MEMS Fabrication Techniques

There are three basic building blocks in MEMS technology

> Deposition (Additive Method) :

• Thin Film Deposition

Etching (Subtractive Method) :

- Wet Etching
- Dry Etching

> Patterning (Pattern Transfer Method) :

- Photo Lithography
- E-beam Lithography
- Nano-imprinting Lithography
- LIGA

MEMS Deposition Technology

MEMS deposition technology can be classified in two groups:

> Deposition via physical reaction

- Physical Vapor Deposition (PVD)
- Casting

Deposition via chemical reaction

- Chemical Vapor Deposition (CVD)
- Electrodeposition
- Epitaxy
- Thermal oxidation

MEMS Deposition Technology

Deposit thin film of material (mask) anywhere between a few nm to 100 micrometers onto substrate

- Physical: material placed onto substrate, techniques include sputtering and evaporation
- Chemical: stream of source gas reacts on substrate to grow product, techniques include chemical vapor deposition and atomic layer deposition
- **Substrates**: silicon, glass, quartz
- **Thin films**: polysilicon, silicon dioxide, silicon nitride, metals, polymers

MEMS Deposition Technology

Additive Methods: Thin Film Deposition

Physical Vapor Deposition (PVD)

- Thermal Evaporation
- Sputtering

Chemical Vapor Deposition (CVD)

- PECVD (Plasma Enhanced)
- LPCVD (Low Pressure)
- Electroplating
- Atomic Layer Deposition

PVD: Thermal Evaporation

• Low working pressure to increase mean free path

- Low surface damage
- Faster than sputtering
- Limited material

Additive Processes

PVD: Sputtering

- Based on Ion bombardment
- Unlimited material
- Possible surface damage
- Excellent adhesion
- Expensive

Video: PVD Sputtering

銀嘉科技來自台灣是全球第一家以濺鍍方式將銀、銅、鈦等 金屬濺鍍於不織布上應用,開發出全新材料的公司, ingA公司名稱源自將純"銀"奈米化"加"入材料之中而來!

Additive Processes

	Thermal Evaporation	Sputtering
Rate	Thousand atomic layers at a time	One atomic layer at a time
Choice of materials	Limited	Almost limited
Surface damage	Very low	Ionic bombardment damage
In-situ clearing	Not available	Can be easily done
Adhesion	Poor	Good
Uniformity	Difficult to control	Easy control
Film properties	Difficult to control	Can be controlled by pressure, bias and temperature
Step coverage		

Additive Processes: CVD

Gaseous reactants are introduced into chamber at elevated temperatures.
Reactant reacts and deposits onto substrate

LPCVD (Low Pressure CVD),
 PECVD (Plasma Enhanced CVD)

CVD results depend on pressure, gas, and temperature

- Can be diffusion or reaction limited
- Varies from film composition, deposition rate and electrical and mechanical properties

CVD: Low Pressure

• LPCVD

- < 10 Pa
- Excellent purity
- Low stress
- High temperature
- Low deposition rate

CVD: Plasma Enhanced

• PECVD

- Plasma helps reaction
- Low substrate temperature
- Good step coverage
- Chemical contamination

Electroplating

- Various metal (Au, Ni, etc)
- Fast
- > 10 µm
- Hydrogen bubble generation
- Difficult for sub-µm features
- Needs seed layer

Electroplating: Video

Atomic Layer Deposition

Film thickness uniformity with different methods

Advantages:

excellent conformality

reproducibility

- large area uniformity
- accurate and easy film thickness control down to an atomic level

Atomic Layer Deposition: Movie

Example of ALD coating process

Highly Flexible Photocatalytic Metal Oxide Structures Templated from Eggshell Membranes

Nature Materials submitted

Anti-Microbial Activity

E.coli survival curves

Nature Materials submitted

Metal Oxide Nanotubes: templating ES-fibers

Chemistry of Materials submitted

Mechatronics MEMS in Mechatronics

