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CHAPTER 9

9. Comparison of two population Means and Population Proportions

9.1 Inference About Differences Between Two Means

9.1.1 Introduction

Inferences concerning differences between two population parameters are considered as comparative

studies. Comparative studies are designed to discover and evaluate differences between groups or

between treatments. In comparative study experiments are conducted to collect informative data and

conclusions are drawn based on the experimental evidences.

In studies involving comparison of two groups there are two ways of taking the samples and conducting

the experiment:

i. Paired samples and

ii. Independent samples

Definition:

i. Two samples are said to be paired if each data point in the first sample is matched and related to a

unique data point in the second sample. Pairs of similar individuals (observations) are selected. In an

experiment one treatment is applied to one member of each pair and another treatment is applied to the

other member. A common application occurs in self pairing where a single individual is measured on

two occasions.

ii. Two samples are independent if data points in one sample are unrelated to data points in the second

points. This case arises when we wish to compare two populations and have drawn a sample from each

quite independently. The independent samples are used widely when there is no suitable basis for

paring.

Hypothesis: H0: μ1 = μ2 versus H1: μ1 ≠ μ2
H1: μ1 > μ2
H1: μ1 < μ2

Test statistic: To test the hypotheses we devise a procedure for taking a random sample computing an

appropriate test statistic, and then rejecting or failing to reject the null hypothesis H0 . Part of this

procedure is specifying the set of values for the test statistic that leads to rejection of H0 . This set of

values is called the critical region or rejection region for the test.
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In order to compare two population means, it is necessary to take two random and independent samples

from the two populations. Independence is achieved by making the selection of one sample not influence

the selection of the other in any way. We shall use the notations shown in Figure 9.1.

n1 n2
X�1 X�2
S1 S2

Figure 9.1 Comparing Two Population Means

The hypothesis are about μ1 − μ2, such as

H0: μ1 − μ2 = D

H1: μ1 − μ2 ≠ D

For a two-tailed test where D is the hypothesized difference in the means

Often, D is zero.

For a one-tailed test with rejection on the left the hypotheses will be

H0: μ1 − μ2 = D

H1: μ1 − μ2 < � and for rejection on the right tail

H0: μ1 − μ2 = D

H1: μ1 − μ2 > �

9.1.2 Sampling Distribution of the Difference Between Two Means

It often becomes important to compare two population means. Knowledge of the sampling distribution of

the difference between two means is useful in studies of this type. It is generally assumed that the two

populations are normally distributed.

Sampling distribution of X�1 − X�2
Plotting mean sample differences against frequency gives a normal distribution with mean equal to μ1 −

μ2 which is the difference between the two population means.

Variance

Population 1
�1
�1

Population 2
�2
�2

Sampl SamplSampl Sampl
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The variance of the distribution of the sample differences is equal to σ12

n1
+ σ22

n2
. Therefore, the standard

error of the differences between two means would be equal to σ12

n1
+ σ22

n2
.

Converting to a z score

Z =
(X�1 − X�2) − (μ1 − μ2)

σ12
n1

+
σ22
n2

9.1.3 Comparison of Means in Independent Samples

There are many sampling situations in which we will be selecting independent random sample from two

populations in order to compare the population means. The statistic used to make such inference will in

many cases be the difference in the corresponding sample statistic.

In situation where we wish to make inference about μ1 − μ2 , based on independent samples we use the

data from the two samples and make a comparison between the population means μ1 and μ2 . A logical

point estimate of the difference in the population means is the sample difference x�1 − x�2 where x�1 is the

mean of the sample observations from population 1 and x�2 is the mean of the sample observations from

population 2.

For confidence interval estimation and hypothesis testing we shall consider the following four cases.

Case 1: small sample and equal variance

The assumption of equal variances is justified when the causes for variations are the same for both

populations.

For instance, we may be testing the difference between the average strengths of pins produced from two

different raw materials but using the same machinery and process. It is reasonable in this case to assume

equal variances.

Assumptions:

1. The samples from the two populations were drawn independently.

2. The population variances/standard deviations are equal.

3. The populations are both normally distributed.

From sampling theory, we note that

E[X�1 − X�2] = μ1 − μ2

V(X�1 − X�2) = V(X�1) + V(X�2) =
σ12

n1
+ σ22

n2

By the Central Limit Theorem, as n1 and n2 both increase, X�1 − X�2 will approach the normal distribution.
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If the common variance �2 is unknown it is estimated by the pooled estimator of the population variance

given by:

SP2 =
(n1 − 1)S12 + (n2 − 1)S22

n1 + n2 − 2

Decision rule: we shall reject H0 at α level of significane if :

Z > Zα
2
for H0: μ1 = μ2 Versus H1: μ1 ≠ μ2

Z > Zα for H0: μ1 = μ2 Versus H1: μ1 > μ2
Z <− Zα for H0: μ1 = μ2 Versus H1: μ1 < μ2

Confidence interval: A 100(1-α)% confidence interval for mean difference μ1 − μ2 is given by:

(X�1 − X�2) ± Zα 2
σ

1
n1
−
1
n2

If σ2 is unknown T = (X�1−X�2)−(μ1−μ2)

SP
1
n1
+ 1
n2

has a t-distribution with n1 + n2 − 2 degrees of freedom.

Decision rule: we shall reject: we shall reject H0 at α level of significane if :

T > Tα
2
, n1 + n2 − 2 for H0: μ1 = μ2 Versus H1: μ1 ≠ μ2

T > Tα , n1 + n2 − 2 for H0: μ1 = μ2 Versus H1: μ1 > μ2
T <− Tα , n1 + n2 − 2 for H0: μ1 = μ2 Versus H1: μ1 < μ2
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Confidence interval:

A 100(1-α)% confidence interval for mean difference μ1 − μ2 is given by:

(X�1 − X�2) ± Tα 2
,n1 + n2 − 2 ∗ SP

1
n1
−
1
n2

Example 1: Lung destructive index:

Given:

Smokers: ��1 = 17.5 �1 = 16 �1 = Ͷ�Ͷ�Ͷ2

Non-smokers: ��2 = 12.4 �2 = 9 �2 = Ͷ�ǤͶͺ2 , α = 0.05

We wish to know if we may conclude, at the 95% confidence level, that smokers, in general, have greater

lung damage than do non-smokers.

Solution:

Assumptions

o Independent random samples

o Normal distribution of the population

o Population variances are equal and unknown

Hypothesis: H0: μ1 = μ2 versus H1 :μ1 > μ2
The appropriate test statistic is:

t = (X�1−X�2)−(μ1−μ2)

SP
1
n1
+ 1
n2

Where:SP2 =
(n1−1)S12+(n2−1)S22

n1+n2−2
= 1Ͷ Ͷ�Ͷ�11 2+ Ǥ Ͷ�ǤͶͺ2 2

16+ͺ−2
= 2ͺͺ�Ǥ6+1ǤǤ�12

23
= 21�216Ͷ

t = (X�1−X�2)−(μ1−μ2)

SP
1
n1
+ 1
n2

= 1��Ͷ−12�Ͷ −0

21�216Ͷ∗
1
16+

1
ͺ

= Ͷ�1
1�ͺ2

= 2�6Ͷ63

Critical region:

With α = 0.05 and df = 23, the critical value of t is 1.7139. We reject H0 if t > 1.7139.

Reject H0 because 2.6563 > 1.7139

Conclusion: At a significance level of 5% there is sufficient evidence that smokers, in general, have

greater lung damage than do non-smokers, i.e., the mean lung damage of smokers is significantly higher

from the mean damage of no smokers.

Case 2: Unequal variance but ��� and ��� are known

Assumptions:

1. The samples from the two populations were drawn independently.
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2. The population variances/standard deviations are NOT equal.

3. The populations are both normally distributed.

When �1 and �2 are known, we can therefore conduct a z-test if both n1 and n2 are more than 30 and

the two populations are normal. The z statistic for testing H0: μ1 = μ2 is given by the formula

z =
(X�1 − X�2) − (μ1 − μ2)

σ12
n1

+
σ22
n2

Decision rule: we shall reject H0 at α level of significane if :

Z > Zα
2
for H0: μ1 = μ2 Versus H1: μ1 ≠ μ2

Z > Zα for H0: μ1 = μ2 Versus H1: μ1 > μ2
Z <− Zα for H0: μ1 = μ2 Versus H1: μ1 < μ2

Confidence interval: A 100(1-α)% confidence interval for mean difference μ1 − μ2 is given by:

(X�1 − X�2) ± Zα 2 ∗
σ12
n1

+
σ22
n2

Example 1: Serum uric acid levels

Given: x�1 = 4.5 n1 = 12 σ12 = 1 x�2 = 3.4 n2 = 15 σ22 = 1�Ͷ α = 0.05

Is there a difference between the means between individuals with Down's syndrome and normal

individuals?

Solution:

Assumptions

o Two independent random samples

o Each drawn from a normally distributed population with known variance.

Hypothesis: H0: μ1 = μ2 Versus H1: μ1 ≠ μ2
The appropriate statistic for testing H0: μ1 = μ2 is

Z =
(X�1 − X�2) − (μ1 − μ2)

σ12
n1

+
σ22
n2

=
Ͷ�Ͷ − 3�Ͷ − 0

1
12

+
1�Ͷ
1Ͷ

=
1�1

0�Ͷ2Ǥ2
= 2�Ͷ�

Critical region: with α = 0.05, the critical values of z are -1.96 and +1.96. We reject H0: if z < -1.96 or z

> +1.96.
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Reject H0 because 2.57 > 1.96.

Conclusion: From these data, it can be concluded that the population means are not equal. At 95% level

of confidence there enough evidence that Serum uric acid levels of Down's syndrome and normal

individuals are different.

Case 3: Unknown variance but the sample sizes are large

If large samples of size are drawn from two population with unknown variances σ12 and σ22 , an

appropriate test statistic for testing H0: μ1 = μ2 is given by:

Z = (X�1−X�2)−(μ1−μ2)
σ�(X�1−X�2)

, Where σ�(X�1 − X�2) =
S12

n1
+ S22

n2

S1 =
1

n1−1 i=1
n1 (X1i − X�1)�

2
and S2 =

1
n2−1 i=1

n2 (X2i − X�2)�
2

Decision rule: we reject: we shall reject H0 at α level of significane if :

Z > Zα
2
for H0: μ1 = μ2 Versus H1: μ1 ≠ μ2

Z > Zα for H0: μ1 = μ2 Versus H1: μ1 > μ2
Z <− Zα for H0: μ1 = μ2 Versus H1: μ1 < μ2

Confidence interval: A 100(1-α)% confidence interval for mean difference μ1 − μ2 is given by:

(X�1 − X�2) ± Zα 2 ∗
S12

n1
+
S22

n2

Example 1: These data were obtained in a study comparing persons with disabilities with persons

without disabilities. A scale known as the Barriers to Health Promotion Activities for Disabled Persons

(BHADP) Scale gave the data. We wish to know if we may conclude, at the 99% confidence level, that

persons with disabilities score higher than persons without disabilities.

Given

Disable: x�1 = 31.83 n1 = 132 s12 = ��ͺ3

Non-disable: x�2 = 25.07 n2 = 137 s22 = Ͷ�Ǥ0 α = 0.01

Solution:
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Assumptions

 Independent random samples

 large samples

 unknown variance

Hypothesis: H0: μ1 = μ2 Versus H1: μ1 > μ2
Test statistic: Because of the large samples, the central limit theorem permits calculation of the z score as

opposed to using t. The z score is calculated using the given sample standard deviations. If the

assumptions are correct and H0 is true, the test statistic is approximately normally distributed

z =
(X�1 − X�2) − (μ1 − μ2)

�12

n1
+
�22

n2

=
31�Ǥ3 − 2Ͷ�0� − 0

(��ͺ3)2

132
+
(Ͷ�Ǥ0)2

13�

=
6��6
0�Ǥ02ͺ

= Ǥ�Ͷ2

Critical region:

With α = 0.01 and a one tail test, the critical value of z is 2.33. We reject H0 if z > 2.33.

Discussion: Reject H0 because 8.42 > 2.33.

Conclusion: At 99% level of confidence we conclude that the data support the claim that persons with

disabilities score higher than persons without disabilities.

Case 4: Unequal variances with no information about ��� and ���, and small sample size.

There are many situations in which the comparison of means has to be made based on small samples

from population with different variances. Among the common situations in which we cannot assume σ12

σ22 are:

i. When the samples come from different types of population as in comparisons made from survey data.

ii. When computing confidence limits in case in which the population means differ widely the common

result that σ changes (though slowly) as μ changes will make us hesitant to assume

σ12 = σ22 .

iii. When one treatment is erratic in its performance sometimes giving high sometimes low responses.

In populations that are markedly skew, the relationship between μ and σ is relatively strong.

An appropriate test statistic for testing H0:μ1 = μ2 is :

t =
(X�1 − X�2) − (μ1 − μ2)

S12

n1
+
S22

n2

, t − does not follow the t − distribution, when H0 is true�
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Two different form of the distribution of t have been worked out but both require special tables provided

by the authors because both were worked out based on different theoretical backgrounds. An appropriate

degrees of freedom that will enable to use the ordinary t-table has been suggested. Then an appropriate

degrees of freedom for t is given by:

Decision rule: we reject: we shall reject H0 at α level of significane if :

t > tα
2
, v for H0: μ1 = μ2 Versus H1: μ1 ≠ μ2

t > tα , v for H0: μ1 = μ2 Versus H1: μ1 > μ2
t <− tα , v for H0: μ1 = μ2 Versus H1: μ1 < μ2

Confidence interval: A 100(1-α)% confidence interval for mean difference μ1 − μ2 is given by:

(X�1 − X�2) ± tα 2, v ∗
S12

n1
+ S22

n2
.

Example 1: We wish to compare the mean gestational age (in weeks) of babies born to women with

preeclampsia during pregnancy vs. those who had normal pregnancies. Is the mean gestational age for

babies born to preeclamptic mothers is less than the mean gestational age for babies born to mothers with

normal pregnancies at 95% confident level?

Data:

Preeclampsia: 38, 32, 42, 30, 38, 35, 32, 38, 39, 29, 29, 32

Normal: 40, 41, 38, 40, 40, 39, 39, 41, 41, 40, 40, 40

Solution:

Preeclampsia: x�1 = 34.5 n1 = 12 s12 = 1ͺ�36

Normal: x�2 = 39.92 n2 = 12 s22 = 0�Ǥ1 α = 0.05

Hypothesis: H0: μ1 = μ2 Versus H1: μ1 < μ2

t =
(X�1 − X�2) − (μ1 − μ2)

�12

n1
+
�22

n2

=
3Ͷ�Ͷ − 3ͺ�ͺ2 − 0

1ͺ�36
12

+
0�Ǥ1
12

=
− Ͷ�Ͷ2
1�2ͺ� =− Ͷ�1��

Critical region: t < − tα , v, where df = smaller sample size = 12 or
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tα , V = t0�0Ͷ, 12 =− 2�1�ͺ

Reject H0 because − Ͷ�1�� <− 2�1�ͺ

Conclusion: since t = - 4. 177 is less than -2.179 we reject H0 at 5% level of significance and conclude

that the mean gestational age for babies born to preeclamptic mothers is less than the mean gestational

age for babies born to mothers with normal pregnancies.

3.1.4 Comparison of Means in Paired Samples

At times it might be possible to pair the observations in the two samples and take the difference in each

pair of observations. Usually this happens when subjects are exposed to a treatment, measurements are

taken before and after the treatment, and these measurements are compared to test the effectiveness of the

treatment. In effect, this amounts to a single population test where the population is the set of all possible

differences in the measurements.

A paired difference test is more efficient than the other tests because it has less chances of Type I and

Type II errors for the same sampling effort. The efficiency obtains because when measurements are made

on the same subject before and after a treatment, effects of extraneous variables such as age, race and

gender on the before/after difference are avoided. Thus the measured difference due to the treatment is

more accurate and reliable. Hence, whenever a paired difference test is possible, one should settle for that

rather than for other types of tests.

When using dependent samples each observation from population 1 has a one-to-one correspondence

with an observation from population 2. One of the most common cases where this arises is when we

measure the response on the same subjects before and after treatment.

When two samples are not independent and observations are taken in pairs the paired t-test is applicable.

In this case for each data point in one sample there is corresponding data point in the second sample.

Consider n paired sample points (x11, x21), (x12, x22), …, (x1n, x2n). Let the mean difference among pairs

in the population be denoted by μD.
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T > Tα
2
, n − 1 for H0: μ1 = μ2 Versus H1: μ1 ≠ μ2

T > Tα , n1 − 1 for H0: μ1 = μ2 Versus H1: μ1 > μ2
T <− Tα , n1 − 1 for H0: μ1 = μ2 Versus H1: μ1 < μ2

Example 1: Tumor size

Having an accurate measure of tumor size is extremely important because it allows a physician to

accurately determine if a tumor is growing, shrinking or remaining constant. The problem is that often

the measurements of the tumor size vary from physician to physician. In the past, tumor size was
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measured using the linear distance across the tumor, but this was found to be very variable because of the

irregular shape of some tumors. A new method called the RECIST criteria traces the outside of the tumor.

The RECIST method was believed to give more consistent measures of the volume of the tumor. For a

portion of the study, a pair of doctors were shown the same set of tumor pictures. The volume of the

tumor was measured by two separate physicians under similar conditions.

Question of interest: Did the measurements from the two physicians significantly differ? If not, then there

would be no evidence that the volume measurements change based on physician.

Tumor 1 2 3 4 5 6 7 8 9 10

Dr.1 15.8 22.3 14.5 15.7 26.8 24.0 21.8 23.0 29.3 20.5

Dr.2 17.2 20.3 14.2 18.5 28.0 24.8 20.3 25.4 27.5 19.7

Solution:

We can measure the effect of the treatment in each person by taking the difference �� = �1� − �2�. Instead

of having two samples, we can consider our dataset to be one sample of differences

Tumor 1 2 3 4 5 6 7 8 9 10

Dr.1 15.8 22.3 14.5 15.7 26.8 24.0 21.8 23.0 29.3 20.5

Dr.2 17.2 20.3 14.2 18.5 28.0 24.8 20.3 25.4 27.5 19.7

Difference -1.4 2.0 0.3 -2.8 -1.2 -0.8 1.5 -2.4 1.8 0.8

Volume from Dr. 1: Population mean = �1, Sample mean = ��1
Volume from Dr. 2: Population mean = �2, Sample mean = ��2
Difference in population mean: �� = �1 − �2

Difference in sample mean: �� = �=1
� ���
�

Assuming ��
'� are normally distributed, can use t-distribution with n-1 df where n is the number of

difference.

� =
�� − �0
��

�
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Standard deviation of differences �� = �=1
� (��−��)�
�−1

Test statistic acts just like one sample

1) Null hypothesis: No difference between physicians effect

�0: �1 = �2 => �1 − �2 = 0 ������ �1: �1 ≠ �2 => �1 − �2 ≠ 0

2) α = 0.05

3) Test statistic

� = ��
��

�
= −0�22

1�66
10
=− 0�ͶͶ�

4) Critical value �0�02Ͷ,9 = 2.26 (p-value = 0.53)

5) Decision: we fail to reject null hypothesis

6) Conclusion: there is no evidence of a difference in tumor volume measurement based on physician at

5% level of significance.

Confidence interval for paired t-test constructed in the same way as one-sample t-test

(�� − ��
2

��
�
, �� + ��

2

��
�
)

For our example, the confidence interval is (-1.01, 0.54)

Note that the conclusion from the hypothesis test and the confidence interval are the same.

Example 2: A physical education director claims that by taking 800 international units (IU) of vitamin E,

a weight lifter can increase his strength. Eight athletes are selected and given a test of strength, using the

standard bench press. After two weeks of regular training supplemented with vitamin E, they were tested

again. Test the effectiveness of vitamin E regiment at 5% level of significance. Each value in the data that

follow represents the maximum number of pounds of the athletes can bench press. (Assume that the

variable is approximately normally distributed).

Athletes 1 2 3 4 5 6 7 8

Before 210 230 182 205 262 253 219 216

After 219 236 179 204 270 250 222 216

Solution:

For vitamin E to be effective, the “before weights” must be less than the “after weights”, i.e., the

difference in the population means must be negative in order for the vitamin to effective.

Thus the null and alternative hypotheses to be tested are:
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 Hypothesis: �0: �1 − �2 = 0 �� �� = 0 (Vitamin E does not increase strength or vitamin E is not

effective)

�1: �1 − �2 < 0 �� �� < 0 (Vitamin E increase strength i.e. Athletes gain more weight

after they are supplemented with vitamin E or vitamin E is effective)

 Level of significance, a=0.05

 Appropriate test Statistics is:

��th =
��
���

=
��

��
n

 Computing Critical Value

A one-tailed test is required and n=8. Thus,

tcritical = tα n − 1 = t0�0Ͷ Ǥ − 1 = t0�0Ͷ � = 1�ǤͺͶ

We shall reject Ho at 0.05 level of significance if t <1.895

 Computing Calculating value

Athletes 1 2 3 4 5 6 7 8 Total

Before 210 230 182 205 262 253 219 216

After 219 236 179 204 270 250 222 216

-9 -6 3 1 -8 3 -3 0 -19

81 36 9 1 64 9 9 0 209

 Decision Rule: because tcal > tcrit, we don`t reject Ho at 0.05 level of significance

 Conclusion: There is no sufficient evidence to support the claim vitamin E increases the strength of

weight lifters.
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9.2 Inference About the Difference Between Two Population Proportions

Introduction

We now consider the case where there are two binomial parameters of interest, say, p1 and p2 , and we

wish to draw inferences about these proportions. Often you want to analyze differences between two

groups in the proportion of items that are in a particular category. The sample statistics needed to analyze

these differences are the proportion of occurrences in group 1 and the proportion of occurrences in group

2. With a sufficient sample size in each group, the sampling distribution of the difference between the

two proportions approximately follows a normal distribution. Suppose we wish to compare the

proportions of two populations that have a specific characteristic, such as the proportion of men who are

left-handed compared to the proportion of women who are left-handed. Each population is divided into

two groups, the group of elements that have the characteristic of interest (for example, being left handed)

and the group of elements that do not. We arbitrarily label one population as Population 1 and the other

as Population 2, and we draw a random sample from Population 1 and, without reference to the first

sample we draw a sample from Population 2.

Our goal is to use the information in the samples to estimate the difference P1 − P2 in the two population

proportions and to make statistically valid inferences about it.

3.2.2 Sampling Distribution of the Difference Between Two Proportions

We assess the probability associated with a difference in proportions computed from samples drawn from

each of these populations.

Sampling distribution of P�1 − P�2 .

The sampling distribution of the difference between two sample proportions is constructed in a manner

similar to the difference between two means. Independent random samples of size n1 and n2 are drawn

from two populations of dichotomous variables where the proportions of observations with the character

of interest in the two populations are P1 and P1, respectively.

Population: 1

Proportion: p1

Population: 2

Proportion: p2
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The distribution of the difference between two sample proportions, P�1 − P�2 , is approximately normal.

For large sample, n1 and n2 are large.

The mean for difference P�1 − P�2 is μP�1− P�2 = P1 − P2

The variance for P�1 − P�2 is σ2P�1− P�2 =
P1(1−P1)

n1
+ P2(1−P2)

n2

The z score for the difference between two proportions is given by:

Z = (P�1−P�2)−(P1−P2)

P1(1−P1)
n1

+P2(1−P2)n2

has standard normal distribution.

Therefore (P�1 − P�2)~N[μ = P1 − P2, σ2 =
P1 1−P1

n1
+ P2 1−P2

n2
for large sample size

3.2.3 Comparison of Proportions in Independent Samples

Assume we have two binomial populations for which the probability of success in population 1 is P1 and

in population 2 is P2. Based on independent samples of size n1 and n2 we want to make inferences on the

difference between P1 and P2 , that is, (P1 − P2 ). The estimate of P1 is P�1 = X1 /n1 , where X1 is the

number of successes in sample 1, and likewise the estimate of P2 is P�2 = X2 /n2 . Assuming sufficiently

large sample sizes, the difference (P�1 − P�2) is normally distributed with mean P1 − P2 and variance
P1(1 − P1) n1 +

P2(1 − P2) n2
Therefore the appropriate statistic for inferences on (P1 − P2) is

z =
(P�1 − P�2) − (P1 − P2)

P1(1 − P1) n1 +
P2(1 − P2) n2

Note that the expression for the variance of the difference contains the unknown parameters P1 and P2. In

the single-population case, the null hypothesis value for the population parameter p was used in

calculating the variance. If the two population proportions are hypothesized to be different, then we

substitute P�1and P�2 in their places.

If the two population proportions are hypothesized to be equal, then we substitute a pooled proportion P�

in both places. This is analogous to the use of S12 and S22 separately or combining them into sp2 in the

case of t-test for comparing population means. Letting P�1 and P�2 be the sample proportions for samples

1 and 2, respectively, the estimate of the common proportion p is a weighted mean of the two-sample

proportions,

The pooled proportion is given by the formula
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In construction of a confidence interval for the difference in proportions, we cannot assume a common

proportion, hence we use the individual estimates P�1 and P�2 in the variance estimate. The (1 − α)

confidence interval on the difference P1 and P2 is:

As in the one-population case the use of the t distribution is not appropriate since the variance is not

calculated as a sum of squares divided by degrees of freedom. However, samples must be reasonably

large in order to use the normal approximation.

Comparing two population proportions can be done using a z-test if the two samples are sufficiently large.

Here a large sample means both np and n(1 - p) are at least 5.

Procedures

 Hypothesis

The null hypothesis is H0: P1 = P2 and the alternative hypothesis is one of the following:

Ha: P1 ≠ P2 Two-tailed

Ha: P1 < P2 Left-tailed

Ha: P1 > P2 Right-tailed

 Decide on the significance level, α.

 The critical value(s) are

Use Z-table to find the critical value(s)

± Zα
2

For two-tailed

− Zα For left-tailed

Zα For right-tailed

 Compute the value of the test statistic, Z = P�1−P�2

P(1−P) 1 n1+
1 n1

 If the value of the test statistic falls in the rejection region, reject H0 otherwise, do not reject H0.
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 State the conclusion in words.

The p-value approach compares the p-value for the test statistic with the α level.

Example 1: 200 patients suffering from a certain disease were randomly divided into two groups. Of the

first group consisting of 120 patients, who received treatment A, 99 recovered within three days. Out of

the other 80, who were treated by treatment B, 62 recovered within 3 days. Can we conclude that

treatment A is more effective?

Solution:-Let P1 = the population proportion of treatment A & P2 is that of treatment B

Given that n1=120, n2= 80, x1= 99, x2= 62, and n = n1+ n1= 200. Thus,

p�1 =
x1
n1
= ͺͺ

120
= 0�Ǥ3, and

p�2 =
x2
n2
= 62

Ǥ0
= 0��Ǥ

We need to test: ��: p1 = p2 versus ��: p1 > p2
Level of significance, α = 0.05

Test statistics: Since the samples are large, the sampling distribution of p�1 − p�2 is approximately normal.

Under the null hypothesis, the common proportion is estimated by p�

p� = n1p�1+n2p�2
n1+n2

= ͺͺ+62
200

= 0�Ǥ1

q� = 1 − p� = 1 − 0�Ǥ1 = 0�1ͺ

The test statistics is,

Z = p�1−p�2

p�q� 1
n1
+ 1
n2

= 0�ǤǤ

Zα = Z0�0Ͷ = 1�6ͶͶ, that is, R: z > 1�6Ͷ but the calculated value of Z does not lie in the rejection region.

Hence, we fail to reject Ho and conclude the two treatments are equally effective.

Example 2: A sample of 100 students at the university showed that 43 had taken one or more remedial

courses. A sample of 200 students at a junior college showed that 90 had taken one or more remedial

college courses. At a=0.05, test the claim that there is no difference in the proportion of students who

complete remedial course at a university or a junior college.

Solution: Let p1= the population proportion of university students who complete remedial courses & p2
= the population proportion of Junior college students who complete remedial courses. Thus,

The hypothesis to be tested is:

��: p� = ��
��: p� ≠ ��
Level of significance, a=0.05
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Test statistics:

Since n�=100 and n�=200 are large, an appropriate test statistics is:

Decision: Since |Z| < 1.96, we do not reject Ho at 5% level of significance

Conclusion: There is no difference in proportion of the students who complete remedial course in a

university of Junior college.

3.2.4 Comparison of Proportions in Paired Samples

Difference of Two Dependent Proportions

Suppose that a sample of n subjects has been selected to examine the relationship between the presences

of a particular attribute at two time points for the same individuals (paired observations). The situation

could also be used to examine the relationship between two different attributes for the same individuals.

Attribute at time

1 2 Number of subjects Difference(Di) Proportion

Present Present a 0 a/n

Present Absent b 1 b/n
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Absent Present c - 1 c/n

Absent Absent d 0 d/n

Total n 1

Let Present = 1 and Absent = 0

Objective: To compare the difference in the proportion of subjects with the attribute at two time points;

�0: �1 = �2 Or �0: �1 − �2 = 0

�t: �1 ≠ �2 �t: �1 − �2 ≠ 0

The sample difference is ��1 − ��2 .

Assumptions

 Pair wise the observations are dependent

 n pairs among themselves are independent

 ��’s are independent

Then the estimated proportion of subjects with the attribute at time 1 is �1 = (a + b)/n, and the estimated

proportion with the attribute at time 2 is p2 = (a + c)/n. The difference between the two estimated

proportions is

P1 − P2 =
a+ b
n

−
a + c
n

=
b − c
n

What is the sampling distribution of p�1 − p�2 for large sample size n?

Since the two population probabilities are dependent, we cannot use the same approach for estimating the

standard error of the difference that we used in the previous section. Instead of showing the steps in the

derivation of the formula, we simply present the formula for the estimated standard error.
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Confidence Intervals:

The confidence interval for the difference of two dependent proportions P1 − P2, is then given by

Example 1: Suppose that 100 students took both calculus and computer tests, and 18 failed in calculus

(p�1 = 0.18) and 10 failed in computer (p�2 = 0.10). There is an 8 percentage point difference (p�1 - p�2 =

0.08). The confidence interval for the difference of these two failure rates cannot be constructed using the

method in the previous subsection because the two rates are dependent.
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We need additional information to assess the dependency. Nine students failed both tests (p12 =0.09), and

this reflects the dependency. The dependency between p1 and p2 can be seen more clearly when the data

are presented in a 2 by 2 table.

Computer

Calculus Failed Passed Total

Failed 9(a) 9(b) 18

Passed 1(c) 81(d) 82

Total 10 90 100(n)

Solution:

Hypothesis:

H0: p1 − p2 = 0 versus Ha: p1 − p2 ≠ 0

The marginal totals reflect the two failure rates. The numbers in the diagonal cells (a, d) are concordant

pairs of test scores (those who passed or failed both tests), and those in the off-diagonal cells (b, c) are

discordant pairs (those who passed one test but failed the other). Important information for comparing the

two dependent failure rates is contained in discordant pairs, as the estimated difference of the two

proportions and its estimated standard error are dependent on b and c.

Z =
b − c − 0�Ͷ

b + c
= Z =

ͺ − 1 − 0�Ͷ
ͺ + 1

= 2�3�2

Critical value

± Zα
2
=± Z0�02Ͷ =± 1�ͺ6 =>− 1�ͺ6 � � � 1�ͺ6

Since 2.372 > 1.96 reject the null hypothesis.

Using the standard error equation, we have

Estimated SE(p�1 − p�22) =
1
100

ͺ + 1 − [ͺ−1]2

100
= 0�0306

Then the 95 percent confidence interval for the difference of these two dependent proportions is 0.08 –

1.96 (0.0306) < p1 – p2 < 0.08 +1.96 (0.0306) or (0.0200, 0.1400).

This interval does not include 0, suggesting that the failure rates of these two tests are significantly

different.


