 30 L is initially filled with liquid water
of 4 kg. It is then heated until the pressure in the cooker rises to 5 bar at which pres-
sure it contains a mixture of pure water vapor and liquid water. Then, assume that we
insulate the cooker and attach a metal tube of cross sectional area A to it that is placed
slightly away from the bottom surface of the cooker. Assume also that we provide a
valve at the top of this metal tube. When the valve is opened, the water left in the
cooker can be injected into another open adiabatic cooker B of equal dimension in or-
der to conserve energy. We will neglect evaporation from cooker B. However, we
would like to monitor the pressure in the first cooker. As an expert in thermodynam-
ics you are asked to predict the pressure vs. time until no liquid water remains. As-
sume that vapor behaves like an ideal gas with a specific heat of 1.59 kJ kg–1 K–1.
Water is incompressible with a specific heat of 4.184 kJ kg–1 K–1 and v = 0.001 m3/kg.
The cross sectional area of the metal tube is 10 mm2. Assume the power is off when
we open the valve and the cooker free space is occupied with vapor only. Neglect the
potential energy change.
a) What is the quality when the valve in the metal tube is opened?
b) Write down the mass and energy conservation equations for the vapor phase

in the system (assume no condensation of vapor or vaporization of water)
and obtain a relation for P vs. v for the vapor phase.

c) What is the quality when all of the water has been expelled from cooker A?
d) Sketch the process for the cooker A on a P–v diagram.
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e) Write down the energy balance equation for the metal tube and obtain an ex-
pression for velocity through the metal tube assuming that steady state exists
for the c.v. (metal tube)

f) Obtain an expression for mass flow through the tube.
g) Derive the expression for P (t) in terms of vapor volume in the cooker?
h) What is the pressure in the cooker when all water is gone?
i) If ln Psat (bar) = 13.09 –4879/T, plot Tsat vs. t and compare with T vs. t.

Check your assumption in (b)

Problem B23 
A tank must be charged with gases from a reciprocating compressor that is running at
a speed of N. The displacement volume is Vdisp and the compresion ratio is r. The
outlet valve for the compressor opens only when the pressure in the cylinder exceeds
tank pressure. The compression process in the piston–cylinder follows the relation Pvn

= Constant. Determine the P(t) vs. time if the tank is assumed to be adiabatic.

Problem B24 
When propane is burned in a gas turbine, one produces a gaseous mixture of 6.48%
CO2, 10.12% O2, 7.28% H2O and 76.12%% N2. Ten kmol of mixture /min. enter an
adiabatic gas turbine at 1200 K, and 10 bar and leave at 700 K, 1 bar . There are no
chemical reactions
a) Write down the species balance in terms of k mol of flow in and out,
b) Write down the energy balance equation, and
c) Simplify the equations in parts (a) and (b) for a steady state and steady flow

process.
Calculate the work produced by the turbine in kW

Problem B25 
Consider an insulated rigid tank containing 2 m3 of air. The tank is divided into two
parts A and B by a partition mounted with a thick insulation (a constraint which pre-
vents heat transfer) and locked in place by a pin (another constraint which prevents
work transfer). The portion A consists of 1 kg of hot air at 320 K and 1.48 bar while
portion B consists of cold air at 290 K and 0.42 bar. Determine the final conditions in
both chambers for the following cases.
a) If the pin is removed but insulation stays with the partition

i) If QE expansion occurs for chamber A but the process in B may not
be QE,



ii) If QE compression occurs for chamber B but the process in A may
not be QE.

b) If the pin is removed and the insulation is also removed from the partition

Problem B26 
You have been hired by PRESSCOOKER, Inc. to analyze the thermodynamic proc-
esses in cookers. A pressure cooker of mass mC contains water (mass mw, volume
Vw). There is some air ma left in the cooker. The cooker is covered and tightly sealed.
A small weight is placed at its top and the cooker is heated. You must analyze the
problem of water heat up on an electric range that supplies an electrical power Welec.
Water starts evaporating and releases vapor (mass = mv) to the air space above the
water. After time tL, the pressure in the cooker reaches PL, the weight is lifted and
steam is released. We can assume that the cooker is adiabatic. Neglect the kinetic and
potential energy contributions. Assume uniform temperature and pressure inside the
cooker and the temperatures of the contents are the same as that of the steel. The spe-
cific heats of air(cP0,a), vapor(cp0,v), water(cw) and steel cooker (cS) are assumed to be
constant.
a) Write down the mass and energy conservation equations for t < tL. Simplify.

Explain the various terms (not exceeding two lines for each term).
b) Write down the mass and energy conservation equations for t > tL. Simplify.

Explain the various terms (not exceeding two lines for each t the entropy
generation term).

c) Mention how will you solve the problem for T vs. t, m vs. t for t < tL and t >
tL

Note: m denotes the total mass of cooker including the contents.

Problem B27 
Assume that Mt. St. Helen erupts again and releases a rock of 2000 kg mass. The sur-
face of the rock is at T = 2000 K while the interior is a liquid at 2000 K. The entire
rock moves at a speed of 300 m/s and rises in altitude. As the rock moves in ambient
air, there is also heat loss. Analyze the problem by applying the First Law.

Problem B28 
Assume that scientists have measured the following with “inert” (nonfusion–causing)
electrodes in heavy water in a nuclear reactor: Work input through a stirrer: 100 mW;
Electric input through a heater: 200 mW (controllable); Power input through elec-
trodes: 350 mW. What should be the rate of heat loss if the heavy water is maintained
at 35ºC? Assume that scientists change the electrodes that may cause a fusion reaction
to occur. Under identical conditions as before, they have found that they will have to
reduce the heater input to 150 mW. The heavy water is still at 35ºC. What is the rate
of “unaccountable energy” or “excess energy” or the so called “fusion energy” in
mW?

Problem B29 
Using Eqs (J) and (K) and ideal gas law prove Eq. (L) in Example (17).

C. CHAPTER 3 PROBLEMS

Problem C1 
An Otto cycle involves reversible processes. Otto cycle A uses Ar while Otto cycle B
involves N2. Then using Clausius theorem and T-s diagram for Otto cycle one of the
following must be true for the same initial (T1) and peak temperatures (T3) a) ηA = ηB,

b) ηA > ηB, c) ηA < ηB. Which one is it?



Problem C2 
Innovations, Inc. claims that they have developed a heart pump driven by a heat en-
gine which uses the warm reservoir of a human body 98.6ºF and the cold reservoir of
ambience 60ºF. It is claimed that for every 100 BTU of heat absorbed from the body,
the engine could deliver work of 10.5 BTU. Can you verify the claim?

Problem C3 
The S vs. Ta during the cooling of a coffee cup in room air (Ta) shows a maximum at
equilibrium. Can the same curve yield the time scale required for equilibrium? What
is a spontaneous process?

Problem C4 
How can changing heat transfer into work reduce entropy production?

Problem C5 
Can we define equilibrium in terms of E, V, m?

Problem C6 
Will the equilibrium condition within a tank containing N2 change if the tank walls
are porous?

Problem C7 
Will the work added to a system always change entropy? Specifically, consider QE
adiabatic work and NQE adiabatic work.

Problem C8 
If the concept related to σ is important, why do not engineers use it in common prac-

tice?

Problem C9 
Consider a cup full of coffee placed in room air. If the pressure and entropy are
maintained constant within the rigid room, in practice how can there be a heat loss?

Problem C10 
Why is there a negative sign associated with the equality ∂S/∂N1 = - µ1/T?

Problem C11 
Consider problem B.10. The entropy change after compression process is a) zero, or
b) positive?

Problem C12 
Explain entropy using physical principles. What is an "endoreversible" engine?

Problem C13 
If the entropy increases, do you believe S=0 at the beginning of the universe?

Problem C14 
What prevents O2 being on one side within a room?

Problem C15 
Is entropy generated as a result of electrical and gravitational fields?

Problem C16 
Can you predict time to reach equilibrium be using thermodynamics?

Problem C17 
The temperature of air in a rigid container initially at 300K (T1) and 100Kpa (P1) has
to be increased to a final temperature of 600K. The student found that the gas tem-
perature was not uniform inside the tank during the heating process with a gas burner



even though the temperatures were uniform at 300K (State 1) and 600K (State 2). As-
sume constant specific heats and cvo=0.7 kJ/kg-K. Then which of the following state-
ment is true?
a) The specific entropy change (s2-s1) in kJ/kg-K is given as 0.49 kJ/kg-K.
b) The specific entropy change cannot be determined since the process is inter-

nally irreversible.
c) The entropy change is zero.

Problem C18 
What is the physical significance of A and G reaching a minimum value?

Problem C19 
How does the entropy change if a partition between two fluids is porous?

Problem C20 
What is the physical meaning of the entropy flux? (Hint: heat transfer through fins.)

Problem C21 
Consider the cooling of coffee and air for which S1= Scoffee + air = 2 kJ/K, S2 = Smax =
SM = 5 kJ/K after reaching a maximum (at state M). Can this entropy be lowered to S3

< S2 through an adiabatic process?

Problem C22 
Why should σ be different if energy is supplied via heat or via electrical work cross-

ing a system boundary?

Problem C23 
If microscopic fluctuations occur at equilibrium, why does it not violate the Second
Law?

Problem C24 
What are the ways of increasing the temperature of a closed system?

Problem C25 
Are there ways of determining irreversibility without evaluating σ?

Problem C26 
If the entropy never decreases we obtain greater disorder. If a room is messy we can
clean it up . Why can’t we do the same for a thermodynamic system?

Problem C27 
What is the difference between compressible and incompressible materials?

Problem C28 
When can you assume constant specific heats and when can you assume variable spe-
cific heats?

Problem C29 
What is the difference between s2-s1 and σ12?

Problem C30 
Physically, what is the difference between chemical and deformation work ?

Problem C31 
Recall that we can use the expression dS = (δQ/T)rev = dU/T + P dV/T for a fixed

mass system to develop tables for s = s(T,P). Can we use this expression to determine
the entropy of a fluid which enters a turbine or for any other open system?



Problem C32 
If the human body is assumed to have the same properties as liquid water, then during
fever, the entropy of the human body should be higher, since a) the volume of the
human body slightly decreases, and b) its energy increases during fever. State which
of the two is the correct answer.

Problem C33 
When a violinist performs, only 2% of the work done is used to produce musical
sound, and the remainder is dissipated in the form of heat. Assume that violin strings
are made of steel. As a string is heated, the damping coefficient changes, which alters
the sound. How can you employ the Second Law to relate the damping and heating
processes in order to produce a better violin design?

Problem C34 
Consider an insulated piston cylinder assembly. The piston mass is negligible and is
fabricated of good insulation material. A ambient pressure P0 = 100 kPa acts on the
piston. The temperature of the gas (which is air) is 300K (Ta). A mass of 100 kg (mE)
is suddenly placed on the piston and the surface area of the piston is 1 cm2 (area A).
The initial volume is 0.01m3 (V1). The local gravitational acceleration is 10m/s2 (g).
Make any reasonable approximation and indicate the formulations required to obtain
answers to the following questions.
a) The final pressure (P2),
b) The final temperature (T2) and volume (V2), and
c) Entropy change between states 1 and 2.

Problem C35 
Consider the reversible polytropic process pvn = constant between the states i (initial)
and f (final). We must devise an equivalent process that consists of an adiabatic proc-
ess ig, an isothermal process gh, and an adiabatic process hf, such that work per-
formed by the equivalent processes is the same as the work done by the reversible
polytropic process.
a) Show that for the isothermal process,

Tg = (Ti – Tf) (((k–1)/(n–1))– 1)/(ln ((Pf vf 
k) (Pi vi

k))).
b) What is the value of n for constant P process? Using the answer to part (a)

obtain an expression for a constant pressure process.
c) What is the value of n for a constant volume process? Using the answer to

part (a) obtain an expression for a constant volume process.
d) Plot the processes within the range Pi = 60 bar to Pf = 48.2 bar, with vi =

0.1m3/kg and vf = 0.12 m3 kg–1. Assume the medium to be air and treat it as
an ideal gas.

Problem C36 
Derive an expression for the efficiency of the reversible cycles illustrated in the figure
in terms of TL and TH, and for a Carnot cycle operating between the same tempera-
tures.

Problem C37 
Consider an adiabatic reversible process for an incompressible liquid flowing through
an expanding duct.
a) What is the entropy change?
b) Can the process be considered isothermal?

Problem C38 

Consider an adiabatic reversible process for an incompressible liquid flowing through
an expanding duct. Using the basic energy and mass conservation relations for an



open system obtain a relation between the pressure and the area of the duct. Show
that this reduces to Bernoulli energy equation. (Recall that for liquids du = cdT.)

Problem C39 
Heat (QH) is rejected from the condenser to the ambient in a refrigeration cycle for
which the temperature TH (ambience) is 10ºC below the condenser temperature.
Similarly, heat is added to the evaporator from a cold space at a temperature TL. The
evaporator coil is at a temperature that is 10ºC below TL. Is it possible to use the heat
transfer QH to reduce the work input to the compressor?

Problem C40 
a) Determine the entropy generation rate in a bar of cross sectional area A

which is maintained at To (x = 0) and at TL (at x = L). The peripheral area is
insulated. Derive expressions for the: i) entropy generation per unit volume
in terms of local temperature, ii) total entropy generation rate per unit cross
sectional area in the bar, and iii) entropy generation rate per unit heat loss
rate.

b) What is the: i) entropy generation per unit volume at x = 0.1 m for aluminum
if To = 500 K, TL = 300K, L = 0.3m, ii) total entropy generated within the
whole bar, iii) entropy generated per unit heat loss, iv) lost work rate per unit
mass loss rate, and v) lost work rate per unit mass loss rate?

c) Determine the difference between the specific entropies at x = L and x = 0.
d) The heat flux Q″ enters at x= 0 and leaves at x=L. Calculate the entropy flux

in and out? Why is the exit entropy flux different?

Problem C41 
As a patent officer you receive a patent application for a cyclic device which consists
of irreversible adiabatic compression from (P1,V1) to (P2,V2), quasi-static isothermal
heat addition from (P2,V2) to (P3,V3) (V2<V3<V1) and then finally adiabatic and
quasi-static expansion from (P3,V3) to (P1,V1). Will you issue the patent? Justify.

Problem C42 
One kmol of CO is contained in a piston–cylinder assembly at 3000 K and 1 bar.
What is the system entropy? Now, one kmol of O2 at 1 bar and 3000 K is introduced,
but constant pressure is maintained in the system. What is the entropy change for the
inert mixture?

Figure 1: Chapter 3, Problem C37.



Problem C43 
An ideal gas can be heated in a closed system using a) an isobaric process or b) an
isometric process through a similar temperature rise. What is the ratio of isobaric en-
tropy change to isometric entropy change? Discuss the results briefly.

Problem C44 
An ideal Otto cycle which uses the same gas for all four processes (adiabatic com-
pression, isometric heat addition, adiabatic expansion, isometric heat rejection) has
the following expression for efficiency

η = 1 – 1/(rv 
(k–1))

where rv denotes the compression ratio v1/v2, v1 the initial volume, and v2 the volume
after compression.
a) Determine η for with k = 1.4, rv = 8.

b) Determine η for a monatomic gas for which k = 1.6667, and rv = 8.

c) Discuss the results for a) and b).

Problem C45 
Consider the transient three–dimensional heat conduction equation and the entropy
balance equations for solids. Show that the entropy generation rate per unit volume is
given by the expression σ̇ = –(q″/T2)∇T.

a) What is the result for σ̇ if q″ = – λ ∇T,

b) What is the result for σ̇ if q″ = λ ∇T,

c) What is your conclusion?

Problem C46 
Ten kg of hot air is stored at 1000K and 1 bar in compartment A of a rigid insulated
tank, and 5 kg of cold air at 500 K is stored in compartment B of the same rigid insu-
lated tank at 1 bar.
a) If you open the partition between compartments A and B

i) What is the final temperature T2?
ii) What is the final pressure P2?

b) What is the entropy generated?
c) If we connect a Carnot engine between reservoirs A and B (i.e., by extracting

heat from compartment A and rejecting it to compartment B to produce
work),
i) What is the final temperature in A and B?
ii) What is the maximum possible work?
iii) What is the entropy generated?

Problem C47 
Assume that you have a “finned head” on your body. “Finned heads” argue that they
are the “coolest” people on the earth, since each strand of hair behaves as a fin to keep
their heads cool. However “bald heads” argue that the radiation heat loss from their
heads is a more important form of cooling. Looking at the problem from a thermody-
namic point of view, which “head” generates more entropy for the same ambient tem-
perature?. The temperature of a “head” can be assumed to be 98.6ºF for both groups.
State your assumptions.

Problem C48 
Consider the piston–cylinder assemblies A and B, where the head of cylinder A is in
contact with head of cylinder B. Equal masses of ideal gases exist initially at P =10
bar and T = 500 K in both cylinders. Cylinder A is quasi-statically compressed to 15
bar while the pressure in B is reduced to 5 bar. Each cylinder is insulated except at the



head. Combining systems A and B, answer the following questions: Is the process is-
entropic? What is the final temperature? If we expand the gas in cylinder A back to 10
bar and compress the gas in B back to 10 bar, what are the final temperatures?

Problem C49 
The following problem will illustrate the Clausius inequality. A professor asked his
research assistant (student A) to compress 0.002 kg of air in an insulated cylinder
which was initially at 100 kPa and 300 K (state 1). He wanted the student to do this as
slowly as possible so that when the volume was reduced to 1/10th of the original vol-
ume, he obtained a pressure of 25120 kPa and a temperature of 753 K. He advised the
student that it might take many hours to do the job. As soon as the professor left the
room, the student got anxious and in a few milliseconds he/she moved the piston to
reach 1/10th of the original volume and left. The professor returned after a few hours.
He found to his dismay that the temperature reading was 900 K and correspondingly
the pressure was also high (state 2). He figured out what had happened and he imme-
diately fired the student. He hired a new research assistant (student B) who he thought
would act more responsibly. He told the research assistant to move the piston back as
slowly as possible to the original volume to the initial state. The cylinder was still in-
sulated. After a few hours the student moved the piston back to the original position.
But the temperature and pressure after expansion (state 3) were not the same as the
values at state 1. He reported the results to the professor. The professor told the stu-
dent to remove the insulation and to isometrically cool the cylinder to a temperature
of 300 K. The student did that and found the pressure to be almost the same as the
pressure at state 1.
a) If the compression process was adiabatic and reversible what would the tem-

perature (T2s) and pressure (P2s) have been after compression? Assume con-
stant specific heats (evaluated at 300 K). Why are these values different from
the values measured by student A? What would be a best determine for the
actual pressure at state 2 for the measured temperature?

b) Why is state 3 different from state 1?
c) How much heat must be removed between states 3 and 1?
d) Do you believe the pressure measurement after the cooling process?
e) Determine the cyclic integral of δQ/T. What is the sign of this quantity? Ex-

plain the significance of the sign.
f) Assuming that the entropy at 300 K, 100 kPa is 2.515 kJ kg–1 K–1, evaluate

the entropies at states (2) and (3).
g) What is the cyclic integral of dS? Why is this integral different from the an-

swer to part (e)?
h) If the atmospheric temperature is 300 K, what is the entropy change of an

isolated system during a single cyclical process?

Problem C50 
Consider a system A of mass 2 kg at 8 bar at 500 K, a system B of mass 1 kg at 10 bar
at 300 K.
a) The two systems are adiabatic and divided by an insulated partition and by a

pin. The pin is released. What is the final pressure? What are TA and TB? As-
sume that the process is quasi-steady. Assume an adiabatic expansion proc-
ess for one cylinder.

b) The two systems are divided by a diathermal wall. Except at the partition,
there is no heat transfer. What is the final pressure? What are the final tem-
peratures?



Problem C51 
Obtain an expression for the entropy generated over a time period t when a pressur-
ized gas at the state (Ti, Pi) enters an adiabatic piston–cylinder–weight assembly of
cross sectional area A and the weight W is just lifted. The ambient temperature is To.

Problem C52 
The generalized entropy relation for any simple compressible substance following the
state equation v = v(T,P) is ds = cv dT/T + (∂P/∂T)v dv. Assume that a solid substance

undergoes adiabatic reversible compression or expansion.
a) Obtain an expression for (∂T/∂v)s in terms of cv, βP, βT and T where βP =

(1/v) (∂v/∂T)P and βT = –(1/v) (∂v/∂P)T.

b) Discuss the results qualitatively for a substance that expands or contracts
upon heating.

c) Determine (∂T/∂v)s for copper assuming its properties at 25ºC.

d) Irreversibilities exist in systems (e.g., temperature gradients involved in the
bending of the copper beam) and as a result entropy δσ is generated. Since

ds – δq/T = δσ., qualitatively compare (∂T/∂v) obtained under adiabatic irre-

versible conditions with those obtained for part (a).

Problem C53 
A family returns from vacation to find their house at a temperature of 15°C, while the

outside temperature is 5°C. The house has a volume of 2000 cubic meters and the ef-

fective heat capacity of the house, furniture, and fixtures (exclusive of the air) is
3×105 kcal K–1, while the heat capacity of air (cp) may be assumed to be constant and

its value can be fixed with respect to some average temperature. As the house is
heated, air is expelled (through the sides of windows, the chimney, etc.) to maintain
the pressure at one atmosphere.
a) How much heat is required to raise the temperature of the house and its con-

tents to 25°C (assuming negligible heat losses, except through the expelled

air)?
b) How much electrical energy would it take to run a heat pump to achieve the

same objective? Assume that the heat pump and motor combined run at 35%
of the theoretical efficiency (independent of temperature) and that the expan-
sion coils are outside the house and are maintained at 0°C, while the com-

pressor and condenser and motor are inside the house at a temperature equal
to that of the house.

Problem C54 
Suppose that saturated liquid data for h, v and s are available for water from 10 to
180ºC. Produce a compressed liquid table for h, u (= h–Pv) and s at P = 10 bar for
temperatures from 10ºC to 180ºC using the saturated liquid data. Assume that the liq-
uid specific volume does not change with pressure at a given temperature.

Problem C55 
Consider a high intensity discharge lamp in which the electric discharge occurs with
an energy U in a narrow ultra violet wavelength range band ∆λ around λ. The energy

intensity of the photons is expressed by Planck’s law. The entropy of the photons S =
4(U/3)T. Mercury vapor under high pressure absorbs this energy but emits in the visi-
ble range of wavelength. assuming that the vapor absorbs all of the energy in the visi-
ble wave length range.



a) determine the temperature of vapor (Tv) assuming it to be a black body (U =
4σTv

4), and

b) determine the entropy generated.

Problem C56 
Consider a fin of arbitrary cross sectional area with its base maintained at the tem-
perature Tw (x = 0) that loses heat to its ambient at the temperature T∞. Show that the

expression for the work loss rate per unit heat loss rate is the same as the Carnot effi-
ciency. (Hint: use a control volume which includes the base area with other bounda-
ries extending far away from the fin.)

Problem C57 
Hot water (W) at the temperature TW,0 is kept in an adiabatic classroom which con-
tains air (A) initially at a temperature TA,0. Initially, there is a constraint on the cup in
the form of an insulation around the cup. Once we remove the insulation, there is ir-
reversible heat transfer that leads to an increase in the entropy of the combined sys-
tem. Concerned with this, a graduate student connects a Carnot engine between the
water and room air (A) and delivers work to the outside of the classroom to run an
elevator.
a) What is the energy of the combined system (A+W)?
b) What are the energy of the subsystems, A and W?
c) What is the entropy of the combined system?
d) Compare the final temperatures of the subsystems, A and W.
e) Determine the work done.
f) Discuss the internal energy variation of A+W with time as work is delivered.

Problem C58 
Consider an Otto cycle (which is also a reversible cycle) operating with compression
ratio of 5 (=V1-V2). It can be shown that the temperature ratio (T4/T1) = (T3/T2). If
T1=300K, what is T2? Assume T3 = 800K. What is the Carnot efficiency for the same
maximum and minimum temperatures? Do you believe that the Otto efficiency is
greater, smaller or equal to the Carnot efficiency? Provide reasons for your answer in
five or six lines.

Problem C59 
Consider a reversible Otto cycle operating with a compression ratio (=v1/v2) of 5. The
temperature ratio (T4/T1) = (T3/T2). If T1 = 300 K and T3 = 800 K, determine T2?
What is the Carnot efficiency for the same maximum and minimum temperatures?
What is the Otto efficiency and the corresponding Carnot efficiencies?

Problem C60 
A cooker A of 30 cm diameter and a 30 L volume is filled with 4 kg of water. The
cooker operates at a pressure of 5 bar. A metal tube of 10 mm2 cross sectional area is
contained inside the cooker from a position slightly removed from its bottom surface
and attached to a valve at the top of the cooker. When the valve is opened, the re-
maining water in the cooker is injected into another open adiabatic cooker B of equal
dimension in order to conserve energy. However we would like to monitor the pres-
sure in cooker A with respect to time until there is no liquid left in it. Assume that
water vapor behaves as an ideal gas with a specific heat of 1.65 kJ kg–1 K–1. Liquid
water is incompressible with a specific heat of 4.184 kJ kg–1 K–1 and a specific vol-
ume v = 0.001 m3 kg–1. The area of the metal tube is 10 mm2. Assume that the vessels
are insulated, and that there is no heat transfer when the valve is opened and that the
cooker free space is occupied by vapor alone.
a) What is the water quality when the valve in the metal tube is opened?



b) What is the water quality when all water has exited from cooker A?
c) Illustrate the process for cooker A on a P–v diagram.
d) Write the energy balance equation for the process occurring in the metal tube

and obtain an expression for the gas velocity through the tube for a steady
state process.

e) Obtain an expression for mass flow through the tube.
f) Write the mass conservation equation for liquid phase (assume phase equi-

librium between vapor and liquid).
g) Write the entropy balance equation for the combined system.
h) Derive the expression for P(t) in terms of the vapor volume in the cooker?
i) What is the pressure in cooker A when all of the water has evaporated?
h) If Psat (bar) = 1.86 exp (5199/Tsat (0K)) compare the Tsat(t) behavior with T(t).

Check the assumption.

Problem C61 
Consider a Carnot cycle in which the air is adiabatically and reversibly compressed
say from V1 = 0.1 m3, P1 = 100 kPa, T1 = 300 K to V2 = 0.06 m3, and P2 = 205 kPa.
Heat is then isothermally added (i.e., TH during heat addition) where Qin = QH = 14.75
kJ, and the air expanded to state 3. The gases are adiabatically and quasistatically ex-
panded to a temperature T4 = 300 K. Finally heat is isothermally rejected so that the
volume returns to its original value. Assume ideal gas behavior, cvo = 0.714 kJ kg–1

K–1, and constant specific heats.
a) Determine Qout (= QL).
b) Determine QL/QH.
c) What is Wcycle?
d) Is QL/QH = TH/TL?

Problem C62 
Determine the entropy of N2(g) at 373 K and 1 bar. If N2 is a solid at 0 K, and hsf = hfg

= 0, what is the entropy s of N2(g) at 0 K? Assume ideal gas behavior between 0 and
373 K (undoubtedly, a drastic assumption).

Problem C63 
Consider a gas turbine that is 2 m long, with a net power output of 100 kW, and oper-
ating with a monatomic gas for which cpo = 20.79 kJ kmol–1 K–1. Let Pi = 10 bar and
Pe = 1 bar. Since the gas is monatomic, the specific heat is not a function of T. As-
sume steady state steady flow and that the turbine walls are well insulated. The inlet
and exit velocities are very low. In order to obtain additional work from the turbine it

A
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is necessary to raise the inlet temperature to Ti = 1500 K. However, the turbine blades
cannot withstand a temperature greater than 900 K (Tbl), and blade cooling is adopted.
The temperature of the gas within the turbine varies according to the relation

T = Ti – (Ti – Te) x/L,
where L denotes the length of turbine, and x the distance from inlet. The turbine walls
are insulated, and the blades are cooled as long as the gas temperature exceeds the
turbine blade temperature. We also assume that when the gas temperature falls below
1100 K, there is no appreciable heat loss to the blades. The heat loss rate per unit
length and per unit mass flow is given by the relation h´(T– Tbl) where h´ denotes the
heat loss per unit length of turbine and is 0.5 kW/m K. The exit temperature is 600 K.
a) Start from generalized mass and energy conservation and entropy balance

equations
dNcv/dt = Ni – Ne,
dEcv/dt = Qcv – Wcv + Ni (h + ke + pe)i – Ne(h + ke + pe)e, and
dScv/dt = ∫δQ/Tb + Ni si –Ne se + σ.

Using assumptions stated in the problem and any additional assumption, pre-
sent the mass and energy conservation and entropy balance equations in a
simplified form.

b) What is the work under steady state operation?
c) Determine the entropy generated per unit mass flow in the turbine.
d) If the turbine runs at an inlet temperature of 1100 K, but with no cooling and

no heat loss, what is the work done for the same exit conditions?

Problem C64 
Assume that there is a secondary system, which is a reservoir at a fixed pressure, in-
side a spacecraft at the state Ts,o and Ps,o,. Determine the optimum work done if an
ideal gas initially at Tp,o, Pp,o in a primary system that undergoes change of state to
Tpf, Ppf due to interaction with the secondary system. Assume that Tpo = 1000 K, Ppo =
20 bar, mp = 4 kg, the gas in primary system is Ar, Ppf = 10 bar, Tpf = 600 K, Tso =
300 K, Pso = 1 bar, and ms = 8 kg. Assume that the gas in the secondary system is He.

Problem C65 
In a conventional Carnot cycle TL = T4 = To. In an unconventional cycle an ideal gas
is expanded to the temperature T4´ (< To) and volume v4´. Show that the additional
work during the expansion process wadd < Po(v4´– v4). Assume constant specific heats.

Problem C66 
Consider a cycle consisting of reversible adiabatic compression from state 1 to 2,
isothermal heat addition at TH, and reversible adiabatic expansion to state 1, which is
at 0 K. Draw a T–P diagram for the cycle. Is this cycle possible?

Problem C67 
Is it possible to obtain an efficiency η = 1 if compressed gas at room temperature is

available at the state (P1, To), then adiabatically and reversibly compressed to state 2
(P2, T2) heat is added at a constant high temperature TH to state 3, and the gas is fi-
nally expanded to state 4 (P0, To) and then discharged to the atmosphere?

Problem C68 
Consider saturated water in an insulated blender at 100O C, P =–101kPa (state 1). A
weightless piston is kept above the water. The ambient pressure is 101kPa. As the
motor is turned on, the water just starts evaporating and reaches saturated vapor state
(state 2). Sketch the process on P-v and T-s diagrams.
a) What is the boundary work?
b) What is the work input through the blender shaft?



c) Is there any entropy generated during the process? If so, how much for unit
mass?

d) Comment on the areas under process 1-2 in the P-v and T-s diagrams.

Problem C69 
10 kg of Ar is contained in the piston–cylinder section A of a system at the state
(1.0135 bar, 100ºC). The gas is in contact through a rigidly fixed diathermal wall with
a piston–cylinder section B of the system that contains a wet mixture of water with a
quality x = 0.5 that is constrained by a weight. As the gas in section A is compressed
the temperature in A remains at 100ºC using QE process due to contact with section
B. Assume that the quality in section B increases to 90%. Both systems are well in-
sulated except at the diathermal wall. Determine:
a) the initial pressure in Chamber B,
b) the heat transfer Q12, B in kJ to Chamber B during compression of Ar in Chamber

A,
c) the work for sections A and B in kJ,
d) the change in the entropies of Ar and H2O (both liquid and vapor), and
e) the volume V2 in Chamber A
f) Is the process for the composite system (A+B combined together) isothermal and

isentropic?

Problem C70 
A piston–cylinder assembly contains Ar(g) at 60 bar and 1543 K (state 1).
a) Determine the work done if the gas undergoes isothermal expansion to 1 bar

(state 2). What is the heat transfer? Does this work process violate the Sec-
ond Law?

b) Determine the work done if the gas undergoes quasistatic adiabatic expan-
sion to 1 bar (state 3). Can we continue the expansion to v3 → ∞ by remov-

ing the insulation and adding heat?

Problem C71 
A rigid container of volume V is divided into two rigid subsystems A and B by a rigid
partition covered with insulation. Both subsystems are at the same initial pressure Po.
Subsystem B contains 4 kg of air at 350 K, while subsystem A contains 0.4 kg of air
at 290 K. The insulation is suddenly removed and A and B are allowed to reach ther-
mal equilibrium.
a) What is the behavior of the overall entropy with respect to the temperature in

subsystem A. What is the equilibrium temperature?
b) As heat is transferred, the entropy of subsystem A increases while that of

subsytem B decreases. The entropy in the combined system A and B is held
constant by removing heat from subsystem A. Plot the behavior of the over-
all internal energy with respect to the temperature in subsystem A. What is
the equilibrium temperature?

c) Both subsystems are allowed to move mechanically in order to maintain the
same pressure as the initial pressure Po. The entropy is held constant by al-
lowing for heat transfer. Plot the behavior of the overall enthalpy with re-
spect to the temperature in subsystem A. What is the equilibrium tempera-
ture?

Problem C72 
A piston–cylinder–weight assembly is divided into two insulated subsystems A and B
separated by a copper plate. The plate is initially locked and covered with insulation.
The subsystem A contains 0.4 kg of N2 while subsystem B contains 0.2 kg of N2.



a)  The insulation is removed, but the plate is
kept locked in locked positions. Both subsys-
tems are at the same initial pressure P1A = P1B

= 1.5 bar with temperatures T1A = 350 K, and
T1B = 290 K. Both A and B reach thermal
equilibrium slowly. Assuming that internal
equilibrium exists within each subsystem,
plot (S = SA + SB) with respect to TB for
specified values of U, V, and m. What is the
value of TB at equilibrium?

b) The plate insulation is maintained, but the
lock is removed. Assume P1B = 2.48 bar and
P1A = 1.29 bar and equal temperatures TA,1 =

TB,1 = 335 K. Assume quasiequilibrium expansion in subsystem B and plot S
with respect to PA for specified values of U, V, and m

b) The insulation is removed, but heat transfer to outside ambience is allowed
with the restraint that the entropy of the combined system A+B is constant.
Plot U with respect to TB. What is the value of TB at equilibrium?

Problem C73 
An adiabatic rigid tank is divided into two sections A (one part by volume) and B
(two parts by volume) by an insulated movable piston. Section B contains air at 400 K
and 1 bar, while section A contains air at 300 K and 3 bar. Assume ideal gas behavior.
The insulation is suddenly removed. Determine:

a) The final system temperatures.
b) The final volumes in sections A and B.
c) The final pressures in sections A and B.
d) The entropy generated per unit volume.

Problem C74 
Steam enters a turbine at 40 bar and 400ºC, at a velocity of 200 m s–1 and exits at
36.2ºC as saturated vapor, at a velocity of 100 m/s. If the turbine work output is 600
kJ kg–1, determine:
a) The heat loss.
b) The entropy generation assuming that the control surface temperature Tb is

the average temperature of the steam considering both inlet and exit.
c) The entropy generation if the control surface temperature Tb = To= 298 K,

which is the ambient temperature

Problem C75 
Determine entropy generated during the process of adding ice to tap water. A 5 kg
glass jar (c = 0.84 kJ kg–1 K–1) contains 15 kg of liquid water (c = 4.184 kJ kg–1 K–1)
at 24ºC. Two kg of ice (c = 2 kJ kg–1 K–1) at –25ºC wrapped in a thin insulating foil of
negligible mass is added to water. The ambient temperature To = 25ºC. The insulation
is suddenly removed. What is the equilibrium temperature assuming that no ice is left
(the heat of fusion is 335 kJ kg–1), and what is the entropy generated?

Problem C76 
Consider the isentropic compression process in an automobile engine. The compres-
sion ratio rv = (V1/V2) = 8 and T1 = 300 K. Assuming constant specific heats, deter-
mine the final temperature and T2 and the work done if the fluid is air and Ar respec-
tively. Explain your answers.
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Problem C77 
The fuel element of a pool–type nuclear reactor is composed of a core which is a ver-
tical plate of thickness 2L and a cladding material of thickness t on both sides of the
plate. It generates uniform energy ′′′q , and there is heat loss hH(Ts – T∞) from the

plate surface, where Ts denotes the surface temperature of the cladding material. The
temperature profiles are as follows:
In the core,

(T – T∞)/( ′′′q Lcore
2/2kcore) = 1 – (x/L)2 – B, where

B= 2(kcore/kclad) + 2 (Lclad/Lcore) (kcore/kclad) (1 + kclad/(hH Lclad)).
For the cladding material

 (T – T∞)/( ′′′q Lcore
2/2kclad) = –(x/L)2 + c, where

C = (Lclad/Lcore)(1 + kclad/(hH Lclad)) and Lclad = Lcore + t.
Here L denotes length, k the thermal conductivity, hH the convective heat transfer co-
efficient, and t thickness.
a) Obtain expressions for the entropy generated per unit volume for the core

and clad.
b) Simplify the expression for the entropy generated per unit volume at the

center of core?
c) Determine the entropy generated per unit surface area for the core and clad.

Problem C78 
The energy form of the fundamental equation for photon gas is U = (3/4)4/3 (c/(4 σ))1/3

S4/3 V–1/3 where c denotes speed of light, σ  Stefan Boltzmann constant, and V volume.

a) Obtain an expression for T(S,V).
b) Obtain an expression for (P/T) in terms of S and V.
c) Using the results for parts (a) and (b) determine P(T,V).

Problem C79 
A heat engine cycle involves a closed system containing an unknown fluid (that is not
an ideal gas). The cycle involves heat addition at constant volume from state 1, which
is saturated liquid, to state 2, adiabatic reversible expansion from state 2 to state 3
which is a saturated vapor, and isobaric and isothermal heat rejection from state 3 to
state 1 (that involves condensation from saturated vapor to saturated liquid). The cy-
cle data are contained in the table below. The heat addition takes place from a thermal
energy reservoir at 113ºC to the system. Heat rejection occurs from the system to the
ambient at 5ºC. Determine the heat added and rejected, the cycle efficiency, the asso-
ciated Carnot efficiency, and the entropy generated during the cyclical process

State P, bar T, ºC v, m3 kg–1 h, kJ kg–1

1 50 5 0.003 720
2 310 113 0.003 965
3 50 5 0.004 860

Problem C80 
An ideal gas available at state (P1,T1) is to be isentropically expanded to a pressure P2.
Given the choice that you can either use a turbine or a piston–cylinder assembly,
which one do you recommend? Are the isentropic efficiencies the same for both de-
vices if the final states are the same?

Problem C81 
Show that the reversible work for an isothermal process undergoing expansion from a
pressure of P1 to P2 in a closed system is same as the work in an open system (neglect



kinetic and potential energies in the open system) for the same pressure change with
an ideal gas as the medium of fluid. Is this statement valid for an adiabatic reversible
process for the same pressure changes in both the open and closed systems and with
the same initial/inlet conditions? Justify.

Problem C82 
Show that the expression

dU = T dS - P dV + µdN (A)

reduces to the expression du = Tds – Pdv.

Problem C83 
Assume that we have 2 kmol of N2 at 400 K and 1 bar in a rigid tank, and S1 =
200.1×2 = 400.2 kJ/K. We add 0.1 kmols of N2 and transfer heat from the system

such that S2 = S1.
a) Determine U at states 1 and 2.
b) Determine the temperature at state 2.
b) Determine the chemical potential µ(= ∂U/∂N)S,V

Problem C84 
Consider a counter-flow heat exchanger in which two streams H and C of specific
heats cpH and cpC flow counter to each other. The inlet is denoted as i and the exit as e.
If TH,i and TH,e are the inlet and exit temperatures of stream H, and TC,i is the inlet of
stream C., then obtain an expression for the maximum most temperature TC,e. Assume
that Cp,HmH  < CpCmC and TH,e = TC,i. Determine the entropy generated per kg of
smaller heat capacity fluid

Problem C85 
Consider an adiabatic reversible compression from 1 to 2 via path A from volume v1

to v2 followed by irreversible adiabatic expansion from 2-3 and cooling from 3-1
(path B: 2-3 and 3-1). Apply Clausius in-equality for such a cycle and discuss the re-
sult.

D. CHAPTER 4 PROBLEMS
(Unless otherwise stated assume T0 = 25ºC and P0 = 1 bar)

Problem D1 
Is the relation s(To,  p H O2 ,o) = s(T0,p

 sat H O2 ,) R ln (p H O2
,o/p H O2 ,sat) equivalent to

s(To,p H O2 ,o) = so(To) – R ln (X H O2
P/Po)?

Problem D2 
In the condenser part of a power plant, is there an irreversibility due to Qo?

Problem D3 
Is it more practical to design for wopt than ws?

Problem D4 
Is the notion of availability based on an isentropic concept?

Problem D5 
Is optimum work the same as reversible work?

Problem D6 
When is g ≡ ψ?



Problem D7 
Are ke and pe included in the definition of ψ?

Problem D8 
Describe the concept of chemical availability.

Problem D9 
Use an example to describe the availability for gasoline.

Problem D10 
Differentiate between the absolute (availability-Europe) and the relative availability
(exergy).

Problem D11 
Explain the physical implications of the expression ψ= RT ln Xk. Does this mean that

ψchem < 0?

Problem D12 
Is chemical equilibrium satisfied when µ = µo?

Problem D13 
What is the typical range of COP?

Problem D14 
What is the difference between isentropic and optimum work?

Problem D15 
What is the absolute stream availability? Can it have negative values? Does the value
depend upon the reference condition used for the properties, such as h, s, etc.?
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Problem D16 
What is the (relative) stream availability or exergy? Can it have negative values?
Does the value depend upon the reference condition used for the properties, such as h,
s, etc.?

Problem D17 
What is the difference between closed system availability and open system availabil-
ity ?

Problem D18 
Can we assume that Po∆v ≈ 0 for liquids?

Problem D19 
What do we mean by useful and actual work?

Problem D20 
Consider the universe. As S → ∞, does φ → 0?

Problem D21 
What does a dead state imply?

Problem D22 
How are irreversibilities avoided in practice?

Problem D23 
For G to have a minimum value in a multicomponent system at specified values of T
and P, what is the partial pressure of the species?

Problem D24 
Can the availability be completely destroyed?

Problem D25 
What are your thoughts regarding current oil consumption and availability?

Problem D26 
What is the implication of Wu,opt for compression work?

Problem D27 
An irreversible expansion occurs in a piston–cylinder assembly with air as the me-
dium. The initial and final specific volumes and temperatures are, respectively, 0.394
m3 kg–1 and 1373 K, and 2.049 m3 kg–1 and 813 K. Assume constant specific heats,
cv0 = 0.717 kJ kg–1 K–1 and cp0 = 1.0035 kJ kg–1 K–1.
a) Determine the actual work delivered if the process is adiabatic and the adia-

batic efficiency.
b) Assume that this is a reversible process between the two given states (not

necessarily adiabatic for which Pvn = constant). What is the value of n? De-
termine the reversible work delivered.

c) What is the maximum possible work if the only interactions are with the en-
vironment, Tamb = 300 K, and Pamb = 100 kPa. What is the availability effi-
ciency of this process? Is this the same as the adiabatic efficiency?

d) What is the total entropy generated and the irreversibility?

Problem D28 
Water flows through a 30 m long insulated hose at the rate of 2 kg min–1 at a pressure
of 7 bar at its inlet (which is a faucet). The water hose is well insulated. Determine the
entropy generation rate. What could have been the optimum work?



Problem D29 
Steam enters a turbine at 5 bar and 240ºC (state 1).
a) Determine the absolute availability at state 1? What is the absolute availabil-

ity at the dead state (considering thermomechanical equilibrium)?
b) What is the optimum work if the dead state is in mechanical and thermal

equilibrium?
c) What is the chemical availability?
d) What is the optimum work if the steam eventually discharges at the dead

state? The environmental conditions are 298 K, 1 bar, and air with a water
vapor mole fraction of 0.0303.

Problem D30 
Saturated liquid water (the mother phase) is contained in a piston–cylinder assembly
at a pressure of 100 kPa. An infinitesimal amount of heat is added to form a single
vapor bubble (the embryo phase).
a) If the embryo phase is assumed to be at the same temperature and pressure as

the mother phase, determine the absolute availabilities ψ = h – Tos and Gibbs

functions of the mother and embryo phases.
b) If the pressure of the embryo (vapor) phase is 20 bar at 100ºC, while the

mother phase is at 1 bar, what are the values of the availability and Gibbs
function of the vapor embryo? (Assume the properties for saturated vapor at
100ºC and that the vapor phase behaves as an ideal gas from its saturated va-
por state at 1 bar and 100ºC to 20 bar and 100ºC to determine the properties.)

Problem D31 
You’ve been engaged as a consultant for a manufacturing facility that uses steam.
Their steam generator supplies high pressure steam at 800 psia, but they use the steam
at 300 psia. How would you advise them to decrease the pressure such that they
minimize irreversibilities? Be sure to explain your answer. If so, explain what and the
mechanism responsible for the destruction. Show both the process and the throttling
process on an h-s diagram and refer to it to illustrate your answer.

Problem D32 
Consider the energy from the sun at TR,1 and the ocean water at T0 . Derive expres-
sions for Wopt . Look at Figure Problem D.32 and interpret your results in terms of the
figure.

Problem D33 
Ice is to be heated at the North Pole where the ambient temperature is –30ºC to tem-
perature of –25ºC, –20ºC, …, 90ºC. Determine the minimum work required. The heat
of melting of ice is 334.7 kJ kg–1, and cice is 1.925 kJ kg–1 K–1.

Problem D34 
A gas tank contains argon at T and P.
a) Obtain an expression for the maximum possible work if an open system is used

when tank pressure is T and P. Assume that there is negligible change in T and P
of the tank and constant specific heats for the ideal gas. The ambient temperature
is To and the ambient pressure is Po.

b) Suppose the gas is slowly transferred from the tank to a large piston–cylinder
(PC) assembly in which the pressure and temperature decrease to the ambient
values. Treat the tank and PC assembly as one closed system. What is the be-
havior of φ/(RTo) with respect to T/To with P/Po as a parameter? Consider the

case when the gas state is at 350 K and 150 bar, and To = 298 K and Po = 100
kPa.



Problem D35 
Natural gas (that can be assumed to be methane) is sometimes transported over thou-
sands of miles in pipelines. The flow is normally turbulent with almost uniform ve-
locity across the pipe cross sectional area. There is a large pressure loss in the pipe
due to friction. The friction also generates heat that raises the gas temperature, which
can result in an explosion hazard. Assume that the pipes are well insulated and the
specific heats are constant. Assume that initially P1 = 10 bar and T1 = 300 K, and fi-
nally P2 = 8 bar for a mass flow rate of 90 kg s–1 m–2. What is the entropy change per
unit mass? What is the corresponding result if the velocity changes due to the pressure
changes?

Problem D36 
The adiabatic expansion of air takes place in a piston–cylinder assembly. The initial
and final volume and temperature are, respectively, 0.394 kg m–3 and 1100ºC, and
2.049 kg m–3 and 813 K. Assume constant specific heats cv0 = 0.717 kJ kg–1 K–1 and
cp0 = 1.0035 kJ kg–1 K–1.
a) What is the actual work?
b) What is the adiabatic efficiency of the process?
c) Assuming that a reversible path is followed between the same initial and fi-

nal states according to the relation Pvn = constant, what is the work deliv-
ered? Why is this different from the actual work?

d) Now assume isentropic expansion from the initial state 1 to a volume of
2.333 kg m–3 and isometric reversible heat addition until the final tempera-
ture is achieved. What is the heat added in this case?

e) If the heat is first added isometrically and reversibly, and then isentropically
expanded to achieve the final state, what is the value of the reversible work?
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Figure Problem D.31 Relation between pressure and volume.



f) What is the maximum possible work for a closed system if the ambient tem-
perature is 300 K? What is the value of the irreversibility?

Problem D37 
Consider an ideal Rankine cycle nuclear power plant. The temperature of the heat
source is 1400 K. The turbine inlet conditions are 6 MPa and 600ºC. The condenser
pressure is 10 kPa. The ambient temperature is 25ºC. What is the irreversibility in
KJ/kg and the maximum possible cycle work in KJ/kg?

Problem D38 
Steam enters a non-adiabatic steady state steady flow turbine at 100 bar as saturated
vapor and undergoes irreversible expansion to a quality of 0.9 at 1 bar. The heat loss
from the turbine to the ambience is known to be 50 kJ/kg. Determine the
a) actual work,
b) optimum work, and
c) availability or exergetic or Second law efficiency for the turbine.

Problem D39 
Consider the generalized equation for work from a open system in terms of entropy
generation. Using the Gauss divergence theorem, derive an expression for the work
done per unit volume ′′w by a device undergoing only heat interaction with its envi-
ronment and show that ′′w = –d/dt(e – Tos) – ∇(ρv(eT – Tos)) – Toσ. Obtain an ex-

pression for the steady state maximum work.

Problem D40 
Water is heated from the compressed liquid state of 40ºC and 60 bar (state 1) to satu-
rated vapor at a pressure P2. Heat is supplied from a large reservoir of burnt gases at
1200 K. If the final pressure P2 = 60 bar, calculate s2–s1 and the value of the reversible
heat transfer q12 to the water. If P2 = 58 bar due to frictional losses (state 2´) but h2´ =
h1, calculate s2´ – s1. Is this process internally reversible? Is there any entropy gener-
ated and, if so, how much? If the value of QH is identical for both cases (without and
with frictional losses), what is the net entropy generated due to the irreversible heat
transfer? Determine the changes in the availabilities (ψ2 – ψ1) and (ψ2´ – ψ1).

Problem D41 
A water drop of radius a at a temperature Tl is immersed in ambient air at a tempera-

ture T∞ and it vaporizes. The temperature and water vapor mole fraction profile can in

terms of the radial spatial coordinate r be expressed through the following expression
under “slow evaporation” conditions

Xv/Xv,s = (T–T∞)/(Tl–T∞) = a/r, where r ≥ a

where Xv denotes the mole fraction of the vapor and Xv,s that at surface. Determine
the difference between absolute availabilities at two locations r = a, and r = b. Plot the
variation of availability in kJ/kg of mix with a/r where r is the radius.

Problem D42 
Electrical work is employed to heat 2 kg of water from 25ºC to 100ºC. The specific
heat of water is 4.184 kJ kg–1 K–1. Determine the electrical work required, and the
minimum work required (e.g., by using a heat pump instead).

Problem D43 
Six pounds of air at 400ºF and 14.7 psia in a cylinder is placed in a piston-cylinder as-
sembly and cooled isobarically until the temperature reaches 100ºF. Determine the
optimum useful work, actual useful work, irreversibility and the availability or exer-
getic or so called 2nd law efficiency.



Problem D44 
An adiabatic turbine receives 95,000 lbm of steam per hour at location 1. Steam is
bled off (for processing use) at an intermediate location 2 at the rate of 18,000 lbm
per hour. The balance of the steam leaves the turbine at location 3. The surroundings
are at a pressure and temperature of 14.7 psia and 77ºF, respectively. Neglecting the
changes in the kinetic and potential energies and with the following information: P1 =
400 psia, T1 = 600ºF, P 2 = 50 psia, T 2 = 290ºF, P 3 = 2 psia, T 3 = 127 ºF, v3 = 156.4
ft3 lbm–1, determine the maximum sssf work per hour, the actual work per hour, and
the irreversibility.

Problem D45 
In HiTAC (High temperature Air Combustion systems), preheating of air to 1000ºC is
achieved using either a recuperator or a regenerator. The recuperator is a counterflow
heat exchanger while the regenerator is based on a ceramic matrix mounted in a tank
through which hot gases and cold air are alternately passed. The hot gas temperature
or this particular application is 1000 K. Assume cp to be constant for the hot gas, and
for it to be the same as that for the cold air. If the recuperator is used, cold air enters it
at 25ºC and the flowrate ratio of the hot to cold gases ṁH/ ṁC = 0.5. The temperature
differential between the air leaving the recuperator and the hot gases entering it is 50
K. Determine the availability efficiency for the recuperator. Will you recommend a
regenerator instead? Why?

Problem D46 
Large and uniformly sized rocks are to be lifted in a quarry from the ground to a
higher level. The weight of a standard rock is such that the pressure exerted by it
alone on the surrounding air is 2 bar. The rocks are moved by a piston–cylinder as-
sembly that contains three pounds of air at 300ºF when it is at ground level. Heat is
transferred from a reservoir at 1000ºF until the temperature of the air in the cylinder
reaches 600ºF so that piston moves up, thereby lifting a rock. Assume that air is an
ideal gas with a constant specific heat. If the surrounding temperature and pressure
are 60ºF and 14.7 psia, determine:
a) The gas pressure.
b) The work performed by the gas.
c) The useful work (i.e., during the lifting of rocks) delivered by the gas.
d) The optimum work.
e) The optimum useful work.
f) The irreversibility and the availability efficiency (based on the useful work).

Problem D47 
A jar contains 1 kg of pure water at 25ºC. It is covered with a nonporous lid and
placed in a rigid room which contains 0.4 kg of dry air at a temperature and pressure
of 25ºC and 1 bar. The lid is suddenly removed. The specific heat of water is 4.184 kJ
kg–1 K–1, and that of air is 0.713 kJ kg–1 K–1.
a) Determine the temperature and composition of the room, the atmosphere of

which contains water vapor and dry air at equilibrium. Ignore the pressure
change.

b) The change in the availability.

Problem D48 
Hot combustion products enter a boiler at 1 bar and 1500 K (state 1). The gases trans-
fer heat to water and leave the stack at 1 bar and 450 K (state 2). Water enters the
boiler at 100 bar and 20ºC (state 3) and leaves as saturated vapor at 100 bar (state 4).
The saturated vapor enters a non-adiabatic turbine at 100 bar and undergoes irreversi-
ble expansion to a quality of 0.9 at 1 bar (state 5). The combustion gases may be ap-
proximated as air. And the total gas flow is 20 kg s–1. Determine the:



a) Absolute availabilities at all states.
b) Absolute availability at the dead state for gas and water.
c) Relative availabilities at all states.
d) Optimum power for the gas loop, i.e., with the same inlet and exit conditions

of the gas.
e) Optimum work for the entire plant including gas and water loops.
f) Irreversibilities in the heat exchanger and turbine.

Problem D49 
A nuclear reactor transfers heat at a 1727ºC temperature to water and produces steam
at 60 bar and 1040ºC. The vapor enters the turbine at 60 bar and 1040ºC and expands
isentropically to 0.1 bar. The vapor subsequently enters the condenser where it is
condensed to a saturated liquid at 0.1 bar and then pumped to the boiler using an is-
entropic pump. What are the values of ηcyc, the optimum work and the availability ef-

ficiency, the overall cycle irreversibility, and the irreversibility in the boiler and con-
denser? Perform an availability balance for the various states.

Problem D50 
A house contains an air equivalent mass of 150 kg at 0ºC. It must be warmed to 25ºC.
The only allowed interaction is with environment that is at a temperature To = 273 K.
What is the minimum work input? Assume that air leaves the house at a constant
temperature of 12.5ºC and that the pressure in the house is near ambient. What is the
minimum work input if outside air is circulated at the rate of 0.335 kg s–1 and the
house must be warmed within 15 min?

Problem D51 
Two efficiencies can be defined for heat exchangers. In a closed system Qs = Qused +
Qloss, and ηh = Qused/Qsource = (end use)÷(source energy). Since the end use and source

availabilities are respectively, Qused(1–To/Tused), and Qsource(1–To/Tsource), show that
ηavail = ηh(1–To/Tused)/(1–To/Tsource). Discuss the two efficiencies.

Problem D52 
During a cold wave the ambient air temperature is –20ºC. The temperature of a lake in
the area is initially a uniform 25ºC, but, gradually, a thick layer of ice is formed. Under
the ice layer there is water at 25ºC. The surface temperature of the ice layer is –10ºC, and
the heat transfer from the warm water to the ice is 100 kJ kg–1 of ice. Determine the op-
timum work. The heat of melting for ice is 335 kJ kg–1, and the specific heats of ice and
water, respectively, are 1.925 kJ kg–1 K–1 and 4.184 kJ kg–1 K–1.

Problem D53 
Consider a non-adiabatic fire tube boiler. Hot gases at a temperature of 400ºC flow
into the fire tube at a rate of 20 kg s–1. The gas is used to heat water from a saturated
liquid state to a saturated vapor condition at 150ºC. The heat loss from fire tube boiler
is 50 kJ kg–1 of gas. If the gases exit the heat exchanger at 200ºC, determine the water
flow required, the entropy generation if the control volume boundary is selected to be
just inside the heat exchanger, entropy generation if control volume boundary is se-
lected to be just outside the heat exchanger. and the optimum work. Assume that
gases have the same properties as air (with cp = 1 kJ kg–1 K–1), and where To = 298 K
and P0 = 1 bar.

Problem D54 
A 10 m3 tank contains air at 1 bar, 300 K. A compressor is used to evacuate the tank
completely. The compressor exhausts to the ambience at 1 bar and 300 K. Assume
that the tank temperature remains constant through heat transfer from ambience at 300
K. You are asked to determine the minimum (optimum) work required. Select the



control volume which includes the tank, compressor and the outlet from the compres-
sor.
a) Does the tank mass remain constant?
b) Does the internal energy of unit mass within the tank remain constant if gas

is assumed to be an ideal gas?
c) Does the absolute availability at the exit of the compressor change with time
d) Starting from mass conservation and generalized availability balance, then

simplify the equation for the current problem., Indicate all the steps clearly
and integrate over a period of time within which the tank is emptied.

e) Assuming that h= cp0 T, u = cv0 T, s = cp0 ln ( T/Tref) - R ln ( P/Pref), Tref = T0,
Pref = 1 bar, determine the work in kJ.

E. CHAPTER 5 PROBLEMS

Problem E1 
Consider the state equation S = C N 1/6 V1/3 U1/2. Obtain a state equation for S(T,V,N),
P(T,V,N), and A(T,V,N).
Hint: T = (dU/dS)V,N. Also use the first Legendre transform of S with respect to U

Problem E2 
Consider the state equation Uo = Uo(S,V,N1,N2, …, Nn) = Uo(x1,x2, …, xn+2). Show
that the second Legendre transform with respect to S and V is G. Obtain the (n+2)th

Legendre transform of the expression, and show that it is zero. By using the total dif-
ferential of the Legendre transform, derive the Gibbs–Duhem equation.

Problem E3 
Consider an electron gas in a metal. For instance, about 3 trillion electrons flow per
second in a 50 W lamp. An electron has the weight of 1/1836 of an H atom. These
mobile electrons are responsible for the large thermal and electrical conductivity of
metals. In theory, these electrons can be treated as a gas that obeys Fermi–Dirac sta-
tistics. Because certain integrals are approximately evaluated, the theory is restricted
to low or moderate temperatures. This limitation is not significant, however, since the
approximation is actually accurate up to the melting point of metals. We obtain the
following entropy equation from the theory, i.e., S = C1N

1/6V1/3(U–Uo)
1/2, where C1 =

(23/2π4/3/31/3)(k/h)m1/2, k denotes the Boltzmann constant (1.3804×10–23 J K–1), h the

Planck constant (6.62517×10–34 J s), and m the electron mass (9.1086×10–31 kg), N

denotes the number of free electrons in the metal, Uo = (3/5)Nµo the internal energy of

the electron gas at 0 K, µo = C2(N/V)2/3, and C2 = 32/3h2/(8π2/3m). Show that (a) S =

Gas 400ºC
Gas 200ºC

Steam
150ºC

Water 150ºC

•
Q

Problem D.53



C1N
1/6(V2/3U – (3/5)C2N

5/3)1/2, and that the entropy is a homogeneous function of de-
gree 1, obtain an expression for the electron gas (b) temperature, and (c) pressure, and
(d) assume that when U»Uo whether the conditions of the fundamental equation are
satisfied.

Problem E4 
Consider the n–th Legendre transform of a homogeneous function of degree m
y(0)(x1,x2, ..., xn). Using the Euler equation and Legendre transform method, show that
y(n) = y(0) (m–1).

F. CHAPTER 6 PROBLEMS

Problem F1 
Can the combustion gases emerging from a boiler be considered to have the same
properties as air or should we employ the real gas equation of state?

Problem F2 
What is vc´?

Problem F3 
Which two–parameter equation of state is best to use?

Problem F4 
Which two–parameter equation of state does not yield negative pressures?

Problem F5 
What are the important differences between the Dietrici and VW equations of state?

Problem F6 
Why do we obtain two solutions when we neglect the parameter b in the VW equation
of state?

Problem F7 
Is there an analytical method for determining the stability of solutions?

Problem F8 
Are there generalized equations of state for complex fluids that do more than just Pdv
(i.e., compressible) work?

Problem F9 
Is the real gas equation of state valid for high speed flows as long as they are in con-
tinuum?

Problem F10 
Does v → 0 as P → ∞, T → 0?

Problem F11 
Is it true that at specified values of TR and Z, PR is single valued?

Problem F12 
Is it possible to develop a real gas equation of state for a subcooled liquid?

Problem F13 
Is the Pitzer factor constant for any given fluid?

Problem F14 
Why do equations of state sometimes fail in the compressed liquid and vapor domes?

Problem F15 
Why is the vapor dome region difficult to predict with a two–parameter equation of
state?



Problem F16 
Can we extend the real gas equation of state to liquids?

Problem F17 
Can you determine the value of Z with just the values of TR and PR for the Clausius II
equation of state?

Problem F18 
What are the values of Zc for the RK, VW, Berthelot, and Dietrici equations of state?

Problem F19 
Is it true that real gas equations of state are applicable only for the vapor state?

Problem F20 
How are real gas state equations derived?

Problem F21 
Why do some state equations predict saturated properties well, while others do not?

Problem F22 
Why is the “middle” solution for v at specified values of T and P meaningless in
context of a cubic equation?

Problem F23 
How many distinct real solutions exist in context of the RK equation at a specified
temperature if T > Tc, and T < Tc?

Problem F24 
The fundamental equation for an electron gas is S = C1N1/6(V2/3U – (3/5)C2N

5/3)1/2.
Obtain an equation of state in terms of P, V and T. Does this electron gas behave as
an ideal gas? What is the compressibility factor at 200 bar and 100 K?

Problem F25 
Consider the VW equation P = RT/(v–b) – a/v2. Plot the P(v) behavior of water. Show
that PR = TR/( ′vR –1/8) – (27/64)/ ′vR

2 and plot PR with respect to ′vR  for TR = 0.6 and
1.2. Prove that the Z > 1 when the body volume effect dominates attractive forces
(i.e., a ≈0 at very high pressures) and vice versa (i.e., b/v «1, (b/v)2 ≈0, but b≠0). Us-

ing the relation, Z = PR ′vR /TR plot Z(PR) for TR = 0.6 and 1.2 and Z(PR) for ′vR =0.3
and 0.4, and discuss your results.

Problem F26 
Derive an expression for a and b in terms of Tc, and Pc for the Dietrici equation of
state P = (RT/(v–b)) exp(–a/(RTv)) and show that a = (4/Pc)(RTc/e)2 and b = RTc/(Pc

e2) where e = 2.7182818. Note that one cannot obtain negative pressures with the
Dietrici equation as opposed to the RK equation unless v « b, which is physically im-
possible. Plot P(v) for water at various temperatures and obtain gas like solutions for
volume vs. T (if they exist) at 113 bar.

Problem F27 
For the Clausius II equation, obtain the relations for a, b, and c in terms of critical
properties and critical compressibility factor. (Hint: Solve for a and b in terms of c
and vc using the inflection condition. Then, use the tabulated value of Zc to determine
that of c.) Determine the corresponding values for H2O and CH4.

Problem F28 
Calculate the specific volume of H2O(g) at 20 MPa. and 673 K by employing the (a)
compressibility chart, (b) Van der Waals equation, (c) ideal gas law, (d) tables, (e)



Pitzer correction factor and Kessler tables. What is the mass required to fill a 0.5 m3

cylinder as per the five methods?

Problem F29 
Determine the specific volume and mass of CH4 contained in a 0.5 m3 cylinder at 10
MPa and 450 K using the following methods:
a) Ideal gas law.
b) Compressibility charts.
b) van der Waals equation.
c) Approximate virial equation of state.
d) Compressibility factor tables including the Pitzer factor.
e) Approximate equation for v(P,T) given by expanding the Berthelot equation

v = (1/2)(b +(RT/P))(1±(1–(4a/(PT(b+RT/P))))1/2), b/v «1.

Problem F30 
Consider the virial equation of state (Pv/RT) = Z = 1 + B(T)/v + C(T)/v2.
a) Determine B(T) and C(T) if P = RT/(v–b) and b/v «1.
b) Determine B(T) and C(T) if P = RT/(v–b) – a/v2 and b/v « 1. 

i) Obtain an expression for the two solutions for v(T,P) from the
quadratic equation. Are these solutions for the liquid and vapor
states? Discuss.

ii) Discuss the two solutions for steam at 373 K and 100 kPa. Explain
the significance of these solutions.

iii) Show that the expression for the Boyle temperature (at which Z = 1)
is provided by the following relation if second order effects are ig-
nored, namely, TBoyle = a/(Rb).

iv) What is the Boyle temperature for water?

Problem F31 
CF3CH2F (R134A) is a refrigerant. Determine the properties (v, u, h, s, etc.) of its va-
por and liquid states. The critical properties of the substance are Tc = 374.2 K, Pc =
4067 kPa, ρc = 512.2 kg m–3, M = 102.03 kg kmol–1, hfg = 217.8 kJ kg–1, Tfreeze = 172

K, TNB = 246.5 K (this is the normal boiling point, i.e., the saturation temperature at
100 kPa).
a) Determine the value of vsat(liquid) at 247 K. Compare your answer with

tabulated values (e.g., in the ASHRAE handbook).
b) Determine the density of the compressed liquid at 247 K and 10 bar.
c) Use the RK equation to determine the liquid and vapor like densities at 247

K and 1 bar. Compare the liquid density with the answer to part (b).

Problem F32 
If c2 = –kv2 (dP/dv)T, deduce the relation for the sound speed of a RK gas in terms of

′vR , TR, and k.

Problem F33 
Using steam tables, determine βP and βT for liquid water at (25ºC, 0.1 MPa)., (70ºC,

0.1 MPa), and (70ºC, 10 MPa). What is your conclusion?

Problem F34 
Show that if (b/v)2«(b/v), the explicit solutions for v(P,T) and a in the context of the
state equation P = RT/(v–b)–a/Tnv2 are provided by the relations v = α(1+(1–β/α2)1/2),

β/α2<1, where α(T,P) = RTn+1/(2PTn), β(T,P) = (a – bRTn+1)/(PTn). (Hint: expand the

term 1/(v–b) as a polynomial in terms of (b/v).) Using the explicit solutions with n = 0
(i.e., the VW state equation), determine the solution(s) for v(593 K, 113 bar) in the



case of water. If bRTn+1«a, simplify the solution for v. Is solution for (593 K, 113 bar)
possible? Show that if v » b, Z < 1 and if RT/(v–b) » a/Tnv2 (i.e. v ≈b when the mole-

cules are closely packed), Z > 1.

Problem F35 
A diesel engine has a low compression ratio of 6. Fuel is injected after the adiabatic
reversible compression of air from 1 bar and 300 K (state 1) to the engine pressure
(state 2). Assume that for diesel fuel Pc = 17.9 bar, Tc = 659 K, ρ1 = 750 kg m–3, Cp1 =

2.1 kJ kg–1 K–1, ∆hc = 44500 kJ kg–1, L298 = 360 kJ kg–1, L(T) = L298 ((Tc – T)/(Tc –

298))0.38, and log10 P
sat = a – b/(Tsat – c), where a = 4.12, b = 1626 K, c = 93 K. Deter-

mine the specific volume of the liquid at 1 bar and 300 K. Assume that the value of Zc

can be provided by the RK equation. Since the liquid volume does not significantly
change with pressure, using the value of the specific volume and ρl determine the fuel

molecular weight. Determine the liquid specific volume at state 2. What are the spe-
cific volumes of the liquid fuel and its vapor at the state (Psat,T2)?

Problem F36 
 Derive an expression for f/P for VW gas using the definition dg = RT d ln (f) = v dP
and dgig = RT d ln (P) = vig dP; determine f/P at critical point using the expressions of
“a” and “b” for VW gas.

Problem F37 
Determine the values of vl and vg for refrigerant R–12 at 353 K and 16 bar by apply-

ing the following models: a) ideal gas, b) RK equation, c) PR equation, d) Rackett
equation, e) PR equation with w = 0. Discuss the results.

Problem F38 
Experimental data for a new refrigerant are given as follows:
P1= 111 bar,T1= 365 K, v1 = 0.1734m3/kmol
P2= 81.29 bar, T2= T1= 365, v2 = 0.2805
a) If VW equation of state is valid, determine “a” and “b”
b) If critical properties Pc, Tc of the fluid are not known, how will you deter-
mine Tc, Pc? Complete solution is not required.

Problem F39 
The VW equation of state can be expressed in the form Z3 – (PR/(8TR) +1)Z2 + (27
PR/(64TR)) Z – (27 PR

2/(512 TR 3) )= 0. Obtain an expression for ∂Z/∂PR and its value

as PR →  0. At what value of TR is ∂Z/∂PR =0. Obtain an expression for an approxi-

mate virial equation for Z at low pressures.

Problem F40 
For the Peng–Robinson equation of state: a = 0.4572 R2Tc

2/Pc and b = 0.07780 R
Tc/Pc. Determine the value of Zc, and Z(673 K, 140 bar) for H2O.

Problem F41 
C o n s i d e r  t h e  s t a t e  e q u a t i o n :  PR=TR/( ′vR –b*)–a*(1+κ(1–

TR
1/2))2/(TR

n(( ′vR +c*)+(vR'+d*))), where n = 0 or 0.5, and κ is a function of w only. If

PR(( ′vR +c*) + ( ′vR +d*))/a* = A, and (( ′vR +c*) + ( ′vR +d*))/(a*( ′vR –b*)) = B, show that

for n = 0, PR = TR/( ′vR –b*) – a*(1+κ(1–TR
1/2))2/ (TR

n(( ′vR +c*) + ( ′vR +d*))), and TR
1/2 =

–(κ+κ2)/(B–κ2) ± ((1+2κ +κ2+ A)/(B–κ2) + (κ+κ2)2/(B–κ2)2)1/2.



Problem F42 
Consider the state equation PR = TR/( ′vR –b*) – a*/(TR

n(( ′vR +c*) ′vR ))). Show that for
the Berthelot and Clausius II equations (n = 1), TR  = 
PR( ′vR –b*)/2(1+(4a*( ′vR –b*)/( ′vR + c*)2+1)1/2). Show that for the VW equation of state,
both n and c* equal zero, that c* = d* = 0 for the Berthelot equation, and d* = 0 for the
Clausius II equation.

Problem F43 
Plot the pressure with respect to the specific volume of H2O by employing the RK
state equation at 600 K and determine the liquid– and vapor–like solutions at 113 bar.

Problem F44 
Plot the product P v  with respect to the pressure for water (you may use tabulated
values). Does low pressure P v  provide any insight into the temperature. Can you
construct a constant volume ideal gas thermometer which measures the pressure in a
glass bulb containing a known gas and then infer the temperature?

Problem F45 
Using the inflection conditions for the Redlich–Kwong equation P = (RT/(v–b)) –
a/(T1/2 v(v+b)), derive expressions for a and b in terms of Tc, and Pc. and show that (a)
(b/vc)

3 – 3(b/vc)
2 – 3(b/vc) + 2 = 0, or b/vc = 0.25992, (b) a/ (RTc

3/2vc)=
(1+(b/vc)

2)/((1– (b/vc)
2) (2 + (b/vc)), or a/ (RTc

3/2vc)= 1.28244, and (c) Zc = 1/3.

Problem F46 
Determine explicit solutions for v(P,T) if (b/v)2 «< (b/v) for the state equation P =
RT/(v–b) – a/(Tn v(v+b)). Show that v = α + (–β+α2)1/2 = α(1 ± (1–β/α2)1/2), β/α2<1,

where α (T,P)= RTn+1/(2PTn), β(T,P)= (a – bRTn+1)/(PTn). (Hint: expand 1/(v–b) and

1/(v+b) in terms of polynomials of (b/v).) Using the explicit solutions and n = 1/2
(RK equation), determine solutions for v(593 K, 113 bar) for H2O. Show that if v » b
then Z < 1, and if RT/(v–b)»a/Tnv2 (i.e., v ≈b, or that the molecules are closely

packed) then Z > 1.

Problem F47 
Using the RK equation obtain an approximate expression for v by neglecting terms of
the order of (b/v)3.

Problem F48 
Convert the Berthelot, VW, and Dietrici state equations to their reduced forms using
the relations PR = P/Pc, TR = T/Tc, and ′vR = v/ ′vc , ′vc= RTc/Pc.

Problem F49 
For the state equation P = RT/(v–b) – a/(Tn vm) show that (a) a = ((m+1)2/4m)
(RTc

n+1vc
m–1), b = vc (1– (2/(m+1))), and Zc = ((m2 –1)/(4m)). Obtain a reduced form

of this real gas equation, i.e., PR = f( ′vR ,TR).

Problem F50 
For the state equation P = RT/(v–b) – a/ v2 determine the values of a and b without
using the inflection conditions, but using the facts that at critical point there are three
equal real roots (at T<Tc there are three roots, and for T > Tc only one real root ex-
ists).

Problem F51 
Determine the Boyle curves for TR vs. PR for gases following the VW equation of
state. Also obtain a relationship for PR( ′vR ).



Problem F52 
If number of molecules per unit volume n´ = 1/l3 where l denotes the average distance

(or mean free path between molecules). determine the value of l for N2 contained in a
cylinder at –50ºC and 150 bar by applying the (a) ideal gas law and (b) the RK equa-
tion. Compare the answer from part (b) with the molecular diameter determined from
the value of b . Apply the LJ potential function concept (Chapter 1) in order to deter-
mine the ratio of the attractive force to the maximum attractive force possible.

Problem F53 
In the case of the previous problem determine the value of l for the H2O at 360ºC and
120 bar.

Problem F54 
Using the RK equation plot the pressure with respect to specific volume at the critical
temperature for the range 0.25vc<v<2vc. Here, vc has its value based on the RK equa-
tion at specified values of Pc and Tc. From the tables plot the function P(v) for the
same conditions and discuss your results.

Problem F55 
Apply the RK equation for H2O at 473 K, 573 K, and 593 K and obtain gas–like so-
lutions (if they exist) at 113 bar. Compare these values with the liquid/vapor volumes
obtained from the corresponding tables.

Problem F56 
A person thinks that the higher the intermolecular attractive forces, the larger the
amount of energy or the higher the temperature required to boil a fluid at a specified
pressure. Consequently, since the term a in the real gas equation of state is a measure
of the intermolecular attractive forces, you are asked to plot Tsat with respect to a. Use
the normal boiling points (i.e., Tsat at 1 bar) for monatomic gases such as Ar, Kr, Xe,
He, and Ne, and diatomic gases such as O2, N2, Cl2, Br2, H2, CO, and CH4. Also de-
termine Tsat using the correlation ln(PR) = 5.3(1–(1/TR

sat)) where PR = P/Pc and P = 1
bar. Use the RK and VW state equations. Do you believe the hypothesis?

Problem F57 
A fixed mass of fluid performs reversible work δW = Pdv according to the processes

1–2 isometric compression, 2–3 isothermal heating at TH, 3–3 isometric expansion,
and 4–1 isothermal cooling at TL. The cycle can be represented by a rectangle on a
T–v diagram. Determine the value of ∫δW/T if the medium follows the VW and ideal

gas equations of state.

Problem F58 
Flammable methane is used to fill a gas cylinder of volume V from a high–pressure
compressed line. Assume that the initial pressure P1 in the gas tank is low and that the
temperature T1 is room temperature. The line pressure and temperature are Pi and Ti.
Typically, Pi»P2, the final pressure. There is concern regarding the rise in temperature
during the filling process. We require a relation for T2 and the final mass at a speci-
fied value of P2. Assume two models: (a) the ideal gas equation of state P = RT/v for
which du0 = cvodT, and (b) the real gas state equation P = RT/(v–b) – a/v2 with cv =
cvo and du = cvdT +(T∂P/∂T – P)dv.

Problem F59 
Determine v for water at P =133 bar, T= 593 K using VW, RK, Berthelot, Clausius II,
SRK and PR equations.



Problem F60 
Consider generalized equation of state P = RT/(v-b) - a α (w, TR) / (Tn (v+c) (v+d)).

Using the results in text, determine Z and v for H2O atT1 = 473K, P1 = 150 bar, T2=
873K, P2 = 250 bar using VW, RK, Berthelot, Clausius II, SRK and PR. Compare re-
sults with steam tables.

G. CHAPTER 7 PROBLEMS

Problem G1 
For an ideal gas cvo = cvo(T) and, hence, uo = uo(T). Is this true for a VW gas?

Problem G2 
How will you analyze transient flow processes discussed in example 14 of Chapter 2
for real gases?

Problem G3 
Recall that du T = (a/T v 2 ) dv for a Berthelot gas. The integration constant F(T) can
be evaluated at the condition a→0. Is the expression for F(T) identical to that for an

ideal gas?

Problem G4 
If, for a gas, du = cvdT + f(T,v)dv and cv = cv(T,v), which is unknown, can we deter-
mine the value of u by integrating the expression at constant values of v?

Problem G5 
Is it possible to predict the properties sfg, and hfg using “real gas” state equations?

Problem G6 
An insulated metal bar of cross sectional area A is stretched through a length dx by
applying a pressure P. Does the bar always cool or heat during this process?

Problem G7 
The residual internal energy of a Berthelot fluid u(T,v) – uo(T) = –2a/(Tv). Determine
an expression for the residual specific heat at constant volume cv(T,v) – cvo(T).

Problem G8 
A rubber product contracts upon heating in the atmosphere. Does the entropy increase
or decrease if the product is isothermally compressed? (Hint: Use the Maxwell’s rela-
tions.)

Problem G9 
a) Using the generalized thermodynamic relation for du, derive an expression for
uR/RTc for a Clausius II fluid. b) What is the relation for cvo(T)– cv(T,v) for the fluid?
c)Determine the values of uR/RTc and hR/RTc for CO2 at 425 K and 350 bar.

Problem G10 
Determine an expression for ∂cv/∂v for a Clausius II fluid in terms of v and T.

Problem G11 
Consider the isothermal reversible compression of Ar gas at 180 K from 29 bar to 98
bar in a steady state steady flow device. Using the fugacity charts determine the work
in kJ per kmol of Ar.

Problem G12 
Assume that air is a single component fluid. Air is throttled in order to cool it to a
temperature at which oxygen condenses out as a liquid.



a) In order to determine the inlet conditions for the throttling process you are
asked to determine the inversion point. Looking at the charts presented in
text for RK equation, determine the inversion pressure at 145.38 K.

b) Using the cv  relations, determine cv  of air at the inversion point.
c) Determine cp  at this inversion condition. Assume that cp o = 29 kJ kmol–1. Is

the value of cp – cv = R ?

d) What is the value of the Joule Thomson Coefficient at 1.2 times the inver-
sion pressure at 145.38 K. Assume that the value of cp  at this pressure

equals that at the inversion point. Do you believe air will be cooled at this
point?

Problem G13 
Near 1 atm, the Berthelot equation has been shown to have the approximate form Pv
= RT (1 + (9PTc/(128PcT)) 1–6(Tc

2/T2))). Obtain an expression for s(T,P).

Problem G14 
In a photon gas the radiation energy is carried by photons, which are particles without
mass but carry energy. The gas behaves according to the state equation P = 4 σ T4/(3

c0), where σ denotes the Stefan Boltzmann constant and co the light speed in vacuum.

Obtain an expression for the internal energy by applying the relation du = cv dT +
(T(∂P/∂T)v – P) dv.

Problem G15 
Oxygen enters an adiabatic turbine operating at steady state at 152 bar and 309 K and
exits at 76 bar and 278 K. Determine the work done using the Kessler charts. Ignore
Pitzer effects. What will be the work for the same conditions if a Piston-cylinder sys-
tem is used?

Problem G16 
The Joule Thomson effect can be depicted through a porous plug experiment that il-
lustrates that the enthalpy remains constant during a throttling process. In the experi-
ment a cylinder is divided into two adiabatic variable volume chambers A and B by a
rigid porous material placed between them. The chamber pressures are maintained
constant by adjusting the volume. Freon vapor with an initial volume VA,1, pressure
PA,1 and energy UA,1 is present in chamber A. The vapors penetrate through the porous
wall to reach chamber B. The final volume of chamber A is zero. Determine the work
done by the gas in chamber B, and the work done on chamber A. Apply the First Law
for the combined system A and B and show that the enthalpy in the combined system
is constant.

Problem G17 
Obtain a relation for the Joule Thomson coefficients for a VW gas and an RK gas in
terms of a, b, cp, R, and T. Determine the inversion temperature.

Problem G18 
Obtain an expression for f/P for a VW gas and write down the expression at the criti-
cal point. Assume that the gas behaves like an ideal gas at a low pressure Po and large
volume vo. (Hint: ∫vdP = Pv– ∫Pdv, and P0v0 = RT.)



The Cox–Antoine equation is ln P = A –
B/(T+C). Determine A, B and C for H2O and
R134A using tabulated data for Tsat vs. P.
Compare Tsat at P = 0.25Pc and 0.7Pc obtained
from the relation with the tabulated values.

Problem G20 
Determine the chemical potential of liquid
CO2 at 25ºC and 60 bar. The chemical poten-
tial of CO2, if treated as an ideal gas, at those
conditions is –451,798 kJ kmol–1.

Problem G21 
Plot P(v) in case of H2O at 373 K in the range
vmin= 0.8*vf and vmax= 1.5*vg assuming that
the fluid follows the RK state equation. The
values of vf and vg are (for 523 K, Psat)
exp(.582(1-Tc/T)). What are the values for vf

and vg for Psat ?. Assume that h = 0 kJ kmol–1

and s = 0 kJ kmol–1 K–1 at v = 0.8vf  and 523
K. From the g(P) plot, determine the RK satu-
ration pressure at 523 K.

Problem G22 
The properties of refrigerant R–134A (CF3CH2F) are required. The critical properties
of the fluid are Tc = 374.2 K, Pc = 4067 kPa, ρc = 512.2 kg/m3, M = 102.03, hfg =

217.8 kJ kg–1, Tfreeze = 172 K, and TNB = 246.5 K (the normal boiling point is the satu-
ration temperature at 100 kPa). Plot the values of ln (Psat) with respect to 1/T using
Clausius–Clapeyron equation. Use the RK equation of state and plot PR with respect
to VR with TR as a parameter. Use the relation dgT = vdP = (∫d(pv) – ∫Pdv) to plot the

values of g/RTc with respect to ′vR  at specified values of TR. Assume that g/RTc = 0 at
373 K when ′vR  = 0.1.

Problem G23 
You are asked to analyze the internal energy of photons which carry the radiation en-
ergy leaving the sun. Derive an expression for change in the internal energy of the
photons if they undergo isothermal compression from a negligible volume to a vol-
ume v. The photons behave according to the state equation P = (4 σ/3 c0) T

4, where σ
= 5.67×10–11 kW m–2 K–4denotes the Stefan Boltzmann constant, c0 = 3×1010 m s–1 the

speed of light in vacuum, and T the temperature of the radiating sun.
a) Show that cv = cv(T, v) for the photons.
b) Obtain a relation for µ.

Problem G24 
From the relation s = s(T,P), obtain a relation for (∂T/∂P)s in terms of cp, βP, v and T.

If Z = 1 + (αTR + βTR
m)PR, where α = 0.083, β = –0.422, and m = 0.6, obtain an ex-

pression for (so – s)/R.

Problem G25 
How much liquid can you form by throttling CO2 gas that is at 200 bar and 400 K to 1
bar? The property tables are not available. How much liquid can you form if you use
an isentropic turbine to expand the gas to 1 bar? Make reasonable assumptions.

A

B

Problem Figure G.15

Problem G19



Problem G26 
Recall that du = cvdT + (T(∂P/∂T)v – P) dv. A) Obtain an expression for du for a VW

gas. Is cv a function of volume? (Hint: use the Maxwell’s relations.) B) If cvo is inde-
pendent of temperature, obtain an expression for the internal energy change when the
temperature and volume change from T1 to T2 and from v1 to v2. Assume cv is con-
stant.

Problem G27 
Gaseous N2 is stored at high pressure (115 bar and 300 K) in compartment A (that has
a volume VA) of a rigid adiabatic container. The other compartment B (of volume VB

= 3VA) contains a vacuum. The partition between them is suddenly ruptured. If cv =
cvo = 12.5 kJ kmol–1 K–1, determine the temperature after the rupture. Assume VW
gas.

Problem G28 
Gas from a compressed line is used to refill a gas cylinder from the state (P1, T1) to a
pressure P2. The line pressure and temperature are Pi and Ti. Determine the final pres-
sure and temperature if (a) the cylinder is rapidly filled (i.e. adiabatic) and (b) slowly
filled (i.e. isothermal cylinder). Use the real gas state equation P = RT/(v–b) – a/v2.

Problem G29 
Using the relation ln Psat = (A – B/T), show that ∆hvapor = ∆vvapor (BPsat/T).

Problem G30 
Derive an expression for (a(T,v)–ao(T,vo)) using the Peng–Robinson equation P =
(RT/(v–b)) – a(w,T)/(v(v+b) + b(v–b)). Derive expressions for (s–so) and (h–ho).

Problem G31 
a) Calculate the fugacity of H2O(1) at 400 psia and 300°F (assume that v= c for the

liquid state). b) If the condition A denotes compressed liquid, then is fA(P,T) ≈f(T,Psat)

(i.e., the fugacity of the saturated liquid at the same temperature)? c) At phase equilib-
rium the fugacity of the saturated liquid equals that of saturated vapor, i.e., f(T, v f) =
f(T, vg) and P(T, v f) = P(T, vg). Predict Psat at 200°C using these relations and the RK

state equation.

Problem G32 
For a Clausius gas, P(V – Nb) = NRT, and for a Van der Waals gas P = NRT/(V –
Nb) – N2a/V2. For either gas obtain expressions for (∂P/∂T)V, (∂P/∂v)T, and (∂v/∂T)P.

If for a pure substance, ds = (∂P/∂T)v dv + (cv/T)dT, show that for both gases cv is in-

dependent of the volume.

Problem G33 
The differential entropy change for a gas obeying the molar equation of state p =
RT/v – aT2/v is ds = (A/T – 2a ln v) dT + (R/v – 2aT/v) dv. Perform the line integra-
tion from state (v1, T1) to (v2, T2) along the paths (v1, T1) → (v2, T1) → (v2, T2), and

(v1, T1) → (v1, T2) → (v2, T2) and show that (TdS – Pdv) is exact.

Problem G34 
In the section of the liquid–vapor equilibrium region well below the critical point
vl«vg and the ideal gas law is applicable for the vapour. Derive a simplified Clapeyron

equation using these assumptions and show how the mean heat of vaporization can be
determined if the vapor pressures of the liquid at two specified adjacent temperatures
are known.



Problem G35 
For ice and water cp = 9.0 and 1.008cal K–1 mole–1, respectively, and the heat of fu-
sion is 79.8 cal g–1 at 0ºC. Determine the entropy change accompanying the spontane-
ous solidification of supercooled water at –10ºC and 1 atm.

Problem G36 
For water at 110ºC, dP/dT = 36.14 (mm hg) K–1 and the orthobaric specific volumes
are 1209 (for vapor) and 1.05 (for liquid) cc g–1. Calculate the heat of vaporization of
water at this temperature.

Problem G37 
The specific heat of water vapor in the temperature range 100º–120ºC is 0.479 cal g–1

K–1, and for liquid water it is 1.009 cal g–1 K–1. The heat vaporization of water is 539
cal g–1 at 100ºC. Determine an approximate value for hfg at 110ºC, and compare this
result with that obtained in the previous problem.

Problem G38 
Recall that dgT = v dP, and plot ′gR  (= (g/RTc)) and PR with respect to ′vR  at 593 K
for H2O and determine the liquid like and vapor like solutions at 113 bar. Determine
saturation pressure at T = 593 K for RK fluid. Assume that g = 0 at ′vR = 200.

Problem G39 
Use the expression du = cvdT + (T(∂P/∂T)v – P) dv to determine cv for N2 at 300 K

and 1 bar. Integrate the relation along constant pressure from 0 to 300 K at 1 bar, and
then from 1 to 100 bar at 300 K in the context of the RK equation. What is the value
of u at 300 K and 100 bar if u(0 K, 1 bar) = 0?

Problem G40 
Since T = T(S,V,N) is an intensive property, it is a homogeneous function of degree
zero. Use the Euler equation and a suitable Maxwell relation to show that (∂T/∂v)s =

–sT/cvv, and (∂P/∂s)v = sT/(cvv). For a substance that follows an isentropic process

with constant specific heats, show that T/v(s/cv) = constant

Problem G41 
Show that generally real gases deliver a smaller amount of work as compared to an
ideal gas during isothermal expansion for a (a) closed system from volume v1 to v2

(Hint: use the VW equation ignoring body volume), and (b) an open system from
pressure P1 to P2 (Hint: use the fugacity charts in the lower pressure range).

Problem G42 
Plot the values of (cv – cvo) with respect to volume at the critical temperature using the
RK state equation. What is the value at the critical point?

Problem G43 
Assume that the Clausius Clapeyron relation for vapor–liquid equilibrium is valid up
to the critical point. Show that the Pitzer factor w =0.1861 (hfg/RTc)-1. Determine the
Pitzer factor of H2O if hfg = 2500 kJ kg–1.

Problem G44 
An electron gas follows the relation S = C N1/6V1/3U1/2. Obtain an expression for cv

and show that cv = cv(T,v). Also obtain expressions for u(T,v) and h(T,v).

Problem G45 
Determine the values of u, h and s at 444 K and 1000 kPa for Freon 22,
(Chlorodifluromethane) if s o = 105.05 kJ kmol–1 K–1, ho = 32667 kJ kmol–1, and M =
86.47 kg kmol–1. Use the RK equation.



Problem G46 
Upon the application of a force F a solid stretches adiabatically and its volume in-
creases by an amount dV. The state equation for the solid is P = BTm(V/Vo – 1) n.
Show that the solid can be either cooled or heated depending upon the value of m.

Problem G47 
Use the Peng-Robinson equation to determine values of Psat(T) for H2O.

Problem G48 
Apply the Clausius Clapeyron equation in case of refrigerant R–134A. Assume that
hfg, = 214.73 kJ kg–1, at Tref = 247.2 K, and Pref = 1 bar. Discuss your results, and the
impact of varying hfg.

Problem G49 
A superheated vapor undergoes isentropic expansion from state (P1,T1) to (P2,T2) in a
turbine. It is important to determine when condensation begins. Assume that vapor
behaves as an ideal gas with constant specific heats. Assume that ln Psat (in units of
bar) = A – B/T(in units of K) where for water A = 13.09, B = 4879, and cvo = 1.67 kJ
kg–1.
a) Obtain an expression for the pressure ratio P1/P2 that will cause the vapor to

condense at P2.
b) Qualitatively sketch the processes on a P-T diagram.

Problem G50 
Determine the chemical potential of CO2 at 34 bar and 320 K assuming real gas be-
havior, ho = cpo(T – 273), so = cpo ln (T/273) – R ln (P/1), and cpo = 10.08 kJ kmol–1.

Problem G51 
Does H2O(g) (for which Pc = 221 bar and Tc = 647 K) behave as an ideal gas at 373 K
and 1.014 bar? Determine the value of vg.

Problem G52 
What is the enthalpy of vaporization hfg of water at 373 K if Psat = 1.014 bar? Assume
RK equation and vf = 0.001 m3/ kg.

Problem G53 
 R134A is stored in a 200 ml adiabatic container at 5 bar and 300 K. It is released
over a period of 23 ms during which the mass decreased by 0.32 g. Assume that
R134A behaves according to the RK state equation and its ideal gas specific heats are
not functions of temperature. Obtain a relation between temperature and volume for
the isentropic process in the tank. Using this relation, determine the pressure and tem-
perature in the tank after the R134A release. If the process were isentropic with con-
stant specific heats, what would be the pressure and temperature in the tank after the
release of R134A?

Problem G54 
Determine the closed system absolute availability φ of a fluid that behaves according

to the RK equation of state as it is compressed from a large volume v0 at a specified
temperature. Assume that u = 0, s =0, and φ = 0 at the initial condition. Obtain an ex-

pression for f(v, T, a, b). (Hint: first obtain expressions for u and s.) Determine φ for

H2O at 593 K and a specific volume of 0.1 m3 kmol–1. Use v1 at 1 bar and 593 K.

Problem G55 
Using the result (cp–cv) = T(∂v/∂T)P(∂P/∂T)v show that if Pv = ZRT, then(cp–cv/R) =

Z + TR((∂Z/∂TR) ′vR
 + (∂Z/∂TR) PR

) + (TR
2/Z)(∂Z/∂TR) ′vR

(∂Z/∂TR) PR
. Can you use the



“Z charts” for determining values of (cp – cv) for any real gas at specified tempera-
tures and pressures?

Problem G56 
It is possible to show that (cp–cv) = v T βP

2/βT, and, for VW gases, cv = cvo. For a VW

gas show that (cp–cv) = cp(T,v) – cvo(T) = R/(1 – (2a(v–b)2)/(RTv3)). Determine the
value of cp at 250 bar and 873 K for H2O if it is known that cvo(873 K) = 1.734 kJ kg–1

K. Compare your results with the steam tables.

Problem G57 
If (b/v)2 « (b/v) in context of the state equation P = RT/(v–b) – a/ Tn v2, an approxi-
mate explicit solution for v(P,T,a) is v = α + (–β + α2)1/2 = α (1 (1–β/α2)1/2), β/α2 <1,

where α(T,P)= RTn+1/(2PTn), and β(T,P)= (a–bRTn+1)/(PTn). If h = uo – a/v + Pv, ob-

tain an expression for cp.

Problem G58 
Use the RK state equation to plot (g–gref)/RTc with respect to PR for values of TR =
0.1,0.2, ..., 1.0. Also plot PR

sat vs. TR.

Problem G59 
Develop a computer program that calculates PR

sat with respect to TR using the RK
equation of state and the criterion that gf = gg.

Problem G60 
Obtain values of Tinv,R with respect to ′vR , and Tinv,R and Zinv with respect to Pinv,R us-
ing the RK equation of state.

Problem G61 
In the context of throttling, cooling occurs only if the temperature T<100 K for H2

and T<20 K for He. Check this assertion with the expression for µJT based on VW

state equation µJT = – (1/cp) (v – ((RT/(v–b))/(RT/(v–b)2 – 2a/v3)) for both fluids.

Problem G62 
A rigid adiabatic container of volume V is divided into two sections A and B. Section
A consists of a fluid at the state (PA,0, TA,0) while section B contains a vacuum. The
partition separating the two sections is suddenly ruptured. Obtain a relation for the
change in fluid temperature with respect to volume (dT/dv) after partition is removed
in terms of βP, βT, P, and cv. What is the temperature change if the fluid is incom-

pressible? What is the temperature change in case of water if VA = 0.99 V, P = 60 bar,
and T = 30ºC, βP = 2.6×10–4 K–1, βT = 44.8×10–6 bar –1, vA = 0.00101 m3 kg–1, and cp

= cv = c = 4.178 kJ kg–1 K?

Problem G63 
Trouton’s empirical rule suggests that ∆sfg ≈ 88 kJ kmol–1 K–1 at 1 bar for many liq-

uids liquids (another form is hfg= 9 RTNB). Obtain a general expression from the Clau-
sius Clapeyron equation for the variation of saturation temperature with pressure.

Problem G64 
Using the state equation P = RT/(v–b) – a/(Tnvm) and the equality gf = gg, show that
Psat = (1/(vg – vf)) (RT ln ((vg–b)/(vf–b)) + (a/(m–1)Tn) (1/vg

(m–1) – 1/vf
(m–1))). Simplify

the result for the VW and Berthelot equations of state.



Problem G65 
Show that the inversion temperature for an RK gas TR inv,

/3 2  = (4.9342(1 –
008664/ ′vR )2/(1+ 0.08664/ ′vR )) (1.5 + 1/(1+0.08664/ ′vR )).

Problem G66 
Using the relations ds = cv dT/T + ∂P/∂T dv and ds = cp dT/T – ∂v/∂T dP, show that

(cP – cv) = T v βP 2/βT.

Problem G67 
The Helmholtz function A for a Debye solid A = –N R π4 T4/(5 θD 3), where θD is De-

bye temperature and N denotes the number of moles. Obtain expressions for u, s, and
cv, in terms of the temperature.

Problem G68 
Determine the relation between the temperature and volume during an isentropic
process for a VW gas. If at the initial state 1, T1 = 200 K, v1 = 0.006 m3 kg–1, and if
v1/v2 = 3, determine the final state 2 (P2, T2) if the gas is air.

Problem G69 
In the context of the relation s = s(u,T) show that P/T is only a function of volume as
v→ ∞ for any simple compressible substance.

Problem G70 
About 0.1 kmol of liquid methanol at 50ºC in system A is separated by a thin foil in
thermal and mechanical equilibrium from dry N2 occupying 1 % of liquid volume at 2
bar and 50ºC in system B. The foil is removed and the liquid temperature falls. Heat
must be consequently added to maintain the state at 50ºC and 2 bar in both subsys-
tems. Determine the partial pressure of vapor at which the vaporization stops. Assume
that h fg = 37920 kJ kmol–1.  If µmethanol(l) = gmethanol = h(l) – T s(l), µmethanol(g) = gmetha-

nol(g) = h(g) – T s(T,pmethanol), and pmethanol = Xmethanol P. Neglect the volume change in
the liquid methanol. Determine G = GA + GB with respect to pmethanol.

Problem G71 
Show that the chemical potential of a pure VW gas is µ(T,v) = µ(T,P) = µo(T) +

RTv/(v–b) – 2a/v – RT – RT ln (pv/RT) + RT ln (v/(v–b)).

Problem G72 
Apply the Martin–Hou state equation P = RT/(v–b) + Σi=2,5 Fi(T)/(v–b)i + F6(T)/e(B v),

for which b and B are constants to obtain expressions for a(T,v)–a0(T,v), s(T,v)
–s0(T,v), and u(T,v)–u0(T). Let dF(T)/dT = F´(T). What are the expressions for the
case if Fi = Ai + Bi T + Ci e

–KT/Tc? (ASHRAE tabulates these constants for various re-
frigerants.)

Problem G73 
Determine the temperature after C3H8 is throttled from 20 bar and 400 K 1 bar with
c p.o = 94.074 kJ kmol–1 K–1 . Use  a) RK equation and b) Kessler charts for hR/RTc.

Problem G74 
Consider du = cv dT + (T(∂P/∂T)v – P) dv. Obtain a relation for u0-u and cv0-cv in

terms of a,b, n,T and v for generalized RK equation of state P = RT/(v-b)- a/(Tn v
(v+b)).



Problem G75 
Using RK equation of state and appropriate reference conditions determine the fol-
lowing for steam at 180 bar and 400ºC and compare the values with steam tables for
v, h,u and s and fugacity charts for f/P: v, h, u, s, cv, cp-cv, cp, f/P and µ JT in K /bar.

Problem G76 
The following expression for the Helmholtz function has been used to determine the
properties of water

a( ,T) =  a (T) +  RT[  +  Q( , )]oρ ρ ρ ρ τln , 

where ρ denotes density, T denotes temperature on the Kelvin scale, τ denotes

1000/T. The functions a0 and Q are sums involving the indicated independent vari-
ables and a number of adjustable constants, i.e.,
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Here, R = 4.6151 bar cm3/g K or 0.46151 J/g.K, τc/1000/Tc = 1.544912, E = 4.8, and

τaj = τc if j=1, τ aj = 2.5 if j>i, ρaj = 0.634 if j=1, ρaj =1.0 if j>i.

The coefficients for a0 in joules per gram are given as follows;
C1 = 1857.065 C4 = 36.6649 C7 = 46.
C2 = 3229.12 C5 = -20.5516 C8 = -1011.249
C3 = -419.465 C6 = 4.85233
Values for the coefficients Aaj are listed in the original source. Obtain expressions for
(a) pressure, (b) specific entropy, (c) specific internal energy and specific enthalpy re-
sulting from this fundamental function.
See also J.H. Keenan, F.G. Keyes, P.G. Hill, and J.G. Moore, Steam Tables, Wiley,
New York, 1969; L. Haar, J.S. Gallagher, and G.S. Kell, NBS/NRC Steam Tables,
Hemisphere, Washington, D.C., 1984. The properties of water are determined in this
reference using a different functional form for the Helmholtz function than given by
Eqs. (1)-(3).

Problem G77 
Ammonia is throttled from P1=169 bar and T1= 214 C to a very low pressure P2 (<<
critical pressure). Determine
a) T2 in C and
b) Change in internal energy u2 - u1 in kJ/kg
Use Kessler tables and ignore Pitzer factor. The ideal gas specific heat can be as-
sumed to be a constant and equal to cp0 = 2.130 kJ/kg K, M= 17.03 kg/kmol.

H. CHAPTER 8 PROBLEMS

Problem H1 
Helmholtz function A is generally a function of A = A (T, V, N1 .... Nn) ; a) Write
down the Euler equation for A. Then obtain a, b) Find the differential da , c) Write
down the Gibbs-Duhem equation for A. Express it on a unit kmol basis, d) Use (c) in
(b) to obtain simplified expression for da , e) What is (da / dx )2  at constant v , x3,
x4… xK.



Problem H2 
One wishes to prepare a mix of 60% acetylene and 40% CO2 (mole basis) at a pres-
sure of 100 bar and at a temperature of 47°C. Your boss asks you to determine the

number of kmol of acetylene and CO2 required to form the mixture. Assume tank
volume to be 1 m3. Determine the kmol using the following method: a) Ideal gas law,
b) Kay’s rule and compressibility charts, c) Law of additive pressures. and RK equa-
tion for pure component, d) Law of additive volumes and RK equation for pure com-
ponent, e) Empirical equation for m ma  and b  and RK equation for the mixtures By
looking at the answers you must report to your boss regarding the expected minimum
and maximum requirements.

Problem H3 
Consider a mixture of methane species (1) and propane species (2) (40: 60, Kmol ba-
sis). Assume that Kay's rule is applicable for the mixture and the mixture follows VW
eq. of state. Assume P = 30 bar and T = 300 K. a) Are a and b  functions of mole
fractions?, b) Determine v  for the mixture (m3/kmol), c) Determine the partial molal
volume of species (1) (v1ˆ ) , d) Determine the molal volumes in the pure state for spe-
cies (1) and (2). e) Comment on the molal volumes of species (1) in the pure states
(v1) , f) If you assume a hypothetical ideal gas state for species (2) (v )2  in the pure
state, what is the ideal gas volume of species (2)?, g) Determine the ideal molal vol-
umes of mixture (v )id  based on answers for i) part (d), and ii) part (e).

Problem H4 
Consider the VW equation: P = RT/(v-b) - a/v2. Neglect body volume "b". Solve for
v. Suppose this equation is valid for two component mixtures (say H2O vapor- spe-
cies 1 and air-species 2) at T = 300 K, P = 200 bar. a) Plot ^v1, ^v2 vs. x1 using
Kay’s rule and a spreadsheet program. Compare the solution for (v )with ideal solu-

tion model following LR rule and HL.

Problem H5 
Consider the equation of state for a mixture: P V = N Z ¯R  T where N = N1 + N2 +
....NK. Test whether Z (T, P, N1, N2...) is an extensive property ? Hint: Use the defini-
tion of partial molal property b1 = (∂B/∂T)T,P,N2,.., and show that N1 ∂Z/∂N1 + N2

∂Z/∂N2+ ....... = 0 using the Euler equation.

Problem H6 
Consider the approximate virial equation of state valid at low to moderate pressures:
Z = 1 + BP/RT. This equation can be used for mixtures with n components
B = ΣΣYiYj Bij, i=1,..n, j=1... n,

Bii,Bjj: virial coefficient of pure species i,
Bij = (R Tc,ij /Pc,ij) = (Bo + wij B

1)
wij = (wi +wj)/2
Tc,ij = (Tc,i Tc,j) 1/2 (1 - kij)
(kij = 0 when i =j, kij >0 when i is not equal to j; assume kij =0)
Pc,ij = Zc,ij R Tc,ij/ vc,ij

Zc,ij = (Zc,i + Zc,j)/2
vc,ij = ((vc,i 

1/3 + vc,j 
1/3) /2)3

Bo = 0.083 - 0.422/Tr 1.6

B1 = 0.139 - 0.172/Tr 4.2

Obtain an expression for partial molal volume of species 1.



Problem H7 
Consider a 60:40 NH3-H2O mixture at 10 bar, 400 K. a) Obtain the partial molal vol-
ume of H2O at 10 bar and 400 K. Use the VW relation and Kay’s rule. Since
ln( ) =  (Z -1)dP / P0

Pφ ∫ , treating ln (φ) as an intensive property and (N ln(φ)) as an

extensive property, ln ˆ ln( ) = ( / N )[N ( )]1φ φ1 ∂ ∂ . Show that for any real gas, ln φ̂1 = ln

φ +  (Z - Z)dP / P0
P∫ ˆ

1 , where φ̂1 is the partial molal fugacity coefficient of  species 1.

Problem H8 
Determine u,h and f of H2O(Ρ) at T = 90 C and P =100 kPa., b) Determine u,h and f
of H2O(Ρ) at T = 90 C and P = 50 kPa. Assume that usat (90 C), vsat (90 C) are avail-

able.

Problem H9 
Determine the chemical potential of CO2 at P = 34 bar, 320 K. Assume real gas be-
havior. For ideal enthalpy use h0 = cp0 (T- 273), s0 cp0 ln (T/273) - R ln (P/1), cp0 =
10.08 kJ/ k mole. Use a) charts, b) RK equation.

Problem H10 
Using the relations for sfg for RK equation of state (Chapter 07) for pure component,
obtain the relations for a) ^s fg,1 and b) ^hfg,1 using RK mixing rule. Note that ^hfg,1,
enthalpy of vaporization when component 1 is inside the mixture.

Problem H11 
Obtain the relations for a) û uk k,− 0 , and b) ˆ ˆh hk k,− 0  for a gas mixture following
Berthelot equation and Kay’s rule for critical constants.

Problem H12 
A mixture of of 60% acetylene and 40% CO2 (mole basis) is compressed isothermally
from 1 bar, 47ºC to a pressure of 100 bar. Determine the amount of work in kJ/kmol
of mixture if a) a closed system is used, b) an open system is used assuming ideal gas
law and Kay’s rule and RK equation of state.

Problem H13 
A piston-cylinder assembly with a weight at the top consists of a wet H2O mixture of
20% quality at 1.5 bar. The initial total volume is 20 L. The whole system is im-
mersed in a bath maintained at 111.4ºC. Through a hole in the vapor phase section of
cylinder we inject inert gas say N2 until mole fraction of N2 in vapor phase is 25%.
The N2 does not dissolve in liquid. Do you believe there will be more liquid or more
vapor, or will the mixture remain as before? You can use either arguments or calcula-
tions.

Problem H14 
Ammonia is manufactured using hydrogen and nitrogen. A mixture having a molar
ratio of H2 to N2 equal to 3 is compressed to 400 atm and heated to 573 K. Determine
the specific volume at this condition using the following methods for RK mixture: a)
Ideal gas. b). Law of additive pressures and generalized Z charts. c). Law of Additive
Volumes and generalized Z charts. d). Kay’s rule.

Problem H15 
Obtain an expression for partial molal volume of component 1 in a mixture following
RK equation of state and the mixing rule a m = (ΣkXk a k

1/2)2, bm = ΣkXk bk.

Problem H16 
A real gaseous mixture of acetylene (species 2) and CO2 (species 1) is considered.
The mole fraction of (1) is x1. Assume that Kay’s rule applies for the critical pressure



and temperature of the mixture. The Redlich-Kwong equation of state (EOS) for the
mixture is

a = 0.4275 R 2Tc
2.5/Pc, and b= 0.08664 R Tc/Pc, where

Tcm denotes the critical temperature and Pcm the critical pressure of the mixture.
a) Obtain an expression for 

)
v2 and then reduce the expression for 

)
v2 when x2 goes

to a very small value (say 0.01).
b) Determine 

)
v2when x2 is small (say, 0.01) at 320 K and 100 bar.

c) If x1 = 0.6, what is the value of 
)
v2 at T = 320 K and P = 100 bar? Compare with

the answer from part b.

Problem H17 
Obtain the relations for û uk k,− 0 , ^s 10(T,P) - ^s 1 (T,P) and ˆ ˆh hk k,− 0  for a gas mixture

following RK equation and RK mixing rule ¯am = (Σ Yk ¯ak 
1/2)2, ¯b m = Σ Yk ¯b k.

Problem H18 
A gas mixture containing CO2 and acetylene exists at 100 bar and 0.0938 K. If the
mass fraction of CO2 is 0.4, determine the temperature. Use LAV, LAP and RK.

I. CHAPTER 9 PROBLEMS

Problem I1 
Consider a mixture of O2(1) and N2(2) at low temperatures in the form of a liquid
mixture. You are asked to draw the T (K) vs. X and T vs. Xk,l diagrams. Assume the
following vapor pressure relations: ln (Psat bar) = A - B/(T in K +C) where A, B and C
are as follows: for O2: 8.273075661, 666.0593179, -9.69072568, respectively, and for
N2: 6.394732229, 369.1680573, and -19.61997409, respectively. Use a spreadsheet
program. Determine (a) X1,e and X1 for the equilibrium phases at 100 K and 100 kPa.
b) T and X1 at 100 kPa and X1,e = 0.4. (c) P and X1 for T = - 170 C and X1,e = 0.4. d)
T and X1,e for 100 kPa and X1 = 0.4. e) P and X1,e for –160ºC and X1 = 0.4. f) The
fraction of the system that is liquid, X1,e, and X1 at –160 °C and 100 kPa, when the

overall composition of the system is 21 mole percent of oxygen.

Problem I2 
Consider water in the atmosphere. Normally air is dissolved in liquid water. The nor-
mal boiling point of water is 100ºC. Plot the mole fraction of XN2 and XO2 (given that
XN2/XO2 = 3.76) vs. T. Assume that the mole fraction of H2O in liquid is close to unity
so that mole fraction of water vapor in the gas mixture could be immediately deter-
mined. The value of pO2 = 1 mm at –219ºC, 10 mm at -210.6, 40 mm at -204.1ºC, -
198.8ºC at 100mm, -188.8 ºCat 400 mm and -182.96ºC at 760 mm; pN2 = 1 mm at -
226.1ºC, 10 mm at -219.1ºC, 40 mm at -214.0ºC, -209.7ºC at 100mm, -200.9ºC at 400
mm and -195.8ºC at 760 mm. (First evaluate the constants A, B and C for the Cox
Antoine relation for N2 and O2 and then use spreadsheet.)

Problem I3 
During the evaporative desalinization of sea water, salt water is first heated to its
boiling point and then partially vaporized. The vapor, which is essentially pure water,
is then condensed and collected to obtain water. If the entering sea water is initially
1.5 mol percent NaCl, determine the boiling temperature of the solution at 1 atm. ∆Hv

= 970 Btu/lbm and may be assumed constant. The vapor may be assumed to be ideal
and to have negligible density with respect to the liquid. List any assumptions you
make.



Problem I4 
The addition of glycol to water can lower the freezing point and, hence, more thermal
energy can be stored in the mixture. Further the enthalpy of melting (hsm) increases
with a lowered freezing point. Plot a) the enthalpy of melting vs. glycol%, b) the
freezing point vs. glycol concentration (upto 50% by weight) if the following data is
available: hsm = 334 kJ/kg at 273 K, cp,H2O(Ρ) =4.184 kJ/kg K, cp,H2O(s) = 2 kJ/kg K. As-

sume the ideal solution model.

Problem I5 
Find the partial pressure of benzene vapor for a mixture containing 30% benzene
(species 1) and 70% toluene (species 2) solution at 92oC, if the saturation vapor pres-
sures of benzene and toluene at 92oC are 1078 torr and 432 torr.

Problem I6 
Consider a mixture of water (species 1) and ammonia (species 2). The vapor pressure
relations are given as follows: ln P (bar) = 12.867 - 3063 /T (K) for ammonia; ln P
(bar) = 13.967 - 5205.2/T (K) for water. Plot P vs. X1,e, X1 at 0ºC, 25ºC, 50ºC and T
vs. X1,e and X1 at 0.5, 1, 10 bar.

Problem I7 
The following is the composition of an acid which is vaporized and burnt in a hazard-
ous waste plant: H2SO4: 92% by mass, Hydrocarbons: 4%, H2O: 4%. Lump hydrocar-
bons with water. The vapor pressure relations are as follows: ln (p) = A - B/(T(K)+C),
with p expressed in units of bar. The values of A, B and C are as follows: water:
11.9559, 3984.849, -39.4856, respectively; H2SO4: 8.346772, 4240.275, -119.155, re-
spectively. Determine the vapor phase mole fraction of each component at a pressure
of 1 bar at 100ºC. Assume an ideal solution. Will the vapor phase composition change
if N2 is present in the vapor phase at 1 bar and 100ºC? If so, determine the value of
this change. If pH2O and pH2SO4 at 270ºC for a strong acid are 0.335 bar and 0.0525 bar,
respectively, determine the activity coefficients for the two species.

Problem I8 
Justify if the ideal solution model is valid for a H2SO4 and water liquid mixture.

Problem I9 
Phase equilibrium is reached when the Gibbs energy has a minimum value at speci-
fied values of temperature, pressure, and mass. One kg of water at 343 K water is
poured into a cylinder of piston-cylinder-weight assembly. The space above water
initially contains 0.4 kg of dry air at 343 K and 100 kPa (cpw = 4.184 kJ kg–1). As wa-
ter vaporizes the temperature of water drops and heat is added to maintain a constant
water temperature. Consider values of pvapor in the range 0–0.9 bar in increments of
0.01 bar and determine G(pvapor). Assume that water vapor and air behave as ideal
gases.

Problem I10 
a) Obtain an expression for vapor pressure in air and vapor mixture just above

the liquid surface of a lake which is at T. Assume that liquid is pure distilled
water and pressure is P bar.

b) Derive the expression for mole fraction of vapor in the gas phase if gas phase
is assumed to be an ideal gas mixture.

c) Determine pv and Yv at 30ºC and 0.9 bar.

Problem I11 
A methanol (component 1, 60% mole basis) and water (2, 40%) mixture at 60ºC ex-
ists at a pressure P. Assume an ideal solution with p1

sat = 625 mm of Hg and p2
sat =

144 mm of Hg and determine the values of P, Y1, and Y2 at equilibrium.



Problem I12 
Seven gmole of methanol (species 1 in both the liquid and vapor phases) and 3 gmole
of water (species 2 as liquid and vapor) coexist in a piston cylinder assembly at 60ºC,
and 433 kPa. With the values p1

sat = 625 mm of Hg, p2
sat = 144 mm of Hg, determine

x1, x2, Y1, Y2, the vapor fraction or quality ¯w , and the moles of vapor of species 1
and 2.

Problem I13 
Plot P vs. xH2O and P vs. YH2O at T = 65 C for methanol and water solution. Assume
ideal solution behavior.

J. CHAPTER 10 PROBLEMS

Problem J1 
If you strike a match in a class room, it may not result in explosion; but if you strike
(never try this) a match near a gas station, there may be an explosion. Relate this to
stability.

Problem J2 
If there can be phase change (i.e., the formation of two regions with two different
densities) at given T and P, why cannot there be different thermal layers at specified
values of ρ and P?

Problem J3 
Derive an expression for the spinodal condition for a fluid following the Peng Robin-
son equation of state. Obtain the spinodal curve for both liquid and vapor n–hexane
and plot P(V), P(T), T(v) at specified T, v and P respectively.

Problem J4 
Plot P(v) for H2O at 373 K using the RK state equation for volumes in the range
0.0867 vc’  to 200 vc’, vc’= R Tc/Pc. If g (373K, 200 vc’) = 0 and dg = vdP, plot g(v)
at 373 K. (Hint: use integration by parts.) Determine the states at which gliquid = gvapor,
and at which dP/dv = 0.

Problem J5 
Consider the relation G–A = PV. Since d2G < 0 at constant values of T and P for a
single component fluid, show that d2A < –P d2V at these values of T and P.

Problem J6 
Refrigerant R–134A enters a short 1 mm diameter and 12 mm long capillary tube at 6
bar and with 30ºC subcooling (i.e., it is 30ºC below its saturation temperature at 6
bar). The fluid is discharged into a 1 bar atmosphere. The pressure first decreases
rapidly due to vena contracta (expansion in a converging) and then rises due to the in-
creased diameter of the flow (as in a diffuser). At a certain pressure R–12 starts
flashing (or vaporizing). Since its density is low, the flow velocity rapidly increases
with a subsequent decrease in pressure and may reach the sound speed (or choked
flow condition). Data is needed on spinodal conditions. Determine the spinodal pres-
sures at 30ºC, 20ºC, and 10ºC subcooled conditions. Use Dietrici equation of state.
How does this compare with values determined from the charts for the RK equation.

Problem J7 
Obtain an expression for vapor spinodal curve for both P and T with respect to v as-
suming that b«v. Use the Berthelot equation.

Problem J8 
Prove that if S = S (U, V, N1, N2, ..., Nn) at equilibrium, and if dS < 0 due to a pertur-
bation, then for the perturbed state dHT,S > 0, dAT,V > 0, and dGT,P > 0.



Problem J9 
If u = u(s,v), show that the stability criteria for umin are cv>0 and (∂P/∂v)s<0.

Problem J10 
Starting with S–Se = ((U–Ue) /T) + (P/T) (V–Ve) + C and C < 0, show that (a) at
specified values of S, V and m, (b) U > Ue, at specified values of T, V, and m, A>Ae,
and c) at specified values of T, P and m, G > Ge.

Problem J11 
Obtain the spinodal condition for the state equation P = RT/(v–b) – a/(Tnv2).

Problem J12 
Obtain the spinodal curve for a RK gas in terms of PR vs. TR and PR vs. ′vR .

Problem J13 
Determine the maximum temperatures to which liquid water can be superheated and
vapor can be subcooled at 133 bar.

Problem J14 
Show that d2S = ∂2S/∂U2 dU2 + ∂2S/∂V2 dV2+ 2 ∂2S/∂U∂V dU dV = –(Cv /T

2) dT2 +

(∂P/∂V)T(1/T) dV2.

Problem J15 
For a VW gas s = cvo ln ((u+a/v)/cv0 ) + R ln (v–b). Using the criterion ∂2s/∂v2 < 0,

obtain the following expression for values of v which satisfy above criteria at speci-
fied u, namely, (k–1) (1 + x)2 /(1– b*x)2 > x (2+x), where x = a/(vu), b* = (bu)/a, and k
= cpo/cvo.

Problem J16 
Using the Berthelot equation of state P = RT/(v–b) – a/(Tv2) for water plot T(v) for P
= 1, 10, 20, 40, 60, 80, 100, 200 bar. At P = 60 bar determine the maximum tempera-
ture to which water can be superheated without forming vapor and the minimum tem-
perature to which water can be cooled without causing condensation. Assume that ln
PR

,sat ≈7(1– 1/TR). Plot the saturated liquid and vapor curves and determine the degree

of superheat and subcooling at 60 bar.

Problem J17 
Consider n-hexane (C6H14) at P=4 bar, v= 0.3m3/kmol following Van der Waals
equation of state. Verify whether n-hexane is mechanically stable at this condition.

Problem J18 
For the state equation P = RT/(v–b) – a/(Tnvm) for what values of m is it possible to
obtain the spinodal conditions for T<Tc ? Can we relate this to the universe, treating
galaxies as point masses?

Problem J19 
In the context of the Peng Robinson state equation solve for T(P,v). Plot T with re-
spect to P at 1 bar and 60 bar. Determine the degree of superheat and subcooling.

Problem J20 
Use the VW equation of state P = RT/(v–b) – a/v2 for H2O. Plot P(v) at 593 K. Recall
the expression s = cvo ln ((u +a/v)/cvo) + R ln (v–b), where T = (u +a/v)/cvo. Plot s(v,
593 K), assuming that cvo = 54 kJ kmol–1 K–1. Determine d2s along the 593 K iso-
therm. Discuss your results in the context of stability criteria.



Problem J21 
Saturated liquid water (the mother phase) is kept in a piston cylinder assembly at a
pressure of 100 kPa. A minute amount of heat is added to form a single vapor bubble
(the embryo phase). a) If the embryo phase is assumed to be at the same temperature
and pressure as the mother phase, determine the absolute stream availabilities ψ = h –

T0 s and Gibbs functions of the mother and embryo phases. b) If the embryo vapor
phase is at the spinodal pressure corresponding to 100ºC while the liquid mother
phase is still at 1 bar, what are the absolute stream availability and Gibbs function of
the vapor embryo? Compare the answers from parts (a) and (b). For the spinodal pres-
sure assume that the RK equation applies. (In order to use the values from saturation
tables assume that the vapor phase behaves as an ideal gas to calculate the enthalpies
and entropies between the saturated and spinodal states.) c) If the embryo at the spi-
nodal pressure condenses back to the mother liquid phase at 100ºC and 1 bar what is
the change in the Gibbs function?

Problem J22 
Obtain the stability criteria for an ideal gas using the criteria related to hPP, hss, and
hsP. Apply the relations dh = cpo dT and s = cpo dT/T – R dP/P.

Problem J23 
Show that uss uvv - usv 

2 = -avv/aTT.

K. CHAPTER 11 PROBLEMS

Problem K1 
Is the reaction expression written on a molecular basis the same as the mole basis?

Problem K2 
Under what condition is the A: F ratio based on a mole basis the same as the volume
basis?

Problem K3 
Consider propane gas C3H8, which can be empirically written as CH2.6667. The
stoichiometric air: fuel ratio per kmol of C3H8 is exactly equal to the stoichiometric
air per kmol of CH2.6667. True or False?

Problem K4 
For an adiabatic reaction, one can reasonably assume that the entropy of products
leaving is the same as entropy of the reactants. True or False?

Problem K5 
For an adiabatic reaction involving PCW, one can reasonably assume that the en-
thalpy of products is the same as the enthalpy of the reactants. True or False?

Problem K6 
For an adiabatic reaction within a closed system, the entropy increases at fixed values
U,V, m. True or False?

Problem K7 
In an adiabatic reaction within a PCW, the entropy increases at fixed H, P, m. True or
False?

Problem K8 
During a CO2 sequestration process, the reaction CaO(s) + CO2 (g) → CaCO3(s) oc-

curs. How much heat in kJ/kmol of CO2 is required for the reaction at 298 K?



Problem K9 
Currently at a 370 ppm level of CO2 in the ambient, about 7 billion metric tons of
carbon is emitted every year. which is expected to rise to 1 gigatons by 2015 and 4
gigatons by 2025. If the dominant fuel used is coal CH0.7589O0.1816 N0.0128S0.00267, how
much fuel can be burned each year to reach these levels?

Problem K10 
About 90% of the CO2 emitted dissolves into the oceans and forms a methane hydrate
sediment through the reaction CO2 + bH2O → CH4: 7H2O(s) + CO2. How much CO2

is captured by 1 kmol of H2O?

Problem K11 
A glass jar that contains N moles of dry air is placed in a pool of water. A combusti-
ble solid, CHmOn is ignited and dropped into the jar. A lid is snugly fitted at the neck
of the jar. Sometimes the lid is seen to fall into the jar. (a) Determine the appropriate
conditions for this to occur. Discuss the problem for (i) m = 1, n = 0, (ii) m = 0, n = 0
(pure carbon). (b) What are the results if CO is formed instead of CO2? Will the lid be
expelled away from the jar?

Problem K12 
At 25ºC and 1 bar is the reaction 4Fe(s) + 3O2 → 2Fe2O3(s) exothermic?

Problem K13 
The dry ash free cattle waste can be represented as CH1.253N0.0745O0.516S0.00813. The
heating value of dry waste with 53% ash is known to be as 9215 kJ/kg . Determine a)
stoichiometric air fuel ratio for a dry ash free fuel, b) enthalpy of formation in
kJ/kmol for the empirical fuel, and c) adiabatic flame temperature in K for a dry fuel
with 53% ash. Assume that cp of ash = 0.800 kJ/kg K.

Problem K14 
In a HiTAC (high temperature air combustion) process the air is mixed with flue
gases in order to reduce O2 concentration to 2-5%. If methane is used with a
stoichiometric ratio of 2 with 2% oxygen concentration in the oxidant stream (air +
flue gas mixture), and air temperatures are a) 298 K, b) 1000 K, then determine the
adiabatic flame temperatures. Assume constant specific heats for all species.

Problem K15 
As opposed to burning glucose ( s f = 212 kJ/kmol), the body burns a mixture of fat
(palmitic acid, C16H32O2 , h f= - 834694.4 kJ/kmol, s f = 452.37 kJ/kmol) and glucose.
Let the heat loss rate be specified at 110 W for 70 kg person and breathing rate at 0.1
liter per second. Determine the entropy generation per kmol of the mixture vs. the
fraction of glucose in the fuel metabolized and entropy generation per unit amount
metabolism. Comment on the results. What happens to the results if the fat is replaced
by cholesterol C27H45OH? Assume that cholesterol has the same properties as fat.

Problem K16 
The human body is an open system and some arbitrary person, on average, loses body
heat at the rate of 110 W. Assume that person’s body temperature remains constant at
37ºC, the ambient temperature is 25ºC, the specific heat of air is 1 kJ kg–1 K–1, the in-
halation (and exhalation) mass flow rates are both 6 g min–1 and properties of exhaled
gas are the same as that of air. Determine the entropy generation rate:
a) If the control volume is assumed just inside the human body.
b) If the control volume is assumed just outside of the human body. Explain the

difference between answers in (a) or (b)



Problem K17 
Normally for closed system: dS =  dH / T -  VdP / T    or     dU / T +  PdV / T . Con-
sider a closed system which is suddenly loaded with 1 K mole of CO and 1 K mole of
O2 at 3000 K. a) What are the entropy and enthalpy at this (meta) state (1). b) If you
leave the system for a sufficiently long period of time and at the same time maintain
the pressure at 1 atm and temperature at 3000 K, you find that there are 0.34 CO, 0.66
CO2 and 0.67 oxygen moles (state 2). What is the entropy and enthalpy at state (2). c)
What is the entropy change (S2 - S1)? d) What is the enthalpy change? e) Is the en-
tropy change equal to ∆H/T where ∆H=H2-H1? Comment.

Problem K18 
Consider the growth of leaves on a tree. Consider a single leaf as it is growing. The
gaseous CO2 and liquid water are used to produce a solid leaf which is assumed to be
cellulose C6 H10 O5. a) Develop an overall reaction scheme. The sunlight is used as an
energy source for such a reaction. b) Write down the mass, energy and entropy bal-
ance equations. Assume that reactions occur at 25ºC, 1 bar ? Determine a) sunlight
required in kJ/kg of cellulose, b) entropy change for the reaction in kJ/kg K, c) repeat
parts (a) and (b) if the solid is lignin (C40 H44 O6), and d) If wood consists of 40-45%
cellulose, 15-30% lignin and the rest is hemi-cellulose, how will you determine the
answers for (a) and (b)?

Problem K19 
The body burns a mixture of glucose (C6H12O6, hf0 = -1260268 kJ/kmol, s(298,s)=212
kJ/kmol K, HHV 2815832 kJ/kmol,10034905.6 kJ/kmol and fat (C16H32O2, hf= -
834694.4, s(298,s) =452 kJ/kmol K, HHV = 10034905.6 kJ/kmol K. If inhaled air
temperature is 25ºC, and exhaled air temperature is 37ºC . Plot entropy generation in
kJ per kmol of mixture K and in kJ per kJ of heat released per K vs. glucose fraction
in the mixture. Assume 400% excess air.

Problem K20 
Natural gas has the following composition based on molal%: CH4: 91.27, Ethane
3.78, N2 = 2.81, Propane 0.74, CO2: 0.68, n-Butane: 0.15, i-Butane 0.1, He 0.08, i
pentane 0.05, n-pentane 0.04, H2: 0.02, C-6 and heavier (assume the species to be of
mole wt: 72): 0.26, Ar: 0.02. Determine a) the molecular weight, b) gross heating
value in BTU/SCF, kJ/m3, c) LHV.

Problem K21 
a) In a constant volume combustion chamber one kmol of CH4 and 3 kmol of O2 are
burned at 298 K and 1 bar. Heat Qv is removed so that the products are at 298 K a)
What is the final pressure? Assume that H2O does not condense. b) If the same reac-
tion involving the same molar content occurs in a sssf reactor at 298 K and 1 bar and
the products leave at 298 K and 1 bar, the heat removed is Qp. c) Determine the dif-
ference (if any) between Qp and Qv. d) If H2O partially condenses, what is the value
of QP for case (b), e) If water partially condenses, what is the value of QV and the fi-
nal pressure?

Problem K22 
CH4 was supplied to a reactor along with air. The dry gas analysis yields the follow-
ing composition CO2: 4%, O2: 7%. a) Determine the CO content in the products, b) A:
F, c) equivalence ratio, and d) air required in m3/hr for combustion of 15 m3/hr of fuel
at STP.

Problem K23 
Gaseous CO2 and liquid water are used to produce a hydrocarbon during photosynthe-
sis that leads to leaf growth. Sunlight is used as the energy source for the reaction.



Describe the mass, energy and entropy balance equations for this process. It is argued
that the leaf is formed by groups of organized molecules while CO2 is disorganized
and as such order increases and hence the entropy may decrease. Is this a violation of
Second Law?

Problem K24 
Octane C8H18 is burned with dry air at P = 14.7 psia. a) Calculate stoichiometric A: F
ratio. If volumetric analyses of dry products are CO2: 7%, O2: 10.90%, N2: 82.10%,
then determine b) equivalence ratio for actual combustion and c) dew point tempera-
ture of H2O in the products.

L. CHAPTER 12 PROBLEMS

Problem L1 
Can there be plant which can make C3H8 by the reaction 3CO2 + 4H2O →  C3H8+

5O2? Is this endothermic or exothermic?

Problem L2 
During coal liquefaction, the coal is gasified in the presence of oxygen and steam to
produce a gas mixture of carbon monoxide and hydrogen called synthesis gas and
then converted to liquid hydrocarbons in the presence of iron catalysts. This is called
the Fischer-Tropsch gas synthesis process, i.e., a CO + b H2 → c CnH2n+2 + d O2. If

liquid octane is produced determine heat required for the reaction to proceed at 25ºC?

Problem L3 
Consider the mixing of  3.76 kmol of N2 with 1 mole of O2. does the following reac-
tion to go to completion at 25ºC and 1 bar, namely, 3.76 N2 + O2 → 2 NO + 2.76 N2?

Problem L4 
Plot XNO(T) for NO in air at chemical equilibrium at 100 kPa. Apply the reaction 1/2
N2 + 1/2 O2 = NO. Assume NO to exist in trace amounts.

Problem L5 
Determine the trace amounts of SO2 and NO exhausted from a smoke stack with re-
spect to the temperature under chemical equilibrium if Illinois No. 6 coal is com-
busted with 20% excess air. Empirical formulae of coal: C0.6671 H0.5610 N0.011001 O0.06738

S0.01322. Assume complete combustion of C and H to CO2 and H2O.

Problem L6 
For the reaction H2S→H2+ S determine the equilibrium relation if sulfur exists as gas

at 1000 K and as solid at 298 K. Will the amount of S be affected by a change in pres-
sure at either 298 K or 1000 K?

Problem L7 
Consider the dissociation (dimerization) of N2O4, i.e., N2O4 → 2NO2 for which ∆G0 =

57330–176.7 T kJ kmol–1. Plot the degree of dissociation as a function of pressure at
298 K, and as a function of temperature at 1 bar.

Problem L8 
For the reaction C(s) + CO2 (g) → 2CO(g) determine the equilibrium composition as

a function of pressure at 2000 K. Assume ideal gas behavior for CO2 and CO and 1
kmol of carbon initially.



Problem L9 
The equilibrium constant for the reaction H2 + 1/2O2 → H2O(liq) has been determined

to be 1.6×104 at 25°C. The standard states are defined with respect to the pure com-

ponents at 1 atm and 25°C. Calculate the minimum work required to dissociate 1

kmol of water at 25°C and 1 atm if (a) pure and separated hydrogen and oxygen are to

be produced, and (b) a stoichiometric mixture of oxygen and hydrogen is to be pro-
duced.

Problem L10 
Both hydrogen and air enter a welding torch at 25°C and burn according to the reac-

tion H2 + 1/2 O2 → H2O (g). If the torch is adjusted to give 200 percent more air than

the stoichiometric amount and combustion is adiabatic, what is the flame tempera-
ture? The values of cp for O2, N2, H2, and H2O in units of cal gmol–1 K–1 are, respec-
tively, 6.14 + 3.102×10–3T, 6.524 + 1.250×10–3T, 6.947 + 0.120×10–3T, and 7.256 +

2.290×10–3T with T in units of K, and (∆Hreact)25°C = –57.8 kcal per g–mol of H2, and

K0 = 1.0×1040 at 25°C. The standard states for all components is 1 bar.

Problem L11 
In order to increase the operating temperature of the hydrogen torch of the previous
problem, pure oxygen at the stoichiometric rate replaces air as the oxidizer. Neglect-
ing all reactions other than the combination of hydrogen and oxygen, determine the
adiabatic flame temperature for these operating conditions.

Problem L12 
The following reactions are believed to occur during the catalytic oxidation of ammo-
nia to nitric oxide:

4NH3 + 5O2 → 4NO + 6H2O, (A)

4NH3 + 3O2 → 2N2 + 6H2O, (B)

4NH3 + 6NO → 5N2 + 6H2O, (C)

2NO + O2 → 2NO2, (D)

2NO → N2 + O2, and (E)

N2 + 2O2 → 2NO2. (F)

It is essential to determine the equilibrium composition when air is used to oxidize
ammonia. Determine the minimum number of independent chemical equilibrium re-
lations necessary to completely solve for the composition. Just outline the procedure
in solving for the composition using equilibrium constants.

Problem L13 
An electric generating station burns anthracite (essentially, pure carbon) in air to pro-
vide heat for its main boilers. Determine the equilibrium composition of the gases
leaving the combustion chamber at 900 K and 1.0 bar. The following reactions are
known to occur:

C + 1/2 O2 → CO, (1)

CO + 1/2 O2 → CO2, and (2)

CO2 + C → 2CO, (3)

where the standard states are pure gaseous O2 and CO2, and pure solid carbon at 1
atm. (As long as any unreacted carbon remains, it is always in its standard state. Thus
the activity of carbon is equal to unity and independent of the amount of carbon left.)



Problem L14 
The JANAF tables list values of K0 for reactions involving natural forms of elements.
Determine the value of K0 for the reaction CO + H2O → CO2 + H2 at 2000 K and 1

bar using tabulated g0 values. A chemicals company suddenly charges a tank with a
mixture of 2.85 CO, 0.15 CO2, 0.15 H2, and 3.85 H2O (all in kmol) at a total pressure
of 2 bar and 900 K. The tank is maintained at 900 K and 2 bar. There is concern by
engineers that CO + H2O (g) → CO2 + H2 which is exothermic and as such tank may

explode; since H2O dominates the mixture, the management argued that CO2+ H2 →
CO + H2O (g) which is endothermic may be happening.
a) Determine the chemical forces of reactants (FR) and products (FP) for any of

the assumed direction.
b) Settle the issue of direction of reaction.
Answer whether changing the pressure will affect the direction of reaction? Do not
calculate

Problem L15 
Recall that gk = (h– Ts)k and g´k = (gf

o + ∆g)k where gf denotes the specific Gibbs en-

ergey of formation. Show that for CO, ′gCO  – gCO = To( sC
o  + 1/2 sO

o

2
). Similarly show

that ′gO – gO = To(1/2) sO
o

2
 and ′gO2

– gO2
 = To sO

o

2
. Also, show that Συkgk = Συkg´k = 0

when the reaction C + 1/2 O2 = CO is at equilibrium.

Problem L16 
For the steam reforming reaction CH3OH (liq) + H2O (liq) → 3 H2 + CO2 both liquid

methanol and liquid H2O are supplied 298 K and 1 bar to a reactor which should pro-
duce a mixture of H2 and CO2 also at 298 K and 1 bar. Is the reaction possible for this
case?

Problem L17 
Many power plants in U.S. fire either coal or natural gas to produce electrical power.
Coal can be represented by C(s) and natural gas by CH4. The excess air for a particu-
lar application is such that the oxygen content in the exhaust on dry basis is 3%. As-
sume complete combustion and the pressure of the products to be 1 bar. For both fuels
determine the (a) A: F ratio, (b) CO2 and N2 percent in the exhaust, (c) the CO and
NO present in the exhaust if it is at 1500 K assuming the following reaction: N2 + O2

→ 2 NO, N2 + 2 O2 →2 NO2, and CO2 → CO + 1/2 O2. Assume that NO and CO are

in trace amounts, d) CO, NO and CO2 in g/GJ for both the fuels.

Problem L18 
Which of the two reactions C(s) + 1/2 O2 → CO or C(s) + O2 → CO2 is favored at (a)

2000 K and (b) 3000 K?

Problem L19 
One kmol of C(s) at 2 bar, and premixed 2 kmol of O2 and 0.001 kmol of CO2 at 1000
K and 2 bar are introduced into a steady flow reactor. Will the CO2 concentration in-
crease or decrease in the product stream due to the reaction C(s) + O2 → CO2?

Problem L20 
Methanol(l) can be produced from syngas (CO + H2) according to the reaction CO(g)

+ 2H2(g) →  CH3OH(l). Determine the suitable conditions for the feasibility of its

production at 25ºC and 1 bar.



Problem L21 
Consider the reaction SO2(g) + CaO(s) + 1/2 O2(g) → CaSO4(s), which is used to

capture the SO2 released due to combustion of coal. What is the equilibrium relation,
assuming that the SO2and CaO are fully mixed at molecular level? How much SO2

and O2 is left over at 1200 K?cp,CaO(s) = 42.8 ,cp,CaSO4(s) = 100  kJ/kmol K?

Problem L22 
Show that ĝ 1(T,P,X1) = h1(T) – s 1(T,P) + R T ln X1 = g1(T,p1).

Problem L23 
A reactor is supplied with elements 9 kmol of C and 19 kmol of O and allowed to
reach chemical equilibrium at 3000 K and 1 bar. What is the equilibrium composi-
tion? What is the value of the Gibbs energy at equilibrium? If the products are iso-
barically cooled to 2800 K and allowed to reach chemical equilibrium, what is the
new equilibrium composition and the new value of the Gibbs energy?

Problem L24 
Determine the value of ∆G(298 K, 2 bar) for the water gas shift reaction H2O + CO(g)

→ H2(g) + CO2(g) considering the water to be (a) liquid and (b) gas.

Problem L25 
It is necessary to determine ĝCO2

 in a mixture containing 20% CO, 10% CO2, 10% O2

with the remainder being N2. Assume that the mixture is an ideal mix of real gases at
66 bar and 370 K (you may use the fugacity charts).

Problem L26 
In an application there are two possible reactions for the oxidation of carbon C(s) +
1/2O2 → CO, and C(s) + O2 → CO2. Determine the affinity at the point when 40% of

the carbon is consumed separately by the first and second reactions at 1 bar and 3500
K. Assume that cp,C/R = 1.771 + 0.000877 T – 86700/T2 with T in units of K.

Problem L27 
The steam reforming reaction is CH4 + H2O → CO + 3H2. Is this reaction possible at

298 K if equal molal mixture of CH4, H2O(g), CO, H2 are sent to the reactor ? Is heat
absorbed or released at 298 K ? Is 50% conversion possible at 298 K, and if it were to
be obtained, what would be the molal ratio of H2 to CH4 in the products?

Problem L28 
A combustor is fired with coal having atomic composition CH0.755N0.0128O0.182S0.00267.
For every kmol of coal fired, 0.234 kmol of moisture enters the combustor. If 20%
excess air is used and combustion is complete, a trace amount of NO is formed (ac-
cording to the reaction 1/2N2 + 1/2O2 →  NO), the sulfur is burned to SO2, and the

products leave at 2800 K, determine the equilibrium composition.

Problem L29 
Gaseous propane is burned with 60% of theoretical air in a steady flow process at 1
atm. Both the fuel and air are supplied at 298 K. The products, which consist of CO2,
CO, H2O, H2, and N2 in equilibrium, leave the combustion chamber at 1500 K. De-
termine the composition of the products and the amount of heat transfer in the process
per kg of propane burned. The standard enthalpy of formation for propane is
–103,847 J gmol–1.



Problem L30 
A mixture contains 20% CO, 10% O2 and the remainder CO2 at a temperature of 1500
K and 10 bar. Obtain the values of G, ∂G/∂N CO2

, ∂2G/∂ NCO2

2 . gCO(1500,10)=-415434

kJ/kmol, gO2= -317622 kJ/kmol, gCO2=-769977 kJ/kmol.

Problem L31 
Air is supplied to a compressor in a gas turbine at 298 K and 1 bar, and is adiabati-
cally and reversibly compressed to 10 bar. The air then proceeds to that combustor
that is fired with iso–octane fuel at 298 K. Combustion occurs adiabatically with
100% excess air. Determine the adiabatic flame temperature assuming (a) complete
combustion, and (b) complete chemical equilibrium with CO, NO, and OH present in
the products. (c)What is the equilibrium composition for part (b)?

Problem L32 
Evaporative cooling of inlet air is suggested for a gas-turbine power plant since it is
expected to provide denser air and hence more mass flow for the same velocity to the
compressor. The evaporative cooling results in decrease of temperature of air to 20ºC
from saturated wet air at 40ºC. Assume fuel to be CH4 at 298K burning with 100%
excess air. a) What will be the decrease in adiabatic flame temperature compared to a
dry air case? b) What will be decrease in NO if any compared to dry air case. Assume
that air is saturated with vapor.

Problem L33 
If F = G + Σkλk Σj (dkj Nj – Ak), then prove that Gmin = - Σkλk Ak, G = Σkµj Nj or Σkgj

Nj.

Problem L34 
Obtain a set of relations for determining the equilibrium composition of gases at
given T for a fuel CCHHOONN burning in air with the following set of reactions.

H2O ⇔ H2 + 1/2 O2,

CO2 ⇔ CO + 1/2 O2,

H2O ⇔ 1/2 H2 + OH,

NO ⇔ 1/2 N2 + 1/2 O2, and

OH ⇔1/2 H2 + 1/2 O2.

Describe a procedure for solving the composition using a spread sheet.

Problem L35 
One kmol each of carbon monoxide and water vapor enter an adiabatic reactor at 298
K and 1 bar and produce CO2 and H2. (a) Plot the temperature and entropy of the
products, the sums (gCO+g H O2

), (g CO2
+g H2

), and σ with respect to the degree of reac-

tion of CO (i.e., assume that 0, 0.1, ..., 1.0 kmol of CO react). (b) If the conversion of
reactants to products is adiabatic, what is the value of σ when one kmol of CO is con-

sumed? (c) What is the degree of reaction when σ reaches a maximum value? (d)

What should be the criterion for the direction of reaction to occur? σ > 0 or dσ > 0.

Which criterion is the more appropriate to use?

M. CHAPTER 13 PROBLEMS
Unless otherwise stated assume the ambient temperature and pressure to be 298 K and 1 bar.

Problem M1 
In an adiabatic reaction, one can reasonably assume that the availability of products
leaving an sssf reactor is the same as availability of the reactants. True or False?



Problem M2 
In an adiabatic reaction within a PCW, one can reasonably assume that the availabil-
ity of products is the same as availability of the reactants. True or False?

Problem M3 
The fuel availability is independent of environmental conditions. True or False?

Problem M4 
If you know the heating value of cattle manure as 5000 Btu/lb, can you determine the
fuel availability?

Problem M5 
Methane is burned with 40% of excess air isobarically at 1 atm. Methane and air enter
the combustor fully mixed at 77ºF. What is the absolute stream availability unmixed
reactants? What is the irreversibility due to adiabatic mixing, and adiabatic combus-
tion? What is the absolute stream availability if the product temperature is 800ºR?

Problem M6 
Octane at 298 K and 4 bar and air at 710 K and 4 bar enter an adiabatic reactor. Reac-
tion products leave the reactor at 1100 K and 4 bar. Determine the A: F ratio, the
maximum possible sssf work, assuming the ambient temperature to be 298 K, and the
entropy generated.

Problem M7 
In an open system determine the adiabatic irreversibilities of (a) methanol, and (b)
gasoline (i.e., CH2.6 with a lower heating value of 47720 kJ kg–1) under stoichiometric
conditions. Express your answers in terms of fractional heating values. (c) Which of
the two fuels displays a larger irreversibility? (d) Do the values change if a closed
system is considered? (e) Which fuel will you recommend for an automobile engine?
Assume that entropy of CH2.6 is same as entropy of octane on unit mass basis

Problem M8 
One kmol of CO and 1/2 kmol of O2 react at 0 K in an isothermal reactor. (a) What is
the entropy of the reactants and products? . (b) Since σ ≥ 0, what is the heat transfer Q

at 0 K ? (c) Since Q = ∆H = HP–HR, what are the value of HP and HR, at 0 K?

Problem M9 
A four stroke diesel engine has a 80.26 mm bore, and 88.9 mm stroke, and runs at
2400 RPM with 20% excess air. The fuel is approximated by the chemical formula
C14H24.9 with a heating value of 42940 kJ kg–1. a) How much power can be developed
if the cycle efficiency is 40%? b) If instead of drawing air at 100 kPa and 300 K, tur-
bocharged air is provided during the suction stroke at 300 kPa and 330 K, how much
additional power is developed? Assume the same cycle efficiency as case (a). c) If the
radiator takes in half of the heat rejected for case (a), what will be the exhaust tem-
perature and hence what would have been the maximum possible power for case (a)?

Problem M10 
In an open system determine the adiabatic irreversibilities of (a) methanol, and (b)
gasoline (i.e., CH2.6 with a lower heating value of 47720 kJ kg–1). Express your an-
swers in terms of fractional heating values. (c) Which of the two fuels displays a
larger irreversibility? (d) Do the values change if a closed system is considered? (e)
Which fuel will you recommend for an automobile engine?

Problem M11 
In a  water gas shift reactor ( CO+ H2O →  CO2 +H2) each of the reactant species

enter at 298 K and 1 bar. The products leave at 1000 K and 1 bar. Calculate the irre-



versibility in kJ/kmol of CO. Is it possible to produce a work output of 2×106 kJ/kmol

of CO for the specified conditions?

Problem M12 
The equilibrium constant for the reaction H2 + 1/2O2 →  H2O(l) is 1.6×104 at 298 K,

and the standard states are assumed to be the pure components at 1 bar pressure and
298 K. Determine the minimum work required to dissociate 1 kmol of water at 298 K
and 1 bar if (a) pure and separated hydrogen and oxygen are to be produced (each at 1
bar, 298 K), and (b) a stoichiometric mixture of oxygen and hydrogen is to be pro-
duced.

Problem M13 
Determine the maximum work deliverable by a fuel cell consuming 1 kmol of H2 that
reacts at 25ºC and 1 atm to form H2O(liq).

Problem M14 
Determine the availability of iso-octane fuel and verify the result with the value
tabulated in Table A-27B

Problem M15 
A kmol of CH4 and a stoichiometric amount of O2 enter a fuel cell at 1 bar, and 298K
and produce CO2 and H2O(liq) at 298K, and 1 bar. Calculate the change in availabil-
ities between the inlet and exit and the maximum possible work.

Problem M16 
For fuel cells using hydrocarbon fuels, the anodic reaction is

CxHy + 2x H2O → x CO2 + (4x+y)H+ + (4x+y)e–,

and the cathodic reaction is
(x+y/4)O2 + (4x+y)H+ + (4x+y)e– → (2x+y/2)H2O.

The overall reaction can be represented as
CxHy + (x + y/4) O2 → x CO2 + y/2 H2O.

Therefore, for a hydrocarbon fuel CxHy, the electrons generated per molecule are rep-
resented by the relation (4x+y). a) If methane fuel is used in a fuel cell determine the
maximum possible voltage. b) What will be the answers for octane fuel?

Problem M17 
Determine the fuel availability for octane. Assume that To = 298 K, p O2 ,o = 0.2055,

p CO2 ,o =0.003, and p H O2 ,o = 0.0188. Determine the fuel availability in kJ/Kmol and the

ratio of fuel availability to LHV.

Problem M18 
Hydrocarbon fuels are used to power submarine diesel engines. The exhaust passes
through a cooling system so that almost all the H2O in the products condenses and
provides drinking water. The CO2 left in the products is mixed with pure oxygen and
fired back into the diesel engine. The intake gas is not air but a mixture of CO2 and
O2, such that the mole fraction of O2 is 21%. Is the optimum work affected? Deter-
mine the optimum work if a) air alone is used for burning the fuel, or b) the CO2 and
O2 mixture is used for HC fuel. Assume that the reactants enter at 25ºC and 1 bar and
the products leave at 25ºC and 1 bar with H2O in the liquid state. If ∆w opt =

(wopt,a–wopt,CO2) plot ∆wopt/(nRT) vs. m/n



APPENDIX A

 A. TABLES

Contents     
0: Units, conversions.
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TABLE 0: UNITS, CONVERSIONS

Other Conversions

1 atm 14.696  
lbf

in.
1.013 bar 

1 Bbl 42 gal  5.615 ft

1 Bbl

1 BTU  778.17  lbf ft 1.0551kJ

1 BTU
lbm ft

s
1 ft  12 in  0.3048 m

1 gal  in  ft

1 gal

1 hp 0  Btu / s 0.746 kW

1 lbf  32.174 
lbm ft

s
1 mile  5280 ft 1609 m
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Unit SI units

acre 4046.9 m2

Angstrom 1.0x10-10 m
atmosphere 101325 Pa
bar 1×105 Pa

BTU 1055.1 J
day 86400 s

ºR 0.555556 K
ft 0.3048 m
gal 3.7854×10–3 m3

hour 3600 s
hp 745.70 W

inch 0.0254 m
lbf 4.4482 N
lbm 0.45359 kg
liter 0.001 m3

mile 1609.3 m
minute 60 s
mm hg 133.32 Pa
psi 6894.8 Pa

Multiplier Prefix Symbol

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecta h

10 deca da

10–1 deci d

10–2 centi c

10–3 milli m

10–6 micro µ

10–9 nano n

10–12 pico p

10–15 femto f

10–18 atto a



Others
1 short ton = 2000 lb
1 metric ton = 1000 kg
1 long ton = 2240 lb
1 lb = 7000 grains
gc = 32.174 lbm ft /s2 lbf

J = 778.14 ft lbf/ BTU
One (food) calorie = 1000calories or 1 kcal
T(K) = T(oC) + 273.15
T(oR) = T(oF) + 459.67
Navag = 6.023×10 26 molecules/kmol for a molecular substance (e.g., oxygen)

         = 6.023×10 26 atoms/atom mole for an atomic substance (e.g., He)

kB, Boltzmann Constant =1.38x10-26 kJ/molecule K
hP , Planck’s constant = 6626x10-37kJ-s/molecule
c, Speed of light  in vacuum = 2.998x108 m/s.
Ideal Gas Law
Pv = RT; PV = m R T; PV = nRT,   Pv = R T ,

R = 8.314
kPa m

k mole K
 =  0.08314 

bar m
k mole K

3 3

    = 1.986
Btu

lbmole Ro
 = 1545

ftlbf

lbmole Ro
= 0.7299 atm ft3/lb mole R

Volume of 1 kmol (SI) and 1 lb mole (English) of an ideal gas at STP conditions as defined
below:

STP:25ºC (77ºF), 101 kPa
(14.7 psia)

STP: 15ºC (60ºF), 101kPa
(14.7) psia

STP: 0ºC (32ºF), 101 kPa
(14.7 psia)

24.5 m3/kmol, 392 ft3/lb
mole

23.7 m3/kmol, 375.6 ft3/lb
mole

22.4 m3/kmol, 359.2 ft3/lb
mole



TABLE 1: Molecular weights, critical and other properties of selected elements and compounds
TMP: Temperature of melting or freezing point, TBP: temperature of normal boiling points, hsf: heat of melting, hfg: heat of evaporation, w:
Pitzer factor

Substance M Tc Pc zc vc w TMP TBP hsf hfg a , RK b , RK a , VW b , VW
K bar K K kJ/kg kJ/kg (bar

m6K0.5)/
kmol2

m3/kmol (bar m6)/
kmol2

m3/kmol

Acetic acid C2H4O2 60.06 594.4 57.9 0.200 0.171 0.462 289.8 391.1 195.4 394.6 439.62 0.0739 17.7944 0.10669
Acetone CH3COCH3 58.08 508.1 47 0.233 0.209 0.306 178.2 329.4 98.0 501.7 365.87 0.0779 16.0179 0.11235
Acetylene C2H2 26.04 308.8 61.4 0.270 0.113 0.190 189.2 189.2 144.6 653.6 80.65 0.0362 4.52887 0.05227
Air 28.97 133 37.7 0.283 0.0829 78.7 15.99 0.0254 1.36825 0.03666
Ammonia NH3 17.03 405.6 112.8 0.243 0.0725 0.250 195.4 239.7 332.4 1371.8 86.79 0.0259 4.25295 0.03737
Aniline C6H7N 93.14 699 540 266.9 457.6 70.69 0.0093 2.63854 0.01345
Argon Ar 39.95 150.8 48.7 0.291 0.0749 0.001 83.8 87.3 30.4 163.5 16.94 0.0223 1.36169 0.03218
Benzene C6H6 78.11 562.1 48.9 0.271 0.259 0.212 278.7 353.3 126.0 394.1 452.67 0.0828 18.8418 0.11946
Bromine Br2 159.81 584 103 0.269 0.127 0.108 265.9 332 236.46 0.0408 9.65589 0.05892
Butane–n C4H10 58.12 425.2 38 0.274 0.255 0.199 134.8 272.6 80.2 387.1 289.90 0.0806 13.8742 0.11629
Butanol C3H9OH 62.13 562.95 44.18 390.9 502.93 0.0918 20.9179 0.13242
Carbon dioxide CO2 44.01 304.2 73.8 0.274 0.094 0.239 194.7 194.7 196.6 347.6 64.62 0.0297 3.6565 0.04284
Carbon disulfide CS2 76.13 552 79 0.293 0.17 0.115 162.0 319.4 267.78 0.0503 11.2475 0.07262
Carbon monox-
ide

CO 44.01 132.9 35 0.295 0.0931 0.066 68.1 81.7 29.9 215.8 17.19 0.0274 1.47159 0.03946

Carbon tetra-
chloride

CCl4 153.8 556.4 45.6 0.272 0.276 0.193 250.3 349.9 16.5 194.0 473.22 0.0879 19.7976 0.12681

Chlorine Cl2 70.9 417 77.11 0.276 0.124 0.073 171.5 238.7 90.4 288.2 136.08 0.0390 6.57605 0.0562
Chloroform CHCl3 119.37 536.4 55 0.295 0.239 0.216 209.6 334.3 79.9 249.0 358.03 0.0703 15.2552 0.10136
Cyanogen C2N2 52.04 400 59.8 238.75 251.98 158.13 0.0482 7.8023 0.06952
Cyclopentane C5H10 70.13 511.8 45.02 0.273 0.2583 0.194 179.3 322.4 8.7 388.7 388.96 0.0819 16.9668 0.11814
Decane–n C10H22 142.3 619 21.23 0.249 0.6031 0.484 243.5 447.0 201.8 281.2 1326.88 0.2100 52.6302 0.30301

Ethane C2H6 30.54 305.4 48.8 0.285 0.1483 0.099 89.9 184.5 95.1 489.4 98.70 0.0451 5.57342 0.06504
Ethanol C2H5OH 46.07 516.2 63.8 0.248 0.1671 0.644 159.1 351.5 107.9 841.6 280.40 0.0583 12.1792 0.08408
Ether(diethyl) C4H10O 74.14 466.7 36.4 0.263 0.28 0.281 155.4 307.6 98.5 365.4 381.99 0.0924 17.4493 0.13325
Ethyl benzene 106.2 617.2 36.09 0.263 0.3738 0.304 178.2 409.4 86.5 338.1 774.88 0.1232 30.78 0.17773
Ethyl chloride C2H5Cl 64.51 460.4 52.69 0.275 0.2 0.191 136.8 285.4 69.0 383.7 255.07 0.0629 11.7313 0.09081
Ethylene C2H4 28.05 282.4 50.4 0.280 0.1304 0.089 104.0 169.4 119.5 483.1 78.58 0.0404 4.61427 0.05823
Ethylene Glycol 62.07 645.1 75.3 0.268 0.191 1.136 260.2 469.1 187.3 845.7 414.79 0.0617 16.1162 0.08903
Fluorine F2 38 144 56.8 0.314 0.0662 0.054 53.5 85.0 171.9 12.95 0.0183 1.06459 0.02635

Formulae
m3/kmol



Substance M Tc Pc zc vc w TMP TBP hsf hfg a , RK b , RK a , VW b , VW
K bar K K kJ/kg kJ/kg (bar

m6K0.5)/
kmol2

m3/kmol (bar m6)/
kmol2

m3/kmol

Freon 114 C2Cl2F4 170.92 418.9 32.6 0.274 0.293 0.256 179.3 276.9 136.2 325.55 0.0926 15.6966 0.13354
Freon 12 CCl2F2 120.91 385 41.2 0.279 0.217 0.176 115.4 243.4 34.3 165.2 208.60 0.0673 10.4913 0.09711
Freon 13 CClF3 104.46 302 39.2 0.281 0.18 92.0 191.7 148.5 119.48 0.0555 6.78472 0.08006
Freon 152a CHF2CH3 66.06 386.4 45.2 0.253 0.1795 0.275 191.87 0.0616 11.5033 0.09078
Freon 21 CHCl2F 102.92 451.6 51.7 0.271 0.197 138.0 282.0 242.4 247.71 0.0629 7.98175 0.07705
Freon 22 CHClF2 86.47 369.2 49.8 0.268 0.165 113.0 232.4 233.7 155.41 0.0534 16.5875 0.12938
Freon123 CHCl2CF3 152.93 456.9 36.7 0.269 0.2781 0.282 359.29 0.0897 10.0574 0.09579
Freon134a CF3CH2F 102.04 374.2 40.6 0.258 0.198 0.327 197.15 0.0664 14.8916 0.11022
Freon141 CH3CCl2F 116.95 481.5 45.4 0.286 0.252 0.215 331.12 0.0764 11.551 0.10033
Freon142b CH3CClF2 100.5 410.3 42.5 0.288 0.231 0.250 237.09 0.0695 9.63251 0.08884
Glycol–1,2 Pro-
pylene

C3H8O2 76.1 626 61 0.280 0.239 1.106 213.2 460.8 715.9 474.97 0.0739 18.7337 0.10665

Glycol–Ethylene C2H6O2 62.07 645.1 75.3 0.268 0.191 1.136 260.2 470.5 187.3 845.7 414.79 0.0617 16.1162 0.08903
Helium He 4 5.2 2.27 0.301 0.0573 –0.365 1.8 4.3 125.0 20.8 0.08 0.0165 0.03474 0.02381
Heptane–n C7H16 100.2 540.2 27.4 0.264 0.432 0.349 182 371.7 140.3 316.7 731.46 0.1420 31.0572 0.20489
Hexadecane
(cetane)

C16H34 226.4 720.6 14.19 0.220 0.93 0.747 291 559.8 235.7 232.0 2902.75 0.3658 106.711 0.52775

Hexane–n C6H14 86.18 507.4 29.7 0.260 0.37 0.299 178 341.0 151.8 337.9 577.00 0.1231 25.2783 0.17755
HFC–125 CHF2CF3 120.03 339.2 35.95 0.302 225.1 174.18 0.0680 9.3329 0.09806
HFC–32 CH2F2 52.03 351.6 58.3 0.276 222.2 117.49 0.0434 6.18348 0.06268
Hydrogen H2 2.02 33.2 13 0.307 0.0651 –0.218 14.0 20.4 58.2 448.6 1.44 0.0184 0.24725 0.02654
Hydrogen chlo-
ride

HCl 36.47 324.6 83 0.249 0.081 0.132 159.0 188.1 54.7 443.2 67.58 0.0282 3.70188 0.04064

Hydrogen sul-
fide

H2S 34.08 373.2 89.4 0.284 0.0985 187.7 213.7 69.7 554.3 88.94 0.0301 4.54307 0.04338

Iodine I2 253.8 785.15 117.5 386.5 457.5 434.25 0.0481 15.2937 0.06942
Isobutane C4H10 58.12 408.1 36.5 0.283 0.2627 0.177 260.9 78.1 368.2 272.38 0.0805 13.3059 0.1162
Isohexane C6H14 86.18 497.45 30.4 330.9 536.50 0.1179 23.738 0.17006
Isooctane C8H18 114.2 543.9 25.6 0.265 0.468 165.8 372.4 79.2 271.6 796.37 0.1530 33.6978 0.2208
Isopentane C5H12 72.15 460.4 33.8 0.270 0.306 0.227 300.9 397.63 0.0981 18.2876 0.14156
Isopropanol C3H7OH 60.1 508.3 47.64 0.248 0.2201 0.669 184.7 355.4 90.0 663.4 361.31 0.0769 15.8151 0.11088
Krypton Kr 83.8 209.4 55 0.292 0.0924 0.005 104.3 120.9 34.09 0.0274 2.32485 0.03957
Mercury Hg 200.59 1733 1077 233.8 629.0 11.4 343.03 0.0116 8.13177 0.01672
Methane CH4 16.04 190.6 46 0.288 0.0992 0.011 90.7 111.7 58.7 510.2 32.22 0.0298 2.30299 0.04306
Methanol CH3OH 32.04 512.6 81 0.224 0.118 0.556 175.5 337.8 99.2 1101.0 217.03 0.0456 9.45967 0.06577

Formulae
m3/kmol



Substance M Tc Pc zc vc w TMP TBP hsf hfg a , RK b , RK a , VW b , VW
K bar K K kJ/kg kJ/kg (bar

m6K0.5)/
kmol2

m3/kmol (bar m6)/
kmol2

m3/kmol

Methyl Chloride CH3Cl 50.49 416.3 66.8 0.268 0.1389 0.153 175.4 249.3 129.7 426.8 156.42 0.0449 7.56554 0.06477
Methylene chlo-
ride

CH2Cl2 84.93 416.3 66.8 0.372 0.193 0.192 178.1 313.0 54.2 329.8 156.42 0.0449 7.56554 0.06477

Naphthlene C10H8 128.2 748.4 40.5 0.267 0.41 353.5 491.1 44.7 337.8 1117.98 0.1331 40.3289 0.19204
Neon Ne 20.18 44.4 27.6 0.312 0.0417 –0.029 24.5 27.0 16.0 91.3 1.41 0.0116 0.20829 0.01672
Neopentane C5H12 72.17 433.8 32 0.269 0.303 0.197 253.2 282.6 361.93 0.0976 17.1488 0.14088
Nitric Oxide NO 30.01 180 65 0.252 0.058 0.588 109.5 121.4 76.7 460.5 19.76 0.0199 1.45357 0.02878
Nitrogen N2 28.02 126.2 33.9 0.289 0.0895 0.039 63.3 77.4 25.7 199.2 15.60 0.0268 1.37001 0.03869
Nitrogen diox-
ide

NO2 46.01 431.4 101.3 0.480 0.17 0.834 261.9 294.3 414.5 112.76 0.0307 5.35741 0.04426

Nirous oxide N2O 44.01 309.6 72.4 0.274 0.0974 0.165 182.3 184.7 148.7 376.2 68.84 0.0308 3.86071 0.04444
Nonane C9H20 128.3 595 22.73 0.252 0.5477 0.437 219.7 423.7 120.6 293.8 1122.66 0.1886 45.4191 0.27204
Octane–n C8H18 114.2 568.8 24.8 0.258 0.492 0.398 216.4 398.8 181.6 301.5 919.40 0.1652 38.0427 0.23836
Octene C8H16 112.24 578.15 25.84 171.5 394.2 919.13 0.1612 37.723 0.23253
Oxygen O2 32 154.6 50.5 0.288 0.0734 54.4 90.2 13.9 213.3 17.39 0.0221 1.38017 0.03182
Ozone O3 48 261 53.7 0.220 0.0889 80.5 161.3 232.9 60.56 0.0350 3.69922 0.05051
Pentane–n C5H12 72.15 469.6 33.7 0.262 0.304 0.251 143.4 309.0 1163.3 360.2 419.03 0.1004 19.0823 0.14482
Propane C3H8 44.1 369.8 42.5 0.281 0.203 0.153 85.5 231.1 79.9 426.0 182.85 0.0627 9.38315 0.09043
Propanol C3H7OH 60.1 536.7 51.7 0.253 0.2185 0.628 147.0 370.4 86.5 688.5 381.41 0.0748 16.2471 0.10789
Propylene C3H6 42.08 365 46.2 0.276 0.181 0.148 87.9 225.4 71.4 437.8 162.80 0.0569 8.40906 0.08211
Propyne C3H4 40.065 402.4 56.3 0.276 0.164 0.215 170.5 250 170.49 0.0515 8.38709 0.07428
S o d i u m  hy-
droxide

NaOH 40 2815 253.3 0.216 0.2 1.015 596.0 1830.0 165.3 4904.56 0.0800 912.238 1.1549

Styrene C8H8 104.2 647.6 39.99 0.261 0.3518 0.234 242.5 418.3 105.1 351.4 788.63 0.1166 30.582 0.1683
Sulfur dioxide SO2 64.06 430.8 78.8 0.268 0.122 0.256 290.0 263.2 115.5 385.4 144.45 0.0394 6.86798 0.05682
Sulfur trioxide SO3 80.06 490.9 82.07 0.256 0.1271 0.422 290.0 317.9 24.6 502.5 192.24 0.0431 8.5626 0.06216
Sulfuric acid H2SO4 98.08 925 40.66 0.159 0.3 197.0 610.0 109.2 510.9 1891.22 0.1639 61.3649 0.23643
Toluene C7H8 92.14 591.7 41.1 0.264 0.3158 178.2 383.8 72.0 364.7 612.31 0.1037 24.8408 0.14962
Water H2O 18.02 647.3 220.9 0.230 0.056 0.344 273.2 373.2 333.7 2258.3 142.60 0.0211 5.5312 0.03045
Xenon Xe 131.3 289.7 58.4 0.288 0.1186 0.008 133.2 72.28 0.0357 4.19071 0.05155
Xylene–p C8H10 106.2 616.3 35.11 0.260 0.3791 286.5 411.5 161.1 337.3 793.61 0.1264 31.5469 0.18242

Formulae
m3/kmol



TABLE 2: Triple Points of several substances (solid, liquid and vapor phase).

Substance T, K P, mm Hg
Acetylene 192.4 900
Ammonia 195.40 45.57
Argon 83.81 516.8
Carbon 3900 75710
Carbon dioxide 216.55 3885.1
Carbon Monoxide 68.10 115.3
Deuterium 18.63 128.0
Ethane 89.89 0.006
Ethylene 104.00 0.9
Heavy water 272.04 4.528
Helium none None
Hydrogen 13.84 52.8
Hydrogen bromide 186.29 244
Hydrogen chloride 158.96 104
Hydrogen cyanide 259.91 140.4
Hydrogen sulfide 187.66 173.9
Krypton 115.6 53
Mercury 234.28 2.3 x 10–6

Methane 90.68 87.7
Neon 24.57 324
Nitric oxide 109.50 164.4
Nitrogen 63.18 94.3
Nitrous oxide 182.34 658.9
Oxygen 54.363 1.14
Palladium 1825 0.0262
Phosphorous 139.38 27.33
Platinum 2045 1.5 X 10–4

Silicon tetrafluoride 182.9 1320
Sulfur dioxide 197.69 1.256
Sulfur hexafluoride 222.5 1700
Titanium 1941 0.0397
Uranium Hexafluoride 337.17 1137
Water 273.16 4.587
Xenon 161.3 611
Zinc 692.65 0.487

Source: NBS (US) Cir. 500 (1952) and Kestin, J., A Course in Thermodynamics, Hemisphere
Publishing Corporation, Washington, 1979.



TABLE 3: Lennard–Jones Parameters
If data are not found, use the approximate formulae: ε/kB= 0.77 Tc, 1.15 TBP, 1.9 TMP, TBP

boiling point in K, TMP melting point in K. σ (nm) = 0.841 vc
1/3 ( m3/kmol), 1.166 vb

1/3, 1.122

vm
1/3. vc, vb , vm specific volumes – respectively, critical, boiling, and melting. The first set

is from viscosity data and the second from second virial coefficient data.

Species

Ar 0.039948 93.3 0.3542 119.8 0.3405 49.80
Br 0.079916 236.6 0.3672 – – –
Br2 0.159832 507.9 0.4296 – – –
C12 0.070906 316.0 0.4217 – – –

C2H2 26.038 231.8 0.4033 – – –
C2H4 28.054 224.7 0.4163 199.2 0.4523 116.7
C2H6 30.07 230 0.4418 – – –
C2N2 52.04 339 0.438 – – –
C3H8 44.09 254 0.5061 – – –
C4H10 58.12 313 0.5341 – – –
C5H12 72.15 345 0.5769 – – –
C6H14 86.17 413 0.5909 – – –
C6H6 78.11 440 0.5270 – – –
C8H18 114.22 320 0.7451 – – –
CCl4 153.84 327 0.5881 – – –
CH 13.009 68.6 0.3370 – – –

CH2Cl2 84.94 406 0.4759 – – –
CH3Cl 50.49 855 0.3375 – – –
CH4 16.043 148.6 0.3758 148.2 0.3817 70.16

CHCl3 119.39 327 0.543 – – –
Cl 0.035453 130.8 0.3613 – – –
CN 0.026018 75.0 0.3856 – – –
CO 28.011 91.7 0.3690 100.2 0.3763 67.22
CO2 44.010 195.2 0.3941 189.0 0.4486 113.9
COS 60.08 335 0.413 – – –
CS2 76.14 488 0.4438 – – –

C6H12

 (cyclo)
84.16 324 0.6093 – – –

F 0.018999 112.6 0.2986 – – –
F2 0.037998 112.6 0.3357 – – –
H 1.008 37.0 0.2708 – – –
H2 2.016 59.7 0.2827 29.2 0.287 29.76

H2O 18.016 809.1 0.2641 – – –
HBr 0.080924 449.0 0.3353 – – –
HCI 0.036465 344.7 0.3339 – – –
HCN 0.027026 569.1 0.3630 – – –
He 0.004003 10.22 0.2551 10.22 0.2556 21.07
HF 0.020006 330.0 0.3148 – – –
I2 0.025382 550 0.4982 – – –
N 14.007 71.4 0.3298 – – –
N2 28.013 71.4 0.3798 95.05 0.3698 63.78

Molecular weight ε/kB, K σ, nm ε/kB, K σ, nm bo
*,  m3/kmol × 103

Air 28.964 78.6 0.3711 99.2 0.3522 55.11



Species Molecular weight ε/kB, K σ, nm ε/kB, K σ, nm bo
*,  m3/kmol × 103

N2O 44.016 232.4 0.3828 189.0 0.459 122.0
Ne 0.020179 32.8 0.2820 35.60 0.2749 26.21
NH 15.015 65.3 0.3312 – – –

NH3 17.031 558.3 0.2900 – – –
NO 30.008 116.7 0.3492 131.0 0.317 40.0
O 16.000 106.7 0.3050 – – –
O2 31.999 106.7 0.3467 117.5 0.358 57.75
OH 17.008 79.8 0.3147 – – –
SO2 0.06407 252 0.4290 – – –
Xe 0.01313 229 0.4055 – – –

b0 = (2/3) πσ 3 Navag
*×10–27 m3/kmol. It is suggested that the viscosity data be used exclusively

for transport coefficient calculations and that the second virial coefficient be used exclusively
for equation of state calculations.
§ Data taken from R. A. Svehla, NASA Tech. Report R–132, Lewis Research Center, Cleve-
land, Ohio (1962). Part of data and tables taken from J. 0. Hirshfelder, C. F. Curtis, and R. B.
Bird. Molecular Theory of Gases and Liquids, Wiley, New York (1954). (With permission.)



TABLE 4A: Properties of saturated water (liquid–vapor): temperature table

5 0.0008721 0.001000 147.12 20.97 2361.3 2382.3 20.98 2489.6 2510.6 0.0761 8.9496 9.0257

10 0.0012276 0.001000 106.38 42.00 2347.2 2389.2 42.01 2477.7 2519.8 0.1510 8.7498 8.9008

15 0.0017051 0.001001 77.93 62.99 2333.1 2396.1 62.99 2465.9 2528.9 0.2245 8.5569 8.7814

20 0.002339 0.001002 57.79 83.95 2319.0 2402.9 83.96 2454.1 2538.1 0.2966 8.3706 8.6672

25 0.003169 0.001003 43.36 104.88 2304.9 2409.8 104.89 2442.3 2547.2 0.3674 8.1905 8.5580

30 0.004246 0.001004 32.89 125.78 2290.8 2416.6 125.79 2430.5 2556.3 0.4369 8.0164 8.4533

35 0.005628 0.001006 25.22 146.67 2276.7 2423.4 146.68 2418.6 2565.3 0.5053 7.8478 8.3531

40 0.007384 0.001008 19.52 167.56 2262.6 2430.1 167.57 2406.7 2574.3 0.5725 7.6845 8.2570

45 0.009593 0.001010 15.26 188.44 2248.4 2436.8 188.45 2394.8 2583.2 0.6387 7.5261 8.1648

50 0.012349 0.001012 12.03 209.32 2234.2 2443.5 209.33 2382.7 2592.1 0.7038 7.3725 8.0763

55 0.015758 0.001015 9.568 230.21 2219.9 2450.1 230.23 2370.7 2600.9 0.7679 7.2234 7.9913

60 0.019940 0.001017 7.671 251.11 2205.5 2456.6 251.13 2358.5 2609.6 0.8312 7.0784 7.9096

65 0.02503 0.001020 6.197 272.02 2191.1 2463.1 272.06 2346.2 2618.3 0.8935 6.9375 7.8310

70 0.03119 0.001023 5.042 292.95 2176.6 2469.6 292.98 2333.8 2626.8 0.9549 6.8004 7.7553

75 0.03858 0.001026 4.131 313.90 2162.0 2475.9 313.93 2321.4 2635.3 1.0155 6.6669 7.6824

80 0.04739 0.001029 3.407 334.86 2147.4 2482.2 334.91 2308.8 2643.7 1.0753 6.5369 7.6122

85 0.05783 0.001033 2.828 355.84 2132.6 2488.4 355.90 2296.0 2651.9 1.1343 6.4102 7.5445

90 0.07014 0.001036 2.361 376.85 2117.7 2494.5 376.92 2283.2 2660.1 1.1925 6.2866 7.4791

95 0.08455 0.001040 1.982 397.88 2102.7 2500.6 397.96 2270.2 2668.1 1.2500 6.1659 7.4159

100 0.10135 0.001044 1.6729 418.94 2087.6 2506.5 419.04 2257.0 2676.1 1.3069 6.0480 7.3549

105 0.12082 0.001048 1.4194 440.02 2072.3 2512.4 440.15 2243.7 2683.8 1.3630 5.9328 7.2958

110 0.14327 0.001052 1.2102 461.14 2057.0 2518.1 461.30 2230.2 2691.5 1.4185 5.8202 7.2387

Specific volume,
m3/kg

Internal energy,
kJ/kg

Enthalpy,
kJ/kg

Entropy,
kJ/(kg⋅K)

Temp Sat. press. Sat. liq-
uid

Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

T,ºC Psat, MPa vf vg uf ufg ug hf hfg hg sf sfg sg

0.01 0.0006113 0.001000 206.14 0.0 2375.3 2375.3 0.01 2501.3 2501.4 0.000 9.1562 9.1562



Sat. press.

120 0.19853 0.001060 0.8919 503.50 2025.8 2529.3 503.71 2202.6 2706.3 1.5276 5.6020 7.1296

125 0.2321 0.001065 0.7706 524.74 2009.9 2534.6 524.99 2188.5 2713.5 1.5813 5.4962 7.0775

130 0.2701 0.001070 0.6685 546.02 1993.9 2539.9 546.31 2174.2 2720.5 1.6344 5.3925 7.0269

135 0.3130 0.001075 0.5822 567.35 1977.7 2545.0 567.69 2159.6 2727.3 1.6870 5.2907 6.9777

140 0.3613 0.001080 0.5089 588.74 1961.3 2550.0 589.13 2144.7 2733.9 1.7391 5.1908 6.9299

145 0.4154 0.001085 0.4463 610.18 1944.7 2554.9 610.63 2129.6 2740.3 1.7907 5.0926 6.8833

150 0.4758 0.001091 0.3928 631.68 1927.9 2559.5 632.20 2114.3 2746.5 1.8418 4.9960 6.8379

155 0.5431 0.001096 0.3468 653.24 1910.8 2564.1 653.84 2098.6 2752.4 1.8925 4.9010 6.7935

160 0.6178 0.001102 0.3071 674.87 1893.5 2568.4 675.55 2082.6 2758.1 1.9427 4.8075 6.7502

165 0.7005 0.001108 0.2727 696.56 1876.0 2572.5 697.34 2066.2 2763.5 1.9925 4.7153 6.7078

170 0.7917 0.001114 0.2428 718.33 1858.1 2576.5 719.21 2049.5 2768.7 2.0419 4.6244 6.6663

175 0.8920 0.001121 0.2168 740.17 1840.0 2580.2 741.17 2032.4 2773.6 2.0909 4.5347 6.6256

180 1.0021 0.001127 0.19405 762.09 1821.6 2583.7 763.22 2015.0 2778.2 2.1396 4.4461 6.5857

185 1.1227 0.001134 0.17409 784.10 1802.9 2587.0 785.37 1997.1 2782.4 2.1879 4.3586 6.5465

190 1.2544 0.001141 0.15654 806.19 1783.8 2590.0 807.62 1978.8 2786.4 2.2359 4.2720 6.5079

195 1.3978 0.001149 0.14105 828.37 1764.4 2592.8 829.98 1960.0 2790.0 2.2835 4.1863 6.4698

200 1.5538 0.001157 0.12736 850.65 1744.7 2595.3 852.45 1940.7 2793.2 2.3309 4.1014 6.432

205 1.7230 0.001164 0.11521 873.04 1724.5 2597.5 875.04 1921.0 2796.0 2.3780 4.0172 6.3952

210 1.9062 0.001173 0.10441 895.53 1703.9 2599.5 897.76 1900.7 2798.5 2.4248 3.9337 6.3585

215 2.104 0.001181 0.09479 918.14 1682.9 2601.1 920.62 1879.9 2800.5 2.4714 3.8507 6.3221

220 2.318 0.001190 0.08619 940.87 1661.5 2602.4 943.62 1858.5 2802.1 2.5178 3.7683 6.2861

225 2.548 0.001199 0.07849 963.73 1639.6 2603.3 966.78 1836.5 2803.3 2.5639 3.6863 6.2503

230 2.795 0.001209 0.07158 986.74 1617.2 2603.9 990.12 1813.8 2804.0 2.6099 3.6047 6.2146

Specific volume,
m3/kg

Internal energy,
kJ/kg

Enthalpy,
kJ/kg

Entropy,
kJ/(kg⋅K)

Temp Sat. liq-
uid

Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

T,ºC Psat, MPa vf vg uf ufg ug hf hfg hg sf sfg sg

115 0.16906 0.001056 1.0366 482.30 2041.4 2523.7 482.48 2216.5 2699.0 1.4734 5.7100 7.1833



ufg ug sfg

240 3.344 0.001229 0.05976 1033.21 1570.8 2604.0 1037.32 1766.5 2803.8 2.7015 3.4422 6.1437

245 3.648 0.001240 0.05471 1056.71 1546.7 2603.4 1061.23 1741.7 2803.0 2.7472 3.3612 6.1083

250 3.973 0.001251 0.05013 1080.39 1522.0 2602.4 1085.36 1716.2 2801.5 2.7927 3.2802 6.0730

Specific volume,
m3/kg

Internal energy,
kJ/kg

Enthalpy,
kJ/kg

Entropy,
kJ/(kg⋅K)

Temp Sat. press. Sat. liq-
uid

Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

T,ºC Psat, MPa vf vg uf hf hfg hg sf sg

235 3.060 0.001219 0.06537 1009.89 1594.2 2604.1 1013.62 1790.5 2804.2 2.6558 3.5233 6.1791



TABLE4A: Saturated water – temperature table (continued)

ug

260 4.688 0.001276 0.04221 1128.39 1470.6 2599.0 1134.37 1662.5 2796.9 2.8838 3.1181 6.0019

265 5.081 0.001289 0.03877 1152.74 1443.9 2596.6 1159.28 1634.4 2793.6 2.9294 3.0368 5.9662

270 5.499 0.001302 0.03564 1177.36 1416.3 2593.7 1184.51 1605.2 2789.7 2.9751 2.9551 5.9301

275 5.942 0.001317 0.03279 1202.25 1387.9 2590.2 1210.07 1574.9 2785.0 3.0208 2.8730 5.8938

280 6.412 0.001332 0.03017 1227.46 1358.7 2586.1 1235.99 1543.6 2779.6 3.0668 2.7903 5.8571

285 6.909 0.001348 0.02777 1253.00 1328.4 2581.4 1262.31 1511.0 2773.3 3.1130 2.7070 5.8199

290 7.436 0.001366 0.02557 1278.92 1297.1 2576.0 1289.07 1477.1 2766.2 3.1594 2.6227 5.7821

295 7.993 0.001384 0.02354 1305.2 1264.7 2569.9 1316.3 1441.8 2758.1 3.2062 2.5375 5.7437

300 8.581 0.001404 0.02167 1332.0. 1231.0 2563.0 1344.0 1404.9 2749.0 3.2534 2.4511 5.7045

305 9.202 0.001425 0.019948 1359.3 1195.9 2555.2 1372.4 1366.4 2738.7 3.3010 2.3633 5.6643

310 9.856 0.001447 0.018350 1387.1 1159.4 2546.4 1401.3 1326.0 2727.3 3.3493 2.2737 5.6230

315 10.547 0.001472 0.016867 1415.5 1121.1 2536.6 1431.0 1283.5 2714.5 3.3982 2.1821 5.5804

320 11.274 0.001499 0.015488 1444.6 1080.9 2525.5 1461.5 1238.6 2700.1 3.4480 2.0882 5.5362

330 12.845 0.001561 0.012996 1505.3 993.7 2498.9 1525.3 1140.6 2665.9 3.5507 1.8909 5.4417

340 14.586 0.001638 0.010797 1570.3 894.3 2464.6 1594.2 1027.9 2622.0 3.6594 1.6763 5.3357

350 16.513 0.001740 0.008813 1641.9 776.6 2418.4 1670.6 893.4 2563.9 3.7777 1.4335 5.2112

360 18.651 0.001893 0.006945 1725.2 626.3 2351.5 1760.5 720.3 2481.0 3.9147 1.1379 5.0526

370 21.03 0.002213 0.004925 1844.0 384.5 2228.5 1890.5 441.6 2332.1 4.1106 0.6865 4.7971

374.14 22.09 0.003155 0.003155 2029.6 0 2029.6 2099.3 0 2099.3 4.4298 0 4.4298

Tables A–4A to A–4 C adapted from G. J. Wylen, and R. Sonntag, Fundamentals of Classical Thermdynamics, 3rd Ed. John Wiley & Sons,
1986; originally published in J. H. Keenan and F. G. Keyes, P. G. Hill and J. G. Moore, Steam Tables, John Wiley & Sons, 1978.

TºC Psat, MPa vf vg uf ufg hf hfg hg sf sfg sg

255 4.319 0.001263 0.04598 1104.28 1596.7 2600.9 1109.73 1689.8 2799.5 2.8383 3.1992 6.0375



TABLE 4B: Properties of saturated water (liquid–vapor): pressure table

Specific volume,
m3/kg

Internal energy,
kJ/kg

Enthalpy,
kJ/kg

Entropy,
kJ/(kg⋅K)

Press. Sat.
Temp.

Sat. liquid Sat. vapor Sat.
liquid

Evap. Sat.
vapor

Sat. liq-
uid

Evap. Sat. va-
por

Sat.
liquid

Evap. Sat. va-
por

P, MPa T,ºC vf vg uf ufg ug hf hfg hg sf sfg sg

0.00061 0.01 0.001000 206.14 0.00 2375.3 2375.3 0.01 2501.3 2501.4 0.0000 9.1562 9.1562
0.0010 6.98 0.001000 129.21 29.30 2355.7 2385.0 29.30 2484.9 2514.2 0.1059 8.8697 8.9756
0.0015 13.03 0.001001 87.98 54.71 2338.6 2393.3 54.71 2470.6 2525.3 0,1957 8.6322 8.8279
0.0020 17.50 0.001001 67.00 73.48 2326.0 2399.5 73.48 2460.0 2533.5 0.2607 8.4629 8.7237
0.0025 21.08 0.001002 54.25 88.48 2315.9 2404.4 88.49 2451.6 2540.0 0.3120 8.3311 8.6432
0.0030 24.08 0.001003 45.67 101.04 2307.5 2408.5 101.05 2444.5 2545.5 0.3545 8.2231 8.5776
0.0040 28.96 0.001004 34.80 121.45 2293.7 2415.2 121.46 2432.9 2554.4 0.4226 8.0520 8.4746
0.0050 32.88 0.001005 28.19 137.81 2282.7 2420.5 137.82 2423.7 2561.5 0.4764 7.9187 8.3951
0.0075 40.29 0.001008 19.24 168.78 2261.7 2430.5 168.79 2406.0 2574.8 0.5764 7.6750 8.2515

0.010 45.84 0.001010 14.67 191.82 2246.1 2437.9 191.83 2392.8 2584.7 0.6493 7.5009 8.1502
0.015 53.97 0.001014 10.02 225.92 2222.8 2448.7 225.94 2373.1 2599.1 0.7549 7.2536 8.0085
0.020 60.06 0.001017 7.649 251.38 2205.4 2456.7 251.40 2358.3 2609.7 0.8320 7.0766 7.9085
0.025 64.97 0.001020 6.204 271.90 2191.2 2463.1 271.93 2346.3 2618.2 0.8931 6.9383 7.8314
0.030 69.10 0.001022 5.229 289.20 2179.2 2468.4 289.23 2336.1 2625.3 0.9439 6.8247 7.7686
0.040 75.87 0.001027 3.993 317.53 2159.5 2477.0 317.58 2319.2 2636.8 1.0259 6.6441 7.6700
0.050 81.33 0.001030 3.240 340.44 2143.4 2483.9 340.49 2305.4 2645.9 1.0910 6.5029 7.5939
0.075 91.78 0.001037 2.217 384.31 2112.4 2496.7 384.39 2278.6 2663.0 1.2130 6.2434 7,4564
0.100 99.63 0.001043 1.6940 417.36 2088.7 2506.1 417.46 2258.0 2675.5 1.3026 6.0568 7.3594
0.125 105.99 0.001048 1.3749 444.19 2069.3 2513.5 444.32 2241.0 2685.4 1.3740 5.9104 7.2844
0.150 111.37 0.001053 1.1593 466.94 2052.7 2519.7 467.11 2226.5 2693.6 1.4336 5.7897 7.2233
0.175 116.06 0.001057 1.0036 486.80 2038.1 2524.9 486.99 2213.6 2700.6 1.4849 5.6868 7.1717
0.200 120.23 0.001061 0.8857 504.49 2025.0 2529.5 504.70 2201.9 2706.7 1.5301 5.5970 7.1271
0.225 124.00 0.001064 0.7933 520.47 2013.1 2533.6 520.72 2191.3 2712.1 1.5706 5.5173 7.0878
0.250 127.44 0.001067 0.7187 535.10 2002.1 2537.2 535.37 2181.5 2716.9 1.6072 5.4455 7.0527
0.275 130.60 0.001070 0.6573 548.59 1991.9 2540.5 548.89 2172.4 2721.3 1.6408 5.3801 7.0209
0.300 133.55 0.001073 0.6058 561.15 1982.4 2543.6 561.47 2163.8 2725.3 1.6718 5.3201 6.9919
0.325 136.30 0.001076 0.5620 572.90 1973.5 2546.4 573.25 2155.8 2729.0 1.7006 5.2646 6.9652



Specific volume,
m3/kg

Internal energy,
kJ/kg

Enthalpy,
kJ/kg

Entropy,
kJ/(kg⋅K)

Press. Sat.
Temp.

Sat. liquid Sat. vapor Sat.
liquid

Evap. Sat.
vapor

Sat. liq-
uid

Evap. Sat. va-
por

Sat.
liquid

Evap. Sat. va-
por

P, MPa T,ºC vf vg uf ufg ug hf hfg hg sf sfg sg

0.350 138.88 0.001079 0.5243 583.95 1965.0 2548.9 584.33 2148.1 2732.4 1.7275 5.2130 6.9405
0.375 141.32 0.001081 0.4914 594.40 1956.9 2551.3 594.81 2140.8 2735.6 1.7528 5.1647 6.9175
0.40 143.63 0.001084 0.4625 604.31 1949.3 2553.6 604.74 2133.8 2738.6 1.7766 5.1193 6.8959
0.45 147.93 0.001088 0.4140 622.77 1934.9 2557.6 623.25 2120.7 2743.9 1.8207 5.0359 6.8565
0.50 151.86 0.001093 0.3749 639.68 1921.6 2561.2 640.23 2108.5 2748.7 1.8607 4.9606 6.8213
0.55 155.48 0.001097 0.3427 655.32 1909.2 2564.5 665.93 2097.0 2753.0 1.8973 4.8920 6.7893
0.60 158.85 0.001101 0.3157 669.90 1897.5 2567.4 670.56 2086.3 2756.8 1.9312 4.8288 6.7600
0.65 162.01 0.001104 0.2927 683.56 1886.5 2570.1 684.28 2076.0 2760.3 1.9627 4.7703 6.7331
0.70 164.97 0.001108 0.2729 696.44 1876.1 2572.5 697.22 2066.3 2763.5 1.9922 4.7158 6.7080
0.75 167.78 0.001112 0.2556 708.64 1866.1 2574.7 709.47 2057.0 2766.4 2.0200 4.6647 6.6847
0.80 170.43 0.001115 0.2404 720.22 1856.6 2576.8 721.11 2048.0 2769.1 2.0462 4.6166 6.6628
0.85 172.96 0.001118 0.2270 731.27 1847.4 2578.7 732.22 2039.4 2771.6 2.0710 4.5711 6.6421
0.90 175.38 0.001121 0.2150 741.83 1838.6 2580.5 742.83 2031.1 2773.9 2.0946 4.5280 6.6226
0.95 177.69 0.001124 0.2402 751.95 1830.2 2582.1 753.02 2023.1 2776.1 2.1172 4.4869 6.6041
1.00 179.91 0.001127 0.19444 761.68 1822.0 2583.6 762.81 2015.3 2778.1 2.1387 4.4478 6.5865
1.10 184.09 0.001133 0.17753 780.09 1806.3 2586.4 781.34 2000.4 2871.7 2.1792 4.3744 6.5536
1.20 187.99 0.001139 0.16333 797.29 1791.5 2588.8 798.65 1986.2 2784.8 2.2166 4.3067 6.5233
1.30 191.64 0.001144 0.15125 813.44 1777.5 2591.0 814.93 1972.7 2787.6 2.2515 4.2438 6.4953



TABLE 4C: Properties of superheated water vapor

T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

P = 0.01 MPa (45.81ºC) P = 0.05 MPa (81.33ºC) P = 0. 10 MPa (99.63ºC)
Sat. 14.674 2437.9 2584.7 8.1502 3.240 2483.9 2645.9 7.5939 1.6940 2506.1 2675.5 7.3594

50 14.869 2443.9 2592.6 8.1749
100 17.196 2515.5 2687.5 8.4479 3.418 2511.6 2682.5 7.6947 1.6958 2506.7 2676.2 7.3614
150 19.512 2587.9 2783.0 8.6882 3.889 2585.6 2780.1 7.9401 1.9364 2582.8 2776.4 7.6134
200 21.825 2661.3 2879.5 8.9038 4.356 2659.9 2877.7 8.1580 2.172 2658.1 2875.3 7.8343
250 24.136 2736.0 2977.3 9.1002 4.820 2735.0 2976.0 8.3556 2.406 2 3. 7 2974.3 8.0333
300 26.445 2812.1 3076.5 9,2813 5.284 2811.3 3075.5 8.5373 2.639 2810.4 3074.3 8.2158
400 31.063 2968.9 3279.6 9.6077 6.209 2968.5 3278.9 8.8642 3.103 2967.9 3278.2 8.5435
500 35.679 3132.3 3489.1 9.8978 7.134 3132.0 3488.7 9.1546 3.565 3131.6 3488.1 8.8342
600 40.295 3302.5 3705.4 10.1608 8.057 3302.2 3705.1 9.4178 4.028 3301.9 3704.4 9.0976
700 44.911 3479.6 3928.7 10.4028 8.981 3479.4 3928.5 9.6599 4.490 3479.2 3928.2 9.3398
800 49.526 3663.8 4159.0 10.6281 9.904 3663.6 4158.9 9.8852 4.952 3663.5 4158.6 9.5652
900 54.141 3855.0 4396.4 10.8396 10.828 3854.9 4396.3 10.0967 5.414 3854.8 4396.1 9.7767

1000 58.757 4053.0 4640.6 11.0393 11.751 4052.9 4640.5 10.2964 5.875 4052.8 4640.3 9.9764
1100 63.372 4257.5 4891.2 11.2287 12.674 4257.4 4891.1 10.4859 6.337 4257.3 4891.0 10.1659
1200 67.987 4467.9 5147.8 11.4091 13.597 4467.8 5147.7 10.6662 6.799 4467.7 5147.6 10.3463
1300 72.602 4683.7 5409.7 11.5811 14.521 4683.6 5409.6 10.8382 7.260 4683.5 5409.5 10.5183

P =0.20 MPa (120.23ºC) P = 0.30 MPa (133.55ºC) P = 0.40 MPa (143.63ºC)
Sat. 0.8857 2529.5 2706.7 7.1272 0.6058 2543.6 2725.3 6.9919 0.4625 2553.6 2738.6 6.8959
150 0.9596 2576.9 2768.8 7.2795 0.6339 2570.8 2761.0 7.0778 0.4708 2564.5 2752.8 6.9299
200 1.0803 2654.4 2870.5 7.5066 0.7163 2650.7 2865.6 7.3115 0.5342 2646.8 2860.5 7.1706
250 1.1988 2731.2 2971.0 7.7086 0.7964 2728.7 2967.6 7.5166 0.5951 2726.1 2964.2 7.3789
300 1.3162 2808.6 3071.8 7.8926 0.8753 2806.7 3069.3 7.7022 0.6548 2804.8 3066.8 7.5662
400 1.5493 2966.7 3276.6 8.2218 1.0315 2965.6 3275.0 8.0330 0.7726 2964.4 3273.4 7.8985
500 1.7814 3130.8 3487.1 8.5133 1.1867 3130.0 3486.0 8.3251 0.8893 3129.2 3484.9 8.1913
600 2.013 3301.4 3704.0 8.7770 1.3414 3300.8 3703.2 8.5892 1.0055 3300.2 3702.4 8.4558
700 2.244 3478.8 3927.6 9.0194 1.4957 3478.4 3927.1 8.8319 1.1215 3477.9 3926.5 8.6987
800 2.475 3663.1 4158.2 9.2449 1.6499 3662.9 4157.8 9.0576 1.2372 3662.4 4157.3 8.9244



T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

900 2.705 3854.5 4395.8 9.4566 1.8041 3854.2 4395.4 9.2692 1.3529 3853.9 4395.1 9.1362
1000 2.937 4052.5 4640.0 9.6563 1.9581 4052.3 4639.7 9.4690 1.4685 4052.0 4639.4 9.3360
1100 3.168 4257.0 4890.7 9.8458 2.1121 4256.8 4890.4 9.6585 1.5840 4256.5 4890.2 9.5256
1200 3.399 4467.5 5147.5 10.0262 2.2661 4467.2 5147.1 9.8389 1.6996 4467.0 5146.8 9.7060
1300 3.630 4683.2 5409.3 10.1982 2.4201 4683.0 5409.0 10.0110 1.8151 4682.8 5408.8 9.8780

P =0.50 MPa (151.86ºC) P =0.60 MPa (158.85ºC) P = 0.80 MPa (170.43ºC)
Sat. 0.3749 2561.2 2748.7 6.8213 0.3157 2567.4 2756.8 6,7600 0.2404 2576.8 2769.1 6.6628
200 0.4249 2642.9 2855.4 7.0592 0.3520 2638.9 2850.1 6.9665 0.2608 2630.6 2839.3 6.8158
250 0.4744 2723.5 2960.7 7.2709 0:3938 2720.9 2957.2 7.1816 0.2931 2715.5 2950.0 7.0384
300 0.5226 2802.9 3064.2 7.4599 0.4344 2801.0 3061.6 7.3724 0.3241 2797.2 3056.5 7.2328
350 0.5701 2882.6 3167.7 7.6329 0.4742 2881.2 3165.7 7.5464 0.3544 2878.2 3161.7 7.4089
400 0.6173 2963.2 3271.9 7.7938 0.5137 2962.1 3270.3 7.7079 0.3843 2959.7 3267.1 7.5716
500 0.7109 3128.4 3483.9 8.0873 0.5920 3127.6 3482.8 8.0021 0.4433 3126.0 3480.6 7.8673
600 0.8041 3299.6 3701.7 7.3522 0.6697 3299.1 3700.9 8.2674 0.5018 3297.9 3699.4 8.1333
700 0.8969 3477.5 3925.9 8.5952 0.7472 3477.0 3925.3 8.5107 0.5601 3476.2 3924.2 8.3770
800 0.9896 3662.1 4156.9 8.8211 0.8245 3661.8 4156.5 8.7367 0.6181 3661.1 4155.6 8.6033
900 1.0822 3853.6 4394.7 9.0329 0.9017 3853.4 4394.4 8.9486 0.6761 3852.8 4393.7 8.8153

1000 1.1747 4051.8 4639.1 9.2328 0.9788 4051.5 4638.8 9.1485 0.7340 4051.0 4638.2 9.0153
1100 1.2672 4256.3 4889.9 9.4224 1.0559 4256.1 4889.6 9.3381 0.7919 4255.6 4889.1 9.2050
1200 1.3596 4466.8 5146.6 9.6029 1.1330 4466.5 5146.3 9.5185 0.8497 4466.1 5145.9 9.3855
1300 1.4521 4682.5 5408.6 9.7749 1.2101 4682.3 5408.3 9.6906 0.9076 4681.8 5407.9 9.5575



TABLE 4C: Properties of superheated water vapor (continued)

T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

P = 1 MPa (179.91ºC) P = 1.2 MPa (187.99ºC) P = 1.4 MPa (195.07ºC)
Sat. 0.19444 2583.6 2778.1 6.5865 0.16333 2588.8 2784.8 6.5233 0.14084 2592.8 2790.0 6.4693
200 0.2060 2621.9 2827.9 6.6940 0.16930 2612.8 2815.9 6.5898 0.14302 2603.1 2803.3 6.4975
250 0.2327 2709.9 2942.6 6.9247 0.19234 2704.2 2935.0 6.8294 0.16350 2698.3 2927.2 6.7467
300 0.2579 2793.2 3051.2 7.1229 0.2138 2789.2 3045.8 7.0317 0.18228 2785.2 3040.4 6.9534
350 0.2825 2875.2 3157.7 7.3011 0.2345 2872.2 3153.6 7.2121 0.2003 2869.2 3149.5 7.1360
400 0.3066 2957.3 3263.9 7.4651 0.2548 2954.9 3260.7 7.3774 0.2178 2952.5 3257.5 7.3026
500 0.3541 3124.4 3478.5 7.7622 0.2946 3122.8 3476.3 7.6759 0.2521 3121.1 3474.1 7.6027
600 0.4011 3296.8 3697.9 8.0290 0.3339 3295.6 3696.3 7.9435 0.2860 3294.4 3694.8 7.8710
700 0.4478 3475.3 3923.1 8.2731 0.3729 3474.4 3922.0 8.1881 0.3195 3473.6 3920.8 8.1160
800 0.4943 3660.4 4154.7 8.4996 0.4118 3659.7 4153.8 8.4148 0.3528 3659.0 4153.0 8.3431
900 0,5407 3852.2 4392.9 8.7118 0.4505 3851.6 4392.2 8.6272 0.3861 3851.1 4391.5 8.5556

1000 0.5871 4050.5 4637.6 8.9119 0.4892 4050.0 4637.0 8.8274 0.4192 4049.5 4636.4 8.7559
1100 0.6335 4255.1 4888.6 9.1017 0.5278 4254.6 4888.0 9.0172 0.4524 4254.1 4887.5 8.9457
1200 0.6798 4465.6 5145.4 9.2822 0.5665 4465.1 5144.9 9.1977 0,4855 4464.7 5144.4 9.1262
1300 0.7261 4681.3 5407.4 9.4543 0.6051 4680.9 5407.0 9.3698 0.5186 4680.4 5406.5 9.2984

P = 1.6 MPa (201.41ºC) P = 1.8 MPa (207.15ºC) P = 2.0 MPa (212.42ºC)
Sat. 0.12380 2596.0 2794.0 6.4218 0.11042 2598.4 2797.1 6.3794 0.09963 2600.3 2799.5 6.3409
225 0.13287 2644.7 2857.3 6.5518 0.11673 2636.6 2846.7 6.4808 0.10377 2628.3 2835.8 6.4147
250 0.14184 2692.3 2919.2 6.6732 0.12497 2686.0 2911.0 6.6066 0.11144 2679.6 2902.5 6.5453
300 0.15862 2781.1 3034.8 6.8844 0.14021 2776.9 3029.2 6.8226 0.12547 2772.6 3023.5 6.7664
350 0.17456 2866.1 3145.4 7.0694 0.15457 2863.0 3141.2 7.0100 0.13857 2859.8 3137.0 6.9563
400 0.19005 2950.1 3254.2 7.2374 0.16847 2947.7 3250.9 7.1794 0.15120 2945.2 3247.6 7.1271
500 0.2203 3119.5 3472.0 7.5390 0.19550 3117.9 3469.8 7.4825 0.17568 3116.2 3467.6 7.4317
600 0.2500 3293.3 3693.2 7.8080 0.2220 3292.1 3691.7 7.7523 0.19960 3290.9 3690.1 7.7024
700 0.2794 3472.7 3919.7 8.0535 0.2482 3471.8 3918.5 7.9983 0.2232 3470.9 3917.4 7.9487
800 0.3086 3658.3 4152.1 8.2808 0.2742 3657.6 4151.2 8.2258 0.2467 3657.0 4150.3 8.1765
900 0.3377 3850.5 4390.8 8.4935 0.3001 3849.9 4390.1 8.4386 0.2700 3849.3 4389.4 8.3895

1000 0.3668 4049.0 4635.8 8.6938 0.3260 4048.5 4635.2 8.6391 0.2933 4048.0 4634.6 8.5901



T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

1100 0.3958 4253.7 4887.0 8.8837 0.3518 4253.2 4886.4 8.8290 0.3166 4252.7 4885.9 8.7800
1200 0.4248 4464.2 5143.9 9.0643 0.3776 4463.7 5143.4 9.0096 0.3398 4463.3 5142.9 8.9607
1300 0.4538 4679.9 5406.0 9.2364 0.4034 4679.5 5405.6 9.1818 0.3631 4679.0 5405.1 9.1329

P = 2.5 MPa (223.99ºC) P = 3.0 MPa (233.90ºC) P = 3.5 MPa (242.60ºC)
Sat. 0.07998 2603.1 2803.1 6.2575 0.06668 2604.1 2804.2 6.1869 0.05707 2603.7 2803.4 6.1253
225 0.08027 2605.6 2806.3 6.2639
250 0.08700 2662.6 2880.1 6.4085 0.07058 2644.0 2855.8 6.2872 0.05872 2623.7 2829.2 6.1749
300 0.09890 2761.6 3008.8 6.6438 0.08114 2750.1 2993.5 6.5390 0.06842 2738.0 2977.5 6.4461
350 0.10976 2851.9 3126.3 6.8403 0.09053 2843.7 3115.3 6.7428 0.07678 2835.3 3104.0 6.6579
400 0.12010 2939.1 3239.3 7.0148 0.09936 2932.8 3230.9 6.9212 0.08453 2926A 3222.3 6.8405
450 0.13014 3025.5 3350.8 7.1746 0.10787 3020.4 3344.0 7.0834 0.09196 3015.3 3337.2 7.0052
500 0.13993 3112.1 3462.1 7.3234 0.11619 3108.0 3456.5 7.2338 0.09918 3103.0 3450.9 7.1572
600 0.15930 3288.0 3686.3 7.5960 0.13243 3285.0 3682.3 7.5085 0.11324 3282.1 3678.4 7.4339
700 0.17832 3468.7 3914.5 7.8435 0.14838 3466.5 3911.7 7.7571 0.12699 3464.3 3908.8 7.6837
800 0.19716 3655.3 4148.2 8.0720 0.16414 3653.5 4145.9 7.9862 0.14056 3651.8 4143.7 7.9134
900 0.21590 3847.9 4387.6 8.2853 0.17980 3846.5 4385.9 8.1999 0.15402 3845.0 4384.1 8.1276

1000 0.2346 4046.7 4633.1 8.4861 0.19541 4045.4 4631.6 8.4009 0.16743 4044.1 4630.1 8.3288
1100 0.2532 4251.5 4884.6 8.6762 0.21098 4250.3 4883.3 8.5912 0.18080 4249.2 4881.9 8.5192
1200 0.2718 4462.1 5141.7 8.8569 0.22652 4460.9 5140.5 8.7720 0.19415 4459.8 5139.3 8.7000
1300 0.2905 4677.8 5404.0 9.0291 0.24206 4676.6 5402.8 8.9442 0.20749 4675.5 5401.7 8.8723



TABLE 4C: Properties of superheated water vapor (continued)

T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

P = 4 MPa (250.40ºC) P = 4.5 MPa (257.49ºC) P = 5.0 MPa (263.99ºC)
Sat. 0.04978 2602.3 2801.4 6.0701 0.04406 2600.1 2798.3 6.0198 0.03944 2597.1 2794.3 5.9734
275 0.05457 2667.9 2886.2 6.2285 0.04730 2650.3 2863.2 6.1401 0.04141 2631.3 2838.3 6.0544
300 0.05884 2725.3 2960.7 6.3615 0.05135 2712.0 2643.1 6.2828 0.04532 2698.0 2924.5 6.2084
350 0.06645 2826.7 3092.5 6.5821 0.05840 2817.8 3080.6 6.5131 0.05194 2808.7 3068.4 6.4493
400 0.07341 2919.9 3213.6 6.7690 0.06475 2913.3 3204.7 6.7047 0.05781 2906.6 3195.7 6.6459
450 0.08002 3010.2 3330.3 6.9363 0.07074 3005.0 3323.3 6.8746 0.06330 2999.7 3316.2 6.8186
500 0.08643 3099.5 3445.3 7.0901 0.07651 3095.3 3439.6 7.0301 0.06857 3091.0 3433.8 6.9759
600 0,09885 3279.1 3674.4 7.3688 0.08765 3276.0 3670.5 7.3110 0.07869 3273.0 3666.5 7.2589
700 0.11095 3462.1 3905.9 7.6198 0.09847 3459.9 3903.0 7.5631 0.08849 3457.6 3900.1 7.5122
800 0.12287 3650.0 4141.5 7.8502 0.10911 3648.3 4139.3 7.7942 0.09811 3646.6 4137.1 7.7440
900 0.13469 3843.6 4382.3 8.0647 0.11965 3842.2 4380.6 8.0091 0.10762 3840.7 4378.8 7.9593

1000 0.14645 4042.9 4628.7 8.2662 0.13013 4041.6 4627.2 8.2108 0.11707 4040.4 4625.7 8.1612
1100 0.15817 4248.0 4880.6 8.4567 0.14056 4246.8 4879.3 8.4015 0.12648 4245.6 4878.0 8.3520
1200 0.16987 4458.6 5138.1 8.6376 0.15098 4457.5 5136.9 8.5825 0.13587 4456.3 5135.7 8.5331
1300 0.18156 4674.3 5400.5 8.8100 0.16139 4673.1 5399.4 8.7549 0.14526 4672.0 5398.2 8.7055

P = 6 MPa (275.64ºC) P = 7 MPa (285.88ºC) P = 8 MPa (295.06ºC)
Sat. 0.03244 2589.7 2784.3 5.8892 0.02737 2580.5 2772.1 5.8133 0.02352 2569.8 2758.0 5.7432
300 0.03616 2667.2 2884.2 6.0674 0.02947 2632.2 2838.4 5.9305 0.02426 2590.9 2785.0 5.7906
350 0.04223 2789.6 3043.0 6.3335 0.03524 2769.4 3016.0 6.2283 0.02995 2747.7 2987.3 6.1301
400 0.04739 2892.9 3177.2 6.5408 0.03993 2878.6 3158.1 6.4478 0.03432 2863.8 3138.3 6.3634
450 0.05214 2988.9 3301.8 6.7193 0.04416 2978.0 3287.1 6.6327 0.03817 2966.7 3272.0 6.5551
500 0.05665 3082.2 3422.2 6.8803 0.04814 3073.4 3410.3 6.7975 0.04175 3064.3 3398.3 6.7240
550 0.06101 3174.6 3540.6 7.0288 0.05195 3167.2 3530.9 6.9486 0.04516 3159.8 3521.0 6.8778
600 0.06525 3266.9 3658.4 7.1677 0.05565 3260.7 3650.3 7.0894 0.04845 3254.4 3642.0 7.0206
700 0.07352 3453.1 3894.2 7.4234 0.06283 3448.5 3888.3 7.3476 0.05481 3443.9 3882.4 7.2812
800 0.08160 3643.1 4132.7 7.6566 0.06981 3639.5 4128.2 7.5822 0.06097 3636.0 4123.8 7.5173
900 0.08958 3837.8 4375.3 7.8727 0.07669 3835.0 4371.8 7.7991 0.06702 3832.1 4368.3 7.7351

1000 0.09749 4037.8 4622.7 8.0751 0.08350 4035.3 4619.8 8.0020 0.07301 4032.8 4616.9 7.9384



T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

1100 0.10536 4243.3 4875.4 8.2661 0.09027 4240.9 4872.8 8.1933 0.07896 4238.6 4870.3 8.1300
1200 0.11321 4454.0 5133.3 8.4474 0.09703 4451.7 5130.9 8.3747 0.08489 4449.5 5128.5 8.3115
1300 0.12106 4669.6 5396.0 8.6199 0.10377 4667.3 5393.7 8.5475 0.90980 4665.0 5391.5 8.4842

P = 9 MPa (303.40ºC) P = 10.0 MPa (311.06ºC) P = 12.5 MPa (327.89ºC)
Sat. 0.02048 2557.8 2742.1 5.6772 0.018026 2544.4 2724.7 5.6141 0.013495 2505.1 2673.8 5.4624
325 0.02327 2646.6 2856.0 5.8712 0.019861 2610.4 2809.1 5.7568
350 0.02580 2724.4 2956.6 6.0361 0.02242 2699.2 2923.4 5.9443 0.016126 2624.6 2826.2 5.7118
400 0.02993 2848.4 3117.8 6.2854 0.02641 2832.4 3096.5 6.2120 0.02000 2789.3 3039.3 6.0417
450 0.03350 2955.2 3256.6 6.4844 0.02975 2943.4 3240.9 6.4190 0.02299 2912.5 3199.8 6.2719
500 0.03677 3055.2 3386.1 6.6576 0.03279 3045.8 3373.7 6.5966 0.02560 3021.7 3341.8 6.4618
550 0.03987 3152.2 3511.0 6.8142 0.03564 3144.6 3500.9 6.7561 0.02801 3125.0 3475.2 6.6290
600 0.04285 3248.1 3633.7 6.9589 0.03837 3241.7 3625.3 6.9029 0.03029 3225.4 ~604.0' 6.7810
650 0.04574 3343.6 3755.3 7.0943 0.04101 3338.2 3748.2 7.0398 0.03248 3324.4 3730.4 6.9218
700 0.04857 3439.3 3876.5 7.2221 0.04358 3434.7 3870.5 7.1687 0.03460 3422.9 3855.3 7.0536
800 0.05409 3632.5 4119.3 7.4596 0.04859 3628.9 4114.8 7.4077 0.03869 3620.0 4103.6 7.2965
900 0.05950 3829.2 4364.8 7.6783 0.05349 3826.3 4361.2 7.6272 0.04267 3819.1 4352.5 7.5182

1000 0.06485 4030.3 4614.0 7.8821 0.05832 4027.8 4611.0 7.8315 0.04658 4021.6 4603.8 7.7237
1100 0.07016 4236.3 4867.7 8.0740 0.06312 4234.0 4865.1 8.0237 0.05045 4228.2 4858.8 7.9165
1200 0.07544 4447.2 5126.2 8.2556 0.06789 4444.9 5123.8 8.2055 0.05430 4439.3 5118.0 8.0937
1300 0.08072 4662.7 5389.2 8.4284 0.07265 4460.5 5387.0 8.3783 0.05813 4654.8 5381.4 8.2717



TABLE 4C: Properties of superheated water vapor (continued)

T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

P = 15 MPa (342.24ºC) P = 17.5 MPa (354.75ºC) P = 20.0 MPa (365.81ºC)
Sat. 0.010337 2455.5 2610.5 5.3098 0.007920 2390.2 2528.8 5.1419 0.005834 2293.0 2409.7 4.9269
350 0.011470 2520.4 2692.4 5.4421
400 0.015649 2740.7 2975.5 5.8811 0.012447 2685.0 2902.9 5.7213 0.009942 2619.3 2818.1 5.5540
450 0.018445 2879.5 3156.2 6.1404 0.015174 2844.2 3109.7 6.0184 0.012695 2806.2 3060.1 5.9017
500 0.02080 2996.6 3308.fi 6.3443 0.017358 2970.3 3274.1 6.2383 0.014768 2942.9 3238.2 6.1401
550 0.02293 3104.7 3448.6 6.5199 0.019288 3083.9 3421.4 6.4230 0.016555 3062.4 3393.5 6.3348
600 0.02491 3208.6 3582.3 6.6776 0.02106 3191.5 3560.1 6.5866 0.018178 3174.0 3537.6 6.5048
650 0.02680 3310.3 3712.3 6.8224 0.02274 3296.0 3693.9 6.7357 0.019693 3281.4 3675.3 6.6582
700 0.02861 3410.9 3840.1 6.9572 0.02434 3398.7 3824.6 6.8736 0.02113 3386.4 3809.0 6.7993
800 0.03210 3610.9 4092.4 7.2040 0.02738 3601.8 4081.1 7.1244 0.02385 3592.7 4069.7 7.0544
900 0.03546 3811.9 4343.8 7.4279 0.03031 3804.7 4335.1 7.3507 0.02645 3797.5 4326.4 7.2830

1000 0.03875 4015.4 4596.6 7.6348 0.03316 4009.3 4589.5 7.5589 0.02897 4003.1 4582.5 7.4925
1100 0.04200 4222.6 4852.6 7.8283 0.03597 4216.9 4846.4 7.7531 0.03145 4211.3 4840.2 7.6874
1200 0.04523 4433.8 5112.3 8.0108 0.03876 4428.3 5106.6 7.9360 0.03391 4422.8 5101.0 7.8707
1300 0.04845 4649.1 5376.0 8.1840 0.04154 4643.5 5370.5 8.1093 0.03636 4638.0 5365.1 8.0442

P = 25 MPa P = 30 MPa P = 35 MPa
375 0.0019731 1798.7 1848.0 4.0320 0.0017892 1737.8 1791.5 3.9305 0.0017003 1702.9 1762.4 3.8722
400 0.006004 2430.1 2580.2 5.1418 0.002790 2067.4 2151.1 4.4728 0.002100 1914.1 1987.6 4.2126
425 0.007881 2609.2 2806.3 5.4723 0.005303 2455.1 2614.2 5.1504 0.003428 2253.4 2373.4 4.7747
450 0.009162 2720.7 2949.7 5.6744 0.006735 2619.3 2821.4 5.4424 0.004961 2498.7 2672.4 5.1962
500 0.011123 2884.3 3162.4 5.9592 0.008678 2820.7 3081.1 5.7905 0.006927 2751.9 2994.4 5.6282
550 0.012724 3017.5 3335.6 6.1765 0.010168 2970.3 3275.4 6.0342 0.008345 2921.0 3213.0 5.9026
600 0.014137 3137.9 3491.4 6.3602 0.011446 3100.5 3443.9 6.2331 0.009527 3062.0 3395.5 6.1179
650 0.015433 3251.6 3637.4 6.5229 0.012596 3221.0 3598.9 6.4058 0.010575 3189.8 3559.9 6.3010
700 0.016646 3361.3 3777.5 6.6707 0.013661 3335.8 3745.6 6.5606 0.011533 3309.8 3713.5 6.4631
800 0.018912 3574.3 4047.1 6.9345 0.015623 3555.5 4024.2 6.8332 0.013278 3536.7 4001.5 6.7450
900 0.021045 3783.0 4309.1 7.1680 0,017448 3768.5 4291.9 7.0718 0.014883 3754.0 4274.9 6.9386

1000 0.02310 3990.9 4568.5 7.3802 0.019196 3978.8 4554.7 7.2867 0.016410 3966.7 4541.1 7.2064



1100 0.02512 4200.2 4828.2 7.5765 0.020903 4189.2 4816.3 7.4845 0.017895 4178.3 4804.6 7.4037
1200 0.02711 4412.0 5089.9 7.7605 0.022589 4401.3 5079.0 7.6692 0.019360 4390.7 5068.3 7.5910
1300 0.02910 4626.9 5354.4 7.9342 0.024266 4616.0 5344.0 7.8432 0.020815 4605.1 5333.6 7.7653

P = 40 MPa P = 50 MPa P = 60 MPa
375 0.0016407 1677.1 1742.8 3.8290 0.0015594 1638.6 1716.6 3.7639 0.0015028 1609.4 1699.5 3.7141
400 0.0019077 1854.6 1930.9 4.1135 0.0017309 1788.1 1874.6 4.0031 0.0016335 1745.4 1843.4 3.9318
425 0.002532 2096.9 2198.1 4.5029 0.002007 1959.7 2060.0 4.2734 0.0018165 1892.7 2001.7 4.1626
450 0.003693 2365.1 2512.8 4.9459 0.002486 2159.6 2284.0 4.5884 0.002085 2053.9 2179.0 4.4121
500 0.005622 2678.4 2903.3 5.4700 0.003892 2525.5 2720.1 5.1726 0.002956 2390.6 2567.9 4.9321
550 0.006984 2869.7 3149.1 5.7785 0.005118 2763.6 3019.5 5.5485 0.003956 2658.8 2896.2 5.3441
600 0.008094 3022.6 3346.4 6.0144 0.006112 2942.0 3247.6 5.8178 0.004834 2861.1 3151.2 5.6452
650 0.009063 3158.0, 3520.6 6.2054 0.006966 3093.5 3441.8 6.0342 0.005595 3028.8 3364.5 5.8829
700 0.009941 3283.6  3681.2 6.3750 0.007727 3230.5 3616.8 6.2189 0.006272 3177.2 3553.5 6.0824
800 0.011523 3517.8 3978.7 6.6662 0.009076 3479.8 3933.6 6.5290 0.007459 3441.5 3889.1 6.4109
900 0.012962 3739.4 4257.9 6.9150 0.010283 3710.3 4224.4 6.7882 0.008508 3681.0 4191.5 6.6805

1000 0.014324 3954.6 4527.6 7.1356 0.011411 3930.5 4501.1 7.0146 0.009480 3906.4 4475.2 6.9127
1100 0.015642 4167.4 4793.1 7.3364 0.012496 4145.7 4770.5 7.2184 0.010409 4124.1 4748.6 7.1195
1200 0.016940 4380.1 5057.7 7.5224 0.013561 4359.1 5037.2 7.4058 0.011317 4338.2 5017.2 7.3083
1300 0.018229 4594.3 5323.5 7.6969 0.014616 4572.8 5303.6 7.5808 0.012215 4551.4 5284.3 7.4837



TABLE 5A: Properties of saturated refrigerant 134a (liquid–vapor): temperature table

Specific volume,
m3/kg

Internal energy,
kJ/kg

Enthalpy,
kJ/kg

Entropy,
kJ/(kg⋅K)

Temp. Sat.
press.

Sat. liquid Sat. va-
por

Sat. liquid Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

Sat. liq-
uid

Sat.
vapor

T,ºC Psat,, MPa vf vg uf ug hf hfg hg sf sg

–40 0.05164 0.0007055 0.3569 –0.04 204.45 0.00 222.88 222.88 0.0000 0.9560
– 36 0.06332 0.0007113 0.2947 4.68 206.73 4.73 220.67 225.40 0.0201 0.9506
–32 0.07704 0.0007172 0.2451 9.47 209.01 9.52 218.37 227.90 0.0401 0.9456
–28 0.09305 0.0007233 0.2052 14.31 211.29 14.37 216.01 230.38 0.0600 0.9411
–26 0.10199 0.0007265 0.1882 16.75 212.43 16.82 214.80 231.62 0.0699 0.9390
–24 0.11160 0.0007296 0.1728 19.21 213.57 19.29 213.57 232.85 0.0798 0.9370
–22 0.12192 0.0007328 0.1590 21.68 214.70 21.77 212.32 234.08 0.0897 0.9351
–20 0.13299 0.0007361 0.1464 24.17 215.84 24.26 211.05 235.31 0.0996 0.9332
– 18 0.14483 0.0007395 0.1350 26.67 216.97 26.77 209.76 236.53 0.1094 0.9315
–16 0.15748 0.0007428 0.1247 29.18 218.10 29.30 208.45 237.74 0.1192 0.9298
–12 0.18540 0.0007498 0.1068 34.25 220.36 34.39 205.77 240.15 0.1388 0.9267

–8 0.21704 0.0007569 0.0919 39.38 222.60 39.54 203.00 242.54 0.1583 0.9239
–4 0.25274 0.0007644 0.0794 44.56 224.84 44.75 200.15 244.90 0.1777 0.9213
0 0.29282 0.0007721 0.0689 49.79 227.06 50.02 197.21 247.23 0.1970 0.9190
4 0.33765 0.0007801 0.0600 55.08 229.27 55.35 194.19 249.53 0.2162 0.9169
8 0.38756 0.0007884 0.0525 60.43 231.46 60.73 191.07 251.80 0.2354 0.9150

12 0.44294 0.0007971 0.0460 65.83 233.63 66.18 187.85 254.03 0.2545 0.9132
16 0.50416 0.0008062 0.0405 71.29 235.78 71.69 184.52 256.22 0.2735 0.9116
20 0.57160 0.0008157 0.0358 76.80 237.91 77.26 181.09 258.35 0.2924 0.9102
24 0.64566 0.0008257 0.0317 82.37 240.01 82.90 177.55 260.45 0.3113 0.9089
26 0.68530 0.0008309 0.0298 85.18 241.05 85.75 175.73 261.48 0.3208 0.9082
28 0.72675 0.0008362 0.0281 88.00 242.08 88.61 173.89 262.50 0.3302 0.9076
30 0.77006 0.0008417 0.0265 90.84 243.10 91.49 172.00 263.50 0.3396 0.9070
32 0.81528 0.0008473 0.0250 93.70 244.12 94.39 170.09 264.48 0.3490 0.9064
34 0.86247 0.0008530 0.0236 96.58 245.12 97.31 168.14 265.45 0.3584 0.9058
36 0.91168 0.0008590 0.0223 99.47 246.11 100.25 166.15 266.40 0.3678 0.9053
38 0.96298 0.0008651 0.0210 102.38 247.09 103.21 164.12 267.33 0.3772 0.9047



Specific volume,
m3/kg

Internal energy,
kJ/kg

Enthalpy,
kJ/kg

Entropy,
kJ/(kg⋅K)

Temp. Sat.
press.

Sat. liquid Sat. va-
por

Sat. liquid Sat.
vapor

Sat.
liquid

Evap. Sat.
vapor

Sat. liq-
uid

Sat.
vapor

T,ºC Psat,, MPa vf vg uf ug hf hfg hg sf sg

40 1.0164 0.0008714 0.0199 105.30 248.06 106.19 162.05 268.24 0.3866 0.9041
42 1.0720 0.0008780 0.0188 108.25 249.02 109.19 159.94 269.14 0.3960 0.9035
44 1.1299 0.0008847 0.0177 111.22 249.96 112.22 157.79 270.01 0.4054 0.9030
48 1.2526 0.0008989 0.0159 117.22 251.79 118.35 153.33 271.68 0.4243 0.9017
52 1.3851 0.0009142 0.0142 123.31 253.55 124.58 148.66 273.24 0.4432 0.9004
56 1.5278 0.0009308 0.0127 129.51 255.23 130.93 143.75 274.68 0.4622 0.8990
60 1.6813 0.0009488 0.0114 135.82 256.81 137.42 138.57 275.99 0.4814 0.8973
70 2.1162 0.0010027 0.0086 152.22 260.15 154.34 124.08 278.43 0.5302 0.8918
80 2.6324 0.0010766 0.0064 169.88 262.14 172.71 106.41 279.12 0.5814 0.8827
90 3.2435 0.0011949 0.0046 189.82 261.34 193.69 82.63 276.32 0.6380 0.8655

100 3.9742 0.0015443 0.0027 218.60 248.49 224.74 34.40 259.13 0.7196 0.8117

Tables A–5A to A–5 C adapted from M. J. Moran, and H.N. Shapiro, Fundamentals of Engineering Thermodynamics, 2nd Ed. John Wiley
& Sons, 1992; originally based on equations from D.P. Wilson, and R.S. Basu, ASHRAE Transactions, 94, Pt 2., 1988, pp. 2095–2118.
(With permission.)



TABLE 5B: Properties of saturated refrigerant 134a (liquid–vapor): pressure table

Specific volume,
m3/kg

Internal energy,
kJ/kg

Enthalpy,
kJ/kg

Entropy,
kJ/(kg⋅K)

Press. Sat.
Temp.

Sat. liquid Sat. vapor Sat. liquid Sat. vapor Sat. liq-
uid

Evap. Sat. va-
por

Sat. liquid Sat. vapor

MPa T,ºC vf vg uf ug hf hfg hg sf sg

0.06 –37.07 0.0007097 0.3100 3.41 206.12 3.46 221.27 224.72 0.0147 0.9520
0.08 –31.21 0.0007184 0.2366 10.41 209.46 10.47 217.92 228.39 0.0440 0.9447

0.10 –26.43 0.0007258 0.1917 16.22 212.18 16.29 215.06 231.35 0.0678 0.9395

0.12 –22.36 0.0007323 0.1614 21.23 214.50 21.32 212.54 233.86 0.0879 0.9354

0.14 –18.80 0.0007381 0.1395 25.66 216–52 25.77 210.27 236.04 0.1055 0.9322

0.16 –15.62 0.0007435 0.1229 29.66 218.32 29.78 208.18 237.97 0.1211 0.9295

0.18 –12.73 0.0007485 0.1098 33.31 219.94 33.45 206.26 239.71 0.1352 0.9273

0.20 –10.09 0.0007532 0.0993 36.69 221.43 36.84 204.46 241.30 0.1481 0.9253

0.24 –5.37 0.0007618 0.0834 42.77 224.07 42.95 201.14 244.09 0.1710 0.9222

0.28 –1.23 0.0007697 0.0719 48.18 226.38 48.39 198.13 246.52 0.1911 0.9197

0.32 2.48 0.0007770 0.0632 53.06 228.43 53.31 195.35 248.66 0.2089 0.9177

0.36 5.84 0.0007839 0.0564 57.54 230.28 57.82 192.76 250.58 0.2251 0.9160

0.4 8.93 0.0007904 0.0509 61.69 231.97 62.00 190.32 252.32 0.2399 0.9145

0.5 15.74 0.0008056 0.0409 70.93 235.64 71.33 184.74 256.07 0.2723 0.9117

0.6 21.58 0.0008196 0.0341 78.99 238.74 79.48 179.71 259.19 0.2999 0.9097

0.7 26.72 0.0008328 0.0292 86.19 241.42 86.78 175.07 261.85 0.3242 0.9080

0.8 31.33 0.0008454 0.0255 92.75 243.78 93.42 170.73 264.15 0.3459 0.9066

0.9 35.53 0.0008576 0.0226 98.79 245.88 99.56 166.62 266.18 0.3656 0.9054

1.0 39.39 0.0008695 0.0202 104.42 247.77 105.29 162.68 267.97 0.3838 0.9043

1.2 46.32 0.0008928 0.0166 114.69 251.03 115.76 155.23 270.99 0.4164 0.9023

1.4 52.43 0.0009159 0.0140 123.98 253.74 125.26 148.14 273.40 0.4453 0.9003

1.6 57.92 0.0009392 0.0121 132.52 256.00 134.02 141.31 275.33 0.4714 0.8982

1.8 62.91 0.0009631 0.0105 140.49 257.88 142.22 134.60 276.83 0.4954 0.8959

2.0 67.49 0.0009878 0.0093 148.02 259.41 149.99 127.95 277.94 0.5178 0.8934



Specific volume,
m3/kg

Internal energy,
kJ/kg

Enthalpy,
kJ/kg

Entropy,
kJ/(kg⋅K)

Press. Sat.
Temp.

Sat. liquid Sat. vapor Sat. liquid Sat. vapor Sat. liq-
uid

Evap. Sat. va-
por

Sat. liquid Sat. vapor

MPa T,ºC vf vg uf ug hf hfg hg sf sg

2.5 77.59 0.0010562 0.0069 165.48 261.84 168.12 111.06 279.17 0.5687 0.8854

3.0 86.22 0.0011416 0.0053 181.88 262.16 185.30 92.71 278.01 0.6156 0.8735



TABLE 5C: Properties of superheated refrigerant 134a vapor

T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

P = 0.06 MPa (–37.07ºC) P = 0.1 MPa (–26.43ºC) P = 0.14 MPa (–18.80ºC)
Sat. 0.31003 206.12 224.72 0.9520 0.19170 212.18 231.35 0.9395 0.13945 216.52 236.04 0.9322
–20 0.33536 217.86 237.98 1.0062 0.19770 216.77 236.54 0.9602
–10 0.34992 224.97 245.96 1.0371 0.20686 224.01 244.70 0.9918 0.14549 223.03 243.40 0.9606

0 0.36433 232.24 254.10 1.0675 0.21587 231.41 252.99 1.0227 0.15219 230.55 251.86 0.9922
10 0.37861 239.69 262.41 1.0973 0.22473 238.96 261.43 1.0531 0.15875 238.21 260.43 1.0230
20 0.39279 247.32 270.89 1.1267 0.23349 246.67 270.02 1.0829 0.16520 246.01 269.13 1.0532
30 0.40688 255.12 279.53 1.1557 0.24216 254.54 278.76 1.1122 0.17155 253.96 277.97 1.0828
40 0.42091 263.10 288.35 1.1844 0.25076 262.58 287.66 1.1411 0.17783 262.06 286.96 1.1120
50 0.43487 271.25 297.34 1.2126 0.25930 270.79 296.72 1.1696 0.18404 270.32 296.09 1.1407
60 0.44879 279.58 306.51 1.2405 0.26779 279.16 305.94 1.1977 0.19020 278.74 305.37 1.1690
70 0.46266 288.08 315.84 1.2681 0.27623 287.70 315.32 1.2254 0.19633 287.32 314.80 1.1969
80 0.47650 296.75 325.34 1.2954 0.28464 296.40 324.87 1.2528 0.20241 296.06 324.39 1.2244
90 0.49031 305.58 335.00 1.3224 0.29302 305.27 334.57 1.2799 0.20846 304.95 334.14 1.2516

100 0.21449 314.01 344.04 1.2785

P = 0.18 MPa (–12.73ºC) P = 0.20 MPa (–10.09ºC) P = 0.24 MPa (–5.37ºC)
Sat. 0.10983 219.94 239.71 0.9273 0.09933 221.43 241.30 0.9253 0.08343 224.07 244.09 0.9222
–10 0.11135 222.02 242.06 0.9362 0.09938 221.50 241.38 0.9256

0 0.11678 229.67 250.69 0.9684 0.10438 229.23 250.10 0.9582 0.08574 228.31 248.89 0.9399
10 0.12207 237.44 259.41 0.9998 0.10922 237.05 258.89 0.9898 0.08993 236.26 257.84 0.9721
20 0.12723 245.33 268.23 1.0304 0.11394 244.99 267.78 1.0206 0.09339 244.30 266.85 1.0034
30 0.13230 253.36 277.17 1.0604 0.11856 253.06 276.77 1.0508 0.09794 252.45 275.95 1.0339
40 0.13730 261.53 286.24 1.0898 0.12311 261.26 285.88 1.0804 0.10181 260.72 285.16 1.0637
50 0.14222 269.85 295.45 1.1187 0.12758 269.61 295.12 1.1094 0.10562 269.12 294.47 1.0930
60 0.14710 278.31 304.79 1.1472 0.13201 278.10 304.50 1.1380 0.10937 277.67 303.91 1.1218
70 0.15193 286.93 314.28 1.1753 0.13639 286.74 314.02 1.1661 0.11307 286.35 313.49 1.1501
80 0.15672 295.71 323.92 1.2030 0.14073 295.53 323.68 1.1939 0.11674 295.18 323.19 1.1780
90 0.16148 304.63 333.70 1.2303 0.14504 304.47 333.48 1.2212 0.12037 304.15 333.04 1.2055



T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

100 0.16622 313.72 343.63 1.2573 0.14932 313.57 343.43 1.2483 0.12398 313.27 343.03 1.2326

P = 0.28 MPa (–1.23ºC) P = 0.32 MPa (2.48ºC) P = 0.40 MPa (8.93ºC)
Sat. 0.07193 226.38 246.52 0.9197 0.06322 228.43 248.66 0.9177 0.05089 231.97 252.32 0.9145

0 0.07240 227.37 247.64 0.9238
10 0.07613 235.44 256.76 0.9566 0.06576 234.61 255.65 0.9427 0.05119 232.87 253.35 0.9182
20 0.07972 243.59 265.91 0.9883 0.06901 242.87 264.95 0.9749 0.05397 241.37 262.96 0.9515
30 0.08320 251.83 275.12 1.0192 0.07214 251.19 274.28 1.0062 0.05662 249.89 272.54 0.9837
40 0.08660 260.17 284.42 1.0494 0.07518 259.61 283.67 1.0367 0.05917 258.47 282.14 1.0148
50 008992 268.64 293.81 1.0789 0.07815 268.14 293.15 1.0665 0.06164 267.13 291.79 1.0452
60 0.09319 277.23 303.32 1.1079 0.08106 276.79 302.72 1.0957 0.06405 275.89 301.51 1.0748
70 0.09641 285.96 312.95 1.1364 0.08392 285.56 312.41 1.1243 0.06641 284.75 311.32 1.1038
80 0.09960 294.82 322.71 1.1644 0.08674 294.46 322.22 1.1525 0.06873 293.73 321.23 1.1322
90 0.10275 303.83 332.60 1.1920 0.08953 303.50 332.15 1.1802 0.07102 302.84 331.25 1.1602

100 0.10587 312.98 342.62 1.2193 0.09229 312.68 342.21 1.1076 0.07327 312.07 341.38 1.1878
110 0.10897 322.27 352.78 1.2461 0.09503 322.00 352.40 1.2345 0.07550 321.44 351.64 1.2149
120 0.11205 331.71 363.08 1.2727 0.09774 331.45 362.73 1.2611 0.07771 330.94 362.03 1.2417
130 0.07991 340.58 372.54 1.2681
140 0.08208 350.35 383.18 1.2941



TABLE 5C: Properties of superheated refrigerant 134a vapor (continued)

T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

P = 0.5 MPa ( 15.4ºC) P = 0.6 MPa ( 21.58ºC) P = 0.7 MPa (26.72ºC)
Sat. 0.04086 253.64 256.07 0.9117 0.03408 238.74 259.19 0.9097 0.02918 241.42 261.85 0.9080

20 0.04188 239.40 260.34 0.9264
30 0.04416 248.20 270.28 0.9597 0.03581 246.41 267.89 0.9388 0.02979 244.51 265.37 0.9197
40 0.04633 256.99 280.16 0.9918 0.03774 255.45 278.09 0.9719 0.03157 253.83 275.93 0.9539
50 0.04842 265.83 290.04 1.0229 0.03958 264.48 288.23 1.0037 0.03324 263.08 286.35 0.9867
60 0.05043 274.73 299.95 1.0531 0.04134 273.54 298.35 1.0346 0.03482 272.31 296.69 1.0182
70 0.05240 283.72 309.92 1.0825 0.04304 282.66 308.48 1.0645 0.03634 281.57 307.01 1.0487
80 0.05432 292.80 319.96 1.1114 0.04469 291.86 318.67 1.0938 0.03781 290.88 317.35 1.0784
90 0.05620 302.00 330.10 1.1397 0.04631 301.14 328.93 1.1225 0.03924 300.27 327.74 1.1074

100 0.05805 311.31 340.33 1.1675 0.04790 310.53 339.27 1.1505 0.04064 309.74 338.19 1.1358
110 0.05988 320.74 350.68 1.1949 0.04946 320.03 349.70 1.1781 0.04201 319.31 348.71 1.1637
120 0.06168 330.30 361.14 1.2218 0.05099 329.64 360.24 1.2053 0.04335 328.98 359.33 1.1910
130 0.06347 339.98 371.72 1.2484 0.05251 339.38 370.88 1.2320 0.04468 338.76 370.04 1.2179
140 0.06524 349.79 382.42 1.2746 0.05402 349.23 381.64 1.2584 0.04599 348.66 380.86 1,2444
150 0.05550 359.21 392.52 1.2844 0.04729 358.68 391.79 1.2706
160 0.05698 369.32 403.51 1.3100 0.04857 368.82 402.82 1.2963

P = 0.8 MPa ( 31.33ºC) P = 0.90 MPa ( 35.53ºC) P = 1.00 MPa ( 39.39ºC)
Sat. 0.02547 243.78 264.15 0.9066 0.02255 245.88 266.18 0.9054 0.02020 247.77 267.97 0.9043

40 0.02691 252.13 273.66 0.9374 0.02325 250.32 271.25 0.9217 0.02029 248.39 268.68 0.9066
50 0.02846 261.62 284.39 0.9711 0.02472 260.09 282.34 0.9566 0.02171 258.48 280.19 0.9428
60 0.02992 27 1 .04 294.98 1.0034 0.02609 269.72 293.21 0.9897 0.0230 1 268.35 291.36 0.9768
70 0.03131 280.45 305.50 1.0345 0.02738 279.30 303.94 1.0214 0.02423 278.11 302.34 1.0093
80 0.03264 289.89 316.00 1.0647 0.02861 288.87 314.62 1.0521 0.02538 287.82 313.20 1.0405
90 0.03393 299.37 326.52 1.0940 0.02980 298.46 325.28 1.0819 0.02649 297.53 324.01 1.0707

100 0.03519 308.93 337.08 1.1227 0.03095 308.11 335.96 1.1109 0.02755 307.27 334.82 1.1000
110 0.03642 318.57 347.71 1.1508 0.03207 317.82 346.68 1.1392 0.02858 317.06 345.65 1.1286
120 0.03762 328.31 358.40 1.1784 0.03316 327.62 357.47 1.1670 0.02959 326.93 356.52 1.1567



T v u h s v u h s v u h s
oC m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K) m3/kg kJ/kg kJ/kg kJ/(kg⋅K)

130 0.03881 338.14 369.19 1.2055 0.03423 337.52 368.33 1.1943 0.03058 336.88 367.46 1.1841
140 0.03997 348.09 380.07 1.2321 0.03529 347.51 379.27 1.2211 0.03154 346.92 378.46 1.2111
150 0.04113 358.15 391.05 1.2584 0.03633 357.61 390.31 1.2475 0.03250 357.06 389.56 1.2376
160 0.04227 368.32 402.14 1.2843 0.03736 367.82 401.44 1.2735 0.03344 367.31 400.74 1.2638
170 0.04340 378.61 413.33 1.3098 0.03838 378.14 412.68 1.2992 0.03436 377.66 412.02 1.2895
180 0.04452 389.02 424.63 1.3351 0.03939 388.57 424.02 1.3245 0.03528 388.12 423.40 1.3149

P = 1.2 MPa ( 46.32ºC) P = 1.40 MPa ( 52.43ºC) P = 1.60 MPa ( 57.92ºC)
Sat. 0.01663 251.03 270.99 0.9023 0.01405 253.74 273.40 0.9003 0.01208 256.00 275.33 0.8982

50 0.01712 254.98 275.52 0.9164
60 0.01835 265.42 287.44 0.9527 0.01495 262.17 283.10 0.9297 0.01233 258.48 278.20 0.9069
70 0.01947 275.59 298.96 0.9868 0.01603 272.87 295.31 0.9658 0.01340 269.89 291.33 0.9457
80 0.02051 285.62 310.24 1.0192 0.01701 283.29 307.10 0.9997 0.01435 280.78 303.74 0.9813
90 0.02150 295.59 321.39 1.0503 0.01792 293.55 318.63 1.0319 0.01521 291.39 315.72 1.0148

100 0.02244 305.54 332.47 1.0804 0.01878 303.73 330.02 1.0628 0.01601 301.84 327.46 1.0467
110 0.02335 315.50 343.52 1.1096 0.01960 313.88 341.32 1.0927 0.01677 312.20 339.04 1.0773
120 0.02423 325.51 354.58 1.1381 0.02039 324.05 352.59 1.1218 0.01750 322.53 350.53 1.1069
1 30 0.02508 335.58 365.68 1.1 660 0.02115 334.25 363.86 1.1501 0.01820 332.87 361.99 1.1357
140 0.02592 345.73 376.83 1.1933 0.02189 344.50 375.15 1.1 777 0.0 1 887 343.24 373.44 1.1 638
150 0.02674 355.95 388.04 1.2201 0.02262 354.82 386.49 1.2048 0.01953 353.66 384.91 1.1912
160 0.02754 366.27 399.33 1.2465 0.02333 365.22 397.89 1.2315 0.02017 364.15 396.43 1.2181
170 0.02834 376.69 410.70 1.2724 0.02403 375.71 409.36 1.2576 0.02080 374.71 407.99 1.2445
180 0.02912 387.21 422.16 1.2980 0.02472 386.29 420.90 1.2834 0.02142 385.35 419.62 1.2704
190 0.02541 396.96 432.53 1.3088 0.02203 396.08 431.33 1.2960
200 0.02608 407.73 444.24 1.3338 0.02263 406.90 443.11 1.3212



TABLE 6A: Properties of some solids at 25ºC TABLE 6B: Properties of some liquids
at 25ºC

SOLIDS LIQUIDS

Substance
ρ

kg/m3
cP

kJ/kg K
Substance

ρ
kg/ m3

cP

kJ/kg K

Asphalt 2120 0.92 Ammonia 604 4.84
Brick, common 1800 0.84 Benzene 879 1.72
Carbon, diamond 3250 0.51 Butane 556 2.47
Carbon, graphite 2000–2500 0.61 CCL, 1584 0.83
Coal 1200–1500 1.26 C02 680 2.9
Concrete 2200 0.88 Ethanol 783 2.46
Glass, plate 2500 0.80 Gasoline 750 2.08
Glass, wool 200 0.66 Glycerin 1260 2.42
Granite 2750 0.89 Kerosene 815 2.0
Ice (0 C) 917 2.04 1 Methanol 787 2.55
Paper 700 1.2 n–octane 692 2.23
Plexiglas 1180 1.44 Oil engine 885 1.9
Polystyrene 920 2.3 Oil light 910 1.8
Polyvinyl chloride 1380 0.96 Propane 510 2.54
Rubber, soft 1100 1.67 R–12 1310 0.97
Salt, rock 2100–2500 0.92 R–22 1190 1.26
Sand, dry 1500 0.8 R–134a 1206 1.43
Silicon 2330 0.70 Water 997 4.18
Snow, firm 560 21 Liquid metals
Wood, hard (oak) 720 1.26 Bismuth, Bi 10040 0.14
Wood, soft (pine) 510 1.38 Lead, Pb 10660 0.16
Wool 100 1.72 Mercury, Hg 13580 0.14

Metals Potassium, K 828 0.81
Aluminum 2700 0.90 Sodium, Na 929 1.38
Brass, 60–40 8400 0.38 Tin, Sn 6950 0.24
Copper, commercial 8300 0.42 NaK (56/44) 887 1.13
Gold 19300 0.13 Zinc, Zn 6570 0.50
Iron, cast 7272 0.42
Iron. 304 St Steel 7820 0.46
Lead 11310 0.128

Tables 6A to 6C adapted from R. Sonntag, C. Borgnakke and G. J. Wylen, Fundamentals of
Classical Thermodynamics, 5th Ed. John Wiley & Sons, 1998. (With permission.)



TABLE 6C: Properties of various ideal gases at 25ºC, 100 kPa

Gas
Chemical
Formula

Molecular
Mass

R
kJ/kg K

ρ
kg/m3

cp0

kJ/kg K
cv0

kJ/kg K
k

Acetylene C2H2 26.038 0.3193 1.05 1.699 1.380 1.231
Air 28.97 0.287 1.169 1.004 0.717 1.400
Ammonia NH3 17.031 0.4882 0.694 2,130 1.642 1.297
Argon Ar 39.948 0.2081 1.613 0.520 0.312 1.667
Benzene C6H6 78.11 0.1064 3.151 0775 0.67 1.157
Butane C4H10 58.124 0.1430 2.407 1.716 1.573 1.091
Carbon monoxide CO 28.01 0.2968 1.13 1.041 0.744 1.399
Carbon dioxide CO, 44.01 0.1889 1.775 0.842 0.653 1.289
Ethane C2H6 30.07 0.2765 1.222 1.766 1.490 1.186
Ethanol CH3OH 46.069 0.1805 1.883 1.427 1.246 1.145
Ethylene C2H4 28.054 0.2964 1.138 1,548 1.252 1.237
Helium He 4.003 2.0771 0.1615 5.193 3.116 1.667
Hydrogen H2 2.016 4.1243 0.0813 14.209 1.008 1.409
Methane CH4 16.043 0.5183 0.648 2.254 1.736 1.299
Methanol CH3OH 32.042 0.2595 1.31 1.405 1.146 1.227
Neon Ne 20.183 0.4120 0.814 1.03 0.618 1.667
Nitric oxide NO 30.006 0.2771 1.21 0.993 0,716 1.387
Nitrogen . N 28.013 0.2968 1.13 1.042 0.745 1.400
Nitrous oxide N2O 44.013 0.1889 1.775 0.879 0.690 1.274
n–octane C8H18 114.23 0.07279 0.092 1.711 1.638 1.044
Oxygen O2 31.999 0.2598 1.292 0.922 0.662 1.393
Propane C3H8 44.094 0.1886 1.808 1.679 1.490 1.126
R–12 CCl2F2 120.914 0.06876 4.98 0.616 0.547 1.126
R–22 CHClF2, 86.469 0.09616 3.54 0.658 0.562 1.171
R–134a C2F4H2 102.03 0.08149 4.20 0.852 0.771 1.106
Sulfur dioxide SO2 64.059 0.1298 2.618 0.624 0.494 1.263
Sulfur trioxide SO3 80.053 0.10386 3.272 0.635 0.531 1.196
Water/steam H2O 18.02 0.4614 0.727 1.86 1.40 1.329



TABLE 6D: Curve fits for thermodynamic properties of liquids

Constants for the equation: cp0/R = A + BT + CT2, T from 273.15 to 373.15 K
(h0– h0,ref) /R  = A (T–Tref) + (B/2)(T2–Tref

2) + (C/3) (T3 –Tref 
3)

(s0– s0,ref) /R  = A ln (T/Tref) + B(T–Tref)   + (C/2)(T2 –Tref 
2)

h0,ref  and s0,ref  are typically set to zero at Tref.

Chemical Species A 103 B 106 C
Ammonia 22.626 –100.75 192.71
Aniline 15.819 29.03 –15.80
Benzene –0.747 67.96 –37.78
1,3–Butadiene 22.711 –87.96 205.79
Carbon tetrachloride 21.155 –48.28 101.14
Chlorobenzene 11.278 32.86 –31.90
Chloroform 19.215 –42.89 83.01
Cyclohexane –9.048 141.38 –161.62
Ethanol 33.866 –172.60 349.17
Ethylene oxide 21.039 –86.41 172.28
Methanol 13.431 –51.28 131.13
n–Propanol 41.653 –210.32 427.20
Sulfur trioxide –2.930 137.08 –84.73
Toluene 15.133 6.79 16.35
Water 8.712 1.25 –0.18

Tables 6D and 6F adapted from Smith and Van Ness, Introduction to Chemical Engi-
neering Thermodynamics, 4th Edition, McGraw Hill Book Company, 1987. Origi-
nally, the liquid correlations were presented by J. W. Miller, Jr., G. R. Schorr, and C.
L. Yaws, Chem. Engng., 83(23): 129, 1976 and the solid correlations by K.K. Kelley,
U.S. Bur. Mines. Bull. 584, 1960; L. B. Pankratz, U.S. Bur. Mines Bull., 672, 1982.



Table 6E: Curve fits for thermodynamic properties of solids

Constants for the equation cp0/R = A+ BT + DT–2

T (kelvins) from 298 K to Tmax

(h0– h0,ref) /R  = A (T–Tref) + (B/2)(T2–Tref
2)  – D (1/T– 1/Tref)

(s0– s0,ref) /R  = A  ln (T/Tref) + B(T–Tref)  – (D/2) (1/T–2– 1/Tref
–2)

h0,ref and s0,ref are  typically set to zero at Tref.

Chemical Species Tmax A 103 B 10–5 D
CaO 2,000 6.104 0.443 –1.047
CaCO3 1,200 12.572 2.637 –3.120
Ca(OH)2 700 9.597 5.435
CaC2 720 8.254 1.429 –1.042
CaCl2 1,055 8.646 1.530 –0.302
C(Graphite) 2000 1.771 0.771 –0.867
Cu 1,357 2.677 0.815 0.035
CuO 1,400 5.780 0.973 –0.874
Fe(α) 1.043 –0.111 6.111 1.150
Fe2O3 960 11.812 9.697 –1.976
Fe3O4 850 9.594 27.t12 0.409
FeS 411 2.612 13.286
I2 386.8 6.481 1.502
NH4C1 458 5.939 16.105
Na 371 1.988 4.688
NaCl 1,073 5.526 1.963
NaOH 566 0.121 16.316 1.948
NaHCO3 400 5.128 18.148
S(Rhombic) 368.3 4.114 –1.728 –0.783
SiO2 (quartz) 847 4.871 5.365 –1.001

From K. K. Kelley, U.S. Bur. Mines Bull. 584, 1960; L. B. Pankratz, U.S. Bur. Mines Bull.
672, 1982.



TABLE 6F1: Curve fit for thermodynamic properties of gases

Species T(K) a1 a2 a3 a4 a5 a6 a7

1,000–5,000 0.03025078E+02 0.14426885E–02 –0.05630827E–05 0.10185813E–09 –0.06910951E–13 –0.14268350E+05 0.06108217E+02CO
300–1,000 0.03262451E+02 0.15119409E–02 –0.03881755E–04 0.05581944E–07 –0.02474951E–10 –0.14310539E+05 0.04848897E+02
1,000–5,000 0.04453623E+02 0.03140168E–01 –0.12784105E–05 0.02393996E–08 –0.16690333E–13 –0.04896696E+06 –0.09553959E+01CO2 300–1,000 0.02275724E+02 0.09922072E–01 –0.10409113E–04 0.06866686E–07 –0.02117280E–10 –0.04837314E+06 0.10188488E+02
1,000–5,000 0.02991423E+02 0.07000644E–02 –0.05633828E–06 –0.09231578E–10 0.15827519E–14 –0.08350340E+04 –0.13551101E+01H2 300–1,000 0.03298124E+02 0.08249441E–02 –0.08143015E–05 0.09475434E–09 0.04134872E–11 –0.10125209E+04 –0.03294094E+02
1,000–5,000 0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.02547162E+06 –0.04601176E+01H
300–1,000 0.02500000E+02 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.02547162E+06 –0.04601176E+01
1,000–5,000 0.02882730E+02 0.10139743E–02 –0.02276877E–05 0.02174683E–09 –0.05126305E–14 0.03886888E+05 0.05595712E+02OH
300–1,000 0.03637266E+02 0.01850910E–02 –0.16761646E–05 0.02387202E–07 –0.08431442E–11 0.03606781E+05 0.13588605E+01
1,000–5,000 0.02672145E+02 0.03056293E–01 –0.08730260E–05 0.12009964E–09 –0.06391618E–13 –0.02989921E+06 0.06862817E+02H2O 300–1,000 0,03386842E+02 0.03474982E–01 –0.06354696E–04 0.06968581E–07 –0.02506588E–10 –0.03020811E+06 0.02590232E+02
1,000–5,000 0.02926640E+02 0.14879768E–02 –0.05684760E–05 0.10097038E–09 –0.06753351E–13 –0.09227977E+04 0.05980528E+02N2 300–1,000 0.03298677E+02 0.14082404E–02 –0.03963222E–04 0.05641515E–07 –0.02444854E–10 –0.10209999E+04 0.03950372E+02
1,000–5,000 0.02450268E+02 0.10661458E–03 –0.07465337E–06 0.01879652E–09 –0.10259839E–14 0.05611604E+06 0.04448758E+02N
300–1,000 0.02503071E+02 –0.02180018E–03 0.05420529E–06 –0.05647560E–09 0.02099904E–12 0.05609890E+06 0.04167566E+02
1,000–5,000 0.03245435E+02 0.12691383E–02 –0.05015890E–05 0.09169283E–09 –0.06275419E–13 0.09800840E+05 0.06417293E+02NO
300–1,000 0.03376541E+02 0.12530634E–02 –0.033027SOE–04 0.052178I0E–07 –0.02446262E–10 0.09817961E+05 0.05829590E+02
1,000–5,000 0.04682859E+02 0.02462429E–01 –0.10422585E–05 0.01976902E–08 –0.13917168E–13 0.02261292E+05 0.09885995E+01NO2 300–1,000 0.02670600E+02 0.07838500E–01 –0.08063864E–04 0.06161714E–07 –0.02320150E–10 0.02896290E+05 0.11612071E+02
1,000–5,000 0.03697578E+02 0.06135197E–02 –0.12588420E–06 0.01775281E–09 –0.11364354E–14 –0.12339301E+04 0.03189165E+02O2 300–1,000 0.03212936E+02 0.11274864E–02 –0.05756150E–05 0.13138773E–08 –0.08768554E–11 –0.10052490E+04 0.06034737E+02
1,000–5,000 0.02542059E+02 –0.02755061E–03 –0.03102803E–07 0.04551067E–10 –0.04368051E–14 0.02923080E+06 0.04920308E+02O
300–1,000 0.02946428E+02 –0.16381665E–02 0.02421031E–04 –0.16028431E–08 0.03890696E–11 0.02914764E+06 0.02963995E+02

Table 7F1 adapted from S. R. Turns, An Introduction to Combustion, 2nd Edition, McGraw Hill Book Co., 2000. Originally from Kee, R. J.,
Rupley, F. K, and Miller, J. A., The Chemkin Thermodynamic Data Base, Sandia Report, SAND87–8215B, reprinted March 1991.
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TABLE6F2: Curve fit for thermodynamic properties of gases (continued)

cP,0/R = A + BT + CT 2 + D T–2 from 298 K to Tmax

(h0– h0,ref) /R  = A (T–Tref) + (B/2)(T2–Tref
2)   + (C/3) (T3 –Tref 

3 ) – D (1/T– 1/Tref)
(s0– s0,ref) /R  = A  ln (T/Tref) + B(T–Tref)   + (C/2)(T2 –Tref 

2 ) – (D/2) (1/T–2– 1/Tref
–2)

where  href  and sref   are  typically set to zero at Tref.

Chemical Species Tmax A 103B 106C 10–5D
Paraffins:

Methane CH4 1,500 1.702 9.081 –2.164
Ethane C2H6 1,500 1.131 19.225 –5.561
Propane C3H8 1,500 1.213 28.785 –8.824
n–Butane C4H10 1,500 1.935 36.915 –11.402
iso–Butane C4H10 1,500 1.677 37.853 –11.945
n–Pentane C5H12 1,500 2.464 45.351 –14.111
n–Hexane C6H14 1,500 3.025 53.722 –16.791
n–Heptane C7H16 1,500 3.570 62.127 –19.486
n–Octane C8H18 1,500 8.163 70.567 –22.208

1–Alkenes:
Ethylene C2H4 1,500 1.424 14.394 –4.392
Propylene C3H6 1,500 1.637 22.706 –6.915
1–Butene C4H8 1,500 1.967 31.630 –9.873
1–Pentene C5H10 1,500 2.691 39.753 –12.447
1–Hexene C6H12 1,500 3.220 48.189 –15.157
1–Heptene C7H14 1,500 3.768 56.588 –17.847
1–Octene C8H16 1,500 4.324 64.960 –20.521
Miscellaneous organics:

Acetaldehyde C2H4O 1,000 1.693 17.978 –6.158
Acetylene C2H2 1,500 6.132 1.952 –1.299
Benzene C6H6 1,500 –0.206 39.064 –13.301
1,3–Butadiene C4H6 1,500 2.734 26.786 –8.882
Cyclohexane C6H12 1,500 –3.876 63.249 –20.928
Ethanol C2H6O 1,500 3.518 20.001 –6.002
Ethylbenzene C8H10 1,500 1.124 55.380 –18.476
Ethylene oxide C2H4O 1,000 –0.385 23.463 –9.296
Formaldehyde CH2O 1,500 2.264 7.022 –1.877
Methanol CH4O 1,500 2.211 12.216 –3.450
Toluene C7H8 1,500 b.290 47.052 –15.716
Styrene C8H8 1,500 2.050 50.192 –16.662
Miscellaneous inorganics

Air 2,000 3.355 0.575 –0.016
Ammonia  NH3 1,800 3.578 3.020 –0.186
Bromine  Br2 3,000 4.493 0.056 –0.154
Carbon disulfide  CS2 1,800 6.311 0.805 –0.906
Chlorine  CI2 3,000 4.442 0.089 –0.344
Hydrogen sulfide  H2S 2,300 3.931 1.490 –0.232
Hydrogen chloride  HCl 2,000 3.156 0.623 0.151
Hydrogen cyanide  HCN 2,500 4.736 1.359 –0.725
Dinitrogen oxide  N2O 2,000 5.328 1.214 –0.928
Dinitrogen tetroxide  N2O4 2,000 11.660 2.257 –2.787



Chemical Species Tmax A 103B 106C 10–5D
Sulfur dioxide   SO2 2,000 5.699 0.801 –1.015
Sulfur trioxide   SO3 2,000 8.060 1.056 –2.028

Table 6F2 adapted from Smith and Van Ness, Introduction to Chemical Engineering Thermo-
dynamics, 4th Edition, McGraw Hill Book Company, 1987 (Selected from H.M. Spencer, Ind.
Eng. Chem., 40: 2152, 1948; K.K. Kelley, U.S. Bur. Mines Bull., 584, 1960; L.B. Pankratz,
U.S. Bur. Mines Bull., 672, 1982).



TABLE 7: Ideal gas properties of air

T, K h, kJ/kg Pr u, kJ/kg vr s0
, kJ/(kg⋅K) g0

, kJ/(kg⋅K)

200 199.97 0.3363 142.56 1707.0 1 .29559 -59.148
210 209.97 0.3987 149.69 1512.0 1.34444 -72.3624
220 219.97 0.4690 156.82 1346.0 1.39105 -86.061
230 230.02 0.5477 164.00 1205.0 1.43557 -100.1611
240 240.02 0.6355 171.13 1084.0 1.47824 -114.7576
250 250.05 0.7329 178.28 979.0 1.51917 -129.7425
260 260.09 0.8405 185.45 887.8 1.55848 -145.1148
270 270.11 0.9590 192.60 808.0 1.59634 -160.9018
280 280.13 1.0889 199.75 738.0 1.63279 -177.0512
285 285.14 1.1584 203.33 706.1 1.65055 -185.26675
290 290.16 1.2311 206.91 676.1 1.66802 -193.5658
295 295.17 1.3068 210.49 647.9 1.68515 -201.94925
300 300.19 1.3860 214.07 621.2 1.70203 -210.419
305 305.22 1.4686 217.67 596.0 1.71865 -218.96825
310 310.24 1.5546 221.25 572.3 1.73498 -227.6038
315 315.27 1.6442 224.85 549.8 1.75106 -236.3139
320 320.29 1.7375 228.42 528.6 1.76690 -245.118
325 325.31 1.8345 232.02 508.4 1.78249 -253.99925
330 330.34 1.9352 235.61 489.4 1.79783 -262.9439
340 340.42 2.149 242.82 454.1 1.82790 -281.066
350 350.49 2.379 250.02 422.2 1.85708 -299.488
360 360.58 2.626 257.24 393.4 1.88543 -318.1748
370 370.67 2.892 264.46 367.2 1.91313 -337.1881
380 380.77 3.176 271.69 343.4 1.94001 -356.4338
390 390.88 3.481 278.93 321.5 1.96633 -375.9887
400 400.98 3.806 286.16 301.6 1.99194 -395.796
410 411.12 4.153 293.43 283.3 2.01699 -415.8459
420 421.26 4.522 300.69 266.6 2.04142 -436.1364
430 431.43 4.915 307.99 251.1 2.06533 -456.6619
440 441.61 5.332 315.30 236.8 2.08870 -477.418
450 451.80 5.775 322.62 223.6 2.11161 -498.4245
460 462.02 6.245 329.97 211.4 2.13407 -519.6522
470 472.24 6.742 337.32 200.1 2.15604 -541.0988
480 482.49 7.268 344.70 189.5 2.17760 -562.758
490 492.74 7.824 352.08 179.7 2.19876 -584.6524
500 503.02 8.411 359.49 170.6 2.21952 -606.74
510 513.32 9.031 366.92 162.1 2.23993 -629.0443
520 523.63 9.684 374.36 154.1 2.25997 -651.5544
530 533.98 10.37 381.84 146.7 2.27967 -674.2451
540 544.35 11.10 389.34 139.7 2.29906 -697.1424
550 555.74 11.86 396.86 133.1 2.31809 -719.2095
560 565.17 12.66 404.42 127.0 2.33685 -743.466
570 575.59 13.50 411.97 121.2 2.35531 -766.9367
580 586.04 14.38 419.55 115.7 2.37348 -790.5784
590 596.52 15.31 427.15 110.6 2.39140 -814.406



T, K h, kJ/kg Pr u, kJ/kg vr s0
, kJ/(kg⋅K) g0

, kJ/(kg⋅K)

600 607.02 16.28 434.78 105.8 2.40902 -838.392
610 617.53 17.30 442.42 101.2 2.42644 -862.5984
620 628.07 18.36 450.09 96.92 2.44356 -886.9372
630 683.63 19.84 457.78 92.84 2.46048 -866.4724
640 649.22 20.64 465.50 88.99 2.47716 -936.1624
650 659.84 21.86 473.25 85.34 2.49364 -961.026
660 670.47 23.13 481.01 81.89 2.50985 -986.031
670 681.14 24.46 488.81 78.61 2.52589 -1011.2063
680 691.82 25.85 496.62 75.50 2.54175 -1036.57
690 702.52 27.29 504.45 72.56 2.55731 -1062.0239
700 713.27 28.80 512.33 69.76 2.57277 -1087.669
710 724.04 30.38 520.23 67.07 2.588 0 -1113.44
720 734.82 32.02 528.14 64.53 2.60319 -1139.4768
730 745.62 33.72 536.07 62.13 2.61803 -1165.5419
740 756.44 35.50 544.02 59.82 2.63280 -1191.832
750 767.29 37.35 551.99 57.63 2.64737 -1218.2375
760 778.18 39.27 560.01 55.54 2.66176 -1244.7576
780 800.03 43.35 576.12 51.64 2.69013 -1298.2714
800 821.95 47.75 592.30 48.08 2.71787 -1352.346
820 843.98 52.59 608.59 44.84 2.74504 -1406.9528
840 866.08 57.60 624.95 41.85 2.77170 -1462.148
860 888.27 63.09 641.40 39.12 2.79783 -1517.8638
880 910.56 68.98 657.95 36.61 2.82344 -1574.0672
900 932.93 75.29 674.58 34.31 2.84856 -1630.774
920 955.38 82.05 691.28 32.18 2.87324 -1688.0008
940 977.92 89.28 708.08 30.22 2.89748 -1745.7112
960 1000.55 97.00 725.02 28.40 2.92128 -1803.8788
980 1023.25 105.2 741.98 26.73 2.94468 -1862.5364

1000 1046.04 114.0 758.94 25.17 2.96770 -1921.66
1020 1068.89 123.4 776.10 23.72 2.99034 -1981.2568
1040 1091.85 133.3 793.36 23.29 3.01260 -2041.254
1060 1114.86 143.9 810.62 21.14 3.03449 -2101.6994
1080 1137.89 155.2 827.88 19.98 3.05608 -2162.6764
1100 1161.07 167.1 845.33 18.896 3.07732 -2223.982
1120 1184.28 179.7 862.79 17.886 3.09825 -2285.76
1140 1207.57 193.1 880.35 16.946 3.11883 -2347.8962
1160 1230.92 207.2 897.91 16.064 3.13916 -2410.5056
1180 1254.34 222.2 915.57 15.241 3.15916 -2473.4688
1200 1277.79 238.0 933.33 14.470 3.17888 -2536.866
1220 1301.31 254.7 951.09 13.747 3.19834 -2600.6648
1240 1324.93 272.3 968.95 13.069 3.21751 -2664.7824
1260 1348.55 290.8 986.90 12.435 3.23638 -2729.2888
1280 1372.24 310.4 1004.76 11.835 3.25510 -2794.288
1300 1395.97 330.9 1022.82 11.275 3.27345 -2859.515
1320 1419.76 352.5 1040.88 10.747 3.29160 -2925.152
1340 1443.60 375.3 1058.94 10.247 3.30959 -2991.2506
1360 1467.49 399.1 1077.10 9.780 3.32724 -3057.5564
1380 1491.44 424.2 1095.26 9.337 3.34474 -3124.3012



T, K h, kJ/kg Pr u, kJ/kg vr s0
, kJ/(kg⋅K) g0

, kJ/(kg⋅K)

1400 1515.42 450.5 1113.52 8.919 3.36200 -3191.38
1420 1539.44 478.0 1131.77 8.526 3.37901 -3258.7542
1440 1563.51 506.9 1150.13 8.153 3.39586 -3326.5284
1460 1587.63 537.1 1168.49 7.801 3.41247 -3394.5762
1480 1611.79 568.8 1186.95 7.468 3.42892 -3463.0116
1500 1635.97 601.9 1205.41 7.152 3.44516 -3531.77
1520 1660.23 636.5 1223.87 6.854 3.46120 -3600.794
1540 1684.51 672.8 1242.43 6.569 3.47712 -3670.2548
1560 1708.82 710.5 1260.99 6.301 3.49276 -3739.8856
1580 1733.17 750.0 1279.65 6.046 3.50829 -3809.9282
1600 1757.57 791.2 1298.30 5.804 3.52364 -3880.254
1620 1782.00 834.1 1316.96 5.574 3.53879 -3950.8398
1640 1806.46 878.9 1335.72 5.355 3.55381 -4021.7884
1660 1830.96 925.6 1354.48 5.147 3.56867 -4093.0322
1680 1855.50 974.2 1373.24 4.949 3.58335 -4164.528
1700 1880.1 1025 1392.7 4.761 3.5979 -4236.33
1750 1941.6 1161 1439.8 4.328 3.6336 -4417.2
1800 2003.3 1310 1487.2 3.994 3.6684 -4599.82
1850 2065.3 1475 1534.9 3.601 3.7023 -4783.955
1900 2127.4 1655 1582.6 3.295 3.7354 -4969.86
1950 2189.7 1852 1630.6 3.022 3.7677 -5157.315
2000 2252.1 2068 1678.7 2.776 3.7994 -5346.7
2050 2314.6 2303 1726.8 2.555 3.8303 -5537.515
2100 2377.7 2559 1775.3 2.356 3.8605 -5729.35
2150 2440.3 2837 1823.8 2.175 3.8901 -5923.415
2200 2503.2 3138 1872.4 2.012 3.9191 -6118.82
2250 2566.4 3464 1921.3 1.864 '3.9474 -6315.25

Pr, Relative pressure, vr: relative volume. Source: adopted from K. Wark, Thermodynamics, 4th

Ed., McGraw Hill Book Co., 1983, pp 785-786. Originally from J.H . Keenan and J. Keye,
Gas Tables, John Wiley & Sons, NY, 1948. Pr =0.00368  exp ( - s0 /R),     vr =  2.87 T/pr, g

0 =
h- Ts0



TABLE 8: Ideal gas properties of carbon monoxide, CO

MW = 28.010, hf,298 
0(kJ/kmol) = –110, 541

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 28.687 –2,835 –111,308 186.018 -150,580
298 29.072 0 –110,541 197.548 -169,410
300 29.078 54 –110,530 197.728 -169,805
400 29.433 2,979 –110,121 206.141 -190,018
500 29.857 5,943 –110,017 212.752 -210,974
600 30.407 8,955 –110,156 218.242 -232,531
700 31.089 12,029 –110,477 222.979 -254,597
800 31.860 15,176 –110,924 227.180 -277,109
900 32.629 18,401 –111,450 230.978 -300,020

1,000 33.255 21,697 –112,022 234.450 -323,294
1,100 33.725 25,046 –112,619 237.642 -346,901
1,200 34.148 28,440 –113,240 240.595 -370,815
1,300 34.530 31,874 –113,881 243.344 -395,014
1,400 34.872 35,345 –114,543 245.915 -419,477
1,500 35.178 38,847 –115,225 248,332 -444,192
1,600 35.451 42,379 –115,925 250.611 -469,140
1,700 35.694 45,937 –116,644 252.768 -494,310
1,800 35.910 49,517 –117,380 254.814 -519,689
1,900 36.101 53,118 –118,132 256.761 -545,269
2,000 36.271 56,737 –118,902 258.617 -571,038
2,100 36.421 60,371 –119,687 260.391 -596,991
2,200 36.553 64,020 –120,488 262.088 -623,115
2,300 36.670 67,682 –121,305 263.715 -649,404
2,400 36.774 71,354 –122,137 265.278 -675,854
2,500 36,867 75,036 –122,984 266.781 -702,458
2,600 36.950 78,727 –123,847 268.229 -729,209
2,700 37.025 82,426 –124,724 269.625 -756,103
2,800 37.093 86,132 –125,616 270.973 -783,133
2,900 37.155 89,844 –126,523 272.275 -810,295
3,000 37.213 93,562 –127,446 273.536 -837,587
3,100 37.268 97,287 –128,383 274'.757 -865,001
3,200 37.321 101,016 –129,335 275.941 -892,536
3,300 37.372 104,751 –130,303 277.090 -920,187
3,400 37.422 108,490 –131,285 278.207 -947,955
3,500 37.471 112,235 –132,283 279.292 -975,828
3,600 37.521 115,985 –133,295 280.349 -1,003,812
3,700 37.570 119,739 –134,323 281.377 -1,031,897
3,800 37.619 123,499 –135,366 282.380 -1,060,086
3,900 37.667 127,263 –136,424 283.358 -1,088,374
4,000 37.716 131,032 –137,497 284.312 -1,116,757
4,100 37.764 134,806 –138,585 285.244 -1,145,235
4,200 37.810 138,585 –139,687 286.154 -1,173,803
4,300 37.855 142,368 –140,804 287.045 -1,202,467
4,400 37.897 146,156 –141,935 287.915 -1,231,211



4,500 37.936 149,948 –143,079 288.768 -1,260,049
4,600 37.970 153,743 –144,236 289.602 -1,288,967
4,700 37.998 157,541 –145,407 290.419 -1,317,969
4,800 38.019 161,342 –146,589 291.219 -1,347,050
4,900 38.031 165,145 –147,783 292.003 -1,376,211
5,000 38.033 168,948 –148,987 292.771 -1,405,448

Tables 8 to 19 except for g T0 ( )  adapted from S. R. Turns, An Introduction to Combustion,
2nd Edition, McGraw Hill Book Co., 2000.
For Tbles A-8 to A-19,
g0= h f,298

0+ ( h ht T t, ,− 298 )-T s 0, g0 ≠ g f
0, s k(T,pk) =  s 0 - R  ln  (pk/1), gk(T.pk) = g0 + R T  ln

(pk/1)



TABLE 9: Ideal gas properties of carbon dioxide, CO2

MW = 44.011,  hf,298 
0(kJ/kmol) = –393,546

T cp0 h ht T t, ,− 298 h Tf
0 ( ) s T0 ( ) g T0 ( )

(K) (kJ/kmol–K) (kJ/kmol) (kJ/kmol) (kJ/kmol–K) (kJ/kmol)
200 32.387 –3,423 –393,483 199.876 -436,944
298 37.198 0 –393,546 213.736 -457,239
300 37.280 69 –393,547 213.966 -457,667
400 41.276 4,003 –393,617 225.257 -479,646
500 44.569 8,301 –393,712 234.833 -502,662
600 47.313 12,899 –393,844 243.209 -526,572
700 49.617 17,749 –394,013 250.680 -551,273
800 51.550 22,810 –394,213 257.436 -576,685
900 53.136 28,047 –394,433 263.603 -602,742

1,000 54.360 33,425 –394,659 269.268 -629,389
1,100 55.333 38,911 –394,875 274.495 -656,580
1,200 56.205 44,488 –395,083 279.348 -684,276
1,300 56.984 50,149 –395,287 283.878 -712,438
1,400 57.677 55,882 –395,488 288.127 -741,042
1,500 58.292 61,681 –395,691 292.128 -770,057
1,600 58.836 67,538 –395,897 295.908 -799,461
1,700 59.316 73,446 –396,110 299.489 -829,231
1,800 59.738 79,399 –396,332 302.892 -859,353
1,900 60.108 85,392 –396,564 306.132 -889,805
2,000 60.433 91,420 –396,808 309.223 -920,572
2,100 60.717 97,477 –397,065 312.179 -951,645
2,200 60.966 103,562 –397,338 315.009 -983,004
2,300 61.185 109,670 –397,626 317.724 -1,014,641
2,400 61.378 115,798 –397,931 320.333 -1,046,547
2,500 61.548 121,944 –398,253 322.842 -1,078,707
2,600 61.701 128,107 –398,594 325.259 -1,111,112
2,700 61.839 134,284 –398,952 327.590 -1,143,755
2,800 61.965 140,474 –399,329 329.841 -1,176,627
2,900 62.083 146,677 –399,725 332.018 -1,209,721
3,000 62.194 152,891 –400,140 334.124 -1,243,027
3,100 62.301 159,116 –400,573 336.165 -1,276,542
3,200 62.406 165,351 –401,025 338.145 -1,310,259
3,300 62.510 171,597 –401,495 340.067 -1,344,170
3,400 62.614 177,853 –401,983 341.935 -1,378,272
3,500 62,718 184,120 –402,489 343.751 -1,412,555
3,600 62.825 190,397 –403,013 345.519 -1,447,017
3,700 62.932 196,685 –403,553 347.242 -1,481,656
3,800 63,041 202,983 –404,110 348.922 -1,516,467
3,900 63.151 209,293 –404,684 350.561 -1,551,441
4,000 63.261 215,613 –405,273 353.161 -1,590,577
4,100 63.369 221,945 –405,878 353.725 -1,621,874
4,200 63.474 228,287 –406,499 355.253 -1,657,322
4,300 63.575 234,640 –407,135 356.748 -1,692,922
4,400 63.669 241,002 –407,785 358.210 -1,728,668



T cp0 h ht T t, ,− 298 h Tf
0 ( ) s T0 ( ) g T0 ( )

(K) (kJ/kmol–K) (kJ/kmol) (kJ/kmol) (kJ/kmol–K) (kJ/kmol)
4,500 63.753 247,373 –408,451 359.642 -1,764,562
4,600 63.825 253,752 –409,132 361.044 -1,800,596
4,700 63.881 260,138 –409,828 362.417 -1,836,768
4,800 63.918 266,528 –410,539 363.763 -1,873,080
4,900 63.932 272,920 –411,267 365.081 -1,909,523
5,000 63.919 279,313 –412,010 366.372 -1,946,093



TABLE 10: Ideal gas properties of hydrogen atom, H

MW = 1.01,  hf,298 
0(kJ/kmol) = 217,977

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 20.786 –2,040 217,346 106.305 194,676
298 20.786 0 217,977 114.605 183,825
300 20.786 38 217,989 114.733 183,595
400 20.786 2,117 218,617 120.713 171,809
500 20.786 4,196 219,236 125.351 159,498
600 20.786 6,274 219,848 129.351 146,640
700 20.786 8,353 220,456 132.345 133,689
800 20.786 10,431 221,059 135.121 120,311
900 20.786 12,510 221,653 137.569 106,675

1,000 20.786 14,589 222,234 139.759 92,807
1,100 20.786 16,667 222,793 141.740 78,730
1,200 20.786 18,746 223,329 143.549 64,464
1,300 20.786 20,824 223,843 145.213 50,024
1,400 20.786 22,903 224,335 146.753 35,426
1,500 20.786 24,982 224,806 148.187 20,679
1,600 20.786 27,060 225,256 149.528 5,792
1,700 20.786 29,139 225,687 150.789 -9,225
1,800 20.786 31,217 226,099 151.977 -24,365
1,900 20.786 33,296 226,493 153.101 -39,619
2,000 20.786 35,375 226,868 154.167 -54,982
2,100 20.786 37,453 227,226 155.181 -70,450
2,200 20.786 39,532 227,568 156.148 -86,017
2,300 20.786 41,610 227,894 157.072 -101,679
2,400 20.786 43,689 228,204 157.956 -117,428
2,500 20.786 45,768 228,499 158.805 -133,268
2,600 20.786 47,846 228,780 159.620 -149,189
2,700 20.786 49,925 229,047 160.405 -165,192
2,800 20.786 52,003 229,301 161.161 -181,271
2,900 20.786 54,082 229,543 161.890 -197,422
3,000 20.786 56,161 229,772 162,595 -213,647
3,100 20.786 58,239 229,989 163.276 -229,940
3,200 20.786 60,318 230,195 163.936 -246,300
3,300 20.786 62,396 230,390 164.576 -262,728
3,400 20.786 64,475 230,574 165.196 -279,214
3,500 20.786 66,554 230,748 165.799 -295,766
3,600 20.786 68,632 230,912 166.954 -314,425
3,700 20.786 70,711 231,067 166.954 -329,042
3,800 20.786 72,789 231,212 167.508 -345,764
3,900 20.786 74,868 231,348 168.048 -362,542
4,000 20.786 76,947 231,475 168.575 -379,376
4,100 20,786 79,025 231,594 169.088 -396,259
4,200 20,786 81,104 231,704 169.589 -413,193
4,300 M786 83,182 231,805 170.078 -430,176
4,400 20.786 85,261 231,897 170.556 -447,208



T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )

(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

4,500 20.786 87,340 231,981 171.023 -464,287
4,600 20.786 89,418 232,056 171.480 -481,413
4,700 20.786 91,497 232,123 171.927 -498,583
4,800 20.786 93,575 232,180 172.364 -515,795
4,900 20.786 95,654 232,228 172.793 -533,055
5,000 20.786 97,733 232,267 173.213 -550,355



TABLE 11: Ideal gas properties of hydrogen, H2

MW = 2.02,  hf,298 
0(kJ/kmol) =0

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 28.522 –2,818 0 119.137 -26,645
298 28.871 0 0 130.595 -38,917
300 28.877 53 0 130.773 -39,179
400 29.120 2,954 0 139.116 -52,692
500 29.275 5,04 0 145.632 -67,776
600 29.375 8,807 0 150.979 -81,780
700 29.461 11,749 0 155.514 -97,111
800 29.581 14,701 0 159.455 -112,863
906 29.792 17,668 0 162.950 -129,965

1,000 30.160 20,664 0 166.106 -145,442
1,100 30.625 23,704 0 169.003 -162,199
1,200 31.077 26,789 0 171.687 -179,235
1,300 31.516 29,919 0 174.192 -196,531
1,400 31.943 33,092 0 176.543 -214,068
1,500 32.356 36,307 0 178.761 -231,835
1,600 32.758 39,562 0 180.862 -249,817
1,700 33.146 42,858 0 182.860 -268,004
1,800 33.522 46,191 0 184.765 -286,386
1,900 33.885 49,562 0 186.587 -304,953
2,000 34.236 52,968 0 188.334 -323,700
2,100 34.575 56,408 0 190.013 -342,619
2,200 34.901 59,882 0 191.629 -361,702
2,300 35.216 63,388 0 193.187 -380,942
2,400 35.50 66,925 0 194.692 -400,336
2,500 35.811 70,492 0 196.148 -419,878
2,600 36.091 74,087 0 197.558 -439,564
2,700 36.361 77,710 0 198.926 -459,390
2,800 36.621 81,359 0 200.253 -479,349
2,900 36.871 85,033 0 201.542 -499,439
3,000 37.112 88,733 0 202.796 -519,655
3,100 37.343 92,455 0 204.017 -539,998
3,200 37.566 96,201 0 205.206 -560,458
3,300 37.781 99,968 0 206.365 -581,037
3,400 37.989 103,757 0 207.496 -601,729
3,500 38.190 107,566 0 208.600 -622,534
3,600 38.385 111,395 0 209.679 -643,449
3,700 38.574 115,243 0 210.733 -664,469
3,800 38.759 119,109 0 211.764 -685,594
3,900 38.939 122,994 0 212.774 -706,825
4,000 39.116 126,897 0 213.762 -728,151
4,100 39.291 130,817 0 214.730 -749,576
4,200 39.464 134,755 0 215.679 -771,097
4,300 39.636 138,710 0 216.609 -792,709



T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )

(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

4,406 39.808 142,682 0 217.522 -815,720
4,500 39.981 146,672 0 218.419 -836,214
4,600 40.156 150,679 0 219,300 -858,101
4,700 40.334 154,703 0 220.165 -880,073
4,800 40.516 158,746 0 221.016 -902,131
4,900 40.702 162,806 0 221.853 -924,274
5,000 40.895 166,886 0 222.678 -946,504



TABLE12: Ideal gas Properties of water (g), H2O

MW = 18.02,  hf,298 
0(kJ/kmol) = –241,845, enthalpy of vaporization (kJ/kmol) = 44,010

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 32.255 –3,227 –240,838 175.602 -280,192
298 33.448 0 –241,845 188.715 -298,082
300 33.468 62 –241,865 188.922 -298,460
400 34.437 3,458 –242,858 198.686 -317,861
500 35.337 6,947 –243,822 206.467 -338,132
600 36.288 10,528 –244,753 212.992 -359,112
700 37.364 14,209 –245,638 218.665 -380,702
800 38.587 18,005 –246,461 223.733 -402,826
900 39.930 21,930 –247,209 228.354 -425,434

1,000 41.315 25,993 –247,879 232.633 -448,485
1,100 42.638 30,191 –248,475 236.634 -471,951
1,200 43.874 34,518 –249,005 240.397 -495,803
1,300 45.027 38,963 –249,477 243.955 -520,024
1,400 46.102 43,520 –249,895 247.332 -544,590
1,500 47.103 48,181 –250,267 250.547 -569,485
1,600 48.035 52,939 –250,597 253.617 -594,693
1,700 48.901 57,786 –250,890 256.556 -620,204
1,800 49.705 62,717 –251,151 259.374 -646,001
1,900 50.451 67,725 –251,384 262.081 -672,074
2,000 51.143 72,805 –251,594 264.687 -698,414
2,100 51.784 77,952 –251,783 267.198 -725,009
2,200 52.378 83,160 –251,955 269.621 -751,851
2,300 52.927 88,426 –252,113 271.961 -778,929
2,400 53.435 93,744 –252,261 274.225 -806,241
2,500 53.905 99,112 –252,399 276.416 -833,773
2,600 54.340 104,524 –252,532 278.539 -861,522
2,700 54.742 109,979 –252,659 280.597 -889,478
2,800 55.115 115,472 –252,785 282.595 -917,639
2,900 55.459 121,001 –252,909 284.535 -945,996
3,000 55.779 126,563 –253,034 286.420 -974,542
3,100 56.076 132,156 –253,161 288.254 -1,003,276
3,200 56.353 137,777 –253,290 290.039 -1,032,193
3,300 56.610 143,426 –253,423 291.777 -1,061,283
3,400 56.851 149,099 –253,561 293.471 -1,090,547
3,500 57.076 154,795 –253,704 295.122 -1,119,977
3,600 57.288 160,514 –253,852 296.733 -1,149,570
3,700 57.488 166,252 –254,007 298.305 -1,179,322
3,800 57.676 172,011 –254,169 299.841 -1,209,230
3,900 57.856 177,787 –254,338 301.341 -1,239,288
4,000 58.026 183,582 –254,515 302.808 -1,269,495
4,100 58.190 189,392 –254,699 304.243 -1,299,849
4,200 58.346 195,219 –254,892 305.647 -1,330,343
4,300 58.496 201,061 –255,093 307.022 -1,360,979
4,400 58.641 206,918 –255,303 308.368 -1,391,746



4,500 58.781 212,790 –255,522 309.688 -1,422,651
4,600 58.916 218,674 –255,751 310.981 -1,453,684
4,700 59.047 224,573 –255,990 312.250 -1,484,847
4,800 59.173 230,484 –256,239 313.494 -1,516,132
4,900 59.295 236,407 –256,501 314.716 -1,547,546
5,000 59.412 242,343 –256,774 315–915 -1,579,077



TABLE 13: Ideal gas properties of nitrogen atom, N

 MW = 14.01,  hf,298 
0(kJ/kmol) = 472,629

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 20.790 –2,040 472,008 144.889 441,611
298 20.786 0 472,629 153.189 426,979
300 20.786 38 472,640 153.317 426,672
400 20.786 2,117 473,259 159.297 411,027
500 20.786 4,196 473,864 163.935 394,858
600 20.786 6,274 474,450 167.725 378,268
700 20.786 8,353 475,010 170.929 361,332
800 20.786 10,431 475,537 173.705 344,096
900 20.786 12,510 476,027 176.153 326,601

1,000 20.786 14,589 476,483 178.343 308,875
1,100 20.792 16,668 476,911 180.325 290,940
1,200 20.795 18,747 477,316 182.134 272,815
1,300 20.795 20,826 477,700 183.798 254,518
1,400 20.793 22,906 478,064 185.339 236,060
1,500 20.790 24,985 478,411 186.774 217,453
1,600 20.786 27,064 478,742 188.115 198,709
1,700 20.782 29,142 479,059 189.375 179,834
1,800 20.779 31,220 479,363 190.563 160,836
1,900 20.777 33,298 479,656 191.687 141,722
2,000 20.776 35,376 479,939 192.752 122,501
2,100 20.778 37,453 480,213 193.766 103,173
2,200 20.783 39,531 480,479 194.733 83,747
2,300 20.791 41,610 480,740 195.657 64,228
2,400 20.802 43,690 480,995 196.542 44,618
2,500 20.818 45,771 481,246 197.391 24,923
2,600 20.838 47,853 481,494 198.208 5,141
2,700 20.864 49,938 481,740 198.995 -14,720
2,800 20.895 52,026 481,985 199,754 -34,656
2,900 20.931 54,118 482,230 200.488 -54,668
3,000 20,974 56,213 482,476 201.199 -74,755
3,100 21.024 58,313 482,723 201.887 -94,908
3,200 21.080 60,418 482,972 202.555 -115,129
3,300 21.143 62,529 483,224 203.205 -135,419
3,400 21.214 64,647 483,481 203.837 -155,770
3,500 21.292 66,772 483,742 204.453 -176,185
3,600 21.378 68,905 484,009 205.054 -196,660
3,700 21.472 71,048 484,283 205.641 -217,195
3,800 21.575 73,200 484,564 206.215 -237,788
3,900 21.686 75,363 484,853 206.777 -258,438
4,000 21.905 77,537 485,151 207.328 -279,146
4,100 21–934 79,724 485,459 207.868 -299,906
4,200 22.071 81,924 485,779 208.398 -320,719
4,300 22.217 84,139 486,110 208.919 -341,584
4,400 22.372 86,368 486,453 209.431 -362,499



4,500 22.536 88,613 486,811 209.936 -383,470
4,600 22.709 90,875 487,184 210.433 -404,488
4,700 22.891 93,155 487,573 210.923 -425,554
4,800 23.082 95,454 487,979 211.407 -446,671
4,900 23.282 97,772 488,405 211.885 -467,836
5,000 23.491 100,111 488,850 212.358 -489,050



TABLE 14: Ideal gas properties of nitric oxide, NO

MW = 30.01,  hf,298 
0(kJ/kmol) = 90,297

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 29.374 –2,901 90,234 198.856 47,625
298 29.728 0 90,297 210.652 27,523
300 29.735 55 90,298 210,836 27,101
400 30.103 3,046 90,341 219.439 5,567
500 30.570 6,079 90,367 226.204 -16,726
600 31.174 9,165 90,382 231.829 -39,635
700 31.908 12,318 90,393 236.688 -63,067
800 32.715 15,549 90,405 241.001 -86,955
900 33.489 18,860 90,421 244.900 -111,253

1,000 34.076 22,241 90,443 248.462 -135,924
1,100 34.483 25,669 90,465 251.729 -160,936
1,200 34.850 29,136 90,486 254.745 -186,261
1,300 35.180 32,638 90,505 257.548 -211,877
1,400 35.474 36,171 90,520 260.166 -237,764
1,500 35.737 39,732 90,532 262.623 -263,906
1,600 35.972 43,317 90,538 264.937 -290,285
1,700 36.180 46,925 90,539 267.124 -316,889
1,800 36.364 50,552 90,534 269.197 -343,706
1,900 36.527 54,197 90,523 271.168 -370,725
2,000 36.671 57,857 90,505 273.045 -397,936
2,100 36.797 61,531 90,479 274.838 -425,332
2,200 36.909 65,216 90,447 276.552 -452,901
2,300 37.008 68,912 90,406 278.195 -480,640
2,400 37.095 72,617 90,358 279.772 -508,539
2,500 37.173 76,331 90,303 281.288 -536,592
2,600 37.242 80,052 90,239 282.747 -564,793
2,700 37.305 83,779 90,168 284.154 -593,140
2,800 37.362 87,513 90,089 285.512 -621,624
2,900 37.415 91,251 90,003 286.824 -650,242
3,000 37.464 94,995 89,909 288.093 -678,987
3,100 37.511 98,744 89,809 289.322 -707,857
3,200 37.556 102,498 89,701 290.514 -736,850
3,300 37.600 106,255 89,586 291.670 -765,959
3,400 37.643 110,018 89,465 292.793 -795,181
3,500 37.686 113,784 89,337 293.885 -824,517
3,600 37.729 117,555 89,203 294.947 -853,957
3,700 37.771 121,330 89,063 295.981 -883,503
3,800 37.815 125,109 88,918 296.989 -913,152
3,900 37.858 128,893 88,767 297.972 -942,901
4,000 37.900 132,680 88,611 298.931 -972,747
4,100 37.943 136,473 88,449 299.867 -1,002,685
4,200 37.984 140,269 88,283 300.782 -1,032,718
4,300 38.023 144,069 88,112 301.677 -1,062,845
4,400 38.060 147,873 87,936 302.551 -1,093,054



4,500 38.093 151,681 87,755 303.407 -1,123,354
4,600 38.122 155,492 87,569 304.244 -1,153,733
4,700 38.146 159,305 87,379 305.064 -1,184,199
4,800 38.162 163,121 87 184 305.868 -1,214,748
4,900 38.171 166,938 86:984 306.655 -1,245,375
5,000 38.170 170,755 86,779 307.426 -1,276,078



TABLE 15: Ideal gas properties of nitrogen dioxide, NO2

MW = 46.01,  hf,298 
0(kJ/kmol) = 33,098

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 32.936 –3,432 33,961 226.016 -15,537
298 36.881 0 33,098 239.925 -38,400
300 36.949 68 33,085 240.153 -38,880
400 40.331 3,937 32,521 251.259 -63,469
500 43.227 8,118 32,173 260.578 -89,073
600 45.737 12,569 31,974 268.686 -115,545
700 47.913 17,255 31,885 275.904 -142,780
800 49,762 22,141 31,880 282.427 -170,703
900 51.243 27,195 31,938 288.377 -199,246

1,000 52.271 32,375 32,035 293.834 -228,361
1,100 52.989 37,638 32,146 298.850 -257,999
1,200 53.625 42,970 32,267 303.489 -288,119
1,300 54.186 48,361 32,392 307.804 -318,686
1,400 54.679 53,805 32,519 311.838 -349,670
1,500 55.109 59,295 32,643 315.625 -381,045
1,600 55.483 64,825 32,762 319.194 -412,787
1,700 55.805 70,390 32,873 322.568 -444,878
1,800 56.082 75,984 32,973 325.765 -477,295
1,900 56.318 81,605 33,061 328.804 -510,025
2,000 56.517 87,247 33,134 331.698 -543,051
2,100 56.685 92,907 33,192 334.460 -576,361
2,200 56.826 98,583 32,233 337.100 -609,939
2,300 56.943 104,271 33,256 339.629 -643,778
2,400 57.040 109,971 33,262 342.054 -677,861
2,560 57.121 115,679 33,248 344.384 -732,846
2,600 57.188 121,394 33,216 346.626 -746,736
2,700 57.244 127,116 33,165 348.785 -781,506
2,800 57.291 132,843 33,095 350.868 -816,489
2,900 57.333 138,574 33,007 352.879 -851,677
3,000 57.371 144,309 32,900 354.824 -887,065
3,100 57.406 150,049 32,776 356.705 -922,639
3,200 57.440 155,791 32,634 358.529 -958,404
3,300 57.474 161,536 32,476 360.297 -994,346
3,400 57.509 167,285 32,302 362.013 -1,030,461
3,500 57.546 173,038 32,113 363.680 -1,066,744
3,600 57.584 178,795 31,908 365.302 -1,103,194
3,700 57.624 184,555 31,689 366.880 -1,139,803
3,800 57.665 190,319 31,456 368.418 -1,176,571
3,900 57.708 196,088 31,210 369.916 -1,213,486
4,000 57.750 201,861 30,951 371.378 -1,250,553
4,100 57.792 207,638 30,678 372.804 -1,287,760
4,200 57.831 213,419 30,393 374.197 -1,325,110
4,300 57.866 20,204 30,095 375.559 -1,561,602
4,400 57.895 224,992 29,783 376.889 -1,400,222



T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )

(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

4,500 57.915 230,783 29,457 378.190 -1,437,974
4,600 57.925 236,575 29,117 379.464 -1,475,861
4,700 57.922 242,367 28,761 380.709 -1,513,867
4,800 57.902 ~48,159 28,389 381.929 -1,552,002
4,900 57.862 253,947 27,998 383.122 -1,590,253
5,000 57,798 259,730 27,586 384.290 -1,628,622



TABLE 16: Ideal gas properties of nitrogen, N2

MW = 28.01,  hf,298 
0(kJ/kmol) = 0

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 28.793 –2,841 0 179.959 -38,833
298 29.071 0 0 191.511 -57,070
300 29.075 54 0 191.691 -57,453
400 29.319 2,973 0 200.088 -77,062
500 29.636 5,920 0 206.662 -97,411
600 30.086 8,905 0 212.103 -118,357
700 30.684 11,942 0 216.784 -139,807
800 31.394 15,046 0 220.927 -161,696
900 32.131 18,222 0 224.667 -183,978

1,000 32.762 21,468 0 228.087 -206,619
1,100 33.258 24,770 0 231.233 -229,586
1,200 33.707 M,118 0 234.146 -252,857
1,300 34.113 31,510 0 236.861 -276,409
1,400 34.477 34,939 0 239.402 -300,224
1,500 34.805 38,404 0 241.792 -324,284
1,600 35.099 41,899 0 244.048 -348,578
1,700 35.361 45,423 0 246.184 -373,090
1,800 35.595 48,971 0 248.212 -397,811
1,900 35.803 52,541 0 250.142 -422,729
2,000 35.988 56,130 0 251.983 -447,836
2,100 36.152 59,738 0 253.743 -473,122
2,200 36.298 63,360 0 255.429 -498,584
2,300 36.428 66,997 0 257.045 -524,207
2,400 36–543 70,645 0 259.598 -552,390
2,500 36–645 74,305 0 260.092 -575,925
2,600 36–737 77,974 0 261.531 -602,007
2,700 36.820 81,652 0 262.919 -628,229
2,800 36.895 85,338 0 264.259 -654,587
2,900 36.964 89,031 0 265.555 -681,079
3,000 37.028 92,730 0 266.810 -707,700
3,100 37.088 96,436 0 268.025 -734,442
3,200 37.144 100,148 0 269.203 -761,302
3,300 37.198 103,865 0 270.347 -788,280
3,400 37.251 107,587 0 271.458 -815,370
3,506 37.302 111,315 0 272.539 -844,207
3,600 37.352 115,048 0 273.590 -869,876
3,700 37.402 118,786 0 274.614 -897,286
3,800 37.452 122,528 0 275.612 -924,798
3,900 37.501 126,276 0 276.586 -952,409
4,000 37.549 130,028 0 277.536 -980,116
4,100 37.597 133,786 0 278.464 -1,007,916
4,200 37.643 137,548 0 279.370 -1,035,806
4,300 37.688 141,314 0 280.257 -1,063,791
4400 37.730 145,085 0 281.123 -1,091,856



T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )

(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

4,500 37.768 148,860 0 281.972 -1,120,014
4,600 37.803 152,639 0 282.802 -1,148,250
4,700 37.832 156,420 0 283.616 -1,176,575
4,800 37.854 160,205 0 284.412 -1,204,973
4,900 37.868 163,991 0 285.193 -1,233,455
5,000 37.873 167,778 0 285.958 -1,262,012



TABLE 17: Ideal gas properties of oxygen atom, O

MW = 16.00,  hf,298 
0(kJ/kmol) = 249,197

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 22.477 –2,176 248,439 152.085 216,604
298 21.899 0 249,197 160.945 201,235
300 21.890 41 249,211 161.080 200,914
400 21.500 2,209 249,890 167.320 184,478
500 21.256 4,345 250,494 172.089 167,498
600 21.113 6,463 251,033 175.951 150,089
700 21.033 8,570 251,516 179.199 132,328
800 20.986 10,671 251,949 182.004 114,265
900 20.952 12,768 252,340 184.474 95,938

1,000 20.915 14,861 252,698 186,679 77,379
1,100 20.898 16,952 253,033 188,672 58,610
1,200 20.882 19,041 253,350 190.490 39,650
1,300 20–867 21,128 253,650 192.160 20,517
1,400 20.854 23,214 253,934 193.706 1,223
1,500 20.843 25,299 254,201 195,145 -18,222
1,600 20.834 27,383 254,454 196.490 -37,804
1,700 20.827 29,466 254,692 197.753 -57,517
1,800 20.822 31,548 254,916 198.943 -77,352
1,900 20.820 33,630 255,127 200.069 -97,304
2,000 20.819 35,712 255,325 201.136 -117,363
2,100 20.821 37,794 255,512 202.152 -137,528
2,200 20.925 39,877 255,687 203.121 -157,792
2,300 20.831 41,959 255,852 204.047 -178,152
2,400 20.840 44,043 256,007 204.933 -198,599
2,500 20.851 46,127 256,152 205.784 -219,136
2,600 20–865 48,213 256,288 206.602 -239,755
2,700 20.881 50,300 256,416 207.390 -260,456
2,800 20–899 52,389 256,535 208.150 -281,234
2,900 20.920 54,480 256,648 208.884 -302,087
3,000 20.944 56,574 256,753 209.593 -323,008
3,100 20.970 58,669 256,852 210.280 -344,002
3,200 20.998 60,768 256,945 210.947 -365,065
3,300 21.028 62,869 257,032 211.593 -386,191
3,400 21.061 64,973 257,114 212.221 -407,381
3,500 21.095 67,081 257,192 212.832 -428,634
3,600 21.132 69,192 257,265 213.427 -449,948
3,700 21.171 71,308 257,334 214.007 -471,321
3,800 21.212 73,427 257,400 214.572 -492,750
3,900 21.254 75,550 257,462 215.123 -514,233
4,000 21.299 77,678 257,522 215.662 -535,773
4,100 21.345 79,810 257,579 216.189 -557,368
4,200 21.392 81,947 257,635 216.703 -579,009
4,300 21,441 84,088 257,688 217.207 -600,705
4,400 21.490 86,235 257,740 217.701 -622,452



T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )

(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

4,500 21.541 88,386 257,790 218.184 -644,245
4,600 2L593 90,543 257,840 218.658 -666,087
4,700 21.646 92,705 257,889 219.123 -687,976
4,800 21.699 94,872 257,938 219.580 -709,915
4,900 21.752 97,045 257,987 220.028 -731,895
5,000 21.805 99,223 258,036 220.468 -753,920



TABLE 18: Ideal gas properties of hydroxyl, OH

MW = 17.01,  hf,298 
0(kJ/kmol) = 38,985

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 30.140 –2,948 38,864 171.607 1,716
298 29.932 0 38,985 183.604 -15,729
300 29.928 55 38,987 183.789 -16,097
400 29.718 3,037 39,030 192.369 -34,926
500 29.570 6,001 39,000 198.983 -54,506
600 29.527 8,955 38,909 204.369 -74,681
700 29.615 11,911 38,770 208.925 -95,352
800 29.844 14,883 38,599 212.893 -116,446
900 30.208 17,884 38,410 216.428 -137,916

1,000 30.682 20,928 38,220 219.635 -159,722
1,100 31.186 24,022 38,039 222.583 -181,834
1,200 31.662 27,164 37,867 225.317 -204,231
1,300 32.114 30,353 37,704 227.869 -226,892
1,400 32.540 33,586 37,548 230.265 -249,800
1,500 32.943 36,860 37,397 232.524 -272,941
1,600 33.323 40,174 37,252 234.662 -296,300
1,700 33.682 43,524 37,109 236.693 -319,869
1,800 34.019 46,910 36,969 238.628 -343,635
1,900 34.337 50,328 36,831 240.476 -367,591
2,000 34.635 53,776 36,693 242.245 -391,729
2,100 34.915 57,254 36,555 243.942 -416,039
2,200 35.178 60,759 36,416 245.572 -440,514
2,300 35.425 64,289 36,276 247.141 -465,150
2,400 35.656 67,843 36,133 248.654 -489,942
2,500 35.872 71,420 35,986 250.114 -514,880
2,600 36.074 75,017 35,836 251.525 -539,963
2,700 36.263 78,634 35,682 252.890 -565,184
2,800 36.439 82,269 35,524 254.212 -590,540
2,900 36.604 85,922 35,360 255.493 -616,023
3,000 36.759 89,590 35,191 256.737 -641,636
3,100 36.903 93,273 35,016 257.945 -667,372
3,200 37.039 96,970 34,835 259.118 -693,223
3,300 37.166 100,681 34,648 260.260 -719,192
3,400 37.285 104,403 34,454 261.371 -745,273
3,500 37.398 108,137 34,253 262.454 -771,467
3,600 37.504 111,882 34,046 263.509 -797,765
3,700 37.605 115,638 33,831 264.538 -824,168
3,800 37.701 119,403 33,610 265.542 -850,672
3,900 37.793 123,178 33,381 266.522 -877,273
4,000 37.882 126,962 33,146 267,480 60,027
4,100 37.968 130,754 32,903 268.417 -930,771
4,200 38.052 134,555 32,654 269.333 -957,659
4,300 38.135 138,365 32,397 270.229 -984,635
4,400 38.217 142,182 32,134 271.107 -1,011,704



T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )

(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

4,500 38.300 146,008 31,864 271.967 -1,038,859
4,600 38.382 149,842 31,588 272.809 -1,066,094
4,700 38.466 153,685 31,305 273.636 -1,093,419
4,800 38.552 157,536 31,017 274.446 -1,120,820
4,900 38.640 161,395 30,722 275.242 -1,148,306
5,000 38.732 165,264 30,422 276.024 -1,175,871



TABLE 19: Ideal gas properties of oxygen, O2

MW = 32.0,  hf,298 
0(kJ/kmol) = 0

T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )
(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

200 28.473 –2,836 0 193.518 -41,540
298 29.315 0 0 205.043 -61,103
300 29.331 54 0 205.224 -61,513

4010 30.210 3,031 0 213.782 -854,235
500 31.114 6,097 0 220.620 -104,213
600 32.030 9,254 0 226.374 -126,570
700 32.927 12,503 0 231.379 -149,462
800 33.757 15,838 0 235.831 -172,827
900 34.454 19,250 0 239.849 -196,614

1,000 34.936 22,721 0 243.507 -220,786
1,100 35.270 26,232 0 246.852 -245,305
1,200 35.593 29,775 0 249–935 -270,147
1,300 35.903 33,350 0 252.796 -295,285
1,400 36.202 36,955 0 255.468 -320,700
1,500 36.490 40,590 0 257.976 -346,374
1,600 36.768 44,253 0 260.339 -372,289
1,700 37.036 47,943 0 262.577 -398,438
1,800 37.296 51,660 0 264.701 -424,802
1,900 37.546 55,402 0 266.724 -451,374
2,000 37.788 59,169 0 268.656 -478,143
2,100 38.023 62,959 0 270.506 -505,104
2,200 38,250 66,773 0 272.280 -532,243
2,300 38.470 70,609 0 273.985 -559,557
2,400 38.684 74,467 0 275.627 -587,038
2,500 38.891 78,346 0 277.210 -614,679
2,600 39.093 82,245 0 278.739 -642,476
2,700 39.289 86,164 0 280.218 -670,425
2,800 39.480 90,103 0 281.651 -698,520
2,900 39.665 94,060 0 283.039 -726,753
3,000 39.846 98,036 0 284.387 -755,125
3,100 40.023 102,029 0 285.697 -783,632
3,200 40.195 106,040 0 286.970 -812,264
3,300 40.362 110,W 0 288.209 -841,022
3,400 40.526 114,112 0 289.417 -869,906
3,500 40.686 118,173 0 290.594 -898,906
3,600 40.842 122,249 0 291.742 -928,022
3,700 40.1994 126,341 0 292.863 -957,252
3,800 41.143 130,448 0 293.959 -986,596
3,900 41.287 134,570 0 295.029 -1,016,043
4,000 41.429 138,705 0 296.076 -1,045,599
4,100 41.566 142,855 0 297,101 -1,075,259
4,200 41.700 147,019 0 298–104 -1,105,018
4,300 41.830 151,195 0 299.087 -1,134,879
4,400 41,957 155,384 0 300.050 -1,164,836



T
(K)

cp0

(kJ/kmol–K)
h ht T t, ,− 298

(kJ/kmol)
h Tf

0 ( )
(kJ/kmol)

s T0 ( )

(kJ/kmol–K)

g T0 ( )
(kJ/kmol)

4,500 42.079 159,586 0 300.994 -1,194,887
4,600 42.197 163,800 0 301.921 -1,225,037
4,700 42.312 168,026 0 302.829 -1,255,270
4,800 42.421 172,262 0 303.721 -1,285,599
4,900 42.527 176,510 0 304.597 -1,316,015
5,000 42.627 180,767 0 305.457 -1,346,518



TABLE 20A Constants for the Benedict–Webb–Rubin

Units are P in bar(s), v  in m3/kmol, R =0.08314 bar m3/kmole K  and T in K

P = R T/ v  + (B2 R T–A2–C2/T
2)/ v2 + (B3 R T–A3)/ v3 + A3C6/ v6+ {D3/( v3T2)}(1+E2/ v2)

exp(–E2/ v2)

A2 B2 C2x10–6 A3 B3 D3x10–6 C6x1000 E2x100
Ammonia 3.839578 0.051646 0.180933 0.104914 0.00072 0.00016 0.004652 1.98
Argon 0.83412 0.022283 0.013312 0.029211 0.0021529 0.000809 0.0356 0.2338
Benzene 6.5944 0.0503 3.4746 5.6424 0.07633 1.1917 0.7001 2.930
Carbon dioxide 2.708886 0.045628 0.114834 0.052375 0.003082 0.007161 0.11271 0.494
Carbon Monoxide 1.3587 0.0426 0.008673 0.0371 0.002632 0.001054 0.135 0.6
Ethane 4.21072 0.062772 0.181976 0.349742 0.011122 0.033202 0.243389 1.18
Ethylene 3.383909 0.055683 0.132881 0.262438 0.0086 0.0214 0.178 0.923
Helium 0.04149 0.023661 1.64x10–7 –5.81x10–4 –1.97x10–7 –5.59x10–9 –0.007263 0.00779
i–Butane 10.36847 0.137544 0.861225 1.96335 0.039998 0.289806 1.07408 3.4
i–Butylene 9.072094 0.116025 0.939589 1.715169 0.034816 0.278569 0.910889 2.95945
i–Pentane 12.96575 0.160053 1.7695 3.806059 0.066812 0.704225 1.7 4.63
Methane 1.879623 0.0426 0.02287 0.500557 0.0338 0.002579 0.124359 0.6
n–Butane 10.21856 0.124361 1.006009 1.907296 0.039983 0.3206 1.10132 3.4
n–Heptane 17.75317 0.199005 4.808734 10.50233 0.151954 2.502787 4.35611 9
n–Hexane 14.62894 0.177813 3.363411 7.211176 0.109131 1.53284 2.81086 6.66849
Nitrogen 1.208329 0.0458 0.005967 0.015098 0.001982 0.000555 0.291545 0.75
n–Pentane 12.34107 0.156751 2.149367 4.128888 0.066812 0.83511 1.81 4.75
Oxygen 1.518695 0.046524 0.003913 –0.04104 –2.80E–05 –0.00021 0.008641 0.359
Propane 6.963471 0.097313 0.515003 0.96028 0.0225 0.130712 0.607175 2.2
Propylene 6.193333 0.085065 0.445012 0.784331 0.018706 0.103973 0.455696 1.829
Sulfurdioxide 2.148 0.026182 0.80146 0.8557 0.014653 0.1148 0.071955 0.59236

Sources: H. W. Cooper and J. Goldfrank, Hydrocarbon Processing, 46(12), 141 (1967); E. P.
Gyftopoulos, and G. P. Beretta, Thermodynamics, Foundations and Application, Macmillan
Publishing Co., NY, 1991.



TABLE 20B: Beatie Bridgemann Equation

P v2 = R T ( v  + B0 ( 1– ( b/ v) ) ( 1– c/( vT3))–A0 (1–(a/ v2))
May be used when ρ < 0.8 ρc. Units:  atm, m3/kmol, K

Gas Ao a Bo b c×10–4

Air 1.3012 0.01931 0.04611 –0.01101 4.34

Ar 1.2907 0.02328 0.03931 0.0 5.99
CH4 2.2769 0.01855 0.05587 –0.01587 12.83
C2H4 6.1520 0.04964 0.12156 0.03597 22.68
C2H6 5.8800 0.05861 0.09400 0.01915 90.00
C3H8 11.9200 0.07321 0.18100 0.04293 120.00
1–C4H8 16.6979 0.11988 0.24046 0.10690 300.00
Iso–C4H8 16.9600 0.10860 0.24200 0.08750 250.00
n–C4H10 17.7940 0.12161 0.24620 0.09423 350.00
Iso–C4H12 16.6037 0.11171 0.23540 0.07697 300.00
n–C5H12 28.2600 0.15099 0.39400 0.13960 400.00
Neo–C5H12 23.3300 0.15174 0.33560 0.13358 400.00
n–C7H16 54.520 0.20066 0.70816 0.19179 400.00
CH3OH 33.309 0.09246 0.60362 0.09929 32.03
(C2H5)2O 31.278 0.12426 0.45446 0.11954 33.33
CO 1.3445 0.02617 0.05046 –0.00691 4.20
CO2 5.0065 0.07132 0.10476 0.07235 66.00
H2 0.1975 –0.00506 0.02096 –0.04359 0.0504
He 0.0216 0.05984 0.01400 0.0 0.0040
I2 17.0 0.0 0.325 0.0 4000.
Kr 2.4230 0.02865 0.05261 0.0 14.89
N2 1.3445 0.02617 0.05046 –0.00691 4.20
Ne 0.2125 0.02196 0.02060 0.0 0.101
NH3 2.3930 0.17031 0.03415 0.19112 476.87
N2O 5.0065 0.07132 0.10476 0.07235 66.0
O2 1.4911 0.02562 0.04624 0.004208 4.80
Xe 4.6715 0.03311 0.07503 0.0 30.02

Equation from J. A. Beatie and O.C. Bridgemann, Pro. Roy Am. Acad. Sc., 63,229 (1928).
Source: adapted from G. J. Wiley, and R. Sonntag, Fundamentals of Classical Thermdynam-
ics, John Wiley & Sons, 1965.



TABLE 21: Lee Kesler Constants

Lee Kesler constants for simple (e.g.: Ar, He etc) and reference (octane) fluids. This is a modi-
fied form of BWR equation of state applicable for any substance. The equation has 12 con-
stants.

PR =  (TR/vR’ )(1 + A/vR + B/vR
2 + C/vR

5 + {b4 /(TR 3 vR
2)} { β + γ/vr

2} exp { - γ /vR
2})

where A = a1 - a2/TR - a3/TR 2 - a4/TR 3

B = b1 - b2/TR + b3/TR 3

C = c1 + c2/TR

Z = PR vR ‘/TR = PR vR’/TR = 1 + A/vR + B/vR
2 + C/Vr

5 + (b4 /(TR 3 vr
2)) ( β + γ/vr

2) exp ( – γ
/vR

2),
wref =w octane = 0.398, z(1) = {z(ref) (PR,TR) – z(0) (PR,TR)} /wref , z(PR,TR) = z(0) (PR,TR)+ w z(1)

(PR,TR)

Simple Reference (Octane)

a1 0.1181193 0.2026579
a2 0.265728 0.331511
a3 0.154790 0.027655
a4 0.030323 0.203488
b1 0.0236744 0.0313885
b2 0.0186984 0.0503618
b3 0.0 0.016901
b4 0.042724 0.041577
c1 0.155488x10–4 0.48736x10–4

c2 0.623689x10–4 0.740336x10–5

ββββ 0.65392 1.226

γγγγ 0.060167 0.03754

Adapted from R. Sonntag, C. Borgnakke and G. J. Wylen, Fundamentals of Classical Thermo-
dynamics, 5th Ed. John Wiley & Sons, 1998.



TABLE 22: Pitzer generalized saturation data

TR
–(log
PR)(0)

(∂Iog PR/
∂ω) Vaporization

Vapor Liquid

∆sfg
(O)/R ∆sfg

(1)/R Z(0) Z(1) Z(0) Z(1)

1.00 0.000 0.000 0.00 0.00 0.291 –0.090 0.291 –0.080
0.99 0.025 0.021 1.29 1.42 0.43 –0.030 0.202 –0.090
0.98 0.050 0.042 1.70 1.97 0.47 0.000 0.179 –0.093
0.97 0.076 0.064 2.01 2.38 0.51 +0.020 0.162 –0.095
0.96 0.102 0.086 2.28 2.71 0.54 0.035 0.148 –0.095
0.95 0.129 0.109 2.52 3.00 0.565 0.045 0.136 –0.095
0.94 0.156 0.133 2.74 3.28 0.59 0.055 0.125 –0.094
0.92 0.212 0.180 3.14 3.80 0.63 0.075 0.108 –0.092
0.90 0.270 0.230 3.50 4.29 0.67 0.095 0.0925 –0.087
0.89 0.330 0.285 3.82 4.73 0.70 0.110 0.0790 –0.080
0.86 0.391 0.345 4.12 5.18 0.73 0.125 0.0680 –0.075
0.84 0.455 0.405 4.42 5.64 0.756 0.135 0.0585 –0.068
0.82 0.522 0.475 4.72 6.09 0.781 0.140 0.0498 –0.062
0.80 0.592 0.545 5.02 6.54 0.804 0.144 0.0422 –0.057
0.78 0.665 0.620 5.32 7.00 0.826 0.144 0.0360 –0.053
0.76 0.742 0.705 5.64 7.50 0.846 0.142 0.0300 –0.048
0.74 0.823 0.800 5.96 9.05 0.864 0.137 0.0250 –0.043
0.72 0.909 0.895 6.29 8.56 0.881 0.131 0.0210 –0.037
0.70 1.000 1.00 6.64 9.11 0.897 0.122 0.0172 –0.032
0.68 1.096 1.12 6.99 9.72 0.911 0.113 0.0138 –0.027
0.66 1.198 1.25 7.36 10.3 0.922 0.104 0.0111 –0.022
0.64 1.308 1.39 7.73 11.0 0.932 0.097 0.0088 –0.018
0.62 1.426 1.54 8.11 11.7 0.940 0.090 0.0068 –0.015
0.60 1.552 1.70 8.52 12.4 0.947 0.083 0.0052 –0.012
0.58 1.688 1.88 8.93 13.2 0.953 0.077

From G. N. Lewis, and M.Randall, Thermodynamics, 2nd Ed., McGraw Hill Inc., NY 1961.
Original source K.S. Pitzer et al., J. Am. Chem.Soc., 77, 3439, 1955.



TABLE 23A: Lee–Kesler values for Z(0) (TR,PR)

PR

TR 0.01 0.05 0.1 0.2 0.4 0.6 0.8
0.3 0.0029 0.0145 0.029 0.0579 0.1158 0.1737 0.2315

0.35 0.0026 0.013 0.0261 0.0522 0.1043 0,1564 0.2084
0.4 0.0024 0.0119 0.0239 0.0477 0.0953 0.1429 0.1904

0.45 0.0022 0.011 0.0221 0.0442 0.0882 0.1322 0.1762
0.5 0.0021 0.0103 0.0207 0.0412 0.0825 0.1236 0.1647

0.55 0.9804 0.0098 0.0195 0.039 0.0778 0.1166 0.1553
0.6 0.9849 0.0093 0.0186 0.0371 0.0741 0.1109 0.1476

0.65 0.9881 0.9377 0.0178 0.0356 0.071 0.1063 0.1415
0.7 0.9904 0.9504 0.8958 0.0344 0.0687 0.1027 0.1366

0.75 0.9922 0.9598 0.9165 0.0336 0.067 0.1001 0.133
0.8 0.9935 0.9669 0.9319 0.8539 0.0661 0.0985 0.1307

0.85 0.9946 0.9725 0.9436 0.881 0.0661 0.0983 0.1301
0.9 0.9954 0.9768 0.9528 0.9015 0.78 0.1006 0.1321

0.93 0.9959 0.979 0.9573 0.9115 0.8059 0.6635 0.1359
0.95 0.9961 0.9803 0.96 0.9174 0.8206 0.6967 0.141
0.97 0.9963 0.9815 0.9625 0.9227 0.8338 0.724 0.558
0.98 0.9965 0.9821 0.9637 0.9253 0.8398 0.736 0.5881
0.99 0.9966 0.9826 0.9648 0.9277 0.8455 0.7471 0.6138

1 0.9967 0.9832 0.9659 0.93 0.9509 0.7574 0.6353
1.01 0.9969 0.9837 0.9669 0.9322 0.8561 0.7671 0.6542
1.02 0.9969 0.9842 0.9679 0.9343 0.861 0.7761 0.671
1.05 0.9971 0.9855 0.9707 0.9401 0.8743 0.8002 0.713

1.1 0.9975 0.9874 0.9747 0.9485 0.893 0.8323 0.7649
1.15 0.9978 0.9891 0.978 0.9554 0.9081 0.8576 0.8032

1.2 0.9981 0.9904 0.9808 0.9611 0.9205 0.8779 0.833
1.3 0.9985 0.9926 0.9852 0.9702 0.9396 0.9083 0.8764
1.4 0.9988 0.9942 0.9884 0.9768 0.9534 0.9298 0.9062
1.5 0.9991 0.9954 0.9909 0.9818 0.9636 0.9456 0.9278
1.6 0.9993 0.9964 0.9928 0.9856 0.9714 0.9575 0.9439
1.7 0.9994 0.9971 0.9943 0.9886 0.9775 0.9667 0.9563
1.8 0.9995 0.9977 0.9955 0,9910 0.9823 0.9739 0.9659
1.9 0.9996 0.9982 0.9964 0.9929 0.9861 0.9796 0.9735

2 0.9997 0.9986 0.9972 0.9944 0.9892 0.9842 0.9796
2.2 0.9998 0.9992 0.9983 0.9967 0.9937 0.991 0.9886
2.4 0.9999 0.9996 0.9991 0.9983 0.9969 0.9957 0.9948
2.6 1 0.9998 0.9997 0.9994 0.9991 0.999 0.999
2.8 1 1 1.0001 1.0002 1.0007 1.0013 1.0021

3 1 1.0002 1.0004 1.0008 1.0018 1.003 1.0043
3.5 1.0001 1.0004 1.0008 1.0017 1.0035 1.0055 1.0075

4 1.0001 1.0005 1.001 1.0021 1.0043 1.0066 1.009



TABLE23A: Lee–Kesler values for Z(0) (TR,PR) (continued)

PRTR
1.000 1.200 1.500 2.000 3.000 5.000 7.000 10.000

0.30 0.2892 0.3470 0.4335 0.5775 0.8648 1.4366 2.0048 2.8507
0.35 0.2604 0.3123 0.3901 0.5195 0.7775 1.2902 1.7987 2.5539
0.40 0.2379 0.2853 0.3563 0.4744 0.7095 1.1758 1.6373 2.3211
0.45 0.2200 0.2638 0.3294 0.4384 0.6551 1.0841 1.5077 2.1338
0.50 0.2056 0.2465 0.3077 0.4092 0.6110 1.0094 1.4017 1.9801
0.55 0.1939 0.2323 0.2899 0.3853 0.5747 0.9475 1.3137 1.8520
0.60 0.1842 0.2207 0.2753 0.3657 0.5446 0.8959 1.2398 1.7440
0.65 0.1765 0.2113 0.2634 0.3495 0.5197 0.8526 1.1773 1.6519
0.70 0.1703 0.2038 0.2538 0.3364 0.4991 0.8161 1.1241 1.5729
0.75 0.1656 0.1981 0.2464 0.3260 0.4823 0.7854 1,0787 1.5047
0.80 0.1626 0.1942 0.2411 0.3182 0.4690 0.7598 1.0400 1.4456
0.85 0.1614 0.1924 0.2382 0.3132 0.4591 0.7388 1.0071 1.3943
0.90 0.1630 0.1935 0.2383 0.3114 0.4527 0.7220 0.9793 1.3496
0.93 0.1664 0.1963 0.2405 0.3122 0.4507 0.7138 0.9648 1.3257
0.95 0.1705 0.1998 0.2432 0.3138 0.4501 0.7092 0.9561 1.3108
0.97 0.1779 0.2055 0.2474 0.3164 0.4504 0.7052 0.9480 1.2968
0.98 0.1844 0.2097 0.2503 0.3182 0.4508 0.7035 0.9442 1.2901
0.99 0.1959 0.2154 0.2538 0.3204 0.4514 0.7018 0.9406 1.2835
1.00 0.2901 0.2237 0.2583 0.3229 0.4522 0.7004 0.9372 1.2772
1.01 0.4648 0.2370 0.2640 0.3260 0.4533 0.6991 0.9339 1.2710
1.02 0.5146 0.2629 0.2715 0,3297 0.4547 0.6980 0.9307 1.2650
1.05 0.6026 0.4437 0.3131 0.3452 0.4604 0.6956 0.9222 1.2481
1.10 0.6880 0.5984 0.4580 0.3953 0.4770 0.6950 0.9110 1.2232
1.15 0.7443 0.6803 0.5798 0.4760 0.5042 0.6987 0.9033 1.2021
1.20 0.7858 0.7363 0.6605 0,5605 0.5425 0.7069 0.8990 1.1844
1.30 0.8438 0.8111 0.7624 0.6908 0.6344 0.7358 0.8998 1.1580
1.40 0.8827 0.8595 0.8256 0.7753 0.7202 0.7761 0.9112 1.1419
1.50 0.9103 0.8933 0,8689 0.8328 0.7887 0.8200 0.9297 1.1339
1.60 0.9308 0.9180 0.9000 0.8738 0.8410 0.8617 0.9518 1.1320
1.70 0.9463 0.9367 0.9234 0.9043 0.8809 0.8984 0.9745 1.1343
1.80 0.9583 0.9511 0.9413 0.9275 0.9118 0.9297 0.9961 1.1391
1.90 0.9678 0.9624 0.9552 0.9456 0.9359 0.9557 1.0157 1.1452
2.00 0.9754 0.9715 0.9664 0.9599 0.9550 0.9772 1.0328 1.1516
2.20 0.9865 0.9847 0.9826 0.9806 0.9827 1.0094 1.0600 1.1635
2.40 0.9941 0.9936 0.9935 0.9945 1.0011 1.0313 1.0793 1.1728
2.60 0.9993 0.9998 1.0010 1.0040 1.0137 1.0463 1.0926 1.1792
2.80 1.0031 1.0042 1.0063 1.0106 1.0223 1.0565 1.1016 1.1830
3.00 1.0057 1.0074 1.0101 1.0153 1.0284 1.0635 1.1075 1.1848
3.50 1.0097 1.0120 0.0156 1.0221 1.0368 1.0723 1.1138 1.1834
4.00 1.0115 1.0140 1.0179 1.0249 1.0401 1.0747 1.1136 1.1773

Tables 23A to 26 B from B. I. Lee, and M. G. Kesler, A Generalized Thermodynamic Corre-
lation Based on Three Parameter Corresponding States, AIChE Journal, 21(3): 510–527,
1975. Reproduced by permission of the American Institute of Chemical Engineers. © 1975
AIChE. (With permission.)



TABLE 23B: Lee–Kesler values for Z (1) (TR, PR)

PRTR
0.01 0.05 0.1 0.2 0.3 0.4 0.6 0.8

0.30 –0.0008 –0.0040 –0.0081 –0.0161 –0.0323 –0.0484 –0.064
0.35 –0.0009 –0.0046 –0.0093 –0.0185 –0.0370 –0.0554 –0.073
0.40 –0.0010 –0.0048 –0.0095 –0.0190 –0.0380 –0.0570 –0.075
0.45 –0.0009 –0.0047 –0.0094 –0.0187 –0.0374 –0.0560 –0.074
0.50 –0.0009 –0.0045 –0.0090 –0.0181 –0.0360 –0.0539 –0.071
0.55 –0.0314 –0.0043 –0.0086 –0.0172 –0.0343 –0.0513 –0.068
0.60 –0.0205 –0.0041 –0.0082 –0.0164 –0.0326 –0.0487 –0.064
0.65 –0.0137 –0.0772 –0,0078 –0.0156 –0.0309 –0.0461 –0.061
0.70 –0.0093 –0.0507 –0.1161 –0.0148 –0.0294 –0.0438 –0.057
0.75 –0.0064 –0.0339 –0.0744 –0.0143 –0.0282 –0.0417 –0.055
0.80 –0.0044 –0.0228 –0.0487 –0.1160 –0.0272 –0.0401 –0.052
0.85 –0.0029 –0.0152 –0.0319 –0.0715 –0.0268 –0.0391 –0.050
0.90 –0.0019 –0.0099 –0.0205 –0.0442 0.1118 –0.0396 –0.050
0.93 –0.0015 –0.0075 –0.0154 –0.0326 –0.0763 –0.1662 –0.051
0.95 –0.0012 –0.0062 –0.0126 –0.0262 –0.0589 –0.1110 –0.054
0.97 –0.0010 –0.0050 –0.0101 –0.0208 –0.0450 –0.0770 –0.164
0.98 –0.0009 –0.0044 –0.0090 –0.0184 –0.0390 –0.0641 –0.110
0.99 –0.0008 –0.0039 –0.0079 –0.0161 –0.0335 –0.0531 –0.079
1.00 –0.0007 –0.0034 –0.0069 –0.0140 –0.0285 –0.0435 –0.058
1.01 –0.0006 –0.0030 –0.0060 –0.0120 –0.0240 –0.0351 –0.042
1.02 –0.0005 –0.0026 –0.0051 –0.0102 –0.0198 –0.0277 –0.030
1.05 –0.0003 –0.0015 –0.0029 –0.0054 –0.0092 –0.0097 –0.003
1.10 –0.0000 0.0000 0.0001 0.0007 0.0038 0.0106 0.023
1.15 0.0002 0.0011 0.0023 0.0052 0.0127 0.0237 0.039
1.20 0.0004 0.0019 0.0039 0.0084 0.0190 0.0326 0.049
1.30 0.0006 0.0030 0.0061 0.0125 0.0267 0.0429 0.061
1.40 0.0001 0.0036 0.0072 0.0147 0.0306 0.0477 0.066
1.50 0.0008 0.0039 0.0078 0.0158 0.0323 0.0497 0.06'7
1.60 0.0008 0.0040 0.0080 0.0162 0.0330 0.0501 0.067
1.70 0.0008 0.0040 0.0081 0.0163 0.0329 0.0497 0.066
1.80 0.0008 0.0040 0.0081 0.0162 0.0325 0.0488 0.065
1.90 0.0008 0.0040 0.0079 0.0159 0.0318 0.0477 0.063
2.00 0.0008 0.0039 0.0078 0.0155 0.0310 0.0464 0.061
2.20 0.0007 0.0037 0.0074 0,0147 0.0293 0.0437 0.057
2.40 0.0007 0.0035 0.0070 0.0139 0.0276 0.0411 0.054
2.60 0.0007 0.0033 0.0066 0.0131 0.0260 0.0387 0.051
2.80 0.0006 0.0031 0.0062 0.0124 0.0245 0.0365 0.048
3.00 0.0006 0.0029 0.0059 0.0117 0.0232 0.0345 0.045
3.50 0.0005 0.0026 0.0052 0.0103 0.0204 0.0303 0.040
4.00 0.0005 0.0023 0.0046 0.0091 0.0182 0.0270 0.035



TABLE 23B: Lee–Kesler values for Z(1) (TR, PR) (continued)

PRTR
1 1.2 1.5 2 3 5 7 10

0.30 –0.0806 –0.0966 –0.1207 –0.1608 –0.2407 –0.3996 –0–5572 –0.7915
0.35 –0.0921 –0.1105 –0.1379 –0.1834 –0.2738 –0.4523 –0.6279 –0.8863
0.40 –0.0946 –0.1134 –0.1414 –0.1879 –0.2799 –0.4603 –0.6365 –0.8936
0.45 –0.0929 –0.1113 –0.1387 –0.1840 –0.2734 –0.4475 –0.6162 –0.8606
0.50 –0.0893 –0.1069 –0.1330 –0.1762 –0.2611 –0.4253 –0.5831 –0.8099
0.55 –0.0849 –0.1015 –0.1263 –0.1669 –0.2465 –0.3991 –0.5446 –0.7521
0.60 –0.0803 –0.0960 –0.1192 –0.1572 –0.2312 –0.3718 –0.5047 –0.6928
0.65 –0.0759 –0.0906 –0.1122 –0.1476 –0.2160 –0.3447 –0.4653 –0.6346
0.70 –0.0718 –0.0855 –0.1057 –0.1385 –0.2013 –0.3184 –0.4270 –0.5785
0.75 –0.0681 –0.0808 –0.0996 –0.1298 –0.1872 –0.2929 –0.3901 –0.5250
0.80 –0.0648 –0.0767 –0.0940 –0.1217 –0.1736 –0.2682 –0.3545 –0.4740
0.85 –0.0622 –0.0731 –0.0888 –0.1138 –0.1602 –0.2439 –0.3201 –0.4254
0.90 –0.0604 –0.0701 –0.0840 –0.1059 –0.1463 –0.2195 –0.2862 –0.3788
0.93 –0.0602 –0.0687 –0.0810 –0.1007 –0.1374 –0.2045 –0.2661 –0.3516
0.95 –0.0607 –0.0678 –0.0788 –0.0967 –0.1310 –0.1943 –0.2526 –0.3339
0.97 –0.0623 –0.0669 –0.0759 –0.0921 –0.1240 –0.1837 –0.2391 –0.3163
0.98 –0.0641 –0.0661 –0.0740 –0.0893 –0.1202 –0.1783 –0.2322 –0.3075
0.99 –0.0680 –0.0646 –0.0715 –0.0861 –0.1162 –0.1728 –0.2254 –0.2989
1.00 –0.0879 –0.0609 –0.0678 –0.0824 –0.1118 –0.1672 –0.2185 –0.2902
1,01 –0.0223 –0.0473 –0.0621 –0.0778 –0.1072 –0.1615 –0.2116 –0.2816
1.02 –0.0062 0.0227 –0.0524 –0.0722 –0.1021 –0.1556 –0.2047 –0.2731
1.05 0.0220 0.1059 0.0451 –0.0432 –0.0838 –0.1370 –0.1835 –0.2476
1.10 0.0476 0.0897 0.1630 0.0698 –0.0373 –0.1021 –0.1469 –0.2056
1.15 0.0625 0.0943 0.1548 0.1667 0.0332 0.0611 –0.1084 –0.1642
1.20 0.0719 0.0991 0.1477 0.1990 0.1095 –0.0141 –0.0678 –0.1231
1.30 0.0819 0.1048 0.1420 0.1991 0.2079 0.0875 0.0176 –0.0423
1.40 0.0857 0.1063 0.1383 0.1894 0.2397 0.1737 0.1008 0.0350
1.50 0.0864 0.1055 0.1345 0.1806 0.2433 0.2309 0.1717 0.1058
1.60 0.0855 0.1035 0.1303 0.1729 0.2381 0.2631 0.2255 0.1673
1.70 0.0838 0.1008 0.1259 0.1658 0.2305 0.2788 0.2628 0.2179
1.80 0.0816 0.0978 0.1216 0.1593 0.2224 0.2946 0.2971 0.2576
1.90 0.0792 0.0947 0.1173 0.1532 0.2144 0.2848 0.3017 0.2876
2.00 0.0767 0.0916 0.1133 0.1476 0.2069 0.2819 0.3097 0.3096
2.20 0.0719 0.0857 0.1057 0.1374 0.1932 0.2720 0.3135 0.3355
2.40 0.0675 0.0803 0.0989 0.1285 0.1812 0.2602 0.3089 0.3459
2.60 0.0634 0.0754 0.0929 0.1207 0.1706 0.2484 0.3009 0.3475
2.80 0.0598 0.0711 0.0876 0.1138 0,1613 0.2372 0.2915 0.3443
3.00 0.0565 0.0672 0.0828 0.1076 0.1529 0.2268 0.2817 0.3385
3.50 0.0497 0.0591 0.0728 0.0949 0.1356 0.2042 0.2584 0.3194
4.00 0.0443 0.0527 0.0651 0.0849 0.1219 0.1857 0.2378 0.2994



TABLE 24A: Lee–Kesler residual enthalpy values for ((h0 - h) (0)/ (R Tc))

TR PR

0.01 0.05 0.1 0.2 0.4 0.6 0.8
0.3 6.045 6.043 6.04 6.034 6.022 6.011 5.999

0.35 5.906 5.904 5.901 5.895 5.882 5.87 5.858
0.4 5.763 5.761 5.757 5.751 5.738 5.726 5.713

0.45 5.615 5.612 5.609 5.603 5.59 5.577 5.564
0.5 5.465 5.463 4.459 5.453 5.44 5.427 5.414

0.55 0.032 5.312 5.309 5.303 5.29 5.278 5.265
0.6 0.027 5.162 5.159 5.153 5.141 5.129 5.116

0.65 0.023 0.118 5.008 5.002 4.991 4.98 4.968
0.7 0.02 0.101 0.213 4.848 4.838 4.828 4.818

0.75 0.017 0.088 0.183 4.687 4.679 4.672 4.664
0.8 0.015 0.078 0.16 0.345 4.507 4.504 4.499

0.85 0.014 0.069 0.141 0.3 4.309 4.313 4.316
0.9 0.012 0.062 0.126 0.264 0.596 4.074 4.094

0.93 0.011 0.058 0.118 0.246 0.545 0.96 3.92
0.95 0.011 0.056 0.113 0.235 0.516 0.885 3.763
0.97 0.011 0.054 0.109 0.225 0.49 0.824 1.356
0.98 0.01 0.053 0.107 0.221 0.478 0.797 1.273
0.99 0.01 0.052 0.105 0.216 0.466 0.773 1.206

1 0.01 0.051 0.103 0.212 0.455 0.75 1.151
1.01 0.01 0.05 0.101 0.208 0.445 0.728 0.102
1.02 0.01 0.049 0.099 0.203 0.434 0.708 1.06
1.05 0.009 0.046 0.094 0.192 0.407 0.654 0.955

1.1 0.008 0.042 0.086 0.175 0.367 0.581 0.827
1.15 0.008 0.039 0.079 0.16 0.334 0.523 0.732

1.2 0.007 0.036 0.073 0.148 0.305 0.474 0.657
1.3 0.006 0.031 0.063 0.127 0.259 0.399 0.545
1.4 0.005 0.027 0.055 0.11 0.224 0.341 0.463
1.5 0.005 0.024 0.048 0.097 0.196 0.297 0.4
1.6 0.004 0.021 0.043 0.086 0.173 0.261 0.35
1.7 0.004 0.019 0.038 0.076 0.153 0.231 0.309
1.8 0.003 0,017 0.034 0.068 0.137 0.206 0.275
1.9 0.003 0.015 0.031 0.062 0.123 0.185 0.246

2 0.003 0.014 0.028 0.056 0.111 0.167 0.222
2.2 0.002 0.012 0.023 0.046 0.092 0.137 0.182
2.4 0.002 0.01 0.019 0.038 0.076 0.114 0.15
2.6 0.002 0.008 0.016 0.032 0.064 0.095 0.125
2.8 0.001 0.007 0.014 0.027 0.054 0.08 0.105

3 0.001 0.006 0.011 0.023 0.045 0.067 0.088
3.5 0.001 0.004 0.007 0.015 0.029 0.043 0.056

4 0 0.002 0.005 0.009 0.017 0.026 0.033



TABLE 24A: Lee–Kesler residual enthalpy values for ((h0 - h) (0)/ (R Tc));(continued)

TR PR

1 1.2 1.5 2 3 5 7 10
0.3 5.987 5.975 5.957 5.927 5.868 5.748 5.628 5.446

0.35 5.845 5.833 5.814 5.783 5.721 5.595 5.469 5.278
0.4 5.7 5.687 5.668 5.636 5.572 5.442 5.311 5.113

0.45 5.551 5.538 5.519 5.486 5.421 5.288 5.154 4.95
0.5 5.401 5.388 5.369 5.336 5.27 5.135 4.999 4.791

0.55 5.252 5.239 5.22 5.187 5.121 4.986 4.849 4.638
0.6 5.104 5.091 5.073 5.041 4.976 4.842 4.704 4.492

0.65 4.956 4.945 4.927 4.896 4.833 4.702 4.565 4.353
0.7 4.808 4.797 4.781 4.752 4.693 4.566 4.432 4.221

0.75 4.655 4.646 4.632 4.607 4.554 4.434 4.303 4.095
0.8 4.494 4.488 4.478 4.459 4.413 4.303 4.178 3.974

0.85 4.316 4.316 4.312 4.302 4.269 4.173 4.056 3.857
0.9 4.108 4.118 4.127 4.132 4.119 4.043 3.935 3.744

0.93 3.953 3.976 4 4.02 4.024 3.963 3.863 3.678
0.95 3.825 3.865 3.904 3.94 3.958 3.91 3.815 3.634
0.97 3.658 3.732 3.796 3.853 3.89 3.856 3.767 3.591
0.98 3.544 3.652 3.736 3.806 3.854 3.829 3.743 3.569
0.99 3.376 3.558 3.67 3.758 3.818 3.801 3.719 3.548

1 2.584 3.441 3.598 3.706 3.782 3.774 3.695 3.526
1.01 1.796 3.283 3.516 3.652 3.744 3.746 3.671 3.505
1.02 1.627 3.039 3.442 3.595 3.705 3.718 3.647 3.484
1.05 1.359 2.034 3.03 3.398 3.583 3.632 3.575 3.42

1.1 1.12 1.487 2.203 2.965 3.353 3.484 3.453 3.315
1.15 0.968 1.239 1.719 2.479 3.091 3.329 3.329 3.211

1.2 0.857 1.076 1.443 2.079 2.807 3.166 3.202 3.107
1.3 0.698 0.86 1.116 1.56 2.274 2.825 2.942 2.899
1.4 0.588 0.716 0.915 1.253 1.857 2.486 2.679 2.692
1.5 0.505 0.611 0.774 1.046 1.549 2.175 2.421 2.486
1.6 0.44 0.531 0.667 0.894 1.318 1.904 2.177 2.285
1.7 0.387 0.466 0.583 0.777 1.139 1.672 1.953 2.091
1.8 0.344 0.413 0.515 0.683 0.996 1.476 1.751 1.908
1.9 0.307 0.368 0.458 0.606 0.88 1.309 1.571 1.736

2 0.276 0.33 0.411 0.541 0.782 1.167 1.411 1.577
2.2 0.226 0.269 0.334 0.437 0.629 0.937 1.143 1.295
2.4 0.187 0.222 0.275 0.359 0.513 0.761 0.929 1.058
2.6 0.155 0.185 0.228 0.297 0.422 0.621 0.756 0.858
2.8 0.13 0.154 0.19 0.246 0.348 0.508 0.614 0.689

3 0.109 0.129 0.159 0.205 0.288 0.415 0.495 0.545
3.5 0.069 0.081 0.099 0.127 0.174 0.239 0.27 0.264

4 0.041 0.048 0.058 0.072 0.095 0.116 0.11 0.061



TABLE 24B: Lee–Kesler residual enthalpy values for ((h0 – h)(1)/(RTc))

TR PR

0.01 0.05 0.1 0.2 0.4 0.6 0.8
0.3 11.098 11.096 11.095 11.091 11.083 11.076 11.069

0.35 10.656 10.655 10.654 10.653 10.65 10.646 10.643
0.4 10.121 10.121 10.121 10.12 10.121 10.121 10.121

0.45 9.515 9.515 9.516 9.517 9.519 9.521 9.523
0.5 8.868 8.869 8.87 8.872 8.876 8.88 8.884

0.55 0.08 8.211 8.212 8.215 8.221 8.226 8.232
0.6 0.059 7.568 7.57 7.573 7.579 7.585 7.591

0.65 0.045 0.247 6.949 6.952 6.959 6.966 6.973
0.7 0.034 0.185 0.415 6.36 6.367 6.373 6.381

0.75 0.027 0.142 0.306 5.796 5.802 5.809 5.816
0.8 0.021 0.11 0.234 0.542 5.266 5.271 5.278

0.85 0.017 0.087 0.182 0.401 4.753 4.754 4.758
0.9 0.014 0.07 0.144 0.308 0.751 4.254 4.248

0.93 0.012 0.061 0.126 0.265 0.612 1.236 3.942
0.95 0.011 0.056 0.115 0.241 0.542 0.994 3.737
0.97 0.01 0.052 0.105 0.219 0.483 0.837 1.616
0.98 0.01 0.05 0.101 0.209 0.457 0.776 1.324
0.99 0.009 0.048 0.097 0.2 0.433 0.722 1.154

1 0.009 0.046 0.093 0.191 0.41 0.675 1.034
1.01 0.009 0.044 0.089 0.183 0.389 0.632 0.94
1.02 0.008 0.042 0.085 0.175 0.37 0.594 0.863
1.05 0.007 0.037 0.075 0.153 0.318 0.498 0.691

1.1 0.006 0.03 0.061 0.123 0.251 0.381 0.507
1.15 0.005 0.025 0.05 0.099 0.199 0.296 0.385

1.2 0.004 0.02 0.04 0.08 0.158 0.232 0.297
1.3 0.003 0.013 0.026 0.052 0.1 0.142 0.177
1.4 0.002 0.008 0.016 0.032 0.06 0.083 0.1
1.5 0.001 0.005 0.009 0.018 0.032 0.042 0.048
1.6 0 0.002 0.004 0.007 0.012 0.013 0.011
1.7 0 0 0 0 –0.003 –0.009 –0.017
1.8 0 –0.001 –0.003 –0.006 –0.015 –0.025 –0.037
1.9 –0.001 –0.003 –0.005 –0.011 –0.023 –0.037 –0.053

2 –0.001 –0.003 –0.007 –0.015 –0.03 –0.047 –0.065
2.2 –0.001 –0.005 –0.01 –0.02 –0.04 –0.062 –0.083
2.4 –0.001 –0.006 –0.012 –0.023 –0.047 –0.071 –0.095
2.6 –0.001 –0.006 –0.013 –0.026 –0.052 –0.078 –0.104
2.8 –0.001 –0.007 –0.014 –0.028 –0.055 –0.082 –0.11

3 –0.001 –0.007 –0.014 –0.029 –0.058 –0.086 –0.114
3.5 –0.002 –0.008 –0.016 –0.031 –0.062 –0.092 –0.122

4 –0.002 –0.008 –0.016 –0.032 –0.064 –0.096 –0.127



TABLE 24B: Lee–Kesler residual enthalpy values for ((h0 – h)(1)/(RTc)) (continued)

TR PR

1 1.2 1.5 2 3 5 7 10
0.3 11.062 11.055 11.044 11.027 10.992 10.935 10.872 10.781

0.35 10.64 10.637 10.632 10.624 10.609 10.581 10.554 10.529
0.4 10.121 10.121 10.121 10.122 10.123 10.128 10.135 10.15

0.45 9.525 9.527 9.531 9.537 9.549 9.576 9.611 9.663
0.5 8.888 8.892 8.999 8.909 9.932 8.978 9.03 9.111

0.55 8.238 8.243 8.252 8.267 8.298 8.36 8.425 8.531
0.6 7.596 7.603 7.614 7.632 7.669 7.745 7.824 7.95

0.65 6.98 6.987 6.997 7.017 7.059 7.147 7.239 7.381
0.7 6.388 6.395 6.407 6.429 6.475 6.574 6.677 6.837

0.75 5.824 5.832 5.845 5.868 5.918 6.027 6.142 6.318
0.8 5.285 5.293 5.306 5.33 5.385 5.506 5.632 5.824

0.85 4.763 4.771 4.784 4.81 4.872 5.008 5.149 5.358
0.9 4.249 4.255 4.268 4.298 4.371 4.53 4.688 4.916

0.93 3.934 3.937 3.951 3.987 4.073 4.251 4.422 4.662
0.95 3.712 3.713 3.73 3.773 3.873 4.068 4.248 4.497
0.97 3.47 3.467 3.492 3.551 3.67 3.885 4.077 4.336
0.98 3.332 3.327 3.363 3.434 3.568 3.795 3.992 4.257
0.99 3.164 3.164 3.223 3.313 3.464 3.705 3.909 4.178

1 2.471 2.952 3.065 3.186 3.358 3.615 3.825 4.1
1.01 1.375 2.595 2.88 3.051 3.251 3.525 3.742 4.023
1.02 1.18 1.723 2.65 2.906 3.142 3.435 3.661 3.947
1.05 0.877 0.878 1.496 2.381 2.8 3.167 3.418 3.722

1.1 0.617 0.673 0.617 1.261 2.167 2.72 3.023 3.362
1.15 0.459 0.503 0.487 0.604 1.497 2.275 2.641 3.019

1.2 0.349 0.381 0.381 0.361 0.934 1.84 2.273 2.692
1.3 0.203 0.218 0.218 0.178 0.3 1.066 1.592 2.086
1.4 0.111 0.115 0.108 0.07 0.044 0.504 1.012 1.547
1.5 0.049 0.046 0.032 –0.009 –0.078 0.142 0.556 1.08
1.6 0.005 –0.004 –0.023 –0.065 –0.151 –0.082 0.217 0.689
1.7 –0.027 –0.04 –0.063 –0.109 –0.202 –0.223 –0.028 0.369
1.8 –0.051 –0.067 –0.094 –0.143 –0.241 –0.317 –0.203 0.112
1.9 –0.07 –0.088 –0.117 –0.169 –0.271 –0.381 –0.33 –0.092

2 –0.085 –0.105 –0.136 –0.19 –0.295 –0.428 –0.424 –0.255
2.2 –0.106 –0.128 –0.163 –0.221 –0.331 –0.493 –0.551 –0.489
2.4 –0.12 –0.144 –0.181 –0.242 –0.356 –0.535 –0.631 –0.645
2.6 –0.13 –0.156 –0.194 –0.257 –0.376 –0.567 –0.687 –0.754
2.8 –0.137 –0.164 –0.204 –0.269 –0.391 –0.591 –0.729 –0.836

3 –0.142 –0.17 –0.211 –0.278 –0.403 –0.611 –0.763 –0.899
3.5 –0.152 –0.181 –0.224 –0.294 –0.425 –0.65 –0.827 –1.015

4 –0.158 –0.188 –0.233 –0.306 –0.442 –0.68 –0.874 –1.097



TABLE 25A: Lee–Kesler residual entropy values for ((s0– s) (0)/R)

TR PR

0.01 0.05 0.1 0.2 0.4 0.6 0.8
0.3 16.782 16.774 16.764 16.744 16.705 16.665 16.626

0.35 15.413 15.408 15.401 15.387 15.359 15.333 15.305
0.4 13.99 13.986 13.981 13.972 13.953 13.934 13.915

0.45 12.564 12.561 12.558 12.551 12.537 12.523 12.509
0.5 11.202 11.2 11.197 11.192 11.182 11.172 11.162

0.55 0.115 9.948 9.946 9.942 9.935 9.928 9.921
0.6 0.078 8.828 8.826 8.823 8.817 8.811 8.806

0.65 0.055 0.309 7.832 7.829 7.824 7.819 7.815
0.7 0.04 0.216 0.491 6.951 6.945 6.941 6.937

0.75 0.029 0.156 0.34 6.173 6.167 6.162 6.158
0.8 0.022 0.116 0.246 0.578 5.475 5.468 5.462

0.85 0.017 0.088 0.183 0.408 4.853 4.841 4.832
0.9 0.013 0.068 0.14 0.301 0.744 4.269 4.249

0.93 0.011 0.058 0.12 0.254 0.593 1.219 3.914
0.95 0.01 0.053 0.109 0.228 0.517 0.961 3.697
0.97 0.01 0.048 0.099 0.206 0.456 0.797 1.57
0.98 0.009 0.046 0.094 0.196 0.429 0.734 1.27
0.99 0.009 0.044 0.09 0.186 0.405 0.68 1.098

1 0.008 0.042 0.086 0.177 0.382 0.632 0.977
1.01 0.008 0.04 0.082 0.169 0.361 0.59 0.883
1.02 0.008 0.039 0.078 0.161 0.342 0.552 0.807
1.05 0.007 0.034 0.069 0.14 0.292 0.46 0.642

1.1 0.005 0.028 0.055 0.112 0.229 0.35 0.47
1.15 0.005 0.023 0.045 0.091 0.183 0.275 0.361

1.2 0.004 0.019 0.037 0.075 0.149 0.22 0.286
1.3 0.003 0.013 0.026 0.052 0.102 0.148 0.19
1.4 0.002 0.01 0.019 0.037 0.072 0.104 0.133
1.5 0.001 0.007 0.014 0.027 0.053 0.076 0.097
1.6 0.001 0.005 0.011 0.021 0.04 0.057 0.073
1.7 0.001 0.004 0.008 0.016 0.031 0.044 0.056
1.8 0.001 0.003 0.006 0.013 0.024 0.035 0.044
1.9 0.001 0.003 0.005 0.01 0.019 0.028 0.036

2 0 0.002 0.004 0.008 0.016 0.023 0.029
2.2 0 0.001 0.003 0.006 0.011 0.016 0.021
2.4 0 0.001 0.002 0.004 0.008 0.012 0.015
2.6 0 0.001 0.002 0.003 0.006 0.009 0.012
2.8 0 0.001 0.001 0.003 0.005 0.008 0.01

3 0 0.001 0.001 0.002 0.004 0.006 0.008
3.5 0 0 0.001 0.001 0.003 0.004 0.006

4 0 0 0.001 0.001 0.002 0.003 0.005



TABLE 25A: Lee–Kesler residual entropy values for ((s0– s) (0)/R) (continued)

TR PR

1 1.2 1.5 2 3 5 7 10
0.3 16.586 16.547 16.488 16.39 16.195 15.837 15.468 14.925

0.35 15.278 15.251 15.211 15.144 15.011 14.751 14.496 14.153
0.4 13.896 13.877 13.849 13.803 13.714 13.541 13.376 13.144

0.45 12.496 12.482 12.462 12.43 12.367 12.248 12.145 11.999
0.5 11.153 11.143 11.129 11.107 11.063 10.985 10.92 10.836

0.55 9.914 9.907 9.897 9.882 9.853 9.806 9.769 9.732
0.6 8.799 8.794 8.787 8.777 8.76 8.736 8.723 8.72

0.65 7.81 7.807 7.801 7.794 7.784 7.779 7.785 7.811
0.7 6.933 6.93 6.926 6.922 6.919 6.929 6.952 7.002

0.75 6.155 6.152 6.149 6.147 6.149 6.174 6.213 6.285
0.8 5.458 5.455 5.453 5.452 5.461 5.501 5.555 5.648

0.85 4.826 4.822 4.82 4.822 4.839 4.898 4.969 5.082
0.9 4.238 4.232 4.23 4.236 4.267 4.351 4.442 4.578

0.93 3.894. 3.885 3.884 3.896 3.941 4.046 4.151 4.3
0.95 3.658 3.647 3.648 3.669 3.728 3.851 3.966 4.125
0.97 3.406 3.391 3.401 3.437 3.517 3.661 3.788 3.957
0.98 3.264 3.247 3.268 3.318 3.412 3.569 3.701 3.875
0.99 3.093 3.082 3.126 3.195 3.306 3.477 3.616 3.796

1 2.399 2.868 2.967 3.067 3.2 3.387 3.532 3.717
1.01 1.306 2.513 2.784 2.933 3.094 3.297 3.45 3.64
1.02 1.113 1.655 2.557 2.79 2.986 3.209 3.369 3.565
1.05 0.82 0.931 1.443 2.283 2.655 2.949 3.134 3.348

1.1 0.577 0.64 0.618 1.241 2.067 2.534 2.767 3,013
1.15 0.437 0.489 0.502 0.654 1.471 2.138 2.428 2.708

1.2 0.343 0.385 0.412 0.447 0.991 1.767 2.115 2.43
1.3 0.226 0.254 0.282 0.3 0.481 1.147 1.569 1.944
1.4 0.158 0.178 0.2 0.22 0.29 0.73 1.138 1.544
1.5 0.115 0.13 0.147 0.166 0.206 0.479 0.823 1.222
1.6 0.086 0.098 0.112 0.129 0.159 0.334 0.604 0.969
1.7 0.067 0.076 0,087 0.102 0.127 0.248 0.456 0.775
1.8 0.053 0.06 0.07 0.083 0.105 0.195 0.355 0.628
1.9 0.043 0.049 0.057 0.069 0.089 0.16 0.286 0.518

2 0.035 0.04 0.048 0.058 0.077 0.136 0.238 0.434
2.2 0.025 0.029 0.035 0.043 0.06 0.105 0.178 0.322
2.4 0.019 0.022 0.027 0.034 0.048 0.096 0.143 0.254
2.6 0.015 0.018 0.021 0.028 0.041 0.074 0.12 0.21
2.8 0.012 0.014 0.018 0.023 0.035 0.065 0.104 0.188

3 0.01 0.012 0.015 0.02 0.031 0.058 0.093 0.158
3.5 0.007 0.009 0.011 0.015 0.024 0.046 0.073 0.122

4 0.006 0.007 0.009 0.012 0.02 0.038 0.06 0.1



TABLE 25B: Lee–Kesler residual entropy values for ((s0– s) (1)/R)

TR PR

0.01 0.05 0.1 0.2 0.4 0.6 0.8
0.3 16.782 16.774 16.764 16.744 16.705 16.665 16.626

0.35 15.413 15.408 15.401 15.387 15.359 15.333 15.305
0.4 13.99 13.986 13.981 13.972 13.953 13.934 13.915

0.45 12.564 12.561 12.558 12.551 12.537 12.523 12.509
0.5 11.202 11.2 11.197 11.192 11.182 11.172 11.162

0.55 0.115 9.948 9.946 9.942 9.935 9.928 9.921
0.6 0.078 8.828 8.826 8.823 8.817 8.811 8.806

0.65 0.055 0.309 7.832 7.829 7.824 7.819 7.815
0.7 0.04 0.216 0.491 6.951 6.945 6.941 6.937

0.75 0.029 0.156 0.34 6.173 6.167 6.162 6.158
0.8 0.022 0.116 0.246 0.578 5.475 5.468 5.462

0.85 0.017 0.088 0.183 0.408 4.853 4.841 4.832
0.9 0.013 0.068 0.14 0.301 0.744 4.269 4.249

0.93 0.011 0.058 0.12 0.254 0.593 1.219 3.914
0.95 0.01 0.053 0.109 0.228 0.517 0.961 3.697
0.97 0.01 0.048 0.099 0.206 0.456 0.797 1.57
0.98 0.009 0.046 0.094 0.196 0.429 0.734 1.27
0.99 0.009 0.044 0.09 0.186 0.405 0.68 1.098

1 0.008 0.042 0.086 0.177 0.382 0.632 0.977
1.01 0.008 0.04 0.082 0.169 0.361 0.59 0.883
1.02 0.008 0.039 0.078 0.161 0.342 0.552 0.807
1.05 0.007 0.034 0.069 0.14 0.292 0.46 0.642

1.1 0.005 0.028 0.055 0.112 0.229 0.35 0.47
1.15 0.005 0.023 0.045 0.091 0.183 0.275 0.361

1.2 0.004 0.019 0.037 0.075 0.149 0.22 0.286
1.3 0.003 0.013 0.026 0.052 0.102 0.148 0.19
1.4 0.002 0.01 0.019 0.037 0.072 0.104 0.133
1.5 0.001 0.007 0.014 0.027 0.053 0.076 0.097
1.6 0.001 0.005 0.011 0.021 0.04 0.057 0.073
1.7 0.001 0.004 0.008 0.016 0.031 0.044 0.056
1.8 0.001 0.003 0.006 0.013 0.024 0.035 0.044
1.9 0.001 0.003 0.005 0.01 0.019 0.028 0.036

2 0 0.002 0.004 0.008 0.016 0.023 0.029
2.2 0 0.001 0.003 0.006 0.011 0.016 0.021
2.4 0 0.001 0.002 0.004 0.008 0.012 0.015
2.6 0 0.001 0.002 0.003 0.006 0.009 0.012
2.8 0 0.001 0.001 0.003 0.005 0.008 0.01

3 0 0.001 0.001 0.002 0.004 0.006 0.008
3.5 0 0 0.001 0.001 0.003 0.004 0.006

4 0 0 0.001 0.001 0.002 0.003 0.005



TABLE 25B: Lee–Kesler residual entropy values for ((s0– s) (1)/R) (continued)

TR PR

1 1.2 1.5 2 3 5 7 10
0.3 16.586 16.547 16.488 16.39 16.195 15.837 15.468 14.925

0.35 15.278 15.251 15.211 15.144 15.011 14.751 14.496 14.153
0.4 13.896 13.877 13.849 13.803 13.714 13.541 13.376 13.144

0.45 12.496 12.482 12.462 12.43 12.367 12.248 12.145 11.999
0.5 11.153 11.143 11.129 11.107 11.063 10.985 10.92 10.836

0.55 9.914 9.907 9.897 9.882 9.853 9.806 9.769 9.732
0.6 8.799 8.794 8.787 8.777 8.76 8.736 8.723 8.72

0.65 7.81 7.807 7.801 7.794 7.784 7.779 7.785 7.811
0.7 6.933 6.93 6.926 6.922 6.919 6.929 6.952 7.002

0.75 6.155 6.152 6.149 6.147 6.149 6.174 6.213 6.285
0.8 5.458 5.455 5.453 5.452 5.461 5.501 5.555 5.648

0.85 4.826 4.822 4.82 4.822 4.839 4.898 4.969 5.082
0.9 4.238 4.232 4.23 4.236 4.267 4.351 4.442 4.578

0.93 3.894. 3.885 3.884 3.896 3.941 4.046 4.151 4.3
0.95 3.658 3.647 3.648 3.669 3.728 3.851 3.966 4.125
0.97 3.406 3.391 3.401 3.437 3.517 3.661 3.788 3.957
0.98 3.264 3.247 3.268 3.318 3.412 3.569 3.701 3.875
0.99 3.093 3.082 3.126 3.195 3.306 3.477 3.616 3.796

1 2.399 2.868 2.967 3.067 3.2 3.387 3.532 3.717
1.01 1.306 2.513 2.784 2.933 3.094 3.297 3.45 3.64
1.02 1.113 1.655 2.557 2.79 2.986 3.209 3.369 3.565
1.05 0.82 0.931 1.443 2.283 2.655 2.949 3.134 3.348

1.1 0.577 0.64 0.618 1.241 2.067 2.534 2.767 3,013
1.15 0.437 0.489 0.502 0.654 1.471 2.138 2.428 2.708

1.2 0.343 0.385 0.412 0.447 0.991 1.767 2.115 2.43
1.3 0.226 0.254 0.282 0.3 0.481 1.147 1.569 1.944
1.4 0.158 0.178 0.2 0.22 0.29 0.73 1.138 1.544
1.5 0.115 0.13 0.147 0.166 0.206 0.479 0.823 1.222
1.6 0.086 0.098 0.112 0.129 0.159 0.334 0.604 0.969
1.7 0.067 0.076 0,087 0.102 0.127 0.248 0.456 0.775
1.8 0.053 0.06 0.07 0.083 0.105 0.195 0.355 0.628
1.9 0.043 0.049 0.057 0.069 0.089 0.16 0.286 0.518

2 0.035 0.04 0.048 0.058 0.077 0.136 0.238 0.434
2.2 0.025 0.029 0.035 0.043 0.06 0.105 0.178 0.322
2.4 0.019 0.022 0.027 0.034 0.048 0.096 0.143 0.254
2.6 0.015 0.018 0.021 0.028 0.041 0.074 0.12 0.21
2.8 0.012 0.014 0.018 0.023 0.035 0.065 0.104 0.188

3 0.01 0.012 0.015 0.02 0.031 0.058 0.093 0.158
3.5 0.007 0.009 0.011 0.015 0.024 0.046 0.073 0.122

4 0.006 0.007 0.009 0.012 0.02 0.038 0.06 0.1



TABLE 26A: Lee–Kesler fugacity coefficient values for (log10 f/P)(0)

TR PR

0.01 0.05 0.1 0.2 0.4 0.6 0.8
0.3 –3.708 –4.402 –4.696 –4.985 –5.261 –5.412 –5.512

0.35 –2.471 –3.166 –3.461 –3.751 –4.029 –4.183 –4.285
0.4 –1.566 –2.261 –2.557 –2.848 –3.128 –3.283 –3.387

0.45 –0.879 –1.575 –1.871 –2.162 –2.444 –2.601 –2.707
0.5 –0.344 –1.04 –1.336 –1.628 –1.912 –2.07 –2.177

0.55 –0.008 –0.614 –0.911 –1.204 –1.488 –1.647 –1.755
0.6 –0.007 –0.269 –0.566 –0.859 –1.144 –1.304 –1.413

0.65 –0.005 –0.026 –0.283 –0.576 –0.862 –1.023 –1.132
0.7 –0.004 –0.021 –0.043 –0.4 –0.627 –0.789 –0.899

0.75 –0.003 –0.017 –0.035 –0.144 –0.43 –0.592 –0.703
0.8 –0.003 –0.014 –0.029 –0.059 –0.264 –0.426 –0.537

0.85 –0,002 –0.012 –0.024 –0.049 –0.123 –0.285 –0.396
0.9 –0.002 –0.01 –0.02 –0.041 –0.086 –0.166 –0.276

0.93 –0.002 –0.009 –0.018 –0.037 –0.077 –0.122 –0.214
0.95 –0.002 –0.008 –0.017 –0.035 –0.072 –0.113 –0.176
0.97 –0.002 –0.008 –0.016 –0.033 –0.067 –0.105 –0.148
0.98 –0.002 –0.008 –0.016 –0.032 –0.065 –0.101 –0.142
0.99 –0.001 –0.007 –0.015 –0.031 –0.063 –0.098 –0.137

1 –0.001 –0.007 –0.015 –0.03 –0.061 –0.095 –0.132
1.01 –0.001 –0.007 –0.014 –0.029 –0.059 –0.091 –0.127
1.02 –0.001 –0.007 –0.014 –0.028 –0.057 –0.088 –0.122
1.05 –0,001 –0.006 –0.013 –0.025 –0.052 –0.08 –0.11

1.1 –0.001 –0.005 –0.011 –0.022 –0.045 –0.069 –0.093
1.15 –0.001 –0.005 –0.009 –0.019 –0.039 –0.059 –0.08

1.2 –0.001 –0.004 –0.008 –0.017 –0.034 –0.051 –0.069
1.3 –0.001 –0.003 –0.006 –0.013 –0.026 –0.039 –0.052
1.4 –0.001 –0.003 –0.005 –0.01 –0.02 –0.03 –0.04
1.5 0 –0.002 –0.004 –0.008 –0.016 –0.024 –0.032
1.6 0 –0.002 –0.003 –0.006 –0.012 –0.019 –0.025
1.7 0 –0.001 –0.002 –0.005 –0.01 –0.015 –0.02
1.8 0 –0.001 –0.002 –0.004 –0.008 –0.012 –0.015
1.9 0 –0.001 –0.002 –0.003 –0.006 –0.009 –0.012

2 0 –0.001 –0.001 –0.002 –0.005 –0.007 –0.009
2.2 0 0 –0.001 –0.001 –0.003 –0.004 –0.005
2.4 0 0 0 –0.001 –0.001 –0.002 –0.003
2.6 0 0 0 0 0 –0.001 –0.001
2.8 0 0 0 0 0 0 0.001

3 0 0 0 0 0.001 0.001 0.002
3.5 0 0 0 0.001 0.001 0.002 0.003

4 0 0 0 0.001 0.002 0.003 0.004



TABLE 26A: Lee–Kesler fugacity coefficient values for (log10 f/P)(0) (continued)

TR PR

1 1.2 1.5 2 3 5 7 10
0.3 –5.584 –5.638 –5.697 –5.759 –5.81 –5.782 –5.679 –5.461

0.35 –4.359 –4.416 –4.479 –4.547 –4.611 –4.608 –4.53 –4.352
0.4 –3.463 –3.522 –3.588 –3.661 –3.735 –3.752 –3.694 –3.545

0.45 –2.795 –2.845 –2.913 –2.99 –3.071 –3.104 –3.063 –2.938
0.5 –2.256 –2.317 –2.387 –2.468 –2.555 –2.601 –2.572 –2.468

0.55 –1.835 –1.897 –1.969 –2.052 –2.145 –2.201 –2.183 –2.096
0.6 –1.494 –1.557 –1.63 –1.715 –1.812 –1.878 –1.869 –1.795

0.65 –1.214 –1.278 –1.352 –1.439 –1.539 –1.612 –1.611 –1.549
0.7 –0.981 –1.045 –1.12 –1.208 –1.312 –1.391 –1.396 –1.344

0.75 –0.785 –0.85 –0.925 –1.015 –1.121 –1.204 –1.215 –1.172
0.8 –0.619 –0.685 –0.76 –0.851 –0.958 –1.046 –1.062 –1.026

0.85 –0.479 –0.544 –0.62 –0.711 –0.819 –0.911 –0.93 –0.901
0.9 –0.359 –0.424 –0.5 –0.591 –0.7 –0.794 –0.917 –0.793

0.93 –0.296 –0.361 –0.437 –0.527 –0.637 –0.732 –0.756 –0.735
0.95 –0.258 –0.322 –0.398 –0.488 –0.598 –0.693 –0.719 –0.699
0.97 –0.223 –0.287 –0.362 –0.452 –0.561 –0.657 –0.683 –0.665
0.98 –0.206 –0.27 –0.344 –0.434 –0.543 –0.639 –0.666 –0.649
0.99 –0.191 –0.254 –0.328 –0.417 –0.526 –0.622 –0.649 –0.633

1 –0.176 –0.238 –0.312 –0.401 –0.509 –0.605 –0.633 –0.617
1.01 –0.168 –0.224 –0.297 –0.385 –0.493 –0.589 –0.617 –0.602
1.02 –0.161 –0.21 –0.282 –0.37 –0.477 –0.573 –0.601 –0.588
1.05 –0.143 –0.18 –0.242 –0.327 –0.433 –0.529 –0.557 –0.546

1.1 –0.12 –0.148 –0.193 –0.267 –0.368 –0.462 –0.491 –0.482
1.15 –0.102 –0.125 –0.16 –0.22 –0.312 –0.403 –0.433 –0.426

1.2 –0.088 –0.106 –0.135 –0.184 –0.266 –0.352 –0.382 –0.377
1.3 –0.066 –0.08 –0.1 –0.134 –0.195 –0.269 –0.296 –0.293
1.4 –0.051 –0.061 –0.076 –0.101 –0.146 –0.205 –0.229 –0.226
1.5 –0.039 –0.047 –0.059 –0.077 –0.111 –0.157 –0.176 –0.173
1.6 –0.031 –0.037 –0.046 –0.06 –0.085 –0.12 –0.135 –0.129
1.7 –0.024 –0.029 –0.036 –0.046 –0.065 –0.092 –0.102 –0.094
1.8 –0.019 –0.023 –0.028 –0.036 –0.05 –0.069 –0.075 –0.066
1.9 –0.015 –0.018 –0.022 –0.028 –0.038 –0.052 –0.054 –0.043

2 –0.012 –0.014 –0.017 –0.021 –0.029 –0.037 –0.037 –0.024
2.2 –0.007 –0.008 –0.009 –0.012 –0.015 –0.017 –0.012 0.004
2.4 –0.003 –0.004 –0.004 –0.005 –0.006 –0.003 0.005 0.024
2.6 –0.001 –0.001 –0.001 –0.001 0.001 0.007 0.017 0.037
2.8 0.001 0.001 0.002 0.003 0.005 0.014 0.025 0.046

3 0.002 0.003 0.003 0.005 0.009 0.018 0.031 0.053
3.5 0.004 0.005 0.006 0.008 0.013 0.025 0.038 0.061

4 0.005 0.006 0.007 0.01 –0.016 0.028 0.041 0.064



TABLE 26B: Lee–Kesler fugacity coefficient values for (log10 f/P)(1)

TR PR

0.01 0.05 0.1 0.2 0.4 0.6 0.8
0.3 –8.778 –8.779 –8.781 –8.785 –8.79 –8.797 –8.804

0.35 –6.528 –6.53 –6.532 –6.536 –6.544 –6.551 –6.559
0.4 –4.912 –4.914 –4.916 –4.919 –4.929 –4.937 –4.945

0.45 –3.726 –3.728 –3.73 –3.734 –3.742 –3.75 –3.758
0.5 –2.838 –2.839 –2.841 –2.845 –2.853 –2.861 –2.869

0.55 –0.013 –2.163 –2.165 –2.169 –2.177 –2.184 –2.192
0.6 –0.009 –1.644 –1.646 –1.65 –1.657 –1.664 –1.671

0.65 –0.006 –0.031 –1.242 –1.245 –1.252 –1.258 –1.265
0.7 –0.004 –0.021 –0.044 –0.927 –0.934 –0.94 –0.946

0.75 –0.003 –0.014 –0.03 –0.675 –0.682 –0.688 –0.694
0.8 –0.002 –0.01 –0.02 –0.043 –0.481 –0.487 –0.493

0.85 –0.001 –0.006 –0.013 –0.028 –0.321 –0.327 –0.332
0.9 –0.001 –0.004 –0.009 –0.018 –0.039 –0.199 –0.204

0.93 –0.001 –0.003 –0.007 –0.013 –0.029 –0.048 –0.141
0.95 –0.001 –0.003 –0.005 –0.011 –0.023 –0.037 –0.103
0.97 0 –0.002 –0.004 –0.009 –0.018 –0.029 –0.042
0.98 0 –0.002 –0.004 –0.008 –0.016 –0.025 –0.035
0.99 0 –0.002 –0.003 –0.007 –0.014 –0.021 –0.03

1 0 –0.001 –0.003 –0.006 –0.012 –0.018 –0.025
1.01 0 –0.001 –0.003 –0.005 –0.01 –0.016 –0.021
1.02 0 –0.001 –0.002 –0.004 –0.009 –0.013 –0.017
1.05 0 –0.001 –0.001 –0.002 –0.005 –0.006 –0.007

1.1 0 0 0 0 0.001 0.002 0.004
1.15 0 0 0.001 0.002 0.005 0.008 0.011

1.2 0 0.001 0.002 0.003 0.007 0.012 0.017
1.3 0 0.001 0.003 0.005 0.011 0.017 0.023
1.4 0 0.002 0.003 0.006 0.013 0.02 0.027
1.5 0 0.002 0.003 0.007 0.014 0.021 0.028
1.6 0 0.002 0.003 0.007 0.014 0.021 0.029
1.7 0 0.002 0.004 0.007 0.014 0.021 0.029
1.8 0 0.002 0.003 0.007 0.014 0.021 0.028
1.9 0 0.002 0.003 0.007 0.014 0.021 0.028

2 0 0.002 0.003 0.007 0.013 0.02 0.027
2.2 0 0.002 0.003 0.006 0.013 0.019 0.025
2.4 0 0.002 0.003 0.006 0.012 0.018 0.024
2.6 0 0.001 0.003 0.006 0.011 0.017 0.023
2.8 0 0.001 0.003 0.005 0.011 0.016 0.021

3 0 0.001 0.003 0.005 0.01 0.015 0.02
3.5 0 0.001 0.002 0.004 0.009 0.013 0.018

4 0 0.001 0.002 0.004 0.008 0.012 0.016



TABLE 26B: Lee–Kesler fugacity coefficient values for (log10 f/P)(1) (continued)

TR PR

1 1.2 1.5 2 3 5 7 10
0.3 –8.811 –8.818 –8.828 –8.845 –8.88 –8.953 –9.022 –9.126

0.35 –6.567 –6.575 –6.587 –6.606 –6.645 –6.723 –6.8 –6.919
0.4 –4.954 –4.962 –4.974 –4.995 –5.035 –5.115 –5.195 –5.312

0.45 –3.766 –3.774 –3.786 –3.806 –3.845 –3.923 –4.001 –4.114
0.5 –2.877 –2.884 –2.896 –2.915 –2.953 –3.027 –3.101 –3.208

0.55 –2.199 –2.207 –2.218 –2.236 –2.273 –2.342 –2.41 –2.51
0.6 –1.677 –1.684 –1.695 –1.712 –1.747 –1.812 –1.875 –1.967

0.65 –1.271 –1.278 –1.287 –1.304 –1.336 –1.397 –1.456 –1.539
0.7 –0.952 –0.958 –0.967 –0.983 –1.013 –1.07 –1.124 –1.201

0.75 –0.7 –0.705 –0.714 –0.728 –0.756 –0.809 –0.858 –0.929
0.8 –0.499 –0.504 –0.512 –0.526 –0.551 –0.6 –0.645 –0.709

0.85 –0.338 –0.343 –0.351 –0.364 –0.388 –0.432 –0.473 –0.53
0.9 –0.21 –0.215 –0.222 –0.234 –0.256 –0.296 –0.333 –0.384

0.93 –0.146 –0.151 –0.158 –0.17 –0.19 –0.228 –0.262 –0.31
0.95 –0.108 –0.114 –0.121 –0.132 –0.151 –0.187 –0.22 –0.265
0.97 –0.075 –0.08 –0.087 –0.097 –0.116 –0.149 –0.18 –0.223
0.98 –0.059 –0.064 –0.071 –0.081 –0.099 –0.132 –0.162 –0.203
0.99 –0.044 –0.05 –0.056 –0.066 –0.084 –0.115 –0.144 –0.184

1 –0.031 –0.036 –0.042 –0.052 –0.068 –0.099 –0.127 –0.166
1.01 –0.024 –0.024 –0.03 –0.038 –0.054 –0.084 –0.111 –0.149
1.02 –0.019 –0.015 –0.018 –0.026 –0.041 –0.069 –0.095 –0.132
1.05 –0.007 –0.002 0.008 0.007 –0.005 –0.029 –0.052 –0.085

1.1 0.007 0.012 0.025 0.041 0.042 0.026 0.008 –0.019
1.15 0.016 0.022 0.034 0.056 0.074 0.069 0.057 0.036

1.2 0.023 0.029 0.041 0.064 0.093 0.102 0.096 0.081
1.3 0.03 0.038 0.049 0.071 0.109 0.142 0.15 0.148
1.4 0.034 0.041 0.053 0.074 0.112 0.161 0.181 0.191
1.5 0.036 0.043 0.055 0.074 0.112 0.167 0.197 0.218
1.6 0.036 0.043 0.055 0.074 0.11 0.167 0.204 0.234
1.7 0.036 0.043 0.054 0.072 0.107 0.165 0.205 0.242
1.8 0.035 0.042 0.053 0.07 0.104 0.161 0.203 0.246
1.9 0.034 0.041 0.052 0.068 0.101 0.157 0.2 0.246

2 0.034 0.04 0.05 0.066 0.097 0.152 0.196 0.244
2.2 0.032 0.038 0.047 0.062 0.091 0.143 0.186 0.236
2.4 0.03 0.036 0.044 0.058 0.086 0.134 0.176 0.227
2.6 0.028 0.034 0.042 0.055 0.08 0.127 0.167 0.217
2.8 0.027 0.032 0.039 0.052 0.076 0.12 0.158 0.208

3 0.025 0.03 0.037 0.049 0.072 0.114 0.151 0.199
3.5 0.022 0.026 0.033 0.043 0.063 0.101 0.134 0.179

4 0.02 0.023 0.029 0.038 0.057 0.09 0.121 0.163



Table 27A: Enthalpy of formation, Gibbs energy of formation, entropy, and enthalpy of va-
porization at 25ºC and 1 atm.

Substance Formula hf
0, s 0 ,kJ/kmole

K

hfg
0kJ/kmole *TFlame, K

Acetylene (Ethyne) C2H2(g) 226,736 209,170 200.85 2559.4
Ammonia NH3(g) –46,190 –16,590 192.33
Benzene C6H6(g) 82,930 129,660 269.20 33,830 2354.2
Butane–n C4H10(g) –126,150 –15,170 310.03 21,060 2279.6
Carbon C(s) 0 0 5.74 2315.9
Carbon dioxide CO2(g) –393,520 –394,380 213.67 971.4
Carbon monoxide CO(g) –110,530 –137,156 197.56 2404.2
Decane–n C10H22 –249530 32970 545.7 40020 2287.0
Diesel(light) CH1.8(l) -21,506 3706 2286.6
Ethane C2H6(g) –84,680 –32,890 229.49 2269.0
Ethyl alcohol C2H5OH(g) –235,310 –168,570 282.59 42,340 2246.2
Ethyl alcohol C2H5OH(l) –277,690 –174,890 160.70 2203.2
Ethylene (Ethene) C2H4(g) 52,280 68,120 219.83 2383.2
Ethylene Glycol (CH2OH)2 –389,320 –304470 323.55 52490 2214.9

Gasoline CH1.87(l) -3363 4239 2325.3

Glucose C6H12O6

–1260,268
212 2130.3

Hydrogen H2(g) 0 0 130.57 2060
Hydrogen peroxide H2O2(g) –136,310 –105,600 232.63 61,090
Hydrogen–monatomic H(g) 218,000 203,290 114.61
Hydroxyl OH(g) 39,040 34,280 183.75
Lead Pb(c) 0 0 64.81
Lead oxide PbO2(c) –277,400 –217,360 68.6
Lead sulfate PbSO4(c) –919,940 –813,200 148.57
Manganese Mn(c) 0 0 31.8
Manganese dioxide MnO2(c) –520,030 –465,180 53.14
Manganese trioxide Mn2O3(c) –958,970 –881,150 110.15
Mercuric oxide HgO(c) –90,210 –58,400 70.45
Mercury Hg(l) 0 0 77.24
Methane CH4(g) –74,850 –50,790 186.16 2450.7

Methyl alcohol CH3OH(g) –200,890 –162,140 239.70 37,900 2231.3
Methyl alcohol CH3OH(1) –238,810 –166,290 126.80 2157.7
Nitric Oxide NO 90,290 86,595 210.65
Nitrogen N2(9) 0 0 191.50
Nitrogen Dioxide NO2 33,100 51,240 239.91

Nitrogen–monatomic N(g) 472,680 455,510 153.19
Nonane–n C9H20 –228,870 24730 506.4 37,690 2286.4
Octane–iso(g) C8H18(g) –232,191 2279.8
Octane–iso(l) C8H18(l) –263,111 –25948 425.2 31095 2272.1
Octane–n(g) C8Hl8(g) –208,450 17,320 463.67 41,460 2285.7
Octane–n(l) C8H18(l) –249,910 6,610 360.79 2275.4
Oxygen O2(g) 0 0 205.04
Oxygen–monatomic O(g) 249,170 231,770 160.95
Palmitic Acid(fat) C16H32O2 –834,694 452.37 2259.3
Pentane–n C5H12(9) –146,440 –8,200 348.40 31,410 2282.1
Propane C3H8(g) –103,850 –23,490 269.91 15,060 2276.9
Propylene (Propene) C3H6(g) 20,410 62,720 266.94 18,490 2346.4

kJ/kmole
gf

0,kJ/kmoe



Substance Formula hf
0,

K

Sulfur S 0 0 32.06
Sulfur dioxide SO2(g) –296,842 –300,194 248.12
Sulfur trioxide SO3(g) –395,765 –371,060 256.77
Sulfuric acid H2SO4(l) –813,990 –690,100 156.90
Sulfuric acid (aq, m = 1) –909,270 –744,630 20.1
Water(g) H2O(g) –241,820 –228,590 188.72
Water(l) H2O(1) –285,830 –237,180 69.95 44,010
Zinc Zn(c) 0 0 41.63
Zinc oxide ZnO(c) –343,280 –318,320 43.64

Some of the data are from K. Wark, Advanced Thermodynamics for Engineers, McGraw Hill
Book Co., 1995. Originally from the JANAF Thermochemical Tables, Dow Chemical Co.,
1971; Chemical Thermodynamic Properties, NBS Technical Note 270–3, 1968; and API Re-
search Project 44, Carnegie Press, 1953.

*TFlame denotes the adiabatic flame temperature for the fuel burning in in air under chemical
equilibrium. The species that are considered are NO, OH, CO, CO2, H2O, H2, N2, O2. Com-
puted using THERMOLAB-1 software (available on the CRC website at
http://www.crcpress.com).

kJ/kmole
gf

0,kJ/kmoe s 0 ,kJ/kmole hfg
0kJ/kmole *TFlame, K

Silver oxide Ag2O(c) –31,050 –11,200 121.7



Table 27 B: Values of enthalpy of combustion, Gibbs free energy change, entropy change and
chemical availability in dry air during combustion of fuels at standard temperature, To = 25ºC,
and pressure, po = 1 atm*

M ∆hc
0 ∆g0 ∆s0 (∆h0 –  ∆g0)/∆g0 AvailF

Fuel Formula
ol

MJ/kg MJ/kg kJ/kgK  % MJ/kmol

Acetylene C2H2 26.038  –48.3 –47.1  –3.7 +2.4 1265.6
Benzene C6H6 78.114  –40.6 –40.8  0.5  –0.4 3298.5
Carbon (graphite) C 12.011  –32.8 –32.9  0.2 –0.2  410.26
Carbon monoxide CO 28.01  –10.1 –9.2  –3.1  +10.1  275.10
Ethane C2H6 30.07  –47.5 –48.0  1.5  –1.0  1493.9
Ethanol CH5OH 46.069  –27.8 –28.4  2.1  –2.2  1359.6
Ethylene C2H4 28.054 –47.2 –46.9  –1. 1 +0.7  1359.6
Ethylene gly
col(CH2OH)2

62.07 –17.1  –18.6  5.1  –8.1  1226.4

Hydrogen H2 2.016 –120.0 –113.5 –22.0 +5.8  235.2
Isooctane C8H18 114.23 –44.7 –45.8  3.7  –2.4  5375.8
Methane CH4 16.043 –50.0 –49.9 –0.3 +0.2  830.2
MethanolCH3OH 32.042 –21.1 –21.5  1.4  –1.9  722.3
n–Butane C4H10 58.12 –45.8 –46.6  2.7  –1.7  2802.5
n–Decane C10H22 142.29 –44.6 –45.7  3.5  –2.3  6726.4
n–HeptaneC7HI6 100.21 –45.0 –45.9  3.2  –2.1  4764.3
n–Hexane C6H14 86.18 –45.1 –46.1  3.1  –2.0  4110
n–Nonane C9H20 128.26 –44.7 –45.7  3.4  –2.2  6072.3
n–Octane C8H18 114.23 –44.8 –45.8  3.3  –2.2  5418.6
n–Pentane C5HI2 72.15 –45.4 –46.3  2.9  –1.9  3455.8
Propane C3H8 44.097  –46.4 –47.1  2.3  –1.5  2149
Propylene C3H6 42.081  –45.8 –45.9  0.4  –0.3  1999.9
Sulfur S 32.064  –9.2 –9.3  0.3  –0.9  609.6
Sulfur monoxide SO 48.063 –6.3 –5.8  –1.6 +8.5  –

Assumed ambient mole fractions: CO2: 0.0003, H2O: 0.0303, N2: 0.7659; O2, 0.2035.
Source: E. P. Gyftopoulos, and G. P. Beretta, Thermodynamics, Foundations and Application,
Macmillan Publishing Co., NY, 1991. Originally from the data presented by R. C. Weast, Ed.,
CRC Handbook of Chemistry and Physics, 66th Ed., CRC Press, Boca Raton, FL, 1985;
Chemical Availability were calculated by THERMOLAB-1 software (available on the CRC
website at http://www.crcpress.com). Other data from A. Bejan, Advanced Engineering Ther-
modynamics, John Wiley & Sons, 1988.
Each constituent before and after combustion is assumed to be in its ideal gas state at T0 and
P0.

kg/km



TABLE 27C: Values of adiabatic flame temperature, entropy generation at 298 K, and compo-
sition of some of the product gases for the combustion of various hydrocarbons in a perfectly
insulated steady state burner.

Fuel Tadiab CO2 CO H NO NO2 N2O

K %

Benzene C6H6 2382.6 27.5 1.61 270 30.1 49.6 10.4 2.7
Carbon C 2326.0 26.0 2.25 280 0 44.6 9.5 2.5
Ethane C2H6 2300.5 29.0 1.23 155 53.2 35.6 6.6 1.9
Ethylene C2H4 2416.6 26.2 1.27 254 56.6 52.9 10.8 2.8
Hydrogen H2 2448.5 20.9 0 0 231 46.3 7.4 2.3
Isooctane C8H18 2312.1 30.2 1.35 175 45.0 37.2 7.1 2.0
Methane CH4 2266.0 28.3 1.12 124 57.5 31.3 5.6 1.7
n–Butane C4H10 2311.8 29.6 1.31 170 48.6 37.1 7.01 2.0
n–Decane C10H22 2316.4 30.1 1.36 179 44.9 37.8 7.3 2.0
n–Heptane C7H16 2316.7 29.9 1.34 178 46.2 37.8 7.2 2.0
n–Hexane C6H14 2313.2 29.8 1.34 175 46.4 37.4 7.1 2.0
n–Nonane C9H19 30.0 1.36 179 45.2 37.8 7.3 2.0 2.0
n–Octane C8H18 2316.1 30.0 1.35 178 45.6 37.8 7.2 2.0
n–Pentane C5H12 2313.2 29.7 1.32 173 47.4 37.4 7.1 2.0
Propane C8H8 2307.9 29.4 1.28 165 50.3 36.6 6.9 2.0
Propylene C3H6 2378.5 27.6 1.33 227 50.8 47.0 9.4 2.5

Source: Tables 27C and 28A from E. P. Gyftopoulos, and G. P. Beretta, Thermodynamics,
Foundations and Application, Macmillan Publishing Co., NY, 1991.
Combustion for a mixture of each hydrocarbon with the stoichiometric amount of dry air at
298 K and 1 atm. Values are determined assuming chemical equilibrium for the gases in the
outlet stream with respect to the reaction mechanisms CO2 →  CO + (1/2)O2, H2O →  H2

+(1/2)O2, N2 + O2 → 2NO, (1/2)N2 + O2 → NO2 and N2 + (1/2)O2 → N2O. The entropy gen-

eration σ and change in Gibbs free energy during combustion ∆go are per unit amount of fuel.

Formula

mol/MJKmol/MJ mol/MJ mmol/MJmol/MJ mmol/MJ
Acetylene C2H2 2598.0 22.6 1.17 457 51.4 87.3 19.8 4.6

(Toσ)/∆go



TABLE 28A: Values of the constants Ak and Bk for the reaction mechanisms of formation of
various substances in ideal–gas states at standard pressure, p0 = 1 atm, for use in the approxi-

mate expression
K (T) = exp. (∆A – (∆B/T)), T in K, 298 < T < 5000; ∆A= Σ νk Ak, ∆B= Σ νk Bk

(e.g.: CO2 ⇔ CO +1/ O2, ∆A = 1×ACO +(1/2) ×A O2
 – 1×A CO2

)

Substance Formula Ak (K) Bk (K)
Acetylene  C2H2 6.325 26.818
Ammonia NH3 –13.951 –6.462
Carbon C 18.871 86.173
Carbon (diatomic) C2 22.870 100.582
Carbon dioxide CO2 –0.010 –47.575
Carbon monoxide CO 10.098 –13.808
Carbon tetrafluoride CF4 –18.143 –112.213
Chlorine (atomic) Cl 7.244 14.965
Chloroform CHCl3 –13.284 –12.327
Ethylene C2H4 –9.827 4.635
Fluorine (atomic) F 7.690 9.906
Freon 12 CC12F2 –14.830 –58.585
Freon 21 CHC12F –12.731 –34.190
Hydrogen (atomic) H 7.104 26.885
Hydronium ion H3O

+ –8.312 71.295
Hydroxyl OH 1.666 4.585
Hydroxyl ion OH– –6.753 –20.168
Methane CH4 –13.213 –10.732
Nitric oxide NO 1.504 10.863
Nitrogen (atomic) N 7.966 57.442
Nitrogen dioxide NO2 –7.630 3.870
Nitrogen oxide N2O –8.438 10.249
Oxygen (atomic) O 7.963 30.471
Oxygen ion O– 0.528 10.048
Ozone O3 –8.107 17.307
Proton H+ 13.437 188.141
Water H2O –6.866 –29.911

Source: Regression of data from the JANAF Thermochemical Tables, 2nd ed., D. R. Stull and
H. Prophet, Project Directors, NSRDS–NBS37. U.S. Department of Commerce National Bu-
reau of Standards, Washington, D.C., 1971.

For any elemental species in natural form, Ak = 0 and Bk = 0.



TABLE 28B: Logarithms to the base 10 of the equilibrium constant K0.

(1)* H2 ⇔ 2H; (2) O2 ⇔ 2O; (3) N2 ⇔ 2N; (4) 1/2 O2 + 1/2 N2 ⇔ NO; (5) H2O ⇔ H2 + 1/2 O2

; (6) H2O  ⇔ OH + 1/2 H2; (7) CO2 ⇔ CO + 1/2 O2; (8) CO2 + H2 ⇔ CO + H2O; (9) N2 + 2O2

⇔  2 NO2.

T, K (1) (2) (3) (4) (5) (6) (7) (8) (9)
298 –71.224 –81.208 –159.600 –15.171 –40.048 –46.054 –45.066 –5.018 -41.355
500 –40.316 –45.880 –92.672 –8.783 –22.886 –26.130 –25.025 –2.139 -30.725

1000 –17.292 –19.614 -43.0516 –4.062 – 10.062 –11.280 –10.221 –0.159 -23.039
1200 –13.414 –15.208 –34.754 –3.275 –7.899 –8.789 –7.764 +0.135 -21.752
1400 –10.630 –12.054 –28.812 –2.712 –6.347 –7.003 –6.014 +0.333 -20.826
1600 –8.532 –9.684 –24.350 –2.290 –5.180 –5.662 –4.706 +0.474 -20.126
1700 –7.666 –8.706 –22.512 –2.116 –4.699 –5.109 –4.169 +0.530 -19.835
1800 –6.896 –7.836 –20.874 –1.962 –4.276 –4.617 –3.693 +0.577 -19.577
1900 –6.204 –7.058 –19.410 –1.823 –3.886 –4.177 –3.267 +0.619 -19.345
2000 –5.580 –6.356 –18.092 –1.699 –3.540 –3.780 –2.884 +0.656 -19.136
2100 –5.016 –5.720 –16.898 1.586 –3.227 –3.422 –2.539 +0.688 -18.946
2200 –4.502 –5.142 –15.810 –1.484 –2.942 –3.095 –2.226 +0.716 -18.773
2300 –4.032 –4.614 –14.818 –1.391 –2.682 –2.798 –1.940 +0.742 -18.614
2400 –3.600 –4.130 –13.908 –1.305 –2.443 –2.525 –1.679 +0.764 -18.47
2500 –3.202 –3.684 –13.070 –1.227 –2.224 –2.274 –1.440 +0.784 -18.337
2600 –2.836 –3.272 –12.298 –1.154 –2.021 –2.042 –1.219 +0.802 -18.214
2700 –2.494 –2.892 –11.580 –1.087 –1.833 –1.828 –1.015 +0.818 -18.1
2800 –2.178 –2.536 –10.914 –1.025 –1.658 –1.628 –0.825 +0.833 -17.994
2900 –1.882 –2.206 –10.294 –0.967 –1.495 –1.442 –0.649 +0.846 -17.896
3000 –1.606 –1.898 –9.716 –0.913 –1.343 –1.269 –0.485 +0.858 -17.805
3100 –1.348 –1.610 –9.174 –0.863 –1.201 –1.107 –0.332 +0.869 -17.72
3200 –1.106 –1.340 –8.664 –0.815 –1.067 –0.955 –0.189 +0.878 -17.64
3300 –0.878 –1.086 –8.186 –0.771 –0.942 –0.813 –0.054 +0.888 -17.566
3400 –0.664 –0.846 –7.736 –0.729 –0.824 –0.679 +6.071 +0.895 -17.496
3500 –0.462 –0.620 –7.312 –0.690 –0.712 –0.552 +0.190 +0.902 -17.431

Source: Based on data from the JANAF Tables, NSRDS–NBS–37, 1971, and revisions pub-
lished in Journal of Physical and Chemical Reference Data through 1982.

* If reactions are reversed  (e.g.   from H2 ⇔ 2H  to 2H  ⇔ H2), then reverse the sign for the

numbers in table (e.g. at 2000 K, change from -5.580 for H2 ⇔ 2H   to + 5.580  for 2H  ⇔ H2).



TABLE 28B: Logarithms to the base 10 of the equilibrium constant K (continued – reactions
involving solid carbon)

(10) C + 1/2 O2 ⇔ CO; (11) C + O2 ⇔ CO2; (12) C + 2H2 ⇔ CH4; (13) C + CO2 ⇔ 2CO; (14)

C + H2O ⇔ CO + H2

T, K (10) (11) (12) (13) (14)
298 24.0479 69.0915 11 –20.52 –16.02
300 23.9285 68.668 – – –
400 19.1267 51.5365 6.65 –13.02 –10.12
500 16.2528 41.2582 4.08 –8.64 –6.62
600 14.3362 34.4011 2.36 –5.69 –4.26
700 12.9648 29.5031 1.12 –3.59 –2.59
800 11.9319 25.8266 0.2 –1.98 –1.31
900 11.1256 22.9665 –0.53 –0.74 –0.33

1000 10.4777 20.6768 –1.05 0.26 0.48
1100 9.445 18.8026 –1.49 1.08 1.15
1200 9.4983 17.24 –1.91 1.74 1.68
1300 9.1176 15.9165 –2.24 2.3 2.13
1400 8.79 14.7816 –2.54 2.77 2.5
1500 8.5045 13.7986 –2.79 3.18 2.83
1600 – – –3.01 3.56 3.14
1700 – – –3.2 3.89 3.41
1750 7.9182 12.0392 – – –
1800 – – –3.36 4.18 3.64
1900 – – –3.51 4.45 6.86
2000 7.4623 10.3258 –3.64 4.69 4.05
2100 – – –3.75 4.91 4.22
2200 – – –3.86 5.1 4.37
2300 – – –3.96 5.27 4.51
2400 – – –4.06 5.43 4.64
2500 6.8008 8.2212 –4.15 5.58 4.76
2600 – – –4.23 5.72 4.87
2700 – – –4.3 5.84 4.97
2800 – – –4.37 5.95 5.06
2900 – – –4.43 6.05 5.14
3000 6.3372 6.8437 –4.49 6.16 5.23
3100 – – –4.55 6.25 5.3
3200 – – –4.61 6.33 5.37
3300 – – –4.66 6.41 5.44
3400 – – –4.71 6.49 5.5
3500 5.9968 5.7954 –4.75 6.56 5.56



APPENDIX B

 B. CHARTS

Figure Chart Title e

Figure B-1: Psychometric chart. (Figures B-1, B-2a, B.3, B.4: Charts adapted
from R. Sonntag, C. Borgnakke and G. J. Wiley, Fundamentals of
Classical Thermodynamics, 5th Ed. John Wiley & Sons, 1998, pp
763-765, 772.

Figure B.2a: Lee Kesler simple fluid compressibility factor.
Figure B.2b: Generalized correlation for liquids. Source: Smith and Van Ness,

Introduction to Chemical Engineering Thermodynamics, 4th Edi-
tion, McGraw Hill Book Company, 1987, p 98. Originally from
Lyderson, A.L, Greenkorn, R.A., and Hougen, O.A., Univ. of Wis-
consin, Engg. Expt. Sta. Rep 4, 1955. With permission.

Figure B-3: Enthalpy correction for a simple fluid, h* = ho.
Figure B-4: Entropy correction for a simple fluid, s* = so.
Figure B-5:

namics, 3rd Ed. John Wiley & Sons, 1986. With permission.
Figure B-6: Plot of ln K vs 1/T for several reactions. (Adapted from M. Modell

and R. C. Reid, Thermodynamics and its Applications, Second
Edition, Prentice Hall, 1983.)

Fugacity Coefficient for a simple fluid. Source: M. J. Moran, and
H.N. Shapiro, Fundamentals of Engineering Thermodynamics,
2nd Ed. John Wiley & Sons, 1992, p 837. Originally from R.
Sonntag and G. J. Wiley, Fundamentals of Classical Thermody-



Figure B-1: Psychometric chart.



Figure B-2a: Lee Kessler simple fluid compressibility factor.



Figure B-2b: Generalized correlation for liquids.
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Figure B-3: Enthalpy correction for a simple fluid, h* = h0.
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Figure B-4: Entropy correction of Simple Fluid, s* = s0.



Figure B-5: Fugacity coefficient for a simple fluid.



Figure B-6: Plot of ln K vs 1/T for several reactions (adopted from Modell and Reid,
Thermodynamics and Its Applications, Second Edition, Prentice Hall, 198, p 335).



APPENDIX C

 C. FORMULAE

A. CHAPTER 1 RELATIONS
Gravitational acceleration g(r) = G mE/r2, r in m
G = 6.67x10–14 m3/kg s2 (or kN m2/kg2)
mE, mass of earth = 5.97x1024 kg
rE, radius of earth = 6.37x106 m
At earth's surface g(rE) = 9.807 m/s2

gc = 32.174 lbm ft/s2 lbf

NAvog = 6.023×10 26 molecules/kmole for a molecular substance

          = 6.023×10 26 atoms/k atom mole for an atomic substance

T(K) = T(C) + 273.15
T (R) = T(F) + 459.67
Joules equivalent of work J = 778.14 ft lbf/BTU
1 short ton (usually referred to as a ton in the US)= 2000 lb
1 metric ton = 1000 kg
1 long ton (English): 2240 lb
Planck constant hP = 6.625×10–37 kJ s/molecule

Boltzmann's constant kB = 1.380×10–26 kJ/K molecule = R /NAvog

Speed of light in vacuum c0 = 2.998×108 m/s, 9.836×108 ft/s

One light year = 5.875×1012 miles

Stefan–Boltzmann constant σR = 5.670×10–11 kW/m2 K4, 0.1714×10–8 Btu/h ft2 R4

Ideal gas law
P v = RT, PV =m R T
PV = nRT,   Pv = R T

R = 8.314
kPa m

k mole K
 0.08314 

bar m
k mole K

1545
ft lbf

lbmole R

R

3 3

o, ,

= 0.730
atm ft

lbmole R
 ,   10.7 

psia  ft

lbmole R
 

3 3

pk/P = Nk/N = Xk.
STP: 25ºC (60ºF), 101.325 kPa (14.696 psia), 760 mm of Hg (29.213 in of Hg at 32ºF, 10.3323

m of water at 4ºC)
1 kmole of ideal gas at STP occupies 24.8 m 3

1 lbmole of ideal gas at STP occupies 392 ft3

Properties of pure substances
x = mg/(mf + mg)
v = x vg + (1 – x)vf or vf + x(vg – vf)
u, h, and s relations are similar to the v expression

Mathematical background
Point function or property

For two variables dz = Mdx + Ndy,   
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Homogeneous function
φ λ λ λ φ x    ....   x  =  x    ....   x1 s

m
1 s( ) ( )

i
ix

 

 x
 =  m∑ ∂

∂
φ

φ , Euler equation

Z = Z(a,b,x,y) = xm Z (a,b,y/x)
Lagrange multiplier

Optimize f(x,y,z) subject to g (x,y,z) = 0 and h(x,y,z) = 0. Then F = f+ λ1g +

λ2h, ∂F/∂x=0, ∂F/∂y=0, ∂F/∂z=0.

Stokes theorem 
r r r r r
F ds F dAcs⋅∫ = ∇ × ⋅∫ ( )

Gauss divergence theorem 
r r r r
F dA F dVcs cv⋅∫ = ∇ ⋅ ⋅∫ ( )

Microscopic thermodynamics
LJ Potential and Force

φ(l) = 4ε ((l0/l)12 – (l0/l)6)

F(l) =–dφ/dl,

ε/kB in K ≈ 0.,77 Tc, 1.15 TBP, 1.9 TMP

σ (nm) ≈ 0.84 vc
1/3, 1.66 vb

1/3, 1.122 vm
1/3

c:critical, b: boiling, m: melting
lmean = 1/(21/2πn´σ2)

Vrms = (3kBT/m))1/2= (3 R T/M))1/2

Vavg = {8/(3π)}1/2Vrms, Vmps = (2kBT/m))1/2= (2 R T/M))1/2

where V V V Vrms x y z
2 2 2 2= + +  is based on the three velocity components

Sound Speed c =  kRT / M

Kn = lmean/d

B. CHAPTER 2 RELATIONS
Closed systems

∫ δQ = ∫ δW, δQ – δW = dE, Q12 – W12 = E2 – E1

Wout positive, Qin positive
E = U + KE + PE
δW rev = P dV

H = U + PV, h = u + Pv
cv = (∂u/∂T)v, cP = (∂h/∂T)P, (kJ/(kg K)), (cp/cv) = k

Ideal gases
cv,0 = du/dT, cP,0 = dh/dT, (cpo – cvo) = R
(Note: Suffixes p and v are unnecessary for ideal gases. Instead let these be c10 and c20)

Monatomic gases
cP,0 = (5/2) R
(u - u ) = c dT0,2 0,1 1

2
vo∫ , (h - h ) = c dT0,2 0,1 1

2
po∫

Open systems
Mass accounting or conservation

dmcv/dt = Σ ṁi – Σ ṁe

dmcv/dt = Σk mk,i – Σk mk,e, multiple components, single inlet and exit

Energy accounting or conservation
dEcv/dt = Q̇ cv – Ẇcv + Σ ṁi (h+ke+pe)i – Σ ṁe (h + ke+ pe)e

cv cvm =  dV /  v   ,    E =   (u + ke + pe) dV /  v∫ ∫



where,  ke (kJ/kg) =V2/2000, pe(kJ/kg) = g Z/1000 (SI)
ke (BTU/lb) V2/(2 gc J), pe (BTU/lb) =g Z/(gc J)
methalpy, eT = = h + ke + pe
δwrev = –v dP

Bernoulli type of equation applied in fluid mechanics, (fM: Moody friction factor)
P V

gz
P V

gz u u

Head Loss u u g f LV gD

i i
i

e e
e i e

i e M

ρ ρ
+ + − + + = −

= − =

2 2

2

2 2

2

( ) ( ) ,

( ) / / ( )

.

Uniform system and uniform flow processes
Qcv – Wcv = (m2u2 – m1u1)cv + (mehe – mihi), assumed, ke and pe =0
where mi – me = (m2 – m1)cv

( w  ) = ( w )  =  - vdPcv rev shaft revδ δ
Differential forms

∂ρ ∂ ρ/ t V+ ∇ ⋅ =
r r

0, ∂ ρ ∂ ρ( ) / ( ) ˙"e t e V Q wT cv+ ∇ ⋅ = − ∇ ⋅ − ′′′
r r r r

C. CHAPTER 3 RELATIONS
Performance of heat engines/heat pumps

Thermal efficiency (= sought/bought)
η = sought/bought= wcyc/qin, wcyc = qin – qout

Carnot cycle qout/qin = TL/TH for heat engines, η = 1– (TL/TH)

Coefficient of performance (= sought/bought)
(COP)cooling = sought/bought = |q absorbed from cooler body|/|wcyc|
(COP)heating = sought/bought = |q rejected to hotter body|/|wcyc|

Carnot heat pumps, qL/qH = TL/TH,
COPcool= TL/(TH –TL), cop heat pump = TH/(TH – TL),
HP/ton = 4.715/COP, 1 ton of refrigeration =211 kJ/min or 200 BTU/min

Entropy balance equation
Closed system ds = (δq/T)rev

ds = δq/Tb + δσ, s2 – s1 = ∫ δq/Tb + σ12, σ 12 ≥0

Open system cv cv
i i e e cv

dS
dt

 =  
Q
T

 +  m s  -  m s  +∑ ∑ ∑
˙

˙ ˙ σ̇

Other relations Tds = du + pdv or ds = du/T + (p/T)dv,
Tds = dh – vdp or ds = dh/T – (v/T) dp

Entropy relations
Ideal gases

ds = (cp0/T) dT – (R/p) dp, ds = cv0 dT/T + (R/v) dv
Summary of processes involving ideal gases with the various specific heat assumptions

Constant specific heat Variable specific heat

Entropy s = cp0 ln (T/Tref) – R ln (P/Pref)
Pref =1 bar, P in bar, Tref = 273 K
or
s = cv0 ln (T/Tref) + R ln (v/vref)
where vref = R Tref/Tref

s = s 
0 – R ln (P/Pref)

Pref = 1 bar, s 
0 = ∫cp0 (T) dT/T

Isentropic Proc-
ess Pvk = C, Tv(k–1) = C, T/P(k–1)/k =

C
P2/P1 = (T2/T1)

k/(k–1)

 v2/v1 = (T1/T2)
1/(k–1)

s2 = s2 
0 – R ln (P2/1)= s1 = s1 

0 – R ln
(P1/1)
P2/P1 = pr2(T2)/pr1(T1)
v2/v1 = vr2(T2)/vr1(T1)



Constant specific heat Variable specific heat

Internal Energy u = cv0 T
u = 

T

T

ref

∫ cv0 (T) dT or from tables

Enthalpy h = cp0 T
h = 

T

T

ref

∫ cp0 (T) dT or from tables

Solids, liquids (ds) =  c dT Tincomp ( / )

Mixtures
Dalton law P (N,V,T) = p1(N1,V, T) + p2 (N2,V, T)+….,
Gibbs Dalton law U = N1 u1 (T,p1) + N2 u2 (T,p2) +…

S = N1 s 1 (T,p1) + N2 s 2 (T,p2)+…
Efficiencies: η = w/ws,adiab.expansion, = ws/w, adiab.compress; η = w/wT, wT/w, isothermal

Maximum entropy and minimum energy
dU = Tb dS – P dV – (δWother) – Tb δσ
dH = TbdS + VdP – δWother – Tb δσ
dA =  – SdT– P dV – δWother – Tb δσ
dG = –S dT + V dP – δWother – Tb δσ
dSU,V,m ≥ 0, dSH,P,,m ≥ 0, dUS,V,m ≤ 0, dHS,P,m ≤ 0, dAT,V,m ≤ 0, dGT,P,m ≤ 0

δσ/dt = (1/TA – 1/TB) dUA/dt + (PA/TA – PB/TB) dVA/dt + (µB1/TB – µA1/TA) dNA1/dt +

(µB2/TB – µA2/TA) dNA2/dt ≥0

D. CHAPTER 4 RELATIONS
Availability balance equation

Open system 
d

dt
 (E - T  S ) =   Q (1 -

T

T
) + m - m - W - Tc.v 0 c.v. j=1

N
R,j

0

R,j
i i e e cv cv∑ ˙ ˙ ˙ ˙ ˙ψ ψ σ0 ,

where the absolute stream availability (i.e open system) ψ is defined as

ψ(T,P,T0) = eT (T,P) – T0 s(T,P);    eT = h + ke+pe

Stream exergy/availability or relative stream availability, ψ' = ψ – ψ0

For sssf, wopt = ψi – ψe

Loss in stream availability/irreversibility i = wopt – w = T0 σ
Closed systems

φ = u – T0 s + P0 v, absolute closed system availability

φ' = φ – φ0, closed system exergy or availability

wu,opt = φ1 – φ2

Loss in availability or irreversibility i = wu,opt – wu = wopt– w = T0 σ, wu = w – P0 ∆v

Availability or Exergetic( Work Potential) Efficiency
Heat engines  ηAvail = Wcyc/Wmax,cyc, Wmax,cyc = Wcyc + T0 σcyc

Heat pumps:  COP avail or ηAvail = Wmin,cyc/Wcyc, Wmin,cyc = Wcyc + T0 σcyc

Work devices:  ηAvail = W/Wmax, Wu/Wu,max, Wmin/W, Wu,min/Wu

Non–work systems η Avail = (Exergy leaving the system) ÷ (Exergy entering the

system).
Thermo–mechanical (TM) and chemical (C) equilibrium

Exit stream in TM equilibrium



opt, TM k k,i i i i k,i k,e k,0 0 0 1,e k,eW = (T ,P ,X X ...) N  -  (T ,P ,X ,X ,...) N1,i 2,e
˙ ˆ ˙ ˆ ˙

,∑ ∑ψ ψ2 ,
where 

)ψ 1 = ĥ  k – T0 ŝ k (neglecting ke and pe)
Exit stream in TMC equilibrium

opt, TMC k k,i i i k,i k,e k,0 0 0 k,eW = (T ,P ,X X ...) N  -  (T ,P ,X ,X ,...) N1,i 2,i 1, 2,
˙ ˆ ˙ ˆ ˙∑ ∑ ∞ ∞ψ ψ

or ˙ ˙ ˙
, ,W W WOpt TMC Opt TM Chem= + , where

Chem k k,0 0 0 k k,0 k,eW =   [ (T ,P ,x ,x ,...) - (T ,P ,x ,x ,...) ]N1,e 2,e 1, 2,
˙ ˆ ˆ ˙∑ ∑ ∞ ∞ ∞ ∞ψ ψ ,

and where T∞ = T0, P∞ = P0, X1,e ≠ X1,∞,

Ψ' = Σ Nk
* (exergy relative when exit is at thermal and mechanical equilibrium

only)k+ (Σ Nk
* (chemical availability)k)

Chemical availability of component k = 
)ψ k,e – 

)ψ k, ∞ = ĝ  k (T0,P0, X1,e,...) – ĝ k (T0,P0, X1,0,...)

Psychrometry

Specific Humidity, w = (Mv/Ma) (Pv/Pa) = 0.622 (pv/pa)

The degree of saturation µ = mv(T,P)/ mv
sat (T,P) = Nv(T,P)/ Nv

sat (T,P)

The relative humidity RH = Xv(T,P)/ Xv
sat (T,P) = (Nv(T,P)/N(T,P))/( Nv

sat (T,P)/

Nsat(T,P)) = Pv(T)/ Pv
sat(T)

ln Pv
sat(T) = A – B/(T+C), T in K, For H2O (0<T<50 C), 0,25 C,50 C correlation

A = 12.21505207, B = 4119.460581, C = –35.208049
RH = µ (1 – Xv) + Xv = µ/(1 – Xv

sat (1 – µ)).

Differential Forms:
ρ ∂ ∂ ρ ψ λ( ( ) / ) (( )( / )) ˙ ˙e T s t v T T T w io o− + ⋅∇ = ∇ ⋅ ∇ − − ′′′ − ′′′r r r r

1

E. CHAPTER 5 RELATIONS
Fundamental equation S = S U,  V,N ,... N1 s,( )

dS =
S

U
dU +

S

V
dV +

S

N
dN

v U K U Vk
k

∂
∂







∂
∂







∂
∂





∑

,

(∂S/∂U)V = 1/T, (∂S/∂V)U = P/T, (∂S/∂Nk)U,V = – µk/T

Integrated form of U U =  T S -  P V +  Nk k∑ µ

Equation of state 
1

T
 =  

S

U
,
P

T
 =  

S

V
, 

T
=

S

NV,  N N

k

U,  V,  Nk

∂
∂







∂
∂







∂
∂







µ

Legendre Transform φ φ φ =  x x x n
( ) , ,.......0

1 2= ( ) , i iy =   / x∂ ∂( )φ

where φ(o) is the basis function . The m–th Legendre Transform (m) (0)

i = 1

m

i i= - x yφ φ ∑



F. CHAPTER 6 RELATIONS
Summary of P–V–T equations for real gases

PR = P/Pc, TR = T/TC, vR' = v/vc', vc' = RTc/Pc, Z(T,P) = v(T,P)/v0 (T,P)
Inflection conditions: (∂P/∂v)T = 0, (∂2P/∂v2)T = 0

b  ≈ (2/3)NAvog πσ3.

Pitzer Factor w = –1.0 – log10 (PR
sat)TR=0.7 = –1 – 0.4343 ln (PR

sat)TR=0.7. Z = Z(0) (TR, PR) + w Z(1) (TR, PR)
If R is a universal gas constant, then a, v, b are based upon mole basis. If R is simply a gas constant, then a, v, b are based upon mass basis

Summary of Equations of State

Name State Equations Constants Remarks

1. Virial Eq. Pv= RT + B1´P + C1´P
2 + D1´P

3 + ..., where
B1´, C1´, … are functions of T or Pv = RT + B/
v + C/v2 + ... , and B, C, ... are functions of T.

B1’, C1’, D1’ are called 2nd, 3rd,
and 4th virial coefficients that
represent corrections to ideal gas
behavior

P/uT = Z

2. Approximate
Virial Eq.

Pv/RT = Z = 1 + B(T)/P

 Z = 1 + (PR/TR) (0.083 – (0.422/Tr
1.6))

where TR = T/Tc, PR = P/Pc

B*(T*) = B(T)/ bo, b0 in
m3/kmole, T* = T/(ε/k) For

bo, ε/k. See R.E. Sonntag

and G. Van Wylen

3. Clausius I P = RT/(v–b) b = body volume Cannot satisfy inflection
conditions.

4. Van der Waals
(VW)

P = RT/(v–b) – a/v2, b is a correction for
volume occupied by molecular and repulsive
forces, a/v2 is a correction for attractive forces
Z3 – (B* +1) Z2 + A* Z – A*B* = 0

a = (27/64)vc' 
2 Pc = (27/64)R2

Tc
2/Pc ≈ 2.667πεσ3

 NAvog, b = vc'/8

=(1/8) RTc/Pc, Zc =3/8, A* =
(27/64) PR/TR

2, B* = (1/8) PR/TR

Does not agree with
(Pcvc/RTc) exp = 0.2 to 0.3
for most gases. Another
form:of the VW relation is
v3 + v2 (– bP – R T)/P +
v  ( a /P) (– a b/P) = 0

5. Berthelot P = RT/(v–b) – (a/T) (1/v2) a = (27/64)(vc'
2TcPc) = = (27/64)R2

Tc
3/Pc, b = vc'/8 = RTc/8Pc



Name State Equations Constants Remarks

6. Dieterici P = (RT/(v–b)) exp {–a/(RTv)} a = (4/e2) vc'
2 Pc =(4/e2) R2 Tc

2/Pc b
= vc'/e

2 = RTc/(e
2Pc), Zc = 0.271,

e = exp(1)=2.3026

Developed to provide better
agreement with
experiments.

7. Redlich–Kwong
(RK)

P = RT/(v–b) –a/(T1/2v (v + b))

or

Z3 – Z2 + (A*– B* 2 – B*) Z – A*B* = 0

a= 0.4275 vc'
2 Tc

0.5 Pc = 0.4275R2

Tc
2.5/Pc,

b = 0.08664 vc' = 0.08664 RTc/Pc,

Zc =1/3, A* = 0.4275 PR/TR 2.5, B* =
0.08664 PR/TR

Good accuracy over wide
range and at high pressure.

8. Clausius II P = RT(v–b)–a/(T(v+c)2) a = 27/64 vc'
2 Tc Pc =(27/64) R2

Tc
3/Pc

b = vc'(Zc–1/4) = (RTc/Pc) (Zc–1/4)
c = vc'(3/8 –Zc)= (RTc/Pc) (3/8 –Zc)

9. Peng Robinson P = (RT/(v–b)) – (a α(w,TR)/((v+b(1+√2)) (v

+ b (1–√2)))

a = 0.45724 vc' 
2 Pc = 0.45724R2

Tc
2/Pc

α(w,TR) = (1 + f(w) (1 – TR
(1/2)))2

f(w) = 0.37464 + 1.54226 w –
0.26992 w2

b = 0.07780 vc' =0.0778 (RTc/Pc),
Zc = 0.26

10. SRK equation P = RT/(v–b) – a α(w,TR)/(v(v+b)) A = 0.4275vc' 
2 Pc = 0.4275R2

Tc
2/Pc, b = 0.08664 vc' =0.08664

(RTc/Pc), Zc= 1/3

α(w,TR) = (1 + f(w) (1 – TR
(1/2)))2

f(w) =(0.480 + 1.574 w – 0.176 w2)

11. Generalized Eq.
f

PR = TR/( ′vR – b*) – a*α (w,TR)/(TR
n ( ′vR  + c*) a* = a/(Pc ′vc

2 Tc
n), b* = b/ ′vc , c* =

*



Name State Equations Constants Remarks

of state ( ′vR  + d*)), c/ ′vc , and d*  = d/ ′vc . See table
below

12. Compressibility
factor

Pv = ZRT or PR vR' = Z TR

vR' = v/vc ', vc' =RTc/Pc

PR = P/Pc, TR = T/Tc

Also fv = (φ(TR, PR) Z(TR, PR)) RT (Chapter

07)

Z=v/videal for TR > 2.5, Z >
1, for TR < 2.5 Z < 1 and
has a minimum value. At
TR = 1, PR = 1, Z can vary
widely. For PR > 10 always
use real gas relations.

13. Benedict Webb
Rubin

P = RT/v + (B2RT–A2–C2/T
2)/v2 + (B3R T–

A3)/v
3 + A3C6/v

6 + (D3 /(v3T2))(1+E2/v
2)

exp(–E2/v
2)

8 constants. See Table 20A Good accuracy over wide
P–V–T condition.

14. Martin–Hou P = RT/(v–b) + (A2 + B2 + C2 e–KT)/(v–b)2 +
(A3 + B3T + C3 e

–KT)/(v–b)3 + A4/(v–b)4 + (A5

+ B5T + C5 e
–KT)/(v–b)5

12 constants evaluated from P–v–T
data of fluids

Mainly developed for
refrigerants, 1 % accuracy
for v > 0.67 vc and T < 1.5
Tc

15. Lee Kessler PR=(TR/vR’)(1+A/ ′vR +B/ ′vR
2+C/ ′vR

5+(D/ ′vR )(

β+γ/ ′vR
2)exp(–γ/ ′vR

2)), Z = PR ′vR
/TR

See Table A–21

16. Beattie
Bridgeman
equation

P v2 = R T ( v  + B0 (1– ( b/ v)) (1– c/( vT3))–
(A0/ v2)(1–(a/ v))

 See Table A–20B Accurate for v > 1.25 vc



Generalized cubic equation of state PR = (TR/(vR'– b*)) – a* α(w,TR)/(TR
n (vR' + c*)(vR

* + d*)),

where a* = a/(Pc vc'
2 Tc 

n), b* = b/vc', c
* = c/vc', d

* = d/vc'

Equation  c* = c/vc' d*=c/vc' n αααα(w,TR) b*=b/vc a*=a/(PcTc
n vc'

2)

Clausius–I 0 0 0 0 – 0

VW 0 0 0 1 1/8 27/64

Berthlot 0 0 1 1 1/8 (27/64)

Clausius–II (3/8–Zc) (3/8–Zc) 1 1 Zc –1/4 27/64

Horvath–Lin γβ  (note 3) 0 1 1 β (note 3) α (note 3)

RK 0.08664 0 1/2 1 0.08664 0.4275

Lorentz 0 0 0 note 1 0

Martin – – 0 note 2

SRK 0 0 0 0.08664 0.42748

PR (1+√2)0.07780 (1–√2)0.0778 0 0.07780 0.45724

Note 1: TR b'/vc'
2 – a'/vc'

2

Note 2: c'/vc'
2 –TR

Note 3: γ = Zc 
–4.72/360, (1+(γ+1)1/3 +(γ+1)2/3)–1, α = ((1+γf)2 (1–2f–γf2))/((1–f)4(2+γf)2), β =

(1–2f–γf2)/((2+γ)+(2+4γ)f +(γ+2γ2)f2)

Liquids and Solids dv = vβP dT – vβT dP, βP= (1/v)(∂v/∂T)P, βT = –(1/v) (∂v/∂P)T, κT = 1/(βT P)

= (–v/P) (∂P/∂T)T

Rackett equation for saturated liquid sat
c c

(1-Tv / v = Z R
0.2857)

G. CHAPTER 7 RELATIONS
Differentials

Exact are denoted as d()
Criterion for exactness

If dZ = M(x,y) dx + N(x,y) dy, then 
x y

M

y
 =  

N

x

∂
∂







∂
∂







Inexact are denoted by δ() and are path dependent functions

Thermodynamic relations
du = Tds – Pdv
dh = Tds + vdP
da = –Pdv – sdT
dg = vdP – sdT

Gibbs function g = h–Ts
Helmholtz function a = u –Ts

(∂((a/T)/∂T))v = u, (∂a/∂v)T = – P, and (∂a/∂T)v = – s



 (∂ (g/T)/∂ (1/T))P =h, (∂g/∂P)T = v, and (∂g/∂T)P = – s

Maxwell's relations (or criteria for exact differential of thermodynamic relations)
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s v
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Thermodynamic properties
Given the state equation P = P(T,V), properties can be determined using the relations

ds =  c  
dT

T
 +  

P

T
 dv 

 

   =  c  
dT

T
 -  

v

T
 dP

v

v

p

p
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du =  c  dT +  T 
P

T
 -  P  dvv

v

∂
∂

















dh =  c  dT +  v -  T 
v

T
  dPp

p

∂
∂
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v 2 2
v
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 =  T ( P /  T  )
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∂
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 β β

Fugacity Coefficient
RT d ln (φ) = vdP, φ = f/P

fk (T,P) = fk (T,Psat) POYk

POYk = exp (
P

P

sat
∫ (vk/RT)dP) for any given phase .

Other properties
Isobaric (volume) expansivity, βp = (1/v) (∂v/∂T)p, 1/K or 1/R



isothermal compressibility, βT = –(1/v) (∂v /∂P)T, 1/bar, 1/atm

Isothermal bulk modulus, BT = 1/βT, bar, atm

Isentropic compressibility, βs = –(1/v) ∂v /∂P, 1/bar, 1/atm

∂v/∂P = – v2/RT , as P → 0

∂(u0(T) – u(T,v))/∂P = + (3/2) (a/RT3/2) , as P → 0

∂(h0 – h)/∂P = (3/2) (a/RT3/2) – v + v = (3/2) (a/RT3/2) , as P → 0

Saturation properties and Joule Thomson coefficient
Correlations for hfg

Empirical correlations for hfg,n 
fg.n

n

c

r n

h
RT

 =  1.092 
     P    -    1

0.930   -    T  

ln( )
( )

hfg,n = 13.52 , where Tn, normal boiling point, EK
hfg. n, heat of vaporization at Tn

Pc, critical pressure, bar
Trn = Tn/Tc

Correlation for any other T 
fg , 2

fg , 1

0.38

R , 2

R , 1

h

h
 =  

  1   -    T
1  -   T

 
( )
( )









TR,2 = T2/Tc

Approximate relations
Saturation pressures based on real gas equations

ln PR = (dPR/dTR)C (1– 1/TR)
where dPR/dTR for various state equations are tabulated below.

(dPR/dTR)C

VW 3/8 4
Berthe 3/8 7
Claus–II Zc 7
RK 1/3 5.582
SRK 1/3 4.0536+ 3.05362 fSRK(w)
PR 0.3214 4.1051+ 3.1051 fPR(w)

Clapeyron Equation
(dP/dT)sat = hαβ/(T vαβ)

α β α β α β α β  h = h - h  v = v - v, , β – phase, α – phase

Clausius–Clayperon (vapor/ideal gas) – an approximate relation

 
P

P
 =  exp 

h
R

  
1

T
 -  

1

Tref

fg

ref













 or

ln P = A – B/T, A = ln Pref
sat  + hfg/RTref and B =hfg/R.

Throttling coefficient

Joule Thomson effect (open system):
JT h

JT
P

p

P

p

 =  ( T /  P )  

 

 =  -

v -  T 
v

T
 

c

v  T -   

c

µ

µ
β

∂ ∂

∂
∂

















=
[ ]1

Asymptotic limits: As pR → 0, µJT cP/vc' → b/vc'→ 0.08664 for RK equation of state

Zc



Inversion curve JT h
P

 =  0,   ( T /  P )  =  0 v =  T 
v

T
 µ ∂ ∂

∂
∂





,

Euken coefficient (closed system, throttling at constant volume)
µE = (∂T/∂v)u = - (T (∂P/∂T)v  - P) /cv

H. CHAPTER 8 RELATIONS
Mole and mass fractions
Mole fraction (number fraction) Xi = Ni/N
Mass fraction Yi = mi/m
Molecular mass of mixture Mm = Σ Xi Mi

Conversion from Xi to Yi: Yi = XiMi/Mm,
Conversion from Yi to Xi: Xi = YiMm/Mi

Molality, Mo = 10–3×kmole of solute ÷ kg of solvent.

Generalized relations
U = U (S, V, N1, N2 ... Nn)
H = H (S, P, N1, N2 ... Nn)
A = A (T, V, N1, N2 ... Nn)
G = G (T, P, N1 ........Nn)

Differentials
dU = Tds – PdV + ΣµjdNj

dH = Tds + VdP + ΣµjdNj

dA = –SdT – PdV + ΣµjdNj

dG = –SdT – VdP + ΣµjdNj

Thermodynamc potentials

T =  
U

S
 =  

H

SV,   N    ...   N P,   N   ,   ...   N1 n 1 n

∂
∂







∂
∂







P =  -  
U

V
, V =  

H

PS ,   N    ...   N S    N    ....   N1 n 1 1 n

∂
∂







∂
∂







1
S,  V,  N    ....   N1 S,  P,  N    ....   N1

T,  V,  N    ....   N1 T,  P,  N    ....   N1

=
U

N
=

H

N

A

N
=

G

N

2 n 2 n

2 n 2 n

µ ∂
∂







∂
∂







=
∂
∂







∂
∂







Partial molal property (B= U, A, H, G, etc.)

T,P N ,N ,..1
1 1

T,P N ,N ,...2
1 1 T,P,N ,N ,...

1 2 3 1 1 2

2 3

B

N
b e.g.,  v  =  

V

N
g = ( G / N )

∂
∂







=
∂

∂






∂ ∂ˆ , ˆ , ˆ

where ĝ1, partial molal Gibbs' function of species 1=µ1 = (∂G/∂N1) T,P, N2, N3..

Mixture Property
B = Σ Nk b̂  k , b̂ 1  =  b  - X2 d b/dX2

Gibbs Duhem equation

 
db

dT
dT

db

dP
dP X db

k

K

k k+ − =
=

∑
1

0
)

 or 
∂
∂





 +

∂
∂





 − =

=∑B

T
dT

B

P
dP N db

P N T N
k kk

K

, ,

ˆ
1

0

Differentials of partial molal properties:
d ĝ k = – ŝk dT + v̂ k dP, d ĥ k = Td ŝk + v̂ kdP,



d û k = T d ŝk – P d v̂ k, d ĥ k = Td ŝk + v̂ kdP.
ĉpk = ∂ ĥ k/∂T = T (∂ ŝk/∂T)P, ĉvk = T(∂ ŝk/∂T) v̂ k

Generalized Thermodynamic Relations
d û k = ĉv,k dT + (T(∂P/∂T) – P) d v̂ k, d ĥ k = ĉp,k dT + ( v̂ k – T (∂ v̂ k/∂T)) dP,

d ŝk = ( ĉpvk/T)dT + (∂P/∂T) v̂ k dP, d ŝk = ( ĉp,k/T)dT – (∂ v̂ k/∂T) dP.

P–V–T relations for ideal or real gas mixtures
Dalton's law (LAP) P = Σ pk (T, V, Nk)

Amagat Leduc law (LAV) V = Σ Vk (T, P, Nk)

For ideal gases, volume fraction vfk / Xk

Partial pressure for ideal gases pk = Xk P
Gibbs Dalton law U = N1 u1 (T,p1) + N2 u2 (T,p2) +…, H = U+PV

S = N1 s 1 (T,p1) + N2 s 2 (T,p2)+…, ŝk= s k (T,P,Xk)
    = s  k

0 – R  ln (pk/1)= = s  k
 (T,P) – R  ln Xk

Ideal solution/ideal mixture
Any property other than g, a, or s

If bk = hk, uk, vk then b̂ k = b  k(T,P)
For gk, ak, sk

b̂ k = b  k (T,pk) for ideal mix of real gases
 b̂ k= b  k (T,P, Xk) for ideal mix of liquids and solids
b̂ k= bk(T,P) – ln Xk,
bk = k(T,P) – ln Xk ideal or real gases
ŝk(T, P, Xk) – s k(T, P) = R  ln Xk, ĝ kid – gk (T, P) = R T ln Xk.

Fugacity of k
d ĝ k = v̂ k dP = R T d ln ( f̂ k(T, P, Xk))

Lewis Randall rule f̂ k
id(T, P, Xk) = Xk fk(T, P)

Henry’s law f̂ 1
id(HL) = X1(d f̂ 1/dX1) x1 →0

Fugacity coefficient
φ̂k = f̂ k/(Xk P)

( f̂ k
id/fk)) = Xk = α̂ k

id, i.e., f̂ k
id = Xk fk = Xk φk P, ideal mix of real gases

For ideal gas mixtures, f̂ k
ig = P Xk = pk

Activity α̂ k

α̂ k = ( f̂ k(T, P, Xk)/fk(T, P)), α̂ k 
id = Xk

ĝ k(T, P,Xk) – gk (T, P) = R T ln α̂ k= ∫ ( v̂ k (T, P,Xk) – vk(T, P))dP

ĝ k (T,P, Xk)– ĝ k(T, Po) = R T ln (( α̂ k(T,P)/ α̂ k(T,Po; T,P))

          = R T ln ( f̂ k(T, P)/ f̂ k(P
o,T))

Activity coefficient, γk

γk = α̂ k/ α̂ k
id

ĝ k – ĝ k
id = R  T ln  (γk) = R  T ln  ( φ̂k/φk)

Duhem–Margules relation ΣkNk d ln (Xkγk) or ΣkXk d ln (Xkγk) = 0

Excess Property ˆ (ˆ ˆ )b b bk
E

k k
id= − , BE = B–Bid=ΣkNk( b̂ k – bk)

∂( gE/T)/∂(1/T) = hE
, (∂ gE/∂P)T = vE, and – s E = (∂ gE/∂T)

Mixing rules



β = ΣkXkβk, β = (ΣkXkβk
1/2)2,β = (ΣkXkβk

1/3)3

β = (1/4) ΣkXkβk + (3/4) (ΣkXkαβk
1/3)(ΣkXkβk

2/3), β = ΣkXjXkβkj,

Kay’s rule Tcm = X1 Tc1 + X2 Tc2 + ..., and Pcm = X1Tc1 + X2Tc2 + … .
RK and Other rules: a m = (ΣkXk a k

1/2)2, bm = ΣkXk bk

a m = ΣiΣjXiXj a ij, bm = ΣiXi b i,

I. CHAPTER 9 RELATIONS
Phase rule

F = K + 2 – π, F: degrees of freedom, K: components, π:  phases

ĝ 1(1)= ĝ 1(2) = ĝ 1(3) = ... = ĝ 1(π), ĝ 2(1) = ĝ 2(2) = ĝ 2(3) = ... = ĝ 1(π),

…, and ĝ k(1) = ĝ k(2) = ĝ k(3) = ... = ĝ 1(π),

or f̂ k(f) = f̂ k(g).
Ideal solution model Xk(α) fk(α) (T,P) = Xk(β)

 fk(β))

fk (T,P) = fk (T,Psat) POY,

POY = exp (
P

P

sat
∫ (v/RT)dP for any given phase .

Ideal liquid solution but vapor is an ideal gas (Rauolt;s law: pk = Xk(α) Pk
sat)

Boiling point elevation δT = –( Tpure
2 R/hfg) ln Xk(l) or δT ≈ kb Mosolute,

Azeotropic Xk(g) = Xk(l)

Dissolved gases = Xk (l) = pk/(Pk
sat)

Henry’s law pk = Xk,l Hk(T,P), Hk(T,P) = Pk
sat(POY)k(l).

Deviation from Rauolt’s law: pk = γk(l) Xk,l pk
sat  or γk,l = pk/pk,Raoult

J. CHAPTER 10 RELATIONS
Criteria

dSU,V,m = 0, (d2S) U,V,m < 0, dSH,P,,m  =  0, d2S HPV,m < 0,

dUS,V,m = 0, d2US,V,m > 0, dHS,P,m = 0, d2HS,P,m > 0
dAT,V,m = 0, d2 A T,V,m > 0, dGT,P,m = 0, d2GT,P,m > 0

D
S S

S S
S S SUU UV

VU VV
UU VV VU2

2 0= = − >

Thermal  stability ∂2S/∂U2 < 0 or cv > 0

Mechanical stability (∂P/∂V)T < 0

Kestin formulae
If dS = (1/T) dU + (P/T) dV =SU (U,V) dU +SV (U,V) dV, then
d2S = d(1/T) dU + d(P/T) dV = d(SU(U,V)) dU + d(SV(U,V)) dV,

σ = (gmetastable/unstable – gstable)/T

Spinodal Points : (∂P/∂V)T = 0

K. CHAPTER 11 RELATIONS
Thermochemistry

Air composition mole%: N2 = 79%, O2 = 21 %
             mass %: N2 = 77%, O2 = 23%

Molecular weight of air: 28.97 kg/kmol or 28.97 lb/lbmol



Process/Variable Formulae

Stoichiometric combustion Complete combustion and no O2 in products

A:F (mass basis) air required in kg

kg of fuel







A:F (mole basis) air required in k   moles

k   mole of fuel






Excess air % A:F  -   A:F 

A:F 
 x 100stoich

stoich

( )
( )









Air supplied as % theoretical air or
stoichiometric Ratio (SR)

air supplied

theoretical stoich. air
 x 100

Equivalence ratio (φ) = 1/(SR) stoich

stoich

A:F

A:F
 =  

F:A

F:A

( )
( )

( )
( )

Lean mixture φ < 1

Rich mixture φ > 1

Partial pressure of water vapor in products , where η denotes number of gaseous moles in

products.

Total enthalpy, h( ) Enthalpy of formation hf
0( )  + thermal enthalpy

∆ h298 to T( )
Enthalpy of reaction, ∆H R°( ) PROD,T REACT,TH  -  H

Enthalpy of combustion, ∆ cH( ) ∆ ∆H   HC R° ≡ °

Heating value (HV) HV =  -   H R,298∆ °  =  H  -  HREACT,298 PROD,298

Higher heating value, HHV = HV with H2O in liquid form

Lower heating value, LHV = HV with H2O in gaseous state

Internal energy for use u h P v h RT if species i is ideal gasi i i i= − = −,

Combustion efficiency   comb  =  
Actual heat release

Theoretical heat release
η

Boiler efficiency   boiler  =  
Heat transferred to water / Kg of fuel

Higher heating value / Kg of fuel
η



Overall thermal efficiency   thermal  =  
Elec. work / kg of fuel

Higher heating value / kg of fuel
η

Energy and entropy balance for reacting systems
dEcv/dt = Q̇  cv – Ẇcv + Σk,i ṄkēT,k – Σk,e ṄkēT,k, ēT,k = (h̄+ k̄ē + p̄ē)k

dScv/dt = Q̇  cv/Tb + Σk,i Ṅk ŝk – Σk,e Ṅk ŝk + σ̇
Mole balance

dNk/dt = Ṅk,i + Ṅk, gen – Ṅk, e

L. CHAPTER 12 RELATIONS
dU = TdS – P dV – T δσ
dH = T dS + V dP – Tδσ
dA = –S dT – P dV – T δσ
dG = – S dT + V dP – T δσ
–T (∂S/∂Nk)U,V =–T (∂S/∂Nk)H,P = (∂U/∂Nk) S,V= (∂A/∂Nk)T,V = (∂G/∂Nk)T,P = ĝ k =µk

Process/Variable/Condition Formula

Direction of reaction δσ ≥ 0, dGT,P ≤ 0 or (Σµk dNk) ≤ 0,

dGT, P = (Σµk k dNk) ≤ 0,

G =    N   g   T,p ,   g   T,p   k k k k k kΣ ( ) ( ) ≡ˆ µ

Equilibrium condition δσ= 0,

∑ ∑ =ˆ ˆg    d N  = g    d N  =k k k kdG =  0 , dAT,P T,V 0

Chemical potential j j T,P,N  ...

j j T,V,n  ...

 =  ( G / N  )

 =  ( A / N  )
2

2

µ

µ

∂ ∂

∂ ∂

Chemical force potential (e.g.
H2+ 1/2 O2 →H2O) chem,   react H O chem,   prod H OF  =  g   -   

1

2
    g  F  =  g

2 22
,

Fchem, react > Fchem Prod

Gibbs function useful for
chemical reactions, P in bars

i i i i
o

i
o

i

i i
o

i i
o

i i i

g  =  h   -   T  s =  h   -   T s   -   R  T   (PX )

g g T RT  (PX ) see TableA to A for g

g g T P R  T   X

ˆ ˆ ˆ { } ln /

ˆ ( ) ln / ,

ˆ ( , ) ln

1

1 8 19

]
= +

= +
Equilibrium constant, K0(T) K T  =     (- G /R  T  )o0 ( ) exp ∆ , ∆G0 = G0

RHS – G0 LHS

Equilibrium constant, K0(T) from
“elementary” reactions

K0(T)exp (∆A – (∆B/T)), T in K, ∆A= Σ νk Ak, ∆B= Σ νk

Bk, (e.g.: CO2 ⇔ CO +1/O2, ∆A = 1×ACO +(1/2) ×A O2
 –

1×A CO2
), use Table A–28A

Van’t Hoff relation
ln K0(T) = A– B/T, A = A = ln K ref

o  + (∆H R
o / R ) (1/Tref), B

= (∆H R
o / R ).



M. CHAPTER 13 RELATIONS
g = h – Ts
a = u – Ts

d(Ecv– T0 Scv)/dt = Σ ˙ ( ),
,

Q
T

TR j
R j

1 0−  + (Σ Ṅk
)ψ k)i – (Σ Ṅk 

)ψ k)e – Ẇcv– İ

Variable Formula

Entropy
s   T,P  =  s    T  -  R  

P

1
( ) ° ( ) ln , P in bar

Absolute availability of species j (not
availability)

j j o j =  h  -  T sˆ ˆψ

Exergy or availability ψ j – ψj,0

Chemical availability ĝk(T0,P0, X1,e,..)–ĝ k(T0,P0, X1,∞,..)

Fuel availability, availf with fuel at 1
bar, air at 1 bar

Σ Nk,iĝ k,i(T0,P0, X1,0,..)– ΣNk,eĝ k,e(T0,P0, Y1,∞,..)

Irreversibility/lost availability, I I = Wopt – Wact

Wopt, TM, Wchem but not of fuel only wopt, TM =   -  T P X Xi e e eψ ψ ( , , , ..)0 0 1 2

 w  T P X X -  T P X Xechem e e= ∞ ∞ ∞ ∞ ∞ψ ψ( , , , ..) ( , , , ..)0 0 1 2 1 2

Availability efficiency ηavail= W/AvailF.

Voltage in fuel cell, number of
electrons from Cx Hy is (4x+y). (volts)

-5

V  =  
G in kJ / K  mole  x 1.036 x 10

No of electrons per molecule of fuel 

∆( )
( )


	ADVANCED THERMODYNAMICS ENGINEERING
	PREFACE
	ABOUT THE AUTHORS
	NOMENCLATURE *
	Greek symbols
	Subscripts
	Superscripts
	Mathematical Symbols
	Acronyms

	Laws of Thermodynamics in Lay Terminology
	CONTENTS
	Chapter 1: INTRODUCTION
	A.IMPORTANCE,SIGNIFICANCE AND LIMITATIONS
	B.LIMITATIONS OF THERMODYNAMICS
	1.Review
	a.System and Boundary
	b.Simple System
	c.Constraints and Restraints
	d.Composite System
	e.Phase
	f.Homogeneous
	g.Pure Substance
	h.Amount of Matter and Avogadro Number
	i.Mixture
	j.Property
	k.State
	l.Equation of State
	m.Standard Temperature and Pressure
	n.Partial Pressure
	o.Process
	p.Vapor –Liquid Phase Equilibrium


	C.MATHEMATICAL BACKGROUND
	1.Explicit and Implicit Functions and Total Differentiation
	2.Exact (Perfect)and Inexact (Imperfect)Differentials
	a.Mathematical Criteria for an Exact Differential
	i.Two Variables (x and y)
	ii.Three or More Variables


	3.Conversion from Inexact to Exact Form
	4.Relevance to Thermodynamics
	a.Work and Heat
	b.Integral Over a Closed Path (Thermodynamic Cycle)

	5.Homogeneous Functions
	a.Relevance of Homogeneous Functions to Thermodynamics
	i.Extensive Property
	ii.Intensive Property
	iii.Partly Homogeneous Function
	iv.Conversion of Extensive Into Intensive Properties


	6.Taylor Series
	7.LaGrange Multipliers
	8.Composite Function
	9.Stokes and Gauss Theorems
	a.Stokes Theorem
	b.Gauss –Ostrogradskii Divergence Theorem
	c.The Leibnitz Formula


	D.OVERVIEW OF MICROSCOPIC THERMODYNAMICS
	1.Matter
	2.Intermolecular Forces and Potential Energy
	3.Internal Energy,Temperature,Collision Number and Mean Free Path
	a.Internal Energy and Temperature
	b.Collision Number and Mean Free Path
	i.Monatomic Gas
	ii.Diatomic Gas
	iii.Triatomic Gas


	4.Pressure
	a.Relation between Pressure and Temperature

	5.Gas,Liquid,and Solid
	6.Work
	7.Heat
	8.Chemical Potential
	a.Multicomponent into Mul- ticomponent
	b.Single Component into Multicomponent

	9.Boiling/Phase Equilibrium
	a.Single Component Fluid
	b.Multiple Components

	10.Entropy
	11.Properties in Mixtures – Partial Molal Property

	E.SUMMARY
	F.APPENDIX
	1.Air Composition
	2.Proof of the Euler Equation
	3.Brief Overview of Vector Calculus
	a.Scalar or Dot Product
	i.Work Done to Move an Object
	ii.Work Done to Move an Electrical Charge

	b.Vector or Cross Product r
	c.Gradient of a Scalar
	d.Curl of a Vector



	Chapter 2: FIRST LAW OF THERMODYNAMICS
	A.INTRODUCTION
	1.Zeroth Law
	2.First Law for a Closed System
	a.Mass Conservation
	b.Energy Conservation
	i.Elemental Process
	ii.Internal Energy
	iii.Potential Energy
	iv.Kinetic Energy
	v.Integrated Form
	vi.Uncoupled Systems
	vii.Coupled Systems

	c.Systems with Internal Motion
	viii.Adiabatic Work and Caratheodary Axiom I

	d.Cyclical Work and Poincare Theorem
	ix.Cyclical Work
	x.Poincare Theorem
	xi.Rate Form

	e.Quasiequilibrium Work
	f.Nonquasiequilibrium Work
	g.First Law in Enthalpy Form
	xii.Internal Energy and Enthalpy
	xiii.Specific Heats at Constant Pressure and Volume
	xiv.Adiabatic Reversible Process for Ideal Gas with Constant Specific Heats
	xv.Polytropic Process


	3.First Law For an Open System
	a.Conservation of Mass
	xvi.Nonsteady State
	xvii.Elemental Form
	xviii.Steady State
	xix.Closed System F A

	b.Conservation of Energy
	xx.Flow Work
	xxi.Nonsteady State
	xxii.Elemental Form
	xxiii.Steady State
	xxiv.Rate Form
	xxv.Unit Mass Basis
	xxvi.Elemental Form
	xxvii.Closed System
	xxviii.Remarks
	xxix.Steady State Steady Flow (SSSF)

	c.Multiple Inlets and Exits
	d.Nonreacting Multicomponent System
	xxx.Mass Conservation
	xxxi.Energy Conservation


	4.Illustrations
	a.Heating of a Residence in Winter
	b.Thermodynamics of the Human Body
	c.Charging of Gas into a Cylinder
	d.Discharging Gas from Cylinders
	e.Systems Involving Boundary Work
	f.Charging of a Composite System


	B. I N T E G R A L A ND DIFFERENTIAL FORMS OF CONSERVATION EQUATIONS
	1.Mass Conservation
	a.Integral Form
	b.Differential Form

	2.Energy Conservation
	a.Integral Form
	b.Differential Form
	c.Deformable Boundary


	C.SUMMARY
	D.APPENDIX
	1.Conservation Relations for a Deformable Control Volume


	Chapter 3: SECOND LAW AND ENTROPY
	A.INTRODUCTION
	1.Thermal and Mechanical Energy Reservoirs
	a.Heat Engine
	b.Heat Pump and Refrigeration Cycle


	B.STATEMENTS OF THE SECOND LAW
	1.Informal Statements
	a.Kelvin (1824-1907)– Planck ((1858-1947)Statement
	b.Clausius (1822-1888)Statement
	i.Perpetual Motion Machines



	C.CONSEQUENCES OF THE SECOND LAW
	1.Reversible and Irreversible Processes
	2.Cyclical Integral for a Reversible Heat Engine
	3.Clausius Theorem
	4.Clausius Inequality
	5.External and Internal Reversibility
	6.Entropy
	a.Mathematical Definition
	b.Characteristics of Entropy

	7.Relation between ds,dq and T During an Irreversible Process
	a.Caratheodary Axiom II
	ii.Proof



	D.ENTROPY BALANCE EQUATION FOR A CLOSED SYSTEM
	1.Infinitesimal Form
	a.Uniform Temperature within a System
	b.Nonuniform Properties within a System
	iii.Simple rule


	2.Integrated Form
	3.Rate Form
	4.Cyclical Form
	5.Irreversibility and Entropy of an Isolated System
	6.Degradation and Quality of Energy
	a.Adiabatic Reversible Processes


	E.ENTROPY EVALUATION
	1.Ideal Gases
	a.Constant Specific Heats
	b.Variable Specific Heats

	2.Incompressible Liquids
	3.Solids
	4.Entropy During Phase Change
	a.T –s Diagram

	5.Entropy of a Mixture of Ideal Gases
	a.Gibbs –Dalton ´s law
	b.Reversible Path Method


	F.LOCAL AND GLOBAL EQUILIBRIUM
	G.SINGLE –COMPONENT INCOMPRESSIBLE FLUIDS
	H.THIRD LAW
	I.ENTROPY BALANCE EQUATION FOR AN OPEN SYSTEM
	1.General Expression
	2.Evaluation of Entropy for a Control Volume
	3.Internally Reversible Work for an Open System
	4.Irreversible Processes and Efficiencies
	5.Entropy Balance in Integral and Differential Form
	a.Integral Form
	b.Differential Form

	6.Application to Open Systems
	a.Steady Flow
	b.Solids


	J.MAXIMUM ENTROPY AND MINIMUM ENERGY
	1.Maxima and Minima Principles
	a.Entropy Maximum (For Specified U,V,m)
	b.Internal Energy Minimum (for specified S,V,m)
	c.Enthalpy Minimum (For Specified S,P,m )
	d.Helmholtz Free Energy Minimum (For Specified T,V,m)
	e.Gibbs Free Energy Minimum (For Specified T,P,m)

	2.Generalized Derivation for a Single Phase
	a.Special Cases
	iv.No Thermal Constraint
	v.No Mechanical Constraint
	vi.No Chemical Constraint
	vii.Other Cases



	K.SUMMARY
	L.APPENDIX
	1.Proof for Additive Nature of Entropy
	2.Relative Pressures and Volumes
	3.LaGrange Multiplier Method for Equilibrium
	a.U,V,m System
	b.T,P,m System
	viii.One Component
	ix.Multiple Components




	Chapter 4: AVAILABILITY
	A.INTRODUCTION
	B.OPTIMUM WORK AND IRREVERSIBILITY IN A CLOSED SYSTEM
	1.Internally Reversible Process
	2.Useful or External Work
	3.Internally Irreversible Process with no External Irreversibility
	a.Irreversibility or Gouy –Stodola Theorem

	4.Nonuniform Boundary Temperature in a System

	C.AVAILABILITY ANALYSES FOR A CLOSED SYSTEM
	1.Absolute and Relative Availability Under Interactions with Ambient
	2.Irreversibility or Lost Work
	a.Comments


	D.GENERALIZED AVAILABILITY ANALYSIS
	1.Optimum Work
	2.Lost Work Rate,Irreversibility Rate,Availability Loss
	3.Availability Balance Equation in Terms of Actual Work
	a.Irreversibility due to Heat Transfer

	4.Applications of the Availability Balance Equation
	5.Gibbs Function
	6.Closed System (Non –Flow Systems)
	a.Multiple Reservoirs
	b.Interaction with the Ambient Only
	c.Mixtures

	7.Helmholtz Function

	E.AVAILABILITY EFFICIENCY
	1.Heat Engines
	a.Efficiency
	b.Availability or Exergetic (Work Potential)Efficiency

	2.Heat Pumps and Refrigerators
	a.Coefficient of Performance

	3.Work Producing and Consumption Devices
	a.Open Systems:
	b.Closed Systems

	4.Graphical Illustration of Lost,Isentropic,and Optimum Work
	5.Flow Processes or Heat Exchangers
	a.Significance of the Availability or Exergetic Efficiency
	b.Relation Between • Avail ,f and • Avail ,0 for Work Producing Devices


	F.CHEMICAL AVAILABILITY
	1.Closed System
	2.Open System
	a.Ideal Gas Mixtures
	b.Vapor or Wet Mixture as the Medium in a Turbine
	c.Vapor –Gas Mixtures
	d.Psychometry and Cooling Towers


	G.INTEGRAL AND DIFFERENTIAL FORMS
	1.Integral Form
	2.Differential Form
	3.Some Applications

	H.SUMMARY

	Chapter 5: POSTULATORY (GIBBSIAN)THERMODYNAMICS
	A.INTRODUCTION
	B.CLASSICAL RATIONALE FOR POSTULATORY APPROACH
	1.Simple Compressible Substance

	C.LEGENDRE TRANSFORM
	1.Simple Legendre Transform
	a.Relevance to Thermodynamics

	2.Generalized Legendre Transform
	3.Application of Legendre Transform

	D.GENERALIZED RELATION FOR ALL WORK MODES
	1.Electrical Work
	2.Elastic Work
	3.Surface Tension Effects
	4.Torsional Work
	5.Work Involving Gravitational Field
	6.General Considerations

	E.THERMODYNAMIC POSTULATES FOR SIMPLE SYSTEMS
	1.Postulate I
	2.Postulate II
	3.Postulate III
	4.Postulate IV

	F.ENTROPY FUNDAMENTAL EQUATION
	G.ENERGY FUNDAMENTAL EQUATION
	H.INTENSIVE AND EXTENSIVE PROPERTIES
	I.SUMMARY

	Chapter 6: STATE RELATIONSHIPS FOR REAL GASES AND LIQUIDS
	A.INTRODUCTION
	B.EQUATIONS OF STATE
	C.REAL GASES
	1.Virial Equation of State
	a.Exact Virial Equation
	b.Approximate Virial Equation

	2.Van der Waals (VW)Equation of State
	a.Clausius –I Equation of State
	b.VW Equation
	i.Comments


	3.Redlich –Kwong Equation of State
	4.Other Two –Parameter Equations of State
	5.Compressibility Charts (Principle of Corresponding States)
	6.Boyle Temperature and Boyle Curves
	a.Boyle Temperature
	b.Boyle Curve
	c.The Z =1 Island

	7.Deviation Function
	8.Three Parameter Equations of State
	a.Critical Compressibility Factor (Zc)Based Equations
	b.Pitzer Factor
	i.Comments

	c.Evaluation of Pitzer factor,•
	i.Saturation Pressure Correlations
	ii.Empirical Relations


	9.Other Three Parameter Equations of State
	a.One Parameter Approximate Virial Equation
	b.Redlich –Kwong –Soave (RKS)Equation
	c.Peng –Robinson (PR)Equation

	10.Generalized Equation of State
	11.Empirical Equations Of State
	a.Benedict –Webb –Rubin Equation
	b.Beatie – Bridgemann ((BB)Equation of State
	c.Modified BWR Equation
	d.Lee –Kesler Equation of State
	e.Martin –Hou

	12.State Equations for Liquids/Solids
	a.Generalized State Equation
	b.Murnaghan Equation of State
	c.Racket Equation for Saturated Liquids
	d.Relation for Densities of Saturated Liquids and Vapors.
	e.Lyderson Charts (For Liquids)
	f.Incompressible Approximation


	D.SUMMARY
	E.APPENDIX
	1.Cubic Equation
	a.Case I:• >0
	i.Case Ia:• >0
	ii.Case Ib:• <0

	b.Case II:• <0

	2.Another Explanation for the Attractive Force
	3.Critical Temperature and Attraction Force Constant


	Chapter 7: THERMODYNAMIC PROPERTIES OF PURE FLUIDS
	A.INTRODUCTION
	B.IDEAL GAS PROPERTIES
	C.JAMES CLARK MAXWELL (1831 –1879)RELATIONS
	1.First Maxwell Relation
	a.Remarks

	2.Second Maxwell Relation
	a.Remarks

	3.Third Maxwell Relation
	a.Remarks

	4.Fourth Maxwell Relation
	a.Remarks

	5.Summary of Relations

	D.GENERALIZED RELATIONS
	1.Entropy ds Relation
	a.Remarks

	2.Internal Energy (du)Relation
	a.Remarks

	3.Enthalpy (dh)Relation
	a.Remarks

	4.Relation for (cp –cv)
	a.Remarks


	E.EVALUATION OF THERMODYNAMIC PROPERTIES
	1.Helmholtz Function
	2.Entropy
	3.Pressure
	4.Internal Energy
	a.Remarks

	5.Enthalpy
	a.Remarks

	6.Gibbs Free Energy or Chemical Potential
	7.Fugacity Coefficient

	F.PITZER EFFECT
	1.Generalized Z Relation

	G.KESLER EQUATION OF STATE (KES)AND KESLER TABLES
	H.FUGACITY
	1.Fugacity Coefficient
	a.RK Equation
	b.Generalized State Equation

	2.Physical Meaning
	a.Phase Equilibrium
	b.Subcooled Liquid
	c.Supercooled Vapor


	I.EXPERIMENTS TO MEASURE (uO – u))
	J.VAPOR/LIQUID EQUILIBRIUM CURVE
	1.Minimization of Potentials
	a.Helmholtz Free Energy A at specified T,V and m
	b.G at Specified T,P and m

	2.Real Gas Equations
	a.Graphical Solution
	b.Approximate Solution

	3.Heat of Vaporization
	4.Vapor Pressure and the Clapeyron Equation
	a.Remarks

	5.Empirical Relations
	a.Saturation Pressures
	b.Enthalpy of Vaporization

	6.Saturation Relations with Surface Tension Effects
	a.Remarks
	b.Pitzer Factor from Saturation Relations


	K.THROTTLING PROCESSES
	1.Joule Thomson Coefficient
	a.Evaluation of µJT
	b.Remarks

	2.Temperature Change During Throttling
	a.Incompressible Fluid
	b.Ideal Gas
	c.Real Gas

	3.Enthalpy Correction Charts
	4.Inversion Curves
	a.State Equations
	b.Enthalpy Charts
	c.Empirical Relations

	5.Throttling of Saturated or Subcooled Liquids
	6.Throttling in Closed Systems
	7.Euken Coefficient – Throttling at Constant Volume
	a.Physical Interpretation


	L.DEVELOPMENT OF THERMODYNAMIC TABLES
	1.Procedure for Determining Thermodynamic Properties
	2.Entropy

	M.SUMMARY

	Chapter 8: THERMODYNAMIC PROPERTIES OF MIXTURES
	A.PARTIAL MOLAL PROPERTY
	1.Introduction
	a.Mole Fraction
	b.Mass Fraction
	c.Molality
	d.Molecular Weight of a Mixture

	2.Generalized Relations
	a.Remarks

	3.Euler and Gibbs –Duhem Equations
	a.Characteristics of Partial Molal Properties
	b.Physical Interpretation
	i.Remarks


	4.Relationship Between Molal and Pure Properties
	a.Binary Mixture
	b.Multicomponent Mixture

	5.Relations between Partial Molal and Pure Properties
	a.Partial Molal Enthalpy and Gibbs function
	b.Differentials of Partial Molal Properties
	i.Remarks


	6.Ideal Gas Mixture
	a.Volume
	b.Pressure
	c.Internal Energy
	d.Enthalpy
	e.Entropy
	f.Gibbs Free Energy

	7.Ideal Solution
	a.Volume
	b.Internal Energy and Enthalpy
	c.Gibbs Function
	d.Entropy

	8.Fugacity
	a.Fugacity and Activity
	b.Approximate Solutions for ˆ g•
	i.Ideal solution or the Lewis –Randall Model
	ii.Henry ’s Law

	c.Standard States
	i.Gas Mixtures
	ii.Liquid Mixtures

	d.Evaluation of the Activity of a Component in a Mixture.
	e.Activity Coefficient
	f.Fugacity Coefficient Relation in Terms of State Equation for P
	g.Duhem – Margules Relation
	i.Multiple Components
	ii.Binary Components

	h.Ideal Mixture of Real Gases
	i.Mixture of Ideal Gases
	j.Relation between Gibbs Function and Enthalpy
	k.Excess Property
	l.Osmotic Pressure
	i.Ideal Solution



	B.MOLAL PROPERTIES USING THE EQUATIONS OF STATE
	1.Mixing Rules for Equations of State
	a.General Rule
	b.Kay ’s Rule
	c.Empirical Mixing Rules
	d.Peng Robinson Equation of State
	e.Martin Hou Equation of State
	f.Virial Equation of State for Mixtures

	2.Dalton ’s Law of Additive Pressures (LAP)
	3.Law of Additive Volumes (LAV)
	4.Pitzer Factor for a Mixture
	5.Partial Molal Properties Using Mixture State Equations
	a.Kay ’s rule
	b.RK Equation of State


	C.SUMMARY

	Chapter 9: PHASE EQUILIBRIUM FOR A MIXTURE
	A.INTRODUCTION
	1.Miscible,Immiscible and Partially Miscible Mixture
	2.Phase Equilibrium
	a.Two Phase System
	b.Multiphase Systems
	c.Gibbs Phase Rule


	B.SIMPLIFIED CRITERIA FOR PHASE EQUILIBRIUM
	1.General Criteria for Any Solution
	2.Ideal Solution and Raoult ’s Law
	a.Vapor as Real Gas Mixture
	b.Vapor as Ideal Gas Mixture
	i.Remarks



	C.PRESSURE AND TEMPERATURE DIAGRAMS
	1.Completely Miscible Mixtures
	a.Liquid –Vapor Mixtures
	b.Relative Volatility
	c.P –T Diagram for a Binary Mixture
	d.P –Xk(l)–T diagram
	e.Azeotropic Behavior

	2.Immiscible Mixture
	a.Immiscible Liquids and Miscible Gas Phase
	b.Miscible Liquids and Immiscible Solid Phase

	3.Partially Miscible Liquids
	a.Liquid and Gas Mixtures
	b.Liquid and Solid Mixtures


	D.DISSOLVED GASES IN LIQUIDS
	1.Single Component Gas
	2.Mixture of Gases
	3.Approximate Solution –Henry ’s Law

	E.DEVIATIONS FROM RAOULT ’S LAW
	1.Evaluation of the Activity Coefficient

	F.SUMMARY
	G.APPENDIX
	1.Phase Rule for Single Component
	a.Single Phase
	b.Two Phases
	c.Three Phases
	d.Theory

	2.General Phase Rule for Multicomponent Fluids
	3.Raoult ’s Law for the Vapor Phase of a Real Gas


	Chapter 10: STABILITY
	A.INTRODUCTION
	B.STABILITY CRITERIA
	1.Isolated System
	a.Single Component

	2.Mathematical Criterion for Stability
	a.Perturbation of Volume
	i.Geometrical Criterion
	ii.Differential Criterion

	b.Perturbation of Energy
	c.Perturbation with Energy and Volume
	d.Multicomponent Mixture
	i.Remark
	ii.Criterion for Binary Mixture

	e.System With Specified Values of S,V,and m
	f.Perturbation in Entropy at Specified Volume
	g.Perturbation in Entropy and Volume
	i.Binary and Multicomponent Mixtures

	h.System With Specified Values of S,P,and m
	i.System With Specified Values of T,V,and m
	i.Perturbations With Respect to Temperature
	ii.Binary and Multicomponent Mixtures

	j.System With Specified Values of T,P,and m
	i.Perturbations With Respect to Pressure
	ii.Perturbation With Respect to temperature
	iii.Perturbations With Respect to P and T

	k.Multicomponent Systems


	C.APPLICATION TO BOILING AND CONDENSATION
	1.Physical Processes and Stability
	a.Physical Explanation

	2.Constant Temperature and Volume
	3.Specified Values of S,P,and m
	4.Specified Values of S (or U),V,and m

	D.ENTROPY GENERATION DURING IRREVERSIBLE TRANSFORMATION
	E.SPINODAL CURVES
	1.Single Component
	2.Multicomponent Mixtures

	F.DETERMINATION OF VAPOR BUBBLE AND DROP SIZES
	G.UNIVERSE AND STABILITY
	Mechanical Stability:
	Thermal Stability:
	Adiabatic Throttling of the Universe:

	H.SUMMARY

	Chapter 11: CHEMICALLY REACTING SYSTEMS
	A.INTRODUCTION
	B.CHEMICAL REACTIONS AND COMBUSTION
	1.Stoichiometric or Theoretical Reaction
	2.Reaction with Excess Air (Lean Combustion)
	3.Reaction with Excess Fuel (Rich Combustion)
	4.Equivalence Ratio,Stoichiometric Ratio
	5.Dry Gas Analysis

	C.THERMOCHEMISTRY
	1.Enthalpy of Formation (Chemical Enthalpy)
	2.Thermal or Sensible Enthalpy
	3.Total Enthalpy
	4.Enthalpy of Reaction
	5.Heating Value
	6.Entropy,Gibbs Function,and Gibbs Function of Formation

	D.FIRST LAW ANALYSES FOR CHEMICALLY REACTING SYSTEMS 1.First Law
	1.First Law
	2.Adiabatic Flame Temperature
	a.Steady State Steady Flow Processes in Open Systems
	b.Closed Systems


	E.COMBUSTION ANALYSES IN THE CASE OF NONIDEAL BEHAVIOR
	1.Pure Component
	2.Mixture

	F.SECOND LAW ANALYSIS OF CHEMICALLY REACTING SYSTEMS
	1.Entropy Generated During an Adiabatic Chemical Reaction
	2.Entropy Generated During an Isothermal Chemical Reaction

	G.MASS CONSERVATION AND MOLE BALANCE EQUATIONS
	1.Steady State System

	H.SUMMARY

	Chapter 12: REACTION DIRECTION AND CHEMICAL EQUILIBRIUM
	A.INTRODUCTION
	B.REACTION DIRECTION AND CHEMICAL EQUILIBRIUM
	1.Direction of Heat Transfer
	2.Direction of Reaction
	3.Mathematical Criteria for a Closed System
	i. Specified Values of U,V,and m
	ii.Specified Values of S,V,and m
	iii.Specified Values of S,P,and m
	iv.Specified values of H,P,and m
	v.Specified Values of T,V,and m
	vi.Specified Values of T,P,and m

	4.Evaluation of Properties During an Irreversible Chemical Reaction
	a.Nonreacting Closed System
	b.Reacting Closed System
	c.Reacting Open System

	5.Criteria in Terms of Chemical Force Potential
	6.Generalized Relation for the Chemical Potential

	C.CHEMICAL EQUILIBRIUM RELATIONS
	1.Nonideal Mixtures and Solutions
	a.Standard State of an Ideal Gas at 1 Bar
	b.Standard State of a Nonideal Gas at 1 Bar

	2.Reactions Involving Ideal Mixtures of Liquids and Solids
	3.Ideal Mixture of Real Gases
	4.Ideal Gases
	a.Partial Pressure
	b.Mole Fraction

	5.Gas,Liquid and Solid Mixtures
	6.van ’t Hoff Equation
	a.Effect of Temperature on K o (T)
	b.Effect of Pressure

	7.Equilibrium for Multiple Reactions
	8.Adiabatic Flame Temperature with Chemical Equilibrium
	a.Steady State Steady Flow Process
	b.Closed Systems

	9.Gibbs Minimization Method
	a.General Criteria for Equilibrium
	b.Multiple Components


	D.SUMMARY
	E.APPENDIX

	Chapter 13: AVAILABILITY ANALYSIS FOR REACTING SYSTEMS
	A.INTRODUCTION
	B.ENTROPY GENERATION THROUGH CHEMICAL REACTIONS
	C.AVAILABILITY
	1.Availability Balance Equation
	2.Adiabatic Combustion
	3.Maximum Work Using Heat Exchanger and Adiabatic Combustor
	4.Isothermal Combustion
	5.Fuel Cells
	a.Oxidation States and electrons
	b.H2-O2 Fuel Cell


	D.FUEL AVAILABILITY
	E.SUMMARY

	Chapter 14: PROBLEMS
	A.CHAPTER 1 PROBLEMS
	Problem A1
	Problem A2
	Problem A3
	Problem A4
	Problem A5
	Problem A6
	Problem A7
	Problem A8
	Problem A9
	Problem A10
	Problem A11
	Problem A12
	Problem A13
	Problem A14
	Problem A15
	Problem A16
	Problem A17
	Problem A18
	Problem A19
	Problem A20
	Problem A21
	Problem A22
	Problem A23
	Problem A24

	B.CHAPTER 2 PROBLEMS
	Problem B1
	Problem B2
	Problem B3
	Problem B4
	Problem B5
	Problem B6
	Problem B7
	Problem B8
	Problem B9
	Problem B10
	Problem B11
	Problem B12
	Problem B13
	Problem B14
	Problem B15
	Problem B16
	Problem B17
	Problem B18
	Problem B19
	Problem B20
	Problem B21
	Problem B22
	Problem B23
	Problem B24
	Problem B25
	Problem B26
	Problem B27
	Problem B28
	Problem B29

	C.CHAPTER 3 PROBLEMS
	Problem C1
	Problem C2
	Problem C3
	Problem C4
	Problem C5
	Problem C6
	Problem C7
	Problem C8
	Problem C9
	Problem C10
	Problem C11
	Problem C12
	Problem C13
	Problem C14
	Problem C15
	Problem C16
	Problem C17
	Problem C18
	Problem C19
	Problem C20
	Problem C21
	Problem C22
	Problem C23
	Problem C24
	Problem C25
	Problem C26
	Problem C28
	Problem C29
	Problem C30
	Problem C31
	Problem C32
	Problem C33
	Problem C34
	Problem C35
	Problem C36
	Problem C37
	Problem C38
	Problem C39
	Problem C40
	Problem C41
	Problem C42
	Problem C43
	Problem C44
	Problem C45
	Problem C46
	Problem C47
	Problem C48
	Problem C49
	Problem C50
	Problem C51
	Problem C52
	Problem C53
	Problem C54
	Problem C55
	Problem C56
	Problem C57
	Problem C58
	Problem C59
	Problem C60
	Problem C61
	Problem C62
	Problem C63
	Problem C64
	Problem C65
	Problem C66
	Problem C67
	Problem C68
	Problem C69
	Problem C70
	Problem C71
	Problem C72
	Problem C73
	Problem C74
	Problem C75
	Problem C76
	Problem C77
	Problem C78
	Problem C79
	Problem C80
	Problem C81
	Problem C82
	Problem C83
	Problem C84
	Problem C85

	D.CHAPTER 4 PROBLEMS
	Problem D1
	Problem D2
	Problem D3
	Problem D4
	Problem D5
	Problem D6
	Problem D7
	Problem D8
	Problem D9
	Problem D10
	Problem D11
	Problem D12
	Problem D13
	Problem D14
	Problem D15
	Problem D16
	Problem D17
	Problem D18
	Problem D19
	Problem D20
	Problem D21
	Problem D22
	Problem D23
	Problem D24
	Problem D25
	Problem D26
	Problem D27
	Problem D28
	Problem D29
	Problem D30
	Problem D31
	Problem D32
	Problem D33
	Problem D34
	Problem D35
	Problem D36 
	Problem D37
	Problem D38
	Problem D39
	Problem D40
	Problem D41
	Problem D42
	Problem D43
	Problem D44
	Problem D45
	Problem D46
	Problem D47
	Problem D48
	Problem D49
	Problem D50
	Problem D51
	Problem D52
	Problem D53
	Problem D54

	E.CHAPTER 5 PROBLEMS
	Problem E1
	Problem E2
	Problem E3
	Problem E4

	F.CHAPTER 6 PROBLEMS
	Problem F1
	Problem F2
	Problem F3
	Problem F4
	Problem F5
	Problem F6
	Problem F7
	Problem F8
	Problem F9
	Problem F10
	Problem F11
	Problem F12
	Problem F13
	Problem F14
	Problem F15
	Problem F16
	Problem F17
	Problem F18
	Problem F19
	Problem F20
	Problem F21
	Problem F22
	Problem F23
	Problem F24
	Problem F25
	Problem F26
	Problem F27
	Problem F28
	Problem F29
	Problem F30
	Problem F31
	Problem F32
	Problem F33
	Problem F34
	Problem F35
	Problem F36
	Problem F37
	Problem F38
	Problem F39
	Problem F40
	Problem F41
	Problem F42
	Problem F43
	Problem F44
	Problem F45
	Problem F46
	Problem F47
	Problem F48
	Problem F49
	Problem F50
	Problem F51
	Problem F52
	Problem F53
	Problem F54
	Problem F55
	Problem F56
	Problem F57
	Problem F58
	Problem F59
	Problem F60

	G.CHAPTER 7 PROBLEMS
	Problem G1
	Problem G2
	Problem G3
	Problem G4
	Problem G5
	Problem G6
	Problem G7
	Problem G8
	Problem G9
	Problem G10
	Problem G11
	Problem G12
	Problem G13
	Problem G14
	Problem G15
	Problem G16
	Problem G17
	Problem G18
	Problem G19
	Problem G20
	Problem G21
	Problem G22
	Problem G23
	Problem G24
	Problem G25
	Problem G26
	Problem G27
	Problem G28
	Problem G29
	Problem G30
	Problem G31
	Problem G32
	Problem G33
	Problem G34
	Problem G35
	Problem G36
	Problem G37
	Problem G38
	Problem G39
	Problem G40
	Problem G41
	Problem G42
	Problem G43
	Problem G44
	Problem G45
	Problem G46
	Problem G47
	Problem G48
	Problem G49
	Problem G50
	Problem G51
	Problem G52
	Problem G53
	Problem G54
	Problem G55
	Problem G56
	Problem G57
	Problem G58
	Problem G59
	Problem G60
	Problem G61
	Problem G62
	Problem G63
	Problem G64
	Problem G65
	Problem G66
	Problem G67
	Problem G68
	Problem G69
	Problem G70
	Problem G71
	Problem G72
	Problem G73
	Problem G74
	Problem G75
	Problem G76
	Problem G77

	H.CHAPTER 8 PROBLEMS
	Problem H1
	Problem H2
	Problem H3
	Problem H4
	Problem H5
	Problem H6
	Problem H7
	Problem H8
	Problem H9
	Problem H10
	Problem H11
	Problem H12
	Problem H13
	Problem H14
	Problem H15
	Problem H16
	Problem H17
	Problem H18

	I.CHAPTER 9 PROBLEMS
	Problem I1
	Problem I2
	Problem I3
	Problem I4
	Problem I5
	Problem I6
	Problem I7
	Problem I8
	Problem I9
	Problem I10
	Problem I11
	Problem I12
	Problem I13

	J.CHAPTER 10 PROBLEMS
	Problem J1
	Problem J2
	Problem J3
	Problem J4
	Problem J5
	Problem J6
	Problem J7
	Problem J8
	Problem J9
	Problem J10
	Problem J11
	Problem J12
	Problem J13
	Problem J14
	Problem J15
	Problem J16
	Problem J17
	Problem J18
	Problem J19
	Problem J20
	Problem J21
	Problem J22
	Problem J23

	K.CHAPTER 11 PROBLEMS
	Problem K1
	Problem K2
	Problem K3
	Problem K4
	Problem K5
	Problem K6
	Problem K7
	Problem K8
	Problem K9
	Problem K10
	Problem K11
	Problem K12
	Problem K13
	Problem K14
	Problem K15
	Problem K16
	Problem K17
	Problem K18
	Problem K19
	Problem K20
	Problem K21
	Problem K22
	Problem K23
	Problem K24

	L.CHAPTER 12 PROBLEMS
	Problem L1
	Problem L2
	Problem L3
	Problem L4
	Problem L5
	Problem L6
	Problem L7
	Problem L8
	Problem L9
	Problem L10
	Problem L11
	Problem L12
	Problem L13
	Problem L14
	Problem L15
	Problem L16
	Problem L17
	Problem L18
	Problem L19
	Problem L20
	Problem L21
	Problem L22
	Problem L23
	Problem L24
	Problem L25
	Problem L26
	Problem L27
	Problem L28
	Problem L29
	Problem L30
	Problem L31
	Problem L32
	Problem L33
	Problem L34
	Problem L35

	M.CHAPTER 13 PROBLEMS
	Problem M1
	Problem M2
	Problem M3
	Problem M4
	Problem M5
	Problem M6
	Problem M7
	Problem M8
	Problem M9
	Problem M10
	Problem M11
	Problem M12
	Problem M13
	Problem M14
	Problem M15
	Problem M16
	Problem M17
	Problem M18


	APPENDIX A: TABLES
	TABLE Contents 

	APPENDIX B: CHARTS
	APPENDIX C: FORMULAE
	A.CHAPTER 1 RELATIONS
	B.CHAPTER 2 RELATIONS
	C.CHAPTER 3 RELATIONS
	D.CHAPTER 4 RELATIONS
	E.CHAPTER 5 RELATIONS
	F. CHAPTER 6 RELATIONS
	G.CHAPTER 7 RELATIONS
	H.CHAPTER 8 RELATIONS
	I.CHAPTER 9 RELATIONS
	J.CHAPTER 10 RELATIONS
	K.CHAPTER 11 RELATIONS
	L.CHAPTER 12 RELATIONS
	M.CHAPTER 13 RELATIONS





