MEMS Etching Technology

There are two classes of etching process:

- Wet etching: The material is dissolved when immersed in a chemical solution.
- Dry etching: The material is sputtered or dissolved using reactive ions or a vapor phase etching.

Etching Mechanism

Subtractive Processes

Wet and Dry Etching

- Wet Etching
 - Chemical Reaction
 - Liquid source

- Dry Etching
 - Chemical + Physical Reaction
 - Gas or Vapor phase source

Dry Etching

Ion Energy

- Physical Etching (Sputtering)
 - Momentum transfer
 - \Rightarrow bond breakage
 - Particle Collisions
 - Aniosotropic
- Physical- chemical Etching
 - Ion bombardment to make the surface more reactive
 - Anisotropic
- Chemical Etching
 - Reactive etchant species
 - Isotropic

Isotropic and Anisotropic in Wet and Dry Etching

Comparison

Parameter	Wet Etching	Dry Etching
Directionality	Only with single crystal materials	With most materials
Cost	Low	High
Selectivity	Can be very good	Poor
Typical Etch Rate	Fast (1um/min)	Slow (0.1 um/min)
Control	Difficult	Good

Patterning (Pattern Transfer Method)

- Photo Lithography
- E-beam Lithography
- Nano-imprinting Lithography
- LIGA

Patterned Mask for Photolithography Expose

Photolithography Overview Learning Module

Photoresist process for lithography

- Change cross linking of polymer chains of a photo-sensitive polymer called photoresist, and modify its dissociation rate in a developer similar to that for developing photos
- Mask
 - Absorber (Dark Area) & window (Open area)
- Resist
 - Transfer image from mask to wafer

- Contact not limited by diffraction
- Proximity 2 ~ 20 μm gap, limited by diffraction
- Projection limited by diffraction

Electron Beam Lithography

- Minimum beam size (5nm)
- for optical & X-ray masks, and nano-devices
- Direct writing on resist-coated substrate
- No Mask

Electron Beam Lithography

Energy Sources

		Wavelength	Energy
Light	UV	400 nm	3.1 eV
	Deep UV	250 nm	4.96 eV
	X-Ray	0.5 nm	2480 eV
Particles	Electrons	0.62 Å	20 keV
	Ions	0.12 Å	100 keV

• Energy

$$E = h v = \frac{hc}{\lambda}$$

• Minimum Line Width

$$R = 1.22 \frac{\lambda f}{d}$$

Electron Beam Lithography

Comparison

	Optical	Electron Beam
Advantage	 Low ~High precision Fast exposure speed Relatively low cost 	 No diffraction Easy to control Available for small features
Disadvantage	 Light diffraction Alignment problem Debris between mask and wafer 	 Needs vacuum High system cost Slow

Electron & Ion Beam Lithography

